Policy & Socio-Economics
Scientific Assessment in Support of the Materials Roadmap enabling Low Carbon Energy Technologies Hydrogen and Fuel Cells
Apr 2014
Publication
A group experts from European research organisations and industry have assessed the state of the art and future needs for materials' R&D for hydrogen and fuel cell technologies. The work was performed as input to the European Commission's roadmapping exercise on materials for the European Strategic Energy Technology Plan. The report summarises the results including key targets identified for medium term (2020/2030) and long term (2050) timescales.
A Thorough Emission-Cost Analysis of the Gradual Replacement of Carbon-Rich Fuels with Carbon-Free Energy Carriers in Modern Power Plants: The Case of Cyprus
Aug 2022
Publication
Global efforts towards de-carbonization give rise to remarkable energy challenges which include renewable energy penetration increase and intermediate energy carriers for a sustainable transition. In order to reduce the dependence on fossil fuels alternative sources are considered by commodities to satisfy their increasing electricity demand as a consequence of a rise in population and the quantity of residential appliances in forthcoming years. The near-term trends appear to be in fuel and emission reduction techniques through the integration of carbon capture and storage and more efficient energy carriers exploiting alternative energy sources such as natural gas and hydrogen. Formulating both the fuel consumption and emission released the obtained experimental results showed that the total production cost can be reduced by making use of natural gas for the transition towards 2035’s targets. Maximum profits will be achieved with hydrogen as the only fuel in modern power plants by 2050. In this way the lowest electricity production can be achieved as well as the elimination of carbon dioxide emissions. Since the integration of renewable energy resources in the sectors of electricity heating/cooling and transportation will continuously be increased alternative feedstocks can serve as primary inputs and contribute to production cost profits improved utilization factors and further environmental achievements.
Homes of the Future: Unpacking Public Perceptions to Power the Domestic Hydrogen Transition
Apr 2022
Publication
Decarbonization in several countries is now linked to the prospect of implementing a national hydrogen economy. In countries with extensive natural gas infrastructure hydrogen may provide a real opportunity to decarbonize space heating. While this approach may prove technically and economically feasible in the longterm it is unclear whether consumers will be willing to adopt hydrogen-fueled appliances for heating and cooking should techno-economic feasibility be achieved. In response this paper develops an analytical framework for examining hydrogen acceptance which links together socio-technical barriers and social acceptance factors. Applying this framework the study synthesizes the existing knowledge on public perceptions of hydrogen and identifies critical knowledge gaps which should be addressed to support domestic hydrogen acceptance. The paper demonstrates that a future research agenda should account for the interactions between acceptance factors at the attitudinal socio-political market community and behavioral level. The analysis concludes that hydrogen is yet to permeate the public consciousness due to a lack of knowledge and awareness owing to an absence of information dissemination. In response consumer engagement in energy markets and stronger public trust in key stakeholders will help support social acceptance as the hydrogen transition unfolds. Affordability may prove the most critical barrier to the large-scale adoption of hydrogen homes while the disruptive impacts of the switchover and distributional injustice represent key concerns. As a starting point the promise of economic environmental and community benefits must be communicated and fulfilled to endorse the value of hydrogen homes.
Economic Feasibility of Green Hydrogen Production by Water Electrolysis Using Wind and Geothermal Energy Resources in Asal-Ghoubbet Rift (Republic of Djibouti): A Comparative Evaluation
Dec 2021
Publication
The Republic of Djibouti has untapped potential in terms of renewable energy resources such as geothermal wind and solar energy. This study examines the economic feasibility of green hydrogen production by water electrolysis using wind and geothermal energy resources in the Asal–Ghoubbet Rift (AG Rift) Republic of Djibouti. It is the first study in Africa that compares the cost per kg of green hydrogen produced by wind and geothermal energy from a single site. The unit cost of electricity produced by the wind turbine (0.042 $/kWh) is more competitive than that of a dry steam geothermal plant (0.086 $/kWh). The cost of producing hydrogen with a suitable electrolyzer powered by wind energy ranges from $0.672/kg H2 to $1.063/kg H2 while that produced by the high-temperature electrolyzer (HTE) powered by geothermal energy ranges from $3.31/kg H2 to $4.78/kg H2 . Thus the AG Rift area can produce electricity and green hydrogen at low-cost using wind energy compared to geothermal energy. The amount of carbon dioxide (CO2 ) emissions reduced by using a “Yinhe GX113-2.5MW” wind turbine and a single flash geothermal power plant instead of fuel-oil generators is 2061.6 tons CO2/MW/year and 2184.8 tons CO2/MW/year respectively.
Russia’s Policy Transition to a Hydrogen Economy and the Implications of South Korea–Russia Cooperation
Dec 2021
Publication
Leading countries are developing clean energy to replace fossil fuels. In this context Russia is changing its energy policy towards fostering new energy resources such as hydrogen and helium. Hydrogen will not only contribute to Russia’s financial revenue by replacing natural gas but will also provide a basis for it to maintain its dominance over the international energy market by pioneering new energy markets. Russia is aiming to produce more than two million tons of hydrogen fuel for export to Europe and Asia by 2035. However it is facing many challenges including developing hydrogen fuel storage systems acquiring the technology required for exporting hydrogen and building trust in the fuel market. Meanwhile South Korea has a foundation for developing a hydrogen industry as it has the highest capacity in the world to produce fuel cells and the ability to manufacture LNG: (liquefied natural gas) carriers. Therefore South Korea and Russia have sufficient potential to create a new complementary and reciprocal cooperation model in the hydrogen fuel field. This study examines the present and future of Russia’s energy policy in this area as well as discusses South Korea and Russia’s cooperation plans in the hydrogen fuel sector and the related implications.
A Multi-objective MILP Model for the Design and Operation of Future Integrated Multi-vector Energy Networks Capturing Detailed Spatio-temporal Dependencies
Dec 2017
Publication
A multi-objective optimisation model based on mixed integer linear programming is presented that can simultaneously determine the design and operation of any integrated multi-vector energy networks. It can answer variants of the following questions: What is the most effective way in terms of cost value/profit and/or emissions of designing and operating the integrated multi-vector energy networks that utilise a variety of primary energy sources to deliver different energy services such as heat electricity and mobility given the availability of primary resources and the levels of demands and their distribution across space and time? When to invest in technologies where to locate them; what resources should be used where when and how to convert them to the energy services required; how to transport the resources and manage inventory? Scenarios for Great Britain were examined involving different primary energy sources such as natural gas biomass and wind power in order to satisfy demands for heat electricity and mobility via various energy vectors such as electricity natural gas hydrogen and syngas. Different objectives were considered such as minimising cost maximising profit minimising emissions and maximising renewable energy production subject to the availability of suitable land for biomass and wind turbines as well as the maximum local production and import rates for natural gas. Results suggest that if significant mobility demands are met by hydrogen-powered fuel cell vehicles then hydrogen is the preferred energy vector over natural gas for satisfying heat demands. If natural gas is not used and energy can only be generated from wind power and biomass electricity and syngas are the preferred energy carriers for satisfying electricity and heat demands.
