Publications
Large-eddy Simulation of Tri-fuel Combustion: Diesel Spray Assisted Ignition of Methanol-hydrogen Blends
May 2021
Publication
Development of marine engines could largely benefit from the broader usage of methanol and hydrogen which are both potential energy carriers. Here numerical results are presented on tri-fuel (TF) ignition using large-eddy simulation (LES) and finite-rate chemistry. Zero-dimensional (0D) and three-dimensional (3D) simulations for n-dodecane spray ignition of methanol/hydrogen blends are performed. 0D results reveal the beneficial role of hydrogen addition in facilitating methanol ignition. Based on LES the following findings are reported: 1) Hydrogen promotes TF ignition significantly for molar blending ratios βX = [H2]/([H2]+[CH3OH]) ≥0.8. 2) For βX = 0 unfavorable heat generation in ambient methanol is noted. We provide evidence that excessive hydrogen enrichment (βX ≥ 0.94) potentially avoids this behavior consistent with 0D results. 3) Ignition delay time is advanced by 23–26% with shorter spray vapor penetrations (10–15%) through hydrogen mass blending ratios 0.25/0.5/1.0. 4) Last adding hydrogen increases shares of lower and higher temperature chemistry modes to total heat release.
Thermodynamic Assessment of the Novel Concept of the Energy Storage System Using Compressed Carbon Dioxide, Methanation and Hydrogen Generator
Jul 2021
Publication
The main aim of this paper is to characterize the concept of a novel energy storage system based on compressed CO2 storage installation that uses an infrastructure of depleted coal mines to provide required volume of tanks and additionally hydrogen generators and a methanation installation to generate synthetic natural gas that can be used within the system or taken out of it e.g. to a gas grid. A detailed mathematical model of the proposed solution was built using own codes and Aspen Plus software. Thermodynamic evaluation aiming at determining parameters composition and streams in all the most important nodes of the system for the nominal point and when changing a defined decision variable δ (in the range from 0.1 to 0.9) was made. The evaluation was made based on the storage efficiency volume of the tanks and flows of energy within the system. The storage efficiency in the nominal point reached 45.08% but was changing in the range from 35.06% (for δ = 0.1) to 63.93% (for δ = 0.9). For the nominal value of δ equal to 0.5 volume of the low-pressure tank (LPT) was equal to 132869 m3 while of the high pressure tank (HPT) to 1219 m3 . When changing δ these volumes were changing from 101900 m3 to 190878 m3 (for LPT) and from 935 to 1751 m3 (for HPT) respectively. Detailed results are presented in the paper and indicate high storage potential of the proposed solution in regions with underground mine infrastructure.
Hydrogen for a Net Zero GB An Integrated Energy Market Perspective
Jul 2020
Publication
Our new independent report finds that hydrogen can play an important role in UK’s ambitious decarbonisation plan and boost its global industrial competitiveness.
Key insights from this new analysis include:
Key insights from this new analysis include:
- New independent report from Aurora Energy Research shows that hydrogen can meet up to half of Great Britain’s (GB) final energy demand by 2050 providing an important pathway to reaching UK’s ambitious Net Zero targets.
- The report concludes that both blue hydrogen (produced from natural gas after reforming to remove carbon content) and green hydrogen (produced by using power to electrolyse water) are expected to play an important role providing up to 480TWh of hydrogen or c.45% of GB’s final energy demand by 2050.
- All Net Zero scenarios require substantial growth in low-carbon generation such as renewables and nuclear. Large-scale hydrogen adoption could help to integrate renewables into the power system by reducing the power sector requirement for flexibility during peak winter months and boosting revenues for clean power generators by c. £3bn per year by 2050.
- The rollout of hydrogen could accelerate green growth and enable the development of globally competitive low-carbon industrial clusters while utilising UK’s competitive advantage on carbon capture.
- In facilitating the identification of a cost-effective hydrogen pathway there are some low-regret options for Government to explore including the stimulation of hydrogen demand in key sectors the deployment of CCS in strategic locations and the standardisation of networks. These initiatives could form an important part of the UK Government’s post-COVID stimulus plan.
