Publications
A Review on Industrial Perspectives and Challenges on Material, Manufacturing, Design and Development of Compressed Hydrogen Storage Tanks for the Transportation Sector
Jul 2022
Publication
Hydrogen fuel cell technology is securing a place in the future of advanced mobility and the energy revolution as engineers explore multiple paths in the quest for decarbonization. The feasibility of hydrogen-based fuel cell vehicles particularly relies on the development of safe lightweight and cost-competitive solutions for hydrogen storage. After the demonstration of hundreds of prototype vehicles today commercial hydrogen tanks are in the first stages of market introduction adopting configurations that use composite materials. However production rates remain low and costs high. This paper intends to provide an insight into the evolving scenario of solutions for hydrogen storage in the transportation sector. Current applications in different sectors of transport are covered focusing on their individual requirements. Furthermore this work addresses the efforts to produce economically attractive composite tanks discussing the challenges surrounding material choices and manufacturing practices as well as cutting-edge trends pursued by research and development teams. Key issues in the design and analysis of hydrogen tanks are also discussed. Finally testing and certification requirements are debated once they play a vital role in industry acceptance.
Progress and Challenges in Multi-stack Fuel Cell System for High Power Applications: Architecture and Energy Management
Jan 2023
Publication
With the development of fuel cells multi-stack fuel cell system (MFCS) for high power application has shown tremendous development potential owing to their obvious advantages including high efficiency durability reliability and pollution-free. Accordingly the state-of-the-art of MFCS is summarized and analyzed to advance its research. Firstly the MFCS applications are presented in high-power scenarios especially in transportation applications. Then to further investigate the MFCS MFCS including hydrogen and air subsystem thermal and water subsystem multi-stack architecture and prognostics and health monitoring are reviewed. It is noted that prognostics and health monitoring are investigated rarely in MFCS compared with previous research. In addition the efficiency and durability of MFCS are not only related to the application field and design principle but also the energy management strategy (EMS). The reason is that the EMS is crucial for lifespan cost and efficiency in the multi-stack fuel cell system. Finally the challenge and development potential of MFCS is proposed to provide insights and guidelines for future research.
Effect of Heat Transfer through the Release of Pipe on Simulations of Cryogenic Hydrogen Jet Fires and Hazard Distances
Sep 2021
Publication
Jet flames originated by cryo-compressed ignited hydrogen releases can cause life-threatening conditions in their surroundings. Validated models are needed to accurately predict thermal hazards from a jet fire. Numerical simulations of cryogenic hydrogen flow in the release pipe are performed to assess the effect of heat transfer through the pipe walls on jet parameters. Notional nozzle exit diameter is calculated based on the simulated real nozzle parameters and used in CFD simulations as a boundary condition to model jet fires. The CFD model was previously validated against experiments with vertical cryogenic hydrogen jet fires with release pressures up to 0.5 MPa (abs) release diameter 1.25 mm and temperatures as low as 50 K. This study validates the CFD model in a wider domain of experimental release conditions - horizontal cryogenic jets at exhaust pipe temperature 80 K pressure up to 2 MPa abs and release diameters up to 4 mm. Simulation results are compared against experimentally measured parameters as hydrogen mass flow rate flame length and radiative heat flux at several locations from the jet fire. The CFD model reproduces well experiments with reasonable engineering accuracy. Jet fire hazard distances established using three different criteria - temperature thermal radiation and thermal dose - are compared and discussed based on CFD simulation results.
Non-Precious Electrodes for Practical Alkaline Water Electrolysis
Apr 2019
Publication
Water electrolysis is a promising approach to hydrogen production from renewable energy sources. Alkaline water electrolyzers allow using non-noble and low-cost materials. An analysis of common assumptions and experimental conditions (low concentrations low temperature low current densities and short-term experiments) found in the literature is reported. The steps to estimate the reaction overpotentials for hydrogen and oxygen reactions are reported and discussed. The results of some of the most investigated electrocatalysts namely from the iron group elements (iron nickel and cobalt) and chromium are reported. Past findings and recent progress in the development of efficient anode and cathode materials appropriate for large-scale water electrolysis are presented. The experimental work is done involving the direct-current electrolysis of highly concentrated potassium hydroxide solutions at temperatures between 30 and 100 ◦C which are closer to industrial applications than what is usually found in literature. Stable cell components and a good performance was achieved using Raney nickel as a cathode and stainless steel 316L as an anode by means of a monopolar cell at 75 ◦C which ran for one month at 300 mA cm−2 . Finally the proposed catalysts showed a total kinetic overpotential of about 550 mV at 75 ◦C and 1 A cm−2.
Numerical Simulation on Hydrogen Leakage and Dispersion Behavior in Hydrogen Energy Infrastructures
Sep 2021
Publication
Unexpected hydrogen leakage may occur in the production storage transportation and utilization of hydrogen. The lower flammability limit (LFL) for the hydrogen is 4% in air. The combustion and explosion of hydrogen-air mixture poses potential hazards to personnel and property. In this study unintended release of hydrogen from a hydrogen fuel cell forklift vehicle inside a enclosed warehouse is simulated by fireFoam which is an LES Navier-Stokes CFD solver. The simulation results are verified by experimental data. The variation of hydrogen concentration with time and the isosurface of hydrogen concentration of 4% vol. are given. Furthermore the leakage of hydrogen from a storage tanks in a hydrogen refueling station is simulated and the evolution of the isosurface of hydrogen concentration of 4% vol. is given which provides a quantitative guidence for determination the hazardous area after the leakage of hydrogen.
Deep Reinforcement Learning Based Energy Management Strategy for Fuel Cell/Battery/Supercapacitor Powered Electric Vehicle
Sep 2022
Publication
Vehicles using a single fuel cell as a power source often have problems such as slow response and inability to recover braking energy. Therefore the current automobile market is mainly dominated by fuel cell hybrid vehicles. In this study the fuel cell hybrid commercial vehicle is taken as the research object and a fuel cell/ battery/supercapacitor energy topology is proposed and an energy management strategy based on a doubledelay deep deterministic policy gradient is designed for this topological structure. This strategy takes fuel cell hydrogen consumption fuel cell life loss and battery life loss as the optimization goals in which supercapacitors play the role of coordinating the power output of the fuel cell and the battery providing more optimization ranges for the optimization of fuel cells and batteries. Compared with the deep deterministic policy gradient strategy (DDPG) and the nonlinear programming algorithm strategy this strategy has reduced hydrogen consumption level fuel cell loss level and battery loss level which greatly improves the economy and service life of the power system. The proposed EMS is based on the TD3 algorithm in deep reinforcement learning and simultaneously optimizes a number of indicators which is beneficial to prolong the service life of the power system.
Time-phased Geospatial Siting Analysis for Renewable Hydrogen Production Facilities under a Billion-kilogram-scale Build-out using California as an Example
Jun 2022
Publication
For renewable hydrogen to be a significant part of the future decarbonized energy and transportation sectors a rapid and massive build-out of hydrogen production facilities will be needed. This paper describes a geospatial modeling approach to identifying the optimal locations for renewable hydrogen fuel production throughout the state of California based on least-cost generation and transport. This is accomplished by (1) estimating and projecting California renewable hydrogen demand scenarios through the year 2050 (2) identifying feedstock locations (3) excluding areas not suitable for development and (4) selecting optimal site locations using commercial geospatial modeling software. The findings indicate that there is a need for hundreds of new renewable hydrogen production facilities in the decades preceding the year 2050. In selecting sites for development feedstock availability by technology type is the driving factor."
