Applications & Pathways
Are Scenarios of Hydrogen Vehicle Adoption Optimistic? A Comparison with Historical Analogies
Nov 2015
Publication
There is a large literature exploring possible hydrogen futures using various modelling and scenario approaches. This paper compares the rates of transition depicted in that literature with a set of historical analogies. These analogies are cases in which alternative-fuelled vehicles have penetrated vehicle markets. The paper suggests that the literature has tended to be optimistic about the possible rate at which hydrogen vehicles might replace oil-based transportation. The paper compares 11 historical adoptions of alternative fuel vehicles with 24 scenarios from 20 studies that depict possible hydrogen futures. All but one of the hydrogen scenarios show vehicle adoption faster than has occurred for hybrid electric vehicles in Japan the most successful market for hybrids. Several scenarios depict hydrogen transitions occurring at a rate faster than has occurred in any of the historic examples. The paper concludes that scenarios of alternative vehicle adoption should include more pessimistic scenarios alongside optimistic ones.
Expectations as a Key to Understanding Actor Strategies in the Field of Fuel Cell and Hydrogen Vehicles
Feb 2012
Publication
Due to its environmental impact the mobility system is increasingly under pressure. The challenges to cope with climate change air quality depleting fossil resources imply the need for a transition of the current mobility system towards a more sustainable one. Expectations and visions have been identified as crucial in the guidance of such transitions and more specifically of actor strategies. Still it remained unclear why the actors involved in transition activities appear to change their strategies frequently and suddenly. The empirical analysis of the expectations and strategies of three actors in the field of hydrogen and fuel cell technology indicates that changing actor strategies can be explained by rather volatile expectations related to different levels. Our case studies of the strategies of two large car manufacturers and the German government demonstrate that the car manufacturers refer strongly to expectations about the future regime while expectations related to the socio-technical landscape level appear to be crucial for the strategy of the German government.
Hydrogen Intensified Synthesis Processes to Valorise Process Off-gases in Integrated Steelworks
Jul 2023
Publication
Ismael Matino,
Stefano Dettori,
Amaia Sasiain Conde,
Valentina Colla,
Alice Petrucciani,
Antonella Zaccara,
Vincenzo Iannino,
Claudio Mocci,
Alexander Hauser,
Sebastian Kolb,
Jürgen Karl,
Philipp Wolf-Zoellner,
Stephane Haag,
Michael Bampaou,
Kyriakos Panopoulos,
Eleni Heracleousa,
Nina Kieberger,
Katharina Rechberger,
Leokadia Rog and
Przemyslaw Rompalski
Integrated steelworks off-gases are generally exploited to produce heat and electricity. However further valorization can be achieved by using them as feedstock for the synthesis of valuable products such as methane and methanol with the addition of renewable hydrogen. This was the aim of the recently concluded project entitled “Intelligent and integrated upgrade of carbon sources in steel industries through hydrogen intensified synthesis processes (i3 upgrade)”. Within this project several activities were carried out: from laboratory analyses to simulation investigations from design development and tests of innovative reactor concepts and of advanced process control to detailed economic analyses business models and investigation of implementation cases. The final developed methane production reactors arerespectively an additively manufactured structured fixedbed reactor and a reactor setup using wash-coated honeycomb monoliths as catalyst; both reactors reached almost full COx conversion under slightly over-stoichiometric conditions. A new multi-stage concept of methanol reactor was designed commissioned and extensively tested at pilot-scale; it shows very effective conversion rates near to 100% for CO and slightly lower for CO2 at one-through operation for the methanol synthesis. Online tests proved that developed dispatch controller implements a smooth control strategy in real time with a temporal resolution of 1 min and a forecasting horizon of 2 h. Furthermore both offline simulations and cost analyses highlighted the fundamental role of hydrogen availability and costs for the feasibility of i 3 upgrade solutions and showed that the industrial implementation of the i 3 upgrade solutions can lead to significant environmental and economic benefits for steelworks especially in case green electricity is available at an affordable price.
What is the Energy Balance of Electrofuels Produced Through Power-to-fuel Integration with Biogas Facilities?
Nov 2021
Publication
The need to reduce the climate impact of the transport sector has led to an increasing interest in the utilisation of alternative fuels. Producing advanced fuels through the integration of anaerobic digestion and power-to-fuel technologies may offer a solution to reduce greenhouse gas emissions from difficult to decarbonise modes of transport such as heavy goods vehicles shipping and commercial aviation while also offering wider system benefits. This paper investigates the energy balance of power-to-fuel (power-to-methane power-to-methanol power-to-Fischer-Tropsch fuels) production integrated with a biogas facility co-digesting grass silage and dairy slurry. Through the integration of power-to-methane with anaerobic digestion an increase in system gross energy of 62.6% was found. Power-to-methanol integration with the biogas system increased the gross energy by 50% while power-to-Fischer-Tropsch fuels increased the gross energy yield by 32%. The parasitic energy demand for hydrogen production was highlighted as the most significant factor for integrated biogas and power-to-fuel facilities. Consuming electricity that would otherwise have been curtailed and optimising the anaerobic digestion process were identified as key to improving the energetic efficiency of all system configurations. However the broad cross-sectoral benefits of the overarching cascading circular economy system such as providing electrical grid stability and utilising waste resources must also be considered for a comprehensive perspective on the integration of anaerobic digestion and power-to-fuel.
Modeling of Fixed Bed Reactor for Coal Tar Hydrogenation via the Kinetic Lumping Approach
Nov 2018
Publication
Hydrogenation technology is an indispensable chemical upgrading process for converting the heavy feedstock into favorable lighter products. In this work a new kinetic model containing four hydrocarbon lumps (feedstock diesel gasoline cracking gas) was developed to describe the coal tar hydrogenation process the Levenberg–Marquardt’s optimization algorithm was used to determine the kinetic parameters by minimizing the sum of square errors between experimental and calculated data the predictions from model validation showed a good agreement with experimental values. Subsequently an adiabatic reactor model based on proposed lumped kinetic model was constructed to further investigate the performance of hydrogenation fixed-bed units the mass balance and energy balance within the phases in the reactor were taken into accounts in the form of ordinary differential equation. An application of the reactor model was performed for simulating the actual bench-scale plant of coal tar hydrogenation the simulated results on the products yields and temperatures distribution along with the reactor are shown to be good consistent with the experimental data.
Transitioning to Hydrogen
Jan 2020
Publication
The UK is investigating supplying hydrogen to homes and businesses instead of natural gas by “repurposing” the gas network. It presents a major engineering challenge which has never been done anywhere else in the world.
In a new report titled ‘Transitioning to hydrogen’ experts from a cross-professional engineering institution (PEI) working group including the IET have assessed the engineering risks and uncertainties and concluded there is no reason why repurposing the gas network to hydrogen cannot be achieved. But there are several engineering risks and uncertainties which need to be addressed.
In a new report titled ‘Transitioning to hydrogen’ experts from a cross-professional engineering institution (PEI) working group including the IET have assessed the engineering risks and uncertainties and concluded there is no reason why repurposing the gas network to hydrogen cannot be achieved. But there are several engineering risks and uncertainties which need to be addressed.
