Publications
Modelling and Simulation of a Hydrogen-Based Hybrid Energy Storage System with a Switching Algorithm
Oct 2022
Publication
Currently transitioning from fossil fuels to renewable sources of energy is needed considering the impact of climate change on the globe. From this point of view there is a need for development in several stages such as storage transmission and conversion of power. In this paper we demonstrate a simulation of a hybrid energy storage system consisting of a battery and fuel cell in parallel operation. The novelty in the proposed system is the inclusion of an electrolyser along with a switching algorithm. The electrolyser consumes electricity to intrinsically produce hydrogen and store it in a tank. This implies that the system consumes electricity as input energy as opposed to hydrogen being the input fuel. The hydrogen produced by the electrolyser and stored in the tank is later utilised by the fuel cell to produce electricity to power the load when needed. Energy is therefore stored in the form of hydrogen. A battery of lower capacity is coupled with the fuel cell to handle transient loads. A parallel control algorithm is developed to switch on/off the charging and discharging cycle of the fuel cell and battery depending upon the connected load. Electrically equivalent circuits of a polymer electrolyte membrane electrolyser polymer electrolyte membrane fuel cell necessary hydrogen oxygen water tanks and switching controller for the parallel operation were modelled with their respective mathematical equations in MATLAB® Simulink®. In this paper we mainly focus on the modelling and simulation of the proposed system. The results showcase the simulated system’s mentioned advantages and compare its ability to handle loads to a battery-only system.
Recent Progress in Conducting Polymers for Hydrogen Storage and Fuel Cell Applications
Oct 2020
Publication
Hydrogen is a clean fuel and an abundant renewable energy resource. In recent years huge scientific attention has been invested to invent suitable materials for its safe storage. Conducting polymers has been extensively investigated as a potential hydrogen storage and fuel cell membrane due to the low cost ease of synthesis and processability to achieve the desired morphological and microstructural architecture ease of doping and composite formation chemical stability and functional properties. The review presents the recent progress in the direction of material selection modification to achieve appropriate morphology and adsorbent properties chemical and thermal stabilities. Polyaniline is the most explored material for hydrogen storage. Polypyrrole and polythiophene has also been explored to some extent. Activated carbons derived from conducting polymers have shown the highest specific surface area and significant storage. This review also covers recent advances in the field of proton conducting solid polymer electrolyte membranes in fuel cells application. This review focuses on the basic structure synthesis and working mechanisms of the polymer materials and critically discusses their relative merits.
Biohydrogen—A Green Fuel for Sustainable Energy Solutions
Oct 2022
Publication
Energy plays a crucial role in the sustainable development of modern nations. Today hydrogen is considered the most promising alternative fuel as it can be generated from clean and green sources. Moreover it is an efficient energy carrier because hydrogen burning only generates water as a byproduct. Currently it is generated from natural gas. However it can be produced using other methods i.e. physicochemical thermal and biological. The biological method is considered more environmentally friendly and pollution free. This paper aims to provide an updated review of biohydrogen production via photofermentation dark fermentation and microbial electrolysis cells using different waste materials as feedstocks. Besides the role of nanotechnology in enhancing biohydrogen production is examined. Under anaerobic conditions hydrogen is produced during the conversion of organic substrate into organic acids using fermentative bacteria and during the conversion of organic acids into hydrogen and carbon dioxide using photofermentative bacteria. Different factors that enhance the biohydrogen production of these organisms either combined or sequentially using dark and photofermentation processes are examined and the effect of each factor on biohydrogen production efficiency is reported. A comparison of hydrogen production efficiency between dark fermentation photofermentation and two-stage processes is also presented.
Flexibility Improvement Evaluation of Hydrogen Storage Based on Electricity-Hydrogen Coupled Energy Model
Nov 2021
Publication
To achieve carbon neutrality by 2060 decarbonization in the energy sector is crucial. Hydrogen is expected to be vital for achieving the aim of carbon neutrality for two reasons: use of power-to-hydrogen (P2H) can avoid carbon emissions from hydrogen production which is traditionally performed using fossil fuels; Hydrogen from P2H can be stored for long durations in large scales and then delivered as industrial raw material or fed back to the power system depending on the demand. In this study we focus on the analysis and evaluation of hydrogen value in terms of improvement in the flexibility of the energy system particularly that derived from hydrogen storage. An electricity–hydrogen coupled energy model is proposed to realize the hourly-level operation simulation and capacity planning optimization aiming at the lowest cost of energy. Based on this model and considering Northwest China as the region of study the potential of improvement in the flexibility of hydrogen storage is determined through optimization calculations in a series of study cases with various hydrogen demand levels. The results of the quantitative calculations prove that effective hydrogen storage can improve the system flexibility by promoting the energy demand balance over a long term contributing toward reducing the investment cost of both generators and battery storage and thus the total energy cost. This advantage can be further improved when the hydrogen demand rises. However a cost reduction by 20% is required for hydrogen-related technologies to initiate hydrogen storage as long-term energy storage for power systems. This study provides a suggestion and reference for the advancement and planning of hydrogen storage development in regions with rich sources of renewable energy.
Decarbonisation of Heavy-duty Diesel Engines Using Hydrogen Fuel: A Review of the Potential Impact NOx Emissions
Jul 2022
Publication
As countries seek ways to meet climate change commitments hydrogen fuel offers a low-carbon alternative for sectors where battery electrification may not be viable. Blending hydrogen with fossil fuels requires only modest technological adaptation however since combustion is retained nitrogen oxides (NOx) emissions remain a potential disbenefit. We review the potential air quality impacts arising from the use of hydrogen–diesel blends in heavy-duty diesel engines a powertrain which lends itself to hydrogen co-fuelling. Engine load is identified as a key factor influencing NOx emissions from hydrogen–diesel combustion in heavy-duty engines although variation in other experimental parameters across studies complicates this relationship. Combining results from peer-reviewed literature allows an estimation to be made of plausible NOx emissions from hydrogen–diesel combustion relative to pure-diesel combustion. At 0–30% engine load which encompasses the average load for mobile engine applications NOx emissions changes were in the range 59 to +24% for a fuel blend with 40 e% hydrogen. However at 50–100% load which approximately corresponds to stationary engine applications NOx emissions changes were in the range 28 to +107%. Exhaust gas recirculation may be able to reduce NOx emissions at very high and very low loads when hydrogen is blended with diesel and existing exhaust aftertreatment technologies are also likely to be effective. Recent commercial reporting on the development of hydrogen and hydrogen–diesel dual fuel combustion in large diesel engines are also summarised. There is currently some disconnection between manufacturer reported impacts of hydrogen-fuelling on NOx emissions (always lower emissions) and the conclusions drawn from the peer reviewed literature (frequently higher emissions).
The Hydrogen Economy and Jobs of the Future
Nov 2018
Publication
Growth in the hydrogen and fuel cell industries will lead to vast new employment opportunities and these will be created in a wide variety of industries skills tasks and earnings. Many of these jobs do not currently exist and do not have occupational titles defined in official classifications. In addition many of these jobs require different skills and education than current jobs and training requirements must be assessed so that this rapidly growing part of the economy has a sufficient supply of trained and qualified workers. We discuss the current hydrogen economy and technologies. We then identify by occupational titles the new jobs that will be created in the expanding hydrogen/fuel cell economy estimate the average US salary for each job identify the minimum educational attainment required to gain entry into that occupation and specify the recommended university degree for the advanced educational requirements. We provide recommendations for further research.
Study on the Effect of Second Injection Timing on the Engine Performances of a Gasoline/Hydrogen SI Engine with Split Hydrogen Direct Injecting
Oct 2020
Publication
Split hydrogen direct injection (SHDI) has been proved capable of better efficiency and fewer emissions. Therefore to investigate SHDI deeply a numerical study on the effect of second injection timing was presented at a gasoline/hydrogen spark ignition (SI) engine with SHDI. With an excess air ratio of 1.5 five different second injection timings achieved five kinds of hydrogen mixture distribution (HMD) which was the main factor affecting the engine performances. With SHDI since the HMD is manageable the engine can achieve better efficiency and fewer emissions. When the second injection timing was 105◦ crank angle (CA) before top dead center (BTDC) the Pmax was the highest and the position of the Pmax was the earliest. Compared with the single hydrogen direct injection (HDI) the NOX CO and HC emissions with SHDI were reduced by 20% 40% and 72% respectively.
