Poland
A Roadmap with Strategic Policy toward Green Hydrogen Production: The Case of Iraq
Mar 2023
Publication
The study proposes a comprehensive framework to support the development of green hydrogen production including the establishment of legal and regulatory frameworks investment incentives and public-private partnerships. Using official and public data from government agencies the potential of renewable energy sources is studied and some reasonable assumptions are made so that a full study and evaluation of hydrogen production in the country can be done. The information here proves beyond a doubt that renewable energy makes a big difference in making green hydrogen. This makes the country a leader in the field of making green hydrogen. Based on what it found this research suggests a way for the country to have a green hydrogen economy by 2050. It is done in three steps: using green hydrogen as a fuel for industry using green hydrogen in fuel cells and selling hydrogen. On the other hand the research found that making green hydrogen that can be used in Iraq and other developing countries is hard. There are technological economic and social problems as well as policy consequences that need to be solved.
The Role of Hydrogen in the Visegrad Group Approach to Energy Transition
Oct 2022
Publication
Hydrogen is an energy carrier in which hopes are placed for an easier achievement of climate neutrality. Together with electrification energy efficiency development and RES hydrogen is expected to enable the ambitious energy goals of the European Green Deal. Hence the aim of the article is to query the development of the hydrogen economy in the Visegrad Group countries (V4). The study considers six diagnostic features: sources of hydrogen production hydrogen legislation financial mechanisms objectives included in the hydrogen strategy environmental impact of H2 and costs of green hydrogen investments. The analysis also allowed to indicate the role that hydrogen will play in the energy transition process of the V4 countries. The analysis shows that the V4 countries have similar approaches to the development of the hydrogen market but the hydrogen strategies published by each of the Visegrad countries are not the same. Each document sets goals based on the hydrogen production to date and the specifics of the domestic energy and transport sectors as there are no solutions that are equally effective for all. Poland’s hydrogen strategy definitely stands out the strongest.
Analysis of the Implementation of Functional Hydrogen Assumptions in Poland and Germany
Nov 2022
Publication
The use of hydrogen exists in various sectors in Poland and Germany. Hydrogen can be used in industry transport decarbonisation of the Polish steel industry and as one of the low-emission alternatives to the existing coal applications in this sector. Limiting climate change requires efforts on a global scale from all countries of the world. Significant economic benefits will be realized by stimulating the development of new technologies to deal with climate change. The scenarios show an increasing demand for industrial hydrogen in the future. The key is to replace gray hydrogen with green and to convert industrial processes which will create additional hydrogen demand. The condition for the development of a green hydrogen economy is access to adequate installed capacity in renewable energy. Germany will become the leading market in the era of energy transformation in the coming years. The implementation of the hydrogen assumptions in Poland is possible to a greater extent by the efforts of entrepreneurs
Investigation on Green Hydrogen Generation Devices Dedicated for Integrated Renewable Energy Farm: Solar and Wind
Oct 2022
Publication
This study presents a comprehensive methodology to evaluate plants that integrate renewable energy sources and hydrogen generation devices. The paper focuses on presenting the methods for devices’ operation assessment taking into account the annual operation. Multiple effectiveness indices have been presented. On the basis of experimental investigation with the hydrogen generator the methods for assessing its operation during start-up phase and sudden change in the supply current were proposed. The results of the experiments and the provided mathematical models show that dynamics of the hydrogen generator should be taken into account when selecting the suitable device for cooperation with variable renewable energy. It is especially important for multiple start-ups throughout the day due to significant differences in the amount of hydrogen produced by devices characterized by the same efficiency yet various time constants. Methodology for selecting the optimal nominal power for hydrogen generator to cooperate with given renewable sources was developed. It was proven the optimal power depends on the type of the renewable source and minimal load of the hydrogen generator. Several case studies including the integration of wind and solar energy farms to yield a 10 MW renewable energy farm were considered and the minimal load of the hydrogen generator impacts the annual operation of the device has been presented. The paper provides a set of tools to contribute to the development of sustainable energy plants. The methods proposed in this paper are universal and can be used for various renewable energy sources.
Fuel Cells in Road Vehicles
Nov 2022
Publication
Issues related to the reduction of the environmental impact of means of road transport by the use of electric motors powered by Proton Exchange Membrane (PEM) fuel cells are presented in this article. The overall functional characteristics of electric vehicles are presented as well as the essence of the operation of a fuel cell. On the basis of analyzing the energy conversion process significant advantages of electric drive are demonstrated especially in vehicles for urban and suburban applications. Moreover the analyzed literature indicated problems of controlling and maintaining fuel cell power caused by its highest dynamic and possible efficiency. This control was related to the variable load conditions of the fuel cell vehicle (FCV) engine. The relationship with the conventional dependencies in the field of vehicle dynamics is demonstrated. The final part of the study is related to the historical outline and examples of already operating fuel cell systems using hydrogen as an energy source for energy conversion to power propulsion vehicle’s engines. In conclusion the necessity to conduct research in the field of methods for controlling the power of fuel cells that enable their effective adaptation to the temporary load resulting from the conditions of vehicle motion is indicated.
The Potential of Fuel Cells as a Drive Source of Maritime Transport
Nov 2017
Publication
The state of environmental pollution brought about as a result of the modern civilization has been monitored in the interests of the environment and human health since the seventies of the last century. Ensuring the energy security is one of the most basic existential requirements for a functional civilized society. The growing civilizational needs caused by broadly understood development generate demand for the production of all kinds of goods in all sectors of the economy as well as world-wide information transfer. The current energy demand is mostly covered using fossil fuels such as coal oil and natural gas. Some of the energy demand is covered by the energy generated in nuclear reactions and a small part of it comes from renewable energy sources. Energy derived from fossil fuels is inevitably associated with fuel oxidation processes. These processes in addition to generating heat are responsible for the emission of harmful compounds to the atmosphere: carbon monoxide carbon dioxide nitrogen oxides hydrocarbons and particulate matter. These pollutants pose a serious threat to the people as well as the environment in which they live. Due to the large share of fossil fuel energy generation in the process of combustion it becomes necessary to seek other means of obtaining the so-called "clean energy". Fuel cells may have a very high potential in this respect. Their development has enabled attempts to use them in all modes of transport. An important factor in the development of fuel cells is their relatively high efficiency and the coinciding strictening of the emission norms from internal combustion engines used to power maritime transport. Therefore the aim of this article has been to assess the potential of fuel cells as a main source of propulsion power source. A review of the designs of fuel cell systems and their use was performed. The article summarizes the assessment of the potential role of fuel cells as a power source of maritime transport.
An Analysis of the Competitiveness of Hydrogen Storage and Li-ion Batteries Based on Price Arbitrage in the Day-ahead Market
Jul 2022
Publication
Acceleration of the hydrogen economy is being observed on a global scale. It is considered to be a potential solution to the problems with high-carbon energy industry and transport systems. The potential of production cost-competitiveness and opportunities are currently being investigated to provide insights to policymakers researchers and industry. In this context this study makes a quantitative assessment of the competitiveness of hydrogen storage compared to Li-ion batteries based on price arbitrage in the day-ahead market. Two scenarios that form the boundaries of rational decision-making regarding the charging and discharging of energy storage are considered. The first one assumes the charging and discharging of energy storage facilities over the same hours throughout the entire year. The selection of these hours is based on historical electricity prices. The second scenario assumes charge and discharge during historical daily minimum and maximum prices. The results show that NPV is below zero for both technologies when current values of investment expenditure are assumed. The outcomes of sensitivity analysis indicate that only a substantial reduction of investment expenditure could improve the financial results of the Li-ion batteries (NPV>0). The investigation also shows that even simplified charge and discharge over the same hours allows one to achieve 47% (hydrogen) and 70% (Li-ion batteries) of the maximum operating profit when the perfect foresight of prices is applied. In each case NPV for Li-ion technology is significantly higher than for hydrogen; for example for a 1 MWh and 1 MWout storage system NPV is EUR -4.85 million in the case of hydrogen and with Li-ion NPV is EUR -0.23 million. Consequently the application of expensive decision support systems in small systems may be unprofitable. The increase in profits may not cover the cost of developing and introducing such a system.
Socio-economic Aspects of Hydrogen Energy: An Integrative Review
Apr 2023
Publication
Hydrogen can be recognized as the most plausible fuel for promoting a green environment. Worldwide developed and developing countries have established their hydrogen research investment and policy frameworks. This analysis of 610 peer-reviewed journal articles from the last 50 years provides quantitative and impartial insight into the hydrogen economy. By 2030 academics and business professionals believe that hydrogen will complement other renewable energy (RE) sources in the energy revolution. This study conducts an integrative review by employing software such as Bibliometrix R-tool and VOSviewer on socio-economic consequences of hydrogen energy literature derived from the Scopus database. We observed that most research focuses on multidisciplinary concerns such as generation storage transportation application feasibility and policy development. We also present the conceptual framework derived from in-depth literature analysis as well as the interlinkage of concepts themes and aggregate dimensions to highlight research hotspots and emerging patterns. In the future factors such as green hydrogen generation hydrogen permeation and leakage management efficient storage risk assessment studies blending and techno-economic feasibility shall play a critical role in the socio-economic aspects of hydrogen energy research.
Towards Sustainable Transport: Techno-Economic Analysis of Investing in Hydrogen Buses in Public Transport in the Selected City of Poland
Dec 2022
Publication
The production storage and use of hydrogen for energy purposes will become increasingly important during the energy transition. One way to use hydrogen is to apply it to power vehicles. This green technological solution affects low-emissions transport which is beneficial and important especially in cities. The authors of this article analyzed the use of hydrogen production infrastructure for bus propulsion in the city of Katowice (Poland). The methods used in the study included a greedy algorithm and cost methods which were applied for the selection of vehicles and identification of the infrastructure for the production storage and refueling of hydrogen as well as to conduct the economic analysis during this term. The article presented the complexity of the techno-economic analysis of the infrastructure and its installation. The key element was the selection of the number of vehicles to the hydrogen production possibilities of an electrolyser and capabilities of the storage and charging infrastructure.
Life Cycle Assessment of Hydrogen Production from Coal Gasification as an Alternative Transport Fuel
Dec 2022
Publication
The gasification of Polish coal to produce hydrogen could help to make the country independent of oil and gas imports and assist in the rational energy transition from gray to green hydrogen. When taking strategic economic or legislative decisions one should be guided not only by the level of CO2 emissions from the production process but also by other environmental impact factors obtained from comprehensive environmental analyses. This paper presents an analysis of the life cycle of hydrogen by coal gasification and its application in a vehicle powered by FCEV cells. All the main stages of hydrogen fuel production by Shell technology as well as hydrogen compression and transport to the distribution point are included in the analyses. In total two fuel production scenarios were considered: with and without sequestration of the carbon dioxide captured in the process. Life cycle analysis was performed according to the procedures and assumptions proposed in the FC-Hy Guide Guidance Document for performing LCAs on Fuel Cells and H2 Technologies by the CML baseline method. By applying the CO2 sequestration operation the GHG emissions rate for the assumed functional unit can be reduced by approximately 44% from 34.8 kg CO2-eq to 19.5 kg CO2-eq but this involves a concomitant increase in the acidification rate from 3.64·10−2 kg SO2-eq to 3.78·10−2 kg SO2-eq in the eutrophication index from 5.18·10−2 kg PO3− 4-eq to 5.57·10−2 kg PO3− 4-eq and in the abiotic depletion index from 405 MJ to 414 MJ and from 1.54·10−5 kg Sbeq to 1.61·10−5 kg Sbeq.
Investigating the Impact of Economic Uncertainty on Optimal Sizing of Grid-Independent Hybrid Renewable Energy Systems
Aug 2021
Publication
One of the many barriers to decarbonization and decentralization of the energy sector in developing countries is the economic uncertainty. As such this study scrutinizes economics of three grid-independent hybrid renewable-based systems proposed to co-generate electricity and heat for a small-scale load. Accordingly the under-study systems are simulated and optimized with the aid of HOMER Pro software. Here a 20-year average value of discount and inflation rates is deemed a benchmark case. The techno-economic-environmental and reliability results suggest a standalone solar/wind/electrolyzer/hydrogen-based fuel cell integrated with a hydrogen-based boiler system is the best alternative. Moreover to ascertain the impact of economic uncertainty on optimal unit sizing of the nominated model the fluctuations of the nominal discount rate and inflation respectively constitute within the range of 15–20% and 10–26%. The findings of economic uncertainty analysis imply that total net present cost (TNPC) fluctuates around the benchmark value symmetrically between $478704 and $814905. Levelized energy cost varies from an amount 69% less than the benchmark value up to two-fold of that. Furthermore photovoltaic (PV) optimal size starts from a value 23% less than the benchmark case and rises up to 55% more. The corresponding figures for wind turbine (WT) are respectively 21% and 29%. Eventually several practical policies are introduced to cope with economic uncertainty.