Performing While Transforming: The Role of Transmission Companies in the Energy Transition
Jun 2020
Publication
As the world prepares to exit from the COVID-19 crisis the pace of the global power revolution is expected to accelerate. A new publication from the World Energy Council in collaboration with PwC underscores the imperative for electricity grid owners and operators to fundamentally transform themselves to secure a role in a more integrated flexible and smarter electricity system in the energy transition to a low carbon future.
“Performing While Transforming: The Role of Transmission Companies in the Energy Transition” is based on in-depth interviews with CEOs and senior leaders from 37 transmission companies representing 35 countries and over 4 million kilometres – near global coverage - of the transmission network. While their roles will evolve transmission companies will remain at the heart of the electricity grid and need to balance the challenges of keeping the lights on while transforming themselves for the future.
The publication explores the various challenges affecting how transmission companies prepare and re-think their operations and business models and leverages the insights from interviewees to highlight four recommendations for transmission companies to consider in their journey:
“Performing While Transforming: The Role of Transmission Companies in the Energy Transition” is based on in-depth interviews with CEOs and senior leaders from 37 transmission companies representing 35 countries and over 4 million kilometres – near global coverage - of the transmission network. While their roles will evolve transmission companies will remain at the heart of the electricity grid and need to balance the challenges of keeping the lights on while transforming themselves for the future.
The publication explores the various challenges affecting how transmission companies prepare and re-think their operations and business models and leverages the insights from interviewees to highlight four recommendations for transmission companies to consider in their journey:
- Focus on the future through enhanced forecasting and scenario planning
- Shape the ecosystem by collaborating with new actors and enhancing interconnectivity
- Embrace automation and technology to optimise processes and ensure digital delivery
- Transform organisation to attract new talent and maintain social licence with consumers
Hydrogen-related Challenges for the Steelmaker: The Search for Proper Testing
Jun 2017
Publication
The modern steelmaker of advanced high-strength steels has always been challenged with the conflicting targets of increased strength while maintaining or improving ductility. These new steels help the transportation sector including the automotive sector to achieve the goals of increased passenger safety and reduced emissions. With increasing tensile strengths certain steels exhibit an increased sensitivity towards hydrogen embrittlement (HE). The ability to characterize the material's sensitivity in an as-delivered condition has been developed and accepted (SEP1970) but the complexity of the stress states that can induce an embrittlement together with the wide range of applications for high-strength steels make the development of a standardized test for HE under in-service conditions extremely challenging. Some proposals for evaluating the material's sensitivity give an advantage to materials with a low starting ductility. Despite this newly developed materials can have a higher original elongation with only a moderate reduction in elongation due to hydrogen. This work presents a characterization of new materials and their sensitivity towards HE.
This article is part of the themed issue ‘The challenges of hydrogen and metals’.
Link to document download on Royal Society Website
This article is part of the themed issue ‘The challenges of hydrogen and metals’.
Link to document download on Royal Society Website
Technology Assessment of Hydrogen Firing of Process Heaters
Apr 2011
Publication
In conjunction with John Zink Co. LLC the Chevron Energy Technology Company conducted a three part study evaluating potential issues with switching refinery process heaters from fuel gas to hydrogen fuel for the purpose of greenhouse gas emissions reduction via CO2 capture and storage.
The focus was on the following areas:
The focus was on the following areas:
- Heater performance
- Burner performance and robustness
- Fuel gas system retrofit requirements
Experimental Research on Low Calorific Value Gas Blended with Hydrogen Engine
Mar 2019
Publication
Experimental research on performance and emissions of engine fuelled with low calorific value gas blended with hydrogen was carried out and indicated thermal efficiency engine torque indicator diagram pressure rise rate and emissions with different hydrogen ratios were also analyzed. Experimental results show that with the increase of hydrogen fraction and CNG fraction in mixtures the indicated thermal efficiency increased. The engine power output is influenced by both low calorific value and hydrogen fractions. With the increase of hydrogen fraction in mixtures HC emissions decrease CO and NOx emissions increase. An engine operating on lean-burn low calorific value gas blended with hydrogen is favourable for getting lower emissions.
The Influence of Hydrogen Desorption on Micromechanical Properties and Tribological Behavior of Iron and Carbon Steels
Dec 2018
Publication
The influence of the previous electrolytic hydrogenation on the micromechanical properties and tribological behavior of the surface layers of iron and carbon steels has been studied. The concentrations of diffusion-moving and residual hydrogen in steels are determined depending on the carbon content. It is shown that the amount of sorbed hydrogen is determined by the density of dislocations and the relative volume of cementite. After desorption of diffusion-moving hydrogen the microhardness increases and materials plasticity decreases. The change of these characteristics decreases with the increase of carbon content in the steels. Internal stresses increase and redistribute under hydrogen desorption. Fragmentation of ferrite and perlite occurs as a result of electrolytic hydrogenation. Ferrite is characterized by the structure fragmentation and change of the crystallographic orientation of planes. The perlite structure shows the crushing of cementite plates and their destruction. The influence of hydrogen desorption on the microhardness of structural components of ferrite-perlite steels is shown. Large scattering of microhardness is found in perlite due to different diffusion rates of hydrogen because of the unequally oriented cementite plates. It was found that the tendency of materials to blister formation is reduced with the increase of carbon content. The influence of hydrogen on the tribological behaviour of steels under dry and boundary friction has been studied. It is shown that hydrogen desorption intensifies the materials wear. After hydrogen desorption tribological behaviour is determined by the adhesion interaction between the contacting pairs.
Initial Assessment of a Fuel Cell—Gas Turbine Hybrid Propulsion Concept
Jan 2022
Publication
A fuel cell—gas turbine hybrid propulsion concept is introduced and initially assessed. The concept uses the water mass flow produced by a hydrogen fuel cell in order to improve the efficiency and power output of the gas turbine engine through burner steam injection. Therefore the fuel cell product water is conditioned through a process of condensation pressurization and revaporization. The vaporization uses the waste heat of the gas turbine exhaust. The functional principles of the system concept are introduced and discussed and appropriate methodology for an initial concept evaluation is formulated. Essential technology fields are surveyed in brief. The impact of burner steam injection on gas turbine efficiency and sizing is parametrically modelled. Simplified parametric models of the fuel cell system and key components of the water treatment process are presented. Fuel cell stack efficiency and specific power levels are methodically derived from latest experimental studies at the laboratory scale. The overall concept is assessed for a liquid hydrogen fueled short-/medium range aircraft application. Block fuel savings of up to 7.1% are found for an optimum design case based on solid oxide fuel cell technology. The optimum design features a gas turbine water-to-air ratio of 6.1% in cruise and 62% reduced high-level NOx emissions.
An Energy Autonomous House Equipped with a Solar PV Hydrogen Conversion System
Dec 2015
Publication
The use of RES in buildings is difficult for their random nature; therefore the plants using photovoltaic solar collectors must be connected to a power supply or interconnected with Energy accumulators if the building is isolated. The conversion of electricity into hydrogen technology is best suited to solve the problem and allows you to transfer the solar energy captured from day to night from summer to winter. This paper presents the feasibility study for a house powered by PV cogeneration solar collectors that reverse the electricity on the control unit that you command by a PC to power the household using a heat pump an electrolytic cell for the production of hydrogen to accumulate; control units sorting to the utilities the electricity produced by the fuel cell. The following are presented: The Energy analysis of the building the plant design economic analysis.