A Comprehensive Review of Electrochemical Hybrid Power Supply Systems and Intelligent Energy Managements for Unmanned Aerial Vehicles in Public Services
Jun 2022
Publication
The electric unmanned aerial vehicles (UAVs) are rapidly growing due to their abilities to perform some difficult or dangerous tasks as well as many public services including real-time monitoring wireless coverage search and rescue wildlife surveys and precision agriculture. However the electrochemical power supply system of UAV is a critical issue in terms of its energy/power densities and lifetime for service endurance. In this paper the current power supply systems used in UAVs are comprehensively reviewed and analyzed on the existing power configurations and the energy management systems. It is identified that a single type of electrochemical power source is not enough to support a UAV to achieve a long-haul flight; hence a hybrid power system architecture is necessary. To make use of the advantages of each type of power source to increase the endurance and achieve good performance of the UAVs the hybrid systems containing two or three types of power sources (fuel cell battery solar cell and supercapacitor) have to be developed. In this regard the selection of an appropriate hybrid power structure with the optimized energy management system is critical for the efficient operation of a UAV. It is found that the data-driven models with artificial intelligence (AI) are promising in intelligent energy management. This paper can provide insights and guidelines for future research and development into the design and fabrication of the advanced UAV power systems.
Greedy Energy Management Strategy and Sizing Method for a Stand-alone Microgrid with Hydrogen Storage
Nov 2021
Publication
This paper presents a greedy energy management strategy based on model predictive control (MPC) for a stand-alone microgrid powered by photovoltaic (PV) arrays and equipped with batteries and a power-to-hydrogen-to-power (P2H2P) system. The proposed strategy consists of a day-ahead plan and an intra-day dispatch method. In the planning stage the sequence of plan is to determine the power of each storage device for a certain period which is initially generated under the principle that PV arrays have the highest priority followed by the batteries and finally the P2H2P system using short-term forecast data of both load and solar irradiance. The initial plan can be optimized with objectives of harvesting more PV generation in storage and minimizing unmet load through rescheduling P2H2P system and batteries. Three parameters including reserved capacity of batteries predischarge coefficient of fuel cell (FC) and greedy coefficient of electrolyzer (EL) are introduced during plan optimization process to enhance the robustness against forecast errors. In the dispatching stage the energy dispatch is subject to the scheduled plan and the operational constraints. To demonstrate the capabilities of the proposed strategy a case study is performed for a hotel with a mean power consumption of 1567 kWh/day based on the system configuration optimized by HOMER software in comparison with the load following (LF) strategy and the global optimum solution solved by mixed integer linear programing (MILP). The simulation results show that the annual unmet load using the proposed strategy is reduced from 13434 kWh to 2370 kWh which is 528 kWh lower than the optimum solution. Meanwhile the cost of energy (COE) of the proposed strategy decreases by US$ 0.08/kWh compared to the LF strategy and is equal to the optimum solution. Finally the performance of configuration optimization employing genetic algorithm (GA) under different energy management strategies is investigated with the objective function of minimizing the net present cost (NPC). Furthermore the robustness of the proposed strategy is studied. The results show that the proposed strategy gives an NPC and COE of US$ 2.4 million (Mn) and US$ 0.43/kWh which are 23.4% and 9.7% lower than those of systems utilizing the SoC-based strategy and the LF strategy respectively. The results also demonstrate that the strategy is robust against forecast errors especially for overestimated forecast models.
Use of Sustainable Fuels in Aviation—A Review
Mar 2022
Publication
As the push for carbon-neutral transport continues the aviation sector is facing increasing pressure to reduce its carbon footprint. Furthermore commercial air traffic is expected to resume the continuous growth experienced until the pandemic highlighting the need for reduced emissions. The use of alternative fuels plays a key role in achieving future emission goals while also lowering the dependency on fossil fuels. The so-called sustainable aviation fuels (SAF) which encompass bio and synthetic fuels are currently the most viable option but hydrogen is also being considered as a long-term solution. The present paper reviews the production methods logistical and technological barriers and potential for future mass implementation of these alternative fuels. In general biofuels currently present higher technological readiness levels than other alternatives. Sustainable mass production faces critical feedstock-related challenges that synthetic fuels together with other solutions can overcome. All conventional fuel replacements though with different scopes will be important in meeting long-term goals. Government support will play an important role in accelerating and facilitating the transition towards sustainable aviation.
A Bird’s-Eye View on Polymer-Based Hydrogen Carriers for Mobile Applications
Oct 2022
Publication
Globally reducing CO2 emissions is an urgent priority. The hydrogen economy is a system that offers long-term solutions for a secure energy future and the CO2 crisis. From hydrogen production to consumption storing systems are the foundation of a viable hydrogen economy. Each step has been the topic of intense research for decades; however the development of a viable safe and efficient strategy for the storage of hydrogen remains the most challenging one. Storing hydrogen in polymer-based carriers can realize a more compact and much safer approach that does not require high pressure and cryogenic temperature with the potential to reach the targets determined by the United States Department of Energy. This review highlights an outline of the major polymeric material groups that are capable of storing and releasing hydrogen reversibly. According to the hydrogen storage results there is no optimal hydrogen storage system for all stationary and automotive applications so far. Additionally a comparison is made between different polymeric carriers and relevant solid-state hydrogen carriers to better understand the amount of hydrogen that can be stored and released realistically.
Pore-scale Dynamics for Underground Porous Media Hydrogen Storage
Mar 2022
Publication
Underground hydrogen storage (UHS) has been launched as a catalyst to the low-carbon energy transitions. The limited understanding of the subsurface processes is a major obstacle for rapid and widespread UHS implementation. We use microfluidics to experimentally describe pore-scale multiphase hydrogen flow in an aquifer storage scenario. In a series of drainage-imbibition experiments we report the effect of capillary number on hydrogen saturations displacement/trapping mechanisms dissolution kinetics and contact angle hysteresis. We find that the hydrogen saturation after injection (drainage) increases with increasing capillary number. During hydrogen withdrawal (imbibition) two distinct mechanisms control the displacement and residual trapping – I1 and I2 imbibition mechanisms respectively. Local hydrogen dissolution kinetics show dependency on injection rate and hydrogen cluster size. Dissolved global hydrogen concentration corresponds up to 28 % of reported hydrogen solubility indicating pore-scale non-equilibrium dissolution. Contact angles show hysteresis and vary between 17 and 56°. Our results provide key UHS experimental data to improve understanding of hydrogen multiphase flow behavior.
Present and Projected Developments in Hydrogen Production: A Technological Review
Mar 2022
Publication
Energy supplies that are safe environmentally friendly dependable and cost-effective are important for society's long-term growth and improved living standards though political social and economic barriers may inhibit their availability. Constantly increasing energy demand is induced by substantial population growth and economic development putting an increasing strain on fossil fuel management and sustainability which account for a major portion of this rising energy demand and moreover creates difficulties because of greenhouse gas emissions growth and the depletion of resources. Such impediments necessitate a global shift away from traditional energy sources and toward renewables. Aside from its traditional role is viewed as a promising energy vector and is gaining international attention as a promising fuel path as it provides numerous benefits in use case scenarios and unlike other synthesized carbon-based fuels could be carbon-free or perhaps even negative on a life-cycle criterion. Hydrogen ( ) is one of the most significant chemical substances on earth and can be obtained as molecular dihydrogen through various techniques from both non-renewable and renewable sources. The drive of this paper is to deliver a technological overview of hydrogen production methods. The major challenges development and research priorities and potential prospects for production was discussed.
