Publications
Techno-economic Analysis of Developing an Underground Hydrogen Storage Facility in Depleted Gas Field: A Dutch Case Study
Apr 2023
Publication
Underground hydrogen storage will be an essential part of the future hydrogen infrastructure to provide flexibility and security of supply. Storage in porous reservoirs should complement storage in salt caverns to be able to meet the projected high levels of required storage capacities. To assess its techno-economic feasibility a case study of hydrogen storage in a depleted gas field in the Netherlands is developed. Subsurface modelling is performed and various surface facility design concepts are investigated to calculate the levelized cost of hydrogen storage (LCOHS). Our base case with hydrogen as cushion gas results in an LCOHS of 0.79 EUR/kg (range of 0.58–1.04 EUR/kg). Increasing the number of full-cycle equivalents from 1 to 6 lowers the storage cost to 0.25 EUR/kg. The investment cost of the cushion gas represents 76% of the total cost. With nitrogen as cushion gas LCOHS is reduced to 0.49 EUR/kg (range of 0.42–0.56 EUR/kg).
Dispersion of Under-expanded Hydrogen-methane Blended Jets through a Circular Orifice
Sep 2023
Publication
Blending hydrogen into natural gas and using existing natural gas infrastructure provides energy storage greenhouse gas emission reduction from combustion and other benefits as the world transitions to a hydrogen economy. Though this seems to be a simple and attractive technique there is a dearth of existing safety codes and standards and understanding the safety implications is warranted before implementation. In this paper we present some preliminary findings on the dispersion characteristics of hydrogen-methane blends performed under controlled conditions inside a laboratory. Experiments were performed at two different upstream pressures of 5 and 10 bar as the blends dispersed into air through a 1 mm diameter orifice. Blends of 25 50 and 75 vol-% hydrogen in methane were tested. Spatially resolved Raman signals from hydrogen methane and nitrogen were acquired simultaneously at 10 Hz using separate ICCD cameras from which the individual concentrations and jet boundaries could be determined. Finally a comparison between dispersion characteristics of blended fuel jets with pure hydrogen and pure methane jets was made.
Concept Design and Energy Balance Optimization of a Hydrogen Fuel Cell Helicoptor for Unmanned Aerial Vehicle and Aerotaxi Applications
May 2023
Publication
In the new scenario where the transportation sector must be decarbonized to limit global warming fuel cellpowered aerial vehicles have been selected as a strategic target application to compose part of the urban fleet to minimize road transport congestion and make goods and personal transportation fast and efficient. To address the necessity of clean and efficient urban air transport this work consists of the conceptual development of a lightweight rotary-winged transport vehicle using a hydrogen-based fuel cell propulsion system and the optimization of its energy balance. For that purpose the methods for integrating the coupled aerodynamic and propulsion system sizing and optimization was developed with the aim of designing concepts capable of carrying 0 (unmanned aerial vehicle — Design 1) and 1 (Aerotaxi — Design 2) passengers for a distance of 300 km at a cruise altitude of 500 m with a minimum climbing rate capability of 6 m s−1 at 1000 m. The results show how these designs with the desired performance specifications can be obtained with a vehicle mass ranging from 416 to 648 kg depending on the application and with specific range and endurance respectively within 46.2–47.8 km/kg and 20.4–21.3 min/kg for design 1 and 33.3–33.8 km/kg and 12.5–13.9 min/kg for design 2.
Balancing Electricity Supply and Demand in a Carbon-Neutral Northern Europe
Apr 2023
Publication
This work investigates how to balance the electricity supply and demand in a carbon-neutral northern Europe. Applying a cost-minimizing electricity system model including options to invest in eleven different flexibility measures and cost-efficient combinations of strategies to manage variations were identified. The results of the model were post-processed using a novel method to map the net load before and after flexibility measures were applied to reveal the contribution of each flexibility measure. The net load was mapped in the space spanned by the amplitude duration and number of occurrences. The mapping shows that depending on cost structure flexibility measures contribute to reduce the net load in three different ways; (1) by reducing variations with a long duration but low amplitude (2) by reducing variations with a high amplitude but short duration and low occurrence or (3) by reducing variations with a high amplitude short duration and high occurrence. It was found that cost-efficient variation management was achieved by combining wind and solar power and by combining strategies (1–3) to manage the variations. The cost-efficient combination of strategies depends on electricity system context where electricity trade flexible hydrogen and heat production (1) manage the majority of the variations in regions with good conditions for wind power while stationary batteries (3) were the main contributors in regions with good conditions for solar power.
