Publications
Techno-economic Optimization of Green HydrogenProduction from Curtailed Power in Ireland: Impact of Future Future Renewable Energy Installations, Weather Variability, and Grid Constraints
Jul 2025
Publication
To improve the economic viability of renewable (green) hydrogen production excess renewable energy which cannot be input to the electricity grid (curtailed power) can be utilized. While several models have attempted to optimize hydrogen production using curtailed power several factors must be considered in greater detail including the impacts of future renewable energy capacity weather variability and electricity grid constraints. This study aims to explore these aspects through an integrated model performing a techno-economic assessment and size optimization in order to achieve the minimum levelized cost of hydrogen (LCOH). Based on the Irish case optimizing the production of hydrogen from curtailed power results in a minimum LCOH of 1.20–9.39 €/kg. To maximize variable renewable energy penetration in the grid while allowing for low-cost hydrogen production from curtailed power it is suggested to focus on grid improvements while ensuring rapid commissioning of offshore wind installations leading to a LCOH of 1.26–2.44 €/kg.
Experimental Evaluation of Dynamic Operating Concepts for Alkaline Water Electrolyzers Powered by Renewable Energy
Dec 2021
Publication
Synthetic current density profiles with wind and photovoltaic power characteristics were calculated by autoregressive-moving-average (ARMA) models for the experimental evaluation of dynamic operating concepts for alkaline water electrolyzers powered by renewable energy. The selected operating concepts included switching between mixed and split electrolyte cycles and adapting the liquid electrolyte volume flow rate depending on the current density. All experiments were carried out at a pressure of 7 bar a temperature of 60 °C and with an aqueous potassium hydroxide solution with 32 wt.% KOH as the electrolyte. The dynamic operating concepts were compared to stationary experiments with mixed electrolyte cycles and the experimental evaluation showed that the selected operating concepts were able to reduce the gas impurity compared to the reference operating conditions without a noticeable increase of the cell potential. Therefore the overall system efficiency and process safety could be enhanced by this approach.
U.S. National Clean Hydrogen Strategy and Roadmap
Jun 2023
Publication
The U.S. National Clean Hydrogen Strategy and Roadmap explores opportunities for clean hydrogen to contribute to national decarbonization goals across multiple sectors of the economy. It provides a snapshot of hydrogen production transport storage and use in the United States today and presents a strategic framework for achieving large-scale production and use of clean hydrogen examining scenarios for 2030 2040 and 2050.
The Strategy and Roadmap also identifies needs for collaboration among federal government agencies industry academia national laboratories state local and Tribal communities environmental and justice communities labor unions and numerous stakeholder groups to accelerate progress and market liftoff. This roadmap establishes concrete targets market-driven metrics and tangible actions to measure success across sectors.
The Strategy and Roadmap responds to legislative language set forth in section 40314 of the Infrastructure Investment and Jobs Act (Public Law 117-58) also known as the Bipartisan Infrastructure Law (BIL). This document was posted for in draft form for public comment in September 2022 and the final version of the report was informed by stakeholder feedback further analysis on market liftoff as well as engagement across several federal agencies and the White House Climate Policy Office. There will also be future opportunities for stakeholder feedback as the report will be updated at least every three years as required by the BIL.
The report can be found on their website.
The Strategy and Roadmap also identifies needs for collaboration among federal government agencies industry academia national laboratories state local and Tribal communities environmental and justice communities labor unions and numerous stakeholder groups to accelerate progress and market liftoff. This roadmap establishes concrete targets market-driven metrics and tangible actions to measure success across sectors.
The Strategy and Roadmap responds to legislative language set forth in section 40314 of the Infrastructure Investment and Jobs Act (Public Law 117-58) also known as the Bipartisan Infrastructure Law (BIL). This document was posted for in draft form for public comment in September 2022 and the final version of the report was informed by stakeholder feedback further analysis on market liftoff as well as engagement across several federal agencies and the White House Climate Policy Office. There will also be future opportunities for stakeholder feedback as the report will be updated at least every three years as required by the BIL.
The report can be found on their website.
