Publications
Energy and Economic Costs of Chemical Storage
May 2020
Publication
The necessity of neutralizing the increase of the temperature of the atmosphere by the reduction of greenhouse gas emissions in particular carbon dioxide (CO2) as well as replacing fossil fuels leads to a necessary energy transition that is already happening. This energy transition requires the deployment of renewable energies that will replace gradually the fossil fuels. As the renewable energy share increases energy storage will become key to avoid curtailment or polluting back-up systems. This paper considers a chemical storage process based on the use of electricity to produce hydrogen by electrolysis of water. The obtained hydrogen (H2) can then be stored directly or further converted into methane (CH4 from methanation if CO2 is available e.g. from a carbon capture facility) methanol (CH3OH again if CO2 is available) and/or ammonia (NH3 by an electrochemical process). These different fuels can be stored in liquid or gaseous forms and therefore with different energy densities depending on their physical and chemical nature. This work aims at evaluating the energy and the economic costs of the production storage and transport of these different fuels derived from renewable electricity sources. This applied study on chemical storage underlines the advantages and disadvantages of each fuel in the frame of the energy transition.
Potential for Natural Hydrogen in Quebec (Canada): A First Review
Mar 2024
Publication
The energy transition calls for natural hydrogen exploration with most occurrences discovered either inadvertently or more recently at the location of potentially diffusive circles observed from a change of vegetation cover at the surface. However some notable hydrogen occurrences are not directly associated with the presence of diffusive circles like the Bourakebougou field in Mali. Thus the objective of this work was to highlight geological areas that have some potential to find natural hydrogen in Quebec a Canadian province where no diffusive circles have yet been documented but which is rich in potential source rocks and where no exploration for natural hydrogen has been undertaken so far. A review of the different geological regions of Quebec was undertaken to highlight the relevant characteristics and geographical distribution of geological assemblages that may produce or have produced natural hydrogen in particular iron-rich rocks but also uranium-rich rocks supramature shales and zones where significant structural discontinuities are documented or suspected which may act as conduits for the migration of fluids of mantle origin. In addition to regional and local geological data an inventory of available geochemical data is also carried out to identify potential tracers or proxies to facilitate subsequent exploration efforts. A rating was then proposed based on the quality of the potential source rocks which also considers the presence of reservoir rocks and the proximity to end-users. This analysis allowed rating areas of interest for which fieldwork can be considered thus minimizing the exploratory risks and investments required to develop this resource. The size of the study area (over 1.5 million km2 ) the diversity of its geological environments (from metamorphic cratons to sedimentary basins) and their wide age range (from Archean to Paleozoic) make Quebec a promising territory for natural hydrogen exploration and to test the systematic rating method proposed here.
Spontaneous Ignition of Cryo-Compressed Hydrogen in a T-Shaped Channel System
Aug 2022
Publication
Sudden releases of pressurised hydrogen may spontaneously ignite by the so-called “diffusion ignition” mechanism. Several experimental and numerical studies have been performed on spontaneous ignition for compressed hydrogen at ambient temperature. However there is no knowledge of the phenomenon for compressed hydrogen at cryogenic temperatures. The study aims to close this knowledge gap by performing numerical experiments using a computational fluid dynamics model validated previously against experiments at atmospheric temperatures to assess the effect of temperature decrease from ambient 300 K to cryogenic 80 K. The ignition dynamics is analysed for a T-shaped channel system. The cryo-compressed hydrogen is initially separated from the air in the T-shaped channel system by a burst disk (diaphragm). The inertia of the burst disk is accounted for in the simulations. The numerical experiments were carried out to determine the hydrogen storage pressure limit leading to spontaneous ignition in the configuration under investigation. It is found that the pressure limit for spontaneous ignition of the cryo-compressed hydrogen at temperature 80 K is 9.4 MPa. This is more than 3 times larger than pressure limit for spontaneous ignition of 2.9 MPa in the same setup at ambient temperature of 300 K.
Hydrogen Refueling Process: Theory, Modeling, and In-Force Applications
Mar 2023
Publication
Among the alternative fuels enabling the energy transition hydrogen-based transportation is a sustainable and efficient choice. It finds application both in light-duty and heavy-duty mobility. However hydrogen gas has unique qualities that must be taken into account when employed in such vehicles: high-pressure levels up to 900 bar storage in composite tanks with a temperature limit of 85 ◦C and a negative Joule–Thomson coefficient throughout a wide range of operational parameters. Moreover to perform a refueling procedure that is closer to the driver’s expectations a fast process that requires pre-cooling the gas to −40 ◦C is necessary. The purpose of this work is to examine the major phenomena that occur during the hydrogen refueling process by analyzing the relevant theory and existing modeling methodologies.
Analysis of Crash Characteristics of Hydrogen Storage Structure of Hydrogen Powered UAV
Nov 2022
Publication
In the context of green aviation as an internationally recognized solution hydrogen energy is lauded as the “ultimate energy source of the 21st century” with zero emissions at the source. Developed economies with aviation industries such as Europe and the United States have announced hydrogen energy aviation development plans successively. The study and development of high-energy hydrogen fuel cells and hydrogen energy power systems have become some of the future aviation research focal points. As a crucial component of hydrogen energy storage and delivery the design and development of a safe lightweight and efficient hydrogen storage structure have drawn increasing consideration. Using a hydrogen-powered Unmanned Aerial Vehicle (UAV) as the subject of this article the crash characteristics of the UAV’s hydrogen storage structure are investigated in detail. The main research findings are summarized as follows: (1) A series of crash characteristics analyses of the hydrogen storage structure of a hydrogen-powered UAV were conducted and the Finite Element Analysis (FEA) response of the structure under different impact angles internal pressures and impact speeds was obtained and analyzed. (2) When the deformation of the hydrogen storage structure exceeds 50 mm and the strain exceeds 0.8 an initial crack will appear at this part of the hydrogen storage structure. The emergency release valve should respond immediately to release the gas inside the tank to avoid further damage. (3) Impact angle and initial internal pressure are the main factors affecting the formation of initial cracks.
Historical Analysis of FCH 2 JU Stationary Fuel Cell Projects
May 2021
Publication
As a part of its knowledge management activities the Fuel Cell and Hydrogen Joint Undertaking 2 (FCH 2 JU) has commissioned the Joint Research Centre (JRC) to perform a series of historical analyses by topic area to assess the impact of funded projects and the progression of its current Multi-Annual Work Plan (MAWP; 2014- 2020) towards its objectives. These historical analyses consider all relevant funded projects since the programme’s inception in 2008. This report considers the performance of projects against the overall FCH 2 JU programme targets for stationary Fuel Cells (FCs) using quantitative values of Key Performance Indicators (KPI) for assessment. The purpose of this exercise is to see whether and how the programme has enhanced the state of the art for stationary fuel cells and to identify potential Research & Innovation (R&I) gaps for the future. Therefore the report includes a review of the current State of the Art (SoA) of fuel cell technologies used in the stationary applications sector. The programme has defined KPIs for three different power output ranges and equivalent applications: (i) micro-scale Combined Heat and Power (mCHP) for single family homes and small buildings (0.3 - 5 kW); (ii) mid-sized installations for commercial and larger buildings (5 - 400 kW); (iii) large scale FC installations converting hydrogen and renewable methane into power in various applications (0.4 - 30 MW). Projects addressing stationary applications in these particular power ranges were identified and values for the achieved KPIs extracted from relevant sources of information such as final reports and the TRUST database (Technology Reporting Using Structured Templates). As much of this data is confidential a broad analysis of performance of the programme against its KPIs has been performed without disclosing confidential information. The results of this analysis are summarised within this report. The information obtained from this study will be used to suggest future modifications to the research programme and associated targets.
