Publications
The Microstructure Study of the Hydrogenated Titanium Specimens Tested at High Temperature Creep for Long-term Tensile Strength
Feb 2020
Publication
Experimental tests of flat titanium samples at a temperature of 450 °C stretched with a constant force up to destruction were carried out. Titanium samples were hydrogenated in the Moscow Aviation Institute laboratory to a hydrogen content of 0.1 % 0.3 % and 0.6 % by weight of the specimen and then tested in the laboratory of Lomonosov Moscow State University. From the experiments the time to failure the localization time of the deformations and the stress distribution along the longitudinal coordinate of the sample over time were obtained. A metallographic study was conducted and the phase composition was investigated in Moscow Aviation Institute. The effect of hydrogen on long-term strength mechanical characteristics and phase composition has been elucidated.
A Techno-Economic Analysis of Solar Hydrogen Production by Electrolysis in the North of Chile and the Case of Exportation from Atacama Desert to Japan
Aug 2020
Publication
H2 production from solar electricity in the region of the Atacama Desert – Chile – has been identified as strategical for global hydrogen exportation. In this study the full supply chain of solar hydrogen has been investigated for 2018 and projected to scenarios for 2025-2030. Multi-year hourly electrical profiles data have been used from real operating PV plants and simulated Concentrated Solar Power “CSP” plants with Thermal Energy Storage “TES” as well as commercial electricity Power Purchase Agreement “PPA” prices reported in the Chilean electricity market were considered. The Levelized Cost of Hydrogen “LCOH” of each production pathway is calculated by a case-sensitive techno-economic MATLAB/Simulink model for utility scale (multi-MW) alkaline and PEM electrolyser technologies. Successively different distribution storage and transportation configurations are evaluated based on the 2025 Japanese case study according to the declared H2 demand. Transport in the form of liquefied hydrogen (LH2) and via ammonia (NH3) carrier is compared from the port of Antofagasta CL to the port of Osaka JP.
Evaluation of Decarbonization Technologies for ASEAN Countries via an Integrated Assessment Tool
May 2022
Publication
A new assessment tool for evaluating decarbonization technologies that considers each technology’s sustainability security affordability readiness and impact for a specific country is proposed. This tool is applied to a set of decarbonization technologies for the power transport and industry sectors for the ten Southeast Asian countries that constitute ASEAN. This results in a list of the most promising decarbonization technologies as well as the remaining issues that need more research and development. This study reveals several common themes for ASEAN’s decarbonization. First carbon capture and storage (CCS) is a key technology for large-scale CO2 emission. Second for countries that rely heavily on coal for power generation switching to gas can halve their CO2 emission in the power sector and should be given high priority. Third hydropower and bioenergy both have high potential for the majority of ASEAN countries if their sustainability issues can be resolved satisfactorily. Fourth replacing conventional vehicles by electric vehicles is the overarching theme in the road transport sector but will result in increased demand for electricity. In the medium to long term the use of hydrogen for marine fuel and biofuels for aviation fuel are preferred solutions for the marine and aviation transport sectors. Fifth for the industry sector installing CCS in industrial plants should be given priority but replacing fossil fuels by blue hydrogen for high-temperature heating is the preferred long-term solution.
Editorial—Special Issue “Catalysis for Energy Production”
Jun 2021
Publication
The rapid increase in anthropogenic greenhouse gas concentrations in the last several decades means that the effects of climate change are fast becoming the familiar horsemen of a planetary apocalypse. Catalysis one of the pillars of the chemical and petrochemical industries will play a critical role in the effort to reduce the flow of greenhouse gases into the atmosphere. This Special Issue is timely as it provides a collection of high-quality manuscripts in a diverse range of topics which include the production of green hydrogen via water electrolysis the steam reforming of ethanol propane or glycerol the dry reforming of methane and the autothermal reforming of diesel surrogate fuel. The topic of the transformation of biomass waste to chemicals is also well represented as is the tackling of CO2 emissions via novel utilization technologies. The Editors are grateful to all authors for their valuable contributions and confident that this Special Issue will prove valuable to scholars university professors and students alike.