A Hybrid Energy Storage System Using Compressed Air and Hydrogen as the Energy Carrier
Feb 2020
Publication
In this paper an innovative concept of an energy storage system that combines the idea of energy storage through the use of compressed air and the idea of energy storage through the use of hydrogen (with its further conversion to synthetic natural gas) has been proposed. The thermal integration of two sub-systems allows for efficient storage of large amounts of energy based on the use of pressure tanks with limited volumes. A thermodynamic assessment of the integrated hybrid system was carried out. For the assumed operation parameters an energy storage efficiency value of 38.15% was obtained which means the technology is competitive with intensively developed pure hydrogen energy storage technologies. The results obtained for the hybrid system were compared to the results obtained for three reference systems each of which uses hydrogen generators. The first is a typical Power-to-H2-to-Power system which integrates hydrogen generators with a fuel cell system. The other two additionally use a compressed air energy storage installation. In the first case the compressed air energy storage system consists of a diabatic system. In the second case the compressed air energy storage system is adiabatic. The article has discussed the disadvantages and advantages of all the analyzed systems.
The Impact of Economic, Energy, and Environmental Factors on the Development of the Hydrogen Economy
Aug 2021
Publication
This article attempts to model interdependencies between socio-economic energy and environmental factors with selected data characterizing the development of the hydrogen economy. The study applies Spearman’s correlation and a linear regression model to estimate the influence of gross domestic product population final energy consumption renewable energy and CO2 emission on chosen hydrogen indicators—production patents energy technology research development and demonstration budgets. The study was conducted in nine countries selected for their actions towards a hydrogen economy based on analyses of national strategies policies research and development programs and roadmaps. The results confirm the statistically significant impact of the chosen indicators which are the drivers for the development of the hydrogen economy from 2008 to 2018. Moreover the empirical results show that different characteristics in each country contribute to the development of the hydrogen economy vision
A Promising Cobalt Catalyst for Hydrogen Production
Mar 2022
Publication
In this work a metal cobalt catalyst was synthesized and its activity in the hydrogen production process was tested. The substrates were water and ethanol. Activity tests were conducted at a temperature range of 350–600 °C water to ethanol molar ratio of 3 to 5 and a feed flow of 0.4 to 1.2 mol/h. The catalyst had a specific surface area of 1.75 m2/g. The catalyst was most active at temperatures in the range of 500–600 °C. Under the most favorable conditions the ethanol conversion was 97% the hydrogen production efficiency was 4.9 mol (H2)/mol(ethanol) and coke production was very low (16 mg/h). Apart from hydrogen and coke CO2 CH4 CO and traces of C2H2 and C2H4 were formed.
Domestic Gas Meter Durability in Hydrogen and Natural Gas Mixtures
Nov 2021
Publication
Blending hydrogen into the natural gas infrastructure is becoming a very promising practice to increase the exploitation of renewable energy sources which can be used to produce “green” hydrogen. Several research projects and field experiments are currently aimed at evaluating the risks associated with utilization of the gas blend in end-use devices such as the gas meters. In this paper the authors present the results of experiments aimed at assessing the effect of hydrogen injection in terms of the durability of domestic gas meters. To this end 105 gas meters of different measurement capabilities and manufacturers both brand-new and withdrawn from service were investigated in terms of accuracy drift after durability cycles of 5000 and 10000 h with H2NG mixtures and H2 concentrations of 10% and 15%. The obtained results show that there is no metrologically significant or statistically significant influence of hydrogen content on changes in gas meter indication errors after subjecting the meters to durability testing with a maximum of 15% H2 content over 10000 h. A metrologically significant influence of the long-term operation of the gas meters was confirmed but it should not be made dependent on the hydrogen content in the gas. No safety problems related to the loss of external tightness were observed for either the new or 10-year-old gas meters.
Efficient Plasma Technology for the Production of Green Hydrogen from Ethanol and Water
Apr 2022
Publication
This study concerns the production of hydrogen from a mixture of ethanol and water. The process was conducted in plasma generated by a spark discharge. The substrates were introduced in the liquid phase into the reactor. The gaseous products formed in the spark reactor were hydrogen carbon monoxide carbon dioxide methane acetylene and ethylene. Coke was also produced. The energy efficiency of hydrogen production was 27 mol(H2 )/kWh and it was 36% of the theoretical energy efficiency. The high value of the energy efficiency of hydrogen production was obtained with relatively high ethanol conversion (63%). In the spark discharge it was possible to conduct the process under conditions in which the ethanol conversion reached 95%. However this entailed higher energy consumption and reduced the energy efficiency of hydrogen production to 8.8 mol(H2 )/kWh. Hydrogen production increased with increasing discharge power and feed stream. However the hydrogen concentration was very high under all tested conditions and ranged from 57.5 to 61.5%. This means that the spark reactor is a device that can feed fuel cells the power load of which can fluctuate.
Laser Induced Hydrogen Emission from Ethanol with Dispersed Graphene Particles
Apr 2021
Publication
Efficient hydrogen emission from ethanol with disperse graphene foam particles by using a continuous wave infrared laser diode is reported. The products of ethanol dissociation - hydrogen methane and carbon oxide were measured using mass spectrometry. It was found that the most efficient generation of hydrogen was observed when graphene particles were irradiated by a focused laser beam proceeded at the surface of ethanol solution. The process was assisted by intense white light emission resulting from the laser induced multiphoton ionization of graphene combined with the simultaneous emission of hot electrons. The hot electron emission enables the efficient dissociation of ethanol molecules located close to the solution surface with graphene foam particles.
Investigation of Hydrogen Embrittlement Susceptibility and Fracture Toughness Drop after in situ Hydrogen Cathodic Charging for an X65 Pipeline Steel
Apr 2020
Publication
The present research focuses on the investigation of an in situ hydrogen charging effect during Crack Tip Opening Displacement testing (CTOD) on the fracture toughness properties of X65 pipeline steel. This grade of steel belongs to the broader category of High Strength Low Alloy Steels (HSLA) and its microstructure consists of equiaxed ferritic and bainitic grains with a low volume fraction of degenerated pearlite islands. The studied X65 steel specimens were extracted from pipes with 19.15 mm wall thickness. The fracture toughness parameters were determined after imposing the fatigue pre-cracked specimens on air on a specific electrolytic cell under a slow strain rate bending loading (according to ASTM G147-98 BS7448 and ISO12135 standards). Concerning the results of this study in the first phase the hydrogen cations’ penetration depth the diffusion coefficient of molecular and atomic hydrogen and the surficial density of blisters were determined. Next the characteristic parameters related to fracture toughness (such as J KQ CTODel CTODpl) were calculated by the aid of the Force-Crack Mouth Open Displacement curves and the relevant analytical equations.
Validation of Selected Optical Methods for Assessing Polyethylene (PE) Liners Used in High Pressure Vessels for Hydrogen Storage
Jun 2021
Publication
A polyethylene (PE) liner is the basic element in high-pressure type 4 composite vessels designed for hydrogen or compressed natural gas (CNG) storage systems. Liner defects may result in the elimination of the whole vessel from use which is very expensive both at the manufacturing and exploitation stage. The goal is therefore the development of efficient non-destructive testing (NDT) methods to test a liner immediately after its manufacturing before applying a composite reinforcement. It should be noted that the current regulations codes and standards (RC&S) do not specify liner testing methods after manufacturing. It was considered especially important to find a way of locating and assessing the size of air bubbles and inclusions and the field of deformations in liner walls. It was also expected that these methods would be easily applicable to mass-produced liners. The paper proposes the use of three optical methods namely visual inspection digital image correlation (DIC) and optical fiber sensing based on Bragg gratings (FBG). Deformation measurements are validated with finite element analysis (FEA). The tested object was a prototype of a hydrogen liner for high-pressure storage (700 bar). The mentioned optical methods were used to identify defects and measure deformations.
Hydrogen Production During Direct Cellulose Fermentation by Mixed Bacterial Culture: The Relationship Between the Key Process Parameters Using Response Surface Methodology
Jun 2021
Publication
Dark fermentation is a promising method to produce hydrogen from lignocellulosic biomass. This study assessed the influence of temperature phosphate buffer concentration and substrate concentration on direct hydrogen production form cellulose using response surface methodology. Mixed bacterial culture was successfully enriched on cellulose and used as an inoculum for hydrogen production. The model indicated that the highest cumulative hydrogen production (CHP) of 2.14 L H2/Lmedium could be obtained at 13.5 gcellulose/L 79.5 mM buffer and 32.6 °C. However hydrogen yield is then only 0.58 mol H2/molhexose due to low substrate conversion efficiency (SCE). Simultaneous optimization of CHP and SCE with desirability function approach resulted in the H2 yield of 2.71 ± 0.1 mol H2/molhexose and 93.8 ± 1.8% SCE at 3.35 gcellulose/L 69 mM buffer and 32.9 °C. Phosphate concentration above 80 mM decreased H2 production but had positive effect on cellulose consumption. The bacterial community analysis showed that Ruminiclostridium papyrosolvens was responsible for cellulose hydrolysis. Lachnoclostridium sp. was positively correlated with ethanol production at high phosphate buffer concentration while Caproiciproducens sp. with caproate production at low buffer concentration. The obtained results opens the possibility of simultaneous hydrogen and caproate production from cellulosic substrates.
Models of Delivery of Sustainable Public Transportation Services in Metropolitan Areas–Comparison of Conventional, Battery Powered and Hydrogen Fuel-Cell Drives
Nov 2021
Publication
The development of public transport systems is related to the implementation of modern and low-carbon vehicles. Over the last several years there has been a clear progress in this field. The number of electric buses has increased and the first solutions in the area of hydrogen fuel cells have been implemented. Unfortunately the implementation of these technologies is connected with significant financial expenditure. The goal of the article is the analysis of effectiveness of financial investment consisting in the purchase of 30 new public transport buses (together with the necessary infrastructure–charging stations). The analysis has been performed using the NPV method for the period of 10 years. Discount rate was determined on 4% as recommended by the European Commission for this type of project. It is based on the case study of the investment project carried out by Metropolis GZM in Poland. The article determines and compares the efficiency ratios for three investment options-purchase of diesel-powered battery-powered and hydrogen fuel-cell electric vehicles. The results of the analysis indicate that the currently high costs of vehicle purchase and charging infrastructure are a significant barrier for the implementation of battery-powered and hydrogen fuel-cell buses. In order to meet the transport policy goals related to the exchange of traditional bus stock to more eco-friendly vehicles it is necessary to involve public funds for the purpose of financing the investment activities.
A Comprehensive Overview of Hydrogen-Fueled Internal Combustion Engines: Achievements and Future Challenges
Oct 2021
Publication
This paper provides a comprehensive review and critical analysis of the latest research results in addition to an overview of the future challenges and opportunities regarding the use of hydrogen to power internal combustion engines (ICEs). The experiences and opinions of various international research centers on the technical possibilities of using hydrogen as a fuel in ICE are summarized. The advantages and disadvantages of the use of hydrogen as a solution are described. Attention is drawn to the specific physical chemical and operational properties of hydrogen for ICEs. A critical review of hydrogen combustion concepts is provided drawing on previous research results and experiences described in a number of research papers. Much space is devoted to discussing the challenges and opportunities associated with port and direct hydrogen injection technology. A comparison of different fuel injection and ignition strategies and the benefits of using the synergies of selected solutions are presented. Pointing to the previous experiences of various research centers the hazards related to incorrect hydrogen combustion such as early pre‐ignition late pre‐ignition knocking combustion and backfire are described. Attention is focused on the fundamental importance of air ratio optimization from the point of view of combustion quality NOx emissions engine efficiency and performance. Exhaust gas scrubbing to meet future emission regulations for hydrogen powered internal combustion engines is another issue that is considered. The article also discusses the modifications required to adapt existing engines to run on hydrogen. Referring to still‐unsolved problems the reliability challenges faced by fuel injection systems in particular are presented. An analysis of more than 150 articles shows that hydrogen is a suitable alternative fuel for spark‐ignition engines. It will significantly improve their performance and greatly reduce emissions to a fraction of their current level. However its use also has some drawbacks the most significant of which are its high NOx emissions and low power output and problems in terms of the durability and reliability of hydrogen‐fueled engines.
Fuel Cell Electric Vehicle (FCEV) Energy Flow Analysis in Real Driving Conditions (RDC)
Aug 2021
Publication
The search for fossil fuels substitutes forces the use of new propulsion technologies applied to means of transportation. Already widespread hybrid vehicles are beginning to share the market with hydrogen-powered propulsion systems. These systems are fuel cells or internal combustion engines powered by hydrogen fuel. In this context road tests of a hydrogen fuel cell drive were conducted under typical traffic conditions according to the requirements of the RDE test. As a result of the carried-out work energy flow conditions were presented for three driving phases (urban rural and motorway). The different contributions to the vehicle propulsion of the hydrogen system and the electric system in each phase of the driving route are indicated. The characteristic interaction of power train components during varying driving conditions was presented. A wide variation in the contribution of the fuel cell and the battery to the vehicle’s propulsion was identified. In urban conditions the share of the fuel cell in the vehicle’s propulsion is more than three times that contributed by the battery suburban—7 times highway—28 times. In the entire test the ratio of FC/BATT use was more than seven while the energy consumption was more than 22 kWh/100 km. The amounts of battery energy used and recovered were found to be very close to each other under RDE test conditions.