Multi-option Analytical Modeling of Levelised Costs Across Various Hydrogen Supply Chain Nodes
May 2024
Publication
Hydrogen is envisioned to become a fundamental energy vector for the decarbonization of energy systems. Two key factors that will define the success of hydrogen are its sustainability and competitiveness with alternative solutions. One of the many challenges for the proliferation of hydrogen is the creation of a sustainable supply chain. In this study a methodology aimed at assessing the economic feasibility of holistic hydrogen supply chains is developed. Based on the designed methodology a tool which calculates the levelized cost of hydrogen for the different stages of its supply chain: production transmission & distribution storage and conversion is proposed. Each stage is evaluated individually combining relevant technical and economic notions such as learning curves and scaling factors. Subsequently the findings from each stage are combined to assess the entire supply chain as a whole. The tool is then applied to evaluate case studies of various supply chains including large-scale remote and small-scale distributed green hydrogen supply chains as well as conventional steam methane reforming coupled with carbon capture and storage technologies. The results show that both green hydrogen supply chains and conventional methods can achieve a competitive LCOH of around €4/kg in 2030. However the key contribution of this study is the development of the tool which provides a foundation for a comprehensive evaluation of hydrogen supply chains that can be continuously improved through the inputs of additional users and further research on one or more of the interconnected stages.
The Status of On-Board Hydrogen Storage in Fuel Cell Electric Vehicles
Aug 2023
Publication
Hydrogen as an energy carrier could help decarbonize industrial building and transportation sectors and be used in fuel cells to generate electricity power or heat. One of the numerous ways to solve the climate crisis is to make the vehicles on our roads as clean as possible. Fuel cell electric vehicles (FCEVs) have demonstrated a high potential in storing and converting chemical energy into electricity with zero carbon dioxide emissions. This review paper comprehensively assesses hydrogen’s potential as an innovative alternative for reducing greenhouse gas (GHG) emissions in transportation particularly for on-board applications. To evaluate the industry’s current status and future challenges the work analyses the technology behind FCEVs and hydrogen storage approaches for on-board applications followed by a market review. It has been found that to achieve long-range autonomy (over 500 km) FCEVs must be capable of storing 5–10 kg of hydrogen in compressed vessels at 700 bar with Type IV vessels being the primary option in use. Carbon fiber is the most expensive component in vessel manufacturing contributing to over 50% of the total cost. However the cost of FCEV storage systems has considerably decreased with current estimates around 15.7 $/kWh and is predicted to drop to 8 $/kWh by 2030. In 2021 Toyota Hyundai Mercedes-Benz and Honda were the major car brands offering FCEV technology globally. Although physical and chemical storage technologies are expected to be valuable to the hydrogen economy compressed hydrogen storage remains the most advanced technology for on-board applications.
Feasibility Study into Water Requirement for Hydrogen Production
Nov 2022
Publication
Low carbon hydrogen can be produced by a variety of processes that require substantial quantities of water. Several major hydrogen projects are proposed in Scotland; as an energy storage medium allowing new renewable power capacity to operate and as a direct alternative to displace natural gas as a primary fuel source. The additional water consumption associated with these hydrogen projects presents an infrastructure challenge.
The aims of the study are to evaluate the water requirements of new hydrogen production facilities and the associated implications for water infrastructure and to develop a strategic framework for assessing these aspects of hydrogen projects throughout the UK. The initial focus of the study is on Scotland; however the methodology developed in the project will be used throughout the UK
Benefits
Low carbon hydrogen can be produced by a variety of processes all of which require substantial quantities of water. Several major hydrogen projects are proposed in Scotland; both as an energy storage medium allowing new renewable power capacity (particularly wind) to operate and as a direct alternative to displace natural gas as a primary fuel source. The additional water consumption associated with these hydrogen projects presents an infrastructure challenge e.g. the Scottish Environment Protection Agency (SEPA) recently highlighted Scotland’s vulnerability to dry weather and climate-induced changes in the availability and functioning of water resources.
The project in partnership with Ramboll will look to deliver a technical assessment and feasibility study into water requirements for hydrogen production in Scotland. The aims of the study are to evaluate the water requirements of new hydrogen production facilities and the associated implications for water infrastructure and to develop a strategic framework for assessing these aspects of hydrogen projects throughout the UK. The initial focus of the study is on Scotland; however the methodology developed in the project will be used throughout the UK.