Regulatory Mapping for Future Fuels
May 2020
Publication
Australia’s gas infrastructure is currently subject to regulations that were designed for a natural-gas only network system. Future Fuels CRC has released a full report and database of regulations to share exactly how Australia’s current gas regulations can be modernised to enable hydrogen biomethane and other potential future fuels.
This research thoroughly assessed Australia’s current regulatory framework to identify the regulations that will require modernisation to facilitate the use of future fuels within Australia’s energy networks and align them with the goals of Australia’s National Hydrogen Strategy. This study builds on the initial work completed as part of Australia’s National Hydrogen Strategy and creates a comprehensive regulatory map of relevant legislation across the natural gas production and supply chain which may be impacted by the addition of future fuels such as hydrogen and biomethane.
The research was delivered by RMIT University of Sydney and GPA Engineering supported by our industry and government participants APA APGA ATCO AusNet Services ENA Energy Safe Victoria Jemena and the South Australian Government.
The study’s report summarises the key issues and the direction of possible solutions. The study also created a database that holds details of legislation by state and territory as well as Commonwealth legislation and applicable Australian standards. The database is designed to be readily updated as these regulations continue to evolve.
The Australian energy industry and regulators benefit from this study by ensuring that any regulatory changes required for future fuels are identified early so that appropriate regulatory changes can be initiated and delivered. These changes will enable the many highly-regulated pilot projects happening across Australia to expand and develop under a modernised and effective regulatory environment.
You can find the full report on the Future Fuels CRC website here
This research thoroughly assessed Australia’s current regulatory framework to identify the regulations that will require modernisation to facilitate the use of future fuels within Australia’s energy networks and align them with the goals of Australia’s National Hydrogen Strategy. This study builds on the initial work completed as part of Australia’s National Hydrogen Strategy and creates a comprehensive regulatory map of relevant legislation across the natural gas production and supply chain which may be impacted by the addition of future fuels such as hydrogen and biomethane.
The research was delivered by RMIT University of Sydney and GPA Engineering supported by our industry and government participants APA APGA ATCO AusNet Services ENA Energy Safe Victoria Jemena and the South Australian Government.
The study’s report summarises the key issues and the direction of possible solutions. The study also created a database that holds details of legislation by state and territory as well as Commonwealth legislation and applicable Australian standards. The database is designed to be readily updated as these regulations continue to evolve.
The Australian energy industry and regulators benefit from this study by ensuring that any regulatory changes required for future fuels are identified early so that appropriate regulatory changes can be initiated and delivered. These changes will enable the many highly-regulated pilot projects happening across Australia to expand and develop under a modernised and effective regulatory environment.
You can find the full report on the Future Fuels CRC website here
Metastable Metal Hydrides for Hydrogen Storage
Oct 2012
Publication
The possibility of using hydrogen as a reliable energy carrier for both stationary and mobile applications has gained renewed interest in recent years due to improvements in high temperature fuel cells and a reduction in hydrogen production costs. However a number of challenges remain and new media are needed that are capable of safely storing hydrogen with high gravimetric and volumetric densities. Metal hydrides and complex metal hydrides offer some hope of overcoming these challenges; however many of the high capacity “reversible” hydrides exhibit a large endothermic decomposition enthalpy making it difficult to release the hydrogen at low temperatures. On the other hand the metastable hydrides are characterized by a low reaction enthalpy and a decomposition reaction that is thermodynamically favorable under ambient conditions. The rapid low temperature hydrogen evolution rates that can be achieved with these materials offer much promise for mobile PEM fuel cell applications. However a critical challenge exists to develop new methods to regenerate these hydrides directly from the reactants and hydrogen gas. This spotlight paper presents an overview of some of the metastable metal hydrides for hydrogen storage and a few new approaches being investigated to address the key challenges associated with these materials.