Deep-Decarbonisation Pathways for UK Industry
Dec 2020
Publication
The Climate Change Committee (CCC) commissioned Element Energy to improve our evidence base on the potential of industrial deep-decarbonisation measures (fuel switching CCS/BECCS measures to reduce methane emissions) and develop pathways for their application. This report summarises the evidence and results of the work including:
- Evidence on the key constraints and costs for technology and infrastructure deployment
- The methodology and new Net Zero Industry Pathway (N-ZIP) model used to determine deep-decarbonisation pathways for UK industry (drawing on the evidence above)
- A set of pathways and wider sensitivities produced using the N-ZIP model which fed into the CCC’s Sixth Carbon Budget pathways
- Recommended actions and policy measures as informed by the study.
Sector Coupling Potential of Wind-based Hydrogen Production and Fuel Cell Train Operation in Regional Rail Transport in Berlin and Brandenburg
Jan 2021
Publication
As the transport sector is ought to be decarbonized fuel-cell-powered trains are a viable zero-tailpipe technology alternative to the widely employed diesel multiple units in regional railway service on non-electrified tracks. Carbon-free hydrogen can be provided by water-electrolysis from renewable energies. In this study we introduce an approach to assess the potential of wind-based hydrogen for use in adjacent regional rail transport by applying a GIS approach in conjunction with a site-level cost model. In Brandenburg about 10.1 million train-km annually could be switched to fuel cell electric train operation. This relates to a diesel consumption of appr. 9.5 million liters today. If fuel cell trains would be employed that translated to 2198 annual tons hydrogen annually. At favorable sites hydrogen costs of approx. 6.40 €/kg - including costs of hydrogen refueling stations - could be achieved. Making excess hydrogen available for other consumers would further decrease hydrogen production costs.
Hydrogen Refueling Station Networks for Heavy-duty Vehicles in Future Power Systems
May 2020
Publication
A potential solution to reduce greenhouse gas (GHG) emissions in the transport sector is to use alternatively fuelled vehicles (AFV). Heavy-duty vehicles (HDV) emit a large share of GHG emissions in the transport sector and are therefore the subject of growing attention from global regulators. Fuel cell and green hydrogen technologies are a promising option to decarbonize HDVs as their fast refuelling and long vehicle ranges are consistent with current logistic operational requirements. Moreover the application of green hydrogen in transport could enable more effective integration of renewable energies (RE) across different energy sectors. This paper explores the interplay between HDV Hydrogen Refuelling Stations (HRS) that produce hydrogen locally and the power system by combining an infrastructure location planning model and an electricity system optimization model that takes grid expansion options into account. Two scenarios – one sizing refuelling stations to support the power system and one sizing them independently of it – are assessed regarding their impacts on the total annual electricity system costs regional RE integration and the levelized cost of hydrogen (LCOH). The impacts are calculated based on locational marginal pricing for 2050. Depending on the integration scenario we find average LCOH of between 4.83 euro/kg and 5.36 euro/kg for which nodal electricity prices are the main determining factor as well as a strong difference in LCOH between north and south Germany. Adding HDV-HRS incurs power transmission expansion as well as higher power supply costs as the total power demand increases. From a system perspective investing in HDV-HRS in symbiosis with the power system rather than independently promises cost savings of around seven billion euros per annum. We therefore conclude that the co-optimization of multiple energy sectors is important for investment planning and has the potential to exploit synergies.
Electric and Hydrogen Rail: Potential Contribution to Net Zero in the UK
Sep 2020
Publication
Electric trains (ET) and hydrogen trains (HT) are considered zero emission at the point of use. True emissions are dependent upon non-tailpipe sources primarily in energy production. We present UK carbon dioxide (CO2) operating emission model outputs for conventionally fuelled trains (CFT) ETs and HTs between 2017 and 2050 under four National Grid electricity generation scenarios.
Comparing four service categories (urban regional intercity and high speed) to private conventionally fuelled vehicles (CFV) and electric vehicles considering average distance travelled per trip under different passenger capacity levels (125% 100% 75% 50% and 25%).
Results indicate by 2050 at 100% capacity CFTs produce a fifth of the emissions of CFVs per kilometre per person. Under two degree generation scenario by 2050 ETs produced 14 times and HTs produced five times less emissions than CFTs. Policymakers should encourage shifts away from private vehicles to public transport powered by low carbon electricity.
Comparing four service categories (urban regional intercity and high speed) to private conventionally fuelled vehicles (CFV) and electric vehicles considering average distance travelled per trip under different passenger capacity levels (125% 100% 75% 50% and 25%).
Results indicate by 2050 at 100% capacity CFTs produce a fifth of the emissions of CFVs per kilometre per person. Under two degree generation scenario by 2050 ETs produced 14 times and HTs produced five times less emissions than CFTs. Policymakers should encourage shifts away from private vehicles to public transport powered by low carbon electricity.
Hydrogen Powered Aviation: A Fact-based Study of Hydrogen Technology, Economics, and Climate Impact by 2050
Jul 2020
Publication
This report assesses the potential of hydrogen (H2) propulsion to reduce aviation’s climate impact. To reduce climate impact the industry will have to introduce further levers such as radically new technology significantly scale sustainable aviation fuels (SAF) such as synthetic fuel (synfuel) temporarily rely on offsets in large quantities or rely on a combination thereof. H2 propulsion is one such technology and this report assesses its potential in aviation. Developed with input from leading companies and research institutes it projects the technological development of H2 combustion and fuel cell-powered propulsion evaluates their technical and economic feasibility compares them to synfuel and considers implications on aircraft design airport infrastructure and fuel supply chains.
Expected Impacts on Greenhouse Gas and Air Pollutant Emissions Due to a Possible Transition Towards a Hydrogen Economy in German Road Transport
Nov 2020
Publication
Transitioning German road transport partially to hydrogen energy is among the possibilities being discussed to help meet national climate targets. This study investigates impacts of a hypothetical complete transition from conventionally-fuelled to hydrogen-powered German transport through representative scenarios. Our results show that German emissions change between −179 and +95 MtCO2eq annually depending on the scenario with renewable-powered electrolysis leading to the greatest emissions reduction while electrolysis using the fossil-intense current electricity mix leads to the greatest increase. German energy emissions of regulated pollutants decrease significantly indicating the potential for simultaneous air quality improvements. Vehicular hydrogen demand is 1000 PJ annually requiring 446–525 TWh for electrolysis hydrogen transport and storage which could be supplied by future German renewable generation supporting the potential for CO2-free hydrogen traffic and increased energy security. Thus hydrogen-powered transport could contribute significantly to climate and air quality goals warranting further research and political discussion about this possibility.
