Publications
AI Predictive Simulation for Low-Cost Hydrogen Production
Jul 2025
Publication
Green hydrogen produced through renewable-powered electrolysis has the potential to revolutionize energy systems; however its widespread adoption hinges on achieving competitive production costs. A critical challenge lies in optimising the hydrogen production process to address solar and wind energy’s high variability and intermittency. This paper explores the role of artificial intelligence (AI) in reducing and streamlining hydrogen production costs by enabling advanced process optimisation focusing on electricity cost management and system-wide efficiency improvements.
Evaluation of Factors for Adoption of Alternative-Fuel-Based Vehicles
Sep 2025
Publication
The transportation industry significantly contributes to greenhouse gas (GHG) emissions. Federal and provincial governments have implemented strategies to decrease dependence on gasoline and diesel fuels. This encompasses promoting the adoption of electric cars (EVs) and biofuel alternatives investing in renewable energy sources and enhancing public transit systems. There is a growing focus on enhancing infrastructure to facilitate active transportation modes like cycling and walking which provide the combined advantages of decreasing emissions and advancing public health. In this paper we propose a System Dynamics simulation model for evaluating factors for the adoption of alternative-fuel vehicles such as EVs biofuel vehicles bus bikes and hydrogen vehicles. Five factors— namely customer awareness government initiatives cost of vehicles cost of fuels and infrastructure developments—to increase the adoption of alternative-fuel vehicles are studied. Two scenarios are modeled: A baseline scenario that follows the existing trends in transportation (namely the use of gasoline vehicles) Scenario 1 which prioritizes greater adoption of electric vehicles (EVs) and biofuel-powered vehicles and Scenario 2 which prioritizes hydrogen fuel-based vehicles and improves biking culture. The simulation findings show that all scenarios achieve reductions in GHG emissions compared to the baseline with Scenario 2 showing the lowest emissions. The proposed work is useful for transport decision makers and municipal administrators in devising policies for reducing overall GHG emissions and this also aligns with Canada’s net zero goals.
Model Predictive Supervisory Control for Multi-stack Electrolyzers Using Multilinear Modeling
Oct 2025
Publication
Offshore green hydrogen production lacks of flexible and scalable supervisory control approaches for multistack electrolyzers raising the need for extendable and high-performance solutions. This work presents a two-stage nonlinear model predictive control (MPC) method. First an MPC stage generates a discrete on-off electrolyzer switching decision through algebraic relaxation of a Boolean signal. The second MPC stage receives the stack’s on-off operation decision and optimizes hydrogen production. This is a novel approach for solving a mixed-integer nonlinear program (MINP) in multi-stack electrolyzer control applications. In order to realize the MPC the advantages of the implicit multilinear time-invariant (iMTI) model class are exploited for the first time for proton exchange membrane (PEM) electrolyzer models. A modular flexible and scalable framework in MATLAB is built. The tensor based iMTI model in canonical polyadic (CP) decomposed form breaks the curse of dimensionality and enables effective model composition for electrolyzers. Simulation results show an appropriate multilinear model representation of the nonlinear system dynamics in the operation region. A sensitivity analysis identified three numeric factors as decisive for the effectiveness of the MPC approach. The classic rule-based control methods Daisy Chain and Equal serve as reference. Over two weeks and under a wind power input profile the MPC strategy performs better regarding the objective of hydrogen production compared to the Daisy Chain (4.60 %) and Equal (0.43 %) power distribution controllers. As a side effect of the optimization a convergence of the degradation states is observed.
Accurate Prediction of Green Hydrogen Production Based on Solid Oxide Electrolysis Cell via Soft Computing Algorithms
Oct 2025
Publication
The solid oxide electrolysis cell (SOEC) presents significant potential for transforming renewable energy into green hydrogen. Traditional modeling approaches however are constrained by their applicability to specific SOEC systems. This study aims to develop robust data-driven models that accurately capture the complex relationships between input and output parameters within the hydrogen production process. To achieve this advanced machine learning techniques were utilized including Random Forests (RFs) Convolutional Neural Networks (CNNs) Linear Regression Artificial Neural Networks (ANNs) Elastic Net Ridge and Lasso Regressions Decision Trees (DTs) Support Vector Machines (SVMs) k-Nearest Neighbors (KNN) Gradient Boosting Machines (GBMs) Extreme Gradient Boosting (XGBoost) Light Gradient Boosting Machines (LightGBM) CatBoost and Gaussian Process. These models were trained and validated using a dataset consisting of 351 data points with performance evaluated through various metrics and visual methods. The dataset’s suitability for model training was confirmed using the Monte Carlo outlier detection method. Results indicate that within the dataset and evaluation framework of this study ANNs CNNs Gradient Boosting and XGBoost models have demonstrated high accuracy and reliability achieving the largest R-squared scores and the smallest error metrics. Sensitivity analysis reveals that all input parameters significantly influence hydrogen production magnitude. Game-theoretic SHAP values underline current and cathode electrode conditions as critical factors. This research determines the performance of machine learning models particularly ANNs CNNs Gradient Boosting and XGBoost in predicting hydrogen production through the SOEC process. The outcomes of this paper can provide a certain reference for related research and applications in the hydrogen production field.
Multi-objective Optimal Scheduling of Islands Considering Offshore Hydrogen Production
Jul 2025
Publication
Ocean islands possess abundant renewable energy resources providing favorable conditions for developing offshore clean energy microgrids. However geographical isolation poses significant challenges for direct energy transfer between islands. Recent electrolysis and hydrogen storage technology advancements have created new opportunities for distributed energy utilization in these remote areas. This paper presents a low-carbon economic dispatch strategy designed explicitly for distant oceanic islands incorporating energy self-sufficiency rates and seasonal hydrogen storage (SHS). We propose a power supply model for offshore islands considering hydrogen production from offshore wind power. The proposed model minimizes operational and carbon emission costs while maximizing energy self-sufficiency. It considers the operational constraints of the island’s energy system the offshore transportation network the hydrogen storage infrastructure and the electricityhydrogen-transportation coupling of hydrogen storage (HS) and seasonal hydrogen storage (SHS) services. To optimize the dispatch process this study employs an improved Grey Wolf Optimizer (IGWO) combined with the Differential Evolution method to enhance population diversity and refine the position updating mechanism. Simulation results demonstrate that integrating HS and SHS effectively enhances energy self-sufficiency and reduces carbon emissions. For instance hydrogenation costs decreased by 21.4% after optimization and the peak-valley difference was reduced by 16%. These findings validate the feasibility and effectiveness of the proposed approach.
The Green Transition in Commercial Aviation
Aug 2025
Publication
This paper provides a comprehensive review of novel aviation technologies analyzing the advancements and challenges associated with the transition to sustainable air transport. The study explores three key pillars: unconventional aerodynamic configurations novel propulsion systems and advanced materials. Unconventional airframe architectures such as box-wing blended-wing-body and truss-braced wings demonstrate potential for improved aerostructural efficiency and reduced fuel consumption compared to traditional tube-and-wing designs. Aeropropulsive innovations as distributed propulsion boundary layer ingestion and advanced turbofan configurations are also promising in this regard. Significant progress in propulsion technologies including hybrid-electric hydrogen and extensive use of sustainable aviation fuels (SAF) plays a pivotal role in reducing air transport greenhouse gas emissions. However energy storage limitations and infrastructure constraints remain critical challenges and hence in the near future SAF could represent the most feasible solution. The introduction of advanced lightweight materials could further enhance aircraft overall performance. The results presented and discussed in this paper show that there is no a unique solution to the problem of the sustainability of air transport but a combination of all the novel technologies is necessary to achieve the ambitious environmental goals for the air transport of the future.
Hydrogen Microgrids to Facilitate the Clean Energy Transition in Remote, Northern Communities
Oct 2025
Publication
Most remote and northern communities rely on diesel for their electrical and thermal energy needs. Communities and governments are working toward diesel exit strategies but the role of hydrogen technologies has not been explored. These could serve both electrical and thermal demand reduce emissions and enhance energy security and community ownership. Here we determine the installed capacities costs hydrogen storage needs and water resource requirements of hydrogen microgrids across a large diverse sample of communities. We also compare the cost of hydrogen microgrids to that of diesel microgrids. Our results optimize resource deployment demonstrate how sub-components must operate to serve both demand types and yield insights on storage and resource needs. We find that hydrogen microgrids are cheaper in levelized cost terms than diesel systems in 28 of 37 communities investigated; if wind power capital costs escalate to CAD 20000/kW as recently seen in one project only 3 of the 37 communities net hydrogen microgrids that are cheaper than diesel variants. Hydrogen storage plays a large role in maintaining reliability and reducing cost—both it and water needs are modest. The former can be met with current technologies.
Magnetically Induced Convection Enhances Water Electrolysis in Microgravity
Aug 2025
Publication
Since the early days of space exploration the efficient production of oxygen and hydrogen via water electrolysis has been a central task for regenerative life-support systems. Water electrolysers are however challenged by the near-absence of buoyancy in microgravity resulting in hindered gas bubble detachment from electrodes and diminished electrolysis efficiencies. Here we show that a commercial neodymium magnet enhances water electrolysis with current density improvements of up to 240% in microgravity by exploiting the magnetic polarization of the electrolyte and the magnetohydrodynamic force. We demonstrate that these interactions enhance gas bubble detachment and displacement through magnetic convection and achieve passive gas–liquid phase separation. Two model magnetoelectrolytic cells a proton-exchange membrane electrolyser and a magnetohydrodynamic drive were designed to leverage these forces and produce oxygen and hydrogen at near-terrestrial efficiencies in microgravity. Overall this work highlights achievable lightweight low-maintenance and energy-efficient phase separation and electrolyser technologies to support future human spaceflight architectures.
Innovative Anode Porous Transport Layers for Polymer Elecrolyte Membrane Water Electrolyzers
Sep 2025
Publication
Polymer Electrolyte Membrane Water Electrolyzers (PEMWEs) attract significant attention for producing green hydrogen. However their widespread application remains hindered by high production costs. This study develops cost-effective and high-performance 3D-printed gyroid structures as porous transport layers (PTLs) for the anode of PEMWEs. Experimental results demonstrate that the PTL’s structure critically influences its performance which depends on its design. Among the four gyroid structures evaluated the G10 electrode exhibited the best performance in electrochemical tests conducted under various ex-situ conditions simulating real-world operation. Furthermore the 3D-printed G10 electrode undergoes Pt coating and is compared with commercially available PTLs. The commercial PTL (C3) shows a current density of 138.488 mA cm−2 whereas the G10-1.00 μm Pt electrode achieves a significantly higher current density of 584.692 mA cm−2 at 1.9V. The gyroid structure is a promising avenue for developing high-energy and low-cost PEMWEs and other related technologies.
An Innovative Industrial Complex for Sustainable Hydrocarbon Production with Near-Zero Emissions
Oct 2025
Publication
The Allam power cycle is a groundbreaking elevated-pressure power generation unit that utilizes oxygen and fossil fuels to generate low-cost electricity while capturing carbon dioxide (CO2) inherently. In this project we utilize the CO2 generated from the Allam cycle as feedstock for a newly envisioned industrial complex dedicated to producing renewable hydrocarbons. The industrial complex (FAAR) comprises four subsystems: (i) a Fischer–Tropsch synthesis plant (FTSP) (ii) an alkaline water electrolysis plant (AWEP) (iii) an Allam power cycle plant (APCP) and (iv) a reverse water-gas shift plant (RWGSP). Through effective material heat and power integration the FAAR complex utilizing 57.1% renewable energy for its electricity needs can poly-generate sustainable hydrocarbons (C1–C30) pure hydrogen and oxygen with near-zero emissions from natural gas and water. Economic analysis indicates strong financial performance of the development with an internal rate of return (IRR) of 18% a discounted payback period of 8.7 years and a profitability index of 2.39. The complex has been validated through rigorous modeling and simulation using Aspen Plus version 14 including sensitivity analysis.
Emerging Green Steel Markets Surrounding the EU Emissions Trading System and Carbon Border Adjustment Mechanism
Oct 2025
Publication
The global steel industry accounts for 8–10 % of global CO2 emissions and requires deep decarbonisation for achieving the targets set in the Paris Agreement. However no low-emission primary steel production technology has yet been commercially feasible or deployed. Through analysing revisions and additions of European Union climate policy we show that green hydrogenbased steelmaking in competitive locations achieves cost-competitiveness on the European market starting 2026. If the deployment of competitive lowemission steelmaking is insufficient we show that the European steel industry loses competitiveness vis-à-vis countries with access to low-cost renewable energy. Therefore we assess the options for the European steel industry to relocate the energy-intensive ironmaking step and trade Hot Briquetted Iron for rapid deep decarbonisation of the European steel industry. Lastly we discuss complementing policy options to enhance the Carbon Border Adjustment Mechanism’s strategic value through European Union-lead global climate cooperation and the possibility of sparking an international decarbonisation race.
Designing Off-grid Hybrid Renewable Energy Systems under Uncertainty: A Two-Stage Stochastic Programming Approach
Aug 2025
Publication
The decarbonization of remote energy systems presents both technical and economic challenges due to their dependance on fossil fuels and the variability of renewable energy sources. This study introduces a Two-Stage Stochastic Programming approach to optimize Hybrid Renewable Energy Systems under uncertainty in renewable energy production. The methodology is applied to the island of Pantelleria aiming to minimize Total Annualized Costs and CO2 emissions using an ε-constraint approach. Results show that within the set of optimized configurations stricter CO2 emissions constraints increase costs due to the need for oversized components to ensure supply reliability. Nevertheless even the zeroemissions scenario offers significant economic benefits compared to the current diesel-based system. Total Annualized Costs are reduced from 15.5 M€ to 8.10 M€ in the deterministic case and to 9.37 M€ in the stochastic one. The additional cost in the stochastic configuration is offset by improved reliability ensuring demand is met under all scenarios. A sensitivity analysis on electricity demand reveals the necessity of further larger components leading to a 27.0% cost increase in a fully renewable scenario with stochastic optimization for a 10% demand increase. These findings highlight the importance of stochastic optimization in designing cost-effective off-grid renewable energy systems.
Hydrogen Production from Organic Waste in Bangladesh: Impacts of Temperature and Steam Flow on Syngas Composition
Sep 2025
Publication
More than 0.13 million tons of waste are generated annually making conventional methods of treatment including anaerobic digestion incineration and landfilling insufficient.Thus a long-term solution is required.Therefore this study used a process modeling through Aspen Plus V11 to investigate how variations in waste types and gasification temperatures affect the ability to producing hydrogen. Additionally the use of a Steam Rankin Cycle has been used to optimize the economy through generation. To explore the potential of various type of waste proximate and Ultimate analysis have been done experimentally in lab and some of them (Rice Husk Rice Straw Sugar-cane Baggage Cow-dung etc.) have been taken from references. This study presents validation against experimental data using dolomite and olivine as bed materials. The model showed strong agreement with experimental results accurately predicting hydrogen concentration CO and CO2. A detailed thermodynamic analysis revealed an increase in hydrogen purity from 50.9 % in raw syngas to 100 % after pressure swing adsorption (PSA) accompanied by an exergy reduction from 48.99 MW to 34.68 MW due to separation and thermal losses. Parametric studies demonstrated that gasification temperatures between 750 °C and 800 °C and steam-to-biomass ratios of 0.4–0.5 optimize hydrogen production. Feedstock type significantly influenced performance; rice straw rice husk jute stick and cow dung exhibited higher hydrogen yields compared to food waste. The model predicted a hydrogen production rate of approximately 1020 kg/h per ton of dry feedstock with an overall system efficiency of 48.5 % based on exergy analysis.
Fault Tree and Importance Measure Analysis of a PEM Electrolyzer for Hydrogen Production at a Nuclear Power Plant
Sep 2025
Publication
Pilot projects to generate hydrogen using proton exchange membrane (PEM) electrolyzers coupled to nuclear power plants (NPPs) began in 2022 with further developments anticipated over the next decade. However the co-location of electrolyzers with NPPs requires an understanding and mitigation of potential risks. In this work we identify and rank failure contributors for a 1 MW PEM electrolysis system. We used fault trees to define the component failure logic parameterized them with generic data and calculated failure frequencies and minimal cut sets for four top events: hydrogen release oxygen release nitrogen release and hydrogen and oxygen mixing. We use risk reduction worth importance measures to determine the most risk-significant components. The results provide insight into primary risk drivers in PEM electrolyzer systems and provide the foundational steps towards quantitative risk assessment of large-scale PEM electrolyzers at NPPs. The results include recommended riskmitigation actions include recommendations about design maintenance and monitoring strategies.
