Italy
Low-carbon Hydrogen Via Integration of Steam Methane Reforming with Molten Carbonate Fuel Cells at Low Fuel Utilization
Feb 2021
Publication
Hydrogen production is critical to many modern chemical processes – ammonia synthesis petroleum refining direct reduction of iron and more. Conventional approaches to hydrogen manufacture include steam methane reforming and autothermal reforming which today account for the lion's share of hydrogen generation. Without CO2 capture these processes emit about 8.7 kg of CO2 for each kg of H2 produced. In this study a molten carbonate fuel cell system with CO2 capture is proposed to retrofit the flue gas stream of an existing Steam Methane Reforming plant rated at 100000 Nm3 h−1 of 99.5% pure H2. The thermodynamic analysis shows direct CO2 emissions can be reduced by more than 95% to 0.4 to 0.5 kg CO2 /kg H2 while producing 17% more hydrogen (with an increase in natural gas input of approximately 37%). Because of the additional power and hydrogen generation of the carbonate fuel cell the efficiency debit associated with CO2 capture is quite small reducing the SMR efficiency from 76.6% without capture to 75.6% with capture. In comparison the use of standard amine technology for CO2 capture reduces the efficiency below 70%. This demonstrates the synergistic nature of the carbonate fuel cells which can reform natural gas to H2 while simultaneously capturing CO2 from the SMR flue gas and producing electricity giving rise to a total system with very low emissions yet high efficiency.
Modelling and Optimization of a Flexible Hydrogen-fueled Pressurized PEMFC Power Plant for Grid Balancing Purposes
Feb 2021
Publication
In a scenario characterized by an increasing penetration of non-dispatchable renewable energy sources and the need of fast-ramping grid-balancing power plants the EU project GRASSHOPPER aims to setup and demonstrate a highly flexible PEMFC Power Plant hydrogen fueled and scalable to MW-size designed to provide grid support.<br/>In this work different layouts proposed for the innovative MW-scale plant are simulated to optimize design and off-design operation. The simulation model details the main BoP components performances and includes a customized PEMFC model validated through dedicated experiments.<br/>The system may operate at atmospheric or mild pressurized conditions: pressurization to 0.7 barg allows significantly higher net system efficiency despite the increasing BoP consumptions. The additional energy recovery from the cathode exhaust with an expander gives higher net power and net efficiency adding up to 2%pt and reaching values between 47%LHV and 55%LHV for currents between 100% and 20% of the nominal value.
Comparative Life Cycle Assessment of Hydrogen-fuelled Passenger Cars
Feb 2021
Publication
In order to achieve gradual but timely decarbonisation of the transport sector it is essential to evaluate which types of vehicles provide a suitable environmental performance while allowing the use of hydrogen as a fuel. This work compares the environmental life-cycle performance of three different passenger cars fuelled by hydrogen: a fuel cell electric vehicle an internal combustion engine car and a hybrid electric vehicle. Besides two vehicles that use hydrogen in a mixture with natural gas or gasoline were considered. In all cases hydrogen produced by wind power electrolysis was assumed. The resultant life-cycle profiles were benchmarked against those of a compressed natural gas car and a hybrid electric vehicle fed with natural gas. Vehicle infrastructure was identified as the main source of environmental burdens. Nevertheless the three pure hydrogen vehicles were all found to be excellent decarbonisation solutions whereas vehicles that use hydrogen mixed with natural gas or gasoline represent good opportunities to encourage the use of hydrogen in the short term while reducing emissions compared to ordinary vehicles.
Research and Development of Hydrogen Carrier Based Solutions for Hydrogen Compression and Storage
Aug 2022
Publication
Martin Dornheim,
Lars Baetcke,
Etsuo Akiba,
Jose-Ramón Ares,
Tom Autrey,
Jussara Barale,
Marcello Baricco,
Kriston Brooks,
Nikolaos Chalkiadakis,
Véronique Charbonnier,
Steven Christensen,
José Bellosta von Colbe,
Mattia Costamagna,
Erika Michela Dematteis,
Jose-Francisco Fernández,
Thomas Gennett,
David Grant,
Tae Wook Heo,
Michael Hirscher,
Katherine Hurst,
Mykhaylo V. Lototskyy,
Oliver Metz,
Paola Rizzi,
Kouji Sakaki,
Sabrina Sartori,
Emmanuel Stamatakis,
Alastair D. Stuart,
Athanasios Stubos,
Gavin Walker,
Colin Webb,
Brandon Wood,
Volodymyr A. Yartys and
Emmanuel Zoulias
Industrial and public interest in hydrogen technologies has risen strongly recently as hydrogen is the ideal means for medium to long term energy storage transport and usage in combination with renewable and green energy supply. In a future energy system the production storage and usage of green hydrogen is a key technology. Hydrogen is and will in future be even more used for industrial production processes as a reduction agent or for the production of synthetic hydrocarbons especially in the chemical industry and in refineries. Under certain conditions material based systems for hydrogen storage and compression offer advantages over the classical systems based on gaseous or liquid hydrogen. This includes in particular lower maintenance costs higher reliability and safety. Hydrogen storage is possible at pressures and temperatures much closer to ambient conditions. Hydrogen compression is possible without any moving parts and only by using waste heat. In this paper we summarize the newest developments of hydrogen carriers for storage and compression and in addition give an overview of the different research activities in this field.
Influence of Thermal Treatment on SCC and HE Susceptibility of Supermartensitic Stainless Steel 16Cr5NiMo
Apr 2020
Publication
A 16Cr5NiMo supermartensitic stainless steel was subjected to different tempering treatments and analyzed by means of permeation tests and slow strain rate tests to investigate the effect of different amounts of retained austenite on its hydrogen embrittlement susceptibility. The 16Cr5NiMo steel class is characterized by a very low carbon content. It is the new variant of 13Cr4Ni. These steels are used in many applications for example compressors for sour environments offshore piping naval propellers aircraft components and subsea applications. The typical microstructure is a soft-tempered martensite very close to a body-centered cubic with a retained austenite fraction and limited δ ferrite phase. Supermartensitic stainless steels have high mechanical properties together with good weldability and corrosion resistance. The amount of retained austenite is useful to increase low temperature toughness and stress corrosion cracking resistance. Experimental techniques allowed us to evaluate diffusion coefficients and the mechanical behaviour of metals in stress corrosion cracking (SCC) conditions.
Integration of Chemical Looping Combustion for Cost-effective CO2 Capture from State-of-the-art Natural Gas Combined Cycles
May 2020
Publication
Chemical looping combustion (CLC) is a promising method for power production with integrated CO2 capture with almost no direct energy penalty. When integrated into a natural gas combined cycle (NGCC) plant however CLC imposes a large indirect energy penalty because the maximum achievable reactor temperature is far below the firing temperature of state-of-the-art gas turbines. This study presents a techno-economic assessment of a CLC plant that circumvents this limitation via an added combustor after the CLC reactors. Without the added combustor the energy penalty amounts to 11.4%-points causing a high CO2 avoidance cost of $117.3/ton which is more expensive than a conventional NGCC plant with post-combustion capture ($93.8/ton) with an energy penalty of 8.1%-points. This conventional CLC plant would also require a custom gas turbine. With an added combustor fired by natural gas a standard gas turbine can be deployed and CO2 avoidance costs are reduced to $60.3/ton mainly due to a reduction in the energy penalty to only 1.4%-points. However due to the added natural gas combustion after the CLC reactor CO2 avoidance is only 52.4%. Achieving high CO2 avoidance requires firing with clean hydrogen instead increasing the CO2 avoidance cost to $96.3/ton when a hydrogen cost of $15.5/GJ is assumed. Advanced heat integration could reduce the CO2 avoidance cost to $90.3/ton by lowering the energy penalty to only 0.6%-points. An attractive alternative is therefore to construct the plant for added firing with natural gas and retrofit the added combustor for hydrogen firing when CO2 prices reach very high levels.