NewGasMet - Flow Metering of Renewable Gases (Biogas, Biomethane, Hydrogen, Syngas and Mixtures with Natural Gas): Report on the Impact of Renewable Gases, and Mixtures with Natural Gas, on the Accuracy, Cost and Lifetime of Gas Meters
May 2022
Publication
For the usage of domestic gas meters with combustible gases like hydrogen natural gas or mixtures of hydrogen and natural gas in public grids the metrological behaviour of the gas meters has to fulfil the requirements described in the Measuring Instrument Directive (MID). The MID requires also that a measuring instrument shall be suitable for the application. The tightness of a meter is required in order to obtain correct results in case of accuracy tests but also for an application in the grid or for durability tests to avoid risks such as explosive gas mixtures. Due to the different properties of renewable gases leak tightness to one gas mixtures does not necessarily imply leak tightness for other gases. Hydrogen molecules are smaller than those in conventional natural gas which can more easily result in a gas leakage. The EMPIR project NEWGASMET includes beside metrological investigations also a durability test with hydrogen. In order to carry out these activities but also for further hydrogen leakage investigations for instance the investigation of proper seal materials used in the gas meter installation a reliable gas tightness test was developed.
A Review of Renewable Hydrogen Generation and Proton Exchange Membrane Fuel Cell Technology for Sustainable Energy Development
Mar 2023
Publication
Beyond its typical usage as an economical fuel for creating ammonia methanol and petroleum refineries hydrogen has become a modern form of energy. Energy-scarce advanced countries like Japan and Korea are concerned about energy privacy and environmental responsibility. Many wealthy countries have been fervently building hydrogen networks and renewable energy sources to fulfil their main goals or the growing requirement for energy. In this study we concentrate on proton-exchange membrane fuel cells (PEMFCs) generally viewed as financially viable for vehicle industries especially for automobiles demanding less hydrogen infrastructure facilities like fleets of cabs buses and logistical automobiles. This overview includes all of the significant PEMFC components focusing on the reaction gas diffusion and polymer. Without question the equipment necessary for a consistent supply of ultra-pure hydrogen is essential for the effectiveness of PEMFC in extensive requests.
Seasonal Hydrogen Storage for Residential On- and Off-grid Solar Photovoltaics Prosumer Applications: Revolutionary Solution or Niche Market for the Energy Transition until 2050?
Apr 2023
Publication
Appropriate climate change mitigation requires solutions for all actors of the energy system. The residential sector is a major part of the energy system and solutions for the implementation of a seasonal hydrogen storage system in residential houses has been increasingly discussed. A global analysis of prosumer systems including seasonal hydrogen storage with water electrolyser hydrogen compressor storage tank and a fuel cell studying the role of such a seasonal household storage in the upcoming decades is not available. This study aims to close this research gap via the improved LUT-PROSUME model which models a fully micro sector coupled residential photovoltaic prosumer system with linear optimisation for 145 regions globally. The modelling of the cost development of hydrogen storage components allows for the simulation of a residential system from 2020 until 2050 in 5-year steps in hourly resolution. The systems are cost-optimised for either on– or off-grid operation in eight scenarios including battery electric vehicles which can act as an additional vehicle-to-home electricity storage for the system. Results show that implementation of seasonal hydrogen systems only occurs in least cost solutions in high latitude countries when the system is forced to run in off-grid mode. In general a solar photovoltaic plus battery system including technologies that can cover the heat demand is the most economic choice and can even achieve lower cost than a full grid supply in off-grid operation for most regions until 2050. Additional parameters including the self-consumption ratio the demand cover ratio and the heat cover ratio can therefore not be improved by seasonal storage systems if economics is the main deciding factor for a respective system. Further research opportunities and possible limitations of the system are then identified.
Global Hydrogen Flows
Oct 2022
Publication
Authored by the Hydrogen Council in collaboration with McKinsey and Company Global Hydrogen Flows addresses the midstream challenge of aligning and optimizing global supply and demand. It finds that trade can reduce overall system costs.
In doing so it provides a perspective on how the global trade of hydrogen and derivatives including hydrogen carriers ammonia methanol synthetic kerosene and green steel (which uses hydrogen in its production) can develop as well as the investments needed to unlock the full potential of global hydrogen and derivatives trade.
Our hope is that this report offers stakeholders – suppliers buyers original equipment manufacturers (OEMs) investors and governments – a thorough and quantitative perspective that will help them make the decisions required to accelerate the uptake of hydrogen.
Key messages from the report:
Hydrogen and its derivatives will become heavily traded: 400 out of the 660 million tons (MT) of hydrogen needed for carbon neutrality by 2050 will be transported over long distances with 190 MT crossing international borders.
In a cost-optimal world around 50% of trade uses pipelines while synthetic fuels ammonia and sponge iron transported on ships account for approximately 45%. Europe and countries in the Far East will rely on imports while North America and China are mostly self-reliant.
Trade has huge benefits: It can lower the cost of hydrogen supply by 25% or as much as US$6 trillion of investments from now until 2050. This will accelerate the hydrogen transition which can abate 80 gigatons of CO2 until 2050.
The paper can be found on their website.
In doing so it provides a perspective on how the global trade of hydrogen and derivatives including hydrogen carriers ammonia methanol synthetic kerosene and green steel (which uses hydrogen in its production) can develop as well as the investments needed to unlock the full potential of global hydrogen and derivatives trade.
Our hope is that this report offers stakeholders – suppliers buyers original equipment manufacturers (OEMs) investors and governments – a thorough and quantitative perspective that will help them make the decisions required to accelerate the uptake of hydrogen.
Key messages from the report:
Hydrogen and its derivatives will become heavily traded: 400 out of the 660 million tons (MT) of hydrogen needed for carbon neutrality by 2050 will be transported over long distances with 190 MT crossing international borders.
In a cost-optimal world around 50% of trade uses pipelines while synthetic fuels ammonia and sponge iron transported on ships account for approximately 45%. Europe and countries in the Far East will rely on imports while North America and China are mostly self-reliant.
Trade has huge benefits: It can lower the cost of hydrogen supply by 25% or as much as US$6 trillion of investments from now until 2050. This will accelerate the hydrogen transition which can abate 80 gigatons of CO2 until 2050.
The paper can be found on their website.
Evaluation of Sourcing Decision for Hydrogen Supply Chain Using an Integrated Multi-Criteria Decision Analysis (MCDA) Tool
Apr 2023
Publication
The use of fossil fuels has caused many environmental issues including greenhouse gas emissions and associated climate change. Several studies have focused on mitigating this problem. One dynamic direction for emerging sources of future renewable energy is the use of hydrogen energy. In this research we evaluate the sourcing decision for a hydrogen supply chain in the context of a case study in Thailand using group decision making analysis for policy implications. We use an integrative multi-criteria decision analysis (MCDA) tool which includes an analytic hierarchy process (AHP) fuzzy AHP (FAHP) and data envelopment analysis (DEA) to analyze weighted criteria and sourcing alternatives using data collected from a group of selected experts. A list of criteria related to sustainability paradigms and sourcing decisions for possible use of hydrogen energy including natural gas coal biomass and water are evaluated. Our results reveal that political acceptance is considered the most important criterion with a global weight of 0.514 in the context of Thailand. Additionally natural gas is found to be the foreseeable source for hydrogen production in Thailand with a global weight of 0.313. We also note that the analysis is based on specific data inputs and that an alternative with a lower score does not imply that the source is not worth exploring.