Emerging Application of Solid Oxide Electrolysis Cells in Hydrogen Production: A Comprehensive Analytic Review and Life Cycle Assessment
Aug 2025
Publication
This paper provides a comprehensive analytical review and life cycle assessment (LCA) of solid oxide electrolysis cells (SOECs) for hydrogen production. As the global energy landscape shifts toward cleaner and more sustainable solutions SOECs offer a promising pathway for hydrogen generation by utilizing water as a feedstock. Despite their potential challenges in efficiency economic viability and technological barriers remain. This review explores the evolution of SOECs highlighting key advancements and innovations over time and examines their operational principles efficiency factors and classification by operational temperature range. It further addresses critical technological challenges and potential breakthroughs alongside an indepth assessment of economic feasibility covering production cost comparisons hydrogen storage capacity and plant viability and an LCA evaluating environmental impacts and sustainability. The findings underscore SOECs’ progress and their crucial role in advancing hydrogen production while pointing to the need for further research to overcome existing limitations and enhance commercial viability.
High-performance Hydrogen Energy Generation via Innovative Metal-organic Framework Catalysts and Integrated System Design
Aug 2025
Publication
Hydrogen energy generation faces challenges in efficiency and economic viability due to reliance on scarce noble metal catalysts. This study aimed to develop platinum-doped nickel-iron metal-organic framework (Pt-NiFe-MOF) catalysts with controlled metal ratios and pore architecture for enhanced water electrolysis. The NiFe-MOF framework was first synthesized via a solvothermal method which was then subjected to post-synthetic modification to introduce controlled platinum loadings (0.5- 2.0 wt%). The pore structure was tuned using a mixed-linker strategy (H₄DOBDC ratios 1:0 to 1:1). Catalysts were characterized using PXRD HRTEM BET XPS and ICP-OES techniques. Electrochemical performance was analyzed in 1.0 M KOH. A custom-designed integrated electrolysis system at 75 °C assessed practical performance. The Pt-NiFe-MOF-1.0 catalyst with H₄DOBDC ratio of 1:0.5 achieved remarkable effectiveness requiring overpotentials of only 253 mV for OER and 58 mV for HER when operating at 10 mA/cm². This catalyst featured an optimal pore diameter of 4.2 nm and surface area of 1325 m²/g. DFT calculations revealed platinum incorporation created synergistic effects by modifying hydrogen binding energies. Furthermore DFT calculations and XPS analysis revealed that the role of platinum in the OER is not direct catalysis but rather a powerful electronic modulation effect; Pt dopants withdraw electron density from adjacent Ni and Fe centers promoting the formation of higher-valent Ni³⁺/Fe³⁺ species that are intrinsically more active and lowering the energy barrier for the rate-determining O-O bond formation step. The integrated system achieved 1.62V at 100 mA/cm² with 75.8% energy efficiency maintaining stability for 200 h with 15–30 times lower precious metal loading than conventional systems. Strategic incorporation of low platinum concentrations within optimized NiFe-MOF structures significantly enhances water electrolysis performance while maintaining economic viability advancing development of industrial-scale hydrogen generation systems.
Analysis of Floating Photovoltaics Potential in Hong Kong: Green Hydrogen Production and Energy Application
Oct 2025
Publication
Solar energy is now one of the most affordable and widely available energy sources. However densely populated cities like Hong Kong often lack the land needed for large-scale solar deployment. Floating solar photovoltaics (FPV) offer a promising alternative by using water surfaces such as reservoirs while providing additional benefits over ground-mounted systems including competition with urban development such as housing and infrastructure. The advantage of this system has been explored in parts of the world while Hong Kong is yet to fully exploit it despite the presence of pilot projects. This study uses PVsyst to evaluate FPV deployment across Hong Kong’s reservoirs estimating over 7 TWh of potential annual electricity generation. Even with 60 % surface coverage generation reaches 4.6 TWh/year with LCOE between $0.036–$0.038/kWh. In parallel green hydrogen is explored as a clean energy storage solution and alternative transport fuel. By using electricity from FPV systems hydrogen production via electrolysis is assessed through HOMER Pro. Results show annual hydrogen output ranging from 180502 kg to 36310221 kg depending on reservoir size with associated LCOH between $10.2/kg and $19.4/kg. The hydrogen produced could support ongoing hydrogen bus projects and future expansion to other vehicle types as Hong Kong moves toward a hydrogen-based transport system. After coupling the FPV systems with hydrogen-generation units the new LCOEs are found to be between $0.029–4.01/ kWh. Thus suggesting the feasibility of a hydrogen-integrated FPV system in Hong Kong.
Little to Lose: The Case for a Robust European Green Hydrogen Strategy
Jul 2025
Publication
The EU targets 10 Mt of green hydrogen production by 2030 but has not committed to targets for 2040. Green hydrogen competes with carbon capture and storage biomass and imports as well as direct electrification in reaching emissions reductions; earlier studies have demonstrated the great uncertainty in future costoptimal development of green hydrogen. In spite of this we show that Europe risks little by setting green hydrogen production targets at around 25 Mt by 2040. Employing an extensive scenario analysis combined with novel near-optimal techniques we find that this target results in systems that are within 10% of cost-optimal in all considered scenarios with current-day biomass availability and baseline transportation electrification. Setting concrete targets is important in order to resolve significant uncertainty that hampers investments. Targeting green hydrogen reduces the dependence on carbon capture and storage and green fuel imports making for a more robust European climate strategy.
Metal–Organic Frameworks for Seawater Electrolysis and Hydrogen Production: A Review
Oct 2025
Publication
Electrolysis utilizing renewable electricity is an environmentally friendly non-polluting and sustainable method of hydrogen production. Seawater is the most desirable and inexpensive electrolyte for this process to achieve commercial acceptance compared to competing hydrogen production technologies. We reviewed metal–organic frameworks as possible electrocatalysts for hydrogen production by seawater electrolysis. Metal–organic frameworks are interesting for seawater electrolysis due to their large surface area tunable permeability and ease of functional processing which makes them extremely suitable for obtaining modifiable electrode structures. Here we discussed the development of metal– organic framework-based electrocatalysts as multifunctional materials with applications for alkaline PEM and direct seawater electrolysis for hydrogen production. Their advantages and disadvantages were examined in search of a pathway to a successful and sustainable technology for developing electrode materials to produce hydrogen from seawater.
Predictive URANS/PDF Modeling of Unsteady-State Phenomena in Turbulent Hydrogen–Air Flames
Sep 2025
Publication
The escalating global demand for primary energy—still predominantly met by conventional carbon-based fuels—has led to increased atmospheric pollution. This underscores the urgent need for alternative energy strategies capable of reducing carbon emissions while meeting global energy requirements. Hydrogen as a clean combustible fuel offers a promising alternative to hydrocarbons producing neither soot CO2 nor unburned hydrocarbons. Although nitrogen oxides (NOx) are the primary combustion by-products their formation can be mitigated by controlling flame temperature. This study investigates the viability of hydrogen as a clean energy vector by simulating an unsteady turbulent non-premixed hydrogen jet flame interacting with an air co-flow. The numerical simulations employ the Unsteady Reynolds-Averaged Navier–Stokes (URANS) framework for efficient and accurate prediction of transient flow behavior. Turbulence is modeled using the Shear Stress Transport (SST k-ω) model which enhances accuracy in high Reynolds number reactive flows. The combustion process is described using a presumed Probability Density Function (PDF) model allowing for a statistical representation of turbulent mixing and chemical reaction. The simulation results are validated by comparison with experimental temperature and mixture fraction data demonstrating the reliability and predictive capability of the proposed numerical approach.
A Game Theory Approach in Hydrogen Supply Chain Resilience: Focus on Pricing, Sourcing, and Transmission Security
Jun 2025
Publication
This study examines the pricing and assesses resilience methods in hydrogen supply chains by thoroughly analyzing two main disruption scenarios. The model examines a scenario in which a hydrogen production company depends on a Renewable Power plant (RP) for its electricity supply. Ensuring a steady and efficient hydrogen supply chain is crucial but outages at renewable power sources provide substantial obstacles to sustainability and operational continuity. Therefore in the event of disruptions at the RP the company has two options for maintaining resilience: either sourcing electricity from a Fossil fuel Power plant (FP) through a grid network to continue hydrogen production or purchasing hydrogen directly from another company and utilizing third-party transportation for delivery. Using a game theoretic approach we examine how different methods affect demand satisfaction cost implications and environmental sustainability. The study employs sensitivity analysis to evaluate the impact of different disruption probabilities on each scenario. In addition a unique sensitivity analysis is performed to examine the resilience of transmission security to withstand disruptions. This study evaluates how investments in security measures affect the strength and stability of the supply chain in various scenarios of disruption. Our research suggests that the first scenario offers greater reliability and cost-effectiveness along with a higher resilience rate compared to the second scenario. Furthermore the examination of the environmental impact shows that the first scenario has a smaller amount of CO2 emissions per kg of hydrogen. This study offers important insights for supply chain managers to optimize resilience measures hence improving reliability reducing costs and minimizing environmental effects.
Integrated Optimization of Energy Storage and Green Hydrogen Systems for Resilient and Sustainable Future Power Grids
Jul 2025
Publication
This study presents a novel multi-objective optimization framework supporting nations sustainability 2030–2040 visions by enhancing renewable energy integration green hydrogen production and emission reduction. The framework evaluates a range of energy storage technologies including battery pumped hydro compressed air energy storage and hybrid configurations under realistic system constraints using the IEEE 9-bus test system. Results show that without storage renewable penetration is limited to 28.65% with 1538 tCO2/day emissions whereas integrating pumped hydro with battery (PHB) enables 40% penetration cuts emissions by 40.5% and reduces total system cost to 570 k$/day (84% of the baseline cost). The framework’s scalability is confirmed via simulations on IEEE 30- 39- 57- and 118-bus systems with execution times ranging from 118.8 to 561.5 s using the HiGHS solver on a constrained Google Colab environment. These findings highlight PHB as the most cost-effective and sustainable storage solution for large-scale renewable integration.
Synergistic Coupling of Waste Heat and Power to Gas via PEM Electrolysis for District Heating Applications
Sep 2025
Publication
This work explores the integration of Proton Exchange Membrane (PEM) electrolysis waste heat with district heating networks (DHN) aiming to enhance the overall energy efficiency and economic viability of hydrogen production systems. PEM electrolysers generate substantial amounts of low-temperature waste heat during operation which is often dissipated and left unutilised. By recovering such thermal energy and selling it to district heating systems a synergistic energy pathway that supports both green hydrogen production and sustainable urban heating can be achieved. The study investigates how the electrolyser’s operating temperature ranging between 50 and 80 ◦C influences both hydrogen production and thermal energy availability exploring trade-offs between electrical efficiency and heat recovery potential. Furthermore the study evaluates the compatibility of the recovered heat with common heat emission systems such as radiators fan coils and radiant floors. Results indicate that valorising waste heat can enhance the overall system performance by reducing the electrolyser’s specific energy consumption and its levelized cost of hydrogen (LCOH) while supplying carbon-free thermal energy for the end users. This integrated approach contributes to the broader goal of sector coupling offering a pathway toward more resilient flexible and resource-efficient energy systems.
Working with Uncertainty in Life cycle Costing: New Approach Applied to the Case Study on Proton Exchange Membrane Water Electrolysis
Jul 2025
Publication
Hydrogen recognized as a critical energy source requires green production methods such as proton exchange membrane water electrolysis (PEMWE) powered by renewable energy. This is a key step toward sustainable development with economic analysis playing an essential role. Life cycle costing (LCC) is commonly used to evaluate economic feasibility but traditional LCC analyses often provide a single cost outcome which limits their applicability across diverse regional contexts. To address these challenges a Python-based tool is developed in this paper integrating a bottom-up approach with net present value (NPV) calculations and Monte Carlo simulations. The tool allows users to manage uncertainty by intervening in the input data producing a range of outcomes rather than a single deterministic result thus offering greater flexibility in decision-making. Applying the tool to a 5 MW PEMWE plant in Germany the total cost of ownership (TCO) is estimated to range between €52 million and €82.5 million with hydrogen production costs between 5.5 and 11.4 €/kg H2. There is a 95% probability that actual costs fall within this range. Sensitivity analysis reveals that energy prices are the key contributors to LCC accounting for 95% of the variance in LCC while iridium membrane materials and power electronics contribute to 75% of the variation in construction-phase costs. These findings underscore the importance of renewable energy integration and circular economy strategies in reducing LCC.
Hydrogen Leakage Localization Technology in Hydrogen Refueling Stations Combining RL and Hidden Markov Models
Jul 2025
Publication
With the global energy structure shifting towards clean and efficient hydrogen energy the safety management issues of hydrogen refueling stations are becoming increasingly prominent. To address these issues a hydrogen leak localization algorithm for hydrogen refueling stations based on a combination of reinforcement learning and hidden Markov models is proposed. This method combines hidden Markov model to construct a probability distribution model for hydrogen leakage and diffusion simulates the propagation probability of hydrogen in different grid cells and uses reinforcement learning to achieve fast and accurate localization of hydrogen leakage events. The outcomes denoted that the training accuracy reached 95.2% with an F1 value of 0.961 indicating its high accuracy in hydrogen leak localization. When the wind speed was 0.8 m/s the mean square error of the raised method was 0.03 and when the wind speed was 1.0 m/s the mean square error of the raised method was 0.04 proving its good robustness. After 50 localization experiments the proposed algorithm achieves a localization success rate of 93.7% and an average computation time of 42.8 s further demonstrating its high accuracy and computational efficiency. The proposed hydrogen leakage location algorithm has improved the accuracy and efficiency of hydrogen leakage location providing scientific basis and technical guarantee for the safe operation of future hydrogen refueling stations.
Experimental Study on the Operation of Pressure Safety Valve in the Liquid Hydrogen Environment
Sep 2025
Publication
In this study a liquid hydrogen (LH2) safety valve evaluation device was developed to enable safe and stable performance testing of pressure safety valves (PSVs) under realistic cryogenic and high-pressure conditions. The device was designed for flexible use by mounting all components on a mobile frame equipped with wheels and the pressurization rate inside the vessel was controlled through a boil-off gas (BOG) generator. Two experiments were conducted to investigate the effect of LH2 production rate on PSV operation. When the production of LH2 increased by about 2.4 times the number of PSV operations rose from 15 to 20 and the operating pressure range shifted slightly upward from 10.68~12.53 bar to 10.68~13.2 bar while remaining within the instrument’s error margin. These results indicate that repeated valve cycling and increased hydrogen production contribute to gradual changes in PSV operating characteristics. Additionally the minimum temperature experienced by the PSV decreased with repeated operations reaching approximately 77.9 K. The developed evaluation system provides an effective platform for analyzing PSV performance under realistic LH2 production and storage conditions.
Dimensions, Structure, and Morphology Variations of Carbon-based Materials for Hydrogen Storage: A Review
Jul 2025
Publication
The swift and far-reaching evolution of advanced nanostructures and nanotechnologies has accelerated the research rate and extent which has a huge prospect for the benefit of the practical demands of solid-state hydrogen storage implementation. Carbonaceous materials are of paramount importance capable of forming versatile structures and morphology. This review aims to highlight the influence of the carbon material structure dimension and morphology on the hydrogen storage ability. An extensive range of synthesis routes and methods produces diverse micro/nanostructured materials with superb hydrogen-storing properties. The structures of carbon materials used for hydrogen adsorption from 0 to 3D and fabrication methods and techniques are discussed. Besides highlighting the striking merits of nanostructured materials for hydrogen storage remaining challenges and new research avenues are also considered.