Integration of Gas Switching Combustion and Membrane Reactors for Exceeding 50% Efficiency in Flexible IGCC Plants with Near-zero CO2 Emissions
Jul 2020
Publication
Thermal power plants face substantial challenges to remain competitive in energy systems with high shares of variable renewables especially inflexible integrated gasification combined cycles (IGCC). This study addresses this challenge through the integration of Gas Switching Combustion (GSC) and Membrane Assisted Water Gas Shift (MAWGS) reactors in an IGCC plant for flexible electricity and/or H2 production with inherent CO2 capture. When electricity prices are high H2 from the MAWGS reactor is used for added firing after the GSC reactors to reach the high turbine inlet temperature of the H-class gas turbine. In periods of low electricity prices the turbine operates at 10% of its rated power to satisfy the internal electricity demand while a large portion of the syngas heating value is extracted as H2 in the MAWGS reactor and sold to the market. This product flexibility allows the inflexible process units such as gasification gas treating air separation unit and CO2 compression transport and storage to operate continuously while the plant supplies variable power output. Two configurations of the GSC-MAWGS plant are presented. The base configuration achieves 47.2% electric efficiency and 56.6% equivalent hydrogen production efficiency with 94.8–95.6% CO2 capture. An advanced scheme using the GSC reduction gases for coal-water slurry preheating and pre-gasification reached an electric efficiency of 50.3% hydrogen efficiency of 62.4% and CO2 capture ratio of 98.1–99.5%. The efficiency is 8.4%-points higher than the pre-combustion CO2 capture benchmark and only 1.9%-points below the unabated IGCC benchmark.
Expert Opinion Analysis on Renewable Hydrogen Storage Systems Potential in Europe
Nov 2016
Publication
Among the several typologies of storage technologies mainly on different physical principles (mechanical electrical and chemical) hydrogen produced by power to gas (P2G) from renewable energy sources complies with chemical storage principle and is based on the conversion of electrical energy into chemical energy by means of the electrolysis of water which does not produce any toxic or climate-relevant emission. This paper aims to pinpoint the potential uses of renewable hydrogen storage systems in Europe analysing current and potential locations regulatory framework governments’ outlooks economic issues and available renewable energy amounts. The expert opinion survey already used in many research articles on different topics including energy has been selected as an effective method to produce realistic results. The obtained results highlight strategies and actions to optimize the storage of hydrogen produced by renewables to face varying electricity demand and generation-driven fluctuations reducing the negative effects of the increasing share of renewables in the energy mix of European Countries.
Hydrogen Production as a Clean Energy Carrier through Heterojunction Semiconductors for Environmental Remediation
Apr 2022
Publication
Today as a result of the advancement of technology and increasing environmental problems the need for clean energy has considerably increased. In this regard hydrogen which is a clean and sustainable energy carrier with high energy density is among the well-regarded and effective means to deliver and store energy and can also be used for environmental remediation purposes. Renewable hydrogen energy carriers can successfully substitute fossil fuels and decrease carbon dioxide (CO2 ) emissions and reduce the rate of global warming. Hydrogen generation from sustainable solar energy and water sources is an environmentally friendly resolution for growing global energy demands. Among various solar hydrogen production routes semiconductor-based photocatalysis seems a promising scheme that is mainly performed using two kinds of homogeneous and heterogeneous methods of which the latter is more advantageous. During semiconductor-based heterogeneous photocatalysis a solid material is stimulated by exposure to light and generates an electron–hole pair that subsequently takes part in redox reactions leading to hydrogen production. This review paper tries to thoroughly introduce and discuss various semiconductor-based photocatalysis processes for environmental remediation with a specific focus on heterojunction semiconductors with the hope that it will pave the way for new designs with higher performance to protect the environment.
Methanol Steam Reforming for Hydrogen Generation Via Conventional and Membrane Reactors: A Review
Sep 2013
Publication
Variable renewable energy (VRE) is expected to play a major role in the decarbonization of the electricity sector. However decarbonization via VRE requires a fleet of flexible dispatchable plants with low CO2 emissions to supply clean power during times with limited wind and sunlight. These plants will need to operate at reduced capacity factors with frequent ramps in electricity output posing techno-economic challenges. This study therefore presents an economic assessment of a new near-zero emission power plant designed for this purpose. The gas switching reforming combined cycle (GSR-CC) plant can produce electricity during times of low VRE output and hydrogen during times of high VRE output. This product flexibility allows the plant to operate continuously even when high VRE output makes electricity production uneconomical. Although the CO2 avoidance cost of the GSR-CC plant (€61/ton) was similar to the benchmark post-combustion CO2 capture plant under baseload operation GSR-CC clearly outperformed the benchmark in a more realistic scenario where continued VRE expansion forces power plants into mid-load operation (45% capacity factor). In this scenario GSR-CC promises a 5 %-point higher annualized investment return than the post-combustion benchmark. GSR-CC therefore appears to be a promising concept for a future scenario with high VRE market share and CO2 prices provided that a large market for clean hydrogen is established.
Achievements of European Projects on Membrane Reactor for Hydrogen Production
May 2017
Publication
Membrane reactors for hydrogen production can increase both the hydrogen production efficiency at small scale and the electric efficiency in micro-cogeneration systems when coupled with Polymeric Electrolyte Membrane fuel cells. This paper discusses the achievements of three European projects (FERRET FluidCELL BIONICO) which investigate the application of the membrane reactor concept to hydrogen production and micro-cogeneration systems using both natural gas and biofuels (biogas and bio-ethanol) as feedstock. The membranes used to selectively separate hydrogen from the other reaction products (CH4 CO2 H2O etc.) are of asymmetric type with a thin layer of Pd alloy (<5 μm) and supported on a ceramic porous material to increase their mechanical stability. In FERRET the flexibility of the membrane reactor under diverse natural gas quality is validated. The reactor is integrated in a micro-CHP system and achieves a net electric efficiency of about 42% (8% points higher than the reference case). In FluidCELL the use of bio-ethanol as feedstock for micro-cogeneration Polymeric Electrolyte Membrane based system is investigated in off-grid applications and a net electric efficiency around 40% is obtained (6% higher than the reference case). Finally BIONICO investigates the hydrogen production from biogas. While BIONICO has just started FERRET and FluidCELL are in their third year and the two prototypes are close to be tested confirming the potentiality of membrane reactor technology at small scale.
Investigation of Mechanical Tests for Hydrogen Embrittlement in Automotive PHS Steels
Aug 2019
Publication
The problem of hydrogen embrittlement in ultra-high-strength steels is well known. In this study slow strain rate four-point bending and permeation tests were performed with the aim of characterizing innovative materials with an ultimate tensile strength higher than 1000 MPa. Hydrogen uptake in the case of automotive components can take place in many phases of the manufacturing process: during hot stamping due to the presence of moisture in the furnace atmosphere high-temperature dissociation giving rise to atomic hydrogen or also during electrochemical treatments such as cataphoresis. Moreover possible corrosive phenomena could be a source of hydrogen during an automobile’s life. This series of tests was performed here in order to characterize two press-hardened steels (PHS)—USIBOR 1500® and USIBOR 2000®—to establish a correlation between ultimate mechanical properties and critical hydrogen concentration.