The Role of CCS in Meeting Climate Policy Targets
Oct 2017
Publication
Carbon capture and storage (CCS) refers to a set of technologies that may offer the potential for large-scale removal of CO2 emissions from a range of processes – potentially including the generation of electricity and heat industrial processes and the production of hydrogen and synthetic fuels. CCS has both proponents and opponents. Like other emerging low carbon technologies CCS is not without risks or uncertainties and there are various challenges that would need to be overcome if it were to be widely deployed. Policy makers’ decisions as to whether to pursue CCS should be based on a judgement as to whether the risks and uncertainties associated with attempting to deploy CCS outweigh the risks of not having it available as part of a portfolio of mitigation options in future years.
The full report can be found on the Global CSS Institute website at this link
The full report can be found on the Global CSS Institute website at this link
Biogas: Pathways to 2030
Mar 2021
Publication
Humans directly or indirectly generate over 105 billion tonnes of organic wastes globally each year all of which release harmful methane and other greenhouse gas emissions directly into the atmosphere as they decompose. These organic wastes include food waste sewage and garden wastes food and drink processing wastes and farm and agricultural wastes. Today only 2% of these are treated and recycled.
By simply managing these important bioresources more effectively we can cut global Greenhouse Gas (GHG) emissions by 10% by 2030. This report maps out how the global biogas industry can enable countries to deliver a 10% reduction in global GHG emissions by 2030. The pathways put humanity back on track to deliver by 2030 on the ambitions of both the Paris Agreement and UN Sustainable Development Goals (SDGs).
The report and the executive summary can be downloaded at this link
By simply managing these important bioresources more effectively we can cut global Greenhouse Gas (GHG) emissions by 10% by 2030. This report maps out how the global biogas industry can enable countries to deliver a 10% reduction in global GHG emissions by 2030. The pathways put humanity back on track to deliver by 2030 on the ambitions of both the Paris Agreement and UN Sustainable Development Goals (SDGs).
The report and the executive summary can be downloaded at this link
Effect of Cementite on the Hydrogen Diffusion/Trap Characteristics of 2.25Cr-1Mo-0.25V Steel with and without Annealing
May 2018
Publication
Hydrogen embrittlement (HE) is a critical issue that affects the reliability of hydrogenation reactors. The hydrogen diffusivity/trap characteristics of 2.25Cr-1Mo-0.25V steel are important parameters mainly used to study the HE mechanism of steel alloys. In this work the hydrogen diffusivity/trap characteristics of heat-treated (annealed) and untreated 2.25Cr-1Mo-0.25V steel were studied using an electrochemical permeation method. The microstructures of both 2.25Cr-1Mo-0.25V steels were investigated by metallurgical microscopy. The effect of cementite on the hydrogen diffusivity/trap mechanisms was studied using thermodynamics-based and Lennard–Jones potential theories. The results revealed that the cementite located at the grain boundaries and at the interfaces of lath ferrite served as a kind of hydrogen trap (i.e. an irreversible hydrogen trap). In addition hydrogen was transported from ferrite to cementite via up-hill diffusion thereby supporting the hypothesis of cementite acting as a hydrogen trap.
Hydrogen Assisted Macrodelamination in Gas Lateral Pipe
Jul 2016
Publication
Hydrogen assisted macrodelamination in the pipe elbows of 40-year exploited lateral pipelines located behind the compressor station was studied. The crack on the external surface of the pipe elbow was revealed. Macrodelamination was occurred in the steel being influenced by the joined action of working loads and hydrogen absorbed by metal during long-term operation. The causes of the material degradation were investigated by non-destructive testing using ultrasound thickness meter observing microstructure hydrostatic pressure testing and mechanical properties testing of pipe steel.<br/>Intensive degradation of steel primarily essential reduction of plasticity was revealed. The degradation degree of the pipe elbow steel was higher than of the straight pipe steel regardless of a section was tensioned or compressed. Basing on the tensile tests carried out on cylindrical smooth and notched specimens from the pipe elbow steel it was established that the plasticity of the damaged steel could be measured correctly only on the specimens with a circular notch due to concentration of deformation in the cross section location only. The limitations in using elongation and reduction in area for characterisation of plasticity of the pipe steel with extensive delamination were defined. The diagnostic features of macrodelamination namely an abnormal thickness meter readings and a sharp decrease in hardness and plasticity of the pipe elbow steel were established.
