Publications
Potential for Hydrogen and Power-to-Liquid in a Low-carbon EU Energy System Using Cost Optimization
Oct 2018
Publication
Hydrogen represents a versatile energy carrier with net zero end use emissions. Power-to-Liquid (PtL) includes the combination of hydrogen with CO2 to produce liquid fuels and satisfy mostly transport demand. This study assesses the role of these pathways across scenarios that achieve 80–95% CO2 reduction by 2050 (vs. 1990) using the JRC-EU-TIMES model. The gaps in the literature covered in this study include a broader spatial coverage (EU28+) and hydrogen use in all sectors (beyond transport). The large uncertainty in the possible evolution of the energy system has been tackled with an extensive sensitivity analysis. 15 parameters were varied to produce more than 50 scenarios. Results indicate that parameters with the largest influence are the CO2 target the availability of CO2 underground storage and the biomass potential.
Hydrogen demand increases from 7 mtpa today to 20–120 mtpa (2.4–14.4 EJ/yr) mainly used for PtL (up to 70 mtpa) transport (up to 40 mtpa) and industry (25 mtpa). Only when CO2 storage was not possible due to a political ban or social acceptance issues was electrolysis the main hydrogen production route (90% share) and CO2 use for PtL became attractive. Otherwise hydrogen was produced through gas reforming with CO2 capture and the preferred CO2 sink was underground. Hydrogen and PtL contribute to energy security and independence allowing to reduce energy related import cost from 420 bln€/yr today to 350 or 50 bln€/yr for 95% CO2 reduction with and without CO2 storage. Development of electrolyzers fuel cells and fuel synthesis should continue to ensure these technologies are ready when needed. Results from this study should be complemented with studies with higher spatial and temporal resolution. Scenarios with global trading of hydrogen and potential import to the EU were not included.
Hydrogen demand increases from 7 mtpa today to 20–120 mtpa (2.4–14.4 EJ/yr) mainly used for PtL (up to 70 mtpa) transport (up to 40 mtpa) and industry (25 mtpa). Only when CO2 storage was not possible due to a political ban or social acceptance issues was electrolysis the main hydrogen production route (90% share) and CO2 use for PtL became attractive. Otherwise hydrogen was produced through gas reforming with CO2 capture and the preferred CO2 sink was underground. Hydrogen and PtL contribute to energy security and independence allowing to reduce energy related import cost from 420 bln€/yr today to 350 or 50 bln€/yr for 95% CO2 reduction with and without CO2 storage. Development of electrolyzers fuel cells and fuel synthesis should continue to ensure these technologies are ready when needed. Results from this study should be complemented with studies with higher spatial and temporal resolution. Scenarios with global trading of hydrogen and potential import to the EU were not included.
Strategies to Accelerate the Production and Diffusion of Fuel Cell Electric Vehicles: Experiences from California
Sep 2020
Publication
Fuel cell electric vehicles (FCEVs) can play a key role in accelerating the electrification of road transport. Specifically they offer longer driving ranges and shorter refuelling times relative to Battery Electric Vehicles (BEVs) while reducing needs for space-intensive public charging infrastructure. Although the maturity and market penetration of hydrogen is currently trailing batteries transport planners in several countries are looking to both technologies to reduce carbon emissions and air pollution. Home to the world’s largest on-road fleet of FCEVs California is one such jurisdiction. Experiences in California provide an ideal opportunity to address a gap in literature whereby barriers to FCEV diffusion are well understood but knowledge on actual strategies to overcome these has lacked. This study thus examines governance strategies in California to accelerate the production and diffusion of FCEVs key outcomes lessons learned and unresolved challenges. Evidence is sourced from 19 expert interviews and an examination of diverse documents. Strategies are examined from four perspectives: (i) supply-side (i.e. stimulation of vehicle production) (ii) infrastructure (i.e. construction of refuelling stations and hydrogen production) (iii) demand-side (i.e. stimulation of vehicle adoption) and (iv) institutional (i.e. cross-cutting measures to facilitate collaboration innovation and cost-reduction). Findings reveal a comprehensive mix of stringent regulation market and consumer incentives and public–private collaboration. However significant challenges remain for spurring the development of fuel cell transport in line with initial ambitions. Highlighting these provides important cues for public policy to accelerate the deployment of FCEVs and hydrogen in California and elsewhere.
Experimental Investigation of the Effects of Simultaneous Hydrogen and Nitrogen Addition on the Emissions and Combustion of a Diesel Engine
Jan 2014
Publication
Overcoming diesel engine emissions trade-off effects especially NOx and Bosch smoke number (BSN) requires investigation of novel systems which can potentially serve the automobile industry towards further emissions reduction. Enrichment of the intake charge with H2 þ N2 containing gas mixture obtained from diesel fuel reforming system can lead to new generation low polluting diesel engines. This paper investigates the effect of simultaneous H2 þ N2 intake charge enrichment on the emissions and combustion of a compression ignition engine. Bottled H2 þ N2 was simultaneously admitted into the intake pipe of the engine in 4% steps starting from 4% (2% H2 þ 2% N2) up to 16% (v/v). The results showed that under specific operating conditions H2 þ N2 enrichment can offer simultaneous NOx BSN and CO emissions reduction. Apart from regulated emissions nitrogen exhaust components were measured. Marginal N2O and zero NH3 emissions were obtained. NO/NO2 ratio increases when speed or load increases. Under low speed low load operation the oxidation of NO is enhanced by the addition of H2 þ N2 mixture. Finally admission of H2 þ N2 has a detrimental effect on fuel consumption
Integrating Housing Stock and Energy System Models as a Strategy to Improve Heat Decarbonisation Assessments
Aug 2014
Publication
The UK government heat strategy is partially based on decarbonisation pathways from the UK MARKAL energy system model. We review how heat provision is represented in UK MARKAL identifying a number of shortcomings and areas for improvement. We present a completely revised model with improved estimations of future heat demands and a consistent representation of all heat generation technologies. This model represents all heat delivery infrastructure for the first time and uses dynamic growth constraints to improve the modelling of transitions according to innovation theory. Our revised model incorporates a simplified housing stock model which is used produce highly-refined decarbonisation pathways for residential heat provision. We compare this disaggregated model against an aggregated equivalent which is similar to the existing approach in UK MARKAL. Disaggregating does not greatly change the total residential fuel consumption in two scenarios so the benefits of disaggregation will likely be limited if the focus of a study is elsewhere. Yet for studies of residential heat disaggregation enables us to vary consumer behaviour and government policies on different house types as well as highlighting different technology trends across the stock in comparison with previous aggregated versions of the model.
Renewable/Fuel Cell Hybrid Power System Operation Using Two Search Controllers of the Optimal Power Needed on the DC Bus
Nov 2020
Publication
In this paper the optimal and safe operation of a hybrid power system based on a fuel cell system and renewable energy sources is analyzed. The needed DC power resulting from the power flow balance on the DC bus is ensured by the FC system via the air regulator or the fuel regulator controlled by the power-tracking control reference or both regulators using a switched mode of the above-mentioned reference. The optimal operation of a fuel cell system is ensured by a search for the maximum of multicriteria-based optimization functions focused on fuel economy under perturbation such as variable renewable energy and dynamic load on the DC bus. Two search controllers based on the global extremum seeking scheme are involved in this search via the remaining fueling regulator and the boost DC–DC converter. Thus the fuel economy strategies based on the control of the air regulator and the fuel regulator respectively on the control of both fueling regulators are analyzed in this study. The fuel savings compared to fuel consumed using the static feed-forward control are 6.63% 4.36% and 13.72% respectively under dynamic load but without renewable power. With renewable power the needed fuel cell power on the DC bus is lower so the fuel cell system operates more efficiently. These percentages are increased to 7.28% 4.94% and 14.97%.
Optimal Design of Multi-energy Systems with Seasonal Storage
Oct 2017
Publication
Optimal design and operation of multi-energy systems involving seasonal energy storage are often hindered by the complexity of the optimization problem. Indeed the description of seasonal cycles requires a year-long time horizon while the system operation calls for hourly resolution; this turns into a large number of decision variables including binary variables when large systems are analyzed. This work presents novel mixed integer linear program methodologies that allow considering a year time horizon with hour resolution while significantly reducing the complexity of the optimization problem. First the validity of the proposed techniques is tested by considering a simple system that can be solved in a reasonable computational time without resorting to design days. Findings show that the results of the proposed approaches are in good agreement with the full-scale optimization thus allowing to correctly size the energy storage and to operate the system with a long-term policy while significantly simplifying the optimization problem. Furthermore the developed methodology is adopted to design a multi-energy system based on a neighborhood in Zurich Switzerland which is optimized in terms of total annual costs and carbon dioxide emissions. Finally the system behavior is revealed by performing a sensitivity analysis on different features of the energy system and by looking at the topology of the energy hub along the Pareto sets.