Use of Hydrogen Energy and Fuel Cells in Marine and Industrial Applications—Current Status
Jul 2025
Publication
The promising development of hydrogen and fuel cell technologies has garnered increased attention in recent years assuming a significant role in industrial applications and the decarbonisation of the shipping industry. Given that the shipping industry generates considerable greenhouse gas emissions it is crucial and imperative to implement integrated solutions based on clean energy sources thereby meeting the proposed climate objectives. This study presents the standard hydrogen production storage and transport methods and analysis technologies that use hydrogen fuel cells in marine and industrial applications. Technologies based on hydrogen fuel cells and hybrid systems will have an increased perspective of application in industry and maritime transport under the conditions of optimising technological models developing the hydrogen industrial chain and updating standards and regulations in the field. However there are still many shortcomings. The paper’s main contribution is analysing the hydrogen industrial chain presenting the progress and obstacles associated with the technologies used in industrial and marine applications based on hydrogen energy.
Assessing Fluctuating Wind to Hydrogen Production via Long-term Testing of Solid Oxide Electrolysis Stacks
Mar 2024
Publication
The Danish government plans two energy islands to collect offshore wind power for power distribution and green fuel production. Wind power is often criticized for lacking stability which challenges downstream fuel synthesis processes. Solid oxide electrolysis cells (SOEC) are promising for green hydrogen production on a commercial scale but the impact of fluctuating power on SOEC remains uncertain. This paper explores the feasibility of a Wind-SOEC coupled system by conducting a 2104-h durability test with the state-of-the-art Topsoe TSP-1 stack. Three periods of steady operation and two periods of dynamic operation were conducted. Wind power fluctuation was simulated during the dynamic period and two control strategies were used to handle it. The constant flow (CF) and constant conversion (CC) strategies maintain the feedstock flow rate and conversion ratio of steamto‑hydrogen respectively. Compared to steady operation the stack shows no signs of additional degradation in dynamic operation. Thus the TSP-1 stack has been proven robust and flexible enough to handle fluctuating wind power supplies under both operation strategies. Further stack performance during dynamic periods was compared and analyzed by removing degradation effects. Accordingly SOEC stacks with CC control will consume less external heat than CF to maintain a heat balance. Nevertheless SOEC systems with CF and CC control strategies may have different efficiency or hydrogen production costs. Tech-economic analyses will be needed to investigate control strategies at the system level.
Research on the Flexibility Margin of an Electric–Hydrogen Coupling Energy Block Based on Model Predictive Control
Apr 2022
Publication
Hydrogen energy plays an important role in the transformation of low-carbon energy and electric–hydrogen coupling will become a typical energy scenario. Aiming at the operation flexibility of a low-carbon electricity–hydrogen coupling system with high proportion of wind power and photovoltaic this work studies the flexibility margin of an electricity–hydrogen coupling energy block based on model predictive control. By analyzing the power exchange characteristics of heterogeneous energy the homogenization models of various heterogeneous energy sources are established. According to the analysis of power system flexibility margin three dimensions of flexibility margin evaluation indexes are defined from the dimension of system operation and an electricity–hydrogen coupling energy block scheduling model is established. The model predictive control algorithm is used to optimize the power balance operation of the electro–hydrogen coupling energy block and the flexibility margin of the energy block is quantitatively analyzed and calculated. Through the example analysis it is verified that the calculation method proposed in this article can not only realize the online power balance optimization of the electric–hydrogen coupling energy block but also effectively quantify the operation flexibility margin of the electric–hydrogen coupling energy block.
Modeling and Simulation of an Isolated Hybrid Micro-grid with Hydrogen Production and Storage
Jan 2014
Publication
This work relates the study of system performance in operational conditions for an isolated micro-grid powered by a photovoltaic system and a wind turbine. The electricity produced and not used by the user will be accumulated in two different storage systems: a battery bank and a hydrogen storage system composed of two PEM electrolyzers four pressurized tanks and a PEM fuel cell. One of the main problems to be solved in the development of isolated micro-grids is the management of the various devices and energy flows to optimize their functioning in particular in relation to the load profile and power produced by renewable energy systems depending on weather conditions. For this reason through the development and implementation of a specific simulation program three different energy management systems were studied to evaluate the best strategy for effectively satisfying user requirements and optimizing overall system efficiency.
Assessment of Hydrogen Delivery Options: Feasibility of Transport of Green Hydrogen within Europe
Oct 2022
Publication
The RePowerEU plan [1] and the European Hydrogen Strategy [2] recognise the important role that the transport of hydrogen will play in enabling the penetration of renewable hydrogen in Europe. To implement the European Hydrogen Strategy it is important to understand whether the transport of hydrogen is cost effective or whether hydrogen should be produced where it is used. If transporting hydrogen makes sense a second open question is how long the transport route should be for the cost of the hydrogen to still be competitive with locally produced hydrogen. JRC has performed a comprehensive study regarding the transport of hydrogen. To investigate which renewable hydrogen delivery pathways are favourable in terms of energy demand and costs JRC has developed a database and an analytical tool to assess each step of the pathways and used it to assess two case studies. The study reveals that there is no single optimal hydrogen delivery solution across every transport scenario. The most cost effective way to deliver renewable hydrogen depends on distance amount final use and whether there is infrastructure already available. For distances compatible with the European territory compressed and liquefied hydrogen solutions and especially compressed hydrogen pipelines offer lower costs than chemical carriers do. The repurposing of existing natural gas pipelines for hydrogen use is expected to significantly lower the delivery cost making the pipeline option even more competitive in the future. By contrast chemical carriers become more competitive the longer the delivery distance (due to their lower transport costs) and open up import options from suppliers located for example in Chile or Australia.
EU Harmonised Terminology for Hydrogen Generated by Electrolysis
Jul 2021
Publication
The objective of this pre-normative research (PNR) document entitled EU harmonised terminology for hydrogen generated by electrolysis is to present an open and comprehensive compendium of harmonised terminology for electrolysis applications. This report is prepared under the FWC between JRC and FCH2JU as the result of a collaborative effort between European partners from industry research and development (R&D) organisations and academia participating to FCH2JU funded R&D projects6 in electrolysis applications.7 The commonly accepted definitions of terms may be used in RD&D project documents test and measurement methods test procedures and test protocols scientific publications and technical documentation. This compendium is primarily intended for use by those involved in conducting RD&D as well as in drafting and evaluating R&I programme. The terms and definitions presented cover many aspects of electrolysis including materials research modelling design & engineering analysis characterisation measurements laboratory testing prototype development field tests and demonstration as well as quality assurance (QA). Also it contains information useful for others e. g. auditors manufacturer designers system integrators testing centres service providers and educators. In future it may be expanded to account for possible power-to-hydrogen (P2H2) developments in energy storage (ES) particularly electrical energy storage (EES) hydrogen-to-power (H2P) hydrogen-to-industry (H2I) and hydrogen-to-substance (H2X) applications.