Geomechanical Simulation of Energy Storage in Salt Formations
Oct 2021
Publication
A promising option for storing large-scale quantities of green gases (e.g. hydrogen) is in subsurface rock salt caverns. The mechanical performance of salt caverns utilized for long-term subsurface energy storage plays a signifcant role in long-term stability and serviceability. However rock salt undergoes non-linear creep deformation due to long-term loading caused by subsurface storage. Salt caverns have complex geometries and the geological domain surrounding salt caverns has a vast amount of material heterogeneity. To safely store gases in caverns a thorough analysis of the geological domain becomes crucial. To date few studies have attempted to analyze the infuence of geometrical and material heterogeneity on the state of stress in salt caverns subjected to long-term loading. In this work we present a rigorous and systematic modeling study to quantify the impact of heterogeneity on the deformation of salt caverns and quantify the state of stress around the caverns. A 2D fnite element simulator was developed to consistently account for the non-linear creep deformation and also to model tertiary creep. The computational scheme was benchmarked with the already existing experimental study. The impact of cyclic loading on the cavern was studied considering maximum and minimum pressure that depends on lithostatic pressure. The infuence of geometric heterogeneity such as irregularly-shaped caverns and material heterogeneity which involves diferent elastic and creep properties of the diferent materials in the geological domain is rigorously studied and quantifed. Moreover multi-cavern simulations are conducted to investigate the infuence of a cavern on the adjacent caverns. An elaborate sensitivity analysis of parameters involved with creep and damage constitutive laws is performed to understand the infuence of creep and damage on deformation and stress evolution around the salt cavern confgurations.
The Global Status of CCS 2019: Targeting Climate Change
Dec 2019
Publication
CCS is an emissions reduction technology critical to meeting global climate targets. The Global Status of CCS 2019 documents important milestones for CCS over the past 12 months its status across the world and the key opportunities and challenges it faces. We hope this report will be read and used by governments policy-makers academics media commentators and the millions of people who care about our climate.
Power to Hydrogen and Power to Water Using Wind Energy
May 2022
Publication
The need for energy and water security on islands has led to an increase in the use of wind power. However the intermittent nature of wind generation means it needs to be coupled with a storage system. Motivated by this two different models of surplus energy storage systems are investigated in this paper. In both models renewable wind energy is provided by a wind farm. In the first model a pumped hydro storage system (PHS) is used for surplus energy storage while in the second scenario a hybrid pumped hydrogen storage system (HPHS) is applied consisting of a PHS and a hydrogen storage system. The goal of this study is to compare the single and the hybrid storage system to fulfill the energy requirements of the island’s electricity load and desalination demands for domestic and irrigation water. The cost of energy (COE) is 0.287 EUR/kWh for PHS and 0.360 EUR/kWh for HPHS while the loss of load probability (LOLP) is 22.65% for PHS and 19.47% for HPHS. Sensitivity analysis shows that wind speed is the key parameter that most affects COE cost of water (COW) and LOLP indices while temperature affects the results the least.
Mechanical Spectroscopy Investigation of Point Defect-Driven Phenomena in a Cr Martensitic Steel
Oct 2018
Publication
The paper presents and discusses results of mechanical spectroscopy (MS) tests carried out on a Cr martensitic steel. The study regards the following topics: (i) embrittlement induced by Cr segregation; (ii) interaction of hydrogen with C–Cr associates; (iii) nucleation of Cr carbides. The MS technique permitted characterising of the specific role played by point defects in the investigated phenomena: (i) Cr segregation depends on C–Cr associates distribution in as-quenched material in particular a slow cooling rate (~150 K/min) from austenitic field involves an unstable distribution which leads to Cr concentration fluctuations after tempering at 973 K; (ii) hydrogen interacts with C–Cr associates and the phenomenon hinders hydrogen attack (HA) because hydrogen atoms bound by C–Cr associates are not able to diffuse towards grain boundaries and dislocation where CH4 bubbles may nucleate grow and merge to form the typical HA cracks; (iii) C–Cr associates take part in the nucleation mechanism of Cr7C3 carbides and specifically these carbides form by the aggregation of C–Cr associates with 1 Cr atom.
Multiscale Modelling of Hydrogen Transport and Segregation in Polycrystalline Steels
Jun 2018
Publication
A key issue in understanding and effectively managing hydrogen embrittlement in complex alloys is identifying and exploiting the critical role of the various defects involved. A chemo-mechanical model for hydrogen diffusion is developed taking into account stress gradients in the material as well as microstructural trapping sites such as grain boundaries and dislocations. In particular the energetic parameters used in this coupled approach are determined from ab initio calculations. Complementary experimental investigations that are presented show that a numerical approach capable of massive scale-bridging up to the macroscale is required. Due to the wide range of length scales accounted for we apply homogenisation schemes for the hydrogen concentration to reach simulation dimensions comparable to metallurgical process scales. Via a representative volume element approach an ab initio based scale bridging description of dislocation-induced hydrogen aggregation is easily accessible. When we extend the representative volume approach to also include an analytical approximation for the ab initio based description of grain boundaries we find conceptual limitations that hinder a quantitative comparison to experimental data in the current stage. Based on this understanding the development of improved strategies for further efficient scale bridging approaches is foreseen.