Simulation and Techno-Economic Assessment of Hydrogen Production from Biomass Gasification-Based Processes: A Review
Nov 2022
Publication
The development of low-carbon fuels from renewable resources is a key measure to reduce carbon dioxide emissions and mitigate climate change. Biomass gasification with subsequent gas processing and purification is a promising route to produce low-carbon hydrogen. In the past decade simulation-based modelling using Aspen Plus software has supported the investigation of future potential industrial applications of this pathway. This article aims to provide a review of the modelling and economic assessment of woody biomass gasification-based hydrogen production with focus on the evaluation of the model accuracy in predicting producer gas composition in comparison with experimental data depending on the approach implemented. The assessment of comprehensive models which integrate biomass gasification with gas processing and purification highlights how downstream gas processing could improve the quality of the syngas and thus the hydrogen yield. The information in this article provides an overview of the current practices challenges and opportunities for future research particularly for the development of a comprehensive pathway for hydrogen production based on biomass gasification. Moreover this review includes a techno-economic assessment of biomass to hydrogen processes which will be useful for implementation at industrial-scale.
Assessing the Balance Between Direct Electrification and the Use of Decarbonised Gases in the 2050 EU Energy System
Jan 2023
Publication
If Europe is to meet its 2050 decarbonisation objectives a change of paradigm needs to materialise. The energy sector cannot be understood any more as the sum of independent silos consisting of different energy vectors. Indeed a large number of technologies that are essential to meeting our decarbonisation targets are linking systems and markets currently being planned and operated without fully considering the potential benefits of adopting a holistic approach. If this situation is to persist large-scale sub-optimalities are likely to emerge if the planning and operations of the different components of the energy system will not be able to capture synergies and interdependencies between energy vectors and markets. Interlinkages between systems are appearing between all vectors both at the planning and operation levels. In the case of hydrogen these links are especially important as hydrogen technologies are linking the electricity methane and heat sectors (via electrolysis and hydrogen turbines repurposing of gas assets and hydrogen boilers respectively). Sector integration can allow to capture benefits both in terms of planning and operations:- The production of electrolytic hydrogen poses important challenges in terms of planning the deployment of renewable energy (RES) and electrolyser capacities in a way that ensures that the overall carbon emissions decrease in an effective and cost-efficient manner. Furthermore key questions related to the benefits of co-locating renewable capacities electrolysers and hydrogen demand centres can only be explored if a holistic perspective is adopted. Finally synergies can also appear if planning decisions are taken jointly between the electricity hydrogen and methane sectors as the optimal set of hydrogen infrastructure projects strongly depends on the ability to source electrolysers (link with the electricity sector) and on the possibility to repurpose part of the current infrastructure (link with the methane sector)- Similarly operational considerations also advocate for an integrated approach as electrolysers can provide important flexibility services to the electricity sector if provided with appropriate price signals. These considerations provide the motivation for this study which aims at performing a detailed examination of planning decisions and operational management of a 2050 power system with a focus on comparing different decarbonisation options for the provision of heat of different temperature levels.
The Role of Hydrogen for Deep Decarbonization of Energy Systems: A Chilean Case Study
Mar 2023
Publication
In this paper we implement a long-term multi-sectoral energy planning model to evaluate the role of green hydrogen in the energy mix of Chile a country with a high renewable potential under stringent emission reduction objectives in 2050. Our results show that green hydrogen is a cost-effective and environmentally friendly route especially for hard-to-abate sectors such as interprovincial and freight transport. They also suggest a strong synergy of hydrogen with electricity generation from renewable sources. Our numerical simulations show that Chile should (i) start immediately to develop hydrogen production through electrolyzers all along the country (ii) keep investing in wind and solar generation capacities ensuring a low cost hydrogen production and reinforce the power transmission grid to allow nodal hydrogen production (iii) foster the use of electric mobility for cars and local buses and of hydrogen for long-haul trucks and interprovincial buses and (iv) develop seasonal hydrogen storage and hydrogen cells to be exploited for electricity supply especially for the most stringent emission reduction objectives.
Green Hydrogen Production at the Gigawatt Scale in Portugal: A Technical and Economic Evaluation
Mar 2024
Publication
The European Union has committed to achieving carbon neutrality by 2050 and green hydrogen has been chosen as a priority vector for reaching that goal. Accordingly Portugal has drafted a National Hydrogen Strategy laying out the various steps for the development of a green hydrogen economy. One element of this strategy is the development of a gigawatt-scale hydrogen production facility powered by dedicated renewable electricity sources. This work presents an analysis of the technical and economic feasibility of a facility consisting of a gigawatt-scale polymer electrolyte membrane electrolyser powered by solar photovoltaic and wind electricity using the energy analysis model EnergyPLAN. Different capacities and modes of operation of the electrolyser are considered including the complementary use of grid electricity as well as different combinations of renewable power resulting in a total of 72 different configurations. An economic analysis is conducted addressing the related annualised capital expenditures maintenance and variable costs to allow for the determination of the levelised cost of hydrogen for the different configurations. This analysis shows the conditions required for maximising annual hydrogen production at the lowest levelised cost of hydrogen. The best options consist of an electrolyser powered by a combination of solar photovoltaic and wind with limited exchanges with the electricity grid and a levelised cost of hydrogen in the range 3.13–3.48 EUR/kg.
Numerical Investigation on the Liquid Hydrogen Leakage and Protection Strategy
Apr 2023
Publication
One of China’s ambitious hydrogen strategies over the past few years has been to promote fuel cells. A number of hydrogen refueling stations (HRSs) are currently being built in China to refuel hydrogen-powered automobiles. In this context it is crucial to assess the dangers of hydrogen leaking in HRSs. The present work simulated the liquid hydrogen (LH2) leakage with the goal of undertaking an extensive consequence evaluation of the LH2 leakage on an LH2 refueling station (LHRS). Furthermore the utilization of an air curtain to prevent the diffusion of the LH2 leakage is proposed and the defending effect is studied accordingly. The results reveal that the Richardson number effectively explained the variation of plume morphology. Furthermore different facilities have great influence on the gas cloud diffusion trajectory with the consideration of different leakage directions. The air curtain shows satisfactory prevention of the diffusion of the hydrogen plume. Studies show that with the increase in air volume (equivalent to wind speed) and the narrowing of the air curtain width (other factors remain unchanged) the maximum flammable distance of hydrogen was shortened.
Sustainable Hydrogen Production from Seawater Electrolysis: Through Fundamental Electrochemical Principles to the Most Recent Development
Nov 2022
Publication
Among the many potential future energy sources hydrogen stands out as particularly promising. Because it is a green and renewable chemical process water electrolysis has earned much interest among the different hydrogen production techniques. Seawater is the most abundant source of water and the ideal and cheapest electrolyte. The first part of this review includes the description of the general theoretical concepts: chemical physical and electrochemical that stands on the basis of water electrolysis. Due to the rapid development of new electrode materials and cell technology research has focused on specific seawater electrolysis parameters: the cathodic evolution of hydrogen; the concurrent anodic evolution of oxygen and chlorine; specific seawater catalyst electrodes; and analytical methods to describe their catalytic activity and seawater electrolyzer efficiency. Once the specific objectives of seawater electrolysis have been established through the design and energy performance of the electrolyzer the study further describes the newest challenges that an accessible facility for the electrochemical production of hydrogen as fuel from seawater must respond to for sustainable development: capitalizing on known and emerging technologies; protecting the environment; utilizing green renewable energies as sources of electricity; and above all economic efficiency as a whole.
Sustainable Hydrogen Energy in Aviation - A Narrative Review
Feb 2023
Publication
In the modern world zero-carbon society has become a new buzzword of the era. Many projects have been initiated to develop alternatives not only to the environmental crisis but also to the shortage of fossil fuels. With successful projects in automobile technology hydrogen fuel is now being tested and utilized as a sustainable green fuel in the aviation sector which will lead to zero carbon emission in the future. From the mid-20th century to the early 21st numerous countries and companies have funded multimillion projects to develop hydrogen-fueled aircraft. Empirical data show positive results for various projects. Consequently large companies are investing in various innovations undertaken by researchers under their supervision. Over time the efficiency of hydrogen-fueled aircraft has improved but the lack of refueling stations large production cost and consolidated carbon market share have impeded the path of hydrogen fuel being commercialized. In addition the Unmanned Aerial Vehicle (UAV) is another important element of the Aviation industry Hydrogen started to be commonly used as an alternative fuel for heavy-duty drones using fuel cell technology. The purpose of this paper is to provide an overview of the chronological development of hydrogen-powered aircraft technology and potential aviation applications for hydrogen and fuel cell technology. Furthermore the major barriers to widespread adoption of hydrogen technology in aviation are identified as are future research opportunities.