A Review of Recent Advances in Water-gas Shift Catalysis for Hydrogen Production
Aug 2020
Publication
The water-gas shift reaction (WGSR) is an intermediate reaction in hydrocarbon reforming processes considered one of the most important reactions for hydrogen production. Here water and carbon monoxide molecules react to generate hydrogen and carbon dioxide. From the thermodynamics aspect pressure does not have an impact whereas low-temperature conditions are suitable for high hydrogen selectivity because of the exothermic nature of the WGSR reaction. The performance of this reaction can be greatly enhanced in the presence of suitable catalysts. The WGSR has been widely studied due do the industrial significance resulting in a good volume of open literature on reactor design and catalyst development. A number of review articles are also available on the fundamental aspects of the reaction including thermodynamic analysis reaction condition optimization catalyst design and deactivation studies. Over the past few decades there has been an exceptional development of the catalyst characterization techniques such as near-ambient x-ray photoelectron spectroscopy (NA-XPS) and in situ transmission electron microscopy (in situ TEM) providing atomic level information in presence of gases at elevated temperatures. These tools have been crucial in providing nanoscale structural details and the dynamic changes during reaction conditions which were not available before. The present review is an attempt to gather the recent progress particularly in the past decade on the catalysts for low-temperature WGSR and their structural properties leading to new insights that can be used in the future for effective catalyst design. For the ease of reading the article is divided into subsections based on metals (noble and transition metal) oxide supports and carbon-based supports. It also aims at providing a brief overview of the reaction conditions by including a table of catalysts with synthesis methods reaction conditions and key observations for a quick reference. Based on our study of literature on noble metal catalysts atomic Pt substituted Mn3O4 shows almost full CO conversion at 260 °C itself with zero methane formation. In the case of transition metals group the inclusion of Cu in catalytic system seems to influence the CO conversion significantly and in some cases with CO conversion improvement by 65% at 280 °C. Moreover mesoporous ceria as a catalyst support shows great potential with reports of full CO conversion at a low temperature of 175 °C.
Economic Analysis on Hydrogen Pipeline Infrastructure Establishment Scenarios: Case Study of South Korea
Sep 2022
Publication
South Korea has a plan to realize a hydrogen economy and it is essential to establish a main hydrogen pipeline for hydrogen transport. This study develops a cost estimation model applicable to the construction of hydrogen pipelines and conducts an economic analysis to evaluate various scenarios for hydrogen pipeline construction. As a result the cost of modifying an existing natural gas to a hydrogen pipeline is the lowest however there are issues with the safety of the modified hydrogen pipes from natural gas and the necessity of the existing natural gas pipelines. In the case of a short-distance hydrogen pipeline the cost is about 1.8 times that of the existing natural gas pipeline modification but it is considered a transitional scenario before the construction of the main hydrogen pipeline nationwide. Lastly in the case of long-distance main hydrogen pipeline construction it takes about 3.7 times as much cost as natural gas pipeline modification however it has the advantage of being the ultimate hydrogen pipeline network. In this study various hydrogen pipeline establishment scenarios ware compared. These results are expected to be utilized to establish plans for building hydrogen pipelines and to evaluate their economic feasibility.
Energy Transition in Aviation: The Role of Cryogenic Fuels
Dec 2020
Publication
Aviation is the backbone of our modern society. In 2019 around 4.5 billion passengers travelled through the air. However at the same time aviation was also responsible for around 5% of anthropogenic causes of global warming. The impact of the COVID-19 pandemic on the aviation sector in the short term is clearly very high but the long-term effects are still unknown. However with the increase in global GDP the number of travelers is expected to increase between three- to four-fold by the middle of this century. While other sectors of transportation are making steady progress in decarbonizing aviation is falling behind. This paper explores some of the various options for energy carriers in aviation and particularly highlights the possibilities and challenges of using cryogenic fuels/energy carriers such as liquid hydrogen (LH2) and liquefied natural gas (LNG).
The More the Merrier? Actors and Ideas in the Evolution of Germany Hydrogen Policy Discourse
Feb 2023
Publication
Hydrogen has set high hopes for decarbonization due to its flexibility and ability to decarbonize sectors of the economy where direct electrification appears unviable. Broad hydrogen policies have therefore started to emerge. Nevertheless it is still a rather niche technology not integrated or adopted at scale and not regulated through particular policy provisions. The involved stakeholders are thus still rushing to set the agenda over the issue. All this plays out publicly and shapes the public discourse. This paper explores how the composition of stakeholders their positions and the overall discourse structure have developed and accompanied the political agenda-setting in the early public debate on hydrogen in Germany. We use discourse network analysis of media where stakeholders' claims-making is documented and their positions can be tracked over time. The public discourse on hydrogen in Germany shows the expected evolution of statements in connection with the two milestones chosen for the analyses the initiation of the Gas 2030 Dialogue and the publication of the National Hydrogen Strategy. Interestingly the discourse was comparatively feeble in the immediate aftermath of the respective milestones but intensified in a consolidation phase around half a year later. Sequencing the discourse and contextualizing its content relative to political societal and economic conditions in a diachronic way is essential because it helps to avoid misinterpreting the development of stakeholders' standpoints as conflict-driven rather than mere repositioning. Thus we observed no discourse “polarization” even though potentially polarizing issues were already present in the debate.
Sustainability Assessment of Green Ammonia Production to Promote Industrial Decarbonization in Spain
Oct 2023
Publication
This article investigates the economic and environmental implications of implementing green ammonia production plants in Spain. To this end one business-as-usual scenario for gray ammonia production was compared with three green ammonia scenarios powered with different renewable energy sources (i.e. solar photovoltaic (PV) wind and a combination of solar PV and wind). The results illustrated that green ammonia scenarios reduced the environmental impacts in global warming stratospheric ozone depletion and fossil resource scarcity when compared with conventional gray ammonia scenario. Conversely green ammonia implementation increased the environmental impacts in the categories of land use mineral resource scarcity freshwater eutrophication and terrestrial acidification. The techno-economic analysis revealed that the conventional gray ammonia scenario featured lower costs than green ammonia scenarios when considering a moderate natural gas cost. However green ammonia implementation became the most economically favorable option when the natural gas cost and carbon prices increased. Finally the results showed that developing efficient ammonia-fueled systems is important to make green ammonia a relevant energy vector when considering the entire supply chain (production/transportation). Overall the results of this research demonstrate that green ammonia could play an important role in future decarbonization scenarios.
Green Hydrogen Production and Use in Low- and Middle-income Countries: A Least-cost Geospatial Modelling Approach Applied to Kenya
May 2023
Publication
With the rising threat of climate change green hydrogen is increasingly seen as the high-capacity energy storage and transport medium of the future. This creates an opportunity for low- and middle-income countries to leverage their high renewable energy potential to produce use and export low-cost green hydrogen creating environmental and economic development benefits. While identifying ideal locations for green hydrogen production is critical for countries when defining their green hydrogen strategies there has been a paucity of adequate geospatial planning approaches suitable to low- and middle-income countries. It is essential for these countries to identify green hydrogen production sites which match demand to expected use cases such that their strategies are economically sustainable. This paper therefore develops a novel geospatial cost modelling method to optimize the location of green hydrogen production across different use cases with a focus on suitability to low- and middle-income countries. This method is applied in Kenya to investigate the potential hydrogen supply chain for three use cases: ammonia-based fertilizer freight transport and export. We find hydrogen production costs of e3.7–9.9/kgH2 are currently achievable across Kenya depending on the production location chosen. The cheapest production locations are identified to the south and south-east of Lake Turkana. We show that ammonia produced in Kenya can be cost-competitive given the current energy crisis and that Kenya could export hydrogen to Rotterdam with costs of e7/kgH2 undercutting current market prices regardless of the carrier medium. With expected techno-economic improvements hydrogen production costs across Kenya could drop to e1.8–3.0/kgH2 by 2030.