Assessment of Operational Degradation of Pipeline Steels
Jun 2021
Publication
This paper summarizes a series of the authors’ research in the field of assessing the operational degradation of oil and gas transit pipeline steels. Both mechanical and electrochemical properties of steels are deteriorated after operation as is their resistance to environmentally-assisted cracking. The characteristics of resistance to brittle fracture and stress corrosion cracking decrease most intensively which is associated with a development of in-bulk dissipated microdamages of the material. The most sensitive indicators of changes in the material’s state caused by degradation are impact toughness and fracture toughness by the J-integral method. The degradation degree of pipeline steels can also be evaluated nondestructively based on in-service changes in their polarization resistance and potential of the fracture surface. Attention is drawn to hydrogenation of a pipe wall from inside as a result of the electrochemical interaction of pipe metal with condensed moisture which facilitates operational degradation of steel due to the combined action of operating stresses and hydrogen. The development of microdamages along steel texture was evidenced metallographically as a trend to the selective etching of boundaries between adjacent bands of ferrite and pearlite and fractographically by revealing brittle fracture elements on the fracture surfaces namely delamination and cleavage indicating the sites of cohesion weakening between ferrite and pearlite bands. The state of the X52 steel in its initial state and after use for 30 years was assessed based on the numerical simulation method.
Prediction of Gaseous Products from Refuse Derived Fuel Pyrolysis Using Chemical Modelling Software - Ansys Chemkin-Pro
Nov 2019
Publication
There can be observed global interest in waste pyrolysis technology due to low costs and availability of raw materials. At the same time there is a literature gap in forecasting environmental effects of thermal waste treatment installations. In the article was modelled the chemical composition of pyrolysis gas with main focus on the problem in terms of environmental hazards. Not only RDF fuel was analysed but also selected waste fractions included in its composition. This approach provided comprehensive knowledge about the chemical composition of gaseous pyrolysis products which is important from the point of view of the heterogeneity of RDF fuel. The main goal of this article was to focus on the utilitarian aspect of the obtained calculation results. Final results can be the basis for estimating ecological effects both for existing and newly designed installations.
Pyrolysis process was modelled using Ansys Chemkin-Pro software. The investigation of the process were carried out for five different temperatures (700 750 800 850 and 900 °C). As an output the mole fraction of H2 H2O CH4 C2H2C2H4 C3H6 C3H8 CO CO2 HCl and H2S were presented. Additionally the reaction pathways for selected material were presented.
Based on obtained results it was established that the residence time did not influenced on the concentration of products contrary to temperature. The chemical composition of pyrolytic gas is closely related to wastes origin. The application of Chemkin-Pro allowed the calculation of formation for each products at different temperatures and formulation of hypotheses on the reaction pathways involved during pyrolysis process. Further based on the obtained results confirmed the possibilities of using pyrolysis gas from RDF as a substitute for natural gas in energy consumption sectors. Optimization of the process can be conducted with low financial outlays and reliable results by using calculation tools. Moreover it can be predicted negative impact of obtained products on the future installation.
Pyrolysis process was modelled using Ansys Chemkin-Pro software. The investigation of the process were carried out for five different temperatures (700 750 800 850 and 900 °C). As an output the mole fraction of H2 H2O CH4 C2H2C2H4 C3H6 C3H8 CO CO2 HCl and H2S were presented. Additionally the reaction pathways for selected material were presented.
Based on obtained results it was established that the residence time did not influenced on the concentration of products contrary to temperature. The chemical composition of pyrolytic gas is closely related to wastes origin. The application of Chemkin-Pro allowed the calculation of formation for each products at different temperatures and formulation of hypotheses on the reaction pathways involved during pyrolysis process. Further based on the obtained results confirmed the possibilities of using pyrolysis gas from RDF as a substitute for natural gas in energy consumption sectors. Optimization of the process can be conducted with low financial outlays and reliable results by using calculation tools. Moreover it can be predicted negative impact of obtained products on the future installation.
Recent Progress on Hydrogen Storage and Production Using Chemical Hydrogen Carriers
Jul 2022
Publication
Depleting fossil fuel resources and anthropogenic climate changes are the reasons for the intensive development of new sustainable technologies based on renewable energy sources. One of the most promising strategies is the utilization of hydrogen as an energy vector. However the limiting issue for large-scale commercialization of hydrogen technologies is a safe efficient and economical method of gas storage. In industrial practice hydrogen compression and liquefaction are currently applied; however due to the required high pressure (30–70 MPa) and low temperature (−253 ◦C) both these methods are intensively energy consuming. Chemical hydrogen storage is a promising alternative as it offers safe storage of hydrogen-rich compounds under ambient conditions. Although many compounds serving as hydrogen carriers are considered some of them do not have realistic perspectives for large-scale commercialization. In this review the three most technologically advanced hydrogen carriers—dimethyl ether methanol and dibenzyltoluene—are discussed and compared. Their potential for industrial application in relation to the energy storage transport and mobility sectors is analyzed taking into account technological and environmental aspects.
Mobile Nuclear-Hydrogen Synergy in NATO Operations
Nov 2021
Publication
An uninterrupted chain of energy supplies is the core of every activity without exception for the operations of the North Atlantic Treaty Organization. A robust and efficient energy supply is fundamental for the success of missions and a guarantee of soldier safety. However organizing a battlefield energy supply chain is particularly challenging because the risks and threats are particularly high. Moreover the energy supply chain is expected to be flexible according to mission needs and able to be moved quickly if necessary. In line with ongoing technological changes the growing popularity of hydrogen is undeniable and has been noticed by NATO as well. Hydrogen is characterised by a much higher energy density per unit mass than other fuels which means that hydrogen fuel can increase the range of military vehicles. Consequently hydrogen could eliminate the need for risky refuelling stops during missions as well as the number of fatalities associated with fuel delivery in combat areas. Our research shows that a promising prospect lies in the mobile technologies based on hydrogen in combination with use of the nuclear microreactors. Nuclear microreactors are small enough to be easily transported to their destinations on heavy trucks. Depending on the design nuclear microreactors can produce 1–20 MW of thermal energy that could be used directly as heat or converted to electric power or for non-electric applications such as hydrogen fuel production. The aim of the article is to identify a model of nuclear-hydrogen synergy for use in NATO operations. We identify opportunities and threats related to mobile energy generation with nuclear-hydrogen synergy in NATO operations. The research presented in this paper identifies the best method of producing hydrogen using a nuclear microreactor. A popular and environmentally “clean” solution is electrolysis due to the simplicity of the process. However this is less efficient than chemical processes based on for example the sulphur-iodine cycle. The results of the research presented in this paper show which of the methods and which cycle is the most attractive for the production of hydrogen with the use of mini-reactors. The verification criteria include: the efficiency of the process its complexity and the residues generated as a result of the process (waste)—all taking into account usage for military purposes.
Selection of Underground Hydrogen Storage Risk Assessment Techniques
Dec 2021
Publication
The article proposes the use of the analytic hierarchy process (AHP) method to select a risk assessment technique associated with underground hydrogen storage. The initial choosing and ranking of risk assessment techniques can be considered as a multi-criteria decision problem. The usage of a decision model based on six criteria is proposed. A ranking of methods for estimating the risks associated with underground hydrogen storage is presented. The obtained results show that the application of the AHP-based approach may be a useful tool for selecting the UHS risk assessment technique. The proposed method makes it possible to make an objective decision of the most satisfactory approach from the point of view of all the adopted decision criteria regarding the selection of the best risk assessment technique.
Hydrogen Intensified Synthesis Processes to Valorise Process Off-gases in Integrated Steelworks
Jul 2023
Publication
Ismael Matino,
Stefano Dettori,
Amaia Sasiain Conde,
Valentina Colla,
Alice Petrucciani,
Antonella Zaccara,
Vincenzo Iannino,
Claudio Mocci,
Alexander Hauser,
Sebastian Kolb,
Jürgen Karl,
Philipp Wolf-Zoellner,
Stephane Haag,
Michael Bampaou,
Kyriakos Panopoulos,
Eleni Heracleousa,
Nina Kieberger,
Katharina Rechberger,
Leokadia Rog and
Przemyslaw Rompalski
Integrated steelworks off-gases are generally exploited to produce heat and electricity. However further valorization can be achieved by using them as feedstock for the synthesis of valuable products such as methane and methanol with the addition of renewable hydrogen. This was the aim of the recently concluded project entitled “Intelligent and integrated upgrade of carbon sources in steel industries through hydrogen intensified synthesis processes (i3 upgrade)”. Within this project several activities were carried out: from laboratory analyses to simulation investigations from design development and tests of innovative reactor concepts and of advanced process control to detailed economic analyses business models and investigation of implementation cases. The final developed methane production reactors arerespectively an additively manufactured structured fixedbed reactor and a reactor setup using wash-coated honeycomb monoliths as catalyst; both reactors reached almost full COx conversion under slightly over-stoichiometric conditions. A new multi-stage concept of methanol reactor was designed commissioned and extensively tested at pilot-scale; it shows very effective conversion rates near to 100% for CO and slightly lower for CO2 at one-through operation for the methanol synthesis. Online tests proved that developed dispatch controller implements a smooth control strategy in real time with a temporal resolution of 1 min and a forecasting horizon of 2 h. Furthermore both offline simulations and cost analyses highlighted the fundamental role of hydrogen availability and costs for the feasibility of i 3 upgrade solutions and showed that the industrial implementation of the i 3 upgrade solutions can lead to significant environmental and economic benefits for steelworks especially in case green electricity is available at an affordable price.
Hydrogen Storage in Geological Formations—The Potential of Salt Caverns
Jul 2022
Publication
Hydrogen-based technologies are among the most promising solutions to fulfill the zero-emission scenario and ensure the energy independence of many countries. Hydrogen is considered a green energy carrier which can be utilized in the energy transport and chemical sectors. However efficient and safe large-scale hydrogen storage is still challenging. The most frequently used hydrogen storage solutions in industry i.e. compression and liquefaction are highly energy-consuming. Underground hydrogen storage is considered the most economical and safe option for large-scale utilization at various time scales. Among underground geological formations salt caverns are the most promising for hydrogen storage due to their suitable physicochemical and mechanical properties that ensure safe and efficient storage even at high pressures. In this paper recent advances in underground storage with a particular emphasis on salt cavern utilization in Europe are presented. The initial experience in hydrogen storage in underground reservoirs was discussed and the potential for worldwide commercialization of this technology was analyzed. In Poland salt deposits from the north-west and central regions (e.g. Rogóźno Damasławek Łeba) are considered possible formations for hydrogen storage. The Gubin area is also promising where 25 salt caverns with a total capacity of 1600 million Nm3 can be constructed.
Hydrogen Explosion Hazards Limitation in Battery Rooms with Different Ventilation Systems
Sep 2019
Publication
When charging most types of industrial lead-acid batteries hydrogen gas is emitted. A large number of batteries especially in relatively small areas/enclosures and in the absence of an adequate ventilation system may create an explosion hazard. This paper describes full scale tests in confined space which demonstrate conditions that can occur in a battery room in the event of a ventilation system breakdown. Over the course of the tests full scale hydrogen emission experiments were performed to study emission time and flammable cloud formation according to the assumed emission velocity. On this basis the characteristics of dispersion of hydrogen in the battery room were obtained. The CFD model Fire Dynamic Simulator (NIST) was used for confirmation that the lack of ventilation in a battery room can be the cause of an explosive atmosphere developing and leading to a potential huge explosive hazard. It was demonstrated that different ventilation systems provide battery rooms with varying efficiencies of hydrogen removal. The most effective type appeared to be natural ventilation which proved more effective than mechanical means.
Investigation of Praseodymium and Samarium Co-doped Ceria as an Anode Catalyst for DIR-SOFC Fueled by Biogas
Aug 2020
Publication
The Pr and Sm co-doped ceria (with up to 20 mol.% of dopants) compounds were examined as catalytic layers on the surface of SOFC anode directly fed by biogas to increase a lifetime and the efficiency of commercially available DIR-SOFC without the usage of an external reformer.
The XRD SEM and EDX methods were used to investigate the structural properties and the composition of fabricated materials. Furthermore the electrical properties of SOFCs with catalytic layers deposited on the Ni-YSZ anode were examined by a current density-time and current density-voltage dependence measurements in hydrogen (24 h) and biogas (90 h). Composition of the outlet gasses was in situ analysed by the FTIR-based unit.
It has been found out that Ce0.9Sm0.1O2-δ and Ce0.8Pr0.05Sm0.15O2-δ catalytic layers show the highest stability over time and thus are the most attractive candidates as catalytic materials in comparison with other investigated lanthanide-doped ceria enhancing direct internal reforming of biogas in SOFCs.
The XRD SEM and EDX methods were used to investigate the structural properties and the composition of fabricated materials. Furthermore the electrical properties of SOFCs with catalytic layers deposited on the Ni-YSZ anode were examined by a current density-time and current density-voltage dependence measurements in hydrogen (24 h) and biogas (90 h). Composition of the outlet gasses was in situ analysed by the FTIR-based unit.
It has been found out that Ce0.9Sm0.1O2-δ and Ce0.8Pr0.05Sm0.15O2-δ catalytic layers show the highest stability over time and thus are the most attractive candidates as catalytic materials in comparison with other investigated lanthanide-doped ceria enhancing direct internal reforming of biogas in SOFCs.
Remarkable Visible-light Induced Hydrogen Generation with ZnIn2S4 Microspheres/CuInS2 Quantum Dots Photocatalytic System
Oct 2020
Publication
A new and active material in the form of ZnIn2S4 microspheres decorated by CuInS2 quantum dots have been obtained by hydrothermal method for the first time. The optimum amount of CuInS2 quantum dots (1.13 wt.%) introduced into rection medium during ZnIn2S4 microspheres synthesis increased the photocatalytic H2 generation rate by 2.5 times than that of bare ZnIn2S4 photocatalysis under visible light irradiation. This sample exhibited strong photoactivity in the extended visible range up to 540 nm with 30.6% apparent quantum efficiency (λ = 420 nm).