2050 No-regret Options and Technology Lock-ins
Jan 2023
Publication
The present study (in the following referred to as study S4) takes a deeper look at the 2050 EU energy system. It builds upon a decarbonisation scenario developed in an earlier study of the METIS 2 project (study S61) which focusses on the EU electricity sector and its interlinkage with the hydrogen and the heat sectors. While study S6 aimed for a cost-optimal dimensioning of the EU power system the present study goes a step further and aims to derive more general conclusions. It sheds light on no-regret options towards the decarbonisation of the 2050 EU energy system potential technology lock-in risks and major drivers of uncertainty like system sensitivity to climate change and commodity prices. The analysis is complemented by an evaluation of the impact of an enhanced representation of hydrogen infrastructures and the associated constraints as these may impact the entire interlinked EU energy system.
Towards Defossilised Steel: Supply Chain Options for a Green European Steel Industry
Mar 2023
Publication
As the European Union intensifies its response to the climate emergency increased focus has been placed on the hard-to-abate energy-intensive industries. Primary among these is the steel industry a cornerstone of the European economy and industry. With the emergence of new hydrogen-based steelmaking options particularly through hydrogen direct reduction the structure of global steel production and supply chains will transition from being based on low-cost coal resources to that based on low-cost electricity and therefore hydrogen production. This study examines the techno-economic options for three European countries of Germany Spain and Finland under five different steel supply chain configurations compared to local production. Results suggest that the high costs of hydrogen transportation make a European steelmaking supply chain cost competitive to steel produced with imported hydrogen with local production costs ranging from 465-545 €/t of crude steel (CS) and 380-494 €/tCS for 2030 and 2040 respectively. Conversely imports of hot briquetted iron and crude steel from Morocco become economically competitive with European supply chains. Given the capital and energy intensive nature of the steel industry critical investment decisions are required in this decade and this research serves to provide a deeper understanding of supply chain options for Europe.
Evaluating Fuel Cell vs. Battery Electric Trucks: Economic Perspectives in Alignment with China’s Carbon Neutrality Target
Mar 2024
Publication
The electrification of heavy-duty trucks stands as a critical and challenging cornerstone in the low-carbon transition of the transportation sector. This paper employs the total cost of ownership (TCO) as the economic evaluation metric framed within the context of China’s ambitious goals for heavy truck electrification by 2035. A detailed TCO model is developed encompassing not only the vehicles but also their related energy replenishing infrastructures. This comprehensive approach enables a sophisticated examination of the economic feasibility for different deployment contexts of both fuel cell and battery electric heavy-duty trucks emphasizing renewable energy utilization. This study demonstrates that in the context where both fuel cell components and hydrogen energy are costly fuel cell trucks (FCTs) exhibit a significantly higher TCO compared to battery electric trucks (BETs). Specifically for a 16 ton truck with a 500 km range the TCO for the FCT is 0.034 USD/tkm representing a 122% increase over its BET counterpart. In the case of a 49 ton truck designed for a 1000 km range the TCO for the FCT is 0.024 USD/tkm marking a 36% premium compared to the BET model. The technological roadmap suggests a narrowing cost disparity between FCTs and BETs by 2035. For the aforementioned 16 ton truck model the projected TCO for the FCT is expected to be 0.016 USD/tkm which is 58% above the BET and for the 49 ton variant it is anticipated at 0.012 USD per ton-kilometer narrowing the difference to just 4.5% relative to BET. Further analysis within this study on the influences of renewable energy pricing and operational range on FCT and BET costs highlights a pivotal finding: for the 49 ton truck achieving TCO parity between FCTs and BETs is feasible when renewable energy electricity prices fall to 0.022 USD/kWh or when the operational range extends to 1890 km. This underscores the critical role of energy costs and efficiency in bridging the cost gap between FCTs and BETs.
Thermoacoustic Combustion Stability Analysis of a Bluff Body-Stabilized Burner Fueled by Methane–Air and Hydrogen–Air Mixtures
Apr 2023
Publication
Hydrogen can play a key role in the gradual transition towards a full decarbonization of the combustion sector e.g. in power generation. Despite the advantages related to the use of this carbon-free fuel there are still several challenging technical issues that must be addressed such as the thermoacoustic instability triggered by hydrogen. Given that burners are usually designed to work with methane or other fossil fuels it is important to investigate their thermoacoustic behavior when fueled by hydrogen. In this framework the present work aims to propose a methodology which combines Computational Fluid Dynamics CFD (3D Reynolds-Averaged Navier-Stokes (RANS)) and Finite Element Method (FEM) approaches in order to investigate the fluid dynamic and the thermoacoustic behavior introduced by hydrogen in a burner (a lab-scale bluff body stabilized burner) designed to work with methane. The case of CH4 -air mixture was used for the validation against experimental results and benchmark CFD data available in the literature. Numerical results obtained from CFD simulations namely thermofluidodynamic properties and flame characteristics (i.e. time delay and heat release rate) are used to evaluate the effects of the fuel change on the Flame Response Function to the acoustic perturbation by means of a FEM approach. As results in the H2 -air mixture case the time delay decreases and heat release rate increases with respect to the CH4 -air mixture. A study on the Rayleigh index was carried out in order to analyze the influence of H2 -air mixture on thermoacoustic instability of the burner. Finally an analysis of both frequency and growth rate (GR) on the first four modes was carried out by comparing the two mixtures. In the H2 -air case the modes are prone to become more unstable with respect to the same modes of the case fueled by CH4 -air due to the change in flame topology and variation of the heat release rate and time delay fields.
Cold Start Cycling Durability of Fuel Cell Stacks for Commercial Automotive Applications
Sep 2022
Publication
System durability is crucial for the successful commercialization of polymer electrolyte fuel cells (PEFCs) in fuel cell electric vehicles (FCEVs). Besides conventional electrochemical cycling durability during long-term operation the effect of operation in cold climates must also be considered. Ice formation during start up in sub-zero conditions may result in damage to the electrocatalyst layer and the polymer electrolyte membrane (PEM). Here we conduct accelerated cold start cycling tests on prototype fuel cell stacks intended for incorporation into commercial FCEVs. The effect of this on the stack performance is evaluated the resulting mechanical damage is investigated and degradation mechanisms are proposed. Overall only a small voltage drop is observed after the durability tests only minor damage occurs in the electrocatalyst layer and no increase in gas crossover is observed. This indicates that these prototype fuel cell stacks successfully meet the cold start durability targets for automotive applications in FCEVs.
Techno-Economic Analysis of Grid-Connected Hydrogen Production via Water Electrolysis
Mar 2024
Publication
As the global energy landscape transitions towards a more sustainable future hydrogen has emerged as a promising energy carrier due to its potential to decarbonize various sectors. However the economic competitiveness of hydrogen production by water electrolysis strongly depends on renewable energy source (RES) availability. Thus it is necessary to overcome the challenges related to the intermittent nature of RESs. This paper presents a comprehensive techno-economic analysis of complementing green hydrogen production with grid electricity. An evaluation model for the levelized cost of hydrogen (LCOH) is proposed considering both CO2 emissions and the influence of RES fluctuations on electrolyzers. A minimum load restriction is required to avoid crossover gas. Moreover a new operation strategy is developed for hydrogen production plants to determine optimal bidding in the grid electricity market to minimize the LCOH. We evaluate the feasibility of the proposed approach with a case study based on data from the Kyushu area in Japan. The results show that the proposed method can reduce the LCOH by 11% to 33% and increase hydrogen productivity by 86% to 140% without significantly increasing CO2 emission levels.