The research paper can be found on their website.
The aims of the study are to evaluate the water requirements of new hydrogen production facilities and the associated implications for water infrastructure and to develop a strategic framework for assessing these aspects of hydrogen projects throughout the UK. The initial focus of the study is on Scotland; however the methodology developed in the project will be used throughout the UK
Benefits
Low carbon hydrogen can be produced by a variety of processes all of which require substantial quantities of water. Several major hydrogen projects are proposed in Scotland; both as an energy storage medium allowing new renewable power capacity (particularly wind) to operate and as a direct alternative to displace natural gas as a primary fuel source. The additional water consumption associated with these hydrogen projects presents an infrastructure challenge e.g. the Scottish Environment Protection Agency (SEPA) recently highlighted Scotland’s vulnerability to dry weather and climate-induced changes in the availability and functioning of water resources.
The project in partnership with Ramboll will look to deliver a technical assessment and feasibility study into water requirements for hydrogen production in Scotland. The aims of the study are to evaluate the water requirements of new hydrogen production facilities and the associated implications for water infrastructure and to develop a strategic framework for assessing these aspects of hydrogen projects throughout the UK. The initial focus of the study is on Scotland; however the methodology developed in the project will be used throughout the UK.
The research paper can be found on their website.
Reversible Molten Catalytic Methane Cracking Applied to Commercial Solar-Thermal Receivers
Nov 2020
Publication
When driven by sunlight molten catalytic methane cracking can produce clean hydrogen fuel from natural gas without greenhouse emissions. To design solar methane crackers a canonical plug flow reactor model was developed that spanned industrially relevant temperatures and pressures (1150–1350 Kelvin and 2–200 atmospheres). This model was then validated against published methane cracking data and used to screen power tower and beam-down reactor designs based on “Solar Two” a renewables technology demonstrator from the 1990s. Overall catalytic molten methane cracking is likely feasible in commercial beam-down solar reactors but not power towers. The best beam-down reactor design was 9% efficient in the capture of sunlight as fungible hydrogen fuel which approaches photovoltaic efficiencies. Conversely the best discovered tower methane cracker was only 1.7% efficient. Thus a beam-down reactor is likely tractable for solar methane cracking whereas power tower configurations appear infeasible. However the best simulated commercial reactors were heat transfer limited not reaction limited. Efficiencies could be higher if heat bottlenecks are removed from solar methane cracker designs. This work sets benchmark conditions and performance for future solar reactor improvement via design innovation and multiphysics simulation.
Integration of Air-cooled Multi-stack Polymer Electrolyte Fuel Cell Systems into Renewable Microgrids
May 2022
Publication
Currently there is a growing interest in increasing the power range of air-cooled fuel cells (ACFCs) as they are cheaper easier to use and maintain than water-cooled fuel cells (WCFCs). However air-cooled stacks are only available up to medium power (<10 kW). Therefore a good solution may be the development of ACFCs consisting of several stacks until the required power output is reached. This is the concept of air-cooled multi-stack fuel cell (AC-MSFC). The objective of this work is to develop a turnkey solution for the integration of AC-MSFCs in renewable microgrids specifically those with high-voltage DC (HVDC) bus. This is challenging because the AC-MSFCs must operate in the microgrid as a single ACFC with adjustable power depending on the number of stacks in operation. To achieve this the necessary power converter (ACFCs operate at low voltages so high conversion rates are required) and control loops must be developed. Unlike most designs in the literature the proposed solution is compact forming a system (AC-MSFCS) with a single input (hydrogen) and a single output (high voltage regulated power or voltage) that can be easily integrated into any microgrid and easily scalable depending on the power required. The developed AC-MSFCS integrates stacks balance of plant data acquisition and instrumentation power converters and local controllers. In addition a virtual instrument (VI)has been developed which connected to the energy management system (EMS) of the microgrid allows monitoring of the entire AC-MSFCS (operating temperature purging cell voltage monitoring for degradation evaluation stacks operating point control and alarm and event management) as well as serving as a user interface. This allows the EMS to know the degradation of each stack and to carry out energy distribution strategies or specific maintenance actions which improves efficiency lifespan and of course saves costs. The experimental results have been excellent in terms of the correct operation of the developed AC-MSFCS. Likewise the accumulated degradation of the stacks was quantified showing cells with a degradation of >80%. The excellent electrical and thermal performance of the developed power converter was also validated which allowed the correct and efficient supply of regulated power (average efficiency above 90%) to the HVDC bus according to the power setpoint defined by the EMS of the microgrid.