Opportunities and Limitations of Hydrogen Energy in Poland against the Background of the European Union Energy Policy
Jul 2022
Publication
One of the strategic goals of developed countries is to significantly increase the share of renewable energy sources in electricity generation. However the process may be hindered by e.g. the storage and transport of energy from renewable sources. The European Union countries see the development of the hydrogen economy as an opportunity to overcome this barrier. Therefore since 2020 the European Union has been implementing a hydrogen strategy that will increase the share of hydrogen in the European energy mix from the current 2 percent to up to 13–14 percent by 2050. In 2021 following the example of other European countries the Polish government adopted the Polish Hydrogen Strategy until 2030 with an outlook until 2040 (PHS). However the implementation of the strategy requires significant capital expenditure and infrastructure modernisation which gives rise to question as to whether Poland is likely to achieve the goals set out in the Polish Hydrogen Strategy and European Green Deal. The subject of the research is an analysis of the sources of financing for the PHS against the background of solutions implemented by the EU countries and a SWOT/TOWS analysis on the hydrogen economy in Poland. The overall result of the SWOT/TOWS analysis shows the advantage of strengths and related opportunities. This allows for a positive assessment of the prospects for the hydrogen economy in Poland. Poland should continue its efforts to take advantage of the external factors (O/S) such as EU support an increased price competitiveness of hydrogen and the emergence of a competitive cross-border hydrogen market in Europe. At the same time the Polish authorities should not forget about the weaknesses and threats that may inhibit the development of the domestic hydrogen market. It is necessary to modernise the infrastructure; increase the share of renewable energy sources in hydrogen production; increase R&D expenditure and in particular to complete the negotiations related to the adoption of the Fit for 55 package.
Energy-Economic Assessment of Islanded Microgrid with Wind Turbine, Photovoltaic Field, Wood Gasifier, Battery, and Hydrogen Energy Storage
Sep 2022
Publication
Island energy systems are becoming an important part of energy transformation due to the growing needs for the penetration of renewable energy. Among the possible systems a combination of different energy generation technologies is a viable option for local users as long as energy storage is implemented. The presented paper describes an energy-economic assessment of an island system with a photovoltaic field small wind turbine wood chip gasifier battery and hydrogen circuit with electrolyzer and fuel cell. The system is designed to satisfy the electrical energy demand of a tourist facility in two European localizations. The operation of the system is developed and dynamically simulated in the Transient System Simulation (TRNSYS) environment taking into account realistic user demand. The results show that in Gdansk Poland it is possible to satisfy 99% of user demand with renewable energy sources with excess energy equal to 31% while in Agkistro Greece a similar result is possible with 43% of excess energy. Despite the high initial costs it is possible to obtain Simple Pay Back periods of 12.5 and 22.5 years for Gdansk and Agkistro respectively. This result points out that under a high share of renewables in the energy demand of the user the profitability of the system is highly affected by the local cost of energy vectors. The achieved results show that the system is robust in providing energy to the users and that future development may lead to an operation based fully on renewables.
Small-Scale Hybrid and Polygeneration Renewable Energy Systems: Energy Generation and Storage Technologies, Applications, and Analysis Methodology
Dec 2022
Publication
The energy sector is nowadays facing new challenges mainly in the form of a massive shifting towards renewable energy sources as an alternative to fossil fuels and a diffusion of the distributed generation paradigm which involves the application of small-scale energy generation systems. In this scenario systems adopting one or more renewable energy sources and capable of producing several forms of energy along with some useful substances such as fresh water and hydrogen are a particularly interesting solution. A hybrid polygeneration system based on renewable energy sources can overcome operation problems regarding energy systems where only one energy source is used (solar wind biomass) and allows one to use an all-in-one integrated systems in order to match the different loads of a utility. From the point of view of scientific literature medium and large-scale systems are the most investigated; nevertheless more and more attention has also started to be given to small-scale layouts and applications. The growing diffusion of distributed generation applications along with the interest in multipurpose energy systems based on renewables and capable of matching different energy demands create the necessity of developing an overview on the topic of small-scale hybrid and polygeneration systems. Therefore this paper provides a comprehensive review of the technology operation performance and economical aspects of hybrid and polygeneration renewable energy systems in small-scale applications. In particular the review presents the technologies used for energy generation from renewables and the ones that may be adopted for energy storage. A significant focus is also given to the adoption of renewable energy sources in hybrid and polygeneration systems designs/modeling approaches and tools and main methodologies of assessment. The review shows that investigations on the proposed topic have significant potential for expansion from the point of view of system configuration hybridization and applications.
Clean Hydrogen Is a Challenge for Enterprises in the Era of Low-Emission and Zero-Emission Economy
Jan 2023
Publication
Hydrogen can be considered an innovative fuel that will revolutionize the energy sector and enable even more complete use of the potential of renewable sources. The aim of the paper is to present the challenges faced by companies and economies that will produce and use hydrogen. Thanks to the use of hydrogen in the energy transport and construction sectors it will be possible to achieve climate neutrality by 2050. By 2050 global demand for hydrogen will increase to 614 million metric tons a year and thanks to the use of hydrogen in energy transport and construction it will be possible to achieve climate neutrality. Depending on the method of hydrogen production the processes used and the final effects several groups can be distinguished marked with different colors. It is in this area of obtaining friendly hydrogen that innovative possibilities for its production open up. The costs of hydrogen production are also affected by network fees national tax systems availability and prices of carbon capture utilization and storage installations energy consumption rates by electrolyzers and transport methods. It is planned that 1 kg of hydrogen will cost USD 1. The study used the desk research method which made it possible to analyze a huge amount of descriptive data and numerical data.
Co-gasification of Refuse-derived Fuels and Bituminous Coal with Oxygen/steam Blend to Hydrogen Rich Gas
May 2022
Publication
The gasification technology of refuse-derived fuels (RDF) can represent a future alternative to the global hydrogen production and a pathway for the development of the circular economy. The paper presents an innovative way of utilizing RDF through their oxygen/steam co-gasification with bituminous coal to hydrogen rich gas. Five different RDF samples (RDF1÷RDF5) were investigated. The in-depth analyses of the co-gasification of bituminous coal blends with different amounts of RDF (10 15 and 20%w/w) under various temperature conditions were conducted with the application of Hierarchical Clustering Analysis (HCA). The results of the research study revealed a decrease in the total gas yield as well as in the hydrogen yield observed with the increase in the RDF fraction in the fuel blend. The lowest hydrogen yield and the highest carbon conversion were noted for the co-gasification tests of coal blends with 20%w/w for all the studied RDFs. The SEM-EDS (Scanning Electron Microscopy with Energy Dispersive Spectroscopy) and WDXRF (Wavelength Dispersive X-ray Fluorescence) results showed a significantly higher H2 yield in RDF2 co-gasification with coal in comparison with all the remaining RDFs due to the higher concentration of calcium in the sample. The molecular structure analysis of polymers using Fourier transform infrared spectroscopy (FTIR) demonstrated that the most prevalent synthetic polymers in RDF2 are polyethylene terephthalate and polyvinyl chloride characterized by the lowest thermal stability compared to polyethylene and polypropylene.
Design, Development, and Performance of a 10 kW Polymer Exchange Membrane Fuel Cell Stack as Part of a Hybrid Power Source Designed to Supply a Motor Glider
Aug 2020
Publication
A 10 kW PEMFC (polymer exchange membrane fuel cell) stack consisting of two 5 kW modules (A) and (B) connected in series with a multi-function controller unit was constructed and tested. The electrical performance of the V-shaped PEMFC stack was investigated under constant and variable electrical load. It was found that the PEMFC stack was capable of supplying the required 10 kW of electrical power. An optimised purification process via ‘purge’ or humidification implemented by means of a short-circuit unit (SCU) control strategy enabled slightly improved performance. Online monitoring of the utilisation of the hydrogen system was developed and tested during the operation of the stack especially under variable electrical load. The air-cooling subsystem consisting of a common channel connecting two 5 kW PEMFC modules and two cascade axial fans was designed manufactured using 3D printing technology and tested with respect to the electrical performance of the device. The dependence of total partial-pressure drop vs. ratio of air volumetric flow for the integrated PEMFC stack with cooling devices was also determined. An algorithm of stack operation involving thermal humidity and energy management was elaborated. The safety operation and fault diagnosis of the PEMFC stack was also tested.
Seawater Treatment Technologies for Hydrogen Production by Electrolysis—A Review
Dec 2024
Publication
Green hydrogen produced by water electrolysis using renewable energy sources (RES) is an emerging technology that aligns with sustainable development goals and efforts to address climate change. In addition to energy electrolyzers require ultrapure water to operate. Although seawater is abundant on the Earth it must be desalinated and further purified to meet the electrolyzer’s feeding water quality requirements. This paper reviews seawater purification processes for electrolysis. Three mature and commercially available desalination technologies (reverse osmosis multiple-effect distillation and multi-stage flash) were examined in terms of working principles performance parameters produced water quality footprint and capital and operating expenditures. Additionally pretreatment and post-treatment techniques were explored and the brine management methods were investigated. The findings of this study can help guide the selection and design of water treatment systems for electrolysis.
Investigating PEM Fuel Cells as an Alternative Power Source for Electric UAVs: Modeling, Optimization, and Performance Analysis
Sep 2024
Publication
Unmanned aerial vehicles (UAVs) have become an integral part of modern life serving both civilian and military applications across various sectors. However existing power supply systems such as batteries often fail to provide stable long-duration flights limiting their applications. Previous studies have primarily focused on battery-based power which offers limited flight endurance due to lower energy densities and higher system mass. Proton exchange membrane (PEM) fuel cells present a promising alternative providing high power and efficiency without noise vibrations or greenhouse gas emissions. Due to hydrogen’s high specific energy which is substantially higher than that of combustion engines and battery-based alternatives UAV operational time can be significantly extended. This paper investigates the potential of PEM fuel cells as an alternative power source for electric propulsion in UAVs. This study introduces an adaptive fully functioning PEM fuel cell model developed using a reduced-order modeling approach and optimized for UAV applications. This research demonstrates that PEM fuel cells can effectively double the flight endurance of UAVs compared to traditional battery systems achieving energy densities of around 1700 Wh/kg versus 150–250 Wh/kg for batteries. Despite a slight increase in system mass fuel cells enable significantly longer UAV operations. The scope of this study encompasses the comparison of battery-based and fuel cell-based propulsion systems in terms of power mass and flight endurance. This paper identifies the limitations and optimal applications for fuel cells providing strong evidence for their use in UAVs where extended flight time and efficiency are critical.
Green Transformation of Mining towards Energy Self-Sufficiency in a Circular Economy—A Case Study
Jul 2024
Publication
This article presents the concept of green transformation of the coal mining sector. Pump stations that belong to Spółka Restrukturyzacji Kopal´n S.A. (SRK S.A. Bytom Poland) pump out approximately 100 million m3 of mine water annually. These pump stations protect neighboring mines and lower-lying areas from flooding and protect subsurface aquifers from contamination. The largest cost component of maintaining a pumping station is the expenditure for purchasing electricity. Investment towards renewable energy sources will reduce the environmental footprint of pumping station operation by reducing greenhouse gas emissions. The concept of liquidation of an exemplary mining site in the context of a circular economy by proposing the development/revitalization of a coal mine site is presented. This concept involves the construction of a complex consisting of photovoltaic farms combined with efficient energy storage in the form of green hydrogen produced by water electrolysis. For this purpose the potential of liquidated mining sites will be utilized including the use of pumped mine wastewater. This article is conceptual. In order to reach the stated objective a body of literature and legal regulations was analyzed and an empirical study was conducted. Various scenarios for the operation of mine pumping stations have been proposed. The options presented provide full or nearly full energy self-sufficiency of the proposed pumping station operation concept. The effect of applying any option for upgrading the pumping station could result in the creation of jobs that are alternatives to mining jobs and a guarantee of efficient asset management.
Is the Polish Solar-to-Hydrogen Pathway Green? A Carbon Footprint of AEM Electrolysis Hydrogen Based on an LCA
Apr 2023
Publication
Efforts to direct the economies of many countries towards low-carbon economies are being made in order to reduce their impact on global climate change. Within this process replacing fossil fuels with hydrogen will play an important role in the sectors where electrification is difficult or technically and economically ineffective. Hydrogen may also play a critical role in renewable energy storage processes. Thus the global hydrogen demand is expected to rise more than five times by 2050 while in the European Union a seven-fold rise in this field is expected. Apart from many technical and legislative barriers the environmental impact of hydrogen production is a key issue especially in the case of new and developing technologies. Focusing on the various pathways of hydrogen production the essential problem is to evaluate the related emissions through GHG accounting considering the life cycle of a plant in order to compare the technologies effectively. Anion exchange membrane (AEM) electrolysis is one of the newest technologies in this field with no LCA studies covering its full operation. Thus this study is focused on a calculation of the carbon footprint and economic indicators of a green hydrogen plant on the basis of a life cycle assessment including the concept of a solar-to-hydrogen plant with AEM electrolyzers operating under Polish climate conditions. The authors set the range of the GWP indicators as 2.73–4.34 kgCO2eq for a plant using AEM electrolysis which confirmed the relatively low emissivity of hydrogen from solar energy also in relation to this innovative technology. The economic profitability of the investment depends on external subsidies because as developing technology the AEM electrolysis of green hydrogen from photovoltaics is still uncompetitive in terms of its cost without this type of support.