IEA TCP Task 43 - Recommendations for Safety Distances Methodology for Alkaline and PEM Electrolyzers
Sep 2025
Publication
Elena Vyazmina,
Richard Chang,
Benjamin Truchot,
Katrina M. Groth,
Samantha E. Wismer,
Sebastien Quesnel,
David Torrado,
Nicholas Hart,
Thomas Jordan,
Karen Ramsey-Idem,
Deborah Houssin-Agbomson,
Simon Jallais,
Christophe Bernard,
Lucie Bouchet,
Ricardo Ariel Perez,
Lee Phillips,
Marcus Runefors,
Jerome Hocquet and
Andrei V. Tchouvelev
Currently local regulations governing hydrogen installations vary by geographical region and by country leading to discrepancies in safety and separation distance requirements for similar hydrogen systems. This work carried out in the frame of IEA TCP H2 Task 43 (IEA TCP H2 2022) aims to provide an overview of various methodologies and recommendations established for risk management and consequence assessment in the event of accidental scenarios. It focuses on a case study involving industrial electrolyzers utilizing alkaline and PEM technologies. The research incorporates lessons learned from past incidents offers recommendations for mitigation measures reviews existing methodologies and highlights areas of divergence. Additionally it proposes strategies for harmonization. The study also emphasizes the most significant scenarios and the corresponding leakage sizes
Optimizing Storage Parameters for Underground Hydrogen Storage in Aquifers: Cushion Gas Selection, Well Pattern Design, and Purity Control
Oct 2025
Publication
Underground hydrogen storage in aquifers is a promising solution to address the imbalance between energy supply and demand yet its practical implementation requires optimized strategies to ensure high efficiency and economic viability. To improve the storage and production efficiency of hydrogen it is essential to select the appropriate cushion gas and to study the influence of reservoir and process parameters. Based on the conceptual model of aquifer with single-well injection and production three potential cushion gas (carbon dioxide nitrogen and methane) were studied and the changes in hydrogen recovery for each cushion gas were compared. The effects of temperature initial pressure porosity horizontal permeability vertical to horizontal permeability ratio permeability gradient hydrogen injection rate and hydrogen production rate on the purity of recovered hydrogen were investigated. Additionally the impact of different well pattern on the purity of recovered hydrogen was studied. The results indicate that methane is the most effective cushion gas for improving hydrogen recovery in UHS. Different well patterns have significant impacts on the purity of recovered hydrogen. The mole fractions of methane in the produced gas for the single-well line-drive pattern and five-spot pattern were 16.8% 5% and 3.05% respectively. Considering the economic constraints the five-spot well pattern is most suitable for hydrogen storage in aquifers. Reverse rhythm reservoirs with smaller permeability differences should be chosen to achieve relatively high hydrogen recovery and purity of recovered hydrogen. An increase in hydrogen production rate leads to a significant decrease in the purity of the recovered hydrogen. In contrast hydrogen injection rate has only a minor effect. These findings provide actionable guidance for the selection of cushion gas site selection and operational design of aquifer-based hydrogen storage systems contributing to the large-scale seasonal storage of hydrogen and the balance of energy supply and demand.
Environmental and Economic Assessment of Large-scale Hydrogen Supply Chains across Europe: LOHC vs Other Hydrogen Technologies
Oct 2025
Publication
The transition to decarbonized energy systems positions hydrogen as a critical vector for achieving climate neutrality yet its large-scale transportation and storage remain key challenges. This study presents a comprehensive life cycle assessment (LCA) and economic analysis of large-scale H2 supply chains evaluating the liquid organic hydrogen carrier (LOHC) system based on benzyltoluene/perhydro-benzyltoluene (H0-BT/H12-BT) against conventional technologies: compressed gaseous hydrogen (CGH2) liquid hydrogen (LH2) and liquid ammonia (LNH3). The analysis includes multiple H2 transportation scenarios across Europe considering the steps: conditioning sea transportation post-processing and land distribution by truck or pipeline. Environmentally LOHC currently faces higher environmental impacts than CGH2 driven by energy-intensive dehydrogenation process. Truck-based distribution further amplifies impacts particularly over long distances while pipeline-based distribution significantly reduces the environmental burdens where infrastructure exists. Sensitivity analysis reveals that using H2 for dehydrogenation heat lowers process-level impacts but increases overall supply chain impacts questioning its net environmental benefit. Economically LOHC remains competitive despite high dehydrogenation costs benefiting from low sea transportation expenses compatibility with existing fossil fuel infrastructure and potential for future CAPEX and OPEX improvements. While CGH2 outperforms LH2 and LNH3 avoiding energy-intensive liquefaction and cracking its storage requirements add considerable costs. For land distribution LOHC trucks are optimal at lower capacities whereas repurposed natural gas pipelines favour CGH2 at higher scale reducing costs by up to 84 %. Despite current trade-offs the scalability flexibility and synergies with existing infrastructure position LOHC as a promising solution for long-distance H2 transport contingent on technological maturation to mitigate dehydrogenation impacts.
Innovative Aircraft Heat Exchanger Integration for Hydrogen-electric Propulsion
Sep 2025
Publication
Propulsion systems in aircraft using reciprocating engines often face the challenge of managing thermal loads effectively. This problem is similar to the utilisation of polymer electrolyte membrane fuel cell systems which despite their high efficiency emit a high proportion of heat when converting chemical energy into electrical energy. Transfer of the rejected heat to the air is efficiently performed by heat exchangers. Since convective heat transfer is physically linked to fluid friction at the heat exchanger walls a pressure loss occurs. In a high-speed flow regime of the aircraft during cruise the integration of heat exchangers combined with a fan stage inside a nacelle (thus forming an impeller configuration) represents a promising approach for the dual benefit of dissipating excess heat and harnessing it for additional thrust generation through the ram jet effect. Striving for enhanced thrust performance of hydrogen electric commercial aircraft this paper presents the results of a parameter study based on a 1D-modelling approach. The focus is placed on the influence of design and operating parameters (ambient conditions fan pressure ratio diffusion ratio airside temperature difference) on performance and sizing of the proposed propulsion system. It is shown that the proposed system performs best at an altitude of 11 km and with increasing freestream Mach number. Furthermore the main challenges related to the combination of a thrust generation system with a heat exchanger in terms of sizing in particularly the required heat exchanger dimensions under different operating conditions are discussed.
Development of the Hydrogen Market and Local Green Hydrogen Offtake in Africa
Jun 2025
Publication
Creating a hydrogen market in Africa is a great opportunity to assist in the promotion of sustainable energy solutions and economic growth. This article addresses the legislation and regulations that need to be developed to facilitate growth in the hydrogen market and allow local green hydrogen offtake across the continent. By reviewing current policy and strategy within particular African countries and best practices globally from key hydrogen economies the review establishes compelling issues challenges and opportunities unique to Africa. The study identifies the immense potential in Africa for renewable energy and in particular for solar and wind as the foundation for the production of green hydrogen. It examines how effective policy frameworks can establish a vibrant hydrogen economy by bridging infrastructural gaps cost hurdles and regulatory barriers. The paper also addresses how local offtake contracts for green hydrogen can be used to stimulate economic diversification energy security and sustainable development. Policy advice is provided to assist African authorities and stakeholders in the deployment of enabling regulatory frameworks and the mobilization of funds. The paper contributes to global hydrogen energy discussions by introducing Africa as an eligible stakeholder in the emerging hydrogen economy and outlining prospects for its inclusion into regional and global energy supply chains.
Opportunities and Challenges of Latent Thermal Energy Usage in the Hydrogen Economy
Aug 2025
Publication
Hydrogen plays a key role in decarbonising hard-to-abate sectors like aviation steel and shipping. However producing pure hydrogen requires significant energy to break chemical bonds from its sources such as gas and water. Ideally the energy used for this process should match the energy output from hydrogen but in reality energy losses occur at various stages of the hydrogen economy—production packaging delivery and use. This results in needing more energy to operate the hydrogen economy than it can ultimately provide. To address this passive power sources like latent thermal energy storage systems can help reduce costs and improve efficiency. These systems can enable passive cooling or electricity generation from waste heat cutting down on the extra energy needed for compression liquefaction and distribution. This study explores integrating latent thermal energy storage into all stages of the hydrogen economy offering a cost and sizing approach for such systems. The integration could reduce costs close the waste-heat recycling loop and support green hydrogen production for achieving NetZero by 2050.
Numerical Simulation Study on Hydrogen Leakage and Explosion of Hydrogen Fuel Cell Buses
Aug 2025
Publication
This study explores the safety problems of hydrogen leakage and explosion in hydrogen fuel cell buses through Computational Fluid Dynamics simulations. The research investigates the diffusion behavior of hydrogen in the passenger cabin depending on the leakage position and flow rates identifying a stratified constant-concentration layer formed at the top of the cabin. Leakage near the rear wall of the vehicle provided the highest hydrogen concentration while at higher flow rates the diffusive process accelerated the spreading of flammable hydrogen concentrations. Hydrogen ignition simulations showed a fast internal pressure increase and secondary explosions outside the vehicle. Thermal hazards in the cases were higher than overpressure. The research’s additional analysis of ignition timing and source location shows that overpressure peaked initially with delayed ignition but declined afterward while rear-ignited flames exhibited the farthest high-temperature hazard range at 10.88 m. These findings are fundamental for giving insight into hydrogen behavior in confined spaces and thus guiding risk assessment and emergency response planning for the development of safety protocols in hydrogen fuel cell buses contributing to the safer implementation of hydrogen energy in public transportation.
Fractal Fuzzy‑Based Multi‑criteria Assessment of Sustainability in Rare Earth Use for Hydrogen Storage
Aug 2025
Publication
The use of rare earth elements in hydrogen storage processes offers significant advantages in terms of increasing technological efficiency and ensuring system security. However this process also creates some serious problems in terms of environmental and economic sustainability. It is necessary to determine the most critical indicators affecting the sustainable use of these elements. Studies on this subject in the literature are quite limited and this may lead to wrong investment decisions. The main purpose of this study is to determine the most important indicators to increase the sustainable use of rare earth elements in hydrogen storage processes. An original decision-making model in which Siamese network logarithmic percentage-change driven objective weighting (LOPCOW) fractal fuzzy numbers and weighted influence super matrix with precedence (WISP) approaches are integrated in the study. This study provides an original contribution to the literature by identifying the most critical indicators affecting the sustainable use of rare earths in hydrogen storage processes by presenting an innovative model. Fractal structures such as Koch Snowflake Cantor Dust and Sierpinski Triangle can model complex uncertainties more successfully. Fractal structures are particularly effective in modeling linguistic fuzziness because their recursive nature closely mirrors the layered and imprecise way humans often express subjective judgments. Unlike linear fuzzy sets fractals can capture the patterns of ambiguity found in expert evaluations. Hydrogen storage capacity and government supports are determined as the most vital criteria affecting sustainability in rare earth use.
Interactions Between Gas Hydrate and Hydrogen in Nature: Laboratory Evidence of Hydrogen Incorporation
Oct 2025
Publication
Natural hydrogen is generated via serpentinization radiolysis and organic metagenesis in geological settings. After expulsion from the source and along its upward migration path the free gas may encounter hydratebearing sediments. To simulate this natural scenario CH4 hydrate and CH4 + C3H8 hydrate were synthesized at 5.0 MPa and exposed to a hydrogen-containing gas mixture. In-situ Raman spectroscopic measurements demonstrated the incorporation of H2 molecules into the hydrate phase even at a partial pressure of 0.5 MPa. Exsitu Raman spectroscopic characterization of hydrates formed from a CH4 + H2 gas mixture at 5.0 MPa confirmed the H2 inclusion within the large cavities of structure I. The results show that the interactions between H2 and the natural gas hydrate phase range from the incorporation of H2 molecules into the hydrate phase to the rapid dissociation of the gas hydrate depending on thermodynamic conditions and H2 concentration in the coexisting gas phase.
Hydrogen Production from Pyrolysis of Biomass Components
Sep 2025
Publication
Hydrogen energy is key for the global green energy transition and biomass thermochemical has become an important option for green hydrogen production due to its carbon neutrality advantage. Pyrolysis is the initial step of thermochemical technologies. A systematic analysis of the mechanism of H2 production from biomass pyrolysis is significant for the subsequent optimal design of efficient biomass thermochemical H2 production technologies. Biomass is mainly composed of cellulose hemicellulose and lignin and differences in their physicochemical properties and structures directly affect the pyrolysis hydrogen production process. In this study thermogravimetry-mass spectrometry-Fourier transform infrared spectroscopy (TG-MS-FTIR) was employed and fixed-bed pyrolysis experiments were conducted to systematically investigate the pyrolysis of biomass component with focusing on hydrogen production. According to the results of TG-MS-FTIR experiments hemicellulose produced hydrogen through the breaking of C-H bonds in short chains and acetyl groups as well as secondary cracking of volatiles and condensation of aromatic rings at high temperatures. Cellulose produced hydrogen through the breaking of C-H bonds in volatiles generated from sugar ring cleavage along with char gasification and condensation of aromatic rings at high temperatures. Lignin produced hydrogen through ether bond cleavage breaking of methoxy groups as well as cleavage of phenylpropane side chains and condensation of aromatic rings at high temperatures. Results from fixed-bed pyrolysis experiments further showed that hemicellulose exhibited the strongest hydrogen production capacity with the maximum H2 production efficiency of 6.09 mmol/g the maximum H2 selectivity of 17.79% and the maximum H2 effectiveness of 59% at 800°C.
Narratives and Counter-narratives in Sustainability Transitions: A Study on the Port of Rotterdam from a Multi-level Perspectives
Sep 2025
Publication
Infrastructure projects can act as niches for innovation development contribute to strategic goals of network owners and drive broader systemic transitions. However limited research has examined how sustainability transitions are shaped through narratives and counternarratives around infrastructure projects. Using a case study of the port of Rotterdam we analyze how three embedded projects - Maasvlakte 2 RDM Campus and the Hydrogen Pipeline - reflected and shaped evolving narratives and counter-narratives over a 20-year sustainability transition. Grounded in the Multi-Level Perspective (MLP) the study demonstrates how an infrastructure owner like the Port of Rotterdam Authority (PoRA) strategically mobilized narrative framing to reshape existing regimes over time. The study contributes to the debate on project management and transition studies by highlighting how infrastructure project owners respond to transition-related tensions by shaping defending and adapting project narratives over time thereby influencing sustainability trajectories.
Comparative Review of Natural Gas Vehicles During the Energy Transition
Jul 2025
Publication
The global climate crisis necessitates the urgent implementation of sustainable practices and carbon emission reduction strategies across all sectors. Transport as a major contributor to greenhouse gas emissions requires transitional technologies to bridge the gap between fossil fuel dependency and renewable energy systems. Natural gas recognised as the cleanest fossil-derived fuel with approximately half the CO2 emissions of coal and 75% of oil presents a potential transitional solution through Natural Gas Vehicles (NGVs). This manuscript presents several distinctive contributions that advance the understanding of Natural Gas Vehicles within the contemporary energy transition landscape while synthesising updated emission performance data. Specifically the feasibility and sustainability of NGVs are investigated within the energy transition framework by systematically incorporating recent technological developments and environmental economic and infrastructure considerations in comparison to conventional vehicles (diesel and petrol) and unconventional alternatives (electric and hydrogen-fuelled). The analysis reveals that NGVs can reduce CO2 emissions by approximately 25% compared to petrol vehicles on a well-to-wheel basis with significant reductions in NOx and particulate matter. However these environmental benefits depend heavily on the source and type of natural gas used (CNG or LNG) while economic viability hinges largely on governmental policies and infrastructure development. The findings suggest that NGVs can serve as an effective transitional technology in the transport sector’s sustainability pathway particularly in regions with established natural gas infrastructure but require supportive policy frameworks to overcome implementation barriers.
Analysis of Specific Failure Conditions in Electrified Propulsion Systems using Cryogenic Hydrogen as a Primary Energy Carrier
Aug 2025
Publication
In order to minimize emissions of the aerospace sector and thus its impact on the climate several novel concepts of propulsion systems for aircraft are being developed. Many of these concepts do not use an energy source based on the combustion of hydrocarbons but other means of energy generation and storage like hydrogen fuel cells and corresponding hydrogen storage systems. The use of hydrogen as a primary energy carrier in aircraft poses novel and different hazards when compared to conventional propulsion and fuel storage systems. The study described in the present paper identifies analyzes and evaluates failure conditions and corresponding hazards that are associated with the electrified propulsion systems. Mitigation strategies to prevent failures to occur or decrease their severity are recommended. The effects of the assessed failures on aircraft crew and occupants are classified as catastrophic hazardous or major as defined in the according Certification Specifications. Failure Conditions occurring at the aircraft system and subsystem levels are considered and their effect on the aircraft and propulsion system is assessed. The hazards identified mostly emerge due to the properties of the gaseous or liquid hydrogen. They include the flammability of gaseous hydrogen and the very low temperatures of cryogenic liquid hydrogen as well as the installation of high voltage power infrastructure and high capacity heat exchangers.