What Is the Policy Effect of Coupling the Green Hydrogen Market, National Carbon Trading Market and Electricity Market?
Oct 2022
Publication
Green hydrogen has become the key to social low-carbon transformation and is fully linked to zero carbon emissions. The carbon emissions trading market is a policy tool used to control carbon emissions using a market-oriented mechanism. Building a modular carbon trading center for the hydrogen energy industry would greatly promote the meeting of climate targets. Based on this a “green hydrogen market—national carbon trading market–electricity market” coupling mechanism is designed. Then the “green hydrogen market—national carbon trading market–electricity market” mechanism is modeled and simulated using system dynamics. The results are as follows: First coupling between the green hydrogen market carbon trading market and electricity market can be realized through green hydrogen certification and carbon quota trading. It is found that the coupling model is feasible through simulation. Second simulation of the basic scenario finds that multiple-market coupling can stimulate an increase in carbon price the control of thermal power generation and an increase in green hydrogen production. Finally the proportion of the green hydrogen certification the elimination mechanism of outdated units and the quota auction mechanism will help to form a carbon pricing mechanism. This study enriches the green hydrogen trading model and establishes a multiple-market linkage mechanism.
Current and Future role of Haber–Bosch Ammonia in a Carbon-free Energy Landscape
Dec 2019
Publication
The future of a carbon-free society relies on the alignment of the intermittent production of renewable energy with our continuous and increasing energy demands. Long-term energy storage in molecules with high energy content and density such as ammonia can act as a buffer versus short-term storage (e.g. batteries). In this paper we demonstrate that the Haber–Bosch ammonia synthesis loop can indeed enable a second ammonia revolution as energy vector by replacing the CO2 intensive methane-fed process with hydrogen produced by water splitting using renewable electricity. These modifications demand a redefinition of the conventional Haber–Bosch process with a new optimisation beyond the current one which was driven by cheap and abundant natural gas and relaxed environmental concerns during the last century. Indeed the switch to electrical energy as fuel and feedstock to replace fossil fuels (e.g. methane) will lead to dramatic energy efficiency improvements through the use of high efficiency electrical motors and complete elimination of direct CO2 emissions. Despite the technical feasibility of the electrically-driven Haber–Bosch ammonia the question still remains whether such revolution will take place. We reveal that its success relies on two factors: increased energy efficiency and the development of small-scale distributed and agile processes that can align to the geographically isolated and intermittent renewable energy sources. The former requires not only higher electrolyser efficiencies for hydrogen production but also a holistic approach to the ammonia synthesis loop with the replacement of the condensation separation step by alternative technologies such as absorption and catalysis development. Such innovations will open the door to moderate pressure systems the development and deployment of novel ammonia synthesis catalysts and even more importantly the opportunity for integration of reaction and separation steps to overcome equilibrium limitations. When realised green ammonia will reshape the current energy landscape by directly replacing fossil fuels in transportation heating electricity etc. and as done in the last century food.
Climate Action: Prospects of Green Hydrogen in Africa
Feb 2022
Publication
Africa is rich with an abundance of renewable energy sources that can help meeting the continent’s demand for electricity to promote economic growth and meet global targets for CO2 reduction. Green Hydrogen is considered one of the most promising technologies for energy generation transportation and storage. In this paper the prospects of green hydrogen production potential in Africa are investigated along with its usage for future implementation. Moreover an overview of the benefits of shifting to green Hydrogen technology is presented. The current African infrastructure and policies are tested against future targets and goals. Furthermore the study embraces a detailed theoretical environmental technological and economic assessment putting the local energy demands into consideration.
Experimental Study on the Effects of Hydrogen Injection Strategy on the Combustion and Emissions of a Hydrogen/Gasoline Dual Fuel SI Engine under Lean Burn Condition
Oct 2022
Publication
Hydrogen addition can improve the performance and extend the lean burn limit of gasoline engines. Different hydrogen injection strategies lead to different types of hydrogen mixture distribution (HMD) which affects the engine performance. Therefore the present study experimentally investigated the effects of hydrogen injection strategy on the combustion and emissions of a hydrogen/gasoline dual-fuel port-injection engine under lean-burn conditions. Four different hydrogen injection strategies were explored: hydrogen direct injection (HDI) forming a stratified hydrogen mixture distribution (SHMD); hydrogen intake port injection forming a premixed hydrogen mixture distribution (PHMD); split hydrogen direct injection (SHDI) forming a partially premixed hydrogen mixture distribution (PPHMD); and no hydrogen addition (NHMD). The results showed that 20% hydrogen addition could extend the lean burn limit from 1.5 to 2.8. With the increase in the excess air ratio the optimum HMD changed from PPHMD to SHMD. The maximum brake thermal efficiency was obtained with an excess air ratio of 1.5 with PPHMD. The coefficient of variation (COV) with NHMD was higher than that with hydrogen addition since the hydrogen enhanced the stability of ignition and combustion. The engine presented the lowest emissions with PHMD. There were almost no carbon monoxide (CO) and nitrogen oxides (NOx) emissions when the excess air ratio was respectively more than 1.4 and 2.0.
Hydrogen Production Possibilities in Slovak Republic
Mar 2022
Publication
Slovak Republic is a member of the European Union and is a part of the European energy market. Although Slovakia contributes only marginally to global emissions there is an effort to meet obligations from the Paris climate agreement to reduce greenhouse gases. As in many countries power industry emissions dominate Slovakia’s emissions output but are partly affected and lowered by the share of nuclear energy. The transition from fossil fuels to renewables is supported by the government and practical steps have been taken to promote the wide use of renewable resources such as biomass or solar energy. Another step in this transition process is the support of new technologies that use hydrogen as the primary energy source. The European Union widely supports this effort and is looking for possible sources for hydrogen generation. One of the main renewable resources is hydropower which is already used in the Slovak Republic. This article presents the current situation of the energy market in Slovakia and possible developments for future hydrogen generation.
Exergy Estimate of a Novel Hybrid Solar-gas Power and Organic Rankine Cycle-based Hydrogen-production System
Mar 2022
Publication
This study proposes a novel hybrid solar-gas power and hydrogen-production system which is comprised by the solar tower thermal system gas-steam turbine combined cycle and organic Rankine cycle-based hydrogen-production system. Based on the Ebsilon code the operation processes of the hybrid system are simulated. The results show that the output power and electric efficiency of the hybrid system are 103.9 MW and 41.3% and the daily hydrogen output is 62.2 kg. The operation simulation results of the hybrid system reveal that the gas-steam combined cycle and solar island can both achieve stable operations and the power generation section and hydrogen-production device can both work effectively which means the hybrid system is technically feasible. The exergy estimate results of the hybrid system show that the combustion chamber and solar receiver have the two largest exergy destructions which are 56.5 MW and 45.3 MW. That means the performances of the two components can be further improved. For the hydrogen-production system the exergy destructions of the proton exchange membrane electrolyzer turbine condenser and evaporator of the organic Rankine cycle are 0.156 MW 0.111 MW 2.338 MW and 1.891 MW and the corresponding exergy efficiencies are 51.2% 92.6% 80.7% and 79.5% respectively.