Interlinking the Renewable Electricity and Gas Sectors: A Techno-Economic Case Study for Austria
Oct 2021
Publication
Achieving climate neutrality requires a massive transformation of current energy systems. Fossil energy sources must be replaced with renewable ones. Renewable energy sources with reasonable potential such as photovoltaics or wind power provide electricity. However since chemical energy carriers are essential for various sectors and applications the need for renewable gases comes more and more into focus. This paper determines the Austrian green hydrogen potential produced exclusively from electricity surpluses. In combination with assumed sustainable methane production the resulting renewable gas import demand is identified based on two fully decarbonised scenarios for the investigated years 2030 2040 and 2050. While in one scenario energy efficiency is maximised in the other scenario significant behavioural changes are considered to reduce the total energy consumption. A techno-economic analysis is used to identify the economically reasonable national green hydrogen potential and to calculate the averaged levelised cost of hydrogen (LCOH2) for each scenario and considered year. Furthermore roll-out curves for the necessary expansion of national electrolysis plants are presented. The results show that in 2050 about 43% of the national gas demand can be produced nationally and economically (34 TWh green hydrogen 16 TWh sustainable methane). The resulting national hydrogen production costs are comparable to the expected import costs (including transport costs). The most important actions are the quick and extensive expansion of renewables and electrolysis plants both nationally and internationally
A Critique on the UK's Net Zero Strategy
Dec 2022
Publication
Before the Covid-19 pandemic UK passed net-zero emission law legislation to become the first major economy in the world to end its contribution to global warming by 2050. Following the UK’s legislation to reach net-zero emissions a long-term strategy for transition to a net-zero target was published in 2021. The strategy is a technology-led and with a top-down approach. The intention is to reach the target over the next three decades. The document targets seven sectors to reduce emissions and include a wide range of policies and innovations for decarbonization. This paper aims to accomplish a much needed review of the strategy in heat and buildings part and cover the key related areas in future buildings standard heat pumps and use of hydrogen as elaborated in the strategy. For that purpose this research reviews key themes in the policy challenges recent advancement and future possibilities. It provides an insight on the overall development toward sustainability and decarbonization of built environment in the UK by 2050. A foresight model Future Wheels is also used to visualize the findings from the review and provide a clear picture of the potential impact of the policy.
Significance of Hydrogen as Economic and Environmentally Friendly Fuel
Nov 2021
Publication
The major demand of energy in today’s world is fulfilled by the fossil fuels which are not renewable in nature and can no longer be used once exhausted. In the beginning of the 21st century the limitation of the fossil fuels continually growing energy demand and growing impact of greenhouse gas emissions on the environment were identified as the major challenges with current energy infrastructure all over the world. The energy obtained from fossil fuel is cheap due to its established infrastructure; however these possess serious issues as mentioned above and cause bad environmental impact. Therefore renewable energy resources are looked to as contenders which may fulfil most energy requirements. Among them hydrogen is considered as the most environmentally friendly fuel. Hydrogen is clean sustainable fuel and it has promise as a future energy carrier. It also has the ability to substitute the present energy infrastructure which is based on fossil fuel. This is seen and projected as a solution for the above-mentioned problems including rise in global temperature and environmental degradation. Environmental and economic aspects are the important factors to be considered to establish hydrogen infrastructure. This article describes the various aspects of hydrogen including production storage and applications with a focus on fuel cell based electric vehicles. Their environmental as well as economic aspects are also discussed herein.
Challenges in the Decarbonization of the Energy Sector
Jun 2020
Publication
In order to limit the effects of climate change the carbon dioxide emissions associated with the energy sector need to be reduced. Significant reductions can be achieved by using appropriate technologies and policies. In the context of recent discussions about climate change and energy transition this article critically reviews some technologies policies and frequently discussed solutions. The options for carbon emission reductions are grouped into (1) generation of secondary energy carriers (2) end-use energy sectors and (3) sector interdependencies. The challenges on the way to a decarbonized energy sector are identified with respect to environmental sustainability security of energy supply economic stability and social aspects. A global carbon tax is the most promising instrument to accelerate the process of decarbonization. Nevertheless this process will be very challenging for humanity due to high capital requirements the competition among energy sectors for decarbonization options inconsistent environmental policies and public acceptance of changes in energy use.
Fuel Cells and Hydrogen Observatory 2019 EU and National Policies Report
Sep 2021
Publication
The policy module of the FCHO presents an overview of EU and national policies across various hydrogen and fuel cell related sectors. It provides a snapshot of the current state of hydrogen legislation and policy. Scope: While FCHO covers 38 entities around the world due to the completeness of the data at the moment of writing this report covers 29 entities. The report reflects data collected January 2019 – December 2019. Key Findings: Hydrogen policies are relatively commonplace among European countries but with large differences between member states. EU hydrogen leaders do not lag behind global outliers such as South Korea or Japan.
Global Hydrogen Review 2021
Oct 2021
Publication
The Global Hydrogen Review is a new annual publication by the International Energy Agency to track progress in hydrogen production and demand as well as in other critical areas such as policy regulation investments innovation and infrastructure development.
The report is an output of the Clean Energy Ministerial Hydrogen Initiative (CEM H2I) and is intended to inform energy sector stakeholders on the status and future prospects of hydrogen while serving as an input to the discussions at the Hydrogen Energy Ministerial Meeting (HEM) organised by Japan. It examines what international progress on hydrogen is needed to help address climate change – and compares real-world developments with the stated ambitions of government and industry and with key actions under the Global Action Agenda launched at the HEM in 2019.
Focusing on hydrogen’s usefulness for meeting climate goals this Review aims to help decision makers fine-tune strategies to attract investment and facilitate deployment of hydrogen technologies while also creating demand for hydrogen and hydrogen-based fuels.
Link to International Energy Agency website
The report is an output of the Clean Energy Ministerial Hydrogen Initiative (CEM H2I) and is intended to inform energy sector stakeholders on the status and future prospects of hydrogen while serving as an input to the discussions at the Hydrogen Energy Ministerial Meeting (HEM) organised by Japan. It examines what international progress on hydrogen is needed to help address climate change – and compares real-world developments with the stated ambitions of government and industry and with key actions under the Global Action Agenda launched at the HEM in 2019.
Focusing on hydrogen’s usefulness for meeting climate goals this Review aims to help decision makers fine-tune strategies to attract investment and facilitate deployment of hydrogen technologies while also creating demand for hydrogen and hydrogen-based fuels.
Link to International Energy Agency website
Hungary's National Hydrogen Strategy
May 2021
Publication
Hungary’s National Hydrogen Strategy (hereinafter referred to as: Strategy) is ambitious but provides a realistic vision of the future as it opens the way for the establishment of a hydrogen economy therefore contributing to the achievement of decarbonisation goals and providing an opportunity for Hungary to become an active participant of the European hydrogen sector. On the long term the Strategy focuses on “green” hydrogen but in addition to hydrogen based on electricity generated using renewable resources primarily solar energy Hungary does not ignore opportunities for hydrogen production based on carbon-free energy accessed either through a nuclear basis or from the network. Additionally in the short and medium term a rapid reduction in emissions and the establishment of a viable hydrogen market will also require low-carbon hydrogen.
Prospective Techno-economic and Environmental Assessment of a National Hydrogen Production Mix for Road Transport
Nov 2019
Publication
Fuel cell electric vehicles arise as an alternative to conventional vehicles in the road transport sector. They could contribute to decarbonising the transport system because they have no direct CO2 emissions during the use phase. In fact the life-cycle environmental performance of hydrogen as a transportation fuel focuses on its production. In this sense through the case study of Spain this article prospectively assesses the techno-economic and environmental performance of a national hydrogen production mix by following a methodological framework based on energy systems modelling enriched with endogenous carbon footprint indicators. Taking into account the need for a hydrogen economy based on clean options alternative scenarios characterised by carbon footprint restrictions with respect to a fossil-based scenario dominated by steam methane reforming are evaluated. In these scenarios the steam reforming of natural gas still arises as the key hydrogen production technology in the short term whereas water electrolysis is the main technology in the medium and long term. Furthermore in scenarios with very restrictive carbon footprint limits biomass gasification also appears as a key hydrogen production technology in the long term. In the alternative scenarios assessed the functional substitution of hydrogen for conventional fossil fuels in the road transport sector could lead to high greenhouse gas emission savings ranging from 36 to 58 Mt CO2 eq in 2050. Overall these findings and the model structure and characterisation developed for the assessment of hydrogen energy scenarios are expected to be relevant not only to the specific case study of Spain but also to analysts and decision-makers in a large number of countries facing similar concerns.