Machine Learning Models for the Prediction of Hydrogen Solubility in Aqueous Systems
Aug 2025
Publication
Hydrogen storage is integral to reducing CO2 emissions particularly in the oil and gas industry. However a primary challenge involves the solubility of hydrogen in subsurface environments particularly saline aquifers. The dissolution of hydrogen in saline water can impact the efficiency and stability of storage reservoirs necessitating detailed studies of fluid dynamics in such settings. Beyond its role as a clean energy carrier and precursor for synthetic fuels and chemicals understanding hydrogen’s solubility in subsurface conditions can significantly enhance storage technologies. When hydrogen solubility is high it can reduce reservoir pressure and alter the chemical composition of the storage medium undermining process efficiency. Machine learning techniques have gained prominence in predicting physical and chemical properties across various systems. One of the most complex challenges in hydrogen storage is predicting its solubility in saline water influenced by factors such as pressure temperature and salinity. Machine learning models offer substantial promise in improving hydrogen storage by identifying intricate nonlinear relationships among these parameters. This study uses machine learning algorithms to predict hydrogen solubility in saline aquifers employing techniques such as Bayesian inference linear regression random forest artificial neural networks (ANN) support vector machines (SVM) and least squares boosting (LSBoost). Trained on experimental data and numerical simulations these models provide precise predictions of hydrogen solubility which is strongly influenced by pressure temperature and salinity under a wide range of thermodynamic conditions. Among these methods RF outperformed the others achieving an R2 of 0.9810 for test data and 0.9915 for training data with RMSE values of 0.048 and 0.032 respectively. These findings emphasize the potential of machine learning to significantly optimize hydrogen storage and reservoir management in saline aquifers.
Offshore Renewable Hydrogen Potential in Australia: A Techno-economic and Legal Review
Jun 2025
Publication
Hydrogen is increasingly recognised as a potential critical energy carrier in decarbonising global energy systems. Australia is positioning itself as a potential leader in offshore renewable hydrogen production by leveraging existing liquified natural gas export infrastructure activating its abundant renewable energy resources and harnessing its extensive offshore marine acreage. Despite this there is limited research on the techno-economic and regulatory pathways for offshore hydrogen development in Australia as an enabler of its net zero manufacturing and export ambitions. This study offers a multidisciplinary assessment and review of Australia’s offshore renewable hydrogen potential. It aims to examine the technical legal and economic challenges and opportunities to enable and adapt the existing Australian offshore electricity regulatory regime and enable policy to facilitate future renewable offshore hydrogen licensing and production. Overall the findings provide practical insights for advancing Australia’s offshore hydrogen transition including technical innovations needed to scale offshore wind development. The study demonstrates how a specific offshore hydrogen licensing framework could reduce legal uncertainties to create economies of scale and reduce hydrogen investment risk to unlock the full potential of developing offshore renewable hydrogen projects.
A real Assessment in the Design of a Try-Out Grid-Tied Solar PV-Green Hydrogen-Battery Storage Microgrid System for Industrial Application in South Africa
Sep 2025
Publication
The carbon emission reduction mission requires a multifaceted approach in which green hydrogen is expected to play a key role. The accelerated adoption of green hydrogen technologies is vital to this journey towards carbon neutrality by 2050. However the energy transition involving green hydrogen requires a data-driven approach to ensure that the benefits are realised. The introduction of testing sites for green hydrogen technologies will be crucial in enabling the performance testing of various components within the green hydrogen value chain. This study involves an areal assessment of a selected test site for the installation of a grid-tied solar PV-green hydrogen-battery storage microgrid system at a factory facility in South Africa. The evaluation includes a site energy audit to determine the consumption profile and an analysis of the location’s weather pattern to assess its impact on the envisaged microgrid. Lastly a design of the microgrid is conceptualised. A 39 kW photovoltaic system powers the microgrid which comprises a 22 kWh battery storage system 10 kW of electrolyser capacity an 8 kW fuel cell and an 800 L hydrogen storage capacity between 30 and 40 bars.
Polymers and Composites for Hydrogen Economy: A Perspective
Oct 2025
Publication
This paper provides authors’ perspective on the current advances and challenges in utilising polymers and composites in hydrogen economy. It has originated from ‘Polymers and Composites for Hydrogen Economy’ symposium organised in March 2025 at the University of Warwick. This paper presents views from the event and thus provides a perspective from academia and industry on the ongoing advances and challenges for those materials in hydrogen applications.
Green Hydrogen Production Study in Existing Oil Refinery with Evaluating Technical, Economic, and Environmental Outcomes
Oct 2025
Publication
Green hydrogen offers a sustainable alternative source of fossil fuels to compensate for the increasing energy demand. This study addresses the increasing energy demand and the need for sustainable alternatives to fossil fuels by examining the production of green hydrogen in an existing Egyptian oil refinery. The primary objective is to evaluate the technical economic and environmental outcomes of integrating green hydrogen to increase the refinery’s hydro processing capacity. The methodology involves the use of water electrolysis powered exclusively by renewable electricity from a 60 MW solar installation with a panel surface area of 660000 m². A simulation model of alkaline electrolyzer skids was developed to assess the production of an additional 1260 kg/h of hydrogen representing a 15% increase over the existing Steam Methane Reforming (SMR) capacity. The environmental impact was quantified by calculating the reduction in CO₂ and equivalent emissions while an economic forecasting analysis was conducted to project the production costs of green versus grey hydrogen. The main results indicate that the integration is technically feasible and environmentally beneficial with a significant reduction in the refinery’s carbon footprint. Economically the study projects that by 2028 the production cost of green hydrogen will fall to 1.56 USD/kg H₂ becoming more cost-effective than grey hydrogen at 1.65 USD/kg H₂ largely due to the influence of carbon taxes and credits. This study underscores the transformative potential of green hydrogen in decarbonizing industrial processes offering a viable pathway for refineries to contribute to global climate change mitigation efforts.
Solar Enabled Pathway to Large-scale Green Hydrogen Production and Storage: A Framework for Oman's Advancing Renewable Energy Goals
Aug 2025
Publication
The utilisation of renewable energy sources for hydrogen production is increasingly vital for ensuring the long-term sustainability of global energy systems. Currently the Sultanate of Oman is actively integrating renewable energy particularly through the deployment of solar photovoltaic (PV) systems as part of its ambitious targets for the forthcoming decades. Also Oman has target to achieve 1 million tonnes of green-H2 production annually. Leveraging Oman's abundant solar resources to produce green hydrogen and promote the clean transportation industry could significantly boost the country's sustainable energy sector. This paper outlines a standalone bifacial solar-powered system designed for large-scale green hydrogen (H2) production and storage to operate both a hydrogen refuelling station and an electric vehicle charging station in Sohar Oman. Using HOMER software three scenarios: PV/Hydrogen/Battery PV/Hydrogen PV/Battery systems were compared from a techno-economic perspective. Also the night-time operation (Battery/Hydrogen) was investigated. Varying cost of electricity were obtained depending on the system from $3.91/kWh to $0.0000565kWh while the bifacial PV/Hydrogen/Battery system emerged as the most efficient option boasting a unit cost of electricity (COE) of $3.91/kWh and a levelized cost of hydrogen (LCOH) value of $6.63/kg with net present cost 199M. This system aligns well with Oman's 2030 objectives with the capacity to generate 1 million tonnes of green-H2 annually. Additionally the findings show that the surplus electricity from the system could potentially cover over 30% of Oman's total energy consumption with zero harmful emissions. The implementation of this system promises to enhance Oman's economic and transportation industries by promoting the adoption of electric and fuel cell vehicles while reducing reliance on traditional energy sources.
Proactive Regulation for Hydrogen Supply Chains: Enhancing Logistics Frameworks in Australia
Jun 2025
Publication
The rapid growth of Australia’s hydrogen economy highlights the pressing need for innovative regulatory strategies that address the distinct characteristics of hydrogen supply chains. This study focuses on the supply-side dynamics of the hydrogen energy sector emphasizing the importance of tailored frameworks to ensure the safe efficient and reliable movement of hydrogen across the supply chain. Key areas of analysis include the regulatory challenges associated with various transportation and storage methods particularly during long-distance transport and extended storage periods. The research identifies notable gaps and inconsistencies within the current regulatory systems across Australian states which inhibit the development of a unified hydrogen economy. To address these challenges the concept of Proactive Regulation for Hydrogen Supply (PRHS) is introduced. PRHS emphasizes anticipatory governance that adapts alongside technological advancements to effectively manage hydrogen transportation and storage. The study advocates for harmonizing fragmented state frameworks into a cohesive national regulatory system to support the sustainable and scalable expansion of hydrogen logistics. Furthermore the paper examines the potential of blockchain technology to enhance safety accountability and traceability across the hydrogen supply chain offering practical solutions to current regulatory and operational barriers.
Low to Near-zero CO2 Production of Hydrogen from Fossil Fuels: Critical Role of Microwave-initiated Catalysis
Apr 2025
Publication
Presently there is no single clear route for the near-term production of the huge volumes of CO2-free hydrogen necessary for the global transition to any type of hydrogen economy. All conventional routes to produce hydrogen from hydrocarbon fossil fuels (notably natural gas) involve the production—and hence the emission—of CO2 most notably in the steam methane reforming (SMR) process. Our recent studies have highlighted another route; namely the critical role played by the microwave-initiated catalytic pyrolysis decomposition or deconstruction of fossil hydrocarbon fuels to produce hydrogen with low to near-zero CO2 emissions together with high-value solid nanoscale carbonaceous materials. These innovations have been applied firstly to wax then methane crude oil diesel then biomass and most recently Saudi Arabian light crude oil as well as plastics waste. Microwave catalysis has therefore now emerged as a highly effective route for the rapid and effective production of hydrogen and high-value carbon nanomaterials co-products in many cases accompanied by low to near-zero CO2 emissions. Underpinning all of these advances has been the important concept from solid state physics of the so-called Size-Induced-Metal-Insulator Transition (SIMIT) in mesoscale or mesoscopic particles of catalysts. The mesoscale refers to a range of physical scale in-between the micro- and the macro-scale of matter (Huang W Li J and Edwards PP 2018 Mesoscience: exploring the common principle at mesoscale Natl. Sci. Rev. 5 321-326 (doi:10.1093/nsr/nwx083)). We highlight here that the actual physical size of the mesoscopic catalyst particles located close to the SIMIT is the primary cause of their enhanced microwave absorption and rapid heating of particles to initiate the catalytic—and highly selective—breaking of carbon–hydrogen bonds in fossil hydrocarbons and plastics to produce clean hydrogen and nanoscale carbonaceous materials. Importantly also since the surrounding ‘bath’ of hydrocarbons is cooler than the microwave-heated catalytic particles themselves the produced neutral hydrogen molecule can quickly diffuse from the active sites. This important feature of microwave heating thereby minimizes undesirable side reactions a common feature of conventional thermal heating in heterogeneous catalysis. The low to near-zero CO2 production of hydrogen via microwave-initiated decomposition or cracking of abundant hydrocarbon fossil fuels may be an interim viable alternative to the conventional widely-used SMR that a highly efficient process but unfortunately associated with the emission of vast quantities of CO2. Microwave-initiated catalytic decomposition also opens up the intriguing possibility of using distributed methane in the current natural gas structure to produce hydrogen and high-value solid carbon at either central or distributed sites. That approach will lessen many of the safety and environmental concerns associated with transporting hydrogen using the existing natural gas infrastructure. When completely optimized microwave-initiated catalytic decomposition of methane (and indeed all hydrocarbon sources) will produce no aerial carbon (CO2) and only solid carbon as a co-product. Furthermore reaction conditions can surely be optimized to target the production of high-quality synthetic graphite as the major carbon-product; that material of considerable importance as the anode material for lithium-ion batteries. Even without aiming for such products derived from the solid carbon co-product it is of course far easier to capture solid carbon rather than capturing gaseous CO2 at either the central or distributed sites. Through microwave-initiated catalytic pyrolysis this decarbonization of fossil fuels can now become the potent source of sustainable hydrogen and high-value carbon nanomaterials.
The Climate Benefit of a Greener Blue Hydrogen
Sep 2025
Publication
Previous studies have demonstrated the potential benefit of a future hydrogen economy in terms of reducing CO2 emissions. The hydrogen leakage rate and the green hydrogen fraction in the mix were identified as key factors in maximising the climate benefit of this energy transition. This study highlights the importance of blue hydrogen production hypotheses for a climate-beneficial transition to a hydrogen economy. The benefits are substantial when blue hydrogen is produced properly using an efficient CO₂ sequestration hydrogen production plant and minimizing the rate of upstream CH₄ leakage. The rate of hydrogen leakage remains an important parameter to consider throughout the entire value chain. Based on various scenarios of the development of a 21st century hydrogen economy we estimate significant CO₂ emission reductions of 266–418 GtCO₂eq (up to 395–675 GtCO2eq in the case of a “high hydrogen demand” scenario) between 2030 and 2100. This cumulative reduction in CO₂ emissions translates into a reduction in global warming of 0.12–0.19 °C (0.18–0.30 °C for a “high hydrogen demand”) by the end of the century.
Hydrogen Production from Dry Reforming in Australia: Applications, Opportunities, Challenges
Aug 2025
Publication
Australia’s path to net-zero emissions by 2050 depends heavily on the development and commercialisation of hydrogen as a substitute for hydrocarbons across transport power generation and industrial heat sectors. With hydrocarbons currently supplying over 90% of national energy needs hydrogen must scale rapidly to fill the gap. Existing low-carbon hydrogen production methods blue hydrogen via steam methane reforming and green hydrogen via electrolysis are constrained by high water requirements posing a challenge in water-scarce regions targeted for hydrogen development. This paper investigates dry reforming of methane (DRM) as a water-independent alternative using CO₂ as a reactant. DRM offers dual benefits: reduced reliance on freshwater resources and the utilisation of CO₂ supporting broader emissions reduction goals. Recent improvements in nickel-copper catalyst performance enhance the viability of DRM for industrial-scale hydrogen production. The Middle Arm Precinct in the Northern Territory is highlighted as an ideal site for implementation given its access to offshore gas fields containing both methane and CO₂ presenting a unique opportunity for resource-integrated low-emission hydrogen production.
Ammonia Decomposition and Hydrogen Production via Novel FeCoNiCuMnO High-entropy Ceramic Catalysts
Oct 2025
Publication
Ammonia (NH3) decomposition offers a pathway for water purification and green hydrogen production yet conventional catalysts often suffer from poor stability due to agglomeration. This study presents a novel (FeCoNiCuMn)O high-entropy ceramic (HEC) catalyst synthesized via fast-moving bed pyrolysis (FMBP) which prevents aggregation and enhances catalytic performance. The HEC catalyst applied as an anode in electrochemical oxidation (EO) demonstrated a uniform spinel (AB2O4) structure confirmed by XRD XRF and ICP-OES. Electronic structure characterization using UPS and LEIPS revealed a bandgap of 4.722 eV with EVBM and ECBM values facilitating redox reactions. Under 9 V and 50 mA/cm² current density the HEC electrode achieved 99% ammonia decomposition within 90 min and retained over 90% efficiency after four cycles. Surface analysis by XPS and HAXPES indicated oxidation state variations confirming catalyst activity and stability. Gas chromatography identified H2 N2 and O2 as the main products with ~64.7% Faradaic efficiency for H2 classifying it as green hydrogen. This dual-function approach highlights the (FeCoNiCuMn)O HEC anode as a promising and sustainable solution for wastewater treatment and hydrogen production.