Exploring the Potential of Green Hydrogen Production and Application in the Antofagasta Region of Chile
Jun 2023
Publication
Green hydrogen is gaining increasing attention as a key component of the global energy transition towards a more sustainable industry. Chile with its vast renewable energy potential is well positioned to become a major producer and exporter of green hydrogen. In this context this paper explores the prospects for green hydrogen production and use in Chile. The perspectives presented in this study are primarily based on a compilation of government reports and data from the scientific literature which primarily offer a theoretical perspective on the efficiency and cost of hydrogen production. To address the need for experimental data an ongoing experimental project was initiated in March 2023. This project aims to assess the efficiency of hydrogen production and consumption in the Atacama Desert through the deployment of a mobile on-site laboratory for hydrogen generation. The facility is mainly composed by solar panels electrolyzers fuel cells and a battery bank and it moves through the Atacama Desert in Chile at different altitudes from the sea level to measure the efficiency of hydrogen generation through the energy approach. The challenges and opportunities in Chile for developing a robust green hydrogen economy are also analyzed. According to the results Chile has remarkable renewable energy resources particularly in solar and wind power that could be harnessed to produce green hydrogen. Chile has also established a supportive policy framework that promotes the development of renewable energy and the adoption of green hydrogen technologies. However there are challenges that need to be addressed such as the high capital costs of green hydrogen production and the need for supportive infrastructure. Despite these challenges we argue that Chile has the potential to become a leading producer and exporter of green hydrogen or derivatives such as ammonia or methanol. The country’s strategic location political stability and strong commitment to renewable energy provide a favorable environment for the development of a green hydrogen industry. The growing demand for clean energy and the increasing interest in decarbonization present significant opportunities for Chile to capitalize on its renewable energy resources and become a major player in the global green hydrogen market.
A Review of Port Decarbonisation Options: Identified Opportunities for Deploying Hydrogen Technologies
Apr 2024
Publication
The utilisation of hydrogen is being explored as a viable solution for reducing carbon emissions in port operations with potential applications in cargo handling transportation and shipping vessel operations. To comprehensively list the decarbonisation options in ports this study conducted a Systematic Literature Review to identify and then survey twelve highly cited review papers. Initially a typology approach was used to categorise the decarbonisation options by activities and technologies. Subsequently the study introduced a novel Port Energy Map to reveal the energy system pathways and their interconnections. Each pathway was then converted into a simpler linear sequence of activities shown as a Port Energy System Taxonomy which outlines the energy supply and energy-using activities. By utilising this taxonomy and map the study identified opportunities and research gaps for integrating hydrogen technologies into port energy systems which serves as a valuable tool for assessing port decarbonisation options.
Work Efficiency and Economic Efficiency of Actual Driving Test of Proton Exchange Membrane Fuel Cell Forklift
Aug 2023
Publication
A 3.5 tonne forklift containing proton exchange membrane fuel cells (PEMFCs) and lithium-ion batteries was manufactured and tested in a real factory. The work efficiency and economic applicability of the PEMFC forklift were compared with that of a lithium-ion battery-powered forklift. The results showed that the back-pressure of air was closely related to the power density of the stack whose stability could be improved by a reasonable control strategy and membrane electrode assemblies (MEAs) with high consistency. The PEMFC powered forklift displayed 40.6% higher work efficiency than the lithium-ion battery-powered forklift. Its lower use-cost compared to internal engine-powered forklifts is beneficial to the commercialization of this product.