Physicochemical Properties of Proton-conducting SmNiO3 Epitaxial Films
Mar 2019
Publication
Proton conducting SmNiO3 (SNO) thin films were grown on (001) LaAlO3 substrates for systematically investigating the proton transport properties. X-ray Diffraction and Atomic Force Microscopy studies reveal that the as-grown SNO thin films have good single crystallinity and smooth surface morphology. The electrical conductivity measurements in air indicate a peak at 473 K in the temperature dependence of the resistance of the SNO films probably due to oxygen loss on heating. A Metal-Insulator-Transition occurs at 373 K for the films after annealing at 873 K in air. In a hydrogen atmosphere (3% H2/97% N2) an anomalous peak in the resistance is found at 685 K on the first heating cycle. Electrochemical Impedance Spectroscopy studies as a function of temperature indicate that the SNO films have a high ionic conductivity (0.030 S/cm at 773 K) in a hydrogen atmosphere. The activation energy for proton conductivity was determined to be 0.23 eV at 473–773 K and 0.37 eV at 773–973 K respectively. These findings demonstrate that SNO thin films have good proton conductivity and are good candidate electrolytes for low temperature proton-conducting Solid Oxide Fuel Cells.
Thermodynamic Analysis of a Regenerative Brayton Cycle Using H2, CH4 and H2/CH4 Blends as Fuel
Feb 2022
Publication
Considering a simple regenerative Brayton cycle the impact of using different fuel blends containing a variable volumetric percentage of hydrogen in methane was analysed. Due to the potential of hydrogen combustion in gas turbines to reduce the overall CO2 emissions and the dependency on natural gas further research is needed to understand the impact on the overall thermodynamic cycle. For that purpose a qualitative thermodynamic analysis was carried out to assess the exergetic and energetic efficiencies of the cycle as well as the irreversibilities associated to a subsystem. A single step reaction was considered in the hypothesis of complete combustion of a generic H2/CH4 mixture where the volumetric H2 percentage was represented by fH2 which was varied from 0 to 1 defining the amount of hydrogen in the fuel mixture. Energy and entropy balances were solved through the Engineering Equation Solver (EES) code. Results showed that global exergetic and energetic efficiencies increased by 5% and 2% respectively varying fH2 from 0 to 1. Higher hydrogen percentages resulted in lower exergy destruction in the chamber despite the higher air-excess levels. It was also observed that higher values of fH2 led to lower fuel mass flow rates in the chamber showing that hydrogen can still be competitive even though its cost per unit mass is twice that of natural gas.
Electrochemical and Stress Corrosion Mechanism of Submarine Pipeline in Simulated Seawater in Presence of Different Alternating Current Densities
Jun 2018
Publication
In this study electrochemical measurements immersion tests and slow strain rate tensile (SSRT) tests were applied to investigate the electrochemical and stress corrosion cracking (SCC) behavior of X70 steel in simulated seawater with the interference of different alternating current (AC) densities. The results indicate that AC significantly strengthens the cathodic reaction especially the oxygen reduction reaction. Simultaneously hydrogen evolution reaction occurs when the limiting diffusion current density of oxygen reaches and thus icorr sharply increases with the increase in AC density. Additionally when AC is imposed the X70 steel exhibits higher SCC susceptibility in the simulated seawater and the susceptibility increases with the increasing AC density. The SCC mechanism is controlled by both anodic dissolution (AD) and hydrogen embrittlement (HE) with the interference of AC.