Probabilistic Modelling of Seasonal Energy Demand Patterns in the Transition from Natural Gas to Hydrogen for an Urban Energy District
May 2023
Publication
The transition to a low-carbon energy system can be depicted as a “great reconfiguration” from a socio-technical perspective that carries the risk of impact shifts. Electrification with the objective of achieving rapidly deep decarbonisation must be accompanied by effective efficiency and flexibility measures. Hydrogen can be a preferred option in the decarbonisation process where electrification of end-uses is difficult or impractical as well as for long-term storage in energy infrastructure characterised by a large penetration of renewable energy sources. Notwithstanding the current uncertainties regarding costs environmental impact and the inherent difficulties of increasing rapidly supply capacity hydrogen can represent a solution to be used in multi-energy systems with combined heat and power (CHP) in particular in urban energy districts. In fact while achieving carbon savings with natural gas fuelled CHP is not possible when low grid carbon intensity factors are present it may still be possible to use it to provide flexibility services and to reduce emissions further with switch from natural gas to hydrogen. In this paper a commercially established urban district energy scheme located in Southampton (United Kingdom) is analysed with the goal of exploring potential variations in its energy demand. The study proposes the use of scalable data-driven methods and probabilistic simulation to generate seasonal energy demand patterns representing the potential short-term and long-term evolution of the energy district.
A Review of the Role of Hydrogen in the Heat Decarbonization of Future Energy Systems: Insights and Perspectives
Apr 2024
Publication
Hydrogen is an emerging technology changing the context of heating with cleaner combustion than traditional fossil fuels. Studies indicate the potential to repurpose the existing natural gas infrastructure offering consumers a sustainable economically viable option in the future. The integration of hydrogen in combined heat and power systems could provide residential energy demand and reduce environmental emissions. However the widespread adoption of hydrogen will face several challenges such as carbon dioxide emissions from the current production methods and the need for infrastructure modification for transport and safety. Researchers indicated the viability of hydrogen in decarbonizing heat while some studies also challenged its long-term role in the future of heating. In this paper a comprehensive literature review is carried out by identifying the following key aspects which could impact the conclusion on the overall role of hydrogen in heat decarbonization: (i) a holistic view of the energy system considering factors such as renewable integration and system balancing; (ii) consumer-oriented approaches often overlook the broader benefits of hydrogen in emission reduction and grid stability; (iii) carbon capture and storage scalability is a key factor for large-scale production of low-emission blue hydrogen; (iv) technological improvements could increase the cost-effectiveness of hydrogen; (v) the role of hydrogen in enhancing resilience especially during extreme weather conditions raises the potential of hydrogen as a flexible asset in the energy infrastructure for future energy supply; and finally when considering the UK as a basis case (vi) incorporating factors such as the extensive gas network and unique climate conditions necessitates specific strategies.
Enhancement of Microgrid Frequency Stability Based on the Combined Power-to-Hydrogen-to-Power Technology under High Penetration Renewable Units
Apr 2023
Publication
Recently with the large-scale integration of renewable energy sources into microgrid (µGs) power electronics distributed energy systems have gained popularity. However low inertia reduces system frequency stability and anti-disturbance capabilities exposing power quality to intermittency and uncertainty in photovoltaics or wind turbines. To ensure system stability the virtual inertia control (VIC) is presented. This paper proposes two solutions to overcome the low inertia problem and the surplus in capacities resulting from renewable energy sources. The first solution employs superconducting magnetic energy storage (SMES) which can be deemed as an efficient solution for damping the frequency oscillations. Therefore in this work SMES that is managed by a simple proportional-integral-derivative controller (PID) controller is utilized to overcome the low inertia. In the second solution the hydrogen storage system is employed to maintain the stability of the microgrid by storing surplus power generated by renewable energy sources (RESs). Power-to-Power is a method of storing excess renewable energy as chemical energy in the form of hydrogen. Hydrogen can be utilized locally or delivered to a consumption node. The proposed µG operation demonstrates that the integration of the photovoltaics (PVs) wind turbines (WTs) diesel engine generator (DEG) electrolyzer micro gas turbine (µGT) and SMES is adequate to fulfill the load requirements under transient operating circumstances such as a low and high PV output power as well as to adapt to sudden changes in the load demand. The effectiveness of the proposed schemes is confirmed using real irradiance data (Benban City Egypt) using a MATLAB/SIMULINK environment.
X-in-the-Loop Methodology for Proton Exchange Membrane Fuel Cell Systems Design: Review of Advances and Challenges
Jul 2025
Publication
Proton Exchange Membrane Fuel Cells (PEMFCs) are seen as an alternative for heavy-duty transportation electrification. Powered by a green hydrogen source they can provide high efficiency and low carbon emissions compared to traditional fuels. However to be competitive these systems require high reliability when operated in real-life conditions as well as safe and efficient operating management. In order to achieve these goals the X-in-the-loop (also called model-based design) methodology is well suited. It has been largely adopted for PEMFC system development and optimisation as they are complex multi-component systems. In this paper a systematic analysis of the scientific literature is conducted to review the methodology implementation for the design and improvement of the PEMFC systems. It exposes a precise definition of each development step in the methodology. The analysis shows that it can be employed in different ways depending on the subsystems considered and the objectives sought. Finally gaps in the literature and technical challenges for fuel cell systems that should be addressed are identified.
Hydrogen Storage Assessment in Depleted Oil Reservoir and Saline Aquifer
Oct 2022
Publication
Hydrogen (H2 ) is an attractive energy carrier to move store and deliver energy in a form that can be easily used. Field proven technology for underground hydrogen storage (UHS) is essential for a successful hydrogen economy. Options for this are manmade caverns salt domes/caverns saline aquifers and depleted oil/gas fields where large quantities of gaseous hydrogen have been stored in caverns for many years. The key requirements intrinsic of a porous rock formation for seasonal storage of hydrogen are: adequate capacity ability to contain H2 capability to inject/extract high volumes of H2 and a reliable caprock to prevent leakage. We have carefully evaluated a commercial non-isothermal compositional gas reservoir simulator and its suitability for hydrogen storage and withdrawal from saline aquifers and depleted oil/gas reservoirs. We have successfully calibrated the gas equation of state model against published laboratory H2 density and viscosity data as a function of pressure and temperature. Comparisons between the H2 natural gas and CO2 storage in real field models were also performed. Our numerical models demonstrated more lateral spread of the H2 when compared to CO2 and natural gas with a need for special containment in H2 projects. It was also observed that the experience with CO2 and natural gas storage cannot be simply replicated with H2 .
An Analysis of the Competitiveness of Hydrogen Storage and Li-ion Batteries Based on Price Arbitrage in the Day-ahead Market
Jul 2022
Publication
Acceleration of the hydrogen economy is being observed on a global scale. It is considered to be a potential solution to the problems with high-carbon energy industry and transport systems. The potential of production cost-competitiveness and opportunities are currently being investigated to provide insights to policymakers researchers and industry. In this context this study makes a quantitative assessment of the competitiveness of hydrogen storage compared to Li-ion batteries based on price arbitrage in the day-ahead market. Two scenarios that form the boundaries of rational decision-making regarding the charging and discharging of energy storage are considered. The first one assumes the charging and discharging of energy storage facilities over the same hours throughout the entire year. The selection of these hours is based on historical electricity prices. The second scenario assumes charge and discharge during historical daily minimum and maximum prices. The results show that NPV is below zero for both technologies when current values of investment expenditure are assumed. The outcomes of sensitivity analysis indicate that only a substantial reduction of investment expenditure could improve the financial results of the Li-ion batteries (NPV>0). The investigation also shows that even simplified charge and discharge over the same hours allows one to achieve 47% (hydrogen) and 70% (Li-ion batteries) of the maximum operating profit when the perfect foresight of prices is applied. In each case NPV for Li-ion technology is significantly higher than for hydrogen; for example for a 1 MWh and 1 MWout storage system NPV is EUR -4.85 million in the case of hydrogen and with Li-ion NPV is EUR -0.23 million. Consequently the application of expensive decision support systems in small systems may be unprofitable. The increase in profits may not cover the cost of developing and introducing such a system.