South Korea’s Big Move to Hydrogen Society
Nov 2020
Publication
Extensive energy consumption has become a major concern due to increase of greenhouse gas emissions and global warming. Hence hydrogen has attracted attention as a green fuel with zero carbon emission for green transportation through production of electric vehicles with hydrogen fuel cells. South Korea has launched a hydrogen society policy with the objective of expanding production of hydrogen from renewable energy sources. The hydrogen economy will play a critical role in reducing atmospheric pollution and global arming. However new development of infrastructure for hydrogen refuelling and increasing awareness of the hydrogen economy is required together with reduced prices of hydrogen-driven vehicles that are promising options for a sustainable green hydrogen economy.
CFD Simulations of Filling and Emptying of Hydrogen Tanks
Jun 2016
Publication
During the filling of hydrogen tanks high temperatures can be generated inside the vessel because of the gas compression while during the emptying low temperatures can be reached because of the gas expansion. The design temperature range goes from −40 °C to 85 °C. Temperatures outside that range could affect the mechanical properties of the tank materials. CFD analyses of the filling and emptying processes have been performed in the HyTransfer project. To assess the accuracy of the CFD model the simulation results have been compared with new experimental data for different filling and emptying strategies. The comparison between experiments and simulations is shown for the temperatures of the gas inside the tank for the temperatures at the interface between the liner and the composite material and for the temperatures on the external surface of the vessel.
Strategies for Joint Procurement of Fuel Cell Buses: A Study for the Fuel Cells and Hydrogen Joint Undertaking
Jun 2018
Publication
The Fuel Cells and Hydrogen Joint Undertaking (FCH JU) has supported a range of initiatives in recent years designed to develop hydrogen fuel cell buses to a point where they can fulfil their promise as a mainstream zero emission vehicle for public transport.<br/>Within this study 90 different European cities and regions have been supported in understanding the business case of fuel cell bus deployment and across these locations. The study analyses the funding and financing for fuel cell bus deployment to make them become a mainstream zero emission choice for public transport providers in cities and regions across Europe. It also outlines possible solutions for further deployment of FC buses beyond the subsidised phase.<br/>In the light of the experience of the joint tender process in the UK and in Germany the study highlights best practices for ordering fuel cell buses. Other innovative instruments explored in other countries for the orders of large quantities of fuel cells buses are presented: Special Purpose Vehicles and centralised purchase office. Finally the study deeply analyses the funding and financing for fuel cell bus deployment to make them become a mainstream zero emission choice for public transport providers in cities and regions across Europe.
Well-to-wheel Greenhouse Gas Emissions of Heavy-duty Transports: Influence of Electricity Carbon Intensity
Feb 2021
Publication
There are several alternatives for how to phase out diesel in heavy-duty transports thereby reducing the sector’s climate change impact. This paper assesses the well-to-wheel (WTW) greenhouse gas (GHG) emissions of energy carriers for heavy-duty vehicles analyzing the effect of the carbon intensity of the electricity used in production. The results show that energy carriers with high electricity dependence are not necessarily better than diesel from a WTW perspective. In particular fuels produced through electrolysis are not well suited in carbon-intense electricity systems. Conversely waste-based biofuels have low GHG emissions regardless of the electricity system. Battery-electric buses show a large reduction of GHG emissions compared to diesel buses and many other alternatives while battery-electric trucks have higher GHG emissions than diesel in carbon intense electricity systems. Thus electrifying transports or switching to renewable fuels will not suffice if the electricity system is not made renewable first.
A Roadmap for Financing Hydrogen Refueling Networks – Creating Prerequisites for H2-based Mobility
Sep 2014
Publication
Fuel cell electric vehicles (FCEVs) are zero tailpipe emission vehicles. Their large-scale deployment is expected to play a major role in the de-carbonization of transportation in the European Union (EU) and is therefore an important policy element at EU and Member State level.<br/>For FCEVs to be introduced to the market a network of hydrogen refuelling stations (HRS) first has to exist. From a technological point of view FCEVs are ready for serial production already: Hyundaiand Toyota plan to introduce FCEVs into key markets from 2015 and Daimler Ford and Nissan plan to launch mass-market FCEVs in 2017.<br/>At the moment raising funds for building the hydrogen refuelling infrastructure appears to be challenging.<br/>This study explores options for financing the HRS rollout which facilitate the involvement of private lenders and investors. It presents a number of different financing options involving public-sector bank loans funding from private-sector strategic equity investors commercial bank loans private equity and funding from infrastructure investors. The options outline the various requirements forn accessing these sources of funding with regard to project structure incentives and risk mitigation. The financing options were developed on the basis of discussions with stakeholders in the HRS rollout from industry and with financiers.<br/>This study was prepared by Roland Berger in close contact with European Investment banks and a series of private banks.<br/>This study explores in details the business cases for HRS in Germany and UK. The conclusion can be easily extrapolate to other countries.
Fuel Cell Electric Buses: Potential for Sustainable Public Transport in Europe
Oct 2015
Publication
This report provides an outlook for jointly achieving a commercialisation pathway.<br/>Building on the findings of the 2012 FCH JU technology study on alternative powertrains for urban buses this report provides an assessment of the commercialisation pathway from an operational perspective. It reflects the actual situation in which operators deploy large scale demonstration projects in the next years from a rather conservative angle and argues why it makes sense to deploy FC buses now. The insights are based on first-hand data and assessments of the coalition members from the hydrogen and fuel cell industry as well as local governments and public transport operators in Europe.
FCH JU – Key to Sustainable Energy and Transport
Jan 2019
Publication
This brochure offers an overview of the main applications of fuel cell and hydrogen technologies and how they work and provides insights into our programme and our accomplishments.
Review of Energy Portfolio Optimization in Energy Markets Considering Flexibility of Power-to-X
Mar 2023
Publication
Power-to-X is one of the most attention-grabbing topics in the energy sector. Researchers are exploring the potential of harnessing power from renewable technologies and converting it into fuels used in various industries and the transportation sector. With the current market and research emphasis on Power-to-X and the accompanying substantial investments a review of Power-to-X is becoming essential. Optimization will be a crucial aspect of managing an energy portfolio that includes Power-to-X and electrolysis systems as the electrolyzer can participate in multiple markets. Based on the current literature and published reviews none of them adequately showcase the state-of-the-art optimization algorithms for energy portfolios focusing on Power-to-X. Therefore this paper provides an in-depth review of the optimization algorithms applied to energy portfolios with a specific emphasis on Power-to-X aiming to uncover the current state-of-the-art in the field.
Comparative Life Cycle Assessment of Battery and Fuel Cell Electric Cars, Trucks, and Buses
Mar 2024
Publication
Addressing the pressing challenge of global warming reducing greenhouse gas emissions in the transportation sector is a critical imperative. Battery and fuel cell electric vehicles have emerged as promising solutions for curbing emissions in this sector. In this study we conducted a comprehensive life cycle assessment (LCA) for typical passenger vehicles heavy-duty trucks and city buses using either proton-exchange membrane fuel cells or Li-ion batteries with different cell chemistries. To ensure accuracy we supplemented existing studies with data from the literature particularly for the recycling phase as database limitations were encountered. Our results highlight that fuel cell and battery systems exhibit large emissions in the production phase. Recycling can significantly offset some of these emissions but a comparison of the technologies examined revealed considerable differences. Overall battery electric vehicles consistently outperform fuel cell electric vehicles regarding absolute greenhouse gas emissions. Hence we recommend prioritizing battery electric over fuel cell vehicles. However deploying fuel cell electric vehicles could become attractive in a hydrogen economy scenario where other factors e. g. the conversion and storage of surplus renewable electricity via electrolysis become important.