Technology Roadmaps for Transition Management: The Case of Hydrogen Energy
Oct 2011
Publication
Technology roadmaps are increasingly used by governments to inform and promote technological transitions such as a transition to a hydrogen energy system. This paper develops a framework for understanding how current roadmapping practice relates to emerging theories of the governance of systems innovation. In applying this framework to a case study of hydrogen roadmaps the paper finds that roadmapping for transitions needs to place greater emphasis on ensuring good quality and transparent analytic and participatory procedures. To be most useful roadmaps should be embedded within institutional structures that enable the incorporation of learning and re-evaluation but in practice most transition roadmaps are one-off exercises
Sector Coupling via Hydrogen to Lower the Cost of Energy System Decarbonization
Aug 2021
Publication
There is growing interest in using hydrogen (H2) as a long-duration energy storage resource in a future electric grid dominated by variable renewable energy (VRE) generation. Modeling H2 use exclusively for grid-scale energy storage often referred to as ‘‘power-to-gas-to-power (P2G2P)’’ overlooks the cost-sharing and CO2 emission benefits from using the deployed H2 assets to decarbonize other end-use sectors where direct electrification is challenging. Here we develop a generalized framework for co-optimizing infrastructure investments across the electricity and H2 supply chains accounting for the spatio-temporal variations in energy demand and supply. We apply this sector-coupling framework to the U.S. Northeast under a range of technology cost and carbon price scenarios and find greater value of power-to-H2 (P2G) vs. P2G2P routes. Specifically P2G provides grid flexibility to support VRE integration without the round-trip efficiency penalty and additional cost incurred by P2G2P routes. This form of sector coupling leads to: (a) VRE generation increase by 13–56% and (b) total system cost (and levelized costs of energy) reduction by 7–16% under deep decarbonization scenarios. Both effects increase as H2 demand for other end-uses increases more than doubling for a 97% decarbonization scenario as H2 demand quadruples. We also find that the grid flexibility enabled by sector coupling makes deployment of carbon capture and storage (CCS) for power generation less cost-effective than its use for low-carbon H2 production. These findings highlight the importance of using an integrated energy system framework with multiple energy vectors in planning cost-effective energy system decarbonization
The Green Hydrogen Puzzle: Towards a German Policy Framework for Industry
Nov 2021
Publication
Green hydrogen will play a key role in building a climate-neutral energy-intensive industry as key technologies for defossilising the production of steel and basic chemicals depend on it. Thus policy-making needs to support the creation of a market for green hydrogen and its use in industry. However it is unclear how appropriate policies should be designed and a number of challenges need to be addressed. Based on an analysis of the ongoing German debate on hydrogen policies this paper analyses how policy-making for green hydrogen development may support industry defossilisation. For the assessment of policy instruments a simplified multi-criteria analysis (MCA) is used with an innovative approach that derives criteria from specific challenges. Four challenges and seven relevant policy instruments are identified. The results of the MCA reveal the potential of each of the selected instruments to address the challenges. The paper furthermore outlines how instruments might be combined in a policy package that supports industry defossilisation creates synergies and avoids trade-offs. The paper’s impact may reach beyond the German case as the challenges are not specific to the country. The results are relevant for policy-makers in other countries with energy-intensive industries aiming to set the course towards a hydrogen future.
Catalysing Hydrogen Investment: What the Market Needs to Deliver Investment in Hydrogen Infrastructure
Oct 2021
Publication
Written by Arup in collaboration with the GIIA this report is centred on the opinions of investors from around the world gathered through a survey of GIIA members and in-depth interviews. It therefore presents the sentiments of the world’s leading fund managers insurance investors pension funds and a sovereign wealth fund. Their opinions matter because these are the decision makers that hold the purse strings when it comes to private sector investment in hydrogen infrastructure. Many of the facts about hydrogen are well-known to many readers and these are presented in this report drawing on Arup’s research and experience as a global infrastructure advisory firm. However the novelty of this report is that it looks at hydrogen through the uncompromising eyes of investors with analysis of feedback which identifies barriers to investment in the infrastructure required to enable the hydrogen economy. Perhaps most importantly it also proposes interventions that policymakers and regulators could take to overcome the barriers currently faced.<br/>Introduction The sentiments of investors are at the heart of this study with results from the survey presented at the beginning of each section to serve as a launch pad for Arup’s analysis. But we want it to be more than an interesting read; it is a call to action for policy makers to create the right environment to catalyse private sector investment and kickstart the hydrogen economy.
Hydrogen Recovery from Waste Gas Streams to Feed (High-Temperature PEM) Fuel Cells: Environmental Performance under a Life-Cycle Thinking Approach
Oct 2020
Publication
Fossil fuels are being progressively substituted by a cleaner and more environmentally friendly form of energy where hydrogen fuel cells stand out. However the implementation of a competitive hydrogen economy still presents several challenges related to economic costs required infrastructures and environmental performance. In this context the objective of this work is to determine the environmental performance of the recovery of hydrogen from industrial waste gas streams to feed high-temperature proton exchange membrane fuel cells for stationary applications. The life-cycle assessment (LCA) analyzed alternative scenarios with different process configurations considering as functional unit 1 kg of hydrogen produced 1 kWh of energy obtained and 1 kg of inlet flow. The results make the recovery of hydrogen from waste streams environmentally preferable over alternative processes like methane reforming or coal gasification. The production of the fuel cell device resulted in high contributions in the abiotic depletion potential and acidification potential mainly due to the presence of platinum metal in the anode and cathode. The design and operation conditions that defined a more favorable scenario are the availability of a pressurized waste gas stream the use of photovoltaic electricity and the implementation of an energy recovery system for the residual methane stream.
Few-atom Cluster Model Systems for a Hydrogen Economy
Apr 2020
Publication
To increase the share of renewable zero-emission energy sources such as wind and solar power in our energy supply the problem of their intermittency needs to be addressed. One way to do so is by buffering excess renewable energy via the production of hydrogen which can be stored for later use after re-electrification. Such a clean renewable energy cycle based on hydrogen is commonly referred to as the hydrogen economy. This review deals with cluster model systems of the three main components of the hydrogen economy i.e. hydrogen generation hydrogen storage and hydrogen re-electrification and their basic physical principles. We then present examples of contemporary research on few atom clusters both in the gas phase and deposited to show that by studying these clusters as simplified models a mechanistic understanding of the underlying physical and chemical processes can be obtained. Such an understanding will inspire and enable the design of novel materials needed for advancing the hydrogen economy.
Power-to-gas in Electricity Markets Dominated by Renewables
Oct 2018
Publication
This paper analyses the feasibility of power-to-gas in electricity markets dominated by renewables. The business case of a power-to-gas plant that is producing hydrogen is evaluated by determining the willingness to pay for electricity and by comparing this to the level and volatility of electricity prices in a number of European day-ahead markets. The short-term willingness to pay for electricity depends on the marginal costs and revenues of the plant while the long-term willingness to pay for electricity also takes into account investment and yearly fixed operational costs and therefore depends on the expected number of operating hours. The latter ultimately determines whether or not large-scale investments in the power-to-gas technology will take place.<br/>We find that power-to-gas plants are not profitable under current market conditions: even under the most optimistic assumptions for the cost and revenue parameters power-to-gas plants need to run for many hours during the year at very low prices (i.e. the long-term willingness to pay for electricity is very low) that do not currently exist in Europe. In an optimistic future scenario regarding investment costs efficiency and revenues of power-to-gas however the long-term willingness to pay for electricity is higher than the lowest recently observed day-ahead electricity prices. When prices remain at this low level investments in power-to-gas can thus become profitable.