Numerical Study on Hydrogen–Gasoline Dual-Fuel Spark Ignition Engine
Nov 2022
Publication
Hydrogen as a suitable and clean energy carrier has been long considered a primary fuel or in combination with other conventional fuels such as gasoline and diesel. Since the density of hydrogen is very low in port fuel-injection configuration the engine’s volumetric efficiency reduces due to the replacement of hydrogen by intake air. Therefore hydrogen direct in-cylinder injection (injection after the intake valve closes) can be a suitable solution for hydrogen utilization in spark ignition (SI) engines. In this study the effects of hydrogen direct injection with different hydrogen energy shares (HES) on the performance and emissions characteristics of a gasoline port-injection SI engine are investigated based on reactive computational fluid dynamics. Three different injection timings of hydrogen together with five different HES are applied at low and full load on a hydrogen– gasoline dual-fuel SI engine. The results show that retarded hydrogen injection timing increases the concentration of hydrogen near the spark plug resulting in areas with higher average temperatures which led to NOX emission deterioration at −120 Crank angle degree After Top Dead Center (CAD aTDC) start of injection (SOI) compared to the other modes. At −120 CAD aTDC SOI for 50% HES the amount of NOX was 26% higher than −140 CAD aTDC SOI. In the meanwhile an advanced hydrogen injection timing formed a homogeneous mixture of hydrogen which decreased the HC and soot concentration so that −140 CAD aTDC SOI implied the lowest amount of HC and soot. Moreover with the increase in the amount of HES the concentrations of CO CO2 and soot were reduced. Having the HES by 50% at −140 CAD aTDC SOI the concentrations of particulate matter (PM) CO and CO2 were reduced by 96.3% 90% and 46% respectively. However due to more complete combustion and an elevated combustion average temperature the amount of NOX emission increased drastically.
An Improved State Machine-based Energy Management Strategy for Renewable Energy Microgrid with Hydrogen Storage System
Oct 2022
Publication
Renewable energy (solar and wind) sources have evolved dramatically in recent years around the globe primarily because they have the potential to generate environmentally friendly energy. However operating systems with high renewable energy penetration remain challenging due to the stochastic nature of these energy sources. To tackle these problems the authors propose a state machine-based energy management strategy combined with a hysteresis band control strategy for renewable energy hybrid microgrids that integrates hydrogen storage systems. By considering the power difference between the renewable energy source and the demand the battery’s state of charge and the hydrogen storage level the proposed energy management strategy can control the power of fuel cells electrolyzers and batteries in a microgrid and the power imported into/exported from the main grid. The results showed that the energy management strategy provides the following advantages: (1) the power supply and demand balance in the microgrid was balanced (2) the lifespans of the electrolyzer and fuel cell were extended and (3) the state of charge of the battery and the stored level of the hydrogen were appropriately ensured.
Socio-economic Aspects of Hydrogen Energy: An Integrative Review
Apr 2023
Publication
Hydrogen can be recognized as the most plausible fuel for promoting a green environment. Worldwide developed and developing countries have established their hydrogen research investment and policy frameworks. This analysis of 610 peer-reviewed journal articles from the last 50 years provides quantitative and impartial insight into the hydrogen economy. By 2030 academics and business professionals believe that hydrogen will complement other renewable energy (RE) sources in the energy revolution. This study conducts an integrative review by employing software such as Bibliometrix R-tool and VOSviewer on socio-economic consequences of hydrogen energy literature derived from the Scopus database. We observed that most research focuses on multidisciplinary concerns such as generation storage transportation application feasibility and policy development. We also present the conceptual framework derived from in-depth literature analysis as well as the interlinkage of concepts themes and aggregate dimensions to highlight research hotspots and emerging patterns. In the future factors such as green hydrogen generation hydrogen permeation and leakage management efficient storage risk assessment studies blending and techno-economic feasibility shall play a critical role in the socio-economic aspects of hydrogen energy research.
Hydrogen Production System Using Alkaline Water Electrolysis Adapting to Fast Fluctuating Photovoltaic Power
Apr 2023
Publication
Using photovoltaic (PV) energy to produce hydrogen through water electrolysis is an environmentally friendly approach that results in no contamination making hydrogen a completely clean energy source. Alkaline water electrolysis (AWE) is an excellent method of hydrogen production due to its long service life low cost and high reliability. However the fast fluctuations of photovoltaic power cannot integrate well with alkaline water electrolyzers. As a solution to the issues caused by the fluctuating power a hydrogen production system comprising a photovoltaic array a battery and an alkaline electrolyzer along with an electrical control strategy and energy management strategy is proposed. The energy management strategy takes into account the predicted PV power for the upcoming hour and determines the power flow accordingly. By analyzing the characteristics of PV panels and alkaline water electrolyzers and imposing the proposed strategy this system offers an effective means of producing hydrogen while minimizing energy consumption and reducing damage to the electrolyzer. The proposed strategy has been validated under various scenarios through simulations. In addition the system’s robustness was demonstrated by its ability to perform well despite inaccuracies in the predicted PV power.
Assessing and Modelling Hydrogen Reactivity in Underground Hydrogen Storage: A Review and Models Simulating the Lobodice Town Gas Storage
Apr 2023
Publication
Underground Hydrogen storage (UHS) is a promising technology for safe storage of large quantities of hydrogen in daily to seasonal cycles depending on the consumption requirements. The development of UHS requires anticipating hydrogen behavior to prevent any unexpected economic or environmental impact. An open question is the hydrogen reactivity in underground porous media storages. Indeed there is no consensus on the effects or lack of geochemical reactions in UHS operations because of the strong coupling with the activity of microbes using hydrogen as electron donor during anaerobic reduction reactions. In this work we apply different geochemical models to abiotic conditions or including the catalytic effect of bacterial activity in methanogenesis acetogenesis and sulfate-reduction reactions. The models are applied to Lobodice town gas storage (Czech Republic) where a conversion of hydrogen to methane was measured during seasonal gas storage. Under abiotic conditions no reaction is simulated. When the classical thermodynamic approach for aqueous redox reactions is applied the simulated reactivity of hydrogen is too high. The proper way to simulate hydrogen reactivity must include a description of the kinetics of the aqueous redox reactions. Two models are applied to simulate the reactions of hydrogen observed at Lobodice gas storage. One modeling the microbial activity by applying energy threshold limitations and another where microbial activity follows a Monod-type rate law. After successfully calibrating the bio-geochemical models for hydrogen reactivity on existing gas storage data and constraining the conditions where microbial activity will inhibit or enhance hydrogen reactivity we now have a higher confidence in assessing the hydrogen reactivity in future UHS in aquifers or depleted reservoirs.
Impact of Hydrogen Injection on Thermophysical Properties and Measurement Reliability in Natural Gas Networks
Oct 2021
Publication
In the context of the European decarbonization strategy hydrogen is a key energy carrier in the medium to long term. The main advantages deriving from a greater penetration of hydrogen into the energy mix consist in its intrinsic characteristics of flexibility and integrability with alternative technologies for the production and consumption of energy. In particular hydrogen allows to: i) decarbonise end uses since it is a zero-emission energy carrier and can be produced with processes characterized by the absence of greenhouse gases emissions (e.g. water electrolysis); ii) help to balancing electricity grid supporting the integration of non-programmable renewable energy sources; iii) exploit the natural gas transmission and distribution networks as storage systems in overproduction periods. However the hydrogen injection into the natural gas infrastructures directly influences thermophysical properties of the gas mixture itself such as density calorific value Wobbe index speed of sound etc [1]. The change of the thermophysical properties of gaseous mixture in turn directly affects the end use service in terms of efficiency and safety as well as the metrological performance and reliability of the volume and gas quality measurement systems. In this paper the authors present the results of a study about the impact of hydrogen injection on the properties of the natural gas mixture. In detail the changes of the thermodynamic properties of the gaseous mixtures with different hydrogen content have been analysed. Moreover the theoretical effects of the aforementioned variations on the accuracy of the compressibility factor measurement have been also assessed.
Decarbonizing Natural Gas: A Review of Catalytic Decomposition and Carbon Formation Mechanisms
Apr 2022
Publication
In the context of energy conservation and the reduction of CO2 emissions inconsistencies between the inevitable emission of CO2 in traditional hydrogen production methods and eco-friendly targets have become more apparent over time. The catalytic decomposition of methane (CDM) is a novel technology capable of producing hydrogen without releasing CO2 . Since hydrogen produced via CDM is neither blue nor green the term “turquoise” is selected to describe this technology. Notably the by-products of methane cracking are simply carbon deposits with different structures which can offset the cost of hydrogen production cost should they be harvested. However the encapsulation of catalysts by such carbon deposits reduces the contact area between said catalysts and methane throughout the CDM process thereby rendering the continuous production of hydrogen impossible. This paper mainly covers the CDM reaction mechanisms of the three common metal-based catalysts (Ni Co Fe) from experimental and modelling approaches. The by-products of carbon modality and the key parameters that affect the carbon formation mechanisms are also discussed.