Hydrogen Embrittlement Evaluation of Micro Alloyed Steels by Means of J-Integral Curve
Jun 2019
Publication
The aim of this work is the evaluation of the hydrogen effect on the J-integral parameter. It is well-known that the micro alloyed steels are affected by Hydrogen Embrittlement phenomena only when they are subjected at the same time to plastic deformation and hydrogen evolution at their surface. Previous works have pointed out the absence of Hydrogen Embrittlement effects on pipeline steels cathodically protected under static load conditions. On the contrary in slow strain rate tests it is possible to observe the effect of the imposed potential and the strain rate on the hydrogen embrittlement steel behavior only after the necking of the specimens. J vs. Δa curves were measured on different pipeline steels in air and in aerated NaCl 3.5 g/L solution at free corrosion potential or under cathodic polarization at −1.05 and −2 V vs. SCE. The area under the J vs. Δa curves and the maximum crack propagation rate were taken into account. These parameters were compared with the ratio between the reduction of area in environment and in air obtained by slow strain rate test in the same environmental conditions and used to rank the different steels.
Experimental and Theoretical Insights to Demonstrate the Hydrogen Evolution Activity of Layered Platinum Dichalcogenides Electrocatalysts
Mar 2021
Publication
Hydrogen is a highly efficient and clean renewable energy source and water splitting through electrocatalytic hydrogen evolution is a most promising approach for hydrogen generation. Layered transition metal dichalcogenides-based nano-structures have recently attracted significant interest as robust and durable catalysts for hydrogen evolution. We systematically investigated the platinum (Pt) based dichalcogenides (PtS2 PtSe2 and PtTe2) as highly energetic and robust hydrogen evolution electrocatalysts. PtTe2 catalyst unveiled the rapid hydrogen evolution process with the low overpotentials of 75 and 92 mV (vs. RHE) at a current density of 10 mA cm−2 and the small Tafel slopes of 64 and 59 mV/dec in acidic and alkaline medium respectively. The fabricated PtTe2 electrocatalyst explored a better catalytic activity than PtS2 and PtSe2. The density functional theory estimations explored that the observed small Gibbs free energy for H-adsorption of PtTe2 was given the prominent role to achieve the superior electrocatalytic and excellent stability activity towards hydrogen evolution due to a smaller bandgap and the metallic nature. We believe that this work will offer a key path to use Pt based dichalcogenides for hydrogen evolution electrocatalysts.
Moving Gas Turbine Package from Conventional Gas to Hydrogen Blend
Sep 2021
Publication
The current greatest challenge that all gas turbine manufactures and users have in front of them for the years to come is the energy transition while reducing CO2 footprint and to contrast climate change. To this aim the introduction of hydrogen as fuel gas (or its blend) is playing a very important role. The benefit from an environmental point of view is undisputed but the presence of hydrogen introduces a series of safety related aspects to be considered for the design of all systems of a gas turbine package. Most of the design standards developed and adopted in the past are based on conventional natural gas however physical properties of hydrogen require to analyze additional aspects or revise the current ones. In this context the design for safety is paramount as it is strongly impacted by the low energy ignition of hydrogen blend fuels. Baker Hughes has built its experience on several sites different Customers and applications currently installed. These gas turbines run with a variety of hydrogen blends with concentration as high as 100% hydrogen. Baker Hughes has achieved several milestones moving from design to experimental set up leveraging the internal infrastructures consolidating design assumptions. In this work the critical aspects such as material selection instrumentation electrical devices and components are discussed in the framework of package safety with the aim to evolve conventional design minimizing the impacts on package configurations.
On the Evaluation of ALD TiO 2 , ZrO 2 and HfO 2 Coatings on Corrosion and Cytotoxicity Performances
May 2021
Publication
Magnesium alloys have been widely studied as materials for temporary implants but their use has been limited by their corrosion rate. Recently coatings have been proven to provide an effective barrier. Though only little explored in the field Atomic Layer Deposition (ALD) stands out as a coating technology due to the outstanding film conformality and density achievable. Here we provide first insights into the corrosion behavior and the induced biological response of 100 nm thick ALD TiO2 HfO2 and ZrO2 coatings on AZ31 alloy by means of potentiodynamic polarization curves electrochemical impedance spectroscopy (EIS) hydrogen evolution and MTS colorimetric assay with L929 cells. All three coatings improve the corrosion behavior and cytotoxicity of the alloy. Particularly HfO2 coatings were characterized by the highest corrosion resistance and cell viability slightly higher than those of ZrO2 coatings. TiO2 was characterized by the lowest corrosion improvements and though generally considered a biocompatible coating was found to not meet the demands for cellular applications (it was characterized by grade 3 cytotoxicity after 5 days of culture). These results reveal a strong link between biocompatibility and corrosion resistance and entail the need of taking the latter into consideration in the choice of a biocompatible coating to protect degradable Mg-based alloys.
A Preliminary Assessment of the Potential of Low Percentage Green Hydrogen Blending in the Italian Natural Gas Network
Oct 2020
Publication
The growing rate of electricity generation from renewables is leading to new operational and management issues on the power grid because the electricity generated exceeds local requirements and the transportation or storage capacities are inadequate. An interesting option that is under investigation by several years is the opportunity to use the renewable electricity surplus to power electrolyzers that split water into its component parts with the hydrogen being directly injected into natural gas pipelines for both storage and transportation. This innovative approach merges together the concepts of (i) renewable power-to-hydrogen (P2H) and of (ii) hydrogen blending into natural gas networks. The combination of renewable P2H and hydrogen blending into natural gas networks has a huge potential in terms of environmental and social benefits but it is still facing several barriers that are technological economic legislative. In the framework of the new hydrogen strategy for a climate-neutral Europe Member States should design a roadmap moving towards a hydrogen ecosystem by 2050. The blending of “green hydrogen” that is hydrogen produced by renewable sources in the natural gas network at a limited percentage is a key element to enable hydrogen production in a preliminary and transitional phase. Therefore it is urgent to evaluate at the same time (i) the potential of green hydrogen blending at low percentage (up to 10%) and (ii) the maximum P2H capacity compatible with low percentage blending. The paper aims to preliminary assess the green hydrogen blending potential into the Italian natural gas network as a tool for policy makers grid and networks managers and energy planners.
Towards a Climate-neutral Energy System in the Netherlands
Jan 2022
Publication
This paper presents two different scenarios for the energy system of the Netherlands that achieve the Dutch government’s national target of near net-zero greenhouse gas emissions in 2050. Using the system optimisation model OPERA the authors have analysed the technology sector and cost implications of the assumptions underlying these scenarios. While the roles of a number of key energy technology and emission mitigation options are strongly dependent on the scenario and cost assumptions the analysis yields several common elements that appear in both scenarios and that consistently appear under differing cost assumptions. For example one of the main options for the decarbonisation of the Dutch energy system is electrification of energy use in end-use sectors and for the production of renewable hydrogen with electrolysers. As a result the level of electricity generation in 2050 will be three to four times higher than present generation levels. Ultimately renewable energy – particularly from wind turbines and solar panels – is projected to account for the vast majority of electricity generation around 99% in 2050. Imbalances between supply and demand resulting from this variable renewable electricity production can be managed via flexibility options including demand response and energy storage. Hydrogen also becomes an important energy carrier notably for transportation and in industry. If import prices are lower than costs of domestic production from natural gas with CCS or through electrolysis from renewable electricity (2.4–2.7 €/kgH2) the use of hydrogen increases especially in the built environment.