Assessment of Hydrogen Energy Industry Chain Based on Hydrogen Production Methods, Storage, and Utilization
Apr 2024
Publication
To reach climate neutrality by 2050 a goal that the European Union set itself it is necessary to change and modify the whole EU’s energy system through deep decarbonization and reduction of greenhouse-gas emissions. The study presents a current insight into the global energy-transition pathway based on the hydrogen energy industry chain. The paper provides a critical analysis of the role of clean hydrogen based on renewable energy sources (green hydrogen) and fossil-fuels-based hydrogen (blue hydrogen) in the development of a new hydrogen-based economy and the reduction of greenhouse-gas emissions. The actual status costs future directions and recommendations for low-carbon hydrogen development and commercial deployment are addressed. Additionally the integration of hydrogen production with CCUS technologies is presented.
Effects of Hydrogen, Methane, and Their Blends on Rapid-Filling Process of High-Pressure Composite Tank
Feb 2024
Publication
Alternative fuels such as hydrogen compressed natural gas and liquefied natural gas are considered as feasible energy carriers. Selected positive factors from the EU climate and energy policy on achieving climate neutrality by 2050 highlighted the need for the gradual expansion of the infrastructure for alternative fuel. In this research continuity equations and the first and second laws of thermodynamics were used to develop a theoretical model to explore the impact of hydrogen and natural gas on both the filling process and the ultimate in-cylinder conditions of a type IV composite cylinder (20 MPa for CNG 35 MPa and 70 MPa for hydrogen). A composite tank was considered an adiabatic system. Within this study based on the GERG-2008 equation of state a thermodynamic model was developed to compare and determine the influence of (i) hydrogen and (ii) natural gas on the selected thermodynamic parameters during the fast-filling process. The obtained results show that the cylinder-filling time depending on the cylinder capacity is approximately 36–37% shorter for pure hydrogen compared to pure methane and the maximum energy stored in the storage tank for pure hydrogen is approximately 28% lower compared to methane whereas the total entropy generation for pure hydrogen is approximately 52% higher compared to pure methane.
A Comparative Environmental Life Cycle Assessment Study of Hydrogen Fuel Electricity and Diesel Fuel for Public Buses
Aug 2023
Publication
Hydrogen fuel and electricity are energy carriers viewed as promising alternatives for the modernization and decarbonization of public bus transportation fleets. In order to choose development pathways that will lead transportation systems toward a sustainable future the authors developed an environmental model based on the Life Cycle Assessment approach. The model tested the impact of energy carrier consumption during driving as well as the electricity origin employed to power electric buses and produce hydrogen. Energy sources such as wind solar waste and grid electricity were investigated. The scope of the study included the life cycles of the energy carrier and the necessary infrastructure. The results were presented from two perspectives: the total environmental impact and global warming potential. In order to create a roadmap an original method for choosing sustainable development pathways was prepared. It was shown that the modernization of conventional bus fleets using hydrogen and electrical pathways can provide significant environmental benefits from both perspectives but especially in terms of global warming potential. It was emphasized that attention should be paid to the use of low- and zero-emission energy sources because their impact often strongly influenced the final environmental judgment. The energy carrier consumption also had a strong impact on the results obtained and that is why efforts should be made to reduce it. In addition it was confirmed that hydrogen and electricity production systems based on electricity generated by a waste-to-energy plant could be an environmentally reasonable dual solution for both sustainable waste management and meeting transport needs.
Analysis of Implementing Hydrogen Storage for Surplus Energy from PV Systems in Polish Households
Jul 2025
Publication
One of the methods for mitigating the duck curve phenomenon in photovoltaic (PV) energy systems is storing surplus energy in the form of hydrogen. However there is a lack of studies focused on residential PV systems that assess the impact of hydrogen storage on the reduction of energy flow imbalance to and from the national grid. This study presents an analysis of hydrogen energy storage based on real-world data from a household PV installation. Using simulation methods grounded in actual electricity consumption and hourly PV production data the research identified the storage requirements including the required operating hours and the capacity of the hydrogen tank. The analysis was based on a 1 kW electrolyzer and a fuel cell representing the smallest and most basic commercially available units and included a sensitivity analysis. At the household level—represented by a singlefamily home with an annual energy consumption and PV production of approximately 4–5 MWh over a two-year period—hydrogen storage enabled the production of 49.8 kg and 44.6 kg of hydrogen in the first and second years respectively. This corresponded to the use of 3303 kWh of PV-generated electricity and an increase in self-consumption from 30% to 64%. Hydrogen storage helped to smooth out peak energy flows from the PV system decreasing the imbalance from 5.73 kWh to 4.42 kWh. However while it greatly improves self-consumption its capacity to mitigate power flow imbalance further is constrained; substantial improvements would necessitate a much larger electrolyzer proportional in size to the PV system’s output.
Assessing the Role of Hydrogen in Sustainable Energy Futures: A Comprehensive Bibliometric Analysis of Research and International Collaborations in Energy and Environmental Engineering
Apr 2024
Publication
The main results highlighted in this article underline the critical significance of hydrogen technologies in the move towards carbon neutrality. This research focuses on several key areas including the production storage safety and usage of hydrogen alongside innovative approaches for assessing hydrogen purity and production-related technologies. This study emphasizes the vital role of hydrogen storage technology for the future utilization of hydrogen as an energy carrier and the advancement of technologies that facilitate effective safe and cost-efficient hydrogen storage. Furthermore bibliometric analysis has been instrumental in identifying primary research fields such as hydrogen storage hydrogen production efficient electrocatalysts rotary engines utilizing hydrogen as fuel and underground hydrogen storage. Each domain is essential for realizing a sustainable hydrogen economy reflecting the significant research and development efforts in hydrogen technologies. Recent trends have shown an increased interest in underground hydrogen storage as a method to enhance energy security and assist in the transition towards sustainable energy systems. This research delves into the technical economic and environmental facets of employing geological formations for large-scale seasonal and long-term hydrogen storage. Ultimately the development of hydrogen technologies is deemed crucial for meeting sustainable development goals particularly in terms of addressing climate change and reducing greenhouse gas emissions. Hydrogen serves as an energy carrier that could substantially lessen reliance on fossil fuels while encouraging the adoption of renewable energy sources aiding in the decarbonization of transport industry and energy production sectors. This in turn supports worldwide efforts to curb global warming and achieve carbon neutrality.
Research of Energy Efficiency and Environmental Performance of Vehicle Power Plant Converted to Work on Alternative Fuels
Apr 2024
Publication
The use of alternative fuels remains an important factor in solving the problem of reducing harmful substances caused by vehicles and decarbonising transport. It is also important to ensure the energy efficiency of vehicle power plants when using different fuels at a sufficient level. The article presents the results of theoretical and experimental studies of the conversion of diesel engine to alternative fuels with hydrogen admixtures. Methanol is considered as an alternative fuel which is a cheaper alternative to commercial diesel fuel. The chemical essence of improving the calorific value of alternative methanol fuel was investigated. Studies showed that the energy effect of burning an alternative mixture with hydrogen additives exceeds the effect of burning the same amount of methanol fuel. The increase in combustion energy and engine power is achieved as a result of heat from efficient use of the engine exhaust gases and chemical conversion of methanol. An experimental installation was created to study the work of a converted diesel engine on hydrogen–methanol mixtures and thermochemical regeneration processes. Experimental studies of the energy and environmental parameters of diesel engine converted to work on an alternative fuel with hydrogen admixtures have shown that engine power increases by 10–14% and emissions of harmful substances decrease.
Improving Ecological Efficiency of Gas Turbine Power System by Combusting Hydrogen and Hydrogen-Natural Gas Mixtures
Apr 2023
Publication
Currently the issue of creating decarbonized energy systems in various spheres of life is acute. Therefore for gas turbine power systems including hybrid power plants with fuel cells it is relevant to transfer the existing engines to pure hydrogen or mixtures of hydrogen with natural gas. However significant problems arise associated with the possibility of the appearance of flashback zones and acoustic instability of combustion an increase in the temperature of the walls of the flame tubes and an increase in the emission of nitrogen oxides in some cases. This work is devoted to improving the efficiency of gas turbine power systems by combusting pure hydrogen and mixtures of natural gas with hydrogen. The organization of working processes in the premixed combustion chamber and the combustion chamber with a sequential injection of ecological and energy steam for the “Aquarius” type power plant is considered. The conducted studies of the basic aerodynamic and energy parameters of a gas turbine combustor working on hydrogen-containing gases are based on solving the equations of conservation and transfer in a multicomponent reacting system. A four-stage chemical scheme for the burning of a mixture of natural gas and hydrogen was used which allows for the rational parameters of environmentally friendly fuel burning devices to be calculated. The premixed combustion chamber can only be recommended for operations on mixtures of natural gas with hydrogen with a hydrogen content not exceeding 20% (by volume). An increase in the content of hydrogen leads to the appearance of flashback zones and fuel combustion inside the channels of the swirlers. For the combustion chamber of the combined-cycle power plant “Vodoley” when operating on pure hydrogen the formation of flame flashback zones does not occur.
Green Hydrogen Production through Ammonia Decomposition Using Non-Thermal Plasma
Sep 2023
Publication
Liquid hydrogen carriers will soon play a significant role in transporting energy. The key factors that are considered when assessing the applicability of ammonia cracking in large-scale projects are as follows: high energy density easy storage and distribution the simplicity of the overall process and a low or zero-carbon footprint. Thermal systems used for recovering H2 from ammonia require a reaction unit and catalyst that operates at a high temperature (550–800 ◦C) for the complete conversion of ammonia which has a negative effect on the economics of the process. A non-thermal plasma (NTP) solution is the answer to this problem. Ammonia becomes a reliable hydrogen carrier and in combination with NTP offers the high conversion of the dehydrogenation process at a relatively low temperature so that zero-carbon pure hydrogen can be transported over long distances. This paper provides a critical overview of ammonia decomposition systems that focus on non-thermal methods especially under plasma conditions. The review shows that the process has various positive aspects and is an innovative process that has only been reported to a limited extent.
Hydrogen in the Strategies of the European Union Member States
Jan 2021
Publication
Energy and environmental challenges are two key issues related to the sustainable development of the Earth. Fossil fuels (oil coal and natural gas) still supply more than 85% of world energy consumption. Several nations around the globe are striving to provide access to clean and sustainable energy by 2030 (Hostettler et al. 2015). When the Paris Agreement entered into force in 2016 many countries have recently announced serious commitments to significantly reduce their carbon dioxide emissions promising to achieve “net zero” by 2050. he main goal is to limit global warming to well below 2 degrees Celsius preferably to 1.5 degrees Celsius compared to pre-industrial levels (IEA 2021). his requires a total transformation of the energy systems that underpin our economies. In the case of renewable energy technology deployment hydrogen may provide a complementary solution due to its flexibility as an energy carrier and storage medium. The European Union (EU) a signatory to the Paris Agreement demonstrated interest in hydrogen as an invaluable raw material in considerably reducing CO2 emissions. Hydrogen inthe EU energy mix is estimated to increase from the current level (less than 2%) to 13–14% in 2050 (EC 2018).
Efficient Use of Low-Emission Power Supply for Means of Transport
Apr 2023
Publication
The paper presents the possibilities of low-emission-powered vehicles based mainly on compressed hydrogen. It shows currently used forms of powering vehicles based on their genesis process of obtention and popularity. They are also compared to each other presenting the advantages and disadvantages of a given solution. The share of electricity in transport its forecasts for the future and the possibilities of combination with conventional energy sources are also described. Based on current technological capabilities hydrogen plays a crucial role as presented in the above work constituting a fundamental basis for future transport solutions.
Hydrogen Role in the Valorization of Integrated Steelworks Process Off-gases through Methane and Methanol Syntheses
Jun 2021
Publication
The valorization of integrated steelworks process off-gases as feedstock for synthesizing methane and methanol is in line with European Green Deal challenges. However this target can be generally achieved only through process off-gases enrichment with hydrogen and use of cutting-edge syntheses reactors coupled to advanced control systems. These aspects are addressed in the RFCS project i3 upgrade and the central role of hydrogen was evident from the first stages of the project. First stationary scenario analyses showed that the required hydrogen amount is significant and existing renewable hydrogen production technologies are not ready to satisfy the demand in an economic perspective. The poor availability of low-cost green hydrogen as one of the main barriers for producing methane and methanol from process off-gases is further highlighted in the application of an ad-hoc developed dispatch controller for managing hydrogen intensified syntheses in integrated steelworks. The dispatch controller considers both economic and environmental impacts in the cost function and although significant environmental benefits are obtainable by exploiting process off-gases in the syntheses the current hydrogen costs highly affect the dispatch controller decisions. This underlines the need for big scale green hydrogen production processes and dedicated green markets for hydrogen-intensive industries which would ensure easy access to this fundamental gas paving the way for a C-lean and more sustainable steel production.