Permeation Tests in Type-approval Regulations for Hydrogen Fuelled Vehicles: Analysis and Testing Experiences at the JRC-GASTEF Facility
Jan 2023
Publication
This article presents an analysis of the permeation tests established in the current regulations for the type-approval of on board tanks in hydrogen vehicles. The analysis is done from the point of view of a test maker regarding the preparation for the execution of a permeation test. The article contains a description of the required instrumentation and set-up to carry out a permeation test according to the applicable standards and regulations. Tank conditions at the beginning of the test configuration of permeation chamber duration of the test or permeation rate to be reported are aspects that are not well-defined in regulations. In this paper we examine the challenges when carrying out a permeation test and propose possible solutions to overcome them with the intention of supporting test makers and helping the development of permeation test guidelines.
Life-cycle Assessment of Hydrogen Utilization in Power Generation: A Systematic Review of Technological and Methodological Choices
Jul 2022
Publication
Interest in reducing the greenhouse gas emissions from conventional power generation has increased the focus on the potential use of hydrogen to produce electricity. Numerous life-cycle assessment (LCA) studies of hydrogen-based power generation have been published. This study reviews the technological and methodological choices made in hydrogen-based power generation LCAs. A systematic review was chosen as the research method to achieve a comprehensive and minimally biased overview of hydrogen-based power generation LCAs. Relevant articles published between 2004 and 2021 were identified by searching the Scopus and Web of Science databases. Electrolysis from renewable energy resources was the most widely considered type of hydrogen production in the LCAs analyzed. Fuel cell technology was the most common conversion equipment used in hydrogen-based electricity LCAs. A significant number of scenarios examine the use of hydrogen for energy storage and co-generation purposes. Based on qualitative analysis the methodological choices of LCAs vary between studies in terms of the functional units allocations system boundaries and life-cycle impact assessment methods chosen. These discrepancies were likely to influence the value of the environmental impact results. The findings of the reviewed LCAs could provide an environmental profile of hydrogen-based electricity systems identify hotspots drive future research define performance goals and establish a baseline for their large-scale deployment.
Toward to Hydrogen Energy of Electric Power: Characteristics and Main Case Studies in Shenzhen
Feb 2023
Publication
China has pledged that it will strive to achieve peak carbon emission by 2030 and realize carbon neutrality by 2060 which has spurred renewed interest in hydrogen for widespread decarbonization of the economy. Hydrogen energy is an important secondary clean energy with the advantage of high density high calorific value rich reserves extensive sources and high conversion efficiency that can be widely used in power generation transportation fuel and other fields. In recent years with the guidance of policies and the progress of technology China’s hydrogen energy industry has developed rapidly. About 42% of China’s carbon emissions comes from the power system and Shenzhen has the largest urban power grid in China. Bringing the utilization of hydrogen energy into Shenzhen’s power system is an important method to achieve industry transformation achieve the “double carbon” goal and promote sustainable development. This paper outlines the domestic and international development status of hydrogen energy introduces the characteristics of Shenzhen new power system the industrial utilization of hydrogen energy and the challenges of further integrating hydrogen energy into Shenzhen new power system and finally suggests on the integration of hydrogen energy into Shenzhen new power system in different dimensions.
Designing Hydrogen Recirculation Ejectors for Proton Exchange Membrane Fuel Cell Systems
Jan 2023
Publication
The proton exchange membrane fuel cell (PEMFC) is a promising device in the fields of power generation energy storage aerospace and public transportation. The hydrogen recirculation ejector with the advantages of low cost high durability and no parasitic power is the key component of PEMFC systems. However it is challenging to design a hydrogen recirculation ejector to cover the wide operating conditions of PEMFC systems. In order to design an ejector for fuel cell systems a comprehensive understanding of ejector research is required. Consequently the state-of-the-art research work on the hydrogen recirculation ejector is analyzed including characteristics of the ejector in PEM fuel cell systems geometry design and optimization different types of ejectors and a comparison between them and system integration and control. Through a comprehensive analysis of ejectors further research suggestions on designing high-performance ejectors are presented.
Research on the Primary Frequency Regulation Control Strategy of a Wind Storage Hydrogen-Generating Power Station
Nov 2022
Publication
Wind curtailment and weak inertia characteristics are two factors that shackle the permeability of wind power. An electric hydrogen production device consumes electricity to produce hydrogen under normal working conditions to solve the problem of abandoning wind. When participating in frequency regulation it serves as a load reduction method to assist the system to rebuild a power balance and improve the wind power permeability. However due to its own working characteristics an electric hydrogen production device cannot undertake the high-frequency component of the frequency regulation power command; therefore an energy storage device was selected to undertake a high-frequency power command to assist the electric hydrogen production device to complete the system frequency regulation. This paper first proposes and analyzes the architecture of a wind storage hydrogen-generating station for centralized hydrogen production with a distributed energy storage and proposes the virtual inertia and droop characteristic mechanism of the wind storage hydrogen-generating station to simulate a synchronous unit. Secondly an alkaline electrolysis cell suitable for large-scale engineering applications is selected as the research object and its mathematical model is established the matching between different energy storage devices and their cooperation in power grid frequency regulation is analyzed and a super capacitor is selected. A control strategy for the wind storage hydrogen-generating power station to participate in power grid frequency regulation with a wide time scale is then proposed. Using the first-order low-pass filter the low-frequency component of the frequency regulation power command is realized by an electric hydrogen production device load reduction and a high-frequency component is realized by the energy storage device. Finally the effectiveness and rationality of the proposed control strategy are verified by establishing the simulation model of the wind storage hydrogen-generating power station with different initial wind speed states comparing the system frequency dip values under the proposed multi-energy cooperative control strategy and a single energy device control strategy.
Integrated Energy System Optimal Operation in Coal District With Hydrogen Heavy Trucks
Sep 2021
Publication
The coal industry contributes significantly to the social economy but the emission of greenhouse gases puts huge pressure on the environment in the process of mining transportation and power generation. In the integrated energy system (IES) the current research about the power-to-gas (P2G) technology mainly focuses on the injection of hydrogen generated from renewable energy electrolyzed water into natural gas pipelines which may cause hydrogen embrittlement of the pipeline and cannot be repaired. In this paper sufficient hydrogen energy can be produced through P2G technology and coal-to-hydrogen (C2H) of coal gasification considering the typical scenario of coal district is rich in coal and renewable energy. In order to transport the mined coal to the destination hydrogen heavy trucks have a broad space for development which can absorb hydrogen energy in time and avoid potentially dangerous hydrogen injection into pipelines and relatively expensive hydrogen storage. An optimized scheduling model of electric-gas IES is proposed based on second-order cone programming (SOCP). In the model proposed above the closed industrial loop (including coal mining hydrogen production truck transportation of coal and integrated energy systems) has been innovatively studied to consume renewable energy and coordinate multi-energy. Finally an electric-gas IES study case constructed by IEEE 30-node power system and Belgium 24-node natural gas network was used to analyze. The results show that by introducing the proposed hydrogen production technology typical daily operating costs are effectively reduced by 7.7%. Under China’s carbon emissions trading system the operating costs of hydrogen heavy trucks have been reduced by 0.95 and 4.68% respectively compared with electric vehicles and diesel trucks. Under Europe’s stricter carbon emissions trading system the percentages of cost reduction are 2.56 and 9.12% respectively. The above technical results verify the feasibility economy low carbon and effectiveness of the proposed mechanism.