Biological Hydrogen Methanation with Carbon Dioxide Utilization: Methanation Acting as Mediator in the Hydrogen Economy
May 2023
Publication
Hydrogen is one of the main energy carriers playing a prominent role in the future decarbonization of the economy. However several aspects regarding the transport and storage of this gas are challenging. The intermediary conversion of hydrogen into high-density energy molecules may be a crucial step until technological conditions are ready to attain a significant reduction in fossil fuel use in transport and the industrial sector. The process of transforming hydrogen into methane by anaerobic digestion is reviewed showing that this technology is a feasible option for facilitating hydrogen storage and transport. The manuscript focuses on the role of anaerobic digestion as a technology driver capable of fast adaptation to current energy needs. The use of thermophilic systems and reactors capable of increasing the contact between the H2 -fuel and liquid phase demonstrated outstanding capabilities attaining higher conversion rates and increasing methane productivity. Pressure is a relevant factor of the process allowing for better hydrogen solubility and setting the basis for considering feasible underground hydrogen storage concomitant with biological methanation. This feature may allow the integration of sequestered carbon dioxide as a relevant substrate.
Establishment of Austria’s First Regional Green Hydrogen Economy: WIVA P&G HyWest
Apr 2023
Publication
The regional parliament of Tyrol in Austria adopted the climate energy and resources strategy “Tyrol 2050 energy autonomous” in 2014 with the aim to become climate neutral and energy autonomous. “Use of own resources before others do or have to do” is the main principle within this long-term strategic approach in which the “power on demand” process is a main building block and the “power-to-hydrogen” process covers the intrinsic lack of a long-term large-scale storage of electricity. Within this long-term strategy the national research and development (R&D) flagship project WIVA P&G HyWest (ongoing since 2018) aims at the establishment of the first sustainable business-case-driven regional green hydrogen economy in central Europe. This project is mainly based on the logistic principle and is a result of synergies between three ongoing complementary implementation projects. Among these three projects to date the industrial research within “MPREIS Hydrogen” resulted in the first green hydrogen economy. One hydrogen truck is operational as of January 2023 in the region of Tyrol for food distribution and related monitoring studies have been initiated. To fulfil the logistic principle as the main outcome another two complementary projects are currently being further implemented.
Global Demand Analysis for Carbon Dioxide as Raw Material from Key Industrial Sources and Direct Air Capture to Produce Renewable Electricity-based Fuels and Chemicals
Sep 2022
Publication
Defossilisation of the current fossil fuels dominated global energy system is one of the key goals in the upcoming decades to mitigate climate change. Sharp reduction in the costs of solar photovoltaics wind power and battery technologies enables a rapid transition of the power and some segments of the transport sectors to sustainable energy resources. However renewable electricity-based fuels and chemicals are required for the defossilisation of hard-to-abate segments of transport and industry. The global demand for carbon dioxide as raw material for the production of e-fuels and e-chemicals during a global energy transition to 100% renewable energy is analysed in this research. Carbon dioxide capture and utilisation potentials from key industrial point sources including cement mills pulp and paper mills and waste incinerators are evaluated. According to this study’s estimates the demand for carbon dioxide increases from 0.6 in 2030 to 6.1 gigatonnes in 2050. Key industrial point sources can potentially supply 2.1 gigatonnes of carbon dioxide and thus meet the majority of the demand in the 2030s. By 2050 however direct air capture is expected to supply the majority of the demand contributing 3.8 gigatonnes of carbon dioxide annually. Sustainable and unavoidable industrial point sources and direct air capture are vital technologies which may help the world to achieve ambitious climate goals.