Techno-Economic Assessment of a Grid-Independent Hybrid Power Plant for Co-Supplying a Remote Micro-Community with Electricity and Hydrogen
Aug 2021
Publication
This study investigates the techno-economic feasibility of an off-grid integrated solar/wind/hydrokinetic plant to co-generate electricity and hydrogen for a remote micro-community. In addition to the techno-economic viability assessment of the proposed system via HOMER (hybrid optimization of multiple energy resources) a sensitivity analysis is conducted to ascertain the impact of ±10% fluctuations in wind speed solar radiation temperature and water velocity on annual electric production unmet electricity load LCOE (levelized cost of electricity) and NPC (net present cost). For this a far-off village with 15 households is selected as the case study. The results reveal that the NPC LCOE and LCOH (levelized cost of hydrogen) of the system are equal to $333074 0.1155 $/kWh and 4.59 $/kg respectively. Technical analysis indicates that the PV system with the rated capacity of 40 kW accounts for 43.7% of total electricity generation. This portion for the wind turbine and the hydrokinetic turbine with nominal capacities of 10 kW and 20 kW equates to 23.6% and 32.6% respectively. Finally the results of sensitivity assessment show that among the four variables only a +10% fluctuation in water velocity causes a 20% decline in NPC and LCOE.
Well Integrity in Salt Cavern Hydrogen Storage
Jul 2024
Publication
Underground hydrogen storage (UHS) in salt caverns is a sustainable energy solution to reduce global warming. Salt rocks provide an exceptional insulator to store natural hydrogen as they have low porosity and permeability. Nevertheless the salt creeping nature and hydrogeninduced impact on the operational infrastructure threaten the integrity of the injection/production wells. Furthermore the scarcity of global UHS initiatives indicates that investigations on well integrity remain insufficient. This study strives to profoundly detect the research gap and imperative considerations for well integrity preservation in UHS projects. The research integrates the salt critical characteristics the geomechanical and geochemical risks and the necessary measurements to maintain well integrity. The casing mechanical failure was found as the most challenging threat. Furthermore the corrosive and erosive effects of hydrogen atoms on cement and casing may critically put the well integrity at risk. The research also indicated that the simultaneous impact of temperature on the salt creep behavior and hydrogen-induced corrosion is an unexplored area that has scope for further research. This inclusive research is an up-to-date source for analysis of the previous advancements current shortcomings and future requirements to preserve well integrity in UHS initiatives implemented within salt caverns.
Technology for Green Hydrogen Production: Desk Analysis
Sep 2024
Publication
The use of green hydrogen as a high-energy fuel of the future may be an opportunity to balance the unstable energy system which still relies on renewable energy sources. This work is a comprehensive review of recent advancements in green hydrogen production. This review outlines the current energy consumption trends. It presents the tasks and challenges of the hydrogen economy towards green hydrogen including production purification transportation storage and conversion into electricity. This work presents the main types of water electrolyzers: alkaline electrolyzers proton exchange membrane electrolyzers solid oxide electrolyzers and anion exchange membrane electrolyzers. Despite the higher production costs of green hydrogen compared to grey hydrogen this review suggests that as renewable energy technologies become cheaper and more efficient the cost of green hydrogen is expected to decrease. The review highlights the need for cost-effective and efficient electrode materials for large-scale applications. It concludes by comparing the operating parameters and cost considerations of the different electrolyzer technologies. It sets targets for 2050 to improve the efficiency durability and scalability of electrolyzers. The review underscores the importance of ongoing research and development to address the limitations of current electrolyzer technology and to make green hydrogen production more competitive with fossil fuels.
Public Acceptance of the Underground Storage of Hydrogen: Lessons Learned from the Geological Storage of CO2
Mar 2025
Publication
The successful commercialisation of underground hydrogen storage (UHS) is contingent upon technological readiness and social acceptance. A lack of social acceptance inadequate policies/regulations an unreliable business case and environmental uncertainty have the potential to delay or prevent UHS commercialisation even in cases where it is ready. The technologies utilised for underground hydrogen and carbon dioxide storage are analogous. The differences lie in the types of gases stored and the purpose of their storage. It is anticipated that the challenges related to public acceptance will be analogous in both cases. An assessment was made of the possibility of transferring experiences related to the social acceptance of CO2 sequestration to UHS based on an analysis of relevant articles from indexed journals. The analysis enabled the identification of elements that can be used and incorporated into the social acceptance of UHS. A framework was identified that supports the assessment and implementation of factors determining social acceptance ranging from conception to demonstration to implementation. These factors include education communication stakeholder involvement risk assessment policy and regulation public trust benefits research and demonstration programmes and social embedding. Implementing these measures has the potential to increase acceptance and facilitate faster implementation of this technology.
Holistic View to Decarbonising Cruise Ships with a Combination of Energy Saving Technologies and Hydrogen as Fuel
Mar 2025
Publication
Cruise ship decarbonisation was studied on a Mediterranean cruise profile. The analysis focused on ship energy flows fuel consumption carbon emissions ship CII and EEDI. A combination of technologies for reducing ship fuel consumption was simulated before introducing hydrogen fueled machinery for the ship. The studied technologies included ultrasound antifouling shore power battery hybrid machinery waste heat recovery and air lubrication. Their application on the selected operational profile led to combined fuel savings of 187%. When the same technologies were combined to a hydrogen machinery the ship total energy consumption compared to baseline was reduced by 25%. The cause of this was the synergies in the ship energy system such as ship auxiliary powers heat consumption and machinery efficiency. The proposed methodology of ship energy analysis is important step in starting to evaluate new fuels for ships and in preliminary technology screening prior to integrating them in the ship design.
Pre-Test of a Stand for Testing Fire Resistance of Compressed Hydrogen Storage Systems
Mar 2025
Publication
The publication presents methods and pre-test results of a stand for testing CHSS in terms of resistance to open fire. The basis for the conducted research is the applicable provisions contained in the UN/ECE Regulation R134. The study includes an overview of contemporary solutions for hydrogen storage systems in high-pressure tanks in means of transport. Development in this area is a response to the challenge of reducing global carbon dioxide emissions and limiting the emissions of toxic compounds. The variety of storage systems used is driven by constraints including energy demand and available space. New tank designs and conducted tests allow for an improvement in systems in terms of their functionality and safety. Today the advancement of modern technologies for producing high-pressure tanks allows for the use of working pressures up to 70 MPa. The main goal of the presented research is to present the requirements and research methodology verifying the tank structure and the security systems used in open-fire conditions. These tests are the final stage of the approval process for individual pressure vessels or complete hydrogen storage systems. Their essence is to eliminate the occurrence of an explosion in the event of a fire.
Machine Learning for Internal Combustion Engine Optimization with Hydrogen-Blended Fuels: A Literature Review
Mar 2025
Publication
This study explores the potential of hydrogen-enriched internal combustion engines (H2ICEs) as a sustainable alternative to fossil fuels. Hydrogen offers advantages such as high combustion efficiency and zero carbon emissions yet challenges related to NOx formation storage and specialized modifications persist. Machine learning (ML) techniques including artificial neural networks (ANNs) and XGBoost demonstrate strong predictive capabilities in optimizing engine performance and emissions. However concerns regarding overfitting and data representativeness must be addressed. Integrating AI-driven strategies into electronic control units (ECUs) can facilitate real-time optimization. Future research should focus on infrastructure improvements hybrid energy solutions and policy support. The synergy between hydrogen fuel and ML optimization has the potential to revolutionize internal combustion engine technology for a cleaner and more efficient future.
Energy Transition in Public Transport: A Cost-Benefit Analysis of Diesel, Electric, and Hydrogen Fuel Cell Buses in Poland’s GZM Metropolis
Sep 2025
Publication
Energy transformation is one of the processes shaping contemporary urban transport systems with public transport being the subject of initiatives designed to enhance its attractiveness and transport utility including electromobility. This article presents a case study for a metropolitan conurbation—the GZM Metropolis in Poland—considering the economic efficiency of implementing buses with conventional diesel engines electric buses (battery electric buses) and hydrogen fuel cell-powered buses. The analysis is based on the cost-benefit analysis (CBA) method using the discounted cash flow (DCF) method.
Off-Design Analysis of Power-to-Gas System Based on Solid-Oxide Electrolysis with Nominal Power of 25 kW
Mar 2025
Publication
The deployment of large installed power capacities from intermittent renewable energy sources requires balancing to ensure the steady and safe operation of the electrical grid. New methods of energy storage are essential to store excess electrical power when energy is not needed and later use it during high-demand periods both in the short and long term. Power-to-Gas (P2G) is an energy storage solution that uses electric power produced from renewables to generate gas fuels such as hydrogen which can be stored for later use. Hydrogen produced in this manner can be utilized in energy storage systems and in transportation as fuel for cars trams trains or buses. Currently most hydrogen is produced from fossil fuels. Solid-oxide electrolysis (SOE) offers a method to produce clean hydrogen without harmful emissions being the most efficient of all electrolysis methods. The objective of this work is to determine the optimal operational parameters of an SOE system such as lower heating value (LHV)-based efficiency and total input power based on calculations from a mathematical model. The results are provided for three different operating temperature levels and four different steam utilization ratios. The introductory chapter outlines the motivation and background of this work. The second chapter explains the basics of electrolysis and describes its different types. The third chapter focuses on solid-oxide electrolysis and electrolyzer systems. The fourth chapter details the methodology including the mathematical formulations and software used for simulations. The fifth chapter presents the results of the calculations with conclusions. The final chapter summarizes this work.
Comparative Life Cycle Assessment of Hydrogen Production via Biogas Reforming and Agricultural Residue Gasification
Apr 2025
Publication
Hydrogen (H2) production from biomass has emerged as a promising alternative to fossil-based pathways addressing the global demand for low-carbon energy solutions. This study compares the environmental impacts of two biomass-based H2 production processes biogas reforming and agricultural residue gasification through a life cycle assessment (LCA). Using real-world data from the literature the analysis considered key system boundaries for each process including biogas production reforming and infrastructure for the former and biomass cultivation syngas generation and offgas management for the latter. Environmental impacts were evaluated using SimaPro software (Version 9.4) and the ReCiPe midpoint (H) method. The results revealed that biogas reforming emits approximately 5.047 kg CO2-eq per kg of H2 which is 4.89 times higher than the emissions from agricultural residue gasification (1.30 kg CO2-eq/kg H2) demonstrating the latter’s superior environmental performance. Gasification consumes fewer fossil resources (3.20 vs. 10.42 kg oil-eq) and poses significantly lower risks to human health (1.51 vs. 23.28 kg 14-DCB-eq). Gasification water consumption is markedly higher (5.37 compared to biogas reforming (0.041 m3/kg H2)) which is an important factor to consider for sustainability. These findings highlight gasification as a more sustainable H2 production method and emphasize its potential as an eco-friendly solution. To advance sustainability in energy systems integrating socio-economic studies with LCA is recommended alongside prioritizing agricultural residue gasification for hydrogen production.
Comprehensive Review of Hydrogen and Tyre Pyrolysis Oil as Sustainable Fuels for HCCI Engines
Aug 2025
Publication
This review article provides an overview of the use of hydrogen and tyre pyrolysis oil as fuels for homogeneous charge compression ignition (HCCI) engines. It discusses their properties the ways they are produced and their sustainability which is of particular importance in the present moment. Both fuels have certain advantages but also throw up many challenges which complicate their application in HCCI engines. The paper scrutinises engine performance with hydrogen and tyre pyrolysis oil respectively and compares the fuels’ emissions a crucial focus from an environmental perspective. It also surveys related technologies that have recently emerged their effects and environmental impacts and the rules and regulations that are starting to become established in these areas. Furthermore it provides a comparative discussion of various engine performance data in terms of combustion behaviour emission levels fuel economy and potential costs or savings in real terms. The analysis reveals significant research gaps and recommendations are provided as to areas for future study. The paper argues that hydrogen and tyre pyrolysis oil might sometimes be used together or in complementary ways to benefit HCCI engine performance. The importance of life-cycle assessment is noted acknowledging also the requirements of the circular economy. The major findings are summarised with some comments on future perspectives for the use of sustainable fuels in HCCI engines. This review article provides a helpful reference for researchers working in this area and for policymakers concerned with establishing relevant legal frameworks as well as for companies in the sustainable transport sector.
Production of Green Hydrogen from Sewage Sludge/Algae in Agriculture Diesel Engine: Performance Evaluation
Jan 2024
Publication
Alternative fuel opportunities can satisfy energy security and reduce carbon emissions. In this regard the hydrogen fuel is derived from the source of environmental pollutants like sewage and algae wastewater through hydrothermal gasification technique using a KOH catalyst with varied gasification process parameters of duration and temperature of 6–30 min and 500-800 ◦C. The novelty of the work is to identify the optimum gasification process parameter for obtaining the maximum hydrogen yield using a KOH catalyst as an alternative fuel for agricultural engine applications. Influences of gasification processing time and temperature on H2 selectivity Carbon gasification efficiency (CE) Lower heating value (LHV) Hydrogen yield potential (HYP) and gasification efficiency (GE) were studied. Its results showed that the gasifier operated at 800 ◦C for 30 min offering maximum hydrogen yield (26 mol/kg) and gasification efficiency (58 %). The synthesized H2 was an alternative fuel blended with diesel fuel/TiO2 nanoparticles. It was experimentally studied using an internal combustion engine. Influences of H2 on engine perfor mance like brake-specific fuel consumption brake thermal efficiency and emission performances were measured and compared with diesel fuel. The results showed that DH20T has the least (420g/kWh) brake-specific fuel consumption (BSFC) and superior brake thermal efficiency of about 25.2 %. The emission results revealed that the DH20T blend showed the NOX value increased by almost 10.97 % compared to diesel fuel whereas the CO UHC and smoke values reduced by roughly 31.25 28.34 and 42.35 %. The optimum fuel blend (DH20T) result is rec ommended for agricultural engine applications.