Origin of the Catalytic Activity at Graphite Electrodes in Vanadium Flow Batteries
Jun 2021
Publication
For many electrochemical devices that use carbon-based materials such as electrolyzers supercapacitors and batteries oxygen functional groups (OFGs) are considered essential to facilitate electron transfer. Researchers implement surface-active OFGs to improve the electrocatalytic properties of graphite felt electrodes in vanadium flow batteries. Herein we show that graphitic defects and not OFGs are responsible for lowering the activation energy barrier and thus enhance the charge transfer properties. This is proven by a thermal deoxygenation procedure in which specific OFGs are removed before electrochemical cycling. The electronic and microstructural changes associated with deoxygenation are studied by quasi in situ X-ray photoelectron and Raman spectroscopy. The removal of oxygen groups at basal and edge planes improves the activity by introducing new active edge sites and carbon vacancies. OFGs hinder the charge transfer at the graphite–electrolyte interface. This is further proven by modifying the sp2 plane of graphite felt electrodes with oxygen-containing pyrene derivatives. The electrochemical evolution of OFGs and graphitic defects are studied during polarization and long-term cycling conditions. The hypothesis of increased activity caused by OFGs was refuted and hydrogenated graphitic edge sites were identified as the true reason for this increase.
Australian and Global Hydrogen Demand Growth Scenario Analysis
Nov 2019
Publication
Deloitte was commissioned by the National Hydrogen Taskforce established by the COAG Energy Council to undertake an Australian and Global Growth Scenario Analysis. Deloitte analysed the current global hydrogen industry its development and growth potential and how Australia can position itself to best capitalise on the newly forming industry.
To conceptualise the possibilities for Australia Deloitte created scenarios to model the realm of possibilities for Australia out to 2050 focusing on identifying the scope and distribution of economic and environmental costs and benefits from Australian hydrogen industry development. This work will aid in analysing the opportunities and challenges to hydrogen industry development in Australia and the actions needed to overcome barriers to industry growth manage risks and best drive industry development.
The full report is available on the Deloitte website at this link
To conceptualise the possibilities for Australia Deloitte created scenarios to model the realm of possibilities for Australia out to 2050 focusing on identifying the scope and distribution of economic and environmental costs and benefits from Australian hydrogen industry development. This work will aid in analysing the opportunities and challenges to hydrogen industry development in Australia and the actions needed to overcome barriers to industry growth manage risks and best drive industry development.
The full report is available on the Deloitte website at this link
Hydrogen Embrittlement Mechanism in Fatigue Behavior of Austenitic and Martensitic Stainless Steels
May 2018
Publication
In the present study the influence of hydrogen on the fatigue behavior of the high strength martensitic stainless steel X3CrNiMo13-4 and the metastable austenitic stainless steels X2Crni19-11 with various nickel contents was examined in the low and high cycle fatigue regime. The focus of the investigations were the changes in the mechanisms of short crack propagation. Experiments in laboratory air with uncharged and precharged specimen and uncharged specimen in pressurized hydrogen were carried out. The aim of the ongoing investigation was to determine and quantitatively describe the predominant processes of hydrogen embrittlement and their influence on the short fatigue crack morphology and crack growth rate. In addition simulations were carried out on the short fatigue crack growth in order to develop a detailed insight into the hydrogen embrittlement mechanisms relevant for cyclic loading conditions. It was found that a lower nickel content and a higher martensite content of the samples led to a higher susceptibility to hydrogen embrittlement. In addition crack propagation and crack path could be simulated well with the simulation model.