Onboard Compressed Hydrogen Storage: Fast Filling Experiments and Simulations
Nov 2021
Publication
Technology safety represents a key enabling factor for the commercial use of hydrogen within the automotive industry. In the last years considerable pre-normative and normative research effort has produced regulations at national European and global level as well as international standards. Their validation is at the moment on going internationally. Additional research is required to improve this regulatory and standardization frame which is also expected to have a beneficial effect on cost and product optimization. The present paper addresses results related to the experimental assessment and modeling of safety performance of high pressure onboard storage. To simulate the lifetime of onboard hydrogen tanks commercial tanks have been subjected to filling-emptying cycles encompassing a fast-filling phase as prescribed by the European regulation on type-approval of hydrogen vehicles. The local temperature history inside the tanks has been measured and compared with the temperature outside at the tank metallic bosses which is the measurement location identified by the regulation. Experimental activities are complemented by computational fluid-dynamics (CFD) modeling of the fast-filling process by means of a numerical model previously validated. The outcome of these activities is a set of scientifically based data which will serve as input to future regulations and standards improvement.
Electrolyzer Performance Analysis of an Integrated Hydrogen Power System for Greenhouse Heating. A Case Study
Jul 2016
Publication
A greenhouse containing an integrated system of photovoltaic panels a water electrolyzer fuel cells and a geothermal heat pump was set up to investigate suitable solutions for a power system based on solar energy and hydrogen feeding a self-sufficient geothermal-heated greenhouse. The electricity produced by the photovoltaic source supplies the electrolyzer; the manufactured hydrogen gas is held in a pressure tank. In these systems the electrolyzer is a crucial component; the technical challenge is to make it work regularly despite the irregularity of the solar source. The focus of this paper is to study the performance and the real energy efficiency of the electrolyzer analyzing its operational data collected under different operating conditions affected by the changeable solar radiant energy characterizing the site where the experimental plant was located. The analysis of the measured values allowed evaluation of its suitability for the agricultural requirements such as greenhouse heating. On the strength of the obtained result a new layout of the battery bank has been designed and exemplified to improve the performance of the electrolyzer. The evaluations resulting from this case study may have a genuine value therefore assisting in further studies to better understand these devices and their associated technologies.
Performance Study on Methanol Steam Reforming Rib Micro-Reactor with Waste Heat Recovery
Mar 2020
Publication
Automobile exhaust heat recovery is considered to be an effective means to enhance fuel utilization. The catalytic production of hydrogen by methanol steam reforming is an attractive option for onboard mobile applications due to its many advantages. However the reformers of conventional packed bed type suffer from axial temperature gradients and cold spots resulting from severe limitations of mass and heat transfer. These disadvantages limit reformers to a low efficiency of catalyst utilization. A novel rib microreactor was designed for the hydrogen production from methanol steam reforming heated by automobile exhaust and the effect of inlet exhaust and methanol steam on reactor performance was numerically analyzed in detail with computational fluid dynamics. The results showed that the best operating parameters were the counter flow water-to-alcohol (W/A) of 1.3 exhaust inlet velocity of 1.1 m/s and exhaust inlet temperature of 773 K when the inlet velocity and inlet temperature of the reactant were 0.1 m/s and 493 K respectively. At this condition a methanol conversion of 99.4% and thermal efficiency of 28% were achieved together with a hydrogen content of 69.6%.
A Smart Strategy for Sizing of Hybrid Renewable Energy System to Supply Remote Loads in Saudi Arabia
Oct 2021
Publication
The use of hybrid renewable energy systems (HRES) has become the best option for supplying electricity to sites remote from the central power system because of its sustainability environmental friendliness and its low cost of energy compared to many conventional sources such as diesel generators. Due to the intermittent nature of renewable energy resources there is a need however for an energy storage system (ESS) to store the surplus energy and feed the energy deficit. Most renewable sources used battery storage systems (BSS) a green hydrogen storage system (GHSS) and a diesel generator as a backup for these sources. Batteries are very expensive and have a very short lifetime and GHSS have a very expensive initial cost and many security issues. In this paper a system consisting of wind turbines and a photovoltaic (PV) array with a pumped hydro energy storage (PHES) system as the main energy storage to replace the expensive and short lifetime batteries is proposed. The proposed system is built to feed a remote area called Dumah Aljandal in the north of Saudi Arabia. A smart grid is used via a novel demand response strategy (DRS) with a dynamic tariff to reduce the size of the components and it reduces the cost of energy compared to a flat tariff. The use of the PHES with smart DRS reduced the cost of energy by 34.2% and 41.1% compared to the use of BSS and GHSS as an ESS respectively. Moreover the use of 100% green energy sources will avoid the emission of an estimated 2.5 million tons of greenhouse gases every year. The proposed system will use a novel optimization algorithm called the gradually reduced particles of particle swarm optimization (GRP-PSO) algorithm to enhance the exploration and exploitation during the searching iterations. The GRP-PSO reduces the convergence time to 58% compared to the average convergence time of 10 optimization algorithms used for comparison. A sensitivity analysis study is introduced in this paper in which the effect of ±20% change in wind speed and solar irradiance are selected and the system showed a low effect of these resources on the Levelized cost of energy of the HRES. These outstanding results proved the superiority of using a pumped-storage system with a dynamic tariff demand response strategy compared to the other energy storage systems with flat-rate tariffs.
Quaternary Hydrides Pd1-y-zAgyCuzHx Embedded Atom Method Potentials for Hydrogen Energy Applications
Jan 2021
Publication
The Pd-H system has attracted extensive attention. Pd can absorb considerable amount of H at room temperature this ability is reversible so it is suitable for multiple energy applications. Pd-Ag alloys possess higher H permeability solubility and narrower miscibility gap with better mechanical properties than pure Pd but sulfur poisoning remains an issue. Pd-Cu alloys have excellent resistance to sulfur and carbon monoxide poisoning and hydrogen embrittlement good mechanical properties and broader temperature working environments over pure Pd but relatively lower hydrogen permeability and solubility than pure Pd and Pd-Ag alloys. This suggests that alloying Pd with Ag and Cu to create Pd-Ag-Cu ternary alloys can optimize the overall performance and substantially lowers the cost. Thus in this paper we provide the first embedded atom method potentials for the quaternary hydrides Pd1-y-zAgyCuzHx. The fully analytical potentials are fitted utilizing the central atom method without performing time-consuming molecular dynamics simulations.
Solid State Hydrogen Storage in Alanates and Alanate-Based Compounds: A Review
Jul 2018
Publication
The safest way to store hydrogen is in solid form physically entrapped in molecular form in highly porous materials or chemically bound in atomic form in hydrides. Among the different families of these compounds alkaline and alkaline earth metals alumino-hydrides (alanates) have been regarded as promising storing media and have been extensively studied since 1997 when Bogdanovic and Schwickardi reported that Ti-doped sodium alanate could be reversibly dehydrogenated under moderate conditions. In this review the preparative methods; the crystal structure; the physico-chemical and hydrogen absorption-desorption properties of the alanates of Li Na K Ca Mg Y Eu and Sr; and of some of the most interesting multi-cation alanates will be summarized and discussed. The most promising alanate-based reactive hydride composite (RHC) systems developed in the last few years will also be described and commented on concerning their hydrogen absorption and desorption performance.
Hydrogen - A Sustainable Energy Carrier
Jan 2017
Publication
Hydrogen may play a key role in a future sustainable energy system as a carrier of renewable energy to replace hydrocarbons. This review describes the fundamental physical and chemical properties of hydrogen and basic theories of hydrogen sorption reactions followed by the emphasis on state-of-the-art of the hydrogen storage properties of selected interstitial metallic hydrides and magnesium hydride especially for stationary energy storage related utilizations. Finally new perspectives for utilization of metal hydrides in other applications will be reviewed.