A Rational Approach to the Ecological Transition in the Cruise Market: Technologies and Design Compromises for the Fuel Switch
Jan 2023
Publication
Supporting policies to achieve a green revolution and ecological transition is a global trend. Although the maritime transport of goods and people can rightly be counted among the least polluting sectors much can be done to further reduce its environmental footprint. Moreover to boost the ecological transition of vessels a whole series of international regulations and national laws have been promulgated. Among these the most impactful on both design and operational management of ships concern the containment of air-polluting emissions in terms of GHG NOx SOx and PM. To address this challenge it might seem that many technologies already successfully used in other transport sectors could be applied. However the peculiar characteristics of ships make this statement not entirely true. In fact technological solutions recently adopted for example in the automotive sector must deal with the large size of vessels and the consequent large amount of energy necessary for their operation. In this paper with reference to the case study of a medium/large-sized passenger cruise ship the use of different fuels (LNG ammonia hydrogen) and technologies (internal combustion engines fuel cells) for propulsion and energy generation on board will be compared. By imposing the design constraint of not modifying the payload and the speed of the ship the criticalities linked to the use of one fuel rather than another will be highlighted. The current limits of application of some fuels will be made evident with reference to the state of maturity of the relevant technologies. Furthermore the operational consequences in terms of autonomy reduction will be presented. The obtained results underline the necessity for shipowners and shipbuilders to reflect on the compromises required by the challenges of the ecological transition which will force them to choose between reducing payload or reducing performance.
Hydrogen Research: Technology First, Society Second?
Jul 2021
Publication
Hydrogen futures are in the making right in front of our eyes and will determine socio-ecological path dependencies for decades to come. However expertise on the societal effects of the hydrogen transition is in its infancy. Future energy research needs to include the social sciences humanities and interdisciplinary studies: energy cultures have to be examined as well as power relations and anticipation processes since the need for (green) hydrogen is likely to require a massive expansion of renewable energy plants.
Hydrogen-powered Refrigeration System for Environmentally Friendly Transport and Delivery in the Food Supply Chain
Mar 2023
Publication
Urban population and the trend towards online commerce leads to an increase in delivery solution in cities. The growth of the transport sector is very harmful to the environment being responsible for approximately 40% of greenhouse gas emissions in the European Union. The problem is aggravated when transporting perishable foodstuffs as the vehicle propulsion engine (VPE) must power not only the vehicle but also the refrigeration unit. This means that the VPE must be running continuously both on the road and stationary (during delivery) as the cold chain must be preserved. The result is costly (high fuel consumption) and harmful to the environment. At present refrigerated transport does not support full-electric solutions due to the high energy consumption required which motivates the work presented in this article. It presents a turnkey solution of a hydrogen-powered refrigeration system (HPRS) to be integrated into standard light trucks and vans for short-distance food transport and delivery. The proposed solution combines an air-cooled polymer electrolyte membrane fuel cell (PEMFC) a lithium-ion battery and low-weight pressurised hydrogen cylinders to minimise cost and increase autonomy and energy density. In addition for its implementation and integration all the acquisition power and control electronics necessary for its correct management have been developed. Similarly an energy management system (EMS) has been developed to ensure continuity and safety in the operation of the electrical system during the working day while maximizing both the available output power and lifetime of the PEMFC. Experimental results on a real refrigerated light truck provide more than 4 h of autonomy in intensive intercity driving profiles which can be increased if necessary by simply increasing the pressure of the stored hydrogen from the current 200 bar to whatever is required. The correct operation of the entire HPRS has been experimentally validated in terms of functionality autonomy and safety; with fuel savings of more than 10% and more than 3650 kg of CO2/ year avoided.
Dynamic Quality Tracking of Natural Gas and Hydrogen Mixture in a Portion of Natural Gas Grid
Aug 2015
Publication
Direct injection of alternative fuels (biomethane hydrogen) in the natural gas grid appears to be a promising solution to reach environmental objectives of CO2 emission reduction in the current energy scenario. This approach is justified by the large amount of biogas producible which can be upgraded to biomethane; while another proposed solution to increase renewable energy sources exploitation lies in producing hydrogen from excess wind energy followed by injection in the natural gas grid. Nevertheless compliance with composition limits and quality constraints in the resulting natural gas mixture has to be analysed in both stationary and dynamic operations tracking the gas quality downstream the injection point of the alternative fuels. A model was developed to simulate unsteady operation of a portion of gas grid dealing with realistic industrial and residential consumptions concentrated in offtake points. Two case studies were investigated focusing on the comparison between different amounts of hydrogen injection in the pure natural gas flow yielding composition flow rate and pressure profiles. The analysis shows how imposed quality thresholds can be respected although the hydrogen fraction within the natural gas mixture is highly sensitive to the profile and size of the loads connected to the gas pipeline.
Can Industrial-Scale Solar Hydrogen Supplied from Commodity Technologies Be Cost Competitive by 2030?
Sep 2020
Publication
Expanding decarbonization efforts beyond the power sector are contingent on cost-effective production of energy carriers like H2 with near-zero life-cycle carbon emissions. Here we assess the levelized cost of continuous H2 supply (95% availability) at industrial-scale quantities (100 tonnes/day) in 2030 from integrating commodity technologies for solar photovoltaics electrolysis and energy storage. Our approach relies on modeling the least-cost plant design and operation that optimize component sizes while adhering to hourly solar availability production requirements and component inter-temporal operating constraints. We apply the model to study H2 production costs spanning the continental United States and through extensive sensitivity analysis explore system configurations that can achieve $2.5/kg levelized costs or less for a range of plausible 2030 technology projections at high-irradiance locations. Notably we identify potential sites and system configurations where PV-electrolytic H2 could substitute natural gas-derived H2 at avoided CO2 costs (%$120/ton) similar to the cost of deploying carbon capture and sequestration.
Hydrogen Permeation Behavior of QP1180 High Strength Steel in Simulated Coastal Atmosphere
Mar 2022
Publication
The hydrogen permeation behavior of QP1180 high strength steel for automobile was studied in simulate coastal atmosphere environment by using Devanathan-Stachurski dual electrolytic cell the cyclic corrosion test (CCT) thermal desorption spectrometry (TDS) and electrochemical measurement methods. The current density of hydrogen permeation generally increases with reducing the relative humidity from 95% to 50% and periodically changes in the CCT process. These mainly result from the evolution of corrosion and rust layer on the specimen surface with the atmospheric humidity and intermittent salt spraying. The contents of diffusible hydrogen and non-diffusible hydrogen in the steel enlarge slightly in the CCT process. The plastic deformation about 11.3% results in much higher diffusible hydrogen content in steel but noticeably reduces the hydrogen permeation current and almost has no influence on the non-diffusible hydrogen content. The combination of double electrolytic cell and standard cyclic corrosion test can effectively characterize the hydrogen permeation of high strength steel in atmospheric service environments.