Clean or Renewable – Hydrogen and Power-to-gas in EU Energy Law
Aug 2020
Publication
Interest in hydrogen as a carbon-neutral energy carrier is on the rise around the globe including in Europe. In particular power-to-gas as a technology to transform electricity to hydrogen is receiving ample attention. This article scrutinises current updates in the energy law framework of the EU to explain the legal pre-conditions for the various possible applications of power-to-gas technology. It highlights the influence of both electricity and gas legislation on conversion storage and transmission of hydrogen and demonstrates why ‘green’ hydrogen might come with certain legal privileges under the Renewable Energy Directive attached to it as opposed to the European Commission’s so-called ‘clean’ hydrogen. The article concludes by advocating for legal system integration in EU energy law namely merging the currently distinct EU electricity and gas law frameworks into one unified EU Energy Act.
The Effect of Cold Rolling on the Hydrogen Susceptibility of 5083 Aluminium Alloy
Oct 2017
Publication
This work focuses in investigating the effect of cold deformation on the cathodic hydrogen charging of 5083 aluminum alloy. The aluminium alloy was submitted to a cold rolling process until the average thickness of the specimens was reduced by 7% and 15% respectively. A study of the structure microhardness and tensile properties of the hydrogen charged aluminium specimens with and without cold rolling indicated that the cold deformation process led to an increase of hydrogen susceptibility of this aluminum alloy.
Hydrogen Impacts on Downstream Installation and Appliances
Nov 2019
Publication
The report analyses the technical impacts to end-users of natural gas in Australian distribution networks when up to 10% hydrogen (by volume) is mixed with natural gas.
The full report can be found at this link.
The full report can be found at this link.
Impact of Hydrogen Admixture on Combustion Processes – Part II: Practice
Dec 2020
Publication
The Fuel Cells & Hydrogen Joint Undertaking (FCH JU) project ""Testing Hydrogen admixture for Gas Appliances"" aka THyGA is proud to release the second deliverable about the impact of hydrogen admixture on combustion processes. This time the report explores the expected impact of H2NG on a range of appliance designs installed in the EU.
After the deliverable D2.2 dedicated to the theorical estimation of the impact of H2 admixture THyGA reviews results from the litterature to evaluate available knowledge on CO and NOx formation overheating flame temperature flashback H2 leakage operational implications and efficiency of appliances supplied with H2NG blends. Learn more and read deliverable D2.3.
Climate change is one of today’s most pressing global challenges. Since the emission of greenhouse gases is often closely related to the use and supply of energy the goal to avoid emissions requires a fundamental restructuring of the energy system including all parts of the technology chains from production to end-use. Natural gas is today one of the most important primary energy sources in Europe with utilization ranging from power generation and industry to appliances in the residential and commercial sector as well as mobility. As natural gas is a fossil fuel gas utilization is thus responsible for significant emissions of carbon dioxide (CO2) a greenhouse gas.
This is part two. Part one of this project can be found at this link
After the deliverable D2.2 dedicated to the theorical estimation of the impact of H2 admixture THyGA reviews results from the litterature to evaluate available knowledge on CO and NOx formation overheating flame temperature flashback H2 leakage operational implications and efficiency of appliances supplied with H2NG blends. Learn more and read deliverable D2.3.
Climate change is one of today’s most pressing global challenges. Since the emission of greenhouse gases is often closely related to the use and supply of energy the goal to avoid emissions requires a fundamental restructuring of the energy system including all parts of the technology chains from production to end-use. Natural gas is today one of the most important primary energy sources in Europe with utilization ranging from power generation and industry to appliances in the residential and commercial sector as well as mobility. As natural gas is a fossil fuel gas utilization is thus responsible for significant emissions of carbon dioxide (CO2) a greenhouse gas.