Numerical Investigation on NOx Emission of a Hydrogen-Fuelled Dual-Cylinder Free-Piston Engine
Jan 2023
Publication
The free-piston engine is a type of none-crank engine that could be operated under variable compression ratio and this provides it flexible fuel applicability and low engine emission potential. In this work several 1-D engine models including conventional gasoline engines free-piston gasoline engines and free-piston hydrogen engines have been established. Both engine performance and emission performance under engine speeds between 5–11 Hz and with different equivalent ratios have been simulated and compared. Results indicated that the free-piston engine has remarkable potential for NOx reduction and the largest reduction is 57.37% at 6 Hz compared with a conventional gasoline engine. However the figure of NOx from the hydrogen free-piston engine is slightly higher than that of the gasoline free-piston engine and the difference increases with the increase of engine speed. In addition several factors and their relationships related to hydrogen combustion in the free-piston engine have been investigated and results show that the equivalent ratio ϕ = 0.88 is a vital point that affects NOx production and the ignition advance timing could also affect combustion duration the highest in-cylinder temperature and NOx production to a large extent.
Pneumatic and Optical Characterization and Optimization of Hydrogen Injectors for Internal Combustion Engine Application
Aug 2022
Publication
To achieve future emission targets for internal combustion engines the use of hydrogen gas generated by renewable energy sources (known as “green” hydrogen) instead of fossil fuels plays a key role in the development of new combustion-based engine concepts. For new hydrogen engine generations there are different challenges concerning the injector layout and functionality. Especially when talking about direct hydrogen injection the key challenge is to ensure a proper mixing between hydrogen and the combustion air—the mixing of gas with a gas is not trivial as shown in this article. In terms of injector functionality it must be ensured that the requested amount of hydrogen gas needs to be provided in time and on the other hand accurately metered to provide an appropriate mixing formation quality inside the combustion chamber. This contribution discusses deep injector analysis techniques with pneumatic and optical approaches for an improved overall understanding of functionality and effects caused by operation with a gaseous fuel. A metering technique for gas flow characterization and for test simplification a comparison of hydrogen with helium and nitrogen as possible surrogate gases indicate that helium and nitrogen can act as a substitute for hydrogen in functional testing. Furthermore this contribution focuses on the usability of helium instead of hydrogen for the determination of spray properties. This is shown by the comparison of spray propagation images that were observed with the Schlieren technique in a pressure vessel proving comparable spray properties. In a next step the usage of spray-guiding devices to improve the global gas distribution during the injection period is discussed. Here it turns out that the volume increase does obviously not depend on the nozzle design. Thus the advantage of multi-hole guiding-devices is based on its flexible gas-jet orientation.
First Hydrogen Fuel Sampling from a Fuel Cell Hydrogen Electrical Vehicle–Validation of Hydrogen Fuel Sampling System to Investigate FCEV Performance
Aug 2022
Publication
Fuel cell electric vehicles (FCEV) are developing quickly from passenger vehicles to trucks or fork-lifts. Policymakers are supporting an ambitious strategy to deploy fuel cell electrical vehicles with infrastructure as hydrogen refueling stations (HRS) as the European Green deal for Europe. The hydrogen fuel quality according to international standard as ISO 14687 is critical to ensure the FCEV performance and that poor hydrogen quality may not cause FCEV loss of performance. However the sampling system is only available for nozzle sampling at HRS. If a FCEV may show a lack of performance there is currently no methodology to sample hydrogen fuel from a FCEV itself. It would support the investigation to determine if hydrogen fuel may have caused any performance loss. This article presents the first FCEV sampling system and its comparison with the hydrogen fuel sampling from the HRS nozzle (as requested by international standard ISO 14687). The results showed good agreement with the hydrogen fuel sample. The results demonstrate that the prototype developed provides representative samples from the FCEV and can be an alternative to determine hydrogen fuel quality. The prototype will require improvements and a larger sampling campaign.
Low-carbon Economic Dispatch of Power Systems Based on Mobile Hydrogen Storage
Mar 2022
Publication
To alleviate the global warming crisis carbon reduction is an inevitable trend of sustainable development. The energy carrier with Hydrogen (H2) is considered to be one of the promising choices for realizing a low-carbon economy. With the increasing penetration level of wind power generation and for well-balancing wind generation fluctuations this paper proposes a low-carbon economic dispatch method for power systems based on mobile hydrogen storage(MHS). The wind power surplus during off-peak load periods is first utilized to generate green H2. Afterward the green H2 is optimally transported to multiple hydrogen storage(HS) stations for generating power electricity by flexibly controlling the electrolysis(EL) methanation(ME) carbon capture(CCS) and H2 power generation processes in such a way the wind power is coordinated with the hydrogen production transport and utilization to reduce the total carbon emission and minimize the operation cost of power systems. Finally the proposed power system low-carbon economic dispatch model is verified by case studies.
A Review of the Optimization Strategies and Methods Used to Locate Hydrogen Fuel Refueling Stations
Feb 2023
Publication
Increasing sales of conventional fuel-based vehicles are leading to an increase in carbon emissions which are dangerous to the environment. To reduce these conventional fuel-based vehicles must be replaced with alternative fuel vehicles such as hydrogen-fueled. Hydrogen can fuel vehicles with near-zero greenhouse gas emissions. However to increase the penetration of such alternative fuel vehicles there needs to be adequate infrastructure specifically refueling infrastructure in place. This paper presents a comprehensive review of the different optimization strategies and methods used in the location of hydrogen refueling stations. The findings of the review in this paper show that there are various methods which can be used to optimally locate refueling stations the most popular being the p-median and flow-capture location models. It is also evident from the review that there are limited studies that consider location strategies of hydrogen refueling stations within a rural setting; most studies are focused on urban locations due to the high probability of penetration into these areas. Furthermore it is apparent that there is still a need to incorporate factors such as the safety elements of hydrogen refueling station construction and for risk assessments to provide more robust realistic solutions for the optimal location of hydrogen refueling stations. Hence the methods reviewed in this paper can be used and expanded upon to create useful and accurate models for a hydrogen refueling network. Furthermore this paper will assist future studies to achieve an understanding of the extant studies on hydrogen refueling station and their optimal location strategies.