Hydrogen SWOT Analysis of Poland’s Energy Transition
Apr 2025
Publication
This paper presents a comprehensive SWOT (strengths weaknesses opportunities and threats) analysis of utilizing hydrogen as a renewable fuel of non-biological origin (RFNBO) in Poland’s energy transition. Given Poland’s reliance on fossil fuels its deep decarbonization poses socio-economic and infrastructural challenges. This study examines the strengths weaknesses opportunities and threats associated with integrating hydrogen as an RFNBO fuel into Poland’s energy mix focusing on economic regulatory technological and social factors. The strengths identified include potential energy independence from fossil fuels increased investment and hydrogen’s applicability in hard-to-abate sectors. Weaknesses involve a low share of renewable hydrogen in the energy mix and the need for infrastructure development. Opportunities arise from European Union policies technological advancements and global trends favoring renewable hydrogen adoption. Threats encompass high production costs regulatory uncertainties and competition from other energy carriers. The analysis concludes that while hydrogen as an RFNBO fuel offers potential for decarbonizing Poland’s energy mix realizing this potential requires large-scale investments a supportive regulatory framework and technological innovation.
Research Trends in Underground Hydrogen Storage: A Bibliometric Approach
Apr 2025
Publication
This article presents the findings of a bibliometric analysis of scientific publications in journals and materials indexed in the SCOPUS and Web of Science databases covering the broad topic of underground hydrogen storage (UHS). The use of VOSviewer software for keyword analysis enabled the identification of four key research areas related to UHS. These areas include hydrogen and hydrocarbon reservoir engineering; hydrogen economy and energy transformation; processes in hydrogen storage sites including lessons from CO2 sequestration; and the geology engineering and geomechanics of underground gas storage. The interdisciplinary nature of UHS research emphasises the synergy of research across diverse fields. A bibliographic analysis allowed for the identification of areas of intensive research and new directions of work related to UHS key research centres and the dynamics of the development of research topics related to UHS. This study revealed the chronological dispersion of the research results their geographical and institutional variability and the varying contributions of major publishing journals. The research methodology used can serve as an inspiration for the work of other researchers.
Photovoltaic Power System with Electrochemical and Hydrogen Storage for Energy Independence in Student Dormitories
Mar 2025
Publication
This article analyzes the path towards achieving electric energy independence for dormitories. It examines electricity consumption in dormitories to determine the necessary volume for daily electrochemical energy storage systems seasonal hydrogen storage system capacity and photovoltaic (PV) system power. Electricity consumption data from dormitories between 2021 and 2024 were analyzed showing hourly daily and monthly trends. The study developed a mathematical model of hourly electric energy usage and production in Matlab/Simulink to optimize the photovoltaic (PV) system increase self-consumption potential and enhance surplus energy storage. This enabled the selection of capacities for daily and seasonal storage along with PV system power to meet dormitory energy needs particularly in autumn and winter. The software accommodates monthly energy consumption profiles and PV system characteristics allowing for the estimation of electric energy surplus after usage by inhabitants for hydrogen production and storage. The study offers a comprehensive framework for sustainable electric energy management in student housing.
Remote Sensing Perspective on Monitoring and Predicting Underground Energy Sources Storage Environmental Impacts: Literature Review
Jul 2025
Publication
Geological storage is an integral element of the green energy transition. Geological formations such as aquifers depleted reservoirs and hard rock caverns are used mainly for the storage of hydrocarbons carbon dioxide and increasingly hydrogen. However potential adverse effects such as ground movements leakage seismic activity and environmental pollution are observed. Existing research focuses on monitoring subsurface elements of the storage while on the surface it is limited to ground movement observations. The review was carried out based on 191 research contributions related to geological storage. It emphasizes the importance of monitoring underground gas storage (UGS) sites and their surroundings to ensure sustainable and safe operation. It details surface monitoring methods distinguishing geodetic surveys and remote sensing techniques. Remote sensing including active methods such as InSAR and LiDAR and passive methods of multispectral and hyperspectral imaging provide valuable spatiotemporal information on UGS sites on a large scale. The review covers modelling and prediction methods used to analyze the environmental impacts of UGS with data-driven models employing geostatistical tools and machine learning algorithms. The limited number of contributions treating geological storage sites holistically opens perspectives for the development of complex approaches capable of monitoring and modelling its environmental impacts.
Towards Net Zero in Poland: A Novel Approach to Power Grid Balance with Centralized Hydrogen Production Units
Mar 2025
Publication
The net zero emissions policy represents a crucial component of the global initiative to address climate change. The European Union has set a target of achieving net zero greenhouse gas emissions by 2050. This study assesses Poland’s feasibility of achieving net zero emissions. Currently Poland relies on fossil fuels for approximately 71% of its electricity generation with electricity accounting for only approximately 16% of the country’s total final energy consumption. Accordingly the transition to net zero carbon emissions will necessitate significant modifications to the energy system particularly in the industrial transport and heating sectors. As this is a long-term process this article demonstrates how the development of renewable energy sources will progressively necessitate the utilisation of electrolysers in line with the ongoing industrial transformation. A new framework for the energy system up to 2060 is presented with transition phases in 2030 2040 and 2050. This study demonstrates that it is feasible to attain a sustainable zero-emission and stable energy system despite reliance on uncontrolled and weather-dependent energy sources. Preparing the electricity grid to transmit almost three times the current amount represents a significant challenge. The resulting simulation capacities comprising 64 GW of onshore wind 33 GW of offshore wind 136 GW of photovoltaic 10 GW of nuclear and 22 GW of electrolysers enable a positive net energy balance to be achieved under the weather conditions observed between 2015 and 2023. To guarantee system stability electrolysers must operate within a centralised framework functioning as centrally controlled dispatchable load units.
Bio-energy Generation from Synthetic Winery Wastewaters
Nov 2020
Publication
In Spain the winery industry exerts a great influence on the national economy. Proportional to the scale of production a significant volume of waste is generated estimated at 2 million tons per year. In this work a laboratory-scale reactor was used to study the feasibility of the energetic valorization of winery effluents into hydrogen by means of dark fermentation and its subsequent conversion into electrical energy using fuel cells. First winery wastewater was characterized identifying and determining the concentration of the main organic substrates contained within it. To achieve this a synthetic winery effluent was prepared according to the composition of the winery wastewater studied. This effluent was fermented anaerobically at 26 ◦C and pH = 5.0 to produce hydrogen. The acidogenic fermentation generated a gas effluent composed of CO2 and H2 with the percentage of hydrogen being about 55% and the hydrogen yield being about 1.5 L of hydrogen at standard conditions per liter of wastewater fermented. A gas effluent with the same composition was fed into a fuel cell and the electrical current generated was monitored obtaining a power generation of 1 W·h L−1 of winery wastewater. These results indicate that it is feasible to transform winery wastewater into electricity by means of acidogenic fermentation and the subsequent oxidation of the bio-hydrogen generated in a fuel cell.
Hydrogen Production from Biowaste: A Systematic Review of Conversion Technologies, Environmental Impacts, and Future Perspectives
Aug 2025
Publication
The escalating climate crisis and unsustainable waste management practices necessitate integrated approaches that simultaneously address energy security and environmental degradation. Hydrogen with its high energy density and zero-carbon combustion is a key vector for decarbonization; however conventional production methods are fossildependent and carbon-intensive. This systematic review explores biowaste-to-hydrogen (WtH) technologies as dual-purpose solutions converting organic waste to clean hydrogen while reducing greenhouse gas emissions and landfill reliance. A comprehensive analysis of different conversion pathways including thermochemical (gasification pyrolysis hydrothermal and partial oxidation (POX)) biochemical (dark fermentation photofermentation and sequential fermentation) and electrochemical methods (MECs) is presented assessing their hydrogen yields feedstock compatibilities environmental impacts and technological readiness. Systematic literature review methods were employed using databases such as Scopus and Web of Science with strict inclusion criteria focused on recent peerreviewed studies. This review highlights hydrothermal gasification and dark fermentation as particularly promising for wet biowaste streams like food waste. Comparative environmental analyses reveal that bio-based hydrogen pathways offer significantly lower greenhouse gas emissions energy use and pollutant outputs than conventional methods. Future research directions emphasize process integration catalyst development and lifecycle assessment. The findings aim to inform technology selection policymaking and strategic investment in circular low-carbon hydrogen production.
Hydrogen-Containing Fuel Influence on Compression-Ignition Engine Part Wear and Emissions of Toxic Substances
Mar 2025
Publication
Issues related to the components of modern fuel equipment wear processes have been discussed. The fuel injector is one of the key elements of the fuel equipment system because it is a device responsible for distributing and spraying hydrogen-containing fuel in the engine combustion chamber. It is mounted in the modern engine head directly in the combustion chamber. If the fuel injector is faulty it affects the operating parameters and in particular the ecological parameters of the modern engine such as the emission of toxic substances into the environment. Additionally a hydrogen reactor has been installed in the Common Rail (CR) system the task of which is to produce hydrogen. As a result of the temperature prevailing in the operating environment of the injection equipment various types of wear occur inside the system including hydrogen degradation. The types of degradation processes of precision pairs of modern fuel injectors have been analyzed and classified. Microscopic tests were performed to analyze the contamination in the fuel system and to compare the ecological parameters of the engine operating on efficient and worn fuel injectors. The emission of nitrogen oxides carbon monoxide and soot has been analyzed as a key ecological parameter. It has been established that the loss of precision of pairs of elements of a damaged fuel injector significantly affects the size of the injection doses of the fuel mixture containing hydrogen.
Probabilistic Assessment of Solar-Based Hydrogen Production Using PVGIS, Metalog Distributions, and LCOH Modeling
Sep 2025
Publication
The transition toward low-carbon energy systems requires reliable tools for assessing renewable-based hydrogen production under real-world climatic and economic conditions. This study presents a novel probabilistic framework integrating the following three complementary elements: (1) a Photovoltaic Geographical Information System (PVGIS) for high-resolution location-specific solar energy data; (2) Metalog probability distributions for advanced modeling of variability and uncertainty in photovoltaic (PV) energy generation; and (3) Levelized Cost of Hydrogen (LCOH) calculations to evaluate the economic viability of hydrogen production systems. The methodology is applied to three diverse European locations—Lublin (Poland) Budapest (Hungary) and Malaga (Spain)—to demonstrate regional differences in hydrogen production potential. The results indicate annual PV energy yields of 108.3 MWh 124.6 MWh and 170.95 MWh respectively which translate into LCOH values of EUR 9.67/kg (Poland) EUR 8.40/kg (Hungary) and EUR 6.13/kg (Spain). The probabilistic analysis reveals seasonal production risks and quantifies the probability of achieving specific monthly energy thresholds providing critical insights for designing systems with continuous hydrogen output. This combined use of a PVGIS Metalog and LCOH calculations offers a unique decision-support tool for investors policymakers and SMEs planning green hydrogen projects. The proposed methodology is scalable and adaptable to other renewable energy systems enabling informed investment decisions and improved regional energy transition strategies.
Grid Frequency Fluctuation Compensation by Using Electrolysis: Literature Survey
Aug 2025
Publication
This paper presents a novel literature survey on leveraging electrolysis for grid frequency stabilization in power systems with high penetration of renewable energy sources (RESs) uniquely integrating global research findings with specific insights into the Polish energy context—a region facing acute grid challenges due to rapid RES growth and infrastructure limitations. The intermittent nature of wind and solar power exacerbates frequency fluctuations necessitating dynamic demand-side management solutions like hydrogen production via electrolysis. By synthesizing over 30 studies the survey reveals key results: electrolysis systems particularly PEM and alkaline electrolyzers can reduce frequency deviations by up to 50% through fast frequency response (FFR) and primary reserve provision as demonstrated in simulations and real-world pilots (e.g. in France and the Netherlands); however economic viability requires enhanced compensation schemes with current models showing unprofitability without subsidies. Technological advancements such as transistor-based rectifiers improve efficiency under partial loads while integration with RES farms mitigates overproduction issues as evidenced by Polish cases where 44 GWh of solar energy was curtailed in March 2024. The survey contributes actionable insights for policymakers and engineers including recommendations for deploying electrolyzers to enhance grid resilience support hydrogen-based transportation and facilitate Poland’s target of 50.1% RESs by 2030 thereby advancing the green energy transition amid rising instability risks like blackouts in RES-heavy systems.
Low-Carbon Hydrogen Production and Use on Farms: European and Global Perspectives
Oct 2025
Publication
This article examines the growing potential of low-emission hydrogen as an innovative solution supporting the decarbonization of the agricultural sector. It discusses its potential applications on farms including as an energy source for powering agricultural machinery producing fertilizers and storing energy from renewable sources. Within the European context it considers actions arising from the European Green Deal and the “Fit for 55” strategy which promote the development of hydrogen infrastructure and support research into low-emission technologies. The article also discusses global initiatives and trends in the development of the hydrogen economy pointing to international cooperation investment and the need for technology standardization. It highlights the challenges related to cost infrastructure and scalability as well as the opportunities hydrogen offers for a sustainable and energy-efficient agriculture of the future.