Climate Action for the Shipping Industry: Some Perspectives on the Role of Nuclear Power in Maritime Decarbonization
Feb 2023
Publication
The shipping industry is a major enabler of globalization trade commerce and human welfare. But it is still heavily served by fossil fuels which make it one of the foremost greenhouse gas emitting sectors operational today. It is also one of the hardest to abate segments of the transport industry. As part of the economy-wide climate change mitigation and adaptation efforts it is necessary to consider a low carbon energy transition for this segment as well. This study examines the potential role of nuclear power and cogeneration towards greening this sector and identifies the associated techno-commercial and policy challenges associated with the transition. Quantitative estimates of the economics and investments associated with some of the possible routes are also presented. Alternatives such as nuclear-powered ships along commercial maritime trading routes ships working on nuclear derived green hydrogen ammonia or other sustainable power fuels will enable not only decarbonization of the shipping industry but also allow further diversification of the nuclear industry through non-electric applications of nuclear power and new sector coupling opportunities. In the run-up to the UNFCCC-COP28 meeting in 2023 in UAE nuclear equipped nations heavily engaged in and dependent on maritime trade and commerce should definitely consider nuclear driven decarbonization of shipping and some of the options presented here as part of their climate action strategies.
CFD Modeling on Natural and Forced Ventilation During Hydrogen Leaks in a Pressure Regulator Process of a Residential Area
Mar 2022
Publication
Hydrogen fuel cells have been installed in more than 100 facilities and numerous homes in Ulsan hydrogen town in the Republic of Korea. Despite the advantages of hydrogen accidents can still occur near residential areas. Thus appropriate risk mitigation plans should be established. In this study a computational fluid dynamics (CFD) model of natural and forced ventilation is presented as an emergency response to hydrogen leakages in pressure regulator equipment housing. The CFD model is developed and investigated using three vent configurations: UP CROSS and UP-DOWN. The simulation results indicate that the UPDOWN configuration achieves the lowest internal hydrogen concentration out of the three. In addition the relationship between the total vent size and internal hydrogen concentration is determined. A vent size of 12% of the floor area has the lowest hydrogen concentration. The use of nitrogen for forced ventilation during emergencies is proposed to ensure that the hydrogen concentration of the released gas is less than one-fourth of the lower flammability 2 / 25 limit of hydrogen. Compared to natural ventilation the time required to reach safe conditions is decreased when nitrogen forced ventilation is used.
Promising Technology Analysis and Patent Roadmap Development in the Hydrogen Supply Chain
Oct 2022
Publication
Hydrogen energy one of the energy sources of the future represents a substantial issue which affects the industries and national technologies that will develop in the future. In order to utilize hydrogen energy a hydrogen supply chain is required so that hydrogen can be processed and transported to vehicles. It is helpful for technology and policy development to analyze technologies necessary to charge the hydrogen energy generated into vehicles through the supply chain to discover technologies with high potential for future development. The purpose of this paper is to identify promising technologies required in storing transporting and charging vehicles generated by the hydrogen fuel supply chain. Afterward the promising technologies identified are expected to help researchers set a direction in researching technologies and developing related policies. Therefore we provide technology information that can be used promisingly in the future so that researchers in the related field can utilize it effectively. In this paper data analysis is performed using related patents and research papers for technical analysis. Promising technologies that will be the core of the hydrogen fuel supply chain in the future were identified using the published patents and research paper database (DB) in Korea the United States Europe China and Japan. A text mining technique was applied to preprocess data and then a generic topographic map (GTM) analysis discovered promising technologies. Then a technology roadmap was identified by analyzing the promising technology derived from patents and research papers in parallel. In this study through the analysis of patents and research papers related to the hydrogen supply chain the development status of hydrogen storage/transport/charging technology was analyzed and promising technologies with high potential for future development were found. The technology roadmap derived from the analysis can help researchers in the field of hydrogen research establish policies and research technologies.
Proposed Approach to Calculate Safety Distances for Hydrogen Fuelling Station in Italy
Sep 2021
Publication
In 2021 only 6 hydrogen fuelling station have been built in Italy of which 3 are not operational and only 1 is open to the public while the rest are built in private or industrial areas. While fuelling station which store more than 5000 kg of hydrogen are subjected to the “Seveso Directive” the permitting procedure for refuelling station which store less than the threshold is supervised by the fire brigade command of the province where the station is built. Recently in the effort to easy the permitting procedure to establish new stations a Ministerial Decree was published in the official gazette of the Italian Republic which lists minimum safety features and safety distances that if respected guarantee the approval by the authority. Nevertheless the imposed distances are such that the land required to build the station constitute a barrier rather than a facilitation. Exploiting the possibility introduced by the Decree to calculate safety distances following a Fire Safety Engineering approach a method is proposed for calculation of safety distances. The present paper presents the Italian regulation and describes an approach to calculate the safety distances including an example applied on the dispenser.
Low Temperature Autoignition of Diesel Fuel Under Dual Operation with Hydrogen and Hydrogen-carriers
Mar 2022
Publication
While electrification of light duty vehicles is becoming a real solution to abate local pollutant as well as greenhouse gases emission heavy duty applications (such as long distance freight and maritime transport) will keep requiring fuel-based propulsion systems. In these sectors dominated by compression ignition engines research on alternative biofuels and new combustion modes is still highly necessary. Dual-fuel combustion appears as a very promising concept to replace conventional diesel fuel by sustainable ones. Among the latter hydrogen-derived fuels (the so-called electrofuels or e-fuels) are maybe the most interesting. This work addresses the effect of partial substitution of diesel fuel by hydrogen and hydrogen-carriers (ammonia and methane) on the autoignition process under low temperature conditions. Tests were carried out in a constant volume combustion chamber at different temperatures (535 600 and 650 ◦C) and pressures (11 16 and 21 bar). While the cool flames timing and intensity was only slightly affected by the low reactivity fuel energy content the main ignition was delayed this effect being much more noticeable for ammonia followed by hydrogen and finally methane. Kinetic simulations showed a clear competition for active radicals between both fuels (diesel and low reactivity fuel). The combustion duration also increased with the hydrogen or hydrogen-carrier content which greatly points to the need of modifications in the injection strategy of compression ignition engines operating under dual mode. A correlation was proposed for estimating the autoignition delay time for dual-fuel lean combustion at low temperature.
Pathways for Low-Carbon Transition of the Steel Industry—A Swedish Case Study
Jul 2020
Publication
The concept of techno-economic pathways is used to investigate the potential implementation of CO2 abatement measures over time towards zero-emission steelmaking in Sweden. The following mitigation measures are investigated and combined in three pathways: top gas recycling blast furnace (TGRBF); carbon capture and storage (CCS); substitution of pulverized coal injection (PCI) with biomass; hydrogen direct reduction of iron ore (H-DR); and electric arc furnace (EAF) where fossil fuels are replaced with biomass. The results show that CCS in combination with biomass substitution in the blast furnace and a replacement primary steel production plant with EAF with biomass (Pathway 1) yield CO2 emission reductions of 83% in 2045 compared to CO2 emissions with current steel process configurations. Electrification of the primary steel production in terms of H-DR/EAF process (Pathway 2) could result in almost fossil-free steel production and Sweden could achieve a 10% reduction in total CO2 emissions. Finally (Pathway 3) we show that increased production of hot briquetted iron pellets (HBI) could lead to decarbonization of the steel industry outside Sweden assuming that the exported HBI will be converted via EAF and the receiving country has a decarbonized power sector.