Green Hydrogen in Europe – A Regional Assessment: Substituting Existing Production with Electrolysis Powered by Renewables
Nov 2020
Publication
The increasing ambition of climate targets creates a major role for hydrogen especially in achieving carbon-neutrality in sectors presently difficult to decarbonise. This work examines to what extent the currently carbon-intensive hydrogen production in Europe could be replaced by water electrolysis using electricity from renewable energy resources (RES) such as solar photovoltaic onshore/offshore wind and hydropower (green hydrogen). The study assesses the technical potential of RES at regional and national levels considering environmental constraints land use limitations and various techno-economic parameters. It estimates localised clean hydrogen production and examines the capacity to replace carbon-intensive hydrogen hubs with ones that use RES-based water electrolysis. Findings reveal that -at national level- the available RES electricity potential exceeds the total electricity demand and the part for hydrogen production from electrolysis in all analysed countries. At regional level from the 109 regions associated with hydrogen production (EU27 and UK) 88 regions (81%) show an excess of potential RES generation after covering the annual electricity demand across all sectors and hydrogen production. Notably 84 regions have over 50% excess RES electricity potential after covering the total electricity demand and that for water electrolysis. The study provides evidence on the option to decarbonize hydrogen production at regional level. It shows that such transformation is possible and compatible with the ongoing transition towards carbon–neutral power systems in the EU. Overall this work aims to serve as a tool for designing hydrogen strategies in harmony with renewable energy policies.
Hydrous Hydrazine Decomposition for Hydrogen Production Using of Ir/CeO2: Effect of Reaction Parameters on the Activity
May 2021
Publication
In the present work an Ir/CeO2 catalyst was prepared by the deposition–precipitation method and tested in the decomposition of hydrazine hydrate to hydrogen which is very important in the development of hydrogen storage materials for fuel cells. The catalyst was characterised using different techniques i.e. X-ray photoelectron spectroscopy (XPS) transmission electron microscopy (TEM) scanning electron microscopy (SEM) equipped with X-ray detector (EDX) and inductively coupled plasma—mass spectroscopy (ICP-MS). The effect of reaction conditions on the activity and selectivity of the material was evaluated in this study modifying parameters such as temperature the mass of the catalyst stirring speed and concentration of base in order to find the optimal conditions of reaction which allow performing the test in a kinetically limited regime.
A Preliminary Energy Analysis of a Commercial CHP Fueled with H2NG Blends Chemically Supercharged by Renewable Hydrogen and Oxygen
Dec 2016
Publication
Currently Power-to-Gas technologies are considered viable solutions to face the onset problems associated with renewable capacity firming. Indeed carbon-free hydrogen production converting renewable electricity excess and its injection into natural gas pipelines is considered a short- to medium-term solution. In this way the so-called H2NG blends can be fired within internal combustion engines and micro gas turbines operating in CHP mode offering better environmental-energy performances in machines. As regards the distributed energy generation scenario the local H2 production by means of electrolysis for methane enrichment will be more cost-effective if the oxygen is fruitfully used instead of venting it out like a by-product as usually occurs. This study focuses on the usefulness of using that oxygen to enrich the air-fuel mixture of an internal combustion engine for micro-CHP applications once it has been fuelled with H2NG blends. Thus the main aim of this paper is to provide a set of values for benchmarking in which H2NG blends ranging in 0%-15% vol. burn within an ICE in partial oxy-fuel conditions. In particular a preliminary energy analysis was carried out based on experimental data reporting the engine operating parameters gains and losses in both electrical and heat recovery efficiency. The oxygen content in the air varies up to 22% vol. A Volkswagen Blue Tender CHP commercial version (19.8 kWel. of rated electrical power output) was considered as the reference machine and its energy characterization was reported when it operated under those unconventional conditions.
Hydrogen and Renewable Energy Sources Integrated System for Greenhouse Heating
Sep 2013
Publication
A research is under development at the Department of Agro-Environmental Sciences of the University of Bari “Aldo Moro” in order to investigate the suitable solutions of a power system based on solar energy (photovoltaic) and hydrogen integrated with a geothermal heat pump for powering a self sustained heated greenhouse. The electrical energy for heat pump operation is provided by a purpose-built array of solar photovoltaic modules which supplies also a water electrolyser system controlled by embedded pc; the generated dry hydrogen gas is conserved in suitable pressured storage tank. The hydrogen is used to produce electricity in a fuel cell in order to meet the above mentioned heat pump power demand when the photovoltaic system is inactive during winter night-time or the solar radiation level is insufficient to meet the electrical demand. The present work reports some theoretical and observed data about the electrolyzer operation. Indeed the electrolyzer has required particular attention because during the experimental tests it did not show a stable operation and it was registered a performance not properly consistent with the predicted performance by means of the theoretical study.
Mechanical Spectroscopy Investigation of Point Defect-Driven Phenomena in a Cr Martensitic Steel
Oct 2018
Publication
The paper presents and discusses results of mechanical spectroscopy (MS) tests carried out on a Cr martensitic steel. The study regards the following topics: (i) embrittlement induced by Cr segregation; (ii) interaction of hydrogen with C–Cr associates; (iii) nucleation of Cr carbides. The MS technique permitted characterising of the specific role played by point defects in the investigated phenomena: (i) Cr segregation depends on C–Cr associates distribution in as-quenched material in particular a slow cooling rate (~150 K/min) from austenitic field involves an unstable distribution which leads to Cr concentration fluctuations after tempering at 973 K; (ii) hydrogen interacts with C–Cr associates and the phenomenon hinders hydrogen attack (HA) because hydrogen atoms bound by C–Cr associates are not able to diffuse towards grain boundaries and dislocation where CH4 bubbles may nucleate grow and merge to form the typical HA cracks; (iii) C–Cr associates take part in the nucleation mechanism of Cr7C3 carbides and specifically these carbides form by the aggregation of C–Cr associates with 1 Cr atom.
A Techno-Economic Analysis of Solar Hydrogen Production by Electrolysis in the North of Chile and the Case of Exportation from Atacama Desert to Japan
Aug 2020
Publication
H2 production from solar electricity in the region of the Atacama Desert – Chile – has been identified as strategical for global hydrogen exportation. In this study the full supply chain of solar hydrogen has been investigated for 2018 and projected to scenarios for 2025-2030. Multi-year hourly electrical profiles data have been used from real operating PV plants and simulated Concentrated Solar Power “CSP” plants with Thermal Energy Storage “TES” as well as commercial electricity Power Purchase Agreement “PPA” prices reported in the Chilean electricity market were considered. The Levelized Cost of Hydrogen “LCOH” of each production pathway is calculated by a case-sensitive techno-economic MATLAB/Simulink model for utility scale (multi-MW) alkaline and PEM electrolyser technologies. Successively different distribution storage and transportation configurations are evaluated based on the 2025 Japanese case study according to the declared H2 demand. Transport in the form of liquefied hydrogen (LH2) and via ammonia (NH3) carrier is compared from the port of Antofagasta CL to the port of Osaka JP.
The Deltah Lab, a New Multidisciplinary European Facility to Support the H2 Distribution & Storage Economy
Apr 2021
Publication
The target for European decarburization encourages the use of renewable energy sources and H2 is considered the link in the global energy system transformation. So research studies are numerous but only few facilities can test materials and components for H2 storage. This work offers a brief review of H2 storage methods and presents the preliminary results obtained in a new facility. Slow strain rate and fatigue life tests were performed in H2 at 80 MPa on specimens and a tank of AISI 4145 respectively. Besides the storage capacity at 30 MPa of a solid-state system they were evaluated on kg scale by adsorption test. The results have shown the H2 influence on mechanical properties of the steel. The adsorption test showed a gain of 26% at 12 MPa in H2 storage with respect to the empty condition. All samples have been characterized by complementary techniques in order to connect the H2 effect with material properties.
Photoelectrochemical Hydrogen Production by Screen-Printed Copper Oxide Electrodes
May 2021
Publication
In this work copper oxides-based photocathodes for photoelectrochemical cells (PEC) were produced for the first time by screen printing. A total 7 × 10−3 g/m2 glycerine trioleate was found as optimum deflocculant amount to assure stable and homogeneous inks based on CuO nano-powder. The inks were formulated considering different binder amounts and deposited producing films with homogenous thickness microstructure and roughness. The as-produced films were thermally treated to obtain Cu2O- and Cu2O/CuO-based electrodes. The increased porosity obtained by adding higher amounts of binder in the ink positively affected the electron transfer from the surface of the electrode to the electrolyte thus increasing the corresponding photocurrent values. Moreover the Cu2O/CuO system showed a higher charge carrier and photocurrent density than the Cu2O-based one. The mixed Cu2O/CuO films allowed the most significant hydrogen production especially in slightly acid reaction conditions.