Analysis of Performance, Emissions, and Lubrication in a Spark-ignition Engine Fueled with Hydrogen Gas Mixtures
Oct 2022
Publication
Hydrogen is one of the main alternative fuels with the greatest potential to replace fossil fuels due to its renewable and environmentally friendly nature. Due to this the present investigation aims to evaluate the combustion characteristics performance parameters emissions and variations in the characteristics of the lubricating oil. The investigation was conducted in a spark-ignition engine fueled by gasoline and hydrogen gas. Four engine load conditions (25% 50% 75% and 100%) and three hydrogen gas mass concentration conditions (3% 6% and 9%) were defined for the study. The investigation results allowed to demonstrate that the injection of hydrogen gas in the gasoline engine causes an increase of 3.2% and 4.0% in the maximum values of combustion pressure and heat release rates. Additionally hydrogen causes a 2.9% increase in engine BTE. Hydrogen's more efficient combustion process allowed for reducing CO HC and smoke opacity emissions. However hydrogen gas causes an additional increase of 14.5% and 30.4% in reducing the kinematic viscosity and the total base number of the lubricating oil. In addition there was evidence of an increase in the concentration of wear debris such as Fe and Cu which implies higher rates of wear in the engine's internal components.
Storage Batteries in Photovoltaic-electrochemical Device for Solar Hydrogen Production
Aug 2021
Publication
Hydrogen produced by water electrolysis and electrochemical batteries are widely considered as primary routes for the long- and short-term storage of photovoltaic (PV) energy. At the same time fast power ramps and idle periods in PV power generation may cause degradation of water splitting electrochemical (EC) cells. Implementation of batteries in PV-EC systems is a viable option for smoothening out intermittence of PV power. Notably the spreading of PV energy over the diurnal cycle reduces power of the EC cell and thus its overpotential loss. We study these potential advantages theoretically and experimentally for a simple parallel connected combination of PV EC and battery cells (PV-EC-B) operated without power management electronics. We show feasibility of the unaided operation of PV-EC-B device in a relevant duty cycle and explore how PV-EC-B system can operate at higher solar-to-hydrogen efficiency than the equivalent reference PV-EC system despite the losses caused by the battery.
The Smart Community: Strategy Layers for a New Sustainable Continental Framework
Feb 2023
Publication
The topic investigated in this article is a comparison contrast and integration effort of European strategies for sustainable development with the evolving market initiatives that are beginning to fuel the fourth industrial revolution. Several regulatory initiatives from continental bodies come into effect to radically change access to finances for business development based on sustainability goals and an analysis of the legislation and trends becomes essential for an effective pivot tactic in the face of adversity as well as change management policies to pre-emptively adapt and perform. The general research question is “what the strategic tools are best employed to overcome the hurdles laid forth by the drastic changes legally required for a sustainable future?” The research methods include a quantitative analysis of norms regulations and legislation including strategic initiatives circulated in the European Union governmental bodies integrated with qualitative research of the literature. The study finds and draws synergies between national strategies that have recently been drafted or are currently evolving with sustainability-centric initiatives such as the hydrogen initiative the nuclear initiative the natural gas initiative the renewables initiative the synthetics and biomass initiative the ESG initiative the digital initiative. The findings are to contribute to the business administration field by providing an appropriate image of the organizational design model in the sustainability era and a strategy framework to build the optimum long-term vision founded on continental regulatory initiatives that have come into effect.
Heating Economics Evaluated Against Emissions: An Analysis of Low-carbon Heating Systems with Spatiotemporal and Dwelling Variations
Oct 2022
Publication
An understanding of heating technologies from the consumers’ perspective is critical to ensure low-carbon technologies are adopted for reducing their current associated emissions. Existing studies from the consumers’ perspective do not compare and optimise the full range and combinations of potential heating systems. There is also little consideration of how spatiotemporal and dwelling variations combined alter the economic and environmental effectiveness of technologies. The novelty of this paper is the creation and use of a new comprehensive framework to capture the range of heating technologies and their viability for any specific dwelling’s traits and climate from customers’ perspective which is missing from current studies. The model optimises combinations of prime heaters energy sources ancillary solar technologies and sizes thermal energy storage sizes and tariffs with hourly heating simulation across a year and compares their operation capital and lifetime costs alongside emissions to realise the true preferential heating systems for customers which could be used by various stakeholders. Using the UK as a case study the results show electrified heating is generally the optimum lifetime cost solution mainly from air source heat pumps coupled with photovoltaics. However direct electrical heating becomes more economically viable as dwelling demands reduce from smaller dwellings or warmer climates as shorter durations of the ownership are considered or with capital cost constraints from lower income households. Understanding this is of high importance as without correctly targeted incentives a larger uptake of direct electrical heating may occur which will burden the electrical network and generation to a greater extent than more efficient heat pumps.
Critical Materials in PEMFC Systems and a LCA Analysis for the Potential Reduction of Environmental Impacts with EoL Strategies
Jul 2019
Publication
Commonly used materials constituting the core components of polymer electrolyte membrane fuel cells (PEMFCs) including the balance‐of‐plant were classified according to the EU criticality methodology with an additional assessment of hazardousness and price. A life‐cycle assessment (LCA) of the materials potentially present in PEMFC systems was performed for 1 g of each material. To demonstrate the importance of appropriate actions at the end of life (EoL) for critical materials a LCA study of the whole life cycle for a 1‐kW PEMFC system and 20000 operating hours was performed. In addition to the manufacturing phase four different scenarios of hydrogen production were analyzed. In the EoL phase recycling was used as a primary strategy with energy extraction and landfill as the second and third. The environmental impacts for 1 g of material show that platinum group metals and precious metals have by far the largest environmental impact; therefore it is necessary to pay special attention to these materials in the EoL phase. The LCA results for the 1‐kW PEMFC system show that in the manufacturing phase the major environmental impacts come from the fuel cell stack where the majority of the critical materials are used. Analysis shows that only 0.75 g of platinum in the manufacturing phase contributes on average 60% of the total environmental impacts of the manufacturing phase. In the operating phase environmentally sounder scenarios are the hydrogen production with water electrolysis using hydroelectricity and natural gas reforming. These two scenarios have lower absolute values for the environmental impact indicators on average compared with the manufacturing phase of the 1‐kW PEMFC system. With proper recycling strategies in the EoL phase for each material and by paying a lot of attention to the critical materials the environmental impacts could be reduced on average by 37.3% for the manufacturing phase and 23.7% for the entire life cycle of the 1‐kW PEMFC system.
Influence of Hydrogen Production in the CO2 Emissions Reduction of Hydrogen Mettalurgy Transformation in Iron and Steel Industry
Jan 2023
Publication
The transformation of hydrogen metallurgy is a principal means of promoting the iron and steel industry (ISI) in reaching peak and deep emissions reduction. However the environmental impact of different hydrogen production paths on hydrogen metallurgy has not been systemically discussed. To address this gap based on Long-range Energy Alternatives Planning System (LEAP) this paper constructs a bottom-up energy system model that includes hydrogen production iron and steel (IS) production and power generation. By setting three hydrogen production structure development paths namely the baseline scenario business-as-usual (BAU) scenario and clean power (CP) scenario the carbon dioxide (CO2) emissions impact of different hydrogen production paths on hydrogen metallurgy is carefully evaluated from the perspective of the whole industry and each IS production process. The results show that under the baseline scenario the hydrogen metallurgy transition will help the CO2 emissions of ISI peak at 2.19 billion tons in 2024 compared to 2.08 billion tons in 2020 and then gradually decrease to 0.78 billion tons in 2050. However different hydrogen production paths will contribute to the reduction or inhibit the reduction. In 2050 the development of electrolysis hydrogen production with renewable electricity will reduce CO2 emissions by an additional 48.76 million tons (under the CP scenario) while the hydrogen production mainly based on coal gasification and methane reforming will increase the additional 50.04 million tons CO2 emissions (under the BAU scenario). Moreover under the hydrogen production structure relying mainly on fossil and industrial by-products the technological transformation of blast furnace ironmaking with hydrogen injections will leak carbon emissions to the upstream energy processing and conversion process. Furthermore except for the 100% scrap based electric arc furnace (EAF) process the IS production process on hydrogen-rich shaft furnace direct reduced iron (hydrogen-rich DRI) have lower CO2 emissions than other processes. Therefore developing hydrogen-rich DRI will help the EAF steelmaking development to efficiently reduce CO2 emissions under scrap constraints.