Optimising Renewable Generation Configurations of Off-grid Green Ammonia Production System Considering Haber-Bosch Flexibility
Feb 2023
Publication
Green ammonia has received increasing interest for its potential as an energy carrier in the international trade of renewable power. This paper considers the factors that contribute to producing cost-competitive green ammonia from an exporter’s perspective. These factors include renewable resource quality across potential sites operating modes for off-grid plants and seasonal complementarity with trade buyers. The study applies a mixed-integer programming model and uses Australia as a case study because of its excellent solar and wind resources and the potential for synergy between Southern Hemisphere supply and Northern Hemisphere demand. Although renewable resources are unevenly distributed across Australia and present distinct diurnal and seasonal variability modelling shows that most of the pre-identified hydrogen hubs in each state and territory of Australia can produce cost-competitive green ammonia providing the electrolysis and Haber-Bosch processes are partially flexible to cope with the variability of renewables. Flexible operation reduces energy curtailment and leads to lower storage capacity requirements using batteries or hydrogen storage which would otherwise increase system costs. In addition an optimised combination of wind and solar can reduce the magnitude of storage required. Providing that a partially flexible Haber Bosch plant is commercially available the modelling shows a levelised cost of ammonia (LCOA) of AU$756/tonne and AU$659/tonne in 2025 and 2030 respectively. Based on these results green ammonia would be cost-competitive with grey ammonia in 2030 given a feedstock natural gas price higher than AU$14/MBtu. For green ammonia to be cost-competitive with grey ammonia assuming a lower gas price of AU$6/MBtu a carbon price would need to be in place of at least AU$123/tonne. Given that there is a greater demand for energy in winter concurrent with lower solar power production there may be opportunities for solar-based Southern Hemisphere suppliers to supply the major industrial regions most of which are located in the Northern Hemisphere.
Multi-Model Assessment for Secondary Smelting Decarbonisation: The Role of Hydrogen in the Clean Energy Transition
Jan 2023
Publication
Extensive decarbonisation efforts result in major changes in energy demand for the extractive industry. In 2021 the extraction and primary processing of metals and minerals accounted for 4.5 Gt of CO2 eq. per year. The aluminium industry was responsible for 1.1 Gt CO2 eq. direct and indirect emissions. To reach the European milestone of zero emissions by 2050 a reduction of 3% annually is essential. To this end the industry needs to take a turn towards less impactful production practices coupling secondary production with green energy sources. The present work aims to comprehensively compare the lifecycle energy consumption and environmental performance of a secondary aluminium smelter employing alternative thermal and electricity sources. In this frame a comparative analysis of the environmental impact of different thermal energy sources namely natural gas light fuel oil liquified petroleum gas hydrogen and electricity for a secondary aluminium smelter is presented. The results show that H2 produced by renewables (green H2 ) is the most environmentally beneficial option accounting for −84.156 kg CO2 eq. By producing thermal energy as well as electricity on site H2 technologies also serve as a decentralized power station for green energy production. These technologies account for a reduction of 118% compared to conventionally used natural gas. The results offer a comprehensive overview to aid decision-makers in comparing environmental impacts caused by different energy sources.
The Role of Hydrogen in the Optimal Design of Off-grid Hybrid Renewable Energy Systems
Jan 2022
Publication
The optimal design of off-grid hybrid renewable energy systems (HRESs) is a challenging task which often involves conflicting goals to be faced. In this work levelized cost of energy (LCOE) and CO2 emissions have been addressed simultaneously by using the ε-constraint method together with the particle swarm optimization (PSO) algorithm. Cost-emissions Pareto fronts of different HRES configurations were developed to gain greater awareness about the potential of renewable-based energy systems in off-grid applications. Various combinations of the following components were investigated: photovoltaic panels wind turbines batteries hydrogen and diesel generators. The hydrogen-based system comprises an electrolyzer to convert the excess renewable energy into hydrogen a pressurized tank for H2 storage and a fuel cell for the reconversion of hydrogen into electricity during renewable energy deficits. Electrolyzer and fuel cell devices were modelled by means of part-load performance curves. Size-dependent costs and component lifetimes as a function of the cumulative operational duty were also considered for a more accurate techno-economic assessment. The proposed methodology was applied to the Froan islands (Norway) which were chosen as a reference case study since they are well representative of many other insular microgrid environments in Northern Europe. Results from the sizing simulations revealed that energy storage devices are key components to reduce the dependency on fossil fuels. In particular the hydrogen storage system is crucial in off-grid areas to enhance the RES penetration and avoid a sharp increase in the cost of energy. Hydrogen in fact allows the battery and RES technologies not to be oversized thanks to its cost-effective long-term storage capability. Concerning the extreme case with no diesel the cheapest configuration which includes both batteries and hydrogen has an LCOE of 0.41 €/kWh. This value is around 35% lower than the LCOE of a system with only batteries as energy storage.
Jet Zero Strategy: One Year On
Jul 2023
Publication
This report sets out progress against our strategic framework for decarbonising aviation as well as the latest aviation emissions data and updated Jet Zero analysis.<br/>Among the significant milestones achieved since the Jet Zero strategy launch are the:<br/>- agreement at the International Civil Aviation Organization for a long-term aspirational goal for aviation of net zero 2050 carbon dioxide (CO2) emissions for international aviation<br/>- publication of the 2040 zero emissions airport target call for evidence<br/>significant progress on sustainable aviation fuels (SAF) including:<br/>- publishing the second SAF mandate consultation<br/>- launching a second round of the Advanced Fuels Fund<br/>- publishing the Philip New report and the government response on how to develop a UK SAF industry<br/>- publication of the government response to the UK ETS consultation setting out a range of commitments that will enhance the effectiveness of the UK Emissions Trading Scheme (ETS) for aviation<br/>- launch of the expressions of interest for 2 DfT- funded research projects into aviation’s non-CO2 impacts<br/>The report also acknowledges that big challenges remain and we need to continue to work across the aviation sector and with experts across the economy to ensure we continue to make progress on our path to decarbonise aviation.
Residential Fuel Transition and Fuel Interchangeability in Current Self-Aspirating Combustion Applications: Historical Development and Future Expectations
May 2022
Publication
To reduce greenhouse gases and air pollutants new technologies are emerging to reduce fossil fuel usage and to adopt more renewable energy sources. As the major aspects of fuel consumption power generation transportation and industrial applications have been given significant attention. The past few decades witnessed astonishing technological advancement in these energy sectors. In contrast the residential sector has had relatively little attention despite its significant utilization of fuels for a much longer period. However almost every energy transition in human history was initiated by the residential sector. For example the transition from fuelwood to cheap coal in the 1700s first took place in residential houses due to urbanization and industrialization. The present review demonstrates the energy transitions in the residential sector during the past two centuries while portending an upcoming energy transition and future energy structure for the residential sector. The feasibility of the 100% electrification of residential buildings is discussed based on current residential appliance adoption and the analysis indicates a hybrid residential energy structure is preferred over depending on a single energy source. Technical considerations and suggestions are given to help incorporate more renewable energy into the residential fuel supply system. Finally it is observed that compared to the numerous regulations on large energy-consumption aspects standards for residential appliances are scarce. Therefore it is concluded that establishing appropriate testing methods is a critical enabling step to facilitate the adoption of renewable fuels in future appliances.