The Role of Hydrogen in Achieving Long Term Japanese Energy System Goals
Sep 2020
Publication
This research qualitatively reviews literature regarding energy system modeling in Japan specific to the future hydrogen economy leveraging quantitative model outcomes to establish the potential future deployment of hydrogen in Japan. The analysis focuses on the four key sectors of storage supplementing the gas grid power generation and transportation detailing the potential range of hydrogen technologies which are expected to penetrate Japanese energy markets up to 2050 and beyond. Alongside key model outcomes the appropriate policy settings governance and market mechanisms are described which underpin the potential hydrogen economy future for Japan. We find that transportation gas grid supplementation and storage end-uses may emerge in significant quantities due to policies which encourage ambitious implementation targets investment in technologies and research and development and the emergence of a future carbon pricing regime. On the other hand for Japan which will initially be dependent on imported hydrogen the cost of imports appears critical to the emergence of broad hydrogen usage particularly in the power generation sector. Further the consideration of demographics in Japan recognizing the aging shrinking population and peoples’ energy use preferences will likely be instrumental in realizing a smooth transition toward a hydrogen economy.
Hydrogen Energy: a New Dimension for the Energy Cooperation in the Northeast Asian Region
Nov 2020
Publication
The Northeast Asian Region is a home for the major world’s energy importers and Russia – the top energy exporter. Due to the depletion of national fossil energy resources the industrialised East Asian economies are facing serious energy security issues. The snapshot of the intraregional energy trade in 2019 was analysed in terms of development potential. Japan Korea and China are at the frontline of hydrogen energy technologies commercialisation and hydrogen energy infrastructure development. The drivers for such endeavours are listed and national institutions for hydrogen energy development are characterised. The priorities related to regional cooperation on hydrogen energy in Northeast Asia were derived on the basis of hydrogen production cost estimations. These priorities include steady development of international natural gas and power infrastructure. The shared process will lead to the synergy of regional fossil and renewable resources within combined power and hydrogen infrastructure.
Electrification and Sustainable Fuels: Competing for Wind and Sun (complement to the Policy brief)
May 2021
Publication
This study seeks to answer a simple question: will we have enough renewable electricity to meet all of the EU's decarbonisation objectives and if not what should be the priorities and how to address the remaining needs for energy towards carbon neutrality? Indeed if not the policy push for green hydrogen would not be covered by enough green electricity to match the “energy efficiency and electrification first” approach outlined in the system integration communication and a prioritization of green electricity uses complemented by other solutions (import of green electricity or sustainable fuels CCS...) would be advisable [1]. On one hand we show that the principle “Energy efficiency and electrification first” results in an electricity demand which will be very difficult to satisfy domestically with renewable energy. On the other hand green hydrogen and other sustainable fuels will be needed for a carbon neutral industry for the replacement of the fuel for aviation and navigation and as strategic green energy reserves. The detailed modelling of these interactions is challenging given the large uncertainties on technology and infrastructure development. Therefore we offer a “15 minutes” decarbonization scenario based on general and transparent technical considerations and very straightforward “back-of-envelope” calculations. This working paper contains the calculations and assumptions in support of the accompanying policy brief with the same title which focuses instead on the main take-aways.
Development of Renewable Energy Multi-energy Complementary Hydrogen Energy System (A Case Study in China): A Review
Aug 2020
Publication
The hydrogen energy system based on the multi-energy complementary of renewable energy can improve the consumption of renewable energy reduce the adverse impact on the power grid system and has the characteristics of green low carbon sustainable etc. which is currently a global research hotspot. Based on the basic principles of hydrogen production technology this paper introduces the current hydrogen energy system topology and summarizes the technical advantages of renewable energy complementary hydrogen production and the complementary system energy coordination forms. The problems that have been solved or reached consensus are summarized and the current status of hydrogen energy system research at home and abroad is introduced in detail. On this basis the key technologies of multi-energy complementation of hydrogen energy system are elaborated especially in-depth research and discussion on coordinated control strategies energy storage and capacity allocation energy management and electrolysis water hydrogen production technology. The development trend of the multi-energy complementary system and the hydrogen energy industry chain is also presented which provides a reference for the development of hydrogen production technology and hydrogen energy utilization of the renewable energy complementary system.
Power-to-hydrogen as Seasonal Energy Storage: An Uncertainty Analysis for Optimal Design of Low-carbon Multi-energy Systems
Jun 2020
Publication
This study analyzes the factors leading to the deployment of Power-to-Hydrogen (PtH2) within the optimal design of district-scale Multi-Energy Systems (MES). To this end we utilize an optimization framework based on a mixed integer linear program that selects sizes and operates technologies in the MES to satisfy electric and thermal demands while minimizing annual costs and CO2 emissions. We conduct a comprehensive uncertainty analysis that encompasses the entire set of technology (e.g. cost efficiency lifetime) and context (e.g. economic policy grid carbon footprint) input parameters as well as various climate-referenced districts (e.g. environmental data and energy demands) at a European-scope.
Minimum-emissions MES with large amounts of renewable energy generation and high ratios of seasonal thermal-to-electrical demand optimally achieve zero operational CO2 emissions by utilizing PtH2 seasonally to offset the long-term mismatch between renewable generation and energy demand. PtH2 is only used to abate the last 5–10% emissions and it is installed along with a large battery capacity to maximize renewable self-consumption and completely electrify thermal demand with heat pumps and fuel cells. However this incurs additional cost. Additionally we show that ‘traditional’ MES comprised of renewables and short-term energy storage are able to decrease emissions by 90% with manageable cost increases.
The impact of uncertainty on the optimal system design reveals that the most influential parameter for PtH2 implementation is (1) heat pump efficiency as it is the main competitor in providing renewable-powered heat in winter. Further battery (2) capital cost and (3) lifetime prove to be significant as the competing electrical energy storage technology. In the face of policy uncertainties a CO2 tax shows large potential to reduce emissions in district MES without cost implications. The results illustrate the importance of capturing the dynamics and uncertainties of short- and long-term energy storage technologies for assessing cost and CO2 emissions in optimal MES designs over districts with different geographical scopes.
Minimum-emissions MES with large amounts of renewable energy generation and high ratios of seasonal thermal-to-electrical demand optimally achieve zero operational CO2 emissions by utilizing PtH2 seasonally to offset the long-term mismatch between renewable generation and energy demand. PtH2 is only used to abate the last 5–10% emissions and it is installed along with a large battery capacity to maximize renewable self-consumption and completely electrify thermal demand with heat pumps and fuel cells. However this incurs additional cost. Additionally we show that ‘traditional’ MES comprised of renewables and short-term energy storage are able to decrease emissions by 90% with manageable cost increases.
The impact of uncertainty on the optimal system design reveals that the most influential parameter for PtH2 implementation is (1) heat pump efficiency as it is the main competitor in providing renewable-powered heat in winter. Further battery (2) capital cost and (3) lifetime prove to be significant as the competing electrical energy storage technology. In the face of policy uncertainties a CO2 tax shows large potential to reduce emissions in district MES without cost implications. The results illustrate the importance of capturing the dynamics and uncertainties of short- and long-term energy storage technologies for assessing cost and CO2 emissions in optimal MES designs over districts with different geographical scopes.
Achieving Net Zero Electricity Sectors in G7 Members
Oct 2021
Publication
Achieving Net Zero Electricity Sectors in G7 Members is a new report by the International Energy Agency that provides a roadmap to driving down CO2 emissions from electricity generation to net zero by 2035 building on analysis in Net Zero by 2050: A Roadmap for the Global Energy Sector.
The new report was requested by the United Kingdom under its G7 Presidency and followed the G7 leaders’ commitment in June 2021 to reach “an overwhelmingly decarbonised” power system in the 2030s and net zero emissions across their economies no later than 2050. It is designed to inform policy makers industry investors and citizens in advance of the COP26 Climate Change Conference in Glasgow that begins at the end of October 2021.
Starting from recent progress and the current state of play of electricity in the G7 the report analyses the steps needed to achieve net zero emissions from electricity and considers the wider implications for energy security employment and affordability. It identifies key milestones emerging challenges and opportunities for innovation.