Hydrogen Safety Prediction and Analysis of Hydrogen Refueling Station Leakage Accidents and Process Using Multi-Relevance Machine Learning
Oct 2021
Publication
Hydrogen energy vehicles are being increasingly widely used. To ensure the safety of hydrogenation stations research into the detection of hydrogen leaks is required. Offline analysis using data machine learning is achieved using Spark SQL and Spark MLlib technology. In this study to determine the safety status of a hydrogen refueling station we used multiple algorithm models to perform calculation and analysis: a multi-source data association prediction algorithm a random gradient descent algorithm a deep neural network optimization algorithm and other algorithm models. We successfully analyzed the data including the potential relationships internal relationships and operation laws between the data to detect the safety statuses of hydrogen refueling stations.
Faraday’s Efficiency Modeling of a Proton Exchange Membrane Electrolyzer Based on Experimental Data
Sep 2020
Publication
In electrolyzers Faraday’s efficiency is a relevant parameter to assess the amount of hydrogen generated according to the input energy and energy efficiency. Faraday’s efficiency expresses the faradaic losses due to the gas crossover current. The thickness of the membrane and operating conditions (i.e. temperature gas pressure) may affect the Faraday’s efficiency. The developed models in the literature are mainly focused on alkaline electrolyzers and based on the current and temperature change. However the modeling of the effect of gas pressure on Faraday’s efficiency remains a major concern. In proton exchange membrane (PEM) electrolyzers the thickness of the used membranes is very thin enabling decreasing ohmic losses and the membrane to operate at high pressure because of its high mechanical resistance. Nowadays high-pressure hydrogen production is mandatory to make its storage easier and to avoid the use of an external compressor. However when increasing the hydrogen pressure the hydrogen crossover currents rise particularly at low current densities. Therefore faradaic losses due to the hydrogen crossover increase. In this article experiments are performed on a commercial PEM electrolyzer to investigate Faraday’s efficiency based on the current and hydrogen pressure change. The obtained results have allowed modeling the effects of Faraday’s efficiency by a simple empirical model valid for the studied PEM electrolyzer stack. The comparison between the experiments and the model shows very good accuracy in replicating Faraday’s efficiency.
Life Cycle Performance of Hydrogen Production via Agro-Industrial Residue Gasification—A Small Scale Power Plant Study
Mar 2018
Publication
This study evaluates the environmental profile of a real biomass-based hydrogen production small-scale (1 MWth) system composed of catalytic candle indirectly heated steam gasifier coupled with zinc oxide (ZnO) guard bed water gas shift (WGS) and pressure swing absorber (PSA) reactors. Environmental performance from cradle-to-gate was investigated by life cycle assessment (LCA) methodology. Biomass production shows high influence over all impact categories. In the syngas production process the main impacts observed are global warming potential (GWP) and acidification potential (AP). Flue gas emission from gasifier burner has the largest proportion of total GWP. The residual off gas use in internal combustion engine (ICE) leads to important environmental savings for all categories. Hydrogen renewability score is computed as 90% due to over 100% decline in non-renewable energy demand. Sensitivity analysis shows that increase in hydrogen production efficiency does not necessarily result in decrease in environmental impacts. In addition economic allocation of environmental charges increases all impact categories especially AP and photochemical oxidation (POFP).
Thermodynamic, Economic and Environmental Assessment of Renewable Natural Gas Production Systems
May 2020
Publication
One of the options to reduce the dependence on fossil fuels is to produce gas with the quality of natural gas but based on renewable energy sources. It can encompass among other biogas generation from various types of biomass and its subsequent upgrading. The main aim of this study is to analyze under a combined technical economic and environmental perspective three of the most representative technologies for the production of biomethane (bio-based natural gas): (i) manure fermentation and its subsequent upgrading by CO2 removal (ii) manure fermentation and biogas methanation using renewable hydrogen from electrolysis and (iii) biomass gasification in the atmosphere of oxygen and methanation of the resulted gas. Thermodynamic economic and environmental analyses are conducted to thoroughly compare the three cases. For these purposes detailed models in Aspen Plus software were built while environmental analysis was performed using the Life Cycle Assessment methodology. The results show that the highest efficiency (66.80%) and the lowest break-even price of biomethane (19.2 €/GJ) are reached for the technology involving fermentation and CO2 capture. Concerning environmental assessment the system with the best environmental performance varies depending on the impact category analyzed being the system with biomass gasification and methanation a suitable trade-off solution for biomethane production.
Some Fundamental Combustion Properties of "Cryogenic" Premixed Hydrogen Air Flames
Sep 2021
Publication
Because of the emergence of the U.E. “green deal” and because of the significant implication of national and regional authorities throughout Europe the “hydrogen” economy is emerging. And with it numerous questions and experimentations. One of them perhaps a key point is the storage and transport of hydrogen. Liquid hydrogen in cryogenic conditions is a possibility already used in the space industry but under a lot of constrains. What may be acceptable in a well-controlled and restrained domain may not be realistic in a wider application closer to the public. Safety should be ensured and there is a need for a better knowledge of the flammable and ignition properties of the “cold” hydrogen mixtures following a cryogenic spillage for instance to select adequate ATEX equipment. The purpose of PRESLHY project [4] is to investigate the ignition fire and explosion characteristics of cryogenic hydrogen spillages and to propose safety engineering methods. The present work is part of it and addresses the measurement of the laminar burning velocity (Sl) flammability limits (FL) minimum ignition energy (MIE)… of hydrogen air mixtures at atmospheric pressure but down to -150°C. To do this a special burner was designed with details given inside this paper together with the experimental results. It is found that the FL domain is reduced when the temperature drops that MIE increases slightly and Sl decreases.
Effect of Defects and Hydrogen on the Fatigue Limit of Ni-based Superalloy 718
Dec 2019
Publication
Tension-compression fatigue tests were performed on two types of Ni-based superalloy 718 with different microstructures to which small artificial defects of various shapes and sizes were introduced. Similar tests were also conducted on hydrogen-charged specimens with defects with a solute hydrogen content ranging from 26.3 to 91.0 mass ppm. In the non-charged specimens in particular the fatigue strength susceptibility to defects varied significantly according to the type of microstructural morphology i.e. a smaller grain size made the alloy more vulnerable to defects. The fatigue limit as a small-crack threshold was successfully predicted using the √area parameter model. Depending on the size of defects the fatigue limit was calculated in relation to three phases: (i) harmless-defect regime (ii) small-crack regime and (iii) large-crack regime. Such a classification enabled comprehensive fatigue limit evaluation in a wide array of defects taking into consideration (a) the defect size over a range of small crack and large crack and (b) the characteristics of the matrix represented by grain size and hardness. In addition the effect of defects and hydrogen on fatigue strength will be comprehensively discussed based on a series of experimental results.
Hydrogen Enhanced Fatigue Crack Growth Rates in a Ferritic Fe-3wt%Si Alloy
Dec 2018
Publication
It is well known that ferrous materials can be damaged by absorption of hydrogen. If a sufficient quantity of hydrogen penetrates into the material static fracture and the material's fatigue performances can be affected negatively in particular causing an increase in the material crack growth rates. The latter is often referred as Hydrogen Affected-Fatigue Crack Growth Rate (HA-FCGR). It is therefore of paramount importance to quantify the impact in terms of hydrogen induce fatigue crack growth acceleration in order to determine the life of components exposed to hydrogen and avoid unexpected catastrophic failures. In this study in-situ fatigue crack growth rate testing on Compact Tension (CT) specimens were carried out to determine the fatigue crack growth behaviour for a Fe-3 wt%Si alloy and X70 pipeline steel. Tests were carried out in two environmental conditions i.e. laboratory air and in-situ electrochemically charged hydrogen and different mechanical conditions in terms of load ratio (R = 0.1 and R = 0.5 for the Fe-3 wt%Si R = 0.1 for the X70 steel) and test frequency (f = 0.1 Hz 1 Hz and 10 Hz) were adopted under electrochemically charged hydrogen conditions. The results show a clear detrimental effect of H for the specimens tested in hydrogen when compared to the specimens tested in air for both materials and that the impact of hydrogen is test frequency-dependent: the hydrogen induced acceleration is more prominent as the frequency is decreased. Post-mortem surface investigations consistently relate the global crack growth acceleration to a shift from transgranular to Quasi-cleavage fracture mechanism. Despite such consistency the acceleration factor strongly depends on the material: Fe-3wt%Si features acceleration up to 1000 times while X70 accelerates up to 76 times when compare to the material fatigue crack growth rate recorded in air. Observation of the deformation activities in the crack wake in relation to the transition into hydrogen accelerated regime in fatigue crack growth show a tendency toward restricted plastic activity in presence of hydrogen.