Case Studies of Energy Storage with Fuel Cells and Batteries for Stationary and Mobile Applications
Mar 2017
Publication
In this paper hydrogen coupled with fuel cells and lithium-ion batteries are considered as alternative energy storage methods. Their application on a stationary system (i.e. energy storage for a family house) and a mobile system (i.e. an unmanned aerial vehicle) will be investigated. The stationary systems designed for off-grid applications were sized for photovoltaic energy production in the area of Turin Italy to provide daily energy of 10.25 kWh. The mobile systems to be used for high crane inspection were sized to have a flying range of 120 min one being equipped with a Li-ion battery and the other with a proton-exchange membrane fuel cell. The systems were compared from an economical point of view and a life cycle assessment was performed to identify the main contributors to the environmental impact. From a commercial point of view the fuel cell and the electrolyzer being niche products result in being more expensive with respect to the Li-ion batteries. On the other hand the life cycle assessment (LCA) results show the lower burdens of both technologies.
Tactical Depressurization of Hydrogen and CNG Tanks Using Rifles and Other Projectiles
Sep 2021
Publication
After a tank has been exposed to crash violence or an external fire it might in some situations be judged dangerous to move the vessel due to the risk of a sudden tank rupture. Therefore Swedish rescue services have a long history of using rifles to penetrate and therefore depressurize the vessels. In this paper some first steps on providing guidance on the selection of ammunition and required stand back distance are presented. The results indicate that a stand back distance on the order of 100 m is required and that the standard 7.62 Ball should only be used for composite CNG-tanks while stronger ammunitions are needed for steel and composite hydrogen tanks. However more research is required to provide a more solid scientific underpinning of the tactic guidance.
An MILP Approach for the Optimal Design of Renewable Battery-hydrogen Energy Systems for Off-grid Insular Communities
Jul 2021
Publication
The optimal sizing of stand-alone renewable H2-based microgrids requires the load demand to be reliably satisfied by means of local renewable energy supported by a hybrid battery/hydrogen storage unit while minimizing the system costs. However this task is challenging because of the high number of components that have to be installed and operated. In this work an MILP optimization framework has been developed and applied to the off-grid village of Ginostra (on the Stromboli island Italy) which is a good example of several other insular sites throughout the Mediterranean area. A year-long time horizon was considered to model the seasonal storage which is necessary for off-grid areas that wish to achieve energy independence by relying on local renewable sources. The degradation costs of batteries and H2-based devices were included in the objective function of the optimization problem i.e. the annual cost of the system. Efficiency and investment cost curves were considered for the electrolyzer and fuel cell components in order to obtain a more detailed and precise techno-economic estimation. The design optimization was also performed with the inclusion of a general demand response program (DRP) to assess its impact on the sizing results. Moreover the effectiveness of the proposed MILP-based method was tested by comparing it with a more traditional approach based on a metaheuristic algorithm for the optimal sizing complemented with ruled-based strategies for the system operation. Thanks to its longer-term storage capability hydrogen is required for the optimal system configuration in order to reach energy self-sufficiency. Finally considering the possibility of load deferral the electricity generation cost can be reduced to an extent that depends on the amount of load that is allowed to participate in the DRP scheme. This cost reduction is mainly due to the decreased capacity of the battery storage system.
Modelling of Hydrogen-blended Dual-fuel Combustion using Flamelet-generated Manifold and Preferential Diffusion Effects
Oct 2022
Publication
In the present study Reynolds-Averaged Navier-Stokes simulations together with a novel flamelet generated manifold (FGM) hybrid combustion model incorporating preferential diffusion effects is utilised for the investigation of a hydrogen-blended diesel-hydrogen dual-fuel engine combustion process with high hydrogen energy share. The FGM hybrid combustion model was developed by coupling laminar flamelet databases obtained from diffusion flamelets and premixed flamelets. The model employed three control variables namely mixture fraction reaction progress variable and enthalpy. The preferential diffusion effects were included in the laminar flamelet calculations and in the diffusion terms in the transport equations of the control variables. The resulting model is then validated against an experimental diesel-hydrogen dual-fuel combustion engine. The results show that the FGM hybrid combustion model incorporating preferential diffusion effects in the flame chemistry and transport equations yields better predictions with good accuracy for the in-cylinder characteristics. The inclusion of preferential diffusion effects in the flame chemistry and transport equations was found to predict well several characteristics of the diesel-hydrogen dual-fuel combustion process: 1) ignition delay 2) start and end of combustion 3) faster flame propagation and quicker burning rate of hydrogen 4) high temperature combustion due to highly reactive nature of hydrogen radicals 5) peak values of the heat release rate due to high temperature combustion of the partially premixed pilot fuel spray with entrained hydrogen/air and then background hydrogen-air premixed mixture. The comparison between diesel-hydrogen dual-fuel combustion and diesel only combustion shows early start of combustion longer ignition delay time higher flame temperature and NOx emissions for dual-fuel combustion compared to diesel only combustion.
Top Level Design and Evaluation of Advanced Low/zero Carbon Fuel Ships Power Technology
Oct 2022
Publication
The greenhouse effect has always been a problem troubling various country many fields have made corresponding technological improvements and regulations and the shipping industry is no exception. In the shipping field governments are actively looking for viable low-carbon/zero-carbon alternative fuels to reduce their dependence on traditional fossil fuels. This paper discusses the challenges and opportunities of replacing fuel oil with clean energies. Firstly the alternative fuels that have been proposed frequently and widely in recent years are summarized and their sources adaptive power systems and relationships among fuels are systematically summarized. Secondly when evaluating the advantages and future development trends of each energy the environmental economic and safety factors are digitally quantified. Results show that the analysis focuses on the efficiency and economics of carbon reduction. Hydrogen ammonia and nuclear energy show advantages in environmental quantification factors while LNG biofuels and alcohols show benefits in economic quantification factors considering calorific value and fuel price and LNG and alcohols received high scores in safety assessment. Finally the study predicts the evolution and development trend of ship fuels in the future and evaluates the most suitable energy for ship development in different periods.
Numerical Redesign of 100kw MGT Combustor for 100% H2 Fueling
Jan 2014
Publication
The use of hydrogen as energy carrier in a low emission microturbine could be an interesting option for renewable energy storage distributed generation and combined heat & power. However the hydrogen using in gas turbine is limited by the NOx emissions and the difficulty to operate safely. CFD simulations represent a powerful and mature tool to perform detailed 3-D investigation for the development of a prototype before carrying out an experimental analysis. This paper describes the CFD supported redesign of the Turbec T100 microturbine combustion chamber natural gas-fired to allow the operation on 100% hydrogen.
Operation of Power-to-X-Related Processes Based on Advanced Data-Driven Methods: A Comprehensive Review
Oct 2022
Publication
This study is a systematic analysis of selected research articles about power-to-X (P2X)- related processes. The relevance of this resides in the fact that most of the world’s energy is produced using fossil fuels which has led to a huge amount of greenhouse gas emissions that are the source of global warming. One of the most supported actions against such a phenomenon is to employ renewable energy resources some of which are intermittent such as solar and wind. This brings the need for large-scale longer-period energy storage solutions. In this sense the P2X process chain could play this role: renewable energy can be converted into storable hydrogen chemicals and fuels via electrolysis and subsequent synthesis with CO2. The main contribution of this study is to provide a systematic articulation of advanced data-driven methods and latest technologies such as the Internet of Things (IoT) big data analytics and machine learning for the efficient operation of P2X-related processes. We summarize our findings into different working architectures and illustrate them with a numerical result that employs a machine learning model using historic data to define operational parameters for a given P2X process.