A Novel Scheme to Allocate the Green Energy Transportation Costs—Application to Carbon Captured and Hydrogen
Mar 2023
Publication
Carbon dioxide (CO2 ) and hydrogen (H2 ) are essential energy vectors in the green energy transition. H2 is a fuel produced by electrolysis and is applied in heavy transportation where electrification is not feasible yet. The pollutant substance CO2 is starting to be captured and stored in different European locations. In Denmark the energy vision aims to use this CO2 to be reacted with H2 producing green methanol. Typically the production units are not co-located with consumers and thus the required transportation infrastructure is essential for meeting supply and demand. This work presents a novel scheme to allocate the transportation costs of CO2 and H2 in pipeline networks which can be applied to any network topology and with any allocation method. During the tariff formation process coordinated adjustments are made by the novel scheme on the original tariffs produced by the allocation method employed considering the location of each customer connected to pipeline network. Locational tariffs are provided as result and the total revenue recovery is guaranteed to the network owner. Considering active customers the novel scheme will lead to a decrease of distant pipeline flows thereby contributing to the prevention of bottlenecks in the transportation network. Thus structural reinforcements can be avoided reducing the total transportation cost paid by all customers in the long-term.
Research on Multi-market Strategies for Virtual Power Plants with Hydrogen Energy Storage
Oct 2023
Publication
As the main body of resource aggregation Virtual Power Plant (VPP) not only needs to participate in the external energy market but also needs to optimize the management of internal resources. Different from other energy storage hydrogen energy storage systems can participate in the hydrogen market in addition to assuming the backup supplementary function of electric energy. For the Virtual Power Plant Operator (VPPO) it needs to optimize the scheduling of internal resources and formulate bidding strategies for the electric-hydrogen market based on external market information. In this study a two-stage model is constructed considering the internal and external interaction mechanism. The first stage model optimizes the operation of renewable energy flexible load extraction storage and hydrogen energy storage system based on the complementary characteristics of internal resources; the second stage model optimizes the bidding strategy to maximize the total revenue of the electricity energy market auxiliary service market and hydrogen market. Finally a typical scenario is constructed and the rationality and effectiveness of the strategy are verified. The results show that the hybrid VPP with hydrogen storage has better economic benefits resource benefits and reliability.
Public Facing Safety and Education for Hydrogen Fueling Infrastructure
Sep 2023
Publication
Building safe and convenient fuelling stations is key to deploying the arrival of commercial/public-use fuel cell electric vehicles (FCEVs). As the most public-facing hydrogen applications second only to the FCEVs hydrogen stations are an efficient tool to educate the public about hydrogen safety and normalize its use to fill up our vehicles. However as an emerging technology it is the industry’s responsibility to ensure that fuelling infrastructures are designed and maintained in accordance with established safety standards and thus that the fuelling process is inherently safe for all users. On the other end it is essential that consumers have all the necessary information at reach to help them feel safe while fuelling their zero-emission vehicles.<br/>This paper will provide a snapshot of the safety systems used to help protect members of the public using hydrogen fueling stations as well as the information used to educate people using this equipment. This will cover the different processes involved in hydrogen fueling stations the dangers that are present to customers and members of the public at these sites and the engineering design choices and equipment used to mitigate these dangers or prevent them from happening. Finally this paper will discuss the crucial role of understanding the dangers of hydrogen at a public level and showing the importance of educating the public about hydrogen infrastructure so that people will feel comfortable using it in their everyday lives.
Mathematical Model for the Placement of Hydrogen Refueling Stations to Support Future Fuel Cell Trucks
Nov 2021
Publication
Fuel cell- and electric-powered trucks are promising technologies for zero-emission heavyduty transportation. Recently Fuel Cell Trucks (FCT) have gained wider acceptance as the technology of choice for long-distance trips due to their lighter weight and shorter fueling time than electric-powered trucks. Broader adoption of Fuel Cell Trucks (FCT) requires planning strategies for locating future hydrogen refueling stations (HRS) especially for fleets that transport freight along intercity and inter-country highways. Existing mathematical models of HRS placement often focus on inner-city layouts which make them inadequate when studying the intercity and intercountry FCT operation scale of FCT. Furthermore the same models rarely consider decentralized hydrogen production from renewable energy sources essential for decarbonizing the transportation sector. This paper proposes a mathematical model to guide the planning of the hydrogen infrastructure to support future long-haul FCTs. First the model uses Geographic Information System (GIS) data to determine the HRS’s optimal number and location placement. Then the model categorizes and compares potential hydrogen production sources including off-site delivery and on-site solar-to-hydrogen production. The proposed model is illustrated through a case study of the west coastal area of the United States (from Baja California Mexico to British Columbia Canada). Different geospatial scenarios were tested ranging from the current operational distance of FCEV (250km) and future releases of hydrogen FCT (up to 1500km). Results highlight the capabilities of the model in identifying the number and location of the HRS based on operation distances in addition to determining the optimal hydrogen production technology for each HRS. The findings also confirm the viability of green hydrogen production through solar energy which could play a critical role in a low-carbon transportation future.