Building an Optimal Hydrogen Transportation System for Mobility, Focus on Minimizing the Cost of Transportation via Truck
Jan 2018
Publication
The approach developed aims to identify the methodology that will be used to deliver the minimum cost for hydrogen infrastructure deployment using a mono-objective linear optimisation. It focuses on minimizing both capital and operation costs of the hydrogen transportation based on transportation via truck which represents the main focus of this paper and a cost-minimal pipeline system in the case of France and Germany. The paper explains the mathematical model describing the link between the hydrogen production via electrolysers and the distribution for mobility needs. The main parameters and the assumed scenario framework are explained. Subsequently the transportation of hydrogen via truck using different states of aggregation is analysed as well as the transformation and storage of hydrogen. This is used finally to build a linear programming aiming to minimize the sum of costs of hydrogen transportation between the different nodes and transformation/storage within the nodes.
National Hydrogen Roadmap: Pathways to an Economically Sustainable Hydrogen Industry in Australia
Apr 2021
Publication
The National Hydrogen Roadmap provides a blueprint for the development of a hydrogen industry in Australia.
Recently there has been a considerable amount of work undertaken (both globally and domestically) seeking to quantify the economic opportunities associated with hydrogen. The National Hydrogen Roadmap takes that analysis a step further by focusing on how those opportunities can be realised.
National Hydrogen Roadmap
The National Hydrogen Roadmap provides a blueprint for the development of a hydrogen industry in Australia.
The primary objective of the Roadmap is to provide a blueprint for the development of a hydrogen industry in Australia. With a number of activities already underway it is designed to help inform the next series of investment amongst various stakeholder groups (e.g. industry government and research) so that the industry can continue to scale in a coordinated manner.
Pathways to an economically sustainable industry
The low emissions hydrogen value chain now consists of a series of mature technologies. While there is considerable scope for further R&D this level of maturity has meant that the narrative has shifted from one of technology development to market activation.
Barriers to market activation stem from a lack of supporting infrastructure and/or the cost of hydrogen supply. However both barriers can be overcome via a series of strategic investments along the value chain from both the private and public sector.
The report shows that while government assistance is needed to kick-start the industry it can become economically sustainable thereafter. This is demonstrated by first assessing the target price of hydrogen needed for it be competitive with other energy carriers and feedstocks. Second the assessment considers the current state of the industry namely the cost and maturity of the underpinning technologies and infrastructure. It then identifies the material cost drivers and consequently the key priorities and areas for investment needed to make hydrogen competitive in each of the identified markets.
The opportunity for hydrogen to compete favourably on a cost basis in local applications such as transport and remote area power systems is within reach based on potential cost reductions to 2025. Further the development of a hydrogen export industry represents a significant opportunity for Australia and a potential 'game changer' for the local industry and the broader energy sector due to associated increases in scale."
You can read the full report on the CSIRO website at this link
Recently there has been a considerable amount of work undertaken (both globally and domestically) seeking to quantify the economic opportunities associated with hydrogen. The National Hydrogen Roadmap takes that analysis a step further by focusing on how those opportunities can be realised.
National Hydrogen Roadmap
The National Hydrogen Roadmap provides a blueprint for the development of a hydrogen industry in Australia.
The primary objective of the Roadmap is to provide a blueprint for the development of a hydrogen industry in Australia. With a number of activities already underway it is designed to help inform the next series of investment amongst various stakeholder groups (e.g. industry government and research) so that the industry can continue to scale in a coordinated manner.
Pathways to an economically sustainable industry
The low emissions hydrogen value chain now consists of a series of mature technologies. While there is considerable scope for further R&D this level of maturity has meant that the narrative has shifted from one of technology development to market activation.
Barriers to market activation stem from a lack of supporting infrastructure and/or the cost of hydrogen supply. However both barriers can be overcome via a series of strategic investments along the value chain from both the private and public sector.
The report shows that while government assistance is needed to kick-start the industry it can become economically sustainable thereafter. This is demonstrated by first assessing the target price of hydrogen needed for it be competitive with other energy carriers and feedstocks. Second the assessment considers the current state of the industry namely the cost and maturity of the underpinning technologies and infrastructure. It then identifies the material cost drivers and consequently the key priorities and areas for investment needed to make hydrogen competitive in each of the identified markets.
The opportunity for hydrogen to compete favourably on a cost basis in local applications such as transport and remote area power systems is within reach based on potential cost reductions to 2025. Further the development of a hydrogen export industry represents a significant opportunity for Australia and a potential 'game changer' for the local industry and the broader energy sector due to associated increases in scale."
You can read the full report on the CSIRO website at this link
Tracking Hydrogen Embrittlement Using Short Fatigue Crack Behavior of Metals
Dec 2018
Publication
Understanding hydrogen embrittlement phenomenon that leads to deterioration of mechanical properties of metallic components is vital for applications involving hydrogen environment. Among these understanding the influence of hydrogen on the fatigue behaviour of metals is of great interest. Total fatigue life of a material can be divided into fatigue crack initiation and fatigue crack growth phase. While fatigue crack initiation can be linked with the propagation of short fatigue cracks the size of which is of the order of grain size (few tens of microns) that are generally not detectable by conventional crack detection techniques applicable for the long fatigue crack growth behaviour using conventional CT specimens. Extensive literature is available on hydrogen effect on long fatigue crack growth behaviour of metals that leads to the change in crack growth rate and the threshold stress intensity factor range (ΔKth). However it is the short fatigue crack growth behaviour that provides the fundamental understanding and correlation of the metallic microstructure with hydrogen embrittlement phenomenon. Short fatigue crack growth behaviour is characteristically different from long crack growth behaviour showing high propagation rate at much lower values than threshold stress intensity factor range as well as a strong dependency on the microstructural features such as grain boundaries phase boundaries and inclusions. To this end a novel experimental framework is developed to investigate the short fatigue crack behaviour of hydrogen charged materials involving in-situ observation of propagating short cracks coupled with image processing to obtain their da/dN vs a curves. Various metallic materials ranging from austenitic stainless steel (AISI 316L) to reactor pressure vessel steel (SA508 Grade 3 Class I low alloy steel) and line pipe steels (API 5L X65 & X80) are studied in this work.
Effects of Hydrogen Pressure, Test Frequency and Test Temperature on Fatigue Crack Growth Properties of Low-carbon Steel in Gaseous Hydrogen
Jul 2016
Publication
Fatigue crack growth (FCG) tests for compact tension (CT) specimens of an annealed low-carbon steel JIS-SM490B were performed under various combinations of hydrogen pressures ranging from 0.1 to 90 MPa test frequencies from 0.001 to 10 Hz and test temperatures of room temperature (RT) 363 K and 423 K. In the hydrogen pressures of 0.1 0.7 and 10 MPa at RT the FCG rate increased with a decrease in the test frequency; then peaked out. In the lower test frequency regime the FCG rate decreased and became nearly equivalent to the FCG rate in air. Also in hydrogen pressure of 45 MPa at RT the hydrogen-assisted FCG acceleration showed an upper limit around the test frequencies of 0.01 to 0.001 Hz. On the other hand in the hydrogen pressure of 90 MPa at RT the FCG rate monotonically increased with a decrease in the test frequency and eventually the upper limit of FCG acceleration was not confirmed down to the test frequency of 0.001 Hz. In the hydrogen pressure of 0.7 MPa at the test frequency of 1 Hz and temperatures of 363 K and 423 K the stress intensity factor range ΔK for the onset of the FCG acceleration in hydrogen gas was shifted to a higher ΔK with an increase in the test temperature. The laser-microscope observation at specimen surface revealed that the hydrogen-assisted FCG acceleration always accompanied a localization of plastic deformation near crack tip. These results infer that the influencing factor dominating the hydrogen-assisted FCG acceleration is not the presence or absence of hydrogen in material but is how hydrogen localizes near the crack tip. Namely a steep gradient of hydrogen concentration can result in the slip localization at crack tip which enhances the Hydrogen Enhanced Successive Fatigue Crack Growth (HESFCG) proposed by the authors. It is proposed that such a peculiar dependence of FCG rate on hydrogen pressure test frequency and test temperature can be unified by using a novel parameter representing the gradient of hydrogen concentration near crack tip.