Hydrogen Production from Renewable Energy Resources: A Case Study
May 2024
Publication
In the face of increasing demand for hydrogen a feasibility study is conducted on its production by using Renewable Energy Resources (RERs) especially from wind and solar sources with the latter preferring photovoltaic technology. The analysis performed is based on climate data for the Province of Brindisi Apulia Italy. The various types of electrolyzers will be analyzed ultimately choosing the one that best suits the case study under consideration. The technical aspect of the land consumption for RER exploitation until 2050 is analyzed for the Italian case of study and for the Apulia Region. For both the 200 MW and 100 MW RER Power Plants an economic analysis is carried out on the opportunities for using hydrogen. In the last part of the economic analysis the trade-off between the high specific investment cost and the Capacity Factor of Wind technologies is also investigated. The results show the affordability of building high-scale Wind Farms harnessing the existing scale economies. The lowest Hydrogen selling price is achieved by the 200 MW Wind Farms equal to 222 €/MWh against 232 €/MWh of the 200 MW Photovoltaic (PV) Farm. Finally the feasibility analysis considers also the greenhouse gas emission reduction by including in the economic analysis the carbon dioxide (CO2) Average Auction Clearing Price leading for the 200 MW Wind Farms to a hydrogen selling price equal to 191.2 €/MWh against 201 €/MWh of the 200 MW Photovoltaic Farm.
Implementation of Formic Acid as a Liquid Organic Hydrogen Carrier (LOHC): Techno-Economic Analysis and Life Cycle Assessment of Formic Acid Produced via CO2 Utilization
Sep 2022
Publication
To meet the global climate goals agreed upon regarding the Paris Agreement governments and institutions around the world are investigating various technologies to reduce carbon emissions and achieve a net-negative energy system. To this end integrated solutions that incorporate carbon utilization processes as well as promote the transition of the fossil fuel-based energy system to carbon-free systems such as the hydrogen economy are required. One of the possible pathways is to utilize CO2 as the base chemical for producing a liquid organic hydrogen carrier (LOHC) using CO2 as a mediating chemical for delivering H2 to the site of usage since gaseous and liquid H2 retain transportation and storage problems. Formic acid is a probable candidate considering its high volumetric H2 capacity and low toxicity. While previous studies have shown that formic acid is less competitive as an LOHC candidate compared to other chemicals such as methanol or toluene the results were based on out-of-date process schemes. Recently advances have been made in the formic acid production and dehydrogenation processes and an analysis regarding the recent process configurations could deem formic acid as a feasible option for LOHC. In this study the potential for using formic acid as an LOHC is evaluated with respect to the state-of-the-art formic acid production schemes including the use of heterogeneous catalysts during thermocatalytic and electrochemical formic acid production from CO2 . Assuming a hydrogen distribution system using formic acid as the LOHC each of the production transportation dehydrogenation and CO2 recycle sections are separately modeled and evaluated by means of techno-economic analysis (TEA) and life cycle assessment (LCA). Realistic scenarios for hydrogen distribution are established considering the different transportation and CO2 recovery options; then the separate scenarios are compared to the results of a liquefied hydrogen distribution scenario. TEA results showed that while the LOHC system incorporating the thermocatalytic CO2 hydrogenation to formic acid is more expensive than liquefied H2 distribution the electrochemical CO2 reduction to formic acid system reduces the H2 distribution cost by 12%. Breakdown of the cost compositions revealed that reduction of steam usage for thermocatalytic processes in the future can make the LOHC system based on thermocatalytic CO2 hydrogenation to formic acid to be competitive with liquefied H2 distribution if the production cost could be reduced by 23% and 32% according to the dehydrogenation mode selected. Using formic acid as a LOHC was shown to be less competitive compared to liquefied H2 delivery in terms of LCA but producing formic acid via electrochemical CO2 reduction was shown to retain the lowest global warming potential among the considered options.