Advanced Testing Methods for Proton Exchange Membrane Electrolysis Stacks
Jun 2024
Publication
Research on proton exchange membrane water electrolysis for renewable hydrogen production is rapidly advancing worldwide driven by the imperative to reduce costs and enhance efficiency through development of novel materials. However to effectively evaluate and validate these advancements standardized testing methods are essential extending beyond single-cell analysis to encompass stack-level characterization. This paper proposes comprehensive characterization methods tailored for analysis of electrolysis stacks and their performance characteristics. Each method is introduced with a focus on its practical applicability accompanied by detailed procedural guidelines for implementation. Furthermore variations within each method are discussed offering possibilities for gathering additional insights. Presenting a portfolio of different methods ranging from standard to advanced techniques applicable at the stack level the paper showcases results obtained through their application. These results normalized to cell area demonstrate the significance of each method in obtaining stack characteristics crucial for informed design de cisions on material selection and subsequent integration into electrolysis systems. By illustrating results derived from various stacks this study contributes valuable insights for evaluating design material suitability and operational performance thereby advancing the development and deployment of proton exchange membrane water electrolysis technology for sustainable hydrogen production.
Improving Ecological Efficiency of Gas Turbine Power System by Combusting Hydrogen and Hydrogen-Natural Gas Mixtures
Apr 2023
Publication
Currently the issue of creating decarbonized energy systems in various spheres of life is acute. Therefore for gas turbine power systems including hybrid power plants with fuel cells it is relevant to transfer the existing engines to pure hydrogen or mixtures of hydrogen with natural gas. However significant problems arise associated with the possibility of the appearance of flashback zones and acoustic instability of combustion an increase in the temperature of the walls of the flame tubes and an increase in the emission of nitrogen oxides in some cases. This work is devoted to improving the efficiency of gas turbine power systems by combusting pure hydrogen and mixtures of natural gas with hydrogen. The organization of working processes in the premixed combustion chamber and the combustion chamber with a sequential injection of ecological and energy steam for the “Aquarius” type power plant is considered. The conducted studies of the basic aerodynamic and energy parameters of a gas turbine combustor working on hydrogen-containing gases are based on solving the equations of conservation and transfer in a multicomponent reacting system. A four-stage chemical scheme for the burning of a mixture of natural gas and hydrogen was used which allows for the rational parameters of environmentally friendly fuel burning devices to be calculated. The premixed combustion chamber can only be recommended for operations on mixtures of natural gas with hydrogen with a hydrogen content not exceeding 20% (by volume). An increase in the content of hydrogen leads to the appearance of flashback zones and fuel combustion inside the channels of the swirlers. For the combustion chamber of the combined-cycle power plant “Vodoley” when operating on pure hydrogen the formation of flame flashback zones does not occur.