Crack Size Dependency of Shear-mode Fatigue Threshold in Bearing Steel Subjected to Continuous Hydrogen Charging
Jun 2019
Publication
Premature delamination failure characterized by the white structure flaking (WSF) or the white etching crack (WEC) often occurs in rolling element bearings and it deteriorates the durability of bearing substantially. It is known that this failure is caused by shear-mode (Mode II and Mode III) crack growth in conjunction with evolution and invasion of hydrogen into material during operation. To ensure the structural integrity associated with rolling element bearing it is important to clarify the effect of hydrogen on the shear-mode fatigue crack growth behavior near the threshold level.<br/>In our previous study the effect of hydrogen on the shear-mode fatigue crack growth behavior in a bearing steel of JIS SUJ2 was examined near the threshold level. Consequently it was shown that the threshold stress intensity factor (SIF) range for shear-mode fatigue crack growth decreased significantly by action of hydrogen. However the investigation was made only for a crack with a surface length of about 900 mm. To thoroughly understand the critical condition for delamination failure it is important to investigate the crack size dependency of the threshold level for a shear-mode small fatigue crack in the presence of hydrogen. In the present study correspondingly the threshold SIF ranges for a shear-mode crack with different length were additionally measured in the same material by using a novel technique that enables continuous charging of hydrogen in a specimen during long-term fatigue test. Then a clear reduction in crack growth rate and a crack size dependency of the threshold SIF range were observed under the environmental condition of continuous hydrogen charging.
Environmental Degradation Effect of High-Temperature Water and Hydrogen on the Fracture Behavior of Low-Alloy Reactor Pressure Vessel Steels
Dec 2019
Publication
Structural integrity of reactor pressure vessel (RPV) in light water reactors (LWR) is of highest importance regarding operation safety and lifetime. The fracture behaviour of low-alloy RPV steels with different dynamic strain aging (DSA) & environmental assisted cracking (EAC) susceptibilities in simulated LWR environments was evaluated by elastic plastic fracture mechanics tests (EPFM) and by metallo- and fractographic post-test analysis. Exposure to high temperature water (HTW) environments at LWR temperatures revealed only moderated reductions in the fracture initiation and tearing resistance of low alloy RPV steels with high DSA or EAC susceptibility accompanied with a moderate but clear change in fracture morphology which indicates the potential synergies of hydrogen/HTW embrittlement with DSA and EAC under suitable conditions. The most pronounced degradation effects occurred in a) RPV steels with high DSA susceptibility where the fracture initiation and tearing resistance reduction increased with decreasing loading rate and were most pronounced in hydrogenated HTW and b) high sulphur steels with high EAC susceptibility in aggressive occluded crevice environment and with preceding fast EAC crack growth in oxygenated HTW. The moderate effects are due to the low hydrogen availability in HTW together with high density of fine-dispersed hydrogen traps in RPV steels. Stable ductile transgranular tearing by microvoid coalescence was the dominant failure mechanism in all environments with additional varying few % of secondary cracks macrovoids and quasi-cleavage in HTW. The observed behavior suggests a combination of plastic strain localisation by the Hydrogen-enhanced Local Plasticity (HELP) mechanism in synergy with DSA and Hydrogen-enhanced Strain-induced Vacancies (HESIV) mechanism with additional minor contributions of Hydrogen-enhanced Decohesion Embrittlement (HEDE) mechanism.
Modulating Electronic Structure of Metal-organic Frameworks by Introducing Atomically Dispersed Ru for Efficient Hydrogen Evolution
Mar 2021
Publication
Developing high-performance electrocatalysts toward hydrogen evolution reaction is important for clean and sustainable hydrogen energy yet still challenging. Herein we report a single-atom strategy to construct excellent metal-organic frameworks (MOFs) hydrogen evolution reaction electrocatalyst (NiRu0.13-BDC) by introducing atomically dispersed Ru. Significantly the obtained NiRu0.13-BDC exhibits outstanding hydrogen evolution activity in all pH especially with a low overpotential of 36 mV at a current density of 10 mA cm−2 in 1 M phosphate buffered saline solution which is comparable to commercial Pt/C. X-ray absorption fine structures and the density functional theory calculations reveal that introducing Ru single-atom can modulate electronic structure of metal center in the MOF leading to the optimization of binding strength for H2O and H* and the enhancement of HER performance. This work establishes single-atom strategy as an efficient approach to modulate electronic structure of MOFs for catalyst design.
Modelling of Fatigue Crack Initiation in Hydrogen Charged Polycrystalline Nickel
Jun 2019
Publication
Hydrogen Embrittlement (HE) leads to deterioration of the fracto-mechanical properties of metals. In spite of vast literature it is still not clearly understood and demands significant research on this topic. For better understanding of the hydrogen effect on fatigue behaviour of metals present work focuses on developing a computational framework for fatigue crack initiation studies in metals in the presence of hydrogen. The developed framework consists of a nonlocal crystal plasticity model coupled with hydrogen transport model to study the fatigue behaviour of hydrogen charged metals. The nonlocal crystal plasticity model accounts for the statistically stored dislocations (SSDs) and geometrically necessary dislocations (GNDs) in polycrytalline metal. Hydrogen transport model on the other hand accounts for diffusion and trapping behavior of hydrogen due to concentration gradient pressure gradient plastic strain-rate with dislocations as the only trapping sites along the slip systems. A polycrystalline representative volume element (RVE) with periodic boundary conditions is used in this study. Fatigue crack initiation criterion is proposed for the simulated RVE with controlled microstructure by considering a critical value of the fatigue indicator parameter (FIP). FIP is formulated based on the experimental observations of several crack initiation sites along the grain boundaries their normal direction with respect to loading direction and the accumulated plastic strain in nickel polycrystalline samples. Developed simulation framework correctly accounts cyclic stress-strain behavior and multiple fatigue crack initiation sites observed experimentally in the presence of hydrogen.
A New Design Concept for Prevention of Hydrogen-induced Mechanical Degradation: Viewpoints of Metastability and High Entropy
Dec 2018
Publication
‟How crack growth is prevented” is key to improve both fatigue and monotonic fracture resistances under an influence of hydrogen. Specifically the key points for the crack growth resistance are hydrogen diffusivity and local ductility. For instance type 304 austenitic steels show high hydrogen embrittlement susceptibility because of the high hydrogen diffusivity of bcc (α´) martensite. In contrast metastability in specific austenitic steels enables fcc (γ) to hcp (ε) martensitic transformation which decreases hydrogen diffusivity and increases strength simultaneously. As a result even if hydrogen-assisted cracking occurs during monotonic tensile deformation the ε-martensite acts to arrest micro-damage evolution when the amount of ε-martensite is limited. Thus the formation of ε-martensite can decrease hydrogen embrittlement susceptibility in austenitic steels. However a considerable amount of ε-martensite is required when we attempt to have drastic improvements of work hardening capability and strength level with respect to transformation-induced plasticity effect. Since the hcp structure contains a less number of slip systems than fcc and bcc the less stress accommodation capacity often causes brittle-like failure when the ε-martensite fraction is large. Therefore ductility of ε-martensite is another key when we maximize the positive effect of ε-martensitic transformation. In fact ε-martensite in a high entropy alloy was recently found to be extraordinary ductile. Consequently the metastable high entropy alloys showed low fatigue crack growth rates in a hydrogen atmosphere compared with conventional metastable austenitic steels with α´-martensitic transformation. We here present effects of metastability to ε-phase and configurational entropy on hydrogen-induced mechanical degradation including monotonic tension properties and fatigue crack growth resistance.
The Hydrogen Trapping Ability of TiC and V4C3 by Thermal Desorption Spectroscopy and Permeation Experiments
Dec 2018
Publication
Hydrogen (H) presence in metals is detrimental as unpredictable failure might occur. Recent developments in material’s design indicated that microstructural features such as precipitates play an essential role in potentially increasing the resistance against H induced failure. This work evaluates the H trapping characteristics for TiC and V4C3 by thermal desorption spectroscopy and permeation experiments. Two microstructural conditions are compared: as quenched vs. quenched and tempered in which the carbides are introduced. The tempered induced precipitates are able to deeply trap a significant amount of H which decreases the H diffusivity in the materials and removes some of the detrimental H from the microstructure. For microstructural design purposes it is important to know the position of H. Here H is demonstrated to be trapped at the carbide/matrix interface by modifying the tempering treatment.