The report also underscores how G7 members can foster innovation through international collaboration and as first movers lower the cost of technologies for other countries while maintaining electricity security and placing people at the centre of clean energy transitions.
Link to their website
The new report was requested by the United Kingdom under its G7 Presidency and followed the G7 leaders’ commitment in June 2021 to reach “an overwhelmingly decarbonised” power system in the 2030s and net zero emissions across their economies no later than 2050. It is designed to inform policy makers industry investors and citizens in advance of the COP26 Climate Change Conference in Glasgow that begins at the end of October 2021.
Starting from recent progress and the current state of play of electricity in the G7 the report analyses the steps needed to achieve net zero emissions from electricity and considers the wider implications for energy security employment and affordability. It identifies key milestones emerging challenges and opportunities for innovation.
The report also underscores how G7 members can foster innovation through international collaboration and as first movers lower the cost of technologies for other countries while maintaining electricity security and placing people at the centre of clean energy transitions.
Link to their website
The Role of Advanced Demand-sector Technologies and Energy Demand Reduction in Achieving Ambitious Carbon Budgets
Jan 2019
Publication
Limiting cumulative carbon emissions to keep global temperature increase to well below 2°C (and as low as 1.5°C) is an extremely challenging task requiring rapid reduction in the carbon intensity of all sectors of the economy and with limited leeway for residual emissions. Addressing residual emissions in ‘challenging-to-decarbonise’ sectors such as the industrial and aviation sectors relies on the development and commercialization of innovative advanced technologies currently still in their infancy. The aim of this study was to (a) explore the role of advanced technologies in achieving deep decarbonisation of the energy system and (b) provide technology- specific details of how rapid and deep carbon intensity reductions can be achieved in the energy demand sectors. This was done using TIAM-Grantham – a linear cost optimization model of the global energy system with a detailed representation of demand-side technologies. We find that the inclusion of advanced technologies in the demand sectors together with energy demand reduction through behavioural changes enables the model to achieve the rapid and deep decarbonisation of the energy system associated with limiting global warming to below 2°C whilst at the same time reduces reliance on negative emissions technologies by up to ∼18% compared to the same scenario with a standard set of technologies. Realising such advanced technologies at commercial scales as well as achieving such significant reductions in energy demand represents a major challenge for policy makers businesses and civil society. There is an urgent need for continued R&D efforts in the demand sectors to ensure that advanced technologies become commercially available when we need them and to avoid the gamble of overreliance on negative emissions technologies to offset residual emissions.
Future Electricity Series Part 1 - Power from Fossil Fuels
Apr 2013
Publication
Power from Fossil Fuels analyses the role of coal and gas power generation in the UK's future power generation mix. It is the first of three reports in Carbon Connect's 2013 research inquiry the Future Electricity Series which examines what role fossil fuels renewables and nuclear can play in providing secure sustainable and affordable electricity in the UK. The report finds that significantly decarbonising the power sector by 2030 will prove the most successful strategy on energy sustainability security and affordability grounds and that switching the UK’s reliance on coal to gas generation - while using fossil fuel power stations increasingly for backup purposes - will be the most viable method of achieving this. The independent report chaired by former energy minister Charles Hendry MP and Opposition Energy and Climate Change Spokesperson in the House of Lords Baroness Worthington was compiled between January and April 2013 and received contributions from over 30 experts in academia industry Parliament and Government and was launched in Parliament on the 22nd April 2013. This independent inquiry was sponsored by the Institution of Gas Engineers and Managers
The Role of Electrification and Hydrogen in Breaking the Biomass Bottleneck of the Renewable Energy System – A Study on the Danish Energy System
Jun 2020
Publication
The aim of this study is to identify the technical solution space for future fully renewable energy systems that stays within a sustainable biomass demand. In the transition towards non-fossil energy and material systems biomass is an attractive source of carbon for those demands that also in the non-fossil systems depend on high density carbon containing fuels and feedstocks. However extensive land use is already a sustainability challenge and an increase in future demands threat to exceed global sustainable biomass potentials which according to an international expert consensus is around 10 – 30 GJ/person/year in 2050. Our analytical review of 16 scenarios from 8 independent studies of fully renewable energy system designs and synthesis of 9 generic system designs reveals the significance of the role of electrification and hydrogen integration for building a fully renewable energy system which respects the global biomass limitations. The biomass demand of different fully renewable energy system designs was found to lie in the range of 0 GJ/person/year for highly integrated electrified pure electro-fuel scenarios with up to 25 GJ/person/year of hydrogen to above 200 GJ/person/year for poorly integrated full bioenergy scenarios with no electrification or hydrogen integration. It was found that a high degree of system electrification and hydrogen integration of at least 15 GJ/person/year is required to stay within sustainable biomass limits.
Techno-economic Assessment of a Hybrid Off-grid DC System for Combined Heat and Power Generation in Remote Islands
Mar 2019
Publication
Hybrid renewable energy systems that combine heat and electricity generation is an achievable option for remote areas where grid is uneconomical to extend. In this study a renewable-based system was designed to satisfy the electrical and thermal demands of a remote household in an off-grid Greek island. A hybrid DC system consisted of a combination of photovoltaic modules wind turbine electrolyzer-hydrogen tank fuel cell and batteries were analysed using HOMER Pro software. Based on the optimal obtained system it is found that such a system can satisfy both electrical and thermal load demand throughout the year in a reliable manner.
Transitioning Remote Arctic Settlements to Renewable Energy Systems – A Modelling Study of Longyearbyen, Svalbard
Nov 2019
Publication
As transitioning away from fossil fuels to renewable energy sources comes on the agenda for a range of energy systems energy modelling tools can provide useful insights. If large parts of the energy system turns out to be based on variable renewables an accurate representation of their short-term variability in such models is crucial. In this paper we have developed a stochastic long-term energy model and applied it to an isolated Arctic settlement as a challenging and realistic test case. Our findings suggest that the stochastic modelling approach is critical in particular for studies of remote Arctic energy systems. Furthermore the results from a case study of the Norwegian settlement of Longyearbyen suggest that transitioning to a system based on renewable energy sources is feasible. We recommend that a solution based mainly on renewable power generation but also including energy storage import of hydrogen and adequate back-up capacity is taken into consideration when planning the future of remote Arctic settlements.
Exploring the Australian Public's Response to Hydrogen
Sep 2021
Publication
Over the past three years there has been a rapid increase in discussions across the different levels of Australia's governments about the role that hydrogen might play in helping the world transition to a low carbon future. While those working in the energy industry are aware of the opportunities and challenges that lay ahead the general public is less engaged. However we know from the introduction of previous technologies that public attitudes towards technologies including whether they view them to be safe can severely impact overall acceptance. Understanding how the public perceives hydrogen both for domestic and export use and the potential benefits it brings to Australia is critical for the industry to progress. In this paper we present the initial findings of a national survey of the Australian public conducted in March 2021 which builds on the results of a previous survey conducted in 2018. The 2021 respondents were drawn from all Australian states and territories (n=3020) and quotas were used to ensure adequate representation of age groups and gender. Overall the respondents have favorable views about using hydrogen for energy in Australia with caveats about production-related environmental impacts and issues such as safety. While there has been a slight increase in support for hydrogen as a possible solution for energy and environmental challenges since the 2018 survey the effect size is very small. This suggests that while hydrogen discussions have increased at a policy level little has been done to improve public understanding of hydrogen in communication strategies will be needed as the Australian hydrogen industry continues to develop and gain more widespread media attention.