Case Studies towards Green Transition in EU Regions: Smart Specialisation for Transformative Innovation
Oct 2022
Publication
This report analyses five case study reports in-depth across five EU countries as part of a broader analytical and critical exercise. This analytical work seeks to contribute to the development of new models for regional and local authorities aiming to boost support for Green Transition of their economies through smarter innovation policies using the smart specialisation (S3) approach. The work covered five regions from across the European Union representing a diversity of approaches to using S3 for Green Transition: the Basque Country in Spain the Centro region in Portugal the region of East and North Finland the region of Western Macedonia in Greece and the region of West Netherlands. The case studies included in this report consists of three sections on (i) Profile of the region and key development challenges; (ii) Innovation strategies and policies for green transition: incorporating societal challenges; (iii) Understanding and monitoring innovationled green transition. Drawing together the different elements presented the conclusion provides a summary overview of the case and the authors’ opinion on it.
Next for Net Zero Podcast: Unlock & Understand, Achieving a More Sustainable Future
Sep 2022
Publication
This episode examines how we are tackling a sustainable future – with Net Zero hurtling towards us at great pace. We’re around a year on from the pledges made at COP26 the UK’s Green Recovery initiative is well under way and by next year Britain is aiming to blend up to 20 per cent hydrogen into its gas networks. So now is the time to continue to unlock new insight and understand further the realities of both the challenges and opportunities ahead.
The podcast can be found here.
The podcast can be found here.
Green Ammonia as a Spatial Energy Vector: A Review
May 2021
Publication
Green hydrogen is considered a highly promising vector for deep decarbonisation of energy systems and is forecast to represent 20% of global energy use by 2050. In order to secure access to this resource Japan Germany and South Korea have announced plans to import hydrogen; other major energy consumers are sure to follow. Ammonia a promising hydrogen derivative may enable this energy transport by densifying hydrogen at relatively low cost using well-understood technologies. This review seeks to describe a global green ammonia import/export market: it identifies benefits and limitations of ammonia relative to other hydrogen carriers the costs of ammonia production and transport and the constraints on both supply and demand. We find that green ammonia as an energy vector is likely to be critical to future energy systems but that gaps remain in the literature. In particular rigorous analysis of production and transport costs are rarely paired preventing realistic assessments of the delivered cost of energy or the selection of optimum import/export partners to minimise the delivered cost of ammonia. Filling these gaps in the literature is a prerequisite to the development of robust hydrogen and ammonia strategies and to enable the formation of global import and export markets of green fuel
Renewable Hydrogen Supply Chains: A Planning Matrix and an Agenda for Future Research
Oct 2022
Publication
Worldwide energy systems are experiencing a transition to more sustainable systems. According to the Hydrogen Roadmap Europe (FCH EU 2019) hydrogen will play an important role in future energy systems due to its ability to support sustainability goals and will account for approximately 13% of the total energy mix in the coming future. Correct hydrogen supply chain (HSC) planning is therefore vital to enable a sustainable transition. However due to the operational characteristics of the HSC its planning is complicated. Renewable hydrogen supply can be diverse: Hydrogen can be produced de-centrally with renewables such as wind and solar energy or centrally by using electricity generated from a hydro power plant with a large volume. Similarly demand for hydrogen can also be diverse with many new applications such as fuels for fuel cell electrical vehicles and electricity generation feedstocks in industrial processes and heating for buildings. The HSC consists of various stages (production storage distribution and applications) in different forms with strong interdependencies which further increase HSC complexity. Finally planning of an HSC depends on the status of hydrogen adoption and market development and on how mature technologies are and both factors are characterised by high uncertainties. Directly adapting the traditional approaches of supply chain planning for HSCs is insufficient. Therefore in this study we develop a planning matrix with related planning tasks leveraging a systematic literature review to cope with the characteristics of HSCs. We focus only on renewable hydrogen due to its relevance to the future low-carbon economy. Furthermore we outline an agenda for future research from the supply chain management perspective in order to support HSC development considering the different phases of HSCs adoption and market development.
Redrawing the EU’s Energy Relations: Getting it Right with African Renewable Hydrogen
Oct 2022
Publication
In this paper we will explore the state of play with renewable hydrogen development in Africa through some case studies from AGHA members and the scope for growth moving forward. In so doing we will address some of the prevailing challenges to build out of a clean hydrogen economy that could be foreseen already at this early stage and look for potential solutions building on what is already in place in other sectors. We make the case that there should be four key areas of focus moving forward on African-EU hydrogen collaboration. Firstly (i) foreign direct investment (FDI) should be de-risked through offtake mechanisms and public-private partnerships (ii) flagship projects should lead the way (iii) large parts of the value chain should remain in Africa (iv) wider ‘democratisation’ and accessibility of the sector should be encouraged
Resource Assessment for Green Hydrogen Production in Kazakhstan
Jan 2023
Publication
Kazakhstan has long been regarded as a major exporter of fossil fuel energy. As the global energy sector is undergoing an unprecedented transition to low-carbon solutions new emerging energy technologies such as hydrogen production require more different resource bases than present energy technologies. Kazakhstan needs to consider whether it has enough resources to stay competitive in energy markets undergoing an energy transition. Green hydrogen can be made from water electrolysis powered by low-carbon electricity sources such as wind turbines and solar panels. We provided the first resource assessment for green hydrogen production in Kazakhstan by focusing on three essential resources: water renewable electricity and critical raw materials. Our estimations showed that with the current plan of Kazakhstan to keep its water budget constant in the future producing 2–10 Mt green hydrogen would require reducing the water use of industry in Kazakhstan by 0.6–3% or 0.036–0.18 km3/year. This could be implemented by increasing the share of renewables in electricity generation and phasing out some of the water- and carbon-intensive industries. Renewable electricity potential in South and West Kazakhstan is sufficient to run electrolyzers up to 5700 and 1600 h/year for wind turbines and solar panels respectively. In our base case scenario 5 Mt green hydrogen production would require 50 GW solar and 67 GW wind capacity considering Kazakhstan's wind and solar capacity factors. This could convert into 28652 tons of nickel 15832 tons of titanium and many other critical raw materials. Although our estimations for critical raw materials were based on limited geological data Kazakhstan has access to the most critical raw materials to support original equipment manufacturers of low-carbon technologies in Kazakhstan and other countries. As new geologic exploration kicks off in Kazakhstan it is expected that more deposits of critical raw materials will be discovered to respond to their potential future needs for green hydrogen production.