Hydrogen Assisted Crack Initiation and Propagation in Nickel-cobalt Heat Resistant Superalloys
Aug 2019
Publication
It has been investigated the Ni-Co alloys (obtained from powder 0.1...0.3 mm under hot gaseous (in argon) isostatic pressure (up to 300 MPa) (Ni60Co15Cr8W8Al2Mo3) (Firth Rixon Metal Ltd Sheffield) and deformed (obtained by vacuum induced remealting) materials (Ni62Cr14Co10Mo5Nb3Al3Ti3) for gaseous turbine discs. Investigation has performed in the range of temperature 25…800°С and hydrogen pressure up to 70 MPa. By the 3D visualization of crack morphology it has been discovered the structure of fatigue crack surface and established the refer points on crack path including the boundary between the matrix and intermetallic particles (400×200 μm) crack opening structural elements distributions on the surface for selection of next local areas for more precision fracture surface and TEM examinations. Hydrogen influence on cyclic crack resistance parameters appears in the decreasing of loading cycles number (with amplitudes 15 MPa) in hydrogenated specimens of both alloys and increase with hydrogen concentration. At the highest hydrogen saturation regimes of Ni60Co15Cr8W8Al2Mo3 alloy (800°С 35 MPa Н2 36 hours СН = 32.7 ppm) number of cycles which necessary for crack initiation is 3 times less in comparison with specimen in initial state. At crack initiation step in hydrogenated Ni56Cr14Co15Mo5Al3Ti3 alloy it has been established that before intermetallic inclusion (400×200 μm) local stresses increased after its passing – has decreased. By fracture surface investigation it has been found the micro cracks up to 40 μm. Thin structure of heat resistant superalloys has characterises by disperse phase agglomeration with dimensions from 5 to 30 nm and crack propagation has a jumping character with no less then 50…70 nm steps.
Requirements for Hydrogen Resistance of Materials in CI Engine Toxic Substances Powered by Biofuels
Aug 2019
Publication
It has been described the conception of using platinum catalytic layer in multi hole fuel injector atomizer. The catalytic layer has been placed on not working part of atomizer needle. The aim of modification was activation of dehydrogenation reaction paraffin to olefin hydrocarbons with escape hydrogen molecule in CI engine bio fuel. The modification of atomizer with catalytic layer and reaction process leads to the presence of hydrogen and its influence on structural materials properties after the catalysis which requires the high hydrogen and crack resistance of used materials. There is used high speed steel as material. Article describes how hydrogen and combustion gases influence on thermal friction processes on this material. First of all the investigations were conduct 359 engine with biodiesel. During test had been observed nitrogen oxides carbon monoxide and particles emission. The obtained results show that there is possibility to lower toxic substances emission in exhaust gases CI engine powered by biodiesel. On the second it has been described the influence of biodiesel (including hydrogen) on fuel injector components and their influence on structural materials characteristics. There has been presented how biodiesel with hydrogen influences on precision elements and injection and return discharges. The investigation has been made by using engine test bench and fuel injector and pumps test equipment.
Earth Abundant Spinel for Hydrogen Production in a Chemical Looping Scheme at 550°C
Jun 2020
Publication
Operating chemical looping process at mid-temperatures (550-750 oC) presents exciting potential for the stable production of hydrogen. However the reactivity of oxygen carriers is compromised by the detrimental effect of the relatively low temperatures on the redox kinetics. Although the reactivity at mid-temperature can be improved by the addition of noble metals the high cost of these noble metal containing materials significantly hindered their scalable application. In the current work we propose to incorporate earth-abundant metals into the iron-based spinel for hydrogen production in a chemical looping scheme at mid-temperatures. Mn0.2Co0.4Fe2.4O4 shows a high hydrogen production rate at the average rate of ∼0.62 mmol.g-1.min-1 and a hydrogen yield of ∼9.29 mmol.g-1 with satisfactory stability over 20 cycles at 550 oC. The mechanism studies manifest that the enhanced hydrogen production performance is a result of the improved oxygen-ion conductivity to enhance reduction reaction and high reactivity of reduced samples with steam. The performance of the oxygen carriers in this work is comparable to those noble-metal containing materials enabling their potential for industrial applications.
Flame Characteristics of Ignited under-expanded Cryogenic Hydrogen Jets
Sep 2021
Publication
The anticipated upscaling of hydrogen energy applications will involve the storage and transport of hydrogen in a cryogenic state. Understanding the potential hazard arising from small leaks in pressurized storage and transport systems is needed to assist safety analysis and development of mitigation measures. The current knowledge of the ignited pressurized cryogenic hydrogen jet flame is limited. Large eddy simulation (LES) with detailed hydrogen chemistry is applied for the reacting flow. The effects of ignition locations are considered and the initial development of the transient flame kernel from the ignition hot spots is analysed. The flame structures namely side flames and envelop flames are observed in the study which are due to the complex interactions between turbulence fuel-air mixing at cryogenic temperature and chemical reactions.
Strain Rate Sensitivity of Microstructural Damage Evolution in a Dual-Phase Steel Pre-Charged with Hydrogen
Dec 2018
Publication
We evaluated the strain rate sensitivity of the micro-damage evolution behavior in a ferrite/martensite dual-phase steel. The micro-damage evolution behavior can be divided into three regimes: damage incubation damage arrest and damage growth. All regimes are associated with local deformability. Thus the total elongation of DP steels is determined by a combination of plastic damage initiation resistance and damage growth arrestability. This fact implies that hydrogen must have a critical effect on the damage evolution because hydrogen enhances strain localization and lowers crack resistance. In this context the strain rate must be an important factor because it affects the time for microstructural hydrogen diffusion/segregation at a specific microstructural location or at the damage tip. In this study tensile tests were carried out on a DP steel with different strain rates of 10− 2 and 10− 4 s−1. We performed the damage quantification microstructure characterization and fractography. Specifically the quantitative data of the damage evolution was analyzed using the classification of the damage evolution regimes in order to separately elucidate the effects of the hydrogen on damage initiation resistance and damage arrestability. In this study we obtained the following conclusions with respect to the strain rate. Lowering the strain rate increased the damage nucleation rate at martensite and reduced the critical strain for fracture through shortening the damage arrest regime. However the failure occurred via ductile modes regardless of strain rate.
Hydrogen Storage in Depleted Gas Reservoirs: A Comprehensive Review
Nov 2022
Publication
Hydrogen future depends on large-scale storage which can be provided by geological formations (such as caverns aquifers and depleted oil and gas reservoirs) to handle demand and supply changes a typical hysteresis of most renewable energy sources. Amongst them depleted natural gas reservoirs are the most cost-effective and secure solutions due to their wide geographic distribution proven surface facilities and less ambiguous site evaluation. They also require less cushion gas as the native residual gases serve as a buffer for pressure maintenance during storage. However there is a lack of thorough understanding of this technology. This work aims to provide a comprehensive insight and technical outlook into hydrogen storage in depleted gas reservoirs. It briefly discusses the operating and potential facilities case studies and the thermophysical and petrophysical properties of storage and withdrawal capacity gas immobilization and efficient gas containment. Furthermore a comparative approach to hydrogen methane and carbon dioxide with respect to well integrity during gas storage has been highlighted. A summary of the key findings challenges and prospects has also been reported. Based on the review hydrodynamics geochemical and microbial factors are the subsurface’s principal promoters of hydrogen losses. The injection strategy reservoir features quality and operational parameters significantly impact gas storage in depleted reservoirs. Future works (experimental and simulation) were recommended to focus on the hydrodynamics and geomechanics aspects related to migration mixing and dispersion for improved recovery. Overall this review provides a streamlined insight into hydrogen storage in depleted gas reservoirs.
Effect of Hydrogen on Very High Cycle Fatigue Behavior of a Low-strength Cr-Ni-Mo-V Steel Containing Micro-defects
Dec 2017
Publication
The role of hydrogen in fatigue failure of low strength steels is not as well understood as of high strength steels in very high cycle fatigue regime. In this work axially cyclic tests on a low strength Cr-Ni-Mo-V steel with charged hydrogen were carried out up to the very high cycle fatigue regime under ultrasonic frequency to examine the degradation of fatigue strength and associated failure mechanisms. Results show that the S-N curves show a continuously decreasing mode and hydrogen-charged specimens have lower fatigue strength and shorter fatigue lifetime as compared with as-received specimens. It is concluded that the hydrogen trapped by inclusions drives interior micro-defects as dominant crack initiation site and has a clear link to the initiation and early growth of interior fatigue cracks.