Hydrogen Fuel Quality from Two Main Production Processes: Steam Methane Reforming and Proton Exchange Membrane Water Electrolysis
Oct 2019
Publication
Thomas Bacquart,
Karine Arrhenius,
Stefan Persijn,
Andrés Rojo,
Fabien Auprêtre,
Bruno Gozlan,
Abigail Morris,
Andreas Fischer,
Arul Murugan,
Sam Bartlett,
Niamh Moore,
Guillaume Doucet,
François Laridant,
Eric Gernot,
Teresa E. Fernandez,
Concepcion Gomez,
Martine Carré,
Guy De Reals and
Frédérique Haloua
The absence of contaminants in the hydrogen delivered at the hydrogen refuelling station is critical to ensure the length life of FCEV. Hydrogen quality has to be ensured according to the two international standards ISO 14687–2:2012 and ISO/DIS 19880-8. Amount fraction of contaminants from the two hydrogen production processes steam methane reforming and PEM water electrolyser is not clearly documented. Twenty five different hydrogen samples were taken and analysed for all contaminants listed in ISO 14687-2. The first results of hydrogen quality from production processes: PEM water electrolysis with TSA and SMR with PSA are presented. The results on more than 16 different plants or occasions demonstrated that in all cases the 13 compounds listed in ISO 14687 were below the threshold of the international standards. Several contaminated hydrogen samples demonstrated the needs for validated and standardised sampling system and procedure. The results validated the probability of contaminants presence proposed in ISO/DIS 19880-8. It will support the implementation of ISO/ DIS 19880-8 and the development of hydrogen quality control monitoring plan. It is recommended to extend the study to other production method (i.e. alkaline electrolysis) the HRS supply chain (i.e. compressor) to support the technology growth.
Application of Passive Autocatalytic Recombiners for Hydrogen Mitigation: 2D Numerical Modeling and Experimental Validation
Sep 2023
Publication
The widespread production and use of hydrogen (H2) requires safe handling due to its wide range of flammability and low ignition energy. In confined and semi-confined areas such as garages and tunnels a hydrogen leak will create a potential accumulation of flammable gases. Hence forced ventilation is required in such confined spaces to prevent hydrogen hazards. However this practice may incur higher operating costs and could become ineffective during a power outage. Passive Autocatalytic Recombiners (PARs) are defined as safety devices for preventing hydrogen accumulation in confined spaces. PARs have been widely adopted for hydrogen mitigation in nuclear containment buildings in worst case accident scenarios where forced ventilation is not feasible. PARs are equipped with catalyst plates that self-start due to hydrogen reacting with oxygen at relatively low concentrations (<2 vol. % H2 in air). The heat generated from the reaction creates a self-sustained flow continuously supplying the catalyst surface with fresh hydrogen and oxygen. In this study a 2D transient numerical model has been developed in COMSOL Multiphysics to simulate the operation of PARs. The model was used to analyze the effect of surface reactions on the catalyst temperature flow dynamics self-start behaviour forced versus natural convective flow and steady-state hydrogen recombination rates. The model was also used to simulate carbon monoxide poisoning and its influence on the catalyst performance. Experimental data were used for model calibration and validation showing good agreement for different conditions. Overall the model provides novel insights into PARs operation such as radiation and poisoning effects on the catalyst plate. As a next step assessment of the effectiveness of PARs is underway to mitigate hydrogen hazards in selected confined and semi-confined areas including nuclear and non-nuclear applications.
An Approach for Sizing a PV-battery-electrolyzer-fuel cell Energy System: A Cast Study at a Field Lab
May 2023
Publication
Hydrogen is becoming increasingly popular as a clean secure and affordable energy source for the future. This study develops an approach for designing a PV–battery–electrolyzer–fuel cell energy system that utilizes hydrogen as a long-term storage medium and battery as a short-term storage medium. The system is designed to supply load demand primarily through direct electricity generation in the summer and indirect electricity generation through hydrogen in the winter. The sizing of system components is based on the direct electricity and indirect hydrogen demand with a key input parameter being the load sizing factor which determines the extent to which hydrogen is used to meet seasonal imbalance. Technical and financial indicators are used to assess the performance of the designed system. Simulation results indicate that the energy system can effectively balance the seasonal variation of renewable generation and load demand with the use of hydrogen. Additionally guidelines for achieving self-sufficiency and system sustainability for providing enough power in the following years are provided to determine the appropriate component size. The sensitivity analysis indicates that the energy system can achieve self-sufficiency and system sustainability with a proper load sizing factor from a technical perspective. From an economic perspective the levelized cost of energy is relatively high because of the high costs of hydrogen-related components at this moment. However it has great economic potential for future self-sufficient energy systems with the maturity of hydrogen technologies.