Blending Hydrogen from Electrolysis into the European Gas Grid
Jan 2022
Publication
In 2020 the European Commission launched a hydrogen strategy for a climate-neutral Europe setting out the conditions and actions for mainstreaming clean hydrogen along with targets for installing renewable hydrogen electrolysers by 2024 and 2030. Blending hydrogen alongside other gases into the existing gas grid is considered a possible interim first step towards decarbonising natural gas. In the present analysis we modelled electrolytic hydrogen generation as a process connecting two separate energy systems (power and gas). The analysis is based on a projection of the European power and gas systems to 2030 based on the EUCO3232.5 scenario. Multiple market configurations were introduced in order to assess the interplay between diverse power market arrangements and constraints imposed by the upper bound on hydrogen concentration. The study identifies the maximum electrolyser capacity that could be integrated in the power and gas systems the impact on greenhouse gas emissions and the level of price support that may be required for a broad range of electrolyser configurations. The study further attempts to shed some light on the potential side effects of having non-harmonised H2 blending thresholds between neighbouring Member States.
A Review on Ports' Readiness to Facilitate International Hydrogen Trade
Jan 2023
Publication
The existing literature on the hydrogen supply chains has knowledge gaps. Most studies focus on hydrogen production storage transport and utilisation but neglect ports which are nexuses in the supply chains. To fill the gap this paper focuses on ports' readiness for the upcoming hydrogen international trade. Potential hydrogen exporting and importing ports are screened. Ports' readiness for hydrogen export and import are reviewed from perspectives of infrastructure risk management public acceptance regulations and standards and education and training. The main findings are: (1) liquid hydrogen ammonia methanol and LOHCs are suitable forms for hydrogen international trade; (2) twenty ports are identified that could be first movers; among them twelve are exporting ports and eight are importing ports; (3) ports’ readiness for hydrogen international trade is still in its infancy and the infrastructure construction or renovation risk management measures establishment of regulations and standards education and training all require further efforts.
Fostering Macroeconomic Research on Hydrogen-Powered Aviation: A Systematic Literature Review on General Equilibrium Models
Feb 2023
Publication
Hydrogen is a promising fuel to decarbonize aviation but macroeconomic studies are currently missing. Computable general equilibrium (CGE) models are suitable to conduct macroeconomic analyses and are frequently employed in hydrogen and aviation research. The main objective of this paper is to investigate existing CGE studies related to (a) hydrogen and (b) aviation to derive a macroeconomic research agenda for hydrogen-powered aviation. Therefore the well-established method of systematic literature review is conducted. First we provide an overview of 18 hydrogen-related and 27 aviation-related CGE studies and analyze the literature with respect to appropriate categories. Second we highlight key insights and identify research gaps for both the hydrogen and aviation-related CGE literature. Our findings comprise inter alia hydrogen’s current lack of cost competitiveness and the macroeconomic relevance of air transportation. Research gaps include among others a stronger focus on sustainable hydrogen and a more holistic perspective on the air transportation system. Third we derive implications for macroeconomic research on hydrogen-powered aviation including (I) the consideration of existing modeling approaches (II) the utilization of interdisciplinary data and scenarios (III) geographical suitability (IV) the application of diverse policy tools and (V) a holistic perspective. Our work contributes a meaningful foundation for macroeconomic studies on hydrogen-powered aviation. Moreover we recommend policymakers to address the macroeconomic perspectives of hydrogen use in air transportation.
Economic Analysis of a Hydrogen Power Plant in the Portuguese Electricity Market
Feb 2023
Publication
Hydrogen is regarded as a flexible energy carrier with multiple applications across several sectors. For instance it can be used in industrial processes transports heating and electrical power generation. Green hydrogen produced from renewable sources can have a crucial role in the pathway towards global decarbonization. However the success of green hydrogen production ultimately depends on its economic sustainability. In this context this work evaluates the economic performance of a hydrogen power plant participating in the electricity market and supplying multiple hydrogen consumers. The analysis includes technical and economical details of the main components of the hydrogen power plant. Its operation is simulated using six different scenarios which admit the production of either grey or green hydrogen. The scenarios used for the analysis include data from the Iberian electricity market for the Portuguese hub. An important conclusion is that the combination of multiple services in a hydrogen power plant has a positive effect on its economic performance. However as of today consumers who would wish to acquire green hydrogen would have to be willing to pay higher prices to compensate for the shorter periods of operation of hydrogen power plants and for their intrinsic losses. Nonetheless an increase in green hydrogen demand based on a greater environmental awareness can lead to the need to not only build more of these facilities but also to integrate more services into them. This could promote the investment in hydrogen-related technologies and result in changes in capital and operating costs of key components of these plants which are necessary to bring down production costs.
ASSET Study on Geolocation of Hydrogen Production in the EU
Oct 2021
Publication
The modelling underpinning the scenarios for the EU long-term strategy did not include hydrogen trade. The assumption was that each Member State (MS) supplies its own needs for hydrogen and synthetic fuels. The goal of this study is to develop a model to undertake optimal geolocation of hydrogen production between MS including the possibility to trade hydrogen and therefore use the RES potential more optimally and decrease energy system costs at EU level. Specifically the new model helps to identify the geo-location of: 1. Renewable energy production (PV wind biomass hydro) 2. Location of RES and hydrogen production facilities 3. Storage infrastructure also for natural gas and storage technologies i.e. batteries pumping etc. 4. Infrastructure by road and pipeline
Interchangeability of Hydrogen Injection in Zhejiang Natural Gas Pipelines as a Means to Achieve Carbon Neutrality
Sep 2022
Publication
The blending of hydrogen gas into natural gas pipelines is an effective way of achieving the goal of carbon neutrality. Due to the large differences in the calorific values of natural gas from different sources the calorific value of natural gas after mixing with hydrogen may not meet the quality requirements of natural gas and the quality of natural gas entering long-distance natural gas and urban gas pipelines also has different requirements. Therefore it is necessary to study the effect of multiple gas sources and different pipe network types on the differences in the calorific values of natural gas following hydrogen admixing. In this regard this study aimed to determine the quality requirements and proportions of hydrogen-mixed gas in natural gas pipelines at home and abroad and systematically determined the quality requirements for natural gas entering both long-distance natural gas and urban gas pipelines in combination with national standards. Taking the real calorific values of the gas supply cycle of seven atmospheric sources as an example the calorific and Wobbe Index values for different hydrogen admixture ratios in a one-year cycle were calculated. The results showed that under the requirement of natural gas interchangeability there were great differences in the proportions of natural gas mixed with hydrogen from different gas sources. When determining the proportion of hydrogen mixed with natural gas both the factors of different gas sources and the factors of the gas supply cycle should be considered.
Technical Evaluation of the Flexibility of Water Electrolysis Systems to Increase Energy Flexibility: A Review
Jan 2023
Publication
The goal of achieving water electrolysis on a gigawatt scale faces numerous challenges regarding technological feasibility and market application. Here the flexibility of operation scenarios such as load changes and capacity of electrolysis plays a key role. This raises the question of how flexible electrolysis systems currently are and what possibilities there are to increase flexibility. In order to be able to answer this question in the following a systematic literature research was carried out with the aim to show the current technical possibilities to adapt load and capacity of electrolysis technologies and to determine limits. The result of the systematic literature research is an overview matrix of the electrolysis types AEL PEMEL HTEL and AEMEL already applied in the market. Technical data on the operation of the respective electrolysis stacks as well as details and materials for the respective stack structure (cathode anode electrolyte) were summarized. The flexibility of the individual technologies is addressed by expressing it in values such as load flexibility and startup-times. The overview matrix contains values from various sour1ces in order to make electrolysis comparable at the stack level and to be able to make statements about flexibility. The result of the overview article shows the still open need for research and development to make electrolysis more flexible.