Investigation of an Intensified Thermo-Chemical Experimental Set-Up for Hydrogen Production from Biomass: Gasification Process Performance—Part I
Jun 2021
Publication
Biomass gasification for energy purposes has several advantages such as the mitigation of global warming and national energy independency. In the present work the data from an innovative and intensified steam/oxygen biomass gasification process integrating a gas filtration step directly inside the reactor are presented. The produced gas at the outlet of the 1 MWth gasification pilot plant was analysed in terms of its main gaseous products (hydrogen carbon monoxide carbon dioxide and methane) and contaminants. Experimental test sets were carried out at 0.25–0.28 Equivalence Ratio (ER) 0.4–0.5 Steam/Biomass (S/B) and 780–850 °C gasification temperature. Almond shells were selected as biomass feedstock and supplied to the reactor at approximately 120 and 150 kgdry/h. Based on the collected data the in-vessel filtration system showed a dust removal efficiency higher than 99%-wt. A gas yield of 1.2 Nm3dry/kgdaf and a producer gas with a dry composition of 27–33%v H2 23–29%v CO 31–36%v CO2 9–11%v CH4 and light hydrocarbons lower than 1%v were also observed. Correspondingly a Low Heating Value (LHV) of 10.3–10.9 MJ/Nm3dry and a cold gas efficiency (CGE) up to 75% were estimated. Overall the collected data allowed for the assessment of the preliminary performances of the intensified gasification process and provided the data to validate a simulative model developed through Aspen Plus software.
Different Scenarios of Electric Mobility: Current Situation and Possible Future Developments of Fuel Cell Vehicles in Italy
Jan 2020
Publication
The diffusion of electric vehicles in Italy has started but some complications weight its spread. At present hybrid technology is the most followed by users due particularly to socioeconomic factors such as cost of investment and range anxiety. After a deep discussion of the Italian scenario the aim of the paper is to recognize whether fuel cell technology may be an enabling solution to overcome pollution problems and respect for the environment. The opportunity to use fuel cells to store electric energy is quite fascinating—the charging times will be shortened and heavy passenger transport should be effortless challenged. On the basis of the present history and by investigating the available information this work reports the current e-mobility state in Italy and forecasts the cities in which a fuel cell charging infrastructure should be more profitable with the intention of granting a measured outlook on the plausible development of this actual niche market.
Materials for Hydrogen-based Energy Storage - Past, Recent Progress and Future Outlook
Dec 2019
Publication
Michael Hirscher,
Volodymyr A. Yartys,
Marcello Baricco,
José Bellosta von Colbe,
Didier Blanchard,
Robert C. Bowman Jr.,
Darren P. Broom,
Craig Buckley,
Fei Chang,
Ping Chen,
Young Whan Cho,
Jean-Claude Crivello,
Fermin Cuevas,
William I. F. David,
Petra E. de Jongh,
Roman V. Denys,
Martin Dornheim,
Michael Felderhoff,
Yaroslav Filinchuk,
George E. Froudakis,
David M. Grant,
Evan MacA. Gray,
Bjørn Christian Hauback,
Teng He,
Terry D. Humphries,
Torben R. Jensen,
Sangryun Kim,
Yoshitsugu Kojima,
Michel Latroche,
Hai-wen Li,
Mykhaylo V. Lototskyy,
Joshua W. Makepeace,
Kasper T. Møller,
Lubna Naheed,
Peter Ngene,
Dag Noreus,
Magnus Moe Nygård,
Shin-ichi Orimo,
Mark Paskevicius,
Luca Pasquini,
Dorthe B. Ravnsbæk,
M. Veronica Sofianos,
Terrence J. Udovic,
Tejs Vegge,
Gavin Walker,
Colin Webb,
Claudia Weidenthaler and
Claudia Zlotea
Globally the accelerating use of renewable energy sources enabled by increased efficiencies and reduced costs and driven by the need to mitigate the effects of climate change has significantly increased research in the areas of renewable energy production storage distribution and end-use. Central to this discussion is the use of hydrogen as a clean efficient energy vector for energy storage. This review by experts of Task 32 “Hydrogen-based Energy Storage” of the International Energy Agency Hydrogen TCP reports on the development over the last 6 years of hydrogen storage materials methods and techniques including electrochemical and thermal storage systems. An overview is given on the background to the various methods the current state of development and the future prospects. The following areas are covered; porous materials liquid hydrogen carriers complex hydrides intermetallic hydrides electro-chemical storage of energy thermal energy storage hydrogen energy systems and an outlook is presented for future prospects and research on hydrogen-based energy storage
Process Integration of Green Hydrogen: Decarbonization of Chemical Industries
Sep 2020
Publication
Integrated water electrolysis is a core principle of new process configurations for decarbonized heavy industries. Water electrolysis generates H2 and O2 and involves an exchange of thermal energy. In this manuscript we investigate specific traditional heavy industrial processes that have previously been performed in nitrogen-rich air environments. We show that the individual process streams may be holistically integrated to establish new decarbonized industrial processes. In new process configurations CO2 capture is facilitated by avoiding inert gases in reactant streams. The primary energy required to drive electrolysis may be obtained from emerging renewable power sources (wind solar etc.) which have enjoyed substantial industrial development and cost reductions over the last decade. The new industrial designs uniquely harmonize the intermittency of renewable energy allowing chemical energy storage. We show that fully integrated electrolysis promotes the viability of decarbonized industrial processes. Specifically new process designs uniquely exploit intermittent renewable energy for CO2 conversion enabling thermal integration H2 and O2 utilization and sub-process harmonization for economic feasibility. The new designs are increasingly viable for decarbonizing ferric iron reduction municipal waste incineration biomass gasification fermentation pulp production biogas upgrading and calcination and are an essential step forward in reducing anthropogenic CO2 emissions.
Hydrogen vs. Battery in the Long-term Operation. A Comparative Between Energy Management Strategies for Hybrid Renewable Microgrids
Apr 2020
Publication
The growth of the world’s energy demand over recent decades in relation to energy intensity and demography is clear. At the same time the use of renewable energy sources is pursued to address decarbonization targets but the stochasticity of renewable energy systems produces an increasing need for management systems to supply such energy volume while guaranteeing at the same time the security and reliability of the microgrids. Locally distributed energy storage systems (ESS) may provide the capacity to temporarily decouple production and demand. In this sense the most implemented ESS in local energy districts are small–medium-scale electrochemical batteries. However hydrogen systems are viable for storing larger energy quantities thanks to its intrinsic high mass-energy density. To match generation demand and storage energy management systems (EMSs) become crucial. This paper compares two strategies for an energy management system based on hydrogen-priority vs. battery-priority for the operation of a hybrid renewable microgrid. The overall performance of the two mentioned strategies is compared in the long-term operation via a set of evaluation parameters defined by the unmet load storage efficiency operating hours and cumulative energy. The results show that the hydrogen-priority strategy allows the microgrid to be led towards island operation because it saves a higher amount of energy while the battery-priority strategy reduces the energy efficiency in the storage round trip. The main contribution of this work lies in the demonstration that conventional EMS for microgrids’ operation based on battery-priority strategy should turn into hydrogen-priority to keep the reliability and independence of the microgrid in the long-term operation.