Calculating the Fundamental Parameters to Assess the Explosion Risk Due to Crossover in Electrolysers
Sep 2023
Publication
With the predicted high demand of hydrogen projected to support the neutral carbon society transition in the coming years the production of hydrogen is set to increase alongside the demand. As electrolysis is set to be amongst the main solutions for green hydrogen production ensuring the safety of electrolysers during operation will become a central concern. This is mainly due to the crossover risk (hydrogen into oxygen or the other way around) in the separators as throughout the years several cases of incidents have been reported. This study aims to evaluate the methodologies for calculating H2/O2 detonation cell size and laminar flame velocity using detailed kinetic mechanisms at the operating conditions of electrolysers (up to 35 bar and 360 K). Therefore the modeling of H2/O2 and H2/Air shock tube delay times and laminar flame speeds at initial different pressures and temperature based on the GRI mech 3.0 [1] Mevel et al.[2] Li et al.[3] Lutz et al. [4] and Burke et al. [5] kinetic mechanisms were performed and compared with the available experimental data in the literature. In each case a best candidate mechanism was then chosen to build a database for the detonation cell size then for the laminar flame speeds up to the operating conditions of electrolysers (293-360K and 1-35 bar).
Green Hydrogen Production through Ammonia Decomposition Using Non-Thermal Plasma
Sep 2023
Publication
Liquid hydrogen carriers will soon play a significant role in transporting energy. The key factors that are considered when assessing the applicability of ammonia cracking in large-scale projects are as follows: high energy density easy storage and distribution the simplicity of the overall process and a low or zero-carbon footprint. Thermal systems used for recovering H2 from ammonia require a reaction unit and catalyst that operates at a high temperature (550–800 ◦C) for the complete conversion of ammonia which has a negative effect on the economics of the process. A non-thermal plasma (NTP) solution is the answer to this problem. Ammonia becomes a reliable hydrogen carrier and in combination with NTP offers the high conversion of the dehydrogenation process at a relatively low temperature so that zero-carbon pure hydrogen can be transported over long distances. This paper provides a critical overview of ammonia decomposition systems that focus on non-thermal methods especially under plasma conditions. The review shows that the process has various positive aspects and is an innovative process that has only been reported to a limited extent.
Economic Performance Evaluation of Flexible Centralised and Decentralised Blue Hydrogen Production Systems Design Under Uncertainty
Sep 2023
Publication
Blue hydrogen is viewed as an important energy vector in a decarbonised global economy but its large-scale and capital-intensive production displays economic performance vulnerabities in the face of increased market and regulatory uncertainty. This study analyses flexible (modular) blue hydrogen production plant designs and evaluates their effectiveness to enhance economic performance under uncertainty. The novelty of this work lies in the development of a comprehensive techno-economic evaluation framework that considers flexible centralised and decentralised blue hydrogen plant design alternatives in the presence of irreducible uncertainty whilst explicitly considering the time value of money economies of scale and learning effects. A case study of centralised and decentralised blue hydrogen production for the transport sector in the San Francisco area is developed to highlight the underlying value of flexibility. The proposed methodological framework considers various blue hydrogen plant designs (fixed phased and flexible) and compares them using relevant economic indicators (net present value (NPV) capex value-at-risk/gain etc.) through a detailed Monte Carlo simulation framework. Results indicate that flexible centralised hydrogen production yields greater economic value than alternative designs despite the associated cost-premium of modularity. It is also shown that the value of flexibility increases under greater uncertainty higher learning rates and weaker economies of scale. Moreover sensitivity analysis reveals that flexible design remains the preferred investment option over a wide range of market and regulatory conditions except for high initial hydrogen demand. Finally this study demonstrates that major regulatory and market uncertainties surrounding blue hydrogen production can be effectively managed through the application of flexible engineering system design that protects the investment from major downside risks whilst allowing access to favourable upside opportunities.
Development of Hydrogen Area Classification Data for Use in Village Trials
May 2023
Publication
The natural gas industry proposes carrying out trials on limited parts of the gas network using hydrogen as an alternative to natural gas as a fuel. Ahead of these trials it is important to establish whether the zones of negligible extent that are typically applied to natural gas systems could still be considered zones of negligible extent for hydrogen. The standard IGEM/UP/16 is commonly used by the natural gas industry to carry out area classification for low pressure gas systems for example as found in boiler houses. However IGEM/UP/16 is not applicable to hydrogen. Therefore IGEM commissioned HSE’s Science Division to develop some data that could be used to feed into an area classification assessment for the village trials.<br/>This report identifies two main elements of IGEM/UP/16 which may not apply to hydrogen and suggests values for hydrogen-specific alternatives. These are the ventilation rate requirements to allow a zone to be deemed of negligible extent and the definition of a confined space.