Technical and Economic Performance Assessment of Blue Hydrogen Production Using New Configuration Through Modelling and Simulation
Mar 2024
Publication
Steam methane reforming (SMR) is the dominant process for hydrogen production which produce large amount of carbon dioxide (CO2) as a by-product. To address concerns about carbon emissions there is an increasing focus on blue hydrogen to mitigate carbon emissions during hydrogen production. However the commercialization of blue hydrogen production (BHP) is hindered by the challenges of high cost and energy consumption. This study proposes a new configuration to address these challenges which is characterized by: (a) the use of piperazine (PZ) as a solvent which has a high CO2 absorption efficiency; (b) a more efficient heat exchange configuration which recovers the waste exergy from flue gas; (c) the advanced flash stripper (AFS) was adopted to reduce the capital cost due to its simpler stripper configuration. In addition the technical and economic performance of the proposed energy and cost-saving blue hydrogen production (ECSB) process is investigated and compared with the standard SMR process. The detailed models of the SMR process and the post-combustion carbon capture (PCC) process were developed and integrated in Aspen plus® V11. The results of the technical analysis showed that the ECSB process with 30 wt.% PZ achieves a 36.3 % reduction in energy penalty when compared to the standard process with 30 wt.% Monoethanolamine (MEA). The results of the economic analysis showed that the lowest levelized cost of blue hydrogen (LCBH) was achieved by the ECSB process with 30 wt.% PZ. Compared to the BHP process with 30 wt.% MEA the LCBH was reduced by 19.7 %.
Trends in the Global Steel Industry: Evolutionary Projections and Defossilisation Pathways through Power-to-steel
Sep 2022
Publication
Steel production is a carbon and energy intensive activity releasing 1.9 tons of CO2 and requiring 5.17 MWh of primary energy per ton produced on average globally resulting in 9% of all anthropogenic CO2 emissions. To achieve the goals of the Paris Agreement of limiting global temperature increase to below 1.5 °C compared to pre-industrial levels the structure of the global steel production must change fundamentally. There are several technological paths towards a lower carbon intensity for steelmaking which bring with them a paradigm shift decoupling CO2 emissions from crude steel production by transitioning from traditional methods of steel production using fossil coal and fossil methane to those based on low-cost renewable electricity and green hydrogen. However the energy system consequences of fully defossilised steelmaking has not yet been examined in detail. This research examines the energy system requirements a global defossilised power-to-steel industry using a GDP-based demand model for global steel demands which projects a growth in steel demand from 1.6 Gt in 2020 to 2.4 Gt in 2100. Three scenarios are developed to investigate the emissions trajectory energy demands and economics of a high penetration of direct hydrogen reduction and electrowinning in global steel production. Results indicate that the global steel industry will see green hydrogen demands grow significantly ranging from 2809 to 4371 TWhH2 by 2050. Under the studied conditions global steel production is projected to see reductions in final thermal energy demand of between 38.3% and 57.7% and increases in total electricity demand by factors between 15.1 and 13.3 by 2050 depending on the scenario. Furthermore CO2 emissions from steelmaking can be reduced to zero.
Preliminary Design and Simulation of a Thermal Management System with Integrated Secondary Power Generation Capability for a Mach 8 Aircraft Concept Exploiting Liquid Hydrogen
Feb 2023
Publication
This paper introduces the concept of a thermal management system (TMS) with integrated on-board power generation capabilities for a Mach 8 hypersonic aircraft powered by liquid hydrogen (LH2). This work developed within the EU-funded STRATOFLY Project aims to demonstrate an opportunity for facing the challenges of hypersonic flight for civil applications mainly dealing with thermal and environmental control as well as propellant distribution and on-board power generation adopting a highly integrated plant characterized by a multi-functional architecture. The TMS concept described in this paper makes benefit of the connection between the propellant storage and distribution subsystems of the aircraft to exploit hydrogen vapors and liquid flow as the means to drive a thermodynamic cycle able on one hand to ensure engine feed and thermal control of the cabin environment while providing on the other hand the necessary power for other on-board systems and utilities especially during the operation of high-speed propulsion plants which cannot host traditional generators. The system layout inspired by concepts studied within precursor EU-funded projects is detailed and modified in order to suggest an operable solution that can be installed on-board the reference aircraft with focus on those interfaces impacting its performance requirements and integration features as part of the overall systems architecture of the plane. Analysis and modeling of the system is performed and the main results in terms of performance along the reference mission profile are discussed.
Comparative Study on Ammonia and Liquid Hydrogen Transportation Costs in Comparison to LNG
Feb 2023
Publication
Since ammonia and liquid hydrogen are the optional future shipping cargo and fuels the applicability was crucial using the current technologies and expectations. Existing studies for the economic feasibility of the energies had limitations: empirical evaluation with assumptions and insufficiency related to causality. A distorted estimation can result in failure of decision-making or policy in terms of future energy. The present study aimed to evaluate the transportation costs of future energy including ammonia and liquid hydrogen in comparison to LNG for overcoming the limitations. An integrated mathematical model was applied to the investigation for economic feasibility. The transportation costs of the chosen energies were evaluated for the given transportation plan considering key factors: ship speed BOR and transportation plan. The transportation costs at the design speed for LNG and liquid hydrogen were approximately 55 % and 80 % of that for ammonia without considering the social cost due to CO2 emission. Although ammonia was the most expensive energy for transportation ammonia could be an effective alternative due to insensitivity to the transportation plan. If the social cost was taken into account liquid hydrogen already gained competitiveness in comparison to LNG. The advantage of liquid hydrogen was maximized for higher speed where more BOG was injected into main engines.
Hydrogen-powered Aviation: A Fact-based Study of Hydrogen Technology, Economics, and Climate Impact by 2050
Jul 2020
Publication
This report assesses the potential of hydrogen (H2) propulsion to reduce aviation’s climate impact. To reduce climate impact the industry will have to introduce further levers such as radically new technology significantly scale sustainable aviation fuels (SAF) such as synthetic fuel (synfuel) temporarily rely on offsets in large quantities or rely on a combination thereof. H2 propulsion is one such technology and this report assesses its potential in aviation. Developed with input from leading companies and research institutes it projects the technological development of H2 combustion and fuel cell-powered propulsion evaluates their technical and economic feasibility compares them to synfuel and considers implications on aircraft design airport infrastructure and fuel supply chains.
Gas Goes Green: Britain's Hydrogen Blending Delivery Plan
Jan 2022
Publication
Britain’s Hydrogen Blending Delivery Plan which sets out how all five of Britain’s gas grid companies will meet the Government’s target for Britain’s network of gas pipes to be ready to deliver 20% hydrogen to homes and businesses from 2023 as a replacement for natural gas.
Determinants of Consumers’ Purchasing Intentions for the Hydrogen-Electric Motorcycle
Aug 2017
Publication
In recent years increasing concerns regarding the energy costs and environmental effects of urban motorcycle use have spurred the development of hydrogen-electric motorcycles in Taiwan. Although gasoline-powered motorcycles produce substantial amounts of exhaust and noise pollution hydrogen-electric motorcycles are highly energy-efficient relatively quiet and produce zero emissions features that suggest their great potential to reduce the problems currently associated with the use of motorcycles in city environments. This study identified the significant external variables that affect consumers’ purchase intentions toward using hydrogen-electric motorcycles. A questionnaire method was employed with a total of 300 questionnaires distributed and 233 usable questionnaires returned yielding a 78% overall response rate. Structural equation modeling (SEM) was applied to test the research hypothesis. The research concluded that (1) product knowledge positively influenced purchase intentions but negatively affected the perceived risk; (2) perceived quality via hydrogen-electric motorcycles positively influenced the perceived value but negatively affected the perceived risk; (3) perceived risk negatively affected the perceived value; and (4) the perceived value positively affected purchase intentions. This study can be used as a reference for motorcycle manufacturers when planning their marketing strategies.