High Energy Density Storage of Gaseous Marine Fuels: An Innovative Concept and its Application to a Hydrogen Powered Ferry
Apr 2020
Publication
The upcoming stricter limitations on both pollutant and greenhouse gases emissions represent a challenge for the shipping sector. The entire ship design process requires an approach to innovation with a particular focus on both the fuel choice and the power generation system. Among the possible alternatives natural gas and hydrogen based propulsion systems seem to be promising in the medium and long term. Nonetheless natural gas and hydrogen storage still represents a problem in terms of cargo volume reduction. This paper focuses on the storage issue considering compressed gases and presents an innovative solution which has been developed in the European project GASVESSEL® that allows to store gaseous fuels with an energy density higher than conventional intermediate pressure containment systems. After a general overview of natural gas and hydrogen as fuels for shipping a case study of a small Roll-on/Rolloff passenger ferry retrofit is proposed. The study analyses the technical feasibility of the installation of a hybrid power system with batteries and polymer electrolyte membrane fuel cells fuelled by hydrogen. In particular a process simulation model has been implemented to assess the quantity of hydrogen that can be stored on board taking into account boundary conditions such as filling time on shore storage capacity and cylinder wall temperature. The simulation results show that if the fuel cells system is run continuously at steady state to cover the energy need for one day of operation 140 kg of hydrogen are required. Using the innovative pressure cylinder at a storage pressure of 300 bar the volume required by the storage system assessed on the basis of the containment system outer dimensions is resulted to be 15.2 m3 with a weight of 2.5 ton. Even if the innovative type of pressure cylinder allows to reach an energy density higher than conventional intermediate pressure cylinders the volume necessary to store a quantity of energy typical for the shipping sector is many times higher than that required by conventional fuels today used. The analysis points out as expected that the filling process is critical to maximize the stored hydrogen mass and that it is critical to measure the temperature of the cylinder walls in order not to exceed the material limits. Nevertheless for specific application such as the one considered in the paper the introduction of gaseous hydrogen as fuel can be considered for implementing zero local emission propulsion system in the medium term.
Recent Progress and New Perspectives on Metal Amide and Imide Systems for Solid-State Hydrogen Storage
Apr 2018
Publication
Hydrogen storage in the solid state represents one of the most attractive and challenging ways to supply hydrogen to a proton exchange membrane (PEM) fuel cell. Although in the last 15 years a large variety of material systems have been identified as possible candidates for storing hydrogen further efforts have to be made in the development of systems which meet the strict targets of the Fuel Cells and Hydrogen Joint Undertaking (FCH JU) and U.S. Department of Energy (DOE). Recent projections indicate that a system possessing: (i) an ideal enthalpy in the range of 20–50 kJ/mol H2 to use the heat produced by PEM fuel cell for providing the energy necessary for desorption; (ii) a gravimetric hydrogen density of 5 wt. % H2 and (iii) fast sorption kinetics below 110 ◦C is strongly recommended. Among the known hydrogen storage materials amide and imide-based mixtures represent the most promising class of compounds for on-board applications; however some barriers still have to be overcome before considering this class of material mature for real applications. In this review the most relevant progresses made in the recent years as well as the kinetic and thermodynamic properties experimentally measured for the most promising systems are reported and properly discussed.
A Review of the MSCA ITN ECOSTORE—Novel Complex Metal Hydrides for Efficient and Compact Storage of Renewable Energy as Hydrogen and Electricity
Mar 2020
Publication
Hydrogen as an energy carrier is very versatile in energy storage applications. Developments in novel sustainable technologies towards a CO2-free society are needed and the exploration of all-solid-state batteries (ASSBs) as well as solid-state hydrogen storage applications based on metal hydrides can provide solutions for such technologies. However there are still many technical challenges for both hydrogen storage material and ASSBs related to designing low-cost materials with low-environmental impact. The current materials considered for all-solid-state batteries should have high conductivities for Na+ Mg2+ and Ca2+ while Al3+-based compounds are often marginalised due to the lack of suitable electrode and electrolyte materials. In hydrogen storage materials the sluggish kinetic behaviour of solid-state hydride materials is one of the key constraints that limit their practical uses. Therefore it is necessary to overcome the kinetic issues of hydride materials before discussing and considering them on the system level. This review summarizes the achievements of the Marie Skłodowska-Curie Actions (MSCA) innovative training network (ITN) ECOSTORE the aim of which was the investigation of different aspects of (complex) metal hydride materials. Advances in battery and hydrogen storage materials for the efficient and compact storage of renewable energy production are discussed.
Tetrahydroborates: Development and Potential as Hydrogen Storage Medium
Oct 2017
Publication
The use of fossil fuels as an energy supply becomes increasingly problematic from the point of view of both environmental emissions and energy sustainability. As an alternative hydrogen is widely regarded as a key element for a potential energy solution. However differently from fossil fuels such as oil gas and coal the production of hydrogen requires energy. Alternative and intermittent renewable energy sources such as solar power wind power etc. present multiple advantages for the production of hydrogen. On the one hand the renewable sources contribute to a remarkable reduction of pollutants released to the air and on the other hand they significantly enhance the sustainability of energy supply. In addition the storage of energy in form of hydrogen has a huge potential to balance an effective and synergetic utilization of renewable energy sources. In this regard hydrogen storage technology is a key technology towards the practical application of hydrogen as “energy carrier”. Among the methods available to store hydrogen solid-state storage is the most attractive alternative from both the safety and the volumetric energy density points of view. Because of their appealing hydrogen content complex hydrides and complex hydride-based systems have attracted considerable attention as potential energy vectors for mobile and stationary applications. In this review the progresses made over the last century on the synthesis and development of tetrahydroborates and tetrahydroborate-based systems for hydrogen storage purposes are summarized.
Optimal Design of Multi-energy Systems with Seasonal Storage
Oct 2017
Publication
Optimal design and operation of multi-energy systems involving seasonal energy storage are often hindered by the complexity of the optimization problem. Indeed the description of seasonal cycles requires a year-long time horizon while the system operation calls for hourly resolution; this turns into a large number of decision variables including binary variables when large systems are analyzed. This work presents novel mixed integer linear program methodologies that allow considering a year time horizon with hour resolution while significantly reducing the complexity of the optimization problem. First the validity of the proposed techniques is tested by considering a simple system that can be solved in a reasonable computational time without resorting to design days. Findings show that the results of the proposed approaches are in good agreement with the full-scale optimization thus allowing to correctly size the energy storage and to operate the system with a long-term policy while significantly simplifying the optimization problem. Furthermore the developed methodology is adopted to design a multi-energy system based on a neighborhood in Zurich Switzerland which is optimized in terms of total annual costs and carbon dioxide emissions. Finally the system behavior is revealed by performing a sensitivity analysis on different features of the energy system and by looking at the topology of the energy hub along the Pareto sets.
Electrolyzer Performance Analysis of an Integrated Hydrogen Power System for Greenhouse Heating. A Case Study
Jul 2016
Publication
A greenhouse containing an integrated system of photovoltaic panels a water electrolyzer fuel cells and a geothermal heat pump was set up to investigate suitable solutions for a power system based on solar energy and hydrogen feeding a self-sufficient geothermal-heated greenhouse. The electricity produced by the photovoltaic source supplies the electrolyzer; the manufactured hydrogen gas is held in a pressure tank. In these systems the electrolyzer is a crucial component; the technical challenge is to make it work regularly despite the irregularity of the solar source. The focus of this paper is to study the performance and the real energy efficiency of the electrolyzer analyzing its operational data collected under different operating conditions affected by the changeable solar radiant energy characterizing the site where the experimental plant was located. The analysis of the measured values allowed evaluation of its suitability for the agricultural requirements such as greenhouse heating. On the strength of the obtained result a new layout of the battery bank has been designed and exemplified to improve the performance of the electrolyzer. The evaluations resulting from this case study may have a genuine value therefore assisting in further studies to better understand these devices and their associated technologies.