Thermodynamic Performance and Creep Life Assessment Comparing Hydrogen- and Jet-Fueled Turbofan Aero Engine
Apr 2021
Publication
There is renewed interest in hydrogen as an alternative fuel for aero engines due to their perceived environmental and performance benefits compared to jet fuel. This paper presents a cycle thermal performance energy and creep life assessment of hydrogen compared with jet fuel using a turbofan aero engine. The turbofan cycle performance was simulated using a code developed by the authors that allows hydrogen and jet fuel to be selected as fuel input. The exergy assessment uses both conservations of energy and mass and the second law of thermodynamics to understand the impact of the fuels on the exergy destruction exergy efficiency waste factor ratio environmental effect factor and sustainability index for a turbofan aero engine. Finally the study looks at a top-level creep life assessment on the high-pressure turbine hot section influenced by the fuel heating values. This study shows performance (64% reduced fuel flow rate better SFC) and more extended blade life (15% increase) benefits using liquefied hydrogen fuel which corresponds with other literary work on the benefits of LH2 over jet fuel. This paper also highlights some drawbacks of hydrogen fuel based on previous research work and gives recommendations for future work aimed at maturing the hydrogen fuel concept in aviation.
Improving the Economics of Fossil-free Steelmaking via Co-production of Methanol
Mar 2022
Publication
Steelmaking is responsible for 7% of the global net emissions of carbon dioxide and heavily reducing emissions from currently dominating steelmaking processes is difficult and costly. Recently new steelmaking processes based on the reduction of iron ore with hydrogen (H2) produced via water electrolysis have been suggested. If the electricity input to such processes is fossil-free near-zero carbon dioxide emissions steelmaking is achievable. However the high electricity demand of electrolysis is a significant implementation barrier. A H2 storage may alleviate this via allowing a larger share of H2 to be produced at low electricity prices. However accurately forecasting the dynamics of electricity markets is challenging. This increases the risk of investment in a H2 storage. Here we evaluate a novel methanol-based H2 storage concept for a H2-based steelmaking process that also allows for the coproduction of methanol. During electricity price peaks the methanol can be reformed to produce H2 for the steelmaking process. During prolonged periods of low electricity prices excess methanol can be produced and sold off thus improving the prospects of storage profitability. We use historical electricity prices and a process model to evaluate methanol-fossil-free steel co-production schemes. Methanol coproduction has the potential to improve the economics of H2 supply to a fossil-free steelmaking process by up to an average of 0.40 €/kg H2 across considered scenarios equivalent to a reduction in H2 production electricity costs of 25.0%
Application and Limitations of Batteries and Hydrogen in Heavy Haul Rail using Australian Case Studies
Oct 2022
Publication
Decarbonisation of heavy haul rail is an essential contributor to a zero-emissions future. However the transition from diesel to battery locomotives is not always practical given the unique characteristics of each haul. This paper demonstrates the limitations of state-of-the-art batteries using real-world data from multiple locomotives operating in Australian rail freight. An energy model was developed to assess each route’s required energy and potential regenerated energy. The tractive and regenerative battery energy mass and cost were determined using data from the energy model coupled with battery specifications. The feasibility of implementing lithium iron phosphate (LFP) nickel manganese cobalt (NMC) and lithium titanium oxide (LTO) chemistries was explored based on cost energy density cycle lifespan and locomotive data. LFP was identified as the most suitable current battery solution based on current chemistries. Further examination of the energy demands and associated mass/volume constraints concluded that three platforms are required for heavy haul rail decarbonisation i) a battery electric locomotive for low-energy demands which can be coupled with either ii) a battery electric tender for medium energy demands or iii) a hydrogen fuel cell electric tender for higher energy demands. A future-looking techno-economic assessment of battery and hydrogen fuel cell platforms concludes that the lowest cost solution for low-energy hauls is a battery-only system and for high-energy hauls a battery-hydrogen system.
Decarbonizing Primary Steel Production : Techno-economic Assessment of a Hydrogen Based Green Steel Production Plant in Norway
Mar 2022
Publication
High electricity cost is the biggest challenge faced by the steel industry in transitioning to hydrogen based steelmaking. A steel plant in Norway could have access to cheap emission free electricity high-quality iron ore skilled manpower and the European market. An open-source model for conducting techno-economic assessment of a hydrogen based steel manufacturing plant operating in Norway has been developed in this work. Levelized cost of production (LCOP) for two plant configurations; one procuring electricity at a fixed price and the other procuring electricity from the day-ahead electricity markets with different electrolyzer capacity were analyzed. LCOP varied from $622/tls to $722/tls for the different plant configurations. Procuring electricity from the day-ahead electricity markets could reduce the LCOP by 15%. Increasing the electrolyzer capacity reduced the operational costs but increased the capital investments reducing the overall advantage. Sensitivity analysis revealed that electricity price and iron ore price are the major contributors to uncertainty for configurations with fixed electricity prices. For configurations with higher electrolyzer capacity changes in the iron ore price and parameters related to capital investment were found to affect the LCOP significantly.
Refueling of LH2 Aircraft—Assessment of Turnaround Procedures and Aircraft Design Implication
Mar 2022
Publication
Green liquid hydrogen (LH2) could play an essential role as a zero-carbon aircraft fuel to reach long-term sustainable aviation. Excluding challenges such as electrolysis transportation and use of renewable energy in setting up hydrogen (H2) fuel infrastructure this paper investigates the interface between refueling systems and aircraft and the impacts on fuel distribution at the airport. Furthermore it provides an overview of key technology design decisions for LH2 refueling procedures and their effects on the turnaround times as well as on aircraft design. Based on a comparison to Jet A-1 refueling new LH2 refueling procedures are described and evaluated. Process steps under consideration are connecting/disconnecting purging chill-down and refueling. The actual refueling flow of LH2 is limited to a simplified Reynolds term of v · d = 2.35 m2/s. A mass flow rate of 20 kg/s is reached with an inner hose diameter of 152.4 mm. The previous and subsequent processes (without refueling) require 9 min with purging and 6 min without purging. For the assessment of impacts on LH2 aircraft operation process changes on the level of ground support equipment are compared to current procedures with Jet A-1. The technical challenges at the airport for refueling trucks as well as pipeline systems and dispensers are presented. In addition to the technological solutions explosion protection as applicable safety regulations are analyzed and the overall refueling process is validated. The thermodynamic properties of LH2 as a real compressible fluid are considered to derive implications for airport-side infrastructure. The advantages and disadvantages of a subcooled liquid are evaluated and cost impacts are elaborated. Behind the airport storage tank LH2 must be cooled to at least 19 K to prevent two-phase phenomena and a mass flow reduction during distribution. Implications on LH2 aircraft design are investigated by understanding the thermodynamic properties including calculation methods for the aircraft tank volume and problems such as cavitation and two-phase flows. In conclusion the work presented shows that LH2 refueling procedure is feasible compliant with the applicable explosion protection standards and hence does not impact the turnaround procedure. A turnaround time comparison shows that refueling with LH2 in most cases takes less time than with Jet A-1. The turnaround at the airport can be performed by a fuel truck or a pipeline dispenser system without generating direct losses i.e. venting to the atmosphere.