A Cost Comparison of Various Hourly-reliable and Net-zero Hydrogen Production Pathways in the United States
Nov 2023
Publication
Hydrogen (H2) as an energy carrier may play a role in various hard-to-abate subsectors but to maximize emission reductions supplied hydrogen must be reliable low-emission and low-cost. Here we build a model that enables direct comparison of the cost of producing net-zero hourly-reliable hydrogen from various pathways. To reach net-zero targets we assume upstream and residual facility emissions are mitigated using negative emission technologies. For the United States (California Texas and New York) model results indicate nextdecade hybrid electricity-based solutions are lower cost ($2.02-$2.88/kg) than fossil-based pathways with natural gas leakage greater than 4% ($2.73-$5.94/ kg). These results also apply to regions outside of the U.S. with a similar climate and electric grid. However when omitting the net-zero emission constraint and considering the U.S. regulatory environment electricity-based production only achieves cost-competitiveness with fossil-based pathways if embodied emissions of electricity inputs are not counted under U.S. Tax Code Section 45V guidance.
Purging Hydrogen Distribution Pipelines: Literature Review, Description of Recent Experiments and Proposed Future Work
Sep 2023
Publication
The aim of the H21 project is to undertake measurements analysis and field trials to support the safe repurposing of Great Britain’s natural gas distribution network for hydrogen. As part of this project work has been ongoing to identify aspects of existing natural gas procedures that will need to be modified for hydrogen and to support the development of new procedures. This has included a review of the scientific basis of current displacement purging practices analysis of the potential implications of switching from natural gas to hydrogen and experimental support work. The reduced density and viscosity of hydrogen means that minimum purging velocities should (in principle) be higher for hydrogen to avoid stratification and ensure adequate removal of the purged gas during pipeline purging operations. A complicating factor is the high molecular diffusivity of hydrogen (roughly three times that of natural gas) which causes hydrogen to mix over short distances more rapidly than natural gas. Current models for pipeline purging do not take into account the mixing effect related to molecular diffusion. The wider flammable limits lower ignition energy and greater potential for combustion to transition from deflagration to detonation with hydrogen means that indirect purging with nitrogen is currently being investigated for distribution pipelines. This paper reviews the ongoing analysis of hydrogen pipeline purging and discusses a potential future scientific programme of work aimed at developing a new pipeline purging model that accounts for molecular diffusion effects.
Simulating Offshore Hydrogen Production via PEM Electrolysis using Real Power Production Data from a 2.3 MW Floating Offshore Wind Turbine
Mar 2023
Publication
This work presents simulation results from a system where offshore wind power is used to produce hydrogen via electrolysis. Real-world data from a 2.3 MW floating offshore wind turbine and electricity price data from Nord Pool were used as input to a novel electrolyzer model. Data from five 31-day periods were combined with six system designs and hydrogen production system efficiency and production cost were estimated. A comparison of the overall system performance shows that the hydrogen production and cost can vary by up to a factor of three between the cases. This illustrates the uncertainty related to the hydrogen production and profitability of these systems. The highest hydrogen production achieved in a 31-day period was 17 242 kg using a 1.852 MW electrolyzer (i.e. utilization factor of approximately 68%) the lowest hydrogen production cost was 4.53 $/kg H2 and the system efficiency was in the range 56.1e56.9% in all cases.
Decarbonisation of Geographical Islands and the Feasibility of Green Hydrogen Production Using Excess Electricity
May 2023
Publication
Islands face limitations in producing and transporting energy due to their geographical constraints. To address this issue the ROBINSON project funded by the EU aims to create a flexible self-sufficient and environmentally friendly energy system that can be used on isolated islands. The feasibility of renewable electrification and heating system decarbonization of Eigerøy in Norway is described in this article. A mixed-integer linear programming framework was used for modelling. The optimization method is designed to be versatile and adaptable to suit individual scenarios with a flexible and modular formulation that can accommodate boundary conditions specific to each case. Onshore and offshore wind farms and utility-scale photovoltaic (PV) were considered to generate renewable electricity. Each option was found to be feasible under certain conditions. The heating system composed of a biomass gasifier a combined heat and power system with a gas boiler as backup unit was also analyzed. Parameters were identified in which the combination of all three thermal units represented the best system option. In addition the possibility of green hydrogen production based on the excess electricity from each scenario was evaluated.
No more items...