Recent Insights into Low-Surface-Area Catalysts for Hydrogen Production from Ammonia
Nov 2022
Publication
A potential method of storing and transporting hydrogen safely in a cost-effective and practical way involves the utilization of molecules that contain hydrogen in their structure such as ammonia. Because of its high hydrogen content and carbon-free molecular structure as well as the maturity of related technology (easy liquefaction) ammonia has gained attention as a “hydrogen carrier” for the generation of energy. Unfortunately hydrogen production from ammonia requires an efficient catalyst to achieve high conversion at low reaction temperatures. Recently very attractive results have been obtained with low-surface-area materials. This review paper is focused on summarizing and comparing recent advances in novel economic and active catalysts for this reaction paying particular attention to materials with low surface area such as silicon carbide (SiC) and perovskites (ABO3 structure). The effects of the supports the active phase and the addition of promoters in such low-porosity materials have been analyzed in detail. Advances in adequate catalytic systems (including support and active metal) benefit the perspective of ammonia as a hydrogen carrier for the decarbonization of the energy sector and accelerate the “hydrogen economy”.
Economically Viable Large-scale Hydrogen Liquefaction
Mar 2016
Publication
The liquid hydrogen demand particularly driven by clean energy applications will rise in the near future. As industrial large scale liquefiers will play a major role within the hydrogen supply chain production capacity will have to increase by a multiple of today’s typical sizes. The main goal is to reduce the total cost of ownership for these plants by increasing energy efficiency with innovative and simple process designs optimized in capital expenditure. New concepts must ensure a manageable plant complexity and flexible operability. In the phase of process development and selection a dimensioning of key equipment for large scale liquefiers such as turbines and compressors as well as heat exchangers must be performed iteratively to ensure technological feasibility and maturity. Further critical aspects related to hydrogen liquefaction e.g. fluid properties ortho-para hydrogen conversion and coldbox configuration must be analysed in detail. This paper provides an overview on the approach challenges and preliminary results in the development of efficient as well as economically viable concepts for large-scale hydrogen liquefaction.
Improved Engine Performance and Significantly Reduced Greenhouse Gas Emissions by Fumigating Hydrogen in a Diesel Engine
Oct 2022
Publication
A thermodynamic model was developed for combustion performance and emissions with a reference diesel fuel a 10 vol% methanol blend with 90 vol% diesel a 10 vol% ethanol with 90 vol% diesel and a 4% hydrogen fumigating in the inlet port along with diesel direct injection. The diesel and two alcohol blends (10% methanol–90% diesel and 10% ethanol–90% diesel) was directly injected into the cylinder while hydrogen was fumigated at the inlet port. The model was developed by commercial GT-Suite software. Besides engine performance exergy and energy rates were estimated for the four fuels. Among the four fuels/fuel blends hydrogen fuel (4% fumigated hydrogen) shows the best performance in terms of exergy energy rates specific fuel consumption power and greenhouse gas emissions. Regarding greenhouse gases carbon dioxide was only considered in this investigation as it contributes to a significant detrimental effect on environmental pollution.
Investigation of Emission Characteristics and Lubrication Oil Properties in a Dual Diesel–Hydrogen Internal Combustion Engine
Apr 2022
Publication
Hydrogen is considered one of the main gaseous fuels due to its ability to improve thermal performance in diesel engines. However its influence on the characteristics of lubricating oil is generally ignored. Thus in the present investigation an analysis of the effect on the physical and chemical properties of lubricating oil with mixtures of diesel fuel–hydrogen was carried out and the environmental impacts of this type of mixture were assessed. The development of the research was carried out using a diesel engine under four torque conditions (80 Nm 120 Nm 160 Nm and 200 Nm) and three hydrogen gas flow conditions (0.75 lpm 1.00 lpm and 1.25 lpm). From the results it was possible to demonstrate that the presence of hydrogen caused decreases of 3.50% 6.79% and 4.42% in the emissions of CO HC and smoke opacity respectively. However hydrogen further decreased the viscosity of the lubricating oil by 26%. Additionally hydrogen gas produced increases of 17.7% 29.27% 21.95% and 27.41% in metallic components such as Fe Cu Al and Cr respectively. In general hydrogen favors the contamination and oxidation of lubricating oil which implies a greater wear of the engine components. Due to the significantly negative impact of hydrogen on the lubrication system it should be considered due to its influence on the economic and environmental cost during the engine’s life cycle.
Development Concept of Integrated Energy Network and Hydrogen Energy Industry Based on Hydrogen Production Using Surplus Hydropower
Apr 2020
Publication
The development of hydropower industry is progressing rapidly in China and the installed capacity and power generation are increasing year by year. However due to factors such as transmission channels and power grid peaking capacity hydropower consumption in some areas is facing greater pressure. As an excellent medium for energy interconnection hydrogen energy can play an important role in promoting hydropower consumption. This paper introduces the current status and trends of hydrogen energy development in major developed countries and China and analyzes the current status of China’s hydropower abandoned water. Based on the production of hydrogen using surplus hydropower in the Dadu River Basin in Sichuan an integrated energy network research plan including hydropower electrolytic hydrogen production storage and transportation hydrogen refueling and hydrogen-powered vehicles is proposed. At the same time the development concept of hydrogen energy industry including hydrogen energy source economy hydrogen energy industry ecosphere and hydrogen energy sky road in western Sichuan is also proposed.
The EU Green Deal (2022 ed.)
Jan 2023
Publication
In this report we focus on the fundamentals of energy and climate policy as reformulated in the EU Green Deal. The 2022 edition includes updates following the publication of the Fit for 55 Package and the EU Hydrogen and Decarbonised Gas Markets Package. The reader is guided through the landscape of EU climate and energy policy. Starting with the big picture of the foundations of energy and climate policy we then move to discussing in more detail European climate policy security of supply and energy networks. We continue with energy wholesale and retail markets and finish with a closer look at energy innovation. Each chapter is divided into several sections aiming to give the reader a broad overview of the areas of climate and energy policy that are impacted by the EU Green Deal. The references at the end of each section serve as suggestions for further reading on each topic.
Islanded Ammonia Power Systems: Technology Review & Conceptual Process Design
Aug 2019
Publication
Recent advances in technologies for the decentralized islanded ammonia economy are reviewed with an emphasis on feasibility for long-term practical implementation. The emphasis in this review is on storage systems in the size range of 1–10 MW. Alternatives for hydrogen production nitrogen production ammonia synthesis ammonia separation ammonia storage and ammonia combustion are compared and evaluated. A conceptual process design based on the optimization of temperature and pressure levels of existing and recently proposed technologies is presented for an islanded ammonia energy system. This process design consists of wind turbines and solar panels for electricity generation a battery for short-term energy storage an electrolyzer for hydrogen production a pressure swing adsorption unit for nitrogen production a novel ruthenium-based catalyst for ammonia synthesis a supported metal halide for ammonia separation and storage and an ammonia fueled proton-conducting solid oxide fuel cell for electricity generation. In a generic location in northern Europe it is possible to operate the islanded energy system at a round-trip efficiency of 61% and at a cost of about 0.30–0.35 € kWh−1 .