This is part two. Part one of this project can be found at this link
Formation Criterion of Hydrogen-Induced Cracking in Steel Based on Fracture Mechanics
Nov 2018
Publication
A new criterion for hydrogen-induced cracking (HIC) that includes both the embrittlement effect and the loading effect of hydrogen was obtained theoretically. The surface cohesive energy and plastic deformation energy are reduced by hydrogen atoms at the interface; thus the fracture toughness is reduced according to fracture mechanics theory. Both the pressure effect and the embrittlement effect mitigate the critical condition required for crack instability extension. During the crack instability expansion the hydrogen in the material can be divided into two categories: hydrogen atoms surrounding the crack and hydrogen molecules in the crack cavity. The loading effect of hydrogen was verified by experiments and the characterization methods for the stress intensity factor under hydrogen pressure in a linear elastic model and an elastoplastic model were analyzed using the finite-element simulation method. The hydrogen pressure due to the aggregation of hydrogen molecules inside the crack cavity regularly contributed to the stress intensity factor. The embrittlement of hydrogen was verified by electrolytic charging hydrogen experiments. According to the change in the atomic distribution during crack propagation in a molecular dynamics simulation the transition from ductile to brittle fracture and the reduction in the fracture toughness were due to the formation of crack tip dislocation regions suppressed by hydrogen. The HIC formation mechanism is both the driving force of crack propagation due to the hydrogen gas pressure and the resisting force reduced by hydrogen atoms.
Hy4Heat Hydrogen Colourant Report
May 2021
Publication
As part of Work Package 2 (WP2) of the Hy4Heat programme DNV produced a substantive report regarding colourant within a potential hydrogen gas network within the UK. Considering the advances within the hydrogen industry over the past year this covering document provides an update to the results as presented by DNV based on current industry progress and research.
The Hydrogen Colourant report was a study to determine if there is a requirement for adding a colourant to hydrogen to ensure that safe burning and user acceptance is achieved and to investigate the optimum solution if a colourant is required. The recommendation is that adding colourant to a future hydrogen gas network for use within buildings is not necessary if engineering measures are put in place to enable safe appliance operation."
- Advancements have been made in the understanding of key topics:
- Flame visibility and supervision
- Health and safety of colourant additives
- Production of Nitrogen Oxides (NOx)
- Likelihood of ignition from domestic electrical installations
- Nature of gas escapes
The Hydrogen Colourant report was a study to determine if there is a requirement for adding a colourant to hydrogen to ensure that safe burning and user acceptance is achieved and to investigate the optimum solution if a colourant is required. The recommendation is that adding colourant to a future hydrogen gas network for use within buildings is not necessary if engineering measures are put in place to enable safe appliance operation."
How Hydrogen Can Help Decarbonise the Maritime Sector
Jun 2021
Publication
Hydrogen Europe is the organisation representing the interests of the European hydrogen industry. It fully adheres to the European Union’s target of climate neutrality by 2050 and supports the European Commission’s objectives to develop and integrate more renewable energy sources into the European energy mix.<br/><br/>In December 2015 in Paris a global climate agreement was reached at the UN Climate Change Conference (COP 21). The Paris Agreement is seen as a historic and landmark instrument in climate action. However the agreement is lacking emphasis on international maritime transport and the role that this sector will need to play in contributing to the decarbonisation of the global economy and in striving for a clean planet for all.<br/><br/>Hydrogen hydrogen-based fuels (such as ammonia) and hydrogen technologies offer tremendous potential for the maritime sector<br/>and if properly harnessed can significantly contribute to the decarbonisation and also mitigate the air pollution of the worldwide fleet. Hydrogen Europe will be the catalyst in this process the decarbonisation and also mitigate the air pollution of the worldwide fleet. Hydrogen Europe will be the catalyst in this process.<br/><br/>The pathway towards hydrogen and hydrogenbased fuels for the maritime sector does not come without technological and commercial challenges let alone regulatory barriers.
Investigation on System for Renewable Electricity Storage in Small Scale Integrating Photovoltaics, Batteries, and Hydrogen Generator
Nov 2020
Publication
In this article the solution based on hydrogen generation to increase the flexibility of energy storage systems is proposed. Operating characteristics of a hydrogen generator with integrated electrical energy storage and a photovoltaic installation were determined. The key role of the electricity storage in the proposed system was to maintain the highest operating efficiency related to the nominal parameters of the hydrogen generator. The hydrogen generators achieved the highest energy efficiency for the nominal operating point at the highest power output. Lead-acid batteries were used to ensure the optimal operating conditions for the hydrogen generator supplied with renewable energy throughout the day. The proposed system reduces significantly the hydrogen generator nominal power and devices in system operate in such a way to improve their efficiency and durability. The relations between individual components and their constraints were determined. The proposed solution is fully in-line with previously investigated technologies for improving grid stability and can help incorporate renewable energy sources to increase the sustainability of the energy sector and green hydrogen production.