Environmentally-Assisted Cracking of Type 316L Austenitic Stainless Steel in Low Pressure Hydrogen Steam Environments
Aug 2019
Publication
A low pressure superheated hydrogen-steam system has been used to accelerate the oxidation kinetics while keeping the electrochemical conditions similar to those of the primary water in a pressurized water reactor. The initiation has been investigated using a Constant Extension Rate Tensile (CERT) test. Tests were performed on flat tapered specimens made from Type 316L austenitic stainless steel with strain rates of 2×10-6 and 2×10-8 ms-1 at room temperature and at an elevated temperature of 350 °C. R = 1/6 was chosen as a more oxidizing environment and R = 6 was selected as a more reducing environment where the parameter R represents the ratio between the oxygen partial pressure at the Ni/NiO transition and the oxygen partial pressure. Different exposures (1 day and 5 days) prior to loading were investigated post-test evaluation by scanning electron microscopy.
Hydrogen Effects on Progressively Cold-Drawn Pearlitic Steels: Between Donatello and Michelangelo
Sep 2017
Publication
This paper reviews previous research by the author in the field of hydrogen effects on progressively cold-drawn pearlitic steels in terms of hydrogen degradation (HD) hydrogen embrittlement (HE) or at the micro-level hydrogen-assisted micro-damage (HAMD) thus affecting their microstructural integrity and compromising the (macro-)structural integrity of civil engineering structures such as prestressed concrete bridges. It is seen that hydrogen effects in pearlitic microstructure (either oriented or not) are produced at the finest micro-level by plastic tearing in the form in general of hydrogen damage topography (HDT) with different appearances depending of the cold drawing degree evolving from the so-called tearing topography surface (TTS) in hot-rolled (not cold-drawn at all) or slightly cold-drawn pearlitic steels to a sort of enlarged and oriented TTS (EOTTS) in heavily drawn steels (the pronounced enlargement and marked orientation being along the wire axis or cold drawing direction). Whereas the pure TTS mode (null or low degree of cold drawing) resembles the Michelangello stone sculpture texture (MSST) the EOTTS mode does the same in relation to the Donatello wooden sculpture texture (DWST).
Modelling and Cost Estimation for Conversion of Green Methanol to Renewable Liquid Transport Fuels via Olefin Oligomerisation
Jun 2021
Publication
The ambitious CO2 emission reduction targets for the transport sector set in the Paris Climate Agreement require low-carbon energy solutions that can be commissioned rapidly. The production of gasoline kerosene and diesel from renewable methanol using methanol-to-olefins (MTO) and Mobil’s Olefins to Gasoline and Distillate (MOGD) syntheses was investigated in this study via process simulation and economic analysis. The current work presents a process simulation model comprising liquid fuel production and heat integration. According to the economic analysis the total cost of production was found to be 3409 €/tfuels (273 €/MWhLHV) corresponding to a renewable methanol price of 963 €/t (174 €/MWhLHV). The calculated fuel price is considerably higher than the current cost of fossil fuels and biofuel blending components. The price of renewable methanol which is largely dictated by the cost of electrolytic hydrogen and renewable electricity was found to be the most significant factor affecting the profitability of the MTO-MOGD plant. To reduce the price of renewable fuels and make them economically viable it is recommended that the EU’s sustainable transport policies are enacted to allow flexible and practical solutions to reduce transport-related emissions within the member states.
Assessment of the Contribution of Internal Pressure to the Structural Damage in a Hydrogen-charged Type 316L Austenitic Stainless Steel During Slow Strain Rate Tensile Test
Dec 2018
Publication
The aim of this study is to provide a quantification of the internal pressure contribution to the SSRT properties of H-charged Type-316L steel tested in air at room temperature. Considering pre-existing penny-shaped voids the transient pressure build-up has been simulated as well as its impact on the void growth by preforming JIc calculations. Several void distributions (size and spacing) have been considered. Simulations have concluded that there was no impact of the internal pressure on the void growth regardless the void distribution since the effective pressure was on the order of 1 MPa during the SSRT test. Even if fast hydrogen diffusion related to dislocation pipe-diffusion has been assessed as a conservative case the impact on void growth was barely imperceptible (or significantly low). The effect of internal pressure has been experimentally verified via the following conditions: (I) non-charged in vacuum; (II) H-charged in vacuum; (III) H-charged in 115-MPa nitrogen gas; (IV) non-charged in 115-MPa nitrogen gas. As a result the relative reduction in area (RRA) was 0.84 for (II) 0.88 for (III) and 1.01 for (IV) respectively. The difference in void morphology of the H-charged specimens did not depend on the presence of external pressure. These experimental results demonstrate that the internal pressure had no effect on the tensile ductility and void morphology of the H-charged specimen.
Self-sustainable Protonic Ceramic Electrochemical cells Using a Triple Conducting Electrode for Hydrogen and Power Production
Apr 2020
Publication
The protonic ceramic electrochemical cell (PCEC) is an emerging and attractive technology that converts energy between power and hydrogen using solid oxide proton conductors at intermediate temperatures. To achieve efficient electrochemical hydrogen and power production with stable operation highly robust and durable electrodes are urgently desired to facilitate water oxidation and oxygen reduction reactions which are the critical steps for both electrolysis and fuel cell operation especially at reduced temperatures. In this study a triple conducting oxide of PrNi0.5Co0.5O3-δ perovskite is developed as an oxygen electrode presenting superior electrochemical performance at 400~600 °C. More importantly the self-sustainable and reversible operation is successfully demonstrated by converting the generated hydrogen in electrolysis mode to electricity without any hydrogen addition. The excellent electrocatalytic activity is attributed to the considerable proton conduction as confirmed by hydrogen permeation experiment remarkable hydration behavior and computations.
Hydrogen Embrittlement in Pipelines Transporting Sour Hydrocarbons
Sep 2017
Publication
Lamination-like defects in pipeline steels can be of both metallurgical and operational origin. In pipelines transporting hydrocarbon usually such defects are not a big challenge since they do not propagate under operating conditions. Nonetheless in presence of a corrosion phenomenon and sour gas (H2S) it is possible to observe blisters and cracks which may propagate in the steel. The observed damage mechanisms is Hydrogen Embrittlement and in spite of a huge amount of study and publications available it is quite difficult for a pipeline owner to get practical data (crack propagation rate for instance) allowing a reliable estimate of the fitness for service of a pipeline. Taking advantage of a pipeline spool containing internal defects that was in service for more than 10 years and recently removed a comprehensive study is underway to obtain a complete assessment of the pipeline future integrity. The program is comprehensive of study and comparison of ILI reports of the pipeline to determine the optimum interval between inspections assessment of inspection results via an accurate nondestructive (UT) and destructive examination of the removed section to verify ILI results lab tests program on specimens from the removed spool at operating conditions (75-80 bar and 30°-36° C) in presence of a small quantity of water H2S (5%) and CO2 (7%) in order to assess defect propagation and to obtain an estimate of crack growth rate and test in field of available methods to monitor the presence of Hydrogen and/or the growth of defects in in-service pipelines. This quite ambitious program is also expected to be able of offering a small contribution toward a better understanding of HE mechanisms and the engineering application of such complex often mainly academic studies.
Towards a Unified and Practical Industrial Model for Prediction of Hydrogen Embrittlement and Damage in Steels
Jul 2016
Publication
Bearing in mind the multiple effects of hydrogen in steels the specific mechanism of hydrogen embrittlement (HE) is active depending on the experimental conditions and numerous factors which can be grouped as environmental mechanical and material influences. A large number of contemporary studies and models about hydrogen environment assisted cracking and HE in steels are presented in the form of critical review in this paper. This critical review represent the necessary background for the development of a multiscale structural integrity model based on correlation between simultaneously active HE micro-mechanisms: the hydrogen-enhanced localized plasticity (HELP) and the hydrogen-enhanced decohesion (HEDE) - (HELP+HEDE) and macro-mechanical response of material unevenly enriched with hydrogen during service of boiler tubes in thermal fossil fuel power plant. Several different experimental methods and techniques were used to determine the boiler tube failure mechanism and afterwards also the viable HE mechanisms in the investigated ferritic-pearlitic low carbon steel grade 20 - St.20 (equivalent to AISI 1020). That represent a background for the development of a structural integrity model based on the correlation of material macro-mechanical properties to scanning electron microscopy fractography analysis of fracture surfaces of Charpy specimens in the presence of confirmed and simultaneously active HE micro-mechanisms (HELP+HEDE) in steel. The aim of this paper is to show how to implement what we have learned from theoretical HE models into the field to provide industry with valuable data and practical structural integrity model.