Study on Flake Formation Behavior and Its Influence Factors in Cr5 Steel
Apr 2018
Publication
A flake is a crack that is induced by trapped hydrogen within steel. To study its formation mechanism previous studies mostly focused on the formation process and magnitude of hydrogen pressure in hydrogen traps such as cavities and cracks. However according to recent studies the hydrogen leads to the decline of the mechanical properties of steel which is known as hydrogen embrittlement is another reason for flake formation. In addition the phenomenon of stress induced hydrogen uphill diffusion should not be neglected. All of the three behaviors are at work simultaneously. In order to further explore the formation mechanism of flakes in steel the process of flake initiation and growth were studied with the following three coupling factors: trap hydrogen pressure hydrogen embrittlement and stress induced hydrogen re-distribution. The analysis model was established using the finite element method and a crack whose radius is 0.5 mm was set in its center. The cohesive method and Bilinear Traction Separate Law (BTSL) were used to address the coupling effect. The results show that trap hydrogen pressure is the main driving force for flake formation. After the high hydrogen pressure was generated around the trap a stress field formed. In addition the trap is the center of stress concentration. Then hydrogen is concentrated in a distribution around this trap and most of the steel mechanical properties are reduced. The trap size is a key factor for defining the critical hydrogen content for flake formation and propagation. However when the trap size exceeds the specified value the critical hydrogen content does not change any more. As for the crack whose radius is 0.5 mm the critical hydrogen content of Cr5VMo steel is 2.2 ppm which is much closer to the maximum safe hydrogen concentration of 2.0 ppm used in China. The work presented in this article increases our understanding of flake formation and propagation mechanisms in steel.
Reliability of Liquid Organic Hydrogen Carrier-based Energy Storage in a Mobility Applications
Jan 2020
Publication
Liquid organic hydrogen carriers (LOHC) are a technology that allows storing hy-drogen in a safe and dense manner by reversible chemical conversion. They consti-tute a very promising option for energy storage transport and release combined withelectric power generation by fuel cells in large-scale applications like trains. In orderto establish trains running on LOHC it is mandatory to ensure the reliability of thesystem. This study evaluates various system configurations concerning reliabilityand resilience. The fault tree analysis method has been used to quantify the prob-ability of failure. The S-P matrix was applied to assess the different failure modes incontext of severity as well as their probability. The MTTF of the system can be morethan doubled by introducing single redundancy for the fuel cell and the reactor whilemore than two redundant components diminish the positive effect on reliability dueto higher complexity. It is estimated that the systems full functionality is available formore than 97% of its operating time.
Experimental and Numerical Study of Low Temperature Methane Steam Reforming for Hydrogen Production
Dec 2017
Publication
Low temperature methane steam reforming for hydrogen production using experimental developed Ni/Al2O3 catalysts is studied both experimentally and numerically. The catalytic activity measurements were performed at a temperature range of 500–700 ◦C with steam to carbon ratio (S/C) of 2 and 3 under atmospheric pressure conditions. A mathematical analysis to evaluate the reaction feasibility at all different conditions that have been applied by using chemical equilibrium with applications (CEA) software and in addition a mathematical model focused on the kinetics and the thermodynamics of the reforming reaction is introduced and applied using a commercial finite element analysis software (COMSOL Multiphysics 5.0). The experimental results were employed to validate the extracted simulation data based on the yields of the produced H2 CO2 and CO at different temperatures. A maximum hydrogen yield of 2.7 mol/mol-CH4 is achieved at 700 ◦C and S/C of 2 and 3. The stability of the 10%Ni/Al2O3 catalyst shows that the catalyst is prone to deactivation as supported by Thermogravimetric Analysis TGA results.
The Deltah Lab, a New Multidisciplinary European Facility to Support the H2 Distribution & Storage Economy
Apr 2021
Publication
The target for European decarburization encourages the use of renewable energy sources and H2 is considered the link in the global energy system transformation. So research studies are numerous but only few facilities can test materials and components for H2 storage. This work offers a brief review of H2 storage methods and presents the preliminary results obtained in a new facility. Slow strain rate and fatigue life tests were performed in H2 at 80 MPa on specimens and a tank of AISI 4145 respectively. Besides the storage capacity at 30 MPa of a solid-state system they were evaluated on kg scale by adsorption test. The results have shown the H2 influence on mechanical properties of the steel. The adsorption test showed a gain of 26% at 12 MPa in H2 storage with respect to the empty condition. All samples have been characterized by complementary techniques in order to connect the H2 effect with material properties.
No more items...