The Benefit of Collaboration in the North European Electricity System Transition—System and Sector Perspectives
Dec 2019
Publication
This work investigates the connection between electrification of the industry transport and heat sector and the integration of wind and solar power in the electricity system. The impact of combining electrification of the steel industry passenger vehicles and residential heat supply with flexibility provision is evaluated from a systems and sector perspective. Deploying a parallel computing approach to the capacity expansion problem the impact of flexibility provision throughout the north European electricity system transition is investigated. It is found that a strategic collaboration between the electricity system an electrified steel industry an electrified transport sector in the form of passenger electric vehicles (EVs) and residential heat supply can reduce total system cost by 8% in the north European electricity system compared to if no collaboration is achieved. The flexibility provision by new electricity consumers enables a faster transition from fossil fuels in the European electricity system and reduces thermal generation. From a sector perspective strategic consumption of electricity for hydrogen production and EV charging and discharging to the grid reduces the number of hours with very high electricity prices resulting in a reduction in annual electricity prices by up to 20%.
Energy Transition Outlook 2021: Technology Progress Report
Jun 2021
Publication
This report is part of DNV’s suite of Energy Transition Outlook publications for 2021. It focuses on how key energy transition technologies will develop compete and interact in the coming five years.
Debate and uncertainty about the energy transition tend to focus on what technology can and can’t do. All too often such discussions involve wishful thinking advocacy of a favoured technology or reference to outdated information. Through this report we bring insights derived from our daily work with the world’s leading energy players including producers transporters and end users. Each of the ten chapters that follow are written by our experts in the field – or in the case of maritime technologies on the ocean.
Because the pace of the transition is intensifying describing any given technology is like painting a fast-moving train. We have attempted to strike a balance between technical details and issues of safety efficiency cost and competitiveness. Transition technologies are deeply interlinked and in some cases interdependent; any discussion on green hydrogen for example must account for developments in renewable electricity hydrogen storage and transport systems and end-use technologies such as fuels cells.
Our selection of ten technologies is not exhaustive but each of these technologies is of particular interest for the pace and direction of the energy transition. They range from relatively mature technologies like solar PV to technologies like nuclear fusion which are some distance from commercialization but which have current R&D and prototyping worth watching. Together they cover most but not all key sectors. We describe expected developments for the coming five years which to a large extent will determine how the energy transition unfolds through to mid-century. As such this Technology Progress report is an essential supplement to our main Energy Transition Outlook forecast.
Our aim is to make an objective and realistic assessment of the status of these technologies and evaluate how they contribute to the energy transition ahead. Attention to progress in these technologies will be critical for anyone concerned with energy.
Debate and uncertainty about the energy transition tend to focus on what technology can and can’t do. All too often such discussions involve wishful thinking advocacy of a favoured technology or reference to outdated information. Through this report we bring insights derived from our daily work with the world’s leading energy players including producers transporters and end users. Each of the ten chapters that follow are written by our experts in the field – or in the case of maritime technologies on the ocean.
Because the pace of the transition is intensifying describing any given technology is like painting a fast-moving train. We have attempted to strike a balance between technical details and issues of safety efficiency cost and competitiveness. Transition technologies are deeply interlinked and in some cases interdependent; any discussion on green hydrogen for example must account for developments in renewable electricity hydrogen storage and transport systems and end-use technologies such as fuels cells.
Our selection of ten technologies is not exhaustive but each of these technologies is of particular interest for the pace and direction of the energy transition. They range from relatively mature technologies like solar PV to technologies like nuclear fusion which are some distance from commercialization but which have current R&D and prototyping worth watching. Together they cover most but not all key sectors. We describe expected developments for the coming five years which to a large extent will determine how the energy transition unfolds through to mid-century. As such this Technology Progress report is an essential supplement to our main Energy Transition Outlook forecast.
Our aim is to make an objective and realistic assessment of the status of these technologies and evaluate how they contribute to the energy transition ahead. Attention to progress in these technologies will be critical for anyone concerned with energy.
H2 Green Hydrogen Discussion Paper: Victorian Hydrogen Investment Program
Nov 2019
Publication
This discussion paper is for stakeholders who would like to shape the development of Victoria’s emerging green hydrogen sector identifying competitive advantages and priority focus areas for industry and the Victorian Government.<br/>The Victorian Government is using this paper to focus on the economic growth and sector development opportunities emerging for a Victorian hydrogen industry powered by renewable energy also known as ‘green’ hydrogen. In addition this paper seeks input from all stakeholders on how where and when the Victorian Government can act to establish a thriving green hydrogen economy.<br/>Although green hydrogen is the only type of hydrogen production within the scope of this discussion paper the development of the VHIP aligns with the policies projects and initiatives which support these other forms of hydrogen production. The VHIP is considering the broad policy landscape and actively coordinating with related hydrogen programs policies and strategies under development including the Council of Australian Governments (COAG) Energy Council’s National Hydrogen Strategy to ensure a complementary approach. In Victoria there are several programs and strategies in development and underway that have linkages with hydrogen and the VHIP.
The Role of Hydrogen in the Transition from a Petroleum Economy to a Low-carbon Society
Jun 2021
Publication
A radical decarbonization pathway for the Norwegian society towards 2050 is presented. The paper focuses on the role of hydrogen in the transition when present Norwegian petroleum export is gradually phased out. The study is in line with EU initiatives to secure cooperation opportunities with neighbouring countries to establish an international hydrogen market. Three analytical perspectives are combined. The first uses energy models to investigate the role of hydrogen in an energy and power market perspective without considering hydrogen export. The second uses an economic equilibrium model to examine the potential role of hydrogen export in value creation. The third analysis is a socio-technical case study on the drivers and barriers for hydrogen production in Norway. Main conclusions are that access to renewable power and hydrogen are prerequisites for decarbonization of transport and industrial sectors in Norway and that hydrogen is a key to maintain a high level of economic activity. Structural changes in the economy impacts of new technologies and key enablers and barriers in this transition are discussed.
Is a 100% Renewable European Power System Feasible by 2050?
Nov 2018
Publication
In this study we model seven scenarios for the European power system in 2050 based on 100% renewable energy sources assuming different levels of future demand and technology availability and compare them with a scenario which includes low-carbon non-renewable technologies. We find that a 100% renewable European power system could operate with the same level of system adequacy as today when relying on European resources alone even in the most challenging weather year observed in the period from 1979 to 2015. However based on our scenario results realising such a system by 2050 would require: (i) a 90% increase in generation capacity to at least 1.9 TW (compared with 1 TW installed today) (ii) reliable cross-border transmission capacity at least 140GW higher than current levels (60 GW) (iii) the well-managed integration of heat pumps and electric vehicles into the power system to reduce demand peaks and biogas requirements (iv) the implementation of energy efficiency measures to avoid even larger increases in required biomass demand generation and transmission capacity (v) wind deployment levels of 7.5GWy−1 (currently 10.6GWy−1) to be maintained while solar photovoltaic deployment to increase to at least 15GWy−1 (currently 10.5GWy−1) (vi) large-scale mobilisation of Europe’s biomass resources with power sector biomass consumption reaching at least 8.5 EJ in the most challenging year (compared with 1.9 EJ today) and (vii) increasing solid biomass and biogas capacity deployment to at least 4GWy−1 and 6 GWy−1 respectively. We find that even when wind and solar photovoltaic capacity is installed in optimum locations the total cost of a 100% renewable power system (∼530 €bn y−1) would be approximately 30% higher than a power system which includes other low-carbon technologies such as nuclear or carbon capture and storage (∼410 €bn y−1). Furthermore a 100% renewable system may not deliver the level of emission reductions necessary to achieve Europe’s climate goals by 2050 as negative emissions from biomass with carbon capture and storage may still be required to offset an increase in indirect emissions or to realise more ambitious decarbonisation pathways.