Continuum Level Simulation of the Grain Size and Misorientation Effects on Hydrogen Embrittlement in Nickel
Jul 2016
Publication
This paper addresses the size and misorientation effects on hydrogen embrittlement of a four grain nickel aggregate. The grain interior is modelled with orthotropic elasticity and the grain boundary with cohesive zone technique. The grain misorientation angle is parameterized by fixing the lower grains and rotating the upper grains about the out-of-plane axis. The hydrogen effect is accounted for via the three-step hydrogen informed cohesive zone simulation. The grain misorientation exerts an obvious weakening effect on the ultimate strength of the nickel aggregate which reaches its peak at misorientation angles around 20◦ but such effect becomes less pronounced in the case with a pre-crack. The misorientation could induce size effect in the otherwise size independent case without a pre-crack. The contribution of misorientation to the size effect is negligible compare to that caused by the existence of a pre-crack. These findings indicate that the misorientation effect in cases with a deep pre-crack is weaker than expected in shallow-pre-crack situations. Most of these conclusions hold for the hydrogen charging situation except that the ultimate strength is lowered in all the sub-cases due to hydrogen embrittlement. Interestingly it is observed that the size effect becomes less pronounced with hydrogen taken into account which is caused by the fact that hydrogen takes more time to reach the failure initiation site in larger grains.
Hydrogen-assisted Cracking Paths in Oriented Pearlitic Microstructures: Resembling Donatello Wooden Sculpture Texture (DWST) & Mantegna’s Dead Christ Perspective (MDCP)
Jun 2020
Publication
Progressive cold drawing in eutectoid steel produces a preferential orientation of pearlitic colonies and ferrite/cementite lamellae thus inducing strength anisotropy in the steel and mixed mode propagation. While in the hot rolled steel (not cold drawn) the pearlitic microstructure is randomly oriented and the crack progresses in hydrogen by breaking the ferrite/cementite lamellae in heavily drawn steels the pearlitic microstructure is fully oriented and the predominant mechanism of hydrogen assisted cracking is the delamination (or decohesion) at the ferrite/cementite interface.
Economic Analysis of Improved Alkaline Water Electrolysis
Feb 2017
Publication
Alkaline water electrolysis (AWE) is a mature hydrogen production technology and there exists a range of economic assessments for available technologies. For advanced AWEs which may be based on novel polymer-based membrane concepts it is of prime importance that development comes along with new configurations and technical and economic key process parameters for AWE that might be of interest for further economic assessments. This paper presents an advanced AWE technology referring to three different sites in Europe (Germany Austria and Spain). The focus is on financial metrics the projection of key performance parameters of advanced AWEs and further financial and tax parameters. For financial analysis from an investor’s (business) perspective a comprehensive assessment of a technology not only comprises cost analysis but also further financial analysis quantifying attractiveness and supply/market flexibility. Therefore based on cash flow (CF) analysis a comprehensible set of metrics may comprise levelised cost of energy or respectively levelized cost of hydrogen (LCH) for cost assessment net present value (NPV) for attractiveness analysis and variable cost (VC) for analysis of market flexibility. The German AWE site turns out to perform best in all three financial metrics (LCH NPV and VC). Though there are slight differences in investment cost and operation and maintenance cost projections for the three sites the major cost impact is due to the electricity cost. Although investment cost is slightly lower and labor cost is significantly lower in Spain the difference can not outweigh the higher electricity cost compared to Germany. Given the assumption that the electrolysis operators are customers directly and actively participating in power markets and based on the regulatory framework in the three countries in this special case electricity cost in Germany is lowest. However as electricity cost is profoundly influenced by political decisions as well as the implementation of economic instruments for transforming electricity systems toward sustainability it is hardly possible to further improve electricity price forecasts.
Discussion on the Feasibility of the Integration of Wind Power and Coal Chemical Industries for Hydrogen Production
Oct 2021
Publication
To improve the utilization rate of the energy industry and reduce high energy consumption and pollution caused by coal chemical industries in north western China a planning scheme of a wind‐coal coupling energy system was developed. This scheme involved the analysis method evaluation criteria planning method and optimization operation check for the integration of a comprehensive evaluation framework. A system was established to plan the total cycle revenue to maximize the net present value of the goal programming model and overcome challenges associated with the development of new forms of energy. Subsequently the proposed scheme is demonstrated using a 500‐MW wind farm. The annual capacity of a coal‐to‐methanol system is 50000. Results show that the reliability of the wind farm capacity and the investment subject are the main factors affecting the feasibility of the wind‐coal coupled system. Wind power hydrogen production generates O2 and H2 which are used for methanol preparation and electricity production in coal chemical systems respectively. Considering electricity price constraints and environmental benefits a methanol production plant can construct its own wind farm matching its output to facilitate a more economical wind‐coal coupled system. Owing to the high investment cost of wind power plants an incentive mechanism for saving energy and reducing emissions should be provided for the wind‐ coal coupled system to ensure economic feasibility and promote clean energy transformation.
Hydrogen Embrittlement in a 2101 Lean Duplex Stainless Steel
Sep 2019
Publication
Duplex Stainless Steels (DSSs) are an attractive class of materials characterized by a strong corrosion resistance in many aggressive environments. Thanks to the high mechanical performances DSSs are widely used for many applications in petrochemical industry chemical and nuclear plants marine environment desalination etc.<br/>Among the DSSs critical aspects concerning the embrittlement process it is possible to remember the steel sensitization and the hydrogen embrittlement.<br/>The sensitization of the DSSs is due to the peculiar chemical composition of these grades which at high temperature are susceptible to carbide nitrides and second phases precipitation processes mainly at grains boundary and in the ferritic grains. The hydrogen embrittlement process is strongly influenced by the duplex (austenitic-ferritic) microstructure and by the loading conditions.<br/>In this work a rolled lean ferritic-austenitic DSS (2101) has been investigated in order to analyze the hydrogen embrittlement mechanisms by means of slow strain rate tensile tests considering the steel after different heat treatments. The damaging micromechanisms have been investigated by means of the scanning electron microscope observations on the fracture surfaces.
Two-dimensional Vanadium Carbide for Simultaneously Tailoring the Hydrogen Sorption Thermodynamics and Kinetics of Magnesium Hydride
May 2021
Publication
Magnesium hydride (MgH2) is a potential material for solid-state hydrogen storage. However the thermodynamic and kinetic properties are far from practical application in the current stage. In this work two-dimensional vanadium carbide (V2C) MXene with layer thickness of 50−100 nm was fist synthesized by selectively HF-etching the Al layers from V2AlC MAX phase and then introduced into MgH2 to improve the hydrogen sorption performances of MgH2. The onset hydrogen desorption temperature of MgH2 with V2C addition is significantly reduced from 318 °C for pure MgH2 to 190 °C with a 128 °C reduction of the onset temperature. The MgH2+ 10 wt% V2C composite can release 6.4 wt% of H2 within 10 min at 300 °C and does not loss any capacity for up to 10 cycles. The activation energy for the hydrogen desorption reaction of MgH2 with V2C addition was calculated to be 112 kJ mol−1 H2 by Arrhenius's equation and 87.6 kJ mol−1 H2 by Kissinger's equation. The hydrogen desorption reaction enthalpy of MgH2 + 10 wt% V2C was estimated by van't Hoff equation to be 73.6 kJ mol−1 H2 which is slightly lower than that of the pure MgH2 (77.9 kJ mol−1 H2). Microstructure studies by XPS TEM and SEM showed that V2C acts as an efficient catalyst for the hydrogen desorption reaction of MgH2. The first-principles density functional theory (DFT) calculations demonstrated that the bond length of Mg−H can be reduced from 1.71 Å for pure MgH2 to 2.14 Å for MgH2 with V2C addition which contributes to the destabilization of MgH2. This work provides a method to significantly and simultaneously tailor the hydrogen sorption thermodynamics and kinetics of MgH2 by two-dimensional MXene materials.
No more items...