Current Developments on MIL-based Metal-organic Frameworks for Photocatalytic Hydrogen Production
Sep 2025
Publication
The escalating global energy demand has intensified research into sustainable hydrogen production particularly through water splitting. A highly promising avenue involves photocatalytic water splitting which leverages readily available earth-abundant materials to generate clean hydrogen from water using only renewable energy sources. Among the various catalytic materials investigated metal-organic frameworks (MOFs) have recently attracted considerable interest. Their tunable porosity high crystallinity as well as the customisable molecular structures position them as a transformative class of catalysts for efficient and sustainable photocatalytic hydrogen generation. This review examines MOFs detailing their structural characteristics unique properties and diverse synthetic routes. The discussion extends to the various composite materials that can be derived from MOFs with particular emphasis on their application in photocatalytic hydrogen production via water splitting. Furthermore the review identifies current challenges hindering MOF implementation and proposes modification strategies to overcome these limitations. The concluding section summarises the presented information and future perspectives on the continued development of MOF composites for enhanced photocatalytic hydrogen production from water.
Techno-economic Optimization of Renewable Hydrogen Infrastructure via AI-based Dynamic Pricing
Aug 2025
Publication
This study presents a techno-economic optimization of hydrogen production using hybrid wind-solar systems across six Australian cities highlighting Australia’s green hydrogen potential. A hybrid PVwind-electrolyzer-hydrogen tank (PV-WT-EL-HT) system demonstrated superior performance with Perth achieving the lowest Levelized Cost of Hydrogen (LCOH) at $0.582/kg Net Present Cost (NPC) of $27.5k and Levelized Cost of Electricity (LCOE) of $0.0166/kWh. Perth also showed the highest return on investment present worth and annual worth making it the preferred project site. All locations maintained a 100% renewable fraction proving the viability of fully decarbonized hydrogen production. Metaheuristic validation using nine algorithms showed the Mayfly Algorithm improved techno-economic metrics by 3–8% over HOMER Pro models. The Gray Wolf and Whale Optimization Algorithms enhanced system stability under wind-dominant conditions. Sensitivity analysis revealed that blockchain-based dynamic pricing and reinforcement learning-driven demand response yielded 8–10% cost savings under ±15% demand variability. Nevertheless regional disparities persist; southern cities such as Hobart and Melbourne exhibited 20–30% higher LCOH due to reduced renewable resource availability while densely urbanized cities like Sydney presented optimization ceilings with minimal LCOH improvements despite algorithmic refinements. Investment in advanced materials (e.g. perovskite-VAWTs) and offshore platforms targeting hydrogen export markets is essential. Perth emerged as the optimal hub with hybrid PV/WT/B systems producing 200–250 MWh/ month of electricity and 200–250 kg/month of hydrogen supported by policy incentives. This work offers a blueprint for region-specific AI-augmented hydrogen systems to drive Australia’s hydrogen economy toward $2.10/kg by 2030.
TwinP2G: A Software Application for Optimal Power-to Gas Planning
Sep 2025
Publication
This paper presents TwinP2G a software application for optimal planning of investments in power-to-gas (PtG) systems. TwinP2G provides simulation and optimization services for the techno-economic analysis of user-customized energy networks. The core of TwinP2G is based on power flow simulation; however it supports energy sector coupling including electricity green hydrogen natural gas and synthetic methane. The framework provides a user-friendly user interface (UI) suitable for various user roles including data scientists and energy experts using visualizations and metrics on the assessed investments. An identity and access management mechanism also serves the security and authorization needs of the framework. Finally TwinP2G revolutionizes the concept of data availability and data sharing by granting its users access to distributed energy datasets available in the EnerShare Data Space. These data are available to TwinP2G users for conducting their experiments and extracting useful insights on optimal PtG investments for the energy grid.
Sequential System for Hydrogen and Methane Production from Sucrose Wastewater: Effects of Substrate Concentration and Addition of FE2+ Ions
Oct 2025
Publication
A two-stage system is used for hydrogen (H2) and methane (CH4) production from sucrose wastewater. The H2- producing reactor is operated at pH temperature (T) and hydraulic retention time (HRT) of 5.5 35 ◦C 24 h respectively. While operating conditions of 7–8 pH 35 ◦C T and 144 h HRT are used to conduct the CH4 production stage. The effects of two different parameters as sucrose concentration (5 10 and 20 g/L) and addition of ferrous ions (60 and 120 mg/L) are investigated. Both H2 and CH4 productions are increased at high sucrose concentrations. However the optimum H2 and CH4 yields of 163.2 mL-H2/g-sucrose and 211.8 mL-CH4/g-TVS are obtained at 5 g-sucrose/L. At 5 g-sucrose/L addition of Fe2+ increases the H2 yield to 192.5 and 176.2 mLH2/g-sucrose corresponding to 60 and 120 mg-Fe2+/L respectively. Higher removal efficiencies and total energy recovery are measured using the two-stage system than the single-stage reactor.
A Comprehensive Review of Green Hydrogen-based Hybrid Energy Systems: Technologies, Evaluation, and Process Safety
Aug 2025
Publication
The reliability and sustainability of multi-energy networks are increasingly critical in addressing modern energy demands and environmental concerns. Hydrogen-based hybrid energy systems can mitigate the challenges of renewable energy utilization such as intermittency grid stability and energy storage by integrating hydrogen generation and electricity storage from renewable sources such as solar and wind. Therefore this review offers a comprehensive evaluation of the environmental economic and technological aspects of green hydrogen-based hybrid energy systems particularly highlighting improvements in terms of the economics of fuel cell and electrolysis procedures. It also highlights new approaches such as hybrid energy management strategies and power-to-gas (PtG) conversion to enhance the system’s dependability and resilience. Analyzing the role of green hydrogen-based hybrid energy systems in supporting global climate goals and improving energy security underscores their high potential to make a significant contribution to carbon-neutral energy networks and provide policymakers with useful recommendations for developing guidelines. In addition the social aspect of hydrogen systems like energy equity and community engagement towards a hydrogen-based society provides reasons for the continued development of next-generation energy systems.
High-Performance Two-Stroke Opposed-Piston Hydrogen Engine: Numerical Study on Injection Strategies, Spark Positioning and Water Injection to Mitigate Pre-Ignition
Sep 2025
Publication
In the pursuit of zero-emission mobility hydrogen represents a promising fuel for internal combustion engines. However its low volumetric energy density poses challenges especially for high-performance applications where compactness and lightweight design are crucial. This study investigates the feasibility of an innovative hydrogen-fueled two-stroke opposed-piston (2S-OP) engine targeting a specific power of 130 kW/L and an indicated thermal efficiency above 40%. A detailed 3D-CFD analysis is conducted to evaluate mixture formation combustion behavior abnormal combustion and water injection as a mitigation strategy. Innovative ring-shaped multi-point injection systems with several designs are tested demonstrating the impact of injector channels’ orientation on the final mixture distribution. The combustion analysis shows that a dual-spark configuration ensures faster combustion compared to a single-spark system with a 27.5% reduction in 10% to 90% combustion duration. Pre-ignition is identified as the main limiting factor strongly linked to mixture stratification and high temperatures. To suppress it water injection is proposed. A 55% evaporation efficiency of the water mass injected lowers the in-cylinder temperature and delays pre-ignition onset. Overall the study provides key design guidelines for future high-performance hydrogen-fueled 2S-OP engines.
Sizing of Fuel Distribution and Thermopropulsion Systems for Liquid-Hydrogen-Powered Aircraft Using an MBSE Approach
Jun 2025
Publication
Hydrogen-powered aircraft constitute a transformative innovation in aviation motivated by the imperative for sustainable and environmentally friendly transportation solutions. This paper aims to concentrate on the design of hydrogen powertrains employing a system approach to propose representative design models for distribution and propulsion systems. Initially the requirements for powertrain design are formalized and a usecase-driven analysis is conducted to determine the functional and physical architectures. Subsequently for each component pertinent to preliminary design an analytical model is proposed for multidisciplinary analysis and optimization for powertrain sizing. A doublewall pipe model incorporating foam and vacuum multi-layer insulation was developed. The internal and outer pipes sizing were performed in accordance with standards for hydrogen piping design. Valves sizing is also considered in the present study following current standards and using data available in the literature. Furthermore models for booster pumps to compensate pressure drop and high-pressure pumps to elevate pressure at the combustion chamber entrance are proposed. Heat exchanger and evaporator models are also included and connected to a burning hydrogen engine in the sizing process. An optimal liner pipe diameter was identified which minimizes distribution systems weight. We also expect a reduction in engine length and weight while maintaining equivalent thrust.
Adaptive Robust Energy Management of Smart Grid with Renewable Integrated Energy System, Fuel Cell and Electric Vehicles Stations and Renewable Distributed Generation
Aug 2025
Publication
This study expresses energy scheduling in intelligent distribution grid with renewable resources charging stations and hydrogen stations for electric vehicles and integrated energy systems. In deterministic model objective function minimizes total operating energy losses and environmental costs of grid. Constraints are power flow equations network operating and voltage security limits operating model of renewable resources electric vehicle stations and integrated energy systems. Scheme includes uncertainties in load renewable resources charging and hydrogen stations and energy prices. Robust optimization uses to obtain an operation that is robust against the forecast error of the aforementioned uncertainties. Modeling electric vehicles station and aforementioned integrated energy systems considering economic operational and environmental objectives of network operator as objective function extracting a robust model of aforementioned uncertainties in order to extract a solution that is robust against the uncertainty prediction error and examining ability of energy management to improve voltage security of grid are among innovations of this paper. Numerical results obtained from various cases prove the aforementioned advantages and innovations. Energy management of resources charging and hydrogen stations and aforementioned integrated systems lead to scheme being robust against 35% of the prediction error of various uncertainties. In these conditions scheme has improved economic operational environmental and voltage security conditions by about 33.6% 7%- 37.4% 44.4% and 24.7% respectively compared to load flow studies. By applying optimal penalty price for energy losses and pollution pollution and energy losses in the network are reduced by about 45.15% and 34.1% respectively.
Thermodynamics Analysis of Generation of Green Hydrogen and Methanol through Carbon Dioxide Capture
Oct 2025
Publication
This extensive study delves into analyzing carbon dioxide (CO2)-capturing green hydrogen plant exploring its operation using multiple electrolysis techniques and examining their efficiency and impact on environment. The solar energy is used for the electrolysis to make hydrogen. Emitted CO2 from thermal power plants integrate with green hydrogen and produces methanol. It is a process crucial for mitigating environmental damage and fostering sustainable energy practices. The findings demonstrated that solid oxide electrolysis is the most effective process by which hydrogen can be produced with significant rate of 90 % efficiency. Moreover proton exchange membrane (PEM) becomes a viable and common method with an 80 % efficiency whereas the alkaline electrolysis has a moderate level of 63 % efficiency. Additionally it was noted that the importance of seasonal fluctuations where the capturing of CO2 is maximum in summer months and less in the winter is an important factor to consider in order to maximize the working of the plant and the allocation of resources.
Comprehensive Experimental Assessment of NOx Emissions in Swirling Diffusion Flames of Natural Gas-hydrogen Blends
Oct 2025
Publication
In the transformation process from fossil-fuel based to carbon-neutral combustion full or partial replacement of natural gas with hydrogen is considered in numerous industrial applications. As hydrogen flames yield significantly higher NOX emissions than natural gas flames understanding what factors influence these emissions in flames of natural gas/hydrogen blends is crucial for the retrofitting process. Our work is concerned with the simplest form of industrial retrofitting where hydrogen is injected into the natural gas line without any modifications to the burner construction while keeping the burner power constant. We provide quantifications of NOX emissions with respect to changes in hydrogen content (pure natural gas to 100% hydrogen) swirl number (S=0.6 to S=1.4) excess air ratio ( = 1 to =4.5) and air preheat (ambient air to 300 ◦C). The changes were determined in small steps and over a large range. The emission data is to be used in industrial CFD for both validation and tuning therefore Laser Doppler Velocimetry was used for precise determination of the burner inlet conditions. Key findings of the investigation include that for hydrogen flames the NOX emission index [mg/kWh] is 1.2 to 3 times larger than for pure natural gas flames at similar firing conditions. The steepest increase in NOX emissions occurs above 75% volume fraction of hydrogen in the fuel. For natural gas flames NOX emissions peak at 1.3 to 1.4 excess air while the maximum for hydrogen and natural gas/hydrogen blends lays at =1.6. NOX emissions decrease slightly as the swirl number increases but this effect is minor in comparison to the effects of hydrogen content excess air ratio and air temperature.
Innovative Sulfer-based Photocatalysts for Seawater Splitting: Synthesis Strategies, Engineering Advances, and Prospective Pathways for Sustainable Hydrogen Production
Oct 2025
Publication
While hydrogen production through pure water splitting remains a key focus in solar hydrogen research photocatalytic seawater splitting presents a more sustainable alternative better aligned with global development goals amid increasing freshwater scarcity. Nevertheless the deactivation of the photocatalyst by the corrosion of various ions present in seawater as well as the chloride ions’ redox side reaction limits the practical use of the photocatalytic seawater splitting process. In this context sulfur has emerged as a crucial component in photocatalytic composites for seawater splitting owing to its unique chemical properties. It acts as a chlorine-repulsive agent effectively suppressing chloride ion oxidation which mitigates corrosion enhances structural stability and significantly improves overall photocatalytic performance in saline environments. This review offers a thorough explanation of the basic ideas of solar-driven seawater splitting delves into various synthesis strategies and explores recent advancements in sulfur-based composites for efficient hydrogen generation using seawater. Optimizing synthesis techniques and incorporating strategies like doping cocatalyst and heterojunctions significantly enhance the performance of sulfur-based photocatalysts for seawater splitting. Future advances include integrating AI-guided material discovery sustainable use of industrial sulfur waste and precise control of sacrificial agents to ensure long-term efficiency and stability.
Effect of Hydrogen Injection Strategy on Combustion and Emissions of Ammonia-Hydrogen Sustainable Engines
Oct 2025
Publication
Driven by the global energy transition and the dual carbon goals developing low-carbon and zero-carbon alternative fuels has become a core issue for sustainable development in the internal combustion engine sector. Ammonia is a promising zero-carbon fuel with broad application prospects. However its inherent combustion characteristics including slow flame propagation high ignition energy and narrow flammable range limit its use in internal combustion engines necessitating the addition of auxiliary fuels. To address this issue this paper proposes a composite injection technology combining “ammonia duct injection + hydrogen cylinder direct injection.” This technology utilizes highly reactive hydrogen to promote ammonia combustion compensating for ammonia’s shortcomings and enabling efficient and smooth engine operation. This study based on bench testing investigated the effects of hydrogen direct injection timing (180 170 160 150 140◦ 130 120 ◦CA BTDC) hydrogen direct injection pressure (4 5 6 7 8 MPa) on the combustion and emissions of the ammonia–hydrogen engine. Under hydrogen direct injection timing and hydrogen direct injection pressure conditions the hydrogen mixture ratios are 10% 20% 30% 40% and 50% respectively. Test results indicate that hydrogen injection timing that is too early or too late prevents the formation of an optimal hydrogen layered state within the cylinder leading to prolonged flame development period and CA10-90. The peak HRR also exhibits a trend of first increasing and then decreasing as the hydrogen direct injection timing is delayed. Increasing the hydrogen direct injection pressure to 8 MPa enhances the initial kinetic energy of the hydrogen jet intensifies the gas flow within the cylinder and shortens the CA0-10 and CA10-90 respectively. Under five different hydrogen direct injection ratios the CA10- 90 is shortened by 9.71% 11.44% 13.29% 9.09% and 13.42% respectively improving the combustion stability of the ammonia–hydrogen engine.
Preliminary Feasibility Study of Using Hydrogen as a Fuel for an Aquaculture Vessel in Tasmania, Australia
Oct 2025
Publication
Decarbonising aquaculture support vessels is pivotal to reducing greenhouse gas (GHG) emissions across both the aquaculture and maritime sectors. This study evaluates the technical and economic feasibility of deploying hydrogen as a marine fuel for a 14.95 m net cleaning vessel (NCV) operating in Tasmania Australia. The analysis retains the vessel’s original layout and subdivision to enable a like-for-like comparison between conventional diesel and hydrogen-based systems. Two options are evaluated: (i) replacing both the main propulsion engines and auxiliary generator sets with hydrogen-based systems— either proton exchange membrane fuel cells (PEMFCs) or internal combustion engines (ICEs); and (ii) replacing only the diesel generator sets with hydrogen power systems. The assessment covers system sizing onboard hydrogen storage integration operational constraints lifecycle cost and GHG abatement. Option (i) is constrained by the sizes and weights of PEMFC systems and hydrogen-fuelled ICEs rendering full conversion unfeasible within current spatial and technological limits. Option (ii) is technically feasible: sixteen 700 bar cylinders (131.2 kg H2 total) meet one day of onboard power demand for net-cleaning operations with bunkering via swap-and-go skids at the berth. The annualised total cost of ownership for the PEMFC systems is 1.98 times that of diesel generator sets while enabling annual CO2 reductions of 433 t. The findings provide a practical decarbonisation pathway for small- to medium-sized service vessels in niche maritime sectors such as aquaculture while clarifying near-term trade-offs between cost and emissions.