Intelligent Damping Control of Renewable Energy/Hydrogen Energy DC Interconnection System
Oct 2022
Publication
Renewable energy DC hydrogen production has become a new development trend. Due to the interaction between the weak damping of DC network and the negative impedance characteristics of power supply of hydrogen production the actual available power of renewable and hydrogen energy DC interconnection system will be lower than its rated setting value. To solve this problem this paper proposes an intelligent damping control to realize the rated power operation of hydrogen generation power source and significantly improve the hydrogen generation performance. In this paper the nonlinear model under typical control strategies is established in order to adapt to different degrees of disturbance and the damping controller is designed based on state feedback including feedback control law and damping generation formula. On this basis an intelligent method of damping control is proposed to support rapid decision-making. Finally the intelligent damping control method is verified by simulation analysis. It realizes rated power of power supply of hydrogen production by generating only a small amount of damping power and superimposing it on the hydrogen production power
Contact Angle Measurement for Hydrogen/Brine/Sandstone System Using Captive-Bubble Method Relevant for Underground Hydrogen Storage
May 2021
Publication
Subsurface porous formations provide large capacities for underground hydrogen storage (UHS). Successful utilization of these porous reservoirs for UHS depends on accurate quantification of the hydrogen transport characteristics at continuum (macro) scale specially in contact with other reservoir fluids. Relative-permeability and capillary-pressure curves are among the macro-scale transport characteristics which play crucial roles in quantification of the storage capacity and efficiency. For a given rock sample these functions can be determined if pore-scale (micro-scale) surface properties specially contact angles are known. For hydrogen/brine/rock system these properties are yet to a large extent unknown. In this study we characterize the contact angles of hydrogen in contact with brine and Bentheimer and Berea sandstones at various pressure temperature and brine salinity using captive-bubble method. The experiments are conducted close to the in-situ conditions which resulted in water-wet intrinsic contact angles about 25 to 45 degrees. Moreover no meaningful correlation was found with changing tested parameters. We monitor the bubbles over time and report the average contact angles with their minimum and maximum variations. Given rock pore structures using the contact angles reported in this study one can define relative-permeability and capillary-pressure functions for reservoir-scale simulations and storage optimization.
The Potential for Hydrogen Ironmaking in New Zealand
Oct 2022
Publication
Globally iron and steel production is responsible for approximately 6.3% of global man-made carbon dioxide emissions because coal is used as both the combustion fuel and chemical reductant. Hydrogen reduction of iron ore offers a potential alternative ‘near-zero-CO2’ route if renewable electrical power is used for both hydrogen electrolysis and reactor heating. This paper discusses key technoeconomic considerations for establishing a hydrogen direct reduced iron (H2-DRI) plant in New Zealand. The location and availability of firm renewable electricity generation is described the experimental feasibility of reducing locally-sourced titanomagnetite irons and in hydrogen is shown and a high-level process flow diagram for a counter-flow electrically heated H2-DRI process is developed. The minimum hydrogen composition of the reactor off-gas is 46% necessitating the inclusion of a hydrogen recycle loop to maximise chemical utilisation of hydrogen and minimize costs. A total electrical energy requirement of 3.24 MWh per tonne of H2-DRI is obtained for the base-case process considered here. Overall a maximum input electricity cost of no more than US$80 per MWh at the plant is required to be cost-competitive with existing carbothermic DRI processes. Production cost savings could be achieved through realistic future improvements in electrolyser efficiency (∼ US$5 per tonne of H2-DRI) and heat exchanger (∼US$3 per tonne). We conclude that commercial H2-DRI production in New Zealand is entirely feasible but will ultimately depend upon the price paid for firm electrical power at the plant.
Optimization and Sustainability of Gasohol/hydrogen Blends for Operative Spark Ignition Engine Utilization and Green Environment
Aug 2022
Publication
One of the many technical benefits of green diesel (GD) is its ability to be oxygenated lubricated and adopted in diesel engines without requiring hardware modifications. The inability of GD to reduce exhaust tail emissions and its poor performance in endurance tests have spurred researchers to look for new clean fuels. Improving gasohol/hydrogen blend (GHB) spark ignition is critical to its long-term viability and accurate demand forecasting. This study employed the Response Surface Methodology (RSM) to identify the appropriate GHB and engine speed (ES) for efficient performance and lower emissions in a GHB engine. The RSM model output variables included brake specific fuel consumption (BSFC) brake thermal efficiency (BTE) hydrocarbon (HC) carbon dioxide (CO2) and carbon monoxide (CO) while the input variables included ES and GHB. The Analysis of Variance-assisted RSM revealed that the most affected responses are BSFC and BTE. Based on the desirability criteria the best values for the GHB and the ES were determined to be 20% and 1500 rpm respectively while the validation between experimental and numerical results was calculated to be 4.82. As a result the RSM is a useful tool for predicting the optimal GHB and ES for optimizing spark-ignition engine characteristics and ensuring benign environment.
Batteries and Hydrogen Storage: Technical Analysis and Commercial Revision to Select the Best Option
Aug 2022
Publication
This paper aims to analyse two energy storage methods—batteries and hydrogen storage technologies—that in some cases are treated as complementary technologies but in other ones they are considered opposed technologies. A detailed technical description of each technology will allow to understand the evolution of batteries and hydrogen storage technologies: batteries looking for higher energy capacity and lower maintenance while hydrogen storage technologies pursuing better volumetric and gravimetric densities. Additionally as energy storage systems a mathematical model is required to know the state of charge of the system. For this purpose a mathematical model is proposed for conventional batteries for compressed hydrogen tanks for liquid hydrogen storage and for metal hydride tanks which makes it possible to integrate energy storage systems into management strategies that aim to solve the energy balance in plants based on hybrid energy storage systems. From the technical point of view most batteries are easier to operate and do not require special operating conditions while hydrogen storage methods are currently functioning at the two extremes (high temperatures for metal and complex hydrides and low temperatures for liquid hydrogen or physisorption). Additionally the technical comparison made in this paper also includes research trends and future possibilities in an attempt to help plan future policies.
Impacts of Greenhouse Gas Neutrality Strategies on Gas Infrastructure and Costs: Implications from Case Studies Based on French and German GHG-neutral Scenarios
Sep 2022
Publication
The European Union’s target to reach greenhouse gas neutrality by 2050 calls for a sharp decrease in the consumption of natural gas. This study assesses impacts of greenhouse gas neutrality on the gas system taking France and Germany as two case studies which illustrate a wide range of potential developments within the European Union. Based on a review of French and German GHG-neutral scenarios it explores impacts on gas infrastructure and estimates the changes in end-user methane price considering a business-as-usual and an optimised infrastructure pathway. Our results show that gas supply and demand radically change by mid-century across various scenarios. Moreover the analysis suggests that deep transformations of the gas infrastructure are required and that according to the existing pricing mechanisms the end-user price of methane will increase driven by the switch to low-carbon gases and intensified by infrastructure costs.
No more items...