The Role of Hydrocarbons in the Global Energy Agenda: The Focus on Liquefied Natural Gas
May 2020
Publication
Presently there is a paradoxical situation in the global energy market related to a gap between the image of hydrocarbon resources (HCR) and their real value for the economy. On the one hand we face an increase in expected HCR production and consumption volumes both in the short and long term. On the other hand we see the formation of the image of HCR and associated technologies as an unacceptable option without enough attention to the differences in fuels and the ways of their usage. Due to this it seems necessary to take a step back to review the vitality of such a political line. This article highlights an alternative point of view with regard to energy development prospects. The purpose of this article is to analyse the consistency of criticism towards HCR based on exploration of scientific literature analytical documents of international corporations and energy companies as well as critical assessment of technologies offered for the HCR substitution. The analysis showed that: (1) it is impossible to substitute the majority of HCR with alternative power resources in the near term (2) it is essential that the criticism of energy companies with regard to their responsibility for climate change should lead not to destruction of the industry but to the search of sustainable means for its development (3) the strategic benchmarks of oil and coal industries should shift towards chemical production but their significance should not be downgraded for the energy sector (4) liquified natural gas (LNG) is an independent industry with the highest expansion potential in global markets in the coming years as compared to alternative energy options and (5) Russia possesses a huge potential for the development of the gas industry and particularly LNG that will be unlocked if timely measures on higher efficiency of the state regulation system are implemented.
Future Hydrogen Markets for Transportation and Industry: The Impact of CO2 Taxes
Dec 2019
Publication
The technological lock-in of the transportation and industrial sector can be largely attributed to the limited availability of alternative fuel infrastructures. Herein a countrywide supply chain analysis of Germany spanning until 2050 is applied to investigate promising infrastructure development pathways and associated hydrogen distribution costs for each analyzed hydrogen market. Analyzed supply chain pathways include seasonal storage to balance fluctuating renewable power generation with necessary purification as well as trailer- and pipeline-based hydrogen delivery. The analysis encompasses green hydrogen feedstock in the chemical industry and fuel cell-based mobility applications such as local buses non-electrified regional trains material handling vehicles and trucks as well as passenger cars. Our results indicate that the utilization of low-cost long-term storage and improved refueling station utilization have the highest impact during the market introduction phase. We find that public transport and captive fleets offer a cost-efficient countrywide renewable hydrogen supply roll-out option. Furthermore we show that at comparable effective carbon tax resulting from the current energy tax rates in Germany hydrogen is cost-competitive in the transportation sector by the year 2025. Moreover we show that sector-specific CO2 taxes are required to provide a cost-competitive green hydrogen supply in both the transportation and industrial sectors.
Engineering a Sustainable Gas Future
Nov 2021
Publication
The Institution of Gas Engineers & Managers (IGEM) is the UK’s Professional Engineering Institution supporting individuals and businesses working in the global gas industry. IGEM was founded in 1863 with the purpose of advancing the science and relevant knowledge of gas engineering for the benefit of the public.
As a not-for-profit independent organisation IGEM acts as a trusted source of technical information guidance and services for the gas sector. In today’s net zero context IGEM is focused on engineering a sustainable gas future – we do this by:
This document outlines the current UK gas policy landscape our stance and what contribution we are making as an organisation.
As a not-for-profit independent organisation IGEM acts as a trusted source of technical information guidance and services for the gas sector. In today’s net zero context IGEM is focused on engineering a sustainable gas future – we do this by:
- Helping our members achieve and uphold the highest standards of professional competence to ensure the safety of the public
- Supporting our members in achieving their career goals by providing high quality products services and personal and professional development opportunities
- Acting as the voice of the gas industry when working with stakeholders to develop and improve gas policy.
This document outlines the current UK gas policy landscape our stance and what contribution we are making as an organisation.
Oxford Energy Podcast – Hydrogen in Europe
Apr 2021
Publication
The EU and a number of its member states have now published hydrogen strategies and Europe continues to lead the way in the decarbonisation of its gas sector. In this latest OIES Energy Podcast James Henderson talks with Martin Lambert and Simon Schulte about their latest paper entitled “Contrasting European Hydrogen Pathways” which examines the plans in six major EU countries. They discuss the outlook for various forms of hydrogen supply contrasting the potential for green hydrogen from renewable energy with the outlook for blue hydrogen using steam-reforming of methane as well as hydrogen generated from surplus nuclear energy. They also examine the potential sources of demand considering existing use of hydrogen in industrial processes as well as the potential for hydrogen to displace hydrocarbons in the steel and cement industries. Finally the podcast also looks at the potential for imports of hydrogen and its distribution within Europe while also considering some key milestones that can provide indicators of how the region’s hydrogen plans are playing out.
The podcast can be found on their website
The podcast can be found on their website
A Financial Model for Lithium-ion Storage in a Photovoltaic and Biogas Energy System
May 2019
Publication
Electrical energy storage (EES) such as lithium-ion (Li-ion) batteries can reduce curtailment of renewables maximizing renewable utilization by storing surplus electricity. Several techno-economic analyses have been performed on EES but few have investigated the financial performance. This paper presents a state-of-the-art financial model obtaining novel and significative financial and economics results when applied to Li-ion EES. This work is a significant step forward since traditional analysis on EES are based on oversimplified and unrealistic economic models. A discounted cash flow model for the Li-ion EES is introduced and applied to examine the financial performance of three EES operating scenarios. Real-life solar irradiance load and retail electricity price data from Kenya are used to develop a set of case studies. The EES is coupled with photovoltaics and an anaerobic digestion biogas power plant. The results show the impact of capital cost: the Li-ion project is unprofitable in Kenya with a capital cost of 1500 $/kWh but is profitable at 200 $/kWh. The study shows that the EES will generate a higher profit if it is cycled more frequently (hence a higher lifetime electricity output) although the lifetime is reduced due to degradation.
Economic Analysis of Hydrogen Household Energy Systems Including Incentives on Energy Communities and Externalities: A Case Study in Italy
Sep 2021
Publication
The building sector is one of the key energy consumers worldwide. Fuel cell micro-Cogeneration Heat and Power systems for residential and small commercial applications are proposed as one of the most promising innovations contributing to the transition towards a sustainable energy infrastructure. For the application and the diffusion of these systems in addition to their environmental performance it is necessary however to evaluate their economic feasibility. In this paper a life cycle assessment of a fuel cell/photovoltaic hybrid micro-cogeneration heat and power system for a residential building is integrated with a detailed economic analysis. Financial indicators (net present cost and payback time are used for studying two different investments: reversible-Solid Oxide Fuel Cell and natural gas SOFC in comparison to a base scenario using a homeowner perspective approach. Moreover two alternative incentives scenarios are analysed and applied: net metering and self-consumers’ groups (or energy communities). Results show that both systems obtain annual savings but their high capital costs still would make the investments not profitable. However the natural gas Solide Oxide Fuel Cell with the net metering incentive is the best scenario among all. On the contrary the reversible-Solid Oxide Fuel Cell maximizes its economic performance only when the self-consumers’ groups incentive is applied. For a complete life cycle cost analysis environmental impacts are monetized using three different monetization methods with the aim to internalize (considering them into direct cost) the externalities (environmental costs). If externalities are considered as an effective cost the natural gas Solide Oxide Fuel Cell system increases its saving because its environmental impact is lower than in the base case one while the reversible-Solid Oxide Fuel Cell system reduces it.
An Overview of Economic Analysis and Environmental Impacts of Natural Gas Conversion Technologies
Dec 2020
Publication
This study presents an overview of the economic analysis and environmental impact of natural gas conversion technologies. Published articles related to economic analysis and environmental impact of natural gas conversion technologies were reviewed and discussed. The economic analysis revealed that the capital and the operating expenditure of each of the conversion process is strongly dependent on the sophistication of the technical designs. The emerging technologies are yet to be economically viable compared to the well-established steam reforming process. However appropriate design modifications could significantly reduce the operating expenditure and enhance the economic feasibility of the process. The environmental analysis revealed that emerging technologies such as carbon dioxide (CO2) reforming and the thermal decomposition of natural gas offer advantages of lower CO2 emissions and total environmental impact compared to the well-established steam reforming process. Appropriate design modifications such as steam reforming with carbon capture storage and utilization the use of an optimized catalyst in thermal decomposition and the use of solar concentrators for heating instead of fossil fuel were found to significantly reduced the CO2 emissions of the processes. There was a dearth of literature on the economic analysis and environmental impact of photocatalytic and biochemical conversion processes which calls for increased research attention that could facilitate a comparative analysis with the thermochemical processes.