Toward Sustainable Hydrogen Production from Renewable Energy Sources: A Review
Sep 2025
Publication
The escalating global pursuit of environmentally benign energy alternatives has spurred intensive investigations into sustainable hydrogen generation technologies. Although hydrogen energy can be produced via multiple approaches the integration of nanotechnology materials in its generation results in its production improvements and efficiency of the production methods. Nanotechnology with its astonishing ability to control materials at the atomic and molecular scale has emerged as a vital technology for improving the efficiency and affordability of hydrogen production from renewable energy sources. This technology provides a unique platform for creating materials with specific properties for energy conversion and storage. Nanotechnology is accelerating the transition to a hydrogen economy by boosting hydrogen production efficiency and storage. Its applications span from enhancing water-splitting catalysts to developing advanced membranes and photocatalysts. These nanomaterial-based innovations are crucial for producing clean hydrogen and its effective storage. Nevertheless nanotechnology highlights the significant role of nanomaterials in overcoming the kinetic challenges associated with hydrogen evolution reactions which can be attained through several features like increased surface area enhanced catalytic activity and improved charge transfer. Therefore this study explores the latest advancements in nanomaterials and their catalytic impact on hydrogen generation particularly in photocatalysis electrocatalysis and photoelectrochemical systems. The study has examined the nanomaterials’ production characterization and performance their integration into renewable energy systems and their potential for widespread commercial use.
Effect of Hydrogen-Containing Fuel on the Mechanical Properties of an Aluminum Alloy ICE Piston
Oct 2025
Publication
The transition to cleaner hydrogen-containing fuels is critical for reducing the environmental impact of marine infrastructure yet their potential effects on the durability and mechanical reliability of engine components remain a significant engineering challenge. Although aluminum alloys are generally regarded as less susceptible to hydrogeninduced degradation and are widely applied in internal combustion engine components experimental data obtained under real operating conditions with hydrogen-containing fuel mixtures remain insufficient to fully assess all potential risks. In the present study two identical low-power gasoline engine–generators were operated for 220 h on fuels with and without hydrogen. Post-test analysis included mechanical testing and microstructural characterization of aluminum alloy pistons for comparative assessment. The measured values of ultimate tensile strength elongation and deflection maximum bending force and effective stress concentration factor revealed pronounced property degradation in the piston operated on the gasoline–hydrogen mixture compared to both the new piston and the one run on pure gasoline. Microstructural analysis provided a plausible explanation for this degradation. The results of this preliminary study provide insights into the effects of hydrogen-containing fuel on the mechanical performance of engine component alloys contributing to the development of safer and more reliable marine energy systems.
Physics-Informed Co-Optimization of Fuel-Cell Flying Vehicle Propulsion and Control Systems with Onboard Catalysis
Oct 2025
Publication
Fuel-cell flying vehicles suffer from limited endurance while ammonia decomposed onboard to supply hydrogen offers a carbon-free high-density solution to extend flight missions. However the system’s performance is governed by a multi-scale coupling between propulsion and control systems. To this end this paper introduces a novel optimization paradigm termed physics-informed gradient-enhanced multi-objective optimization (PIGEMO) to simultaneously optimize the ammonia decomposition unit (ADU) catalyst composition powertrain sizing and flight control parameters. The PI-GEMO framework leverages a physics-informed neural network (PINN) as a differentiable surrogate model which is trained not only on sparse simulation data but also on the governing differential equations of the system. This enables the use of analytical gradient information extracted from the trained PINN via automatic differentiation to intelligently guide the evolutionary search process. A comprehensive case study on a flying vehicle demonstrates that the PIGEMO framework not only discovers a superior set of Pareto-optimal solutions compared to traditional methods but also critically ensures the physical plausibility of the results.
Experimental Thermal and Environmental Impact Performance Evaluations of Hydrogen-enriched Fuels for Power Generation
Oct 2025
Publication
The transition to a low-carbon energy future requires a multi-faceted approach including the enhancement of existing power generation technologies. This study provides a comprehensive experimental evaluation of hydrogen enrichment as a strategy to improve the performance and reduce the emissions of a power generator. A 3.65 kW power generator that is equipped with spark-ignition engine is systematically tested with five distinct base fuels: gasoline propane methane ethanol and methanol. Each fuel is volumetrically blended with pure hydrogen in ratios of 5 % 10 % 15 % and 20 % using a custom-developed dual-fuel carburetor. The key parameters including exhaust emissions (CO2 CO HC NOx) cylinder exit temperature electrical power output and thermodynamic efficiencies (energy and exergy) are meticulously measured and analyzed. The results reveal that hydrogen enrichment is a powerful tool for decarbonization consistently reducing carbon-based emissions across all fuels. At a 20 % hydrogen blend CO2 emissions are reduced by 22–31 % CO emissions by 39–60 % and HC emissions by 21–60 %. This environmental benefit however is accompanied by a critical trade-off: a severe increase in NOx emissions which rose by 200–420 % due to significantly elevated combustion temperatures. The power outputs are increased by 2–16 % with hydrogen addition enabling lower-energy–density fuels like methane and propane to achieve performance parity with gasoline. Thermodynamic analysis confirms these gains with energy efficiency showing marked improvement particularly for methane which has increased from 42.0 % to 49.9 %. While hydrogen enrichment presents a viable pathway for enhancing engine performance and reducing the carbon emissions of power generators the profound increase in NOx necessitates the integration of advanced control and after-treatment systems for its practical and environmentally responsible deployment.
Techno-Economic Assessment of Green Hydrogen Production in Australia Using Off-Grid Hybrid Resources of Solar and Wind
Jun 2025
Publication
This study presents a techno-economic framework for assessing the potential of utilizing hybrid renewable energy sources (wind and solar) to produce green hydrogen with a specific focus on Australia. The model’s objective is to equip decision-makers in the green hydrogen industry with a reliable methodology to assess the availability of renewable resources for cost-effective hydrogen production. To enhance the credibility of the analysis the model integrates 10 min on-ground solar and wind data uses a high-resolution power dispatch simulation and considers electrolyzer operational thresholds. This study concentrates on five locations in Australia and employs high-frequency resource data to quantify wind and solar availability. A precise simulation of power dispatch for a large off-grid plant has been developed to analyze the PV/wind ratio element capacities and cost variables. The results indicate that the locations where wind turbines can produce cost-effective hydrogen are limited due to the high capital investment which renders wind farms uneconomical for hydrogen production. Our findings show that only one location—Edithburgh South Australia—under a 50% solar–50% wind scenario achieves a hydrogen production cost of 10.3 ¢USD/Nm3 which is lower than the 100% solar scenario. In the other four locations the 100% solar scenario proves to be the most cost-effective for green hydrogen production. This study suggests that precise and comprehensive resource assessment is crucial for developing hydrogen production plants that generate low-cost green hydrogen.
Integrated Optimization of Hydrogen Production: Evaluating Scope 3 Emissions and Sustainable Pathways
Jul 2025
Publication
The U.S. produces 10 million metric tons (MMT) of hydrogen annually emitting about 41 MMT of carbon dioxide equivalents (CO2-eqs). With rising hydrogen demand and new emission regulations integrating conventional and novel hydrogen production systems is crucial. This study presents an integrated optimization framework to model diversified hydrogen economies as mixed integer linear programs (MILPs). Moreover the accounting of emissions extends to the system exterior (scope 3) thus providing a comprehensive sustainability assessment. The primary focus of the presented computational example is to analyze the impact of scope 3 emissions particularly material emissions during the construction phase on process system optimization while complying with stringent environmental constraints such as carbon limits. By evaluating emission reduction scenarios the model highlights the role of power purchase agreements (PPAs) from renewable sources and the trade-offs between conventional and novel hydrogen production technologies. The key findings indicate that while electrolyzer-based systems (PEM and AWE) offer potential for emission reduction their high energy demand and significant scope 3 material emissions pose challenges for a complete transition in the near term. The study identified two optimal design configurations: one utilizing PPAs as the primary energy source coupled with the conventional SMR-CCS process and another that combines both conventional (SMR-CCS) and novel hydrogen production technologies under a hybrid purview. Ultimately the findings contribute toward the ongoing efforts to achieve true net-carbon neutrality.
Development of a MILP Optimization Framework to Design Grid-connected Microgrids: Enhancing Operational Synergy Among Wind, Solar, Batteries, and Hydrogen Storage
Sep 2025
Publication
By integrating Renewable Energy Sources (RES) and storage devices Hybrid Energy Systems (HESs) represent a promising solution for decarbonizing isolated and remote communities. Proper sizing and management of systems comprising a variety of components requires however more advanced methods than conventional energy systems. This study proposes a novel Mixed Integer Linear Programming (MILP) framework for the simultaneous design of a grid-connected HES supported by renewable generators. Unlike the standard design approach based on parametric dispatch strategies this framework simultaneously optimizes the energy management of each system configuration under analysis. The novel approach is applied to size a combination of Li-Ion batteries an alkaline electrolyzer H2 tanks and a PEM fuel cell to maximize the NPV of a system including a wind turbine and a photovoltaic field. Managing thousands of variables at the same time the framework simultaneously optimizes how all components are used to fulfill the load and balance the input/export of power within a limited electrical network. Results show that the combination of BESS and H2 can provide for both the need for short- and long-term energy storage and that the MILP optimization can effectively allocate the energy flows and produce 558 k€ of revenues per year 15.5% of the initial investment cost of 3.6 M€. The investment cost of the system is recovered in six years and presents an NPV of 5.51 M€ after 20 years. Results from the proposed method are also compared to common approaches based on rule-based parametric dispatch strategies demonstrating the superiority of MILP for the design and management of complex HESs.
Hydrogen Barrier Coatings: Application and Assessment
Sep 2025
Publication
Hydrogen embrittlement (HE) threatens the structural integrity of industrial components exposed to hydrogenrich environments. This review critically explores hydrogen barrier coatings (HBCs) polymeric metallic ceramic and composite their application and assessment focusing on measured effectiveness in limiting hydrogen permeation and hydrogen embrittlement. Also coating application methods and permeation assessment techniques are evaluated. Recent advances in nanostructured and hybrid coatings are emphasized highlighting the pressing need for durable scalable and environmentally sustainable hydrogen barrier coatings to ensure the reliability of emerging hydrogen-based energy solutions. This comprehensive critical review further distinguishes itself by linking coating deposition methods to defect-driven transport behaviour critically assessing permeation test approaches. It also highlights the emerging role of polymeric and hybrid multilayer coatings with direct implications for advanced and reliable hydrogen production storage and transport infrastructure.
Synthesis of Activated Carbon from Zhundong Coal and its Hydrogen Storage Application
May 2025
Publication
Activated carbon as a hydrogen storage material possesses advantages such as low cost high safety lightweight and good cycling performance. Zhundong coal characterized by low calorific value high volatility and elevated reaction activity stands out as an exceptional raw material for the production of activated carbon. This study employed Zhundong coal for the synthesis of hydrogen storage activated carbon exploring the impact of acid treatment and varied activation conditions on Zhundong coal. The specific surface area of sample ZD-HK3-AC is 1980 m2 /g and the gravimetric hydrogen storage density reaches 0.91 wt% under the condition of 80bar at room temperature. The adsorption–desorption isotherms nearly overlapped demonstrating excellent cycling performance and high mechanical strength. At the same time the relationship between the pore structure parameters of activated carbon and hydrogen storage density was explored revealing the mechanism of activated carbon adsorption and hydrogen storage. These findings hold significant guiding implications for the preparation and research of hydrogen storage materials utilizing activated carbon.
Advancing Electrochemical Modelling of PEM Electrolyzers through Robust Parameter Estimation with the Weighted Mean of Vectors Algorithm
Jul 2025
Publication
The electrochemical modelling of proton exchange membrane electrolyzers (PEMEZs) relies on the precise determination of several unknown parameters. Achieving this accuracy requires addressing a challenging optimization problem characterized by nonlinearity multimodality and multiple interdependent variables. Thus a novel approach for determining the unknown parameters of a detailed PEMEZ electrochemical model is proposed using the weighted mean of vectors algorithm (WMVA). An objective function based on mean square deviation (MSD) is proposed to quantify the difference between experimental and estimated voltages. Practical validation was carried out on three commercial PEMEZ stacks from different manufacturers (Giner Electrochemical Systems and HGenerators™). The first two stacks were tested under two distinct pressure-temperature settings yielding five V–J data sets in total for assessing the WMVA-based model. The results demonstrate that WMVA outperforms all optimizers achieving MSDs of 1.73366e−06 1.91934e−06 1.09306e−05 6.18248e−05 and 4.41586e−06 corresponding to improvements of approximately 88% 82.9% 82.4% 54.5% and 59.5% over the poorest-performing algorithm in each case respectively. Moreover comparative analyses statistical studies and convergence curves confirm the robustness and reliability of the proposed optimizer. Additionally the effects of temperature and hydrogen pressure variations on the electrical and physical steady-state performance of the PEMEZ are carefully investigated. The findings are further reinforced by a dynamic simulation that illustrates the impact of temperature and supplied current on hydrogen production. Accordingly the article facilitates better PEMEZ modelling and optimizing hydrogen production performance across various operating conditions.
Numerical Modelling of Gas Mixing in Salt Caverns During Cyclic Hydrogen Storage
Oct 2025
Publication
This study presents the development of a robust numerical model for simulating underground hydrogen storage (UHS) in salt caverns with a particular focus on the interactions between original gas-methane (CH4) and injected gas represented by hydrogen (H2). Using the Schlumberger Eclipse 300 compositional reservoir simulator the cavern was modelled as a highly permeable porous medium to accurately represent gas flow dynamics. Two principal mixing mechanisms were investigated: physical dispersion modelled by numerical dispersion and molecular diffusion. Multiple cavern configurations and a range of dispersion–diffusion coefficients were assessed. The results indicate that physical dispersion is the primary factor affecting hydrogen purity during storage cycles while molecular diffusion becomes more significant during long-term gas storage. Gas mixing was shown to directly impact the calorific value and quality of withdrawn hydrogen. This work demonstrates the effectiveness of commercial reservoir simulators for UHS analysis and proposes a methodological framework for evaluating hydrogen purity in salt cavern storage operations.
In-service and Repair Welding of Pressurized Hydrogen Pipelines - A Review on Current Challenges and Strategies
Aug 2025
Publication
Hydrogen is the energy carrier for a sustainable future without fossil fuels. As this requires a reliable transportation infrastructure the conversion of existing natural gas (NG) grids is an essential part of the worldwide individual national hydrogen strategies in addition to newly erected pipelines. In view of the known effect of hydrogen embrittlement the compatibility of the materials already in use (typically low-alloy steels in a wide range of strengths and thicknesses) must be investigated. Initial comprehensive studies on the hydrogen compatibility of pipeline materials indicate that these materials can be used to a certain extent. Nevertheless the material compatibility for hydrogen service is currently of great importance. However pipelines require frequent maintenance and repair work. In some cases it is necessary to carry out welding work on pipelines while they are under pressure e.g. the well-known tapping of NG grids. This in-service welding brings additional challenges for hydrogen operations in terms of additional hydrogen absorption during welding and material compatibility. The challenge can be roughly divided into two parts: (1) the possible austenitization of the inner piping material exposed to hydrogen which can lead to additional hydrogen absorption and (2) the welding itself causes an increased temperature range. Both lead to a significantly increased hydrogen solubility in the respective materials compared to room temperature. In that connection the knowledge on hot tapping on hydrogen pipelines is rare so far due to the missing service experiences. Fundamental experimental investigations are required to investigate the possible transferability of the state-of-the-art concepts from NG to hydrogen pipeline grids. This is necessary to ensure that no critical material degradation occurs due to the potentially increased hydrogen uptake. For this reason the paper introduces the state of the art in pipeline hot tapping encompassing current research projects and their individual solution strategies for the problems that may arise for future hydrogen service. Methods of material testing their limitations and possible solutions will be presented and discussed.