Solid State Hydrogen Storage in Alanates and Alanate-Based Compounds: A Review
Jul 2018
Publication
The safest way to store hydrogen is in solid form physically entrapped in molecular form in highly porous materials or chemically bound in atomic form in hydrides. Among the different families of these compounds alkaline and alkaline earth metals alumino-hydrides (alanates) have been regarded as promising storing media and have been extensively studied since 1997 when Bogdanovic and Schwickardi reported that Ti-doped sodium alanate could be reversibly dehydrogenated under moderate conditions. In this review the preparative methods; the crystal structure; the physico-chemical and hydrogen absorption-desorption properties of the alanates of Li Na K Ca Mg Y Eu and Sr; and of some of the most interesting multi-cation alanates will be summarized and discussed. The most promising alanate-based reactive hydride composite (RHC) systems developed in the last few years will also be described and commented on concerning their hydrogen absorption and desorption performance.
Faraday’s Efficiency Modeling of a Proton Exchange Membrane Electrolyzer Based on Experimental Data
Sep 2020
Publication
In electrolyzers Faraday’s efficiency is a relevant parameter to assess the amount of hydrogen generated according to the input energy and energy efficiency. Faraday’s efficiency expresses the faradaic losses due to the gas crossover current. The thickness of the membrane and operating conditions (i.e. temperature gas pressure) may affect the Faraday’s efficiency. The developed models in the literature are mainly focused on alkaline electrolyzers and based on the current and temperature change. However the modeling of the effect of gas pressure on Faraday’s efficiency remains a major concern. In proton exchange membrane (PEM) electrolyzers the thickness of the used membranes is very thin enabling decreasing ohmic losses and the membrane to operate at high pressure because of its high mechanical resistance. Nowadays high-pressure hydrogen production is mandatory to make its storage easier and to avoid the use of an external compressor. However when increasing the hydrogen pressure the hydrogen crossover currents rise particularly at low current densities. Therefore faradaic losses due to the hydrogen crossover increase. In this article experiments are performed on a commercial PEM electrolyzer to investigate Faraday’s efficiency based on the current and hydrogen pressure change. The obtained results have allowed modeling the effects of Faraday’s efficiency by a simple empirical model valid for the studied PEM electrolyzer stack. The comparison between the experiments and the model shows very good accuracy in replicating Faraday’s efficiency.
Life Cycle Performance of Hydrogen Production via Agro-Industrial Residue Gasification—A Small Scale Power Plant Study
Mar 2018
Publication
This study evaluates the environmental profile of a real biomass-based hydrogen production small-scale (1 MWth) system composed of catalytic candle indirectly heated steam gasifier coupled with zinc oxide (ZnO) guard bed water gas shift (WGS) and pressure swing absorber (PSA) reactors. Environmental performance from cradle-to-gate was investigated by life cycle assessment (LCA) methodology. Biomass production shows high influence over all impact categories. In the syngas production process the main impacts observed are global warming potential (GWP) and acidification potential (AP). Flue gas emission from gasifier burner has the largest proportion of total GWP. The residual off gas use in internal combustion engine (ICE) leads to important environmental savings for all categories. Hydrogen renewability score is computed as 90% due to over 100% decline in non-renewable energy demand. Sensitivity analysis shows that increase in hydrogen production efficiency does not necessarily result in decrease in environmental impacts. In addition economic allocation of environmental charges increases all impact categories especially AP and photochemical oxidation (POFP).
Hydrogen Embrittlement in Pipelines Transporting Sour Hydrocarbons
Sep 2017
Publication
Lamination-like defects in pipeline steels can be of both metallurgical and operational origin. In pipelines transporting hydrocarbon usually such defects are not a big challenge since they do not propagate under operating conditions. Nonetheless in presence of a corrosion phenomenon and sour gas (H2S) it is possible to observe blisters and cracks which may propagate in the steel. The observed damage mechanisms is Hydrogen Embrittlement and in spite of a huge amount of study and publications available it is quite difficult for a pipeline owner to get practical data (crack propagation rate for instance) allowing a reliable estimate of the fitness for service of a pipeline. Taking advantage of a pipeline spool containing internal defects that was in service for more than 10 years and recently removed a comprehensive study is underway to obtain a complete assessment of the pipeline future integrity. The program is comprehensive of study and comparison of ILI reports of the pipeline to determine the optimum interval between inspections assessment of inspection results via an accurate nondestructive (UT) and destructive examination of the removed section to verify ILI results lab tests program on specimens from the removed spool at operating conditions (75-80 bar and 30°-36° C) in presence of a small quantity of water H2S (5%) and CO2 (7%) in order to assess defect propagation and to obtain an estimate of crack growth rate and test in field of available methods to monitor the presence of Hydrogen and/or the growth of defects in in-service pipelines. This quite ambitious program is also expected to be able of offering a small contribution toward a better understanding of HE mechanisms and the engineering application of such complex often mainly academic studies.
Hydrogen Embrittlement in a 2101 Lean Duplex Stainless Steel
Sep 2019
Publication
Duplex Stainless Steels (DSSs) are an attractive class of materials characterized by a strong corrosion resistance in many aggressive environments. Thanks to the high mechanical performances DSSs are widely used for many applications in petrochemical industry chemical and nuclear plants marine environment desalination etc.<br/>Among the DSSs critical aspects concerning the embrittlement process it is possible to remember the steel sensitization and the hydrogen embrittlement.<br/>The sensitization of the DSSs is due to the peculiar chemical composition of these grades which at high temperature are susceptible to carbide nitrides and second phases precipitation processes mainly at grains boundary and in the ferritic grains. The hydrogen embrittlement process is strongly influenced by the duplex (austenitic-ferritic) microstructure and by the loading conditions.<br/>In this work a rolled lean ferritic-austenitic DSS (2101) has been investigated in order to analyze the hydrogen embrittlement mechanisms by means of slow strain rate tensile tests considering the steel after different heat treatments. The damaging micromechanisms have been investigated by means of the scanning electron microscope observations on the fracture surfaces.
Engineering Thoughts on Hydrogen Embrittlement
Jul 2018
Publication
Hydrogen Embrittlement (HE) is a topical issue for pipelines transporting sour products. Engineers need a simple and effective approach in materials selection at design stage. In other words they must know if a material is susceptible to cracking to be able of:
As an example material selection for sour service pipeline is the object of well-known standards e.g. by Nace International and EFC: they pose some limits in the sour service of steels with reference to surface hardness. These standards have shown some weak points namely:
- selecting the right material
- and apply correct operational measures during the service life.
As an example material selection for sour service pipeline is the object of well-known standards e.g. by Nace International and EFC: they pose some limits in the sour service of steels with reference to surface hardness. These standards have shown some weak points namely:
- In the definition of sour service;
- In defining the role of crack initiation and propagation considering that in Hydrogen embrittlement stress state and stress variations are very important.
Hazards Assessment and Technical Actions Due to the Production of Pressured Hydrogen within a Pilot Photovoltaic-electrolyser-fuel Cell Power System for Agricultural Equipment
Jun 2016
Publication
A pilot power system formed by photovoltaic panels alkaline electrolyser and fuel cell stacks was designed and set up to supply the heating system of an experimental greenhouse. The aim of this paper is to analyse the main safety aspects of this power system connected to the management of the pressured hydrogen such as the explosion limits of the mixture hydrogen-oxygen the extension of the danger zone the protection pressure vessels and the system to make unreactive the plant. The electrolyser unit is the core of this plant and from the safety point of view has been equipped with devices able to highlight the mal-functions before they cause damages. Alarm situations are highlighted and the production process is cut off in safe conditions in the event that the operational parameters have an abnormal deviation from the design values. Also the entire power system has been designed so that any failure to its components does not compromise the workers’ safety even if the risk analysis is in progress because technical operation are being carried out for enhancing the plant functionality making it more suitable to the designed task of supplying electrically the green-house heating system during cold periods. Some experimental data pertinent to the solar radiation and the corresponding hydrogen pro-duction rate are also reported. At present it does not exist a well-established safety reference protocol to design the reliability of these types of power plants and then the assumed safety measures even if related to the achieved pilot installation can represent an original base of reference to set up guidelines for designing the safety of power plants in the future available for agricultural purposes.