Potential of Power-to-Methane in the EU Energy Transition to a Low Carbon System Using Cost Optimization
Oct 2018
Publication
Power-to-Methane (PtM) can provide flexibility to the electricity grid while aiding decarbonization of other sectors. This study focuses specifically on the methanation component of PtM in 2050. Scenarios with 80–95% CO2 reduction by 2050 (vs. 1990) are analyzed and barriers and drivers for methanation are identified. PtM arises for scenarios with 95% CO2 reduction no CO2 underground storage and low CAPEX (75 €/kW only for methanation). Capacity deployed across EU is 40 GW (8% of gas demand) for these conditions which increases to 122 GW when liquefied methane gas (LMG) is used for marine transport. The simultaneous occurrence of all positive drivers for PtM which include limited biomass potential low Power-to-Liquid performance use of PtM waste heat among others can increase this capacity to 546 GW (75% of gas demand). Gas demand is reduced to between 3.8 and 14 EJ (compared to ∼20 EJ for 2015) with lower values corresponding to scenarios that are more restricted. Annual costs for PtM are between 2.5 and 10 bln€/year with EU28’s GDP being 15.3 trillion €/year (2017). Results indicate that direct subsidy of the technology is more effective and specific than taxing the fossil alternative (natural gas) if the objective is to promote the technology. Studies with higher spatial resolution should be done to identify specific local conditions that could make PtM more attractive compared to an EU scale.
Value of Power-to-gas as a Flexibility Option in Integrated Electricity and Hydrogen Markets
Oct 2021
Publication
This paper analyzes the economic potential of Power-to-Gas (PtG) as a source of flexibility in electricity markets with both high shares of renewables and high external demand for hydrogen. The contribution of this paper is that it develops and applies a short-term (hourly) partial equilibrium model of integrated electricity and hydrogen markets including markets for green certificates while using a welfare-economic framework to assess the market outcomes. We find that strongly increasing the share of renewable electricity makes electricity prices much more volatile while the presence of PtG reduces this price volatility. However a large demand for hydrogen from outside the electricity sector reduces the impact of PtG on the volatility of electricity prices. In a scenario with a high external hydrogen demand PtG can deliver positive benefits for some groups as it can provide hydrogen at lower costs than Steam Methane Reforming (SMR) during hours when electricity prices are low but these positive welfare effects are outweighed by the fixed costs of PtG assets plus the costs of replacing a less expensive energy carrier (natural gas) with a more expensive one (hydrogen). Investments in PtG are profitable from a social-welfare perspective when the induced reduction in carbon emissions is valued at 150–750 euro/ton. Hence at lower carbon prices PtG can only become a valuable provider of flexibility when installation costs are significantly reduced and conversion efficiencies of electrolysers increased.
Shipping the Sunshine: An Open-source Model for Costing Renewable Hydrogen Transport from Australia
Apr 2022
Publication
Green hydrogen (H2) is emerging as a future clean energy carrier. While there exists significant analysis on global renewable (and non-renewable) hydrogen generation costs analysis of its transportation costs irrespective of production method is still limited. Complexities include the different forms in which hydrogen can be transported the limited experience to date in shipping some of these carrier forms the trade routes potentially involved and the possible use of different shipping fuels. Herein we present an open-source model developed to assist stakeholders in assessing the costs of shipping various forms of hydrogen over different routes. It includes hydrogen transport in the forms of liquid hydrogen (LH2) ammonia liquified natural gas (LNG) methanol and liquid organic hydrogen carriers (LOHCs). It considers both fixed and variable costs including port fees possible canal usage charges fuel costs ship capital and operating costs boil-off losses and possible environmental taxes among many others. The model is applied to the Rotterdam-Australia route as a case study revealing ammonia ($0.56/kgH2) and methanol ($0.68/kgH2) as the least expensive hydrogen derivatives to transport followed by liquified natural gas ($1.07/kgH2) liquid organic hydrogen carriers ($1.37/kgH2) and liquid hydrogen ($2.09/kgH2). While reducing the transportation distance led to lower shipping costs we note that the merit order of assumed underlying shipping costs remain unchanged. We also explore the impact of using hydrogen (or the hydrogen carrier) as a low/zero carbon emission fuel for the ships which led to lowering of costs for liquified natural gas ($0.88/kgH2) a similar cost for liquid hydrogen ($2.19/kgH2) and significant increases for the remainder. Given our model is open-sourced it can be adapted globally and updated to match the changing cost dynamics of the emerging green hydrogen market.
Green Synthetic Fuels: Renewable Routes for the Conversion of Non-Fossil Feedstocks into Gaseous Fuels and Their End Uses
Jan 2020
Publication
Innovative renewable routes are potentially able to sustain the transition to a decarbonized energy economy. Green synthetic fuels including hydrogen and natural gas are considered viable alternatives to fossil fuels. Indeed they play a fundamental role in those sectors that are difficult to electrify (e.g. road mobility or high-heat industrial processes) are capable of mitigating problems related to flexibility and instantaneous balance of the electric grid are suitable for large-size and long-term storage and can be transported through the gas network. This article is an overview of the overall supply chain including production transport storage and end uses. Available fuel conversion technologies use renewable energy for the catalytic conversion of non-fossil feedstocks into hydrogen and syngas. We will show how relevant technologies involve thermochemical electrochemical and photochemical processes. The syngas quality can be improved by catalytic CO and CO2 methanation reactions for the generation of synthetic natural gas. Finally the produced gaseous fuels could follow several pathways for transport and lead to different final uses. Therefore storage alternatives and gas interchangeability requirements for the safe injection of green fuels in the natural gas network and fuel cells are outlined. Nevertheless the effects of gas quality on combustion emissions and safety are considered.
Hydrogen for Australia’s Future
Aug 2018
Publication
The Hydrogen Strategy Group chaired by Australia’s Chief Scientist Dr Alan Finkel has today released a briefing paper on the potential domestic and export opportunities of a hydrogen industry in Australia.
Like natural gas hydrogen can be used to heat buildings and power vehicles. Unlike natural gas or petrol when hydrogen is burned there are no CO2 emissions. The only by-products are water vapour and heat.
Hydrogen is the most abundant element in the universe not freely available as a gas on Earth but bound into many common substances including water and fossil fuels.
Hydrogen was first formally presented as a credible alternative energy source in the early 1970s but never proved competitive at scale as an energy source – until now. We find that the worldwide demand for hydrogen is set to increase substantially over coming decades driven by Japan’s decision to put imported hydrogen at the heart of its economy. Production costs are falling technologies are progressing and the push for non-nuclear low-emissions fuels is building momentum. We conclude that Australia is remarkably well-positioned to benefit from the growth of hydrogen industries and markets.
Like natural gas hydrogen can be used to heat buildings and power vehicles. Unlike natural gas or petrol when hydrogen is burned there are no CO2 emissions. The only by-products are water vapour and heat.
Hydrogen is the most abundant element in the universe not freely available as a gas on Earth but bound into many common substances including water and fossil fuels.
Hydrogen was first formally presented as a credible alternative energy source in the early 1970s but never proved competitive at scale as an energy source – until now. We find that the worldwide demand for hydrogen is set to increase substantially over coming decades driven by Japan’s decision to put imported hydrogen at the heart of its economy. Production costs are falling technologies are progressing and the push for non-nuclear low-emissions fuels is building momentum. We conclude that Australia is remarkably well-positioned to benefit from the growth of hydrogen industries and markets.
No more items...