Hydrogen-Enabled Microgrids for Railway Applications: A Seasonal Energy Storage Solution for Switch-Point Heating
Sep 2025
Publication
Switch-point heating systems are essential for railway reliability and safety in winter but present logistical and economic challenges in remote regions. This study presents a novel application of a hydrogen-enabled microgrid as an off-grid energy solution for powering a switch-point heating system at a rural Austrian railway station offering an alternative to conventional grid-based electricity with a specific focus on enhancing the share of renewable energy sources. The proposed system integrates photovoltaics (PV) optional wind energy and hydrogen storage to address the seasonal mismatch between a high energy supply in the summer and peak winter demand. Three energy supply scenarios are analysed and compared based on local conditions technical simplicity and economic viability. Energy flow modelling based on site-specific climate and operational data is used to determine hydrogen production rates storage capacity requirements and system sizing. A comprehensive cost analysis of all major subsystems is conducted to assess economic viability. The study demonstrates that hydrogen is a highly effective solution for seasonal energy storage with a PV-only configuration emerging as the most suitable option under current site conditions. Thus it offers a replicable framework for decarbonising critical stationary railway infrastructure.
An Integrated AI-driven Framework for Maximizing the Efficiency of Heterostructured Nanomaterials in Photocatalytic Hydrogen Production
Jul 2025
Publication
The urgency for sustainable and efficient hydrogen production has increased interest in heterostructured nanomaterials known for their excellent photocatalytic properties. Traditional synthesis methods often rely on trial-and-error resulting in inefficiencies in material discovery and optimization. This work presents a new AI-driven framework that overcomes these challenges by integrating advanced machine-learning techniques specific to heterostructured nanomaterials. Graph Neural Networks (GNNs) enable accurate representations of atomic structures predicting material properties like bandgap energy and photocatalytic efficiency within ±0.05 eV. Reinforcement Learning optimises synthesis parameters reducing experimental iterations by 40% and boosting hydrogen yield by 15–20%. Physics-Informed Neural Networks (PINNs) successfully predict reaction pathways and intermediate states minimizing synthesis errors by 25%. Variational Autoencoders (VAEs) generate novel material configurations improving photocatalytic efficiency by up to 15%. Additionally Bayesian Optimisation enhances predictive accuracy by 30% through efficient hyperparameter tuning. This holistic framework integrates material design synthesis optimization and experimental validation fostering a synergistic data flow. Ultimately it accelerates the discovery of novel heterostructured nanomaterials enhancing efficiency scalability and yield thus moving closer to sustainable hydrogen production with improvements in photolytic efficiency setting a benchmark for AI-assisted research.
Hydrogen Production Intensification by Energy Demand Management in High-Temperature Electrolysis
Aug 2025
Publication
Solid oxide electrolysers (SOEs) can decarbonise H2 supply when powered by renewable electricity but remain constrained by high electrical demand and integration penalties. Our objective is to minimise the electrical (Pel) and thermal (Qth) energy demand per mole of H2 by jointly tuning cell temperature steam fraction steam utilisation pressure and current density. Compared with prior single-variable or thermo-neutral-constrained studies we develop and validate a steady-state process-level optimisation framework that couples an Aspen Plus SOE model with electrochemical post-processing and heat caused by ohmic resistance recovery. A Box–Behnken design explores five key operating parameters to capture synergies and trade-offs between Qth and Pel energy inputs. Single-objective optimisation yields Pel = 170.1 kJ mol⁻¹ H2 a 41.4% reduction versus literature baselines. Multi-objective optimisation using an equal-weighted composite desirability function aggregating thermal and electrical demands further reduces Pel by 21.2% while balancing thermal input 4–8% lower than single-objective baselines at moderate temperature (~781 °C) and pressure (~17.5 bar). Findings demonstrate a clear process intensification advantage over previous studies by simultaneously leveraging operating parameter synergies and heat-integration. However results are bounded by steady-state perfectly mixed isothermal assumptions. The identified operating windows are mechanistically grounded targets that warrant stack-scale and plantlevel validation.
Cyclic Liquid Organic Hydrogen Carriers for Efficient Hydrogen Storage using Mesoporous Catalytic Systems
Jul 2025
Publication
Liquid organic hydrogen carriers (LOHCs) are a promising class of hydrogen storage media in which hydrogen is reversibly bound to organic molecules. In this work we focus explicitly on cyclic LOHCs (both homocyclic and heterocyclic organic compounds) and their catalytic dehydrogenation. We clarify that other carriers (e.g. alcohols like methanol or carboxylic acids like formic acid) exist but are not the focus here; these alternatives are discussed only in comparative context. Cyclic LOHCs typically enable safe ambient-temperature hydrogen storage with hydrogen contents around 6–8 wt%. Key challenges include the high dehydrogenation temperatures (often 200–350 °C) catalyst costs and catalyst deactivation via coke formation. We introduce a comparative analysis table contrasting cyclic LOHCs with alternative carriers in terms of hydrogen density operating conditions catalyst types toxicity and cost. We also expand the catalyst discussion to highlight coke formation mechanisms and the use of mesoporous metal-oxide supports to mitigate deactivation. Finally a techno-economic analysis is provided to address system costs of LOHC storage and regeneration. Finally we underscore the viability and limitations of cyclic LOHCs including practical storage capacities catalyst life and projected costs.
Can Hydrogen-powered Air Travel Grow within the Planetary Limits?
Aug 2025
Publication
Air travel demand is rising rapidly and the aviation sector is relying on technology to decouple environmental impacts from its growth. Using Sweden as a case study we assessed the absolute environmental sustainability of medium-distance air travel in 2050 positioning the aviation sector's environmental impacts in relation to the planetary limits. We employed a novel framework that integrates prospective life cycle assessment and absolute environmental sustainability assessment methodologies. Our findings suggest that projected medium-distance air travel powered by e-kerosene or liquid hydrogen could have life cycle environmental impacts that overshoot global climate change and biodiversity loss thresholds by several orders of magnitude. Based on our case results for Sweden for aviation to develop within the planetary limits we recommend cross-sector collaboration to address environmental impacts from fossil-free energy supplies and the establishment of integrated targets that incorporate broader environmental issues. Given the unlikelihood of decoupling growth from environmental impacts policymakers and the aviation sector should consider concurrently supporting technological development and implementing measures to manage air travel demand.
Techno-Economic Optimization of a Hybrid Renewable Energy System with Seawater-Based Pumped Hydro, Hydrogen, and Battery Storage for a Coastal Hotel
Oct 2025
Publication
This study presents the design and techno-economic optimization of a hybrid renewable energy system (HRES) for a coastal hotel in Manavgat Türkiye. The system integrates photovoltaic (PV) panels wind turbines (WT) pumped hydro storage (PHS) hydrogen storage (electrolyzer tank and fuel cell) batteries a fuel cell-based combined heat and power (CHP) unit and a boiler to meet both electrical and thermal demands. Within this broader optimization framework six optimal configurations emerged representing gridconnected and standalone operation modes. Optimization was performed in HOMER Pro to minimize net present cost (NPC) under strict reliability (0% unmet load) and renewable energy fraction (REF > 75%) constraints. The grid-connected PHS–PV–WT configuration achieved the lowest NPC ($1.33 million) and COE ($0.153/kWh) with a renewable fraction of ~96% and limited excess generation (~21%). Off-grid PHS-based and PHS–hydrogen configurations showed competitive performance with slightly higher costs. Hydrogen integration additionally provides complementary storage pathways coordinated operation waste heat utilization and redundancy under component unavailability. Battery-only systems without PHS or hydrogen storage resulted in 37–39% higher capital costs and ~53% higher COE confirming the economic advantage of long-duration PHS. Sensitivity analyses indicate that real discount rate variations notably affect NPC and COE particularly for battery-only systems. Component cost sensitivity highlights PV and WT as dominant cost drivers while PHS stabilizes system economics and the hydrogen subsystem contributes minimally due to its small scale. Overall these results confirm the techno-economic and environmental benefits of combining seawater-based PHS with optional hydrogen and battery storage for sustainable hotel-scale applications.
The Role of Financial Mechanisms in Advancing Renewable Energy and Green Hydrogen
Jun 2025
Publication
Europe’s transition toward a low-carbon energy system relies on the deployment of hydrogen produced with minimized carbon emissions; however regulatory requirements increase system costs and create financial barriers. This study investigates the financial implications of enforcing European Commission rules for renewable hydrogen production from 2024 to 2048. Using a scenario-based modeling approach that draws on European power system investments in renewable energy the results show that immediate compliance leads to an additional cost of approximately eighty billion euros over twenty-four years corresponding to a 3.6 percent increase in total system costs. To address this investment gap the study employs a segmentation analysis of support mechanisms based on existing policies and market practices identifying seven categories that range from investment incentives and production subsidies to infrastructure and financial instruments. Among these hydrogen offtake support and infrastructure funding are identified as the most effective measures for reducing risk and enabling private investment. These findings provide strategic insights for policymakers seeking to align their regulatory ambitions with financially viable pathways for integrating renewable energy.
Degradation Mechanisms of a Proton Exchange Membrane Water Electrolyzer Stack Operating at High Current Densities
Sep 2025
Publication
On the path to an emission free energy economy proton exchange membrane water electrolysis (PEMWE) is a promising technology for a sustainable production of green hydrogen at high current densities and thus high production rates. Long lifetime increasing the current density and the reduction of platinum group metal loadings are major challenges for a widespread implementation of PEMWE. In this context this work investigates the aging of a PEMWE stack operating at 4 A cm-2 which is twice the nominal current density of commercial electrolyzers. Specifically an 8-cells PEMWE stack using catalyst coated membranes (CCMs) with different platinum group metal (PGM) loading was operated for 2200 h. To understand degradation phenomena physical ex-situ analyses such as scanning electron microscopy (SEM) atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS) were carried out. The same aging mechanism were observed in all cells independent on their position in stack or the specific PGM loading of the membrane electrode assembly (CCM): (i) a decrease of ohmic resistance over time related to membrane thinning (ii) a significant loss of ionomer at anodes (iii) loss of noble metal from the electrodes leading to deposition of small Ir and Pt concentrations in the membrane (iv) heterogeneous enrichment of Ti on the cathode side likely originating from the cathode-side of the Ti bipolar plates (BPPs). These results are in good agreement with the electrochemical performance loss. Thus we were able to identify the degradation phenomena that dominate under high-current operation and their impact on performance.
A Framework for the Configuration and Operation of EV/FCEV Fast-Charging Stations Integrated with DERs Under Uncertainty
Oct 2025
Publication
The integration of electric vehicles (EVs) and fuel-cell electric vehicles (FCEVs) requires accessible and profitable facilities for fast charging. To promote fast-charging stations (FCSs) a systematic analysis that encompasses both planning and operation is required including the incorporation of multi-energy resources and uncertainty. This paper presents an optimization framework that addresses a joint strategy for the configuration and operation of an EV/FCEV fast-charging station (FCS) integrated with distributed energy resources (DERs) and hydrogen systems. The framework incorporates uncertainties related to solar photovoltaic (PV) generation and demand for EVs/FCEVs. The proposed joint strategy comprises a four-phase decision-making framework. Phase 1 involves modeling EV/FECE demand while Phase 2 focuses on determining an optimal long-term infrastructure configuration. Subsequently in Phase 3 the operator optimizes daily power scheduling to maximize profit. A real-time uncertainty update is then executed in Phase 4 upon the realization of uncertainty. The proposed optimization framework formulated as mixed-integer quadratic programming (MIQP) considers configuration investment operational maintenance and penalty costs for excessive grid power usage. A heuristic algorithm is proposed to solve this problem. It yields good results with significantly less computational complexity. A case study shows that under the most adverse conditions the proposed joint strategy increases the FCS owner’s profit by 3.32% compared with the deterministic benchmark.
Effect of Real Gas Equations on Calculation Accuracy of Thermodynamic State in Hydrogen Storage Tank
Oct 2025
Publication
The gas equation of state (EOS) serves as a critical tool for analyzing the thermal effects within the hydrogen storage tank during refueling processes. It quantifies the dynamic relationships among pressure temperature and volume playing a vital role in numerical simulations of hydrogen refueling the development of refueling protocols and ensuring refueling safety. This study first establishes a lumped-parameter thermodynamic model for the hydrogen refueling process which combines a zero-dimensional gas model with a one-dimensional tank wall model (0D1D). The model’s accuracy was validated against experimental data and will be used in combination with different EOSs to simulate hydrogen temperature and pressure. Subsequently parameter values are derived for the van der Waals EOS and its modified forms—Redlich–Kwong Soave and Peng–Robinson. The accuracy of the modified forms is evaluated using the Joule–Thomson inversion curve. A polynomial EOS is formulated and its parameters are numerically determined. Finally the hydrogen temperatures and pressures calculated using the van der Waals EOS Redlich– Kwong EOS polynomial EOS and the National Institute of Standards and Technology (NIST) database are compared. Within the initial and boundary conditions set in this study the results indicate that among the modified forms for van der Waals EOS the Redlich– Kwong EOS exhibits higher accuracy than the Soave and Peng–Robinson EOSs. Using the NIST-calculated hydrogen pressure as a benchmark the relative error is 0.30% for the polynomial EOS 1.83% for the Redlich–Kwong EOS and 17.90% for the van der Waals EOS. Thus the polynomial EOS exhibits higher accuracy followed by the Redlich–Kwong EOS while the van der Waals EOS demonstrates lower accuracy. This research provides a theoretical basis for selecting an appropriate EOS in numerical simulations of hydrogen refueling processes.
Optimizing Renewable Microgrid Performance Through Hydrogen Storage Integration
Oct 2025
Publication
The global transition to a low-carbon energy system requires innovative solutions that integrate renewable energy production with storage and utilization technologies. The growth in energy demand combined with the intermittency of these sources highlights the need for advanced management models capable of ensuring system stability and efficiency. This paper presents the development of an optimized energy management system integrating renewable sources with a focus on green hydrogen production via electrolysis storage and use through a fuel cell. The system aims to promote energy autonomy and support the transition to a low-carbon economy by reducing dependence on the conventional electricity grid. The proposed model enables flexible hourly energy flow optimization considering solar availability local consumption hydrogen storage capacity and grid interactions. Formulated as a Mixed-Integer Linear Programming (MILP) model it supports strategic decision-making regarding hydrogen production storage and utilization as well as energy trading with the grid. Simulations using production and consumption profiles assessed the effects of hydrogen storage capacity and electricity price variations. Results confirm the effectiveness of the model in optimizing system performance under different operational scenarios.
Response Surface Analysis of the Energy Performance and Emissions of a Dual-Fuel Engine Generator Using Biodiesel and Hydrogen-Enriched Biogas
Oct 2025
Publication
In this study we investigate the dual-fuel operation of compression ignition engines using biodiesel at varying concentrations in combination with biogas with and without hydrogen enrichment. A response surface methodology based on a central composite experimental design was employed to optimize energy efficiency and minimize pollutant emissions. The partial substitution of diesel with gaseous fuel substantially reduces the specific fuel consumption achieving a maximum decrease of 21% compared with conventional diesel operation. Enriching biogas with hydrogen accounting for 13.3% of the total flow rate increases the thermal efficiency by 0.8% compensating for the low calorific value and reduced volumetric efficiency of biogas. Variations in biodiesel concentration exhibits a nonlinear effect yielding an additional average efficiency gain of 0.4%. Regarding emissions the addition of hydrogen to biogas contributes to an average reduction of 5% in carbon monoxide emissions compared to the standard dual-fuel operation. However dual-fuel operation leads to higher unburned hydrocarbon emissions relative to neat diesel; hydrogen enrichment mitigates this drawback by reducing hydrocarbon emissions by 4.1%. Although NOx emissions increase by an average of 26.6% with hydrogen addition dual-fuel strategies achieve NOx reductions of 11.5% (hydrogen-enriched mode) and 33.3% (pure biogas mode) relative to diesel-only operation. Furthermore the application of response surface methodology is robust and reliable with experimental validation showing errors of 0.55–8.66% and an overall uncertainty of 4.84%.