Smart Energy Management System: Design of a Smart Grid Test Bench for Educational Purposes
Apr 2022
Publication
The presented article aims to design an educational test bench setup for smart grids and renewable energies with multiple features and techniques used in a microgrid. The test bench is designed for students laboratory engineers and researchers which enables electrical microgrid system studies and testing of new advanced control algorithms to optimize the energy efficiency. The idea behind this work is to design hybrid energy sources such as wind power solar photovoltaic power hydroelectric power hydrogen energy and different types of energy storage systems such as batteries pumped storage and flywheel integrating different electrical loads. The user can visualize the state of the components of each emulated scenario through an open-source software that interacts and communicates using OPC Unified Architecture protocol. The researchers can test and validate new solutions to manage the energy behavior in the grid using machine learning and optimization algorithms integrated in the software in form of blocks that can be modified and improved and then simulate the results. A model-based system of engineering is provided which describes the different requirements and case studies of the designed test bench respecting the open-source software and the frugal innovation features in which there is use of low-cost hardware and open-source software. The users obtain the opportunity to add new sources and new loads change software platforms and communicate with other simulators and equipment. The students can understand the different features of smart grids such as defect classification energy forecasting energy optimization and basics of production transmission and consumption.
Impact of Polymers on Magnesium-Based Hydrogen Storage Systems
Jun 2022
Publication
In the present scenario much importance has been provided to hydrogen energy systems (HES) in the energy sector because of their clean and green behavior during utilization. The developments of novel techniques and materials have focused on overcoming the practical difficulties in the HES (production storage and utilization). Comparatively considerable attention needs to be provided in the hydrogen storage systems (HSS) because of physical-based storage (compressed gas cold/cryo compressed and liquid) issues such as low gravimetric/volumetric density storage conditions/parameters and safety. In material-based HSS a high amount of hydrogen can be effectively stored in materials via physical or chemical bonds. In different hydride materials Mg-based hydrides (Mg–H) showed considerable benefits such as low density hydrogen uptake and reversibility. However the inferior sorption kinetics and severe oxidation/contamination at exposure to air limit its benefits. There are numerous kinds of efforts like the inclusion of catalysts that have been made for Mg–H to alter the thermodynamic-related issues. Still those efforts do not overcome the oxidation/contamination-related issues. The developments of Mg–H encapsulated by gas-selective polymers can effectively and positively influence hydrogen sorption kinetics and prevent the Mg–H from contaminating (air and moisture). In this review the impact of different polymers (carboxymethyl cellulose polystyrene polyimide polypyrrole polyvinylpyrrolidone polyvinylidene fluoride polymethylpentene and poly(methyl methacrylate)) with Mg–H systems has been systematically reviewed. In polymer-encapsulated Mg–H the polymers act as a barrier for the reaction between Mg–H and O2/H2O selectively allowing the H2 gas and preventing the aggregation of hydride nanoparticles. Thus the H2 uptake amount and sorption kinetics improved considerably in Mg–H.
A Study of Thermoelectric Generation Coupled with Methanol Steam Reforming for Hydrogen Production
Nov 2022
Publication
Waste heat recovery was considered as a promising candidate for energy conservation and emission reduction. Methanol steam reforming was considered to be an effective means for hydrogen production because of its advantages. In this work a micro reactor was constructed and thermoelectric generation coupled with hydrogen production from methanol steam reforming was innovatively used to recycle waste heat which was simulated by hot air from a hot air gun. The waste heat was converted into electricity and hydrogen at the same time. The characteristic of thermoelectric generation coupled with methanol steam reforming was investigated. It was experimentally verified that both the hydrogen production rate and methanol conversion increased with the increasing inlet temperature but thermal efficiency increased firstly and then decreased with the increasing temperature. The methanol steam reforming could effectively maintain cold side temperature distribution of thermoelectric generation. In the case of the thermoelectric module (1) the highest temperature difference of 37 ◦C was determined and the maximum open circuit voltage of 2 V was observed. The highest methanol conversion of 64.26% was achieved at a space velocity of 0.98 h−1 when the temperature was 543 K comprehensively considering the CO content and thermal efficiency.
Offshore Wind and Hydrogen: Solving the Integration Challenge
Sep 2020
Publication
The combination of offshore wind and green hydrogen provides major opportunities for job creation economic growth and regional regeneration as well as attracting inward investment alongside delivering the emission reductions needed to achieve climate neutrality. In order to get to Net Zero emissions in 2050 the UK is likely to need a minimum of 75GW of offshore wind (OSW) and modelling of the energy system indicates that hydrogen will play a major role in integrating the high levels of OSW on the electricity grid.<br/><br/>Some of the key findings from report are listed below:<br/><br/>The UK has vast resources of offshore wind with the potential for over 600GW in UK waters and potentially up to 1000GW. This is well above the he figure of 75-100GW likely to be needed for UK electricity generation by 2050.<br/>The universities in the UK provide the underpinning science and engineering for electrolysers fuel cells and hydrogen and are home to world-leading capability in these areas.<br/>In order to achieve cost reduction and growing a significant manufacturing and export industry it will be crucial to develop green hydrogen in the next 5 years<br/>By 2050 green hydrogen can be cheaper than blue hydrogen. With accelerated deployment green hydrogen costs can be competitive with blue hydrogen by the eary 2030s.<br/>The combination of additional OSW deployment and electrolyser manufacture alone could generate over 120000 new jobs. These are are expected to be based mainly in manufacturing OSW-related activity shipping and mobility<br/>By 2050 it is estimated that the cumulative gross value added (GVA) from supply of electrolysers and additional OSW farm could be up to £320bn where the majority will come from exports of electrolysers to overseas markets.<br/>The report also calls for immediate government intervention and a new national strategy to support the creation of supply and demand in the new industry.<br/><br/>This study was jointly supported by the Offshore Wind Industry Council (OWIC) and ORE Catapult.
Effect of Anion Exchange Ionomer Content on Electrode Performance in AEM Water Electrolysis
Aug 2020
Publication
Anion exchange membrane water electrolysis (AEMWE) has acquired substantial consideration as a cost-effective hydrogen production technology. The anion ionomer content in the catalyst layers during hydrogen and oxygen evolution reaction (HER and OER) is of ultimate significance. Herein an in-situ half-cell analysis with reference electrodes was carried out for simultaneous potential measurements and identification of the influence of the anion exchange ionomer (AEI) content on anode and cathode performance. The measured half-cell potentials proved the influence of AEI content on the catalytic activity of HER and OER which was supported by the rotating disk electrode (RDE) measurements. Cathode overpotential of Ni/C was not negligible and more affected by the AEI content than anode with the optimized AEI content of 10 wt% while NiO anode OER overpotential was independent of the AEI content. For the same AEI content PGM catalysts showed higher electroactivity than Ni-based catalysts for HER and OER and the cathode catalyst's intrinsic activity is of high importance in the AEM electrolysis operation. Post-mortem analysis by SEM mapping of both AEI and catalyst distributions on the electrode surface showed the effect of AEI loading on the catalyst morphology which could be related to the electrode performance.
No more items...