Operation Strategy for an Integrated Energy System Considering the Slow Dynamic Response Characteristics of Power-to-Gas Conversion
Jun 2024
Publication
Power-to-gas technology provides an emerging pathway for promoting green and lowcarbon transformation of energy systems. Through the processes of electrolyzing water and the methanation reaction it converts surplus renewable energy into hydrogen and natural gas offering an effective approach for large-scale integration of renewable energy sources. However the optimization of existing integrated energy systems has yet to finely model the operational characteristics of power-to-gas technology severely limiting the energy conversion efficiency of systems. To address this issue this paper proposes an integrated energy system operation strategy considering the slow dynamic response characteristics of power-to-gas. Firstly based on the technical features of power-to-gas an operational model for electrolyzing water to produce hydrogen is constructed considering the transition relationships among cold start-up hot start-up and production states of a methanation reaction thereby building a power-to-gas operation model considering slow dynamic response characteristics. This model finely reflects the impact of power-to-gas operational states on methanation facilitating accurate representation of the operational states of methanation. Then considering the energy conversion constraints and power balance of various coupled devices within integrated energy systems an optimization model for the operation of the integrated energy system is constructed with the total daily operation cost of the system as the optimization objective. Finally simulation comparisons are conducted to demonstrate the necessity of considering the slow dynamic response characteristics of power-to-gas technology for integrated energy system operation. The case study results indicate that the proposed power-to-gas operation model can accurately simulate the methanation process facilitating the rational conversion of surplus renewable energy into natural gas energy and avoiding misjudgments in system operation costs and energy utilization efficiency.
Potential Economic Benefits of Carbon Dioxide (CO2) Reduction Due to Renewable Energy and Electrolytic Hydrogen Fuel Deployment Under Current and Long Term Forecasting of the Social Carbon Cost (SCC)
May 2019
Publication
The 2016 Paris Agreement (UNFCCC Authors 2015) is the latest of initiative to create an international consensus on action to reduce GHG emissions. However the challenge of meeting its targets lies mainly in the intimate relationship between GHG emissions and energy production which in turn links to industry and economic growth. The Middle East and North African region (MENA) particularly those nations rich oil and gas (O&G) resources depend on these as a main income source. Persuading the region to cut down on O&G production or reduce its GHG emissions is hugely challenging as it is so vital to its economic strength. In this paper an alternative option is established by creating an economic link between GHG emissions measured as their CO2 equivalent (CO2e) and the earning of profits through the concept of Social Carbon Cost (SCC). The case study is a small coastal city in Libya where 6% of electricity is assumed to be generated from renewable sources. At times when renewable energy (RE) output exceeds the demand for power the surplus is used for powering the production of hydrogen by electrolysis thus storing the energy and creating an emission-free fuel. Two scenarios are tested based on short and long term SCCs. In the short term scenario the amount of fossil fuel energy saved matches the renewable energy produced which equates to the same amount of curtailed O&G production. The O&G-producing region can earn profits in two ways: (1) by cutting down CO2 emissions as a result of a reduction in O&G production and (2) by replacing an amount of fossil fuel with electrolytically-produced hydrogen which creates no CO2 emissions. In the short term scenario the value of SCC saved is nearly 39% and in the long term scenario this rose to 83%.
A Review of Hydrogen-based Hybrid Renewable Energy Systems: Simulation and Optimization with Artificial Intelligence
Nov 2021
Publication
With the massive use of traditional fossil fuels greenhouse gas emissions are increasing and environmental pollution is becoming an increasingly serious problem which led to an imminent energy transition. Therefore the development and application of renewable energy are particularly important. This paper reviews a wide range of issues associated with hybrid renewable energy systems (HRESs). The issues concerning system configurations energy storage options simulation and optimization with artificial intelligence are discussed in detail. Storage technology options are introduced for stand-alone (off-grid) and grid-connected (on-grid) HRESs. Different optimization methodologies including classical techniques intelligent techniques hybrid techniques and software tools for sizing system components are presented. Besides the artificial intelligence methods for optimizing the solar/wind HRESs are discussed in detail.
No more items...