A Two-Layer HiMPC Planning Framework for High-Renewable Grids: Zero-Exchange Test on Germany 2045
Oct 2025
Publication
High-renewables grids are planned in min but judged in milliseconds; credible studies must therefore resolve both horizons within a single model. Current adequacy tools bypass fast frequency dynamics while detailed simulators lack multi-hour optimization leaving investors without a unified basis for sizing storage shifting demand or upgrading transfers. We present a two-layer Hierarchical Model Predictive Control framework that links 15-min scheduling with 1-s corrective action and apply it to Germany’s four TSO zones under a stringent zero-exchange stress test derived from the NEP 2045 baseline. Batteries vehicleto-grid pumped hydro and power-to-gas technologies are captured through aggregators; a decentralized optimizer pre-positions them while a fast layer refines setpoints as forecasts drift; all are subject to inter-zonal transfer limits. Year-long simulations hold frequency within ±2 mHz for 99.9% of hours and below ±10 mHz during the worst multi-day renewable lull. Batteries absorb sub-second transients electrolyzers smooth surpluses and hydrogen turbines bridge week-long deficits—none of which violate transfer constraints. Because the algebraic core is modular analysts can insert new asset classes or policy rules with minimal code change enabling policy-relevant scenario studies from storage mandates to capacity-upgrade plans. The work elevates predictive control from plantscale demonstrations to system-level planning practice. It unifies adequacy sizing and dynamic-performance evaluation in a single optimization loop delivering an open scalable blueprint for high-renewables assessments. The framework is readily portable to other interconnected grids supporting analyses of storage obligations hydrogen roll-outs and islanding strategies.
Solar-powered Electric Vehicles - Batter EV & Fuel Cell EV: A Review
Sep 2025
Publication
The transport sector is a major contributor to greenhouse gas emissions largely due to its dependence on fossil fuels. Electrifying transport through Battery Electric Vehicles (BEVs) and Hydrogen Fuel Cell Electric Vehicles (FCEVs) is widely recognized as a key pathway to reducing emissions. While both BEVs and FCEVs are zero-emission during operation they still require electricity to function. Sourcing this electricity from solar energy presents a promising opportunity for sustainable operation. The novelty of this work lies in exploring how solar energy can be effectively integrated into both BEV and FCEV systems. The paper examines the potential scope and infrastructure requirements of these vehicle types as well as innovative charging and refuelling strategies. For BEVs charging options include fixed charging stations battery swapping stations and wireless charging. In the context of solar integration photovoltaic (PV) systems can be mounted directly on the vehicle body or used to power charging stations. While current PV efficiency and reliability are insufficient to meet the full energy demand of BEVs they can provide valuable auxiliary power. For FCEVs solar energy can be utilized for hydrogen production enabling the concept of solar-powered FCEVs. Refuelling options include onsite and offsite hydrogen production facilities as well as mobile refuelling units. In both cases land requirements for PV installations are significant. Alternatives to ground-mounted PV such as floating PV or agrivoltaics (agriPV) should be considered to optimize land use. While solar-powered charging or refuelling stations are technically feasible complete reliance on solar power alone is not yet practical. A hybrid approach with grid connections energy storage or backup generation remains necessary to ensure consistent energy availability. For BEVs the cost of charging particularly for long-distance travel where rapid charging is required remains a barrier. For FCEVs challenges include the high cost of hydrogen production and the limited availability of refuelling infrastructure despite their advantage of fast refuelling times. Government policies and incentives are playing a critical role in overcoming these barriers fostering investment in infrastructure and accelerating the transition toward a cleaner transport sector. In summary integrating solar energy into BEV and FCEV infrastructure can advance sustainable mobility by reducing lifecycle emissions. While current PV efficiency storage and hydrogen production limitations require hybrid energy solutions ongoing technological improvements and supportive policies can enable broader adoption. A balanced renewable energy mix with solar as a key component will be essential for realizing truly sustainable zero-emission transport.
Experimental and Numerical Analysis of Hydrogen-Induced Effects in ASTM A131 and A36 Steels for Naval Fuel Systems
Oct 2025
Publication
Hydrogen embrittlement (HE) can degrade the mechanical integrity of steel pipes increasing failure risks in naval fuel systems. This study assesses HE effects on ASTM A131 and A36 steels through tensile testing and numerical modeling. Tests conducted with varying exposure times to hydrogen revealed that A131 outperformed A36 in terms of mechanical strength. However both materials experienced property degradation after six hours. After nine hours a transient increase in strength occurred due to temporary microstructural hardening though the overall trend remained a decline. The maximum reductions in ultimate tensile strength and toughness were 19% and 47% for A131 and 39% and 61% for A36 respectively. Additionally microstructural analysis revealed the presence of inclusions intergranular decohesion and micro-crack in specimens exposed for longer periods. Finally a combined GTN-PLNIH numerical model was implemented demonstrating its effectiveness in predicting the mechanical behavior of structures exposed to hydrogen.
Hydrogen Propulsion Technologies for Aviation: A Review of Fuel Cell and Direct Combustion Systems Towards Decarbonising Medium-Haul Aircraft
Oct 2025
Publication
Hydrogen propulsion technologies are emerging as a key enabler for decarbonizing the aviation sector especially for regional commercial aircraft. The evolution of aircraft propulsion technologies in recent years raises the question of the feasibility of a hydrogen propulsion system for beyond regional aircraft. This paper presents a comprehensive review of hydrogen propulsion technologies highlighting key advancements in component-level performance metrics. It further explores the technological transitions necessary to enable hydrogen-powered aircraft beyond the regional category. The feasibility assessment is based on key performance parameters including power density efficiency emissions and integration challenges aligned with the targets set for 2035 and 2050. The adoption of hydrogen-electric powertrains for the efficient transition from KW to MW powertrains depends on transitions in fuel cell type thermal management systems (TMS) lightweight electric machines and power electronics and integrated cryogenic cooling architectures. While hydrogen combustion can leverage existing gas turbine architectures with relatively fewer integration challenges it presents its technical hurdles especially related to combustion dynamics NOx emissions and contrail formation. Advanced combustor designs such as micromix staged and lean premixed systems are being explored to mitigate these challenges. Finally the integration of waste heat recovery technologies in the hydrogen propulsion system is discussed demonstrating the potential to improve specific fuel consumption by up to 13%.
Energy Management in an Insular Region with Renewable Energy Sources and Hydrogen: The Case of Graciosa, Azores
Sep 2025
Publication
Insular regions face unique energy management challenges due to physical isolation. Graciosa (Azores) has high renewable energy sources (RES) potential theoretically enabling a 100% green system. However RES intermittency combined with the lack of energy storage solutions reduces renewable penetration and raises curtailment. This article studies the technical and economic feasibility of producing green hydrogen from curtailment energy in Graciosa through two distinct case studies. Case Study 1 targets maximum renewable penetration with green hydrogen serving as chemical storage converted back to electricity via fuel cells during RES shortages. Case Study 2 focuses on maximum profitability where produced gases are sold to monetize curtailment without additional electricity production. Levelized Cost of Hydrogen (LCOH) values of €3.06/kgH2 and €2.68/kgH2 respectively and Internal Rate of Return (IRR) values of 3.7% and 17.1% were obtained for Case Studies 1 and 2 with payback periods of 15.2 and 6.1 years. Hence only Case Study 2 is economically viable but it does not allow increasing the renewable share in the energy mix. Sensitivity analysis for Case Study 1 shows that overall efficiency and CAPEX are the main factors affecting viability highlighting the need for technological advances and economies of scale as well as the importance of public funding to promote projects like this.
Modeling Gas Producibility and Hydrogen Potential—An Eastern Mediterranean Case Study
Oct 2025
Publication
The transition to low-carbon energy systems demands robust strategies that leverage existing fossil resources while integrating renewable technologies. In this work a single-cycle Gaussian-based producibility model is developed to forecast natural gas production profiles domestic consumption export potential hydrogen production and revenues adaptive for untapped natural gas discoveries. Annual natural gas production is represented by a bell curve defined by peak year and maximum capacity allowing flexible adaptation to different reserve sizes. The model integrates renewable energy adoption and steam–methane reforming to produce hydrogen while tracking revenue streams from domestic sales exports and hydrogen markets alongside carbon taxation. Applicability is demonstrated through a case study of Eastern Mediterranean gas discoveries where combined reserves of 2399 bcm generate a production peak of 100 bcm/year in 2035 and deliver 40.71 billion kg of hydrogen by 2050 leaving 411.87 bcm of reserves. A focused Cyprus scenario with 411 bcm of reserves peaks at 10 bcm/year produces 4.07 billion kg of hydrogen and retains 212.29 bcm of reserves. Cumulative revenues span from USD 84.37 billion under low hydrogen pricing to USD 247.29 billion regionally while the Cyprus-focused case yields USD 1.79 billion to USD 18.08 billion. These results validate the model’s versatility for energy transition planning enabling strategic insights into infrastructure deployment market dynamics and resource management in gas-rich regions.
Carbon Emission Reduction Capability Analysis of Electricity–Hydrogen Integrated Energy Storage Systems
Oct 2025
Publication
Against the dual backdrop of intensifying carbon emission constraints and the large-scale integration of renewable energy integrated electricity–hydrogen energy systems (EH-ESs) have emerged as a crucial technological pathway for decarbonising energy systems owing to their multi-energy complementarity and cross-scale regulation capabilities. This paper proposes an operational optimisation and carbon reduction capability assessment framework for EH-ESs focusing on revealing their operational response mechanisms and emission reduction potential under multi-disturbance conditions. A comprehensive model encompassing an electrolyser (EL) a fuel cell (FC) hydrogen storage tanks and battery energy storage was constructed. Three optimisation objectives—cost minimisation carbon emission minimisation and energy loss minimisation—were introduced to systematically characterise the trade-offs between economic viability environmental performance and energy efficiency. Case study validation demonstrates the proposed model’s strong adaptability and robustness across varying output and load conditions. EL and FC efficiencies and costs emerge as critical bottlenecks influencing system carbon emissions and overall expenditure. Further analysis reveals that direct hydrogen utilisation outperforms the ‘electricity–hydrogen–electricity’ cycle in carbon reduction providing data support and methodological foundations for low-carbon optimisation and widespread adoption of electricity–hydrogen systems.
Hydrogen Direct Reduced Iron Melting in an Electric Arc Furnace: Benefits of In Situ Monitoring
Oct 2025
Publication
The transition toward environmentally friendly steelmaking using hydrogen direct reduced iron as feed material in electric arc furnaces will eventually require process adjustments due to changes in the pellet properties when compared to e.g. blast furnace pellets. To this end the melting of hydrogen direct reduced iron pellets with 68 and 100% reduction degrees and Fe content of 67.24% was investigated in a laboratory-scale electric arc furnace. The presence of iron oxide-rich slag had a significant effect on the arc movement on the melt and an inhibiting effect on iron evaporation. The melting was monitored with video recording and optical emission spectroscopy. The videos were used to monitor the melting behavior whereas optical emissions revealed iron gangue elements and hydrogen from the pellets radiating in the plasma. Furthermore the flow of the melt is well seen in the videos as well as the movement of slag droplets on the melt surface. After the experiments the metal had silica-rich inclusions whereas slag had mostly penetrated into the crucible. The most notable differences in melting behavior can be attributed to the iron oxide-rich slag its interaction with the arc and penetration into the crucible and how it affects the arc movement and heat transfer.
Sensitivity Analysis of Geological Parameters to Evaluate Uncertainty in Underground Hydrogen Storage Performance for a Saline Aquifer at Ketzin (Germany)
May 2025
Publication
A numerical sensitivity analysis of a hydrogen pore storage system is carried out on a reservoir-scale geological model of the Ketzin site (Germany) to analyze the influence of uncertainty in geological parameters and fluid properties on storage performance. Therefore the following physical geological parameters and fluid properties were investigated: Porosity and permeability of the reservoir rock the brine salinity relative permeability and capillary pressure and mechanical dispersion. The range of the applied parameters is based on experimental and field data of the chosen location obtained during the former CO2 storage projects at the Ketzin site from 2008 to 2013. Using the open-source reservoir software MUFITS for the numerical simulations strong differences between the results can be observed. The results were evaluated based on measures to quantify performance such as the ratio of produced hydrogen mass to produced cushion gas (nitrogen) productivity index and sustainability index. The strongest impact on the performance parameters was observed with variations in the capillary pressure and the relative permeability curves followed by the absolute permeabilities while the least impact was seen with changes in the porosity and salinity of the brine. This work is not only crucial as a pre-feasibility study for the Ketzin storage site for hydrogen storage but also as a basis for decision-making for other potential storage sites in sedimentary basins.
Mapping Hydrogen Demand for Heavy-duty Vehicles: A Spatial Disaggregation Approach
Jul 2025
Publication
Hydrogen is the key to decarbonising heavy-duty transport. Understanding the distribution of hydrogen demand is crucial for effective planning and development of infrastructure. However current data on future hydrogen demand is often coarse and aggregated limiting its utility for detailed analysis and decision-making. This study developed a spatial disaggregation approach to estimating hydrogen demand for heavy-duty trucks and mapping the spatial distribution of hydrogen demand across multiple scales in Australia. By integrating spatial datasets with economic factors market penetration rates and technical specifications of hydrogen fuel cell vehicles the approach disaggregates the projected demand into specific demand centres allowing for the mapping of regional hydrogen demand patterns and the identification of key centres of hydrogen demand based on heavy-duty truck traffic flow projections under different scenarios. This approach was applied to Australia and the findings offered valuable insights that can help policymakers and stakeholders plan and develop hydrogen infrastructure such as optimising hydrogen refuelling station locations and support the transition to a low-carbon heavy-duty transport sector.
Techno-Economic Assessment of Carbon-Neutral Ammonia Fuel for Ships from Renewable Wind Energy
Oct 2025
Publication
Climate change is fuelled by the continued growth of global carbon emissions with the widespread use of fossil fuels being the main driver. To achieve a decarbonisation transition of the energy mix the development of clean and renewable fuels has become crucial. Ammonia is seen as an important option for decarbonisation in the transport and energy sectors due to its zero-carbon emission potential and renewable energy compatibility. However the high energy consumption and carbon emissions of the conventional Haber– Bosch method limit its sustainability. A green ammonia synthesis system was designed using ECLIPSE and Excel simulations in the study. Results show that at a recirculation ratio of 70% the system’s annual total energy consumption is 426.22 GWh with annual ammonia production reaching 8342.78 t. The optimal system configuration comprises seven 12 MW offshore wind turbines integrated with a 460 MWh lithium battery and 240 t of hydrogen storage capacity. At this configuration the LCOE is approximately £5956.58/t. It shows that incorporating renewable energy can significantly reduce greenhouse gas emissions but further optimisation of energy storage configurations and reaction conditions is needed to lower costs. This research provides a reference for the industrial application of green ammonia in the transportation sector.
Comparative Techno-Economic and Life Cycle Assessment of Stationary Energy Storage Systems: Lithium-Ion, Lead-Acid, and Hydrogen
Oct 2025
Publication
This study presents a comparative techno-economic and environmental assessment of three leading stationary energy storage technologies: lithium-ion batteries lead-acid batteries and hydrogen systems (electrolyzer–tank–fuel cell). The analysis integrates Life Cycle Assessment (LCA) and Levelized Cost of Storage (LCOS) to provide a holistic evaluation. The LCA covers the full cradle-to-grave stages while LCOS accounts for capital and operational expenditures efficiency and cycling frequency. The results indicate that lithium-ion batteries achieve the lowest LCOS (120–180 EUR/MWh) and high round-trip efficiency (90–95%) making them optimal for short- and medium-duration storage. Lead-acid batteries though characterized by low capital expenditures (CAPEX) and high recyclability (>95%) show limited cycle life and lower efficiency (75–80%). Hydrogen systems remain costly (>250 EUR/MWh) and less efficient (30–40%) yet they demonstrate clear advantages for long-term and seasonal storage particularly under scenarios with “green” hydrogen production and reduced CAPEX. These findings provide practical guidance for policymakers investors and industry stakeholders in selecting appropriate storage solutions aligned with decarbonization and sustainability goals.
No more items...