Transition to a Low-carbon Building Stock. Techno-economic and Spatial Optimization of Renewables‑hydrogen Strategies in Spain
Oct 2022
Publication
Europe has set ambitious targets to reduce the final energy consumption of buildings in concerning the degree of electrification energy efficiency and penetration of renewable energy sources (RES). So far hydrogen is becoming an increasingly important energy vector offering huge opportunities to promote the share of intermittent RES. Thus this manuscript proposes an energy model for the complete decarbonization of the estimated electricity consumed by the Spanish building stock in 2030 and 2050 scenarios; the model is based on the combination of photovoltaic and wind primary sources and hydrogen technologies considering both distributed and centralized configurations applying also geospatial criteria for their optimal allocation. Large-scale RES generation centralized hydrogen production and re-electrification along with underground hydrogen storage result in the lowest levelized cost of energy (LCOE) hydrogen production costs (HPC) and the highest overall efficiency (μSYS). Wind energy is mainly harvested in the north of Spain while large PV farms are deployed in the mid-south. Furthermore reinforcement of underground hydrogen storage enhances the overall system performance reducing surplus energy and the required RES generation capacity. Finally all the considered scenarios achieve LCOE below the Spanish utility grid benchmark apart from accomplishing the decarbonization goals established for the year 2030.
Utilization of Food Waste for Hydrogen-based Power Generation: Evidence from Four Cities in Ghana
Mar 2023
Publication
Hydrogen gas will be an essential energy carrier for global energy systems in the future. However non-renewable sources account for 96% of the production. Food wastes have high hydrogen generation potential which can positively influence global production and reduce greenhouse gas (GHG) emissions. The study evaluates the potential of food waste hydrogen-based power generation through biogas steam reforming and its environmental and economic impact in major Ghanaian cities. The results highlight that the annual hydrogen generation in Kumasi had the highest share of 40.73 kt followed by Accra with 31.62 kt while the least potential was in Tamale (3.41 kt). About 2073.38 kt was generated in all the major cities. Hydrogen output is predicted to increase from 54.61 kt in 2007 to 119.80 kt by 2030. Kumasi produced 977.54 kt of hydrogen throughout the 24-year period followed by Accra with 759.76 kt Secondi-Takoradi with 255.23 kt and Tamale with 81.85 kt. According to the current study Kumasi had the largest percentage contribution of hydrogen (47.15%) followed by Accra (36.60%) Secondi-Takoradi (12.31%) and Tamale (3.95%). The annual power generation potential in Kumasi and Accra was 73.24 GWh and 56.85 GWh. Kumasi and Accra could offset 8.19% and 6.36% of Ghana's electricity consumption. The total electricity potential of 3728.35 GWh could displace 17.37% of Ghana's power consumption. This electricity generated had a fossil diesel displacement capacity of 1125.90 ML and could reduce GHG emissions by 3060.20 kt CO2 eq. Based on the findings the total GHG savings could offset 8.13% of Ghana's carbon emissions. The cost of power generation from hydrogen is $ 0.074/kWh with an annual positive net present value of $ 658.80 million and a benefit-to-cost ratio of 3.43. The study lays the foundation and opens policy windows for sustainable hydrogen power generation in Ghana and other African countries.
Development of a Hydrogen Valley for Exploitation of Green Hydrogen in Central Italy
Oct 2022
Publication
Green hydrogen exploitation plays a crucial role in achieving carbon neutrality by 2050. Hydrogen in fact provides a number of key benefits for the energy system due to its integrability with other clean technologies for energy production and consumption. This paper is aimed at presenting the project of recovery of an abandoned industrial area located in central Italy by developing a site for the production of green hydrogen. To this aim the analysis of the territorial and industrial context of the area allowed us to design the project phases and to define the sizing criteria of the hydrogen production plant. The results of a preliminary cost–benefit analysis show that a huge initial investment is required and that in the short term the project is sustainable only with a very large public grant. On the other hand in the long term the project is sustainable and the benefits significantly overcome the costs.
Towards Sustainable Transport: Techno-Economic Analysis of Investing in Hydrogen Buses in Public Transport in the Selected City of Poland
Dec 2022
Publication
The production storage and use of hydrogen for energy purposes will become increasingly important during the energy transition. One way to use hydrogen is to apply it to power vehicles. This green technological solution affects low-emissions transport which is beneficial and important especially in cities. The authors of this article analyzed the use of hydrogen production infrastructure for bus propulsion in the city of Katowice (Poland). The methods used in the study included a greedy algorithm and cost methods which were applied for the selection of vehicles and identification of the infrastructure for the production storage and refueling of hydrogen as well as to conduct the economic analysis during this term. The article presented the complexity of the techno-economic analysis of the infrastructure and its installation. The key element was the selection of the number of vehicles to the hydrogen production possibilities of an electrolyser and capabilities of the storage and charging infrastructure.
Hydrogen Bubble Growth in Alkaline Water Electrolysis: An Immersed Boundary Simulation Study
Nov 2022
Publication
Enhancing the efficiency of industrial water electrolysis for hydrogen production is important for the energy transition. In electrolysis hydrogen is produced at the cathode which forms bubbles due to the diffusion of dissolved hydrogen in the surrounding supersaturated electrolyte. Hydrogen (and oxygen) bubbles play an important role in the achievable electrolysis efficiency. The growth of the bubbles is determined by diffusive and convective mass transfer. In turn the presence and the growth of the hydrogen bubbles affect the electrolysis process at the cathode.<br/>In the present study we simulate the growth of a single hydrogen bubble attached to a vertical cathode in a 30 wt KOH solution in a cathodic compartment represented by a narrow channel. We solve the Navier-Stokes equations mass transport equations and potential equation for a tertiary current distribution. A sharp interface immersed boundary method with an artificial compressibility method for the pressure is employed. To verify the numerical accuracy of the method we performed a grid refinement study and checked the global momentum and hydrogen mass balances. We investigate the effects of flow rate and operation pressure upon bubble growth behaviour species concentrations potential and current density. We compare different cases in two ways: for the same time and for the same bubble radius. We observe that increasing the flow velocity leads to a small increase in efficiency. Increasing the operation pressure causes higher hydrogen density which slows down the bubble growth. It is remarkable that for a given bubble radius increasing the pressure leads to a small decrease in efficiency.
A Review of Projected Power-to-Gas Deployment Scenarios
Jul 2018
Publication
Technical economic and environmental assessments of projected power-to-gas (PtG) deployment scenarios at distributed- to national-scale are reviewed as well as their extensions to nuclear-assisted renewable hydrogen. Their collective research trends outcomes challenges and limitations are highlighted leading to suggested future work areas. These studies have focused on the conversion of excess wind and solar photovoltaic electricity in European-based energy systems using low-temperature electrolysis technologies. Synthetic natural gas either solely or with hydrogen has been the most frequent PtG product. However the spectrum of possible deployment scenarios has been incompletely explored to date in terms of geographical/sectorial application environment electricity generation technology and PtG processes products and their end-uses to meet a given energy system demand portfolio. Suggested areas of focus include PtG deployment scenarios: (i) incorporating concentrated solar- and/or hybrid renewable generation technologies; (ii) for energy systems facing high cooling and/or water desalination/treatment demands; (iii) employing high-temperature and/or hybrid hydrogen production processes; and (iv) involving PtG material/energy integrations with other installations/sectors. In terms of PtG deployment simulation suggested areas include the use of dynamic and load/utilization factor-dependent performance characteristics dynamic commodity prices more systematic comparisons between power-to-what potential deployment options and between product end-uses more holistic performance criteria and formal optimizations.
Numerical Simulation on Heating Effects during Hydrogen Absorption in Metal Hydride Systems for Hydrogen Storage
Apr 2022
Publication
A 2-D numerical simulation model was established based on a small-sized metal hydride storage tank and the model was validated by the existing experiments. An external cooling bath was equipped to simulate the heating effects of hydrogen absorption reactions. Furthermore both the type and the flow rate of the cooling fluids in the cooling bath were altered so that changes in temperature and hydrogen storage capacity in the hydrogen storage model could be analyzed. It is demonstrated that the reaction rate in the center of the hydrogen storage tank gradually becomes lower than that at the wall surface. When the flow rate of the fluid is small significant differences can be found in the cooling liquid temperature at the inlet and the outlet cooling bath. In areas adjacent to its inlet the reaction rate is higher than that at the outlet and a better cooling effect is produced by water. As the flow rate increases the total time consumed by hydrogen adsorption reaction is gradually reduced to a constant value. At the same flow rate the wall surface of the tank shows a reaction rate insignificantly different from that in its center provided that cooling water or oil coolant is replaced with air.
No more items...