Review and Survey of Methods for Analysis of Impurities in Hydrogen for Fuel Cell Vehicles According to ISO 14687:2019
Feb 2021
Publication
Gaseous hydrogen for fuel cell electric vehicles must meet quality standards such as ISO 14687:2019 which contains maximal control thresholds for several impurities which could damage the fuel cells or the infrastructure. A review of analytical techniques for impurities analysis has already been carried out by Murugan et al. in 2014. Similarly this document intends to review the sampling of hydrogen and the available analytical methods together with a survey of laboratories performing the analysis of hydrogen about the techniques being used. Most impurities are addressed however some of them are challenging especially the halogenated compounds since only some halogenated compounds are covered not all of them. The analysis of impurities following ISO 14687:2019 remains expensive and complex enhancing the need for further research in this area. Novel and promising analyzers have been developed which need to be validated according to ISO 21087:2019 requirements.
Low Carbon Economic Dispatch of Integrated Energy Systems Considering Utilization of Hydrogen and Oxygen Energy
Mar 2024
Publication
Power-to-gas (P2G) facilities use surplus electricity to convert to natural gas in integrated energy systems (IES) increasing the capacity of wind power to be consumed. However the capacity limitation of P2G and the antipeaking characteristic of wind power make the wind abandonment problem still exist. Meanwhile the oxygen generated by P2G electrolysis is not fully utilized. Therefore this study proposes a low-carbon economic dispatch model considering the utilization of hydrogen and oxygen energy. First the two-stage reaction model of P2G is established and the energy utilization paths of hydrogen blending and oxygen-rich deep peaking are proposed. Specifically hydrogen energy is blended into the gas grid to supply gas-fired units and oxygen assists oxygenrich units into deep peaking. Subsequently the stochastic optimization is used to deal with the uncertainty of the system and the objective function and constraints of the IES are given to establish a low-carbon dispatch model under the energy utilization model. Finally the effectiveness of the proposed method is verified based on the modified IEEE 39-node electric network 20-node gas network and 6-node heat network models.
Recent Developments of Proton Exchange Membranes for PEMFC: A Review
Sep 2022
Publication
The decreasing abundance of conventional energy resources of nature such as crude oil natural gas and coal is putting forward the issues of energy shortcoming for the future. With a sentiment of this most researchers are now directing either on non-conventional resources that already prevail or invent it. The most promising non-conventional energy resource is the hydrogen energy which can be used in fuel cell to get electricity. Therefore a number of researchers are putting a light on developing the most efficient and affordable fuel cell. This review is mainly focused on the developments of proton exchange membranes (PEMs) in two parts as low and high temperature PEMs for proton exchange membrane fuel cell (PEMFC) and based on that some outperformed PEMs are mentioned in the respective tables. Most of the energy and automobile industries are concentrating to apply PEMFCs for power generation and to apply in vehicles. The cost of PEMFCs is higher due to the manufacturing cost of PEM. Therefore research works in PEMs are now in trend to reduce the cost to improve efficiency and to withstand particular operating conditions. In this review article recent developments in PEM by number of researchers and the importance of it in near future have been elicited.
Towards Deep Decarbonisation of Energy-Intensive Industries: A Review of Current Status, Technologies and Policies
Apr 2021
Publication
Industries account for about 30% of total final energy consumption worldwide and about 20% of global CO2 emissions. While transitions towards renewable energy have occurred in many parts of the world in the energy sectors the industrial sectors have been lagging behind. Decarbonising the energy-intensive industrial sectors is however important for mitigating emissions leading to climate change. This paper analyses various technological trajectories and key policies for decarbonising energy-intensive industries: steel mining and minerals cement pulp and paper and refinery. Electrification fuel switching to low carbon fuels together with technological breakthroughs such as fossil-free steel production and CCS are required to bring emissions from energy-intensive industry down to net-zero. A long-term credible carbon price support for technological development in various parts of the innovation chain policies for creating markets for low-carbon materials and the right condition for electrification and increased use of biofuels will be essential for a successful transition towards carbon neutrality. The study focuses on Sweden as a reference case as it is one of the most advanced countries in the decarbonisation of industries. The paper concludes that it may be technically feasible to deep decarbonise energy-intensive industries by 2045 given financial and political support.
Techno-economic Assessment of a Hydrogen-based Islanded Microgrid in North-east
Feb 2023
Publication
Currently renewable energy-based generators are considered worldwide to achieve net zero targets. However the stochastic nature of renewable energy systems leads to regulation and control challenges for power system operators especially in remote and regional grids with smaller footprints. A hybrid system (i.e. solar wind biomass energy storage) could minimise this issue. Nevertheless the hybrid system is not possible to develop in many islands due to the limited land area geographical conditions and others. Hydrogen as a carrier of clean energy can be used in locations where the installation of extensive or medium-scale renewable energy facilities is not permissible due to population density geographical constraints government policies and regulatory issues. This paper presents a techno-economic assessment of designing a green hydrogen-based microgrid for a remote island in North-east Australia. This research work determines the optimal sizing of microgrid components using green hydrogen technology. Due to the abovementioned constraints the green hydrogen production system and the microgrid proposed in this paper are located on two separate islands. The paper demonstrates three cost-effective scenarios for green hydrogen production transportation and electricity generation. This work has been done using Hybrid Optimisation Model for Multiple Energy Resources or HOMER Pro simulation platform. Simulation results show that the Levelized Cost of Energy using hydrogen technology can vary from AU$0.37/kWh to AU$1.08/kWh depending on the scenarios and the variation of key parameters. This offers the potential to provide lower-cost electricity to the remote community. Furthermore the CO2 emission could be reduced by 1760777 kg/year if the renewable energy system meets 100% of the electricity demand. Additionally the sensitivity analysis in this paper shows that the size of solar PV and wind used for green hydrogen production can further be reduced by 50%. The sensitivity analysis shows that the system could experience AU$0.03/kWh lower levelized cost if the undersea cable is used to transfer the generated electricity between islands instead of hydrogen transportation. However it would require environmental approval and policy changes as the islands are located in the Great Barrier Reef.
P2H Modeling and Operation in the Microgrid Under Coupled Electricity–Hydrogen Markets
Dec 2021
Publication
The uncertainty and volatility of wind power have led to large-scale wind curtailment during grid connections. The adoption of power-to-hydrogen (P2H) system in a microgrid (MG) can mitigate the renewable curtailment by hydrogen conversion and storage. This paper conducts unified modeling for different types of P2H systems and considers the multi-energy trading in a hydrogen-coupled power market. The proposed bi-level equilibrium model is beneficial to minimize the energy cost of microgrids. Firstly a microgrid operation model applied to different P2H systems including an alkaline electrolysis cell (AEC) a proton exchange membrane electrolysis cell (PEMEC) or a solid oxide electrolysis cell (SOEC) is proposed at the upper level. Secondly an electricity market–clearing model and a hydrogen market model are constructed at the lower level. Then the diagonalization algorithm is adopted to solve the multi-market equilibrium problem. Finally case studies based on an IEEE 14-bus system are conducted to validate the proposed model and the results show that the microgrid with a P2H system could gain more profits and help increase the renewable penetration.
No more items...