Towards Global Cleaner Energy and Hydrogen Production: A Review and Application ORC Integrality with Multigeneration Systems
Apr 2022
Publication
The current evidential effect of carbon emissions has become a societal challenge and the need to transition to cleaner energy sources/technologies has attracted wide research attention. Technologies that utilize low-grade heat like the organic Rankine cycle (ORC) and Kalina cycle have been proposed as viable approaches for fossil reduction/carbon mitigation. The development of renewable energy-based multigeneration systems is another alternative solution to this global challenge. Hence it is important to monitor the development of multigeneration energy systems based on low-grade heat. In this study a review of the ORC’s application in multigeneration systems is presented to highlight the recent development in ORC integrality/application. Beyond this a new ORC-CPVT (concentrated photovoltaic/thermal) integrated multigeneration system is also modeled and analyzed using the thermodynamics approach. Since most CPVT systems integrate hot water production in the thermal stem the proposed multigeneration system is designed to utilize part of the thermal energy to generate electricity and hydrogen. Although the CPVT system can achieve high energetic and exergetic efficiencies while producing thermal energy and electricity these efficiencies are 47.9% and 37.88% respectively for the CPVT-ORC multigeneration configuration. However it is noteworthy that the electricity generation from the CPVT-ORC configuration in this study is increased by 16%. In addition the hot water cooling effect and hydrogen generated from the multigeneration system are 0.4363 L/s 161 kW and 1.515 L/s respectively. The environmental analysis of the system also shows that the carbon emissions reduction potential is enormous.
Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation Project
Dec 2011
Publication
This report summarizes the work conducted under U.S. Department of Energy (DOE) under contract DE-FC36-04GO14285 by Mercedes-Benz & Research Development North America (MBRDNA) Chrysler Daimler Mercedes Benz USA (MBUSA) BP DTE Energy and NextEnergy to validate fuel cell technologies for infrastructure transportation as well as assess technology and commercial readiness for the market. The Mercedes Team together with its partners tested the technology by operating and fuelling hydrogen fuel cell vehicles under real world conditions in varying climate terrain and driving conditions. Vehicle and infrastructure data was collected to monitor the progress toward the hydrogen vehicle and infrastructure performance targets of $2.00 to 3.00/gge hydrogen production cost and 2000-hour fuel cell durability. Finally to prepare the public for a hydrogen economy outreach activities were designed to promote awareness and acceptance of hydrogen technology. DTE BP and NextEnergy established hydrogen filling stations using multiple technologies for on-site hydrogen generation storage and dispensing. DTE established a hydrogen station in Southfield Michigan while NextEnergy and BP worked together to construct one hydrogen station in Detroit. BP constructed another fueling station in Burbank California and provided a full-time hydrogen trailer at San Francisco California and a hydrogen station located at Los Angeles International Airportmore.
Prospecting Stress Formed by Hydrogen or Isotope Diffused in Palladium Alloy Cathode
Oct 2018
Publication
The objective of this project is to take into account the mechanical constraints formed by diffusion of hydrogen or tritium in watertight palladium alloy cathode. To know the origin of these it was necessary to discriminating the damaging effects encountered. Effectively hydrogen and isotope induce deformation embrittlement stress corrosion cracking and cathodic corrosion in different regions of cathode. Palladium can be alloyed with silver or yttrium to favourably increase diffusion and reduce these constraints. Effects of electrochemical factors temperature cathode structure adsorbed transient complex of palladium and porous material support are given to estimate and to limit possible damage.
Hydrogen to Support Electricity Systems
Jan 2020
Publication
The Department of Environment Land Water and Planning (DELWP) engaged GHD Advisory and ACIL Allen to assess the roles opportunities and challenges that hydrogen might play in the future to support Australia’s power systems and to determine whether the relevant electricity system regulatory frameworks are compatible with both enabling an industrial-scale1 hydrogen production capability and the use of hydrogen for power generation.
You can read the full report on the website of the Australian Government at this link
You can read the full report on the website of the Australian Government at this link
No more items...