Use of Hydrogen as Fuel: A Trend of the 21st Century
Jan 2022
Publication
The unbridled use of fossil fuels is a serious problem that has become increasingly evident over the years. As such fuels contribute considerably to environmental pollution there is a need to find new sustainable sources of energy with low emissions of greenhouse gases. Climate change poses a substantial challenge for the scientific community. Thus the use of renewable energy through technologies that offer maximum efficiency with minimal pollution and carbon emissions has become a major goal. Technology related to the use of hydrogen as a fuel is one of the most promising solutions for future systems of clean energy. The aim of the present review was to provide an overview of elements related to the potential use of hydrogen as an alternative energy source considering its specific chemical and physical characteristics as well as prospects for an increase in the participation of hydrogen fuel in the world energy matrix.
Hydrogen Fuel for Future Mobility: Challenges and Future Aspects
Jul 2022
Publication
Nowadays the combustion of fossil fuels for transportation has a major negative impact on the environment. All nations are concerned with environmental safety and the regulation of pollution motivating researchers across the world to find an alternate transportation fuel. The transition of the transportation sector towards sustainability for environmental safety can be achieved by the manifestation and commercialization of clean hydrogen fuel. Hydrogen fuel for sustainable mobility has its own effectiveness in terms of its generation and refueling processes. As the fuel requirement of vehicles cannot be anticipated because it depends on its utilization choosing hydrogen refueling and onboard generation can be a point of major concern. This review article describes the present status of hydrogen fuel utilization with a particular focus on the transportation industry. The advantages of onboard hydrogen generation and refueling hydrogen for internal combustion are discussed. In terms of performance affordability and lifetime onboard hydrogen-generating subsystems must compete with what automobile manufacturers and consumers have seen in modern vehicles to date. In internal combustion engines hydrogen has various benefits in terms of combustive properties but it needs a careful engine design to avoid anomalous combustion which is a major difficulty with hydrogen engines. Automobile makers and buyers will not invest in fuel cell technology until the technologies that make up the various components of a fuel cell automobile have advanced to acceptable levels of cost performance reliability durability and safety. Above all a substantial advancement in the fuel cell stack is required.
Aqueous Phase Reforming of the Residual Waters Derived from Lignin-rich Hydrothermal Liquefaction: Investigation of Representative Organic Compounds and Actual Biorefinery Streams
Sep 2019
Publication
Secondary streams in biorefineries need to be valorized to improve the economic and environmental sustainability of the plants. Representative model compounds of the water fraction from the hydrothermal liquefaction (HTL) of biomass were subjected to aqueous phase reforming (APR) to produce hydrogen. Carboxylic and bicarboxylic acids hydroxyacids alcohols cycloketones and aromatics were identified as model compounds and tested for APR. The tests were performed with a Pt/C catalyst and the influence of the carbon concentration (0.3–1.8 wt. C%) was investigated. Typically the increase of the concentration negatively affected the conversion of the feed toward gaseous products without influencing the selectivity toward hydrogen production. A synthetic ternary mixture (glycolic acid acetic acid lactic acid) was subjected to APR to evaluate any differences in performance compared to the tests with single compounds. Indeed glycolic acid reacted faster in the mixture than in the corresponding single compound test while acetic acid remained almost unconverted. The influence of the reaction time temperature and carbon concentration was also evaluated. Finally residual water resulting from the HTL of a lignin-rich stream originating from an industrial-scale lignocellulosic ethanol process was tested for the first time after a thorough characterization. In this framework the stability of the catalyst was studied and found to be correlated to the presence of aromatics in the aqueous feedstock. For this reason the influence of an extraction procedure for the selective removal of these compounds was explored leading to an improvement in the APR performance.
Numerical Investigation of Dual Fuel Combustion on a Compression Ignition Engine Fueled with Hydrogen/Natural Gas Blends
Mar 2022
Publication
The present work aims to assess the influence of the composition of blends of hydrogen (H2 ) and Natural Gas (NG) on Dual Fuel (DF) combustion characteristics including gaseous emissions. The 3D-CFD study is carried out by means of a customized version of the KIVA-3V code. An automotive 2.8 L 4-cylinder turbocharged diesel engine was previously modified in order to operate in DF NG–diesel mode and tested at the dynamometer bench. After validation against experimental results the numerical model is applied to perform a set of combustion simulations at 3000 rpm–BMEP = 8 bar in DF H2/NG-diesel mode. Different H2–NG blends are considered: as the H2 mole fraction varies from 0 vol% to 50 vol% the fuel energy within the premixed charge is kept constant. The influence of the diesel Start Of Injection (SOI) is also investigated. Simulation results demonstrate that H2 enrichment accelerates the combustion process and promotes its completion strongly decreasing UHC and CO emissions. Evidently CO2 specific emissions are also reduced (up to about 20% at 50 vol% of H2 ). The main drawbacks of the faster combustion include an increase of in-cylinder peak pressure and pressure rate rise and of NOx emissions. However the study demonstrates that the optimization of diesel SOI can eliminate all aforementioned shortcomings.
Thermodynamic Modeling of Hydrogen Refueling for Heavy-duty Fuel Cell Buses and Comparison with Aggregated Real Data
Apr 2021
Publication
The foreseen uptake of hydrogen mobility is a fundamental step towards the decarbonization of the transport sector. Under such premises both refuelling infrastructure and vehicles should be deployed together with improved refuelling protocols. Several studies focus on refuelling the light-duty vehicles with 10 kgH2 up to 700 bar however less known effort is reported for refuelling heavy-duty vehicles with 30–40 kgH2 at 350 bar. The present study illustrates the application of a lumped model to a fuel cell bus tank-to-tank refuelling event tailored upon the real data acquired in the 3Emotion Project. The evolution of the main refuelling quantities such as pressure temperature and mass flow are predicted dynamically throughout the refuelling process as a function of the operating parameters within the safety limits imposed by SAE J2601/2 technical standard. The results show to refuel the vehicle tank from half to full capacity with an Average Pressure Ramp Rate (APRR) equal to 0.03 MPa/s are needed about 10 min. Furthermore it is found that the effect of varying the initial vehicle tank pressure is more significant than changing the ambient temperature on the refuelling performances. In conclusion the analysis of the effect of different APRR from 0.03 to 0.1 MPa/s indicate that is possible to safely reduce the duration of half-to-full refuelling by 62% increasing the APRR value from 0.03 to 0.08 MPa/s.
Energy Saving in Public Transport Using Renewable Energy
Jan 2017
Publication
Hydrogen produced by renewable sources represents an interesting way to reduce the energetic dependence on fossil fuels in the transportation sector. This paper shows a feasibility study for the production storage and distribution of hydrogen in the western Sicilian context using three different renewable sources: wind biomass and sea wave. The objective of this study is the evaluation of the hydrogen demand needed to replace all diesel supplied buses with electrical buses equipped with fuel cells. An economic analysis is presented with the evaluation of the avoidable greenhouse gas emissions. Four different scenarios correlate the hydrogen demand for urban transport to the renewable energy resources present in the territories and to the modern technologies available for the production of hydrogen. The study focuses on the possibility of tapping into the potential of renewable energies (wind biomass and sea wave) for the production of hydrogen by electrolysis. The use of hydrogen would reduce significantly the emissions of particulate and greenhouse gases in the urban districts under analysis.
No more items...