The Potential for the Use of Hydrogen Storage in Energy Cooperatives
Oct 2024
Publication
According to the European Hydrogen Strategy hydrogen will solve many of the problems with energy storage for balancing variable renewable energy sources (RES) supply and demand. At the same time we can see increasing popularity of the so-called energy communities (e.g. cooperatives) which (i) enable groups of entities to invest in manage and benefit from shared RES energy infrastructure; (ii) are expected to increase the energy independence of local communities from large energy corporations and increase the share of RES. Analyses were conducted on 2000 randomly selected energy cooperatives and four energy cooperatives formed on the basis of actual data. The hypotheses assumed in the research and positively verified in this paper are as follows: (i) there is a relationship between hydrogen storage capacity and the power of RES which allows an energy community to build energy independence; (ii) the type of RES generating source is meaningful when optimizing hydrogen storage capacity. The paper proves it is possible to build “island energy independence” at the local level using hydrogen storage and the efficiency of the power-to-power chain. The results presented are based on simulations carried out using a dedicated optimization model implemented by mixed integer programming. The authors’ next research projects will focus on optimizing capital expenditures and operating costs using the Levelized Cost of Electricity and Levelized Cost of Hydrogen methodologies.
Numerical Simulation of Transition to Detonation in a Hydrogen-air Mixture Due to Shock Wave Focusing on a 90-Deg Wedge
Sep 2023
Publication
The interaction of a shock wave with a specific angle or concave wall due to its reflection and focusing is a way to onset the detonation provided sufficiently strong shock wave. In this work we present numerical simulation results of the detonation initiation due to the shock reflection and focusing in a 90-degree wedge for mixtures of H2 and air. The code used was ddtFoam [1–3] that is a component of the larger OpenFOAM open-source CFD package of density-based code for solving the unsteady compressible Navier-Stokes equations. The numerical model represents the 2-D geometry of the experiments performed by Rudy [4]. The numerical results revealed three potential scenarios in the corner after reflection: shock wave reflection without ignition deflagrative ignition with intermediate transient regimes with a delayed transition to detonation in lagging combustion zone at around 1.8 mm from the apex of the wedge and ignition with an instantaneous transition to detonation with the formation of the detonation wave in the corner tip. In the experimental investigation the transition velocity for the stoichiometric mixture was approximately 715 m/s while in the numerical simulation the transition velocity for the stoichiometric mixture was 675.65 m/s 5.5% decrease in velocity.
Minimizing the Environmental Impact of Aircraft Engines with the Use of Sustainable Aviation Fuel (SAF) and Hydrogen
Jan 2025
Publication
Adverse climate change has forced a deeper reflection on the scale of pollution related to human activity including in the aviation industry. As a result fundamental questions have arisen about the characteristics of these pollutants the mechanisms of their formation and potential strategies for reducing them. This paper provides a comprehensive overview of key technical solutions to minimize the environmental impact of aircraft engines. The solutions presented range from fuel innovations to advanced design changes and drive concepts. Particular attention was paid to sustainable aviation fuels (SAFs) which are currently an important element of the environmental strategy regulated by the European Union. It also discusses the potential use of hydrogen as a potential alternative fuel to replace traditional aviation fuels in the long term. The analysis in the article made it possible to characterize in detail possible modifications in the functioning of aircraft engines based both on the current state of technical knowledge and on the anticipated directions of its development which has not been a frequent issue in comprehensive research so far. The analysis shows that the type of raw material used to create SAF has a strong impact on its physical and chemical parameters and the degree of greenhouse gas emissions. This necessitates a broader analysis of the legitimacy of using a given type of fuel from the SAF group in the direction of selected air operations and areas with a higher risk of severe atmospheric pollution. These results provide the basis for further research into sustainable solutions in the aviation sector that can contribute to significantly reducing its impact on climate change.
Hydrogen as a Renewable Fuel of Non-Biological Origins in the European Union—The Emerging Market and Regulatory Framework
Jan 2025
Publication
The European Union continues to lead global efforts toward climate neutrality by developing a cohesive regulatory and market framework for alternative fuels including renewable hydrogen. This review article critically examines the recent evolution of the EU’s policy landscape specifically for hydrogen as a renewable fuel of non-biological origin (RFNBO) highlighting its growing importance in hard-to-abate sectors such as industry and transportation. We assess the interplay of market-based mechanisms (e.g. EU ETS II) direct mandates (e.g. FuelEU Maritime RED III) and support auction-based measures (e.g. the European Hydrogen Bank) that collectively shape both the demand and the supply of hydrogen as RFNBO fuel. The article also addresses emerging cost capacity and technical barriers—ranging from constrained electrolyzer deployment to complex certification requirements—that hinder large-scale adoption and market rollout. The article aims to discuss advancing and changing regulatory and market environment for the development of infrastructure and market for hydrogen as RFNBO fuel in the EU in 2019–2024. Synthesizing current research and policy developments we propose targeted recommendations including enhanced cross-border coordination and capacity-based incentives to accelerate investment and infrastructure development. This review informs policymakers industry stakeholders and researchers on critical success factors for integrating hydrogen as a cornerstone of the EU’s climate neutrality efforts.
Influence of Capillary Threshold Pressure and Injection Well Location on the Dynamic CO2 and H2 Storage Capacity for the Deep Geological Structure
Jul 2021
Publication
The subject of this study is the analysis of influence of capillary threshold pressure and injection well location on the dynamic CO2 and H2 storage capacity for the Lower Jurassic reservoir of the Sierpc structure from central Poland. The results of injection modeling allowed us to compare the amount of CO2 and H2 that the considered structure can store safely over a given time interval. The modeling was performed using a single well for 30 different locations considering that the minimum capillary pressure of the cap rock and the fracturing pressure should not be exceeded for each gas separately. Other values of capillary threshold pressure for CO2 and H2 significantly affect the amount of a given gas that can be injected into the reservoir. The structure under consideration can store approximately 1 Mt CO2 in 31 years while in the case of H2 it is slightly above 4000 tons. The determined CO2 storage capacity is limited; the structure seems to be more prospective for underground H2 storage. The CO2 and H2 dynamic storage capacity maps are an important element of the analysis of the use of gas storage structures. A much higher fingering effect was observed for H2 than for CO2 which may affect the withdrawal of hydrogen. It is recommended to determine the optimum storage depth particularly for hydrogen. The presented results important for the assessment of the capacity of geological structures also relate to the safety of use of CO2 and H2 underground storage space.
Up-to-Date Status of Geoscience in the Field of Natural Hydrogen with Consideration of Petroleum Issues
Sep 2023
Publication
The perspective of natural hydrogen as a clear carbon-free and renewable energy source appears very promising. There have been many studies reporting significant concentrations of natural hydrogen in different countries. However natural hydrogen is being extracted to generate electricity only in Mali. This issue originates from the fact that global attention has not been dedicated yet to the progression and promotion of the natural hydrogen field. Therefore being in the beginning stage natural hydrogen science needs further investigation especially in exploration techniques and exploitation technologies. The main incentive of this work is to analyze the latest advances and challenges pertinent to the natural hydrogen industry. The focus is on elaborating geological origins ground exposure types extraction techniques previous detections of natural hydrogen exploration methods and underground hydrogen storage (UHS). Thus the research strives to shed light on the current status of the natural hydrogen field chiefly from the geoscience perspective. The data collated in this review can be used as a useful reference for the scientists engineers and policymakers involved in this emerging renewable energy source.
Thermodynamic Analysis of the Combustion Process in Hydrogen-Fueled Engines with EGR
Jun 2024
Publication
This article presents a novel approach to the analysis of heat release in a hydrogen-fueled internal combustion spark-ignition engine with exhaust gas recirculation (EGR). It also discusses aspects of thermodynamic analysis common to modeling and empirical analysis. This new approach concerns a novel method of calculating the specific heat ratio (cp/cv) and takes into account the reduction in the number of moles during combustion which is characteristic of hydrogen combustion. This reduction in the number of moles was designated as a molar contraction. This is particularly crucial when calculating the average temperature during combustion. Subsequently the outcomes of experimental tests including the heat-release rate the initial combustion phase (denoted CA0- 10) and the main combustion phase (CA10-90) are presented. Furthermore the impact of exhaust gas recirculation on the combustion process in the engine is also discussed. The efficacy of the proposed measures was validated by analyzing the heat-release rate and calculating the mean combustion temperature in the engine. The application of EGR in the range 0-40% resulted in a notable prolongation of both the initial and main combustion phases which consequently influenced the mean combustion temperature.
Application of the Metalog Probability Distribution Family to Predict Energy Production by Photovoltaic Systems for the Purposes of Generating Green Hydrogen
Jul 2024
Publication
The article presents the application of the metalog family of probability distributions to predict the energy production of photovoltaic systems for the purpose of generating small amounts of green hydrogen in distributed systems. It can be used for transport purposes as well as to generate energy and heat for housing purposes. The monthly and daily amounts of energy produced by a photovoltaic system with a peak power of 6.15 kWp were analyzed using traditional statistical methods and the metalog probability distribution family. On this basis it is possible to calculate daily and monthly amounts of hydrogen produced with accuracy from the probability distribution. Probabilistic analysis of the instantaneous power generated by the photovoltaic system was used to determine the nominal power of the hydrogen electrolyzer. In order to use all the energy produced by the photovoltaic system to produce green hydrogen the use of a stationary energy storage device was proposed and its energy capacity was determined. The calculations contained in the article can be used to design home green hydrogen production systems and support the climate and energy transformation of small companies with a hydrogen demand of up to ¾ kg/day.
Centralized Offshore Hydrogen Production from Wind Farms in the Baltic Sea Area—A Study Case for Poland
Aug 2023
Publication
In Poland hydrogen production should be carried out using renewable energy sources particularly wind energy (as this is the most efficient zero-emission technology available). According to hydrogen demand in Poland and to ensure stability as well as security of energy supply and also the realization of energy policy for the EU it is necessary to use offshore wind energy for direct hydrogen production. In this study a centralized offshore hydrogen production system in the Baltic Sea area was presented. The goal of our research was to explore the possibility of producing hydrogen using offshore wind energy. After analyzing wind conditions and calculating the capacity of the proposed wind farm a 600 MW offshore hydrogen platform was designed along with a pipeline to transport hydrogen to onshore storage facilities. Taking into account Poland’s Baltic Sea area wind conditions with capacity factor between 45 and 50% and having obtained results with highest monthly average output of 3508.85 t of hydrogen it should be assumed that green hydrogen production will reach profitability most quickly with electricity from offshore wind farms.
Cost of Green Hydrogen
Sep 2024
Publication
Acting in accordance with the requirements of the 2015 Paris Agreement Poland as well as other European Union countries have committed to achieving climate neutrality by 2050. One of the solutions to reduce emissions of harmful substances into the environment is the implementation of large-scale hydrogen technologies. This article presents the cost of producing green hydrogen produced using an alkaline electrolyzer with electricity supplied from a photovoltaic farm. The analysis was performed using the Monte Carlo method and for baseline assumptions including an electricity price of 0.053 EUR/kWh the cost of producing green hydrogen was 5.321 EUR/kgH2 . In addition this article presents a sensitivity analysis showing the impact of the electricity price before and after the energy crisis and other variables on the cost of green hydrogen production. The large change occurring in electricity prices (from 0.035 EUR/kWh to 0.24 EUR/kWh) significantly affected the levelized cost of green hydrogen (LCOH) which could change by up to 14 EUR/kgH2 in recent years. The results of the analysis showed that the parameters that successively have the greatest impact on the cost of green hydrogen production are the operating time of the plant and the unit capital expenditure. The development of green hydrogen production facilities along with the scaling of technology in the future can reduce the cost of its production.
Potentials of Green Hydrogen Production in P2G Systems Based on FPV Installations Deployed on Pit Lakes in Former Mining Sites by 2050 in Poland
Sep 2024
Publication
Green hydrogen production is expected to play a major role in the context of the shift towards sustainable energy stipulated in the Fit for 55 package. Green hydrogen and its derivatives have the capacity to act as effective energy storage vectors while fuel cell-powered vehicles will foster net-zero emission mobility. This study evaluates the potential of green hydrogen production in Power-to-Gas (P2G) systems operated in former mining sites where sand and gravel aggregate has been extracted from lakes and rivers under wet conditions (below the water table). The potential of hydrogen production was assessed for the selected administrative unit in Poland the West Pomerania province. Attention is given to the legal and organisational aspects of operating mining companies to identify the sites suitable for the installation of floating photovoltaic facilities by 2050. The method relies on the use of GIS tools which utilise geospatial data to identify potential sites for investments. Basing on the geospatial model and considering technical and organisational constraints the schedule was developed showing the potential availability of the site over time. Knowing the surface area of the water reservoir the installed power of the floating photovoltaic plant and the production capacity of the power generation facility and electrolysers the capacity of hydrogen production in the P2G system can be evaluated. It appears that by 2050 it should be feasible to produce green fuel in the P2G system to support a fleet of city buses for two of the largest urban agglomerations in the West Pomerania province. Simulations revealed that with a water coverage ratio increase and the planned growth of green hydrogen generation it should be feasible to produce fuel for net-zero emission urban mobility systems to power 200 buses by 2030 550 buses by 2040 and 900 buses by 2050 (for the bus models Maxi (40 seats) and Mega (60 seats)). The results of the research can significantly contribute to the development of projects focused on the production of green hydrogen in a decentralised system. The disclosure of potential and available locations over time can be compared with competitive solutions in terms of spatial planning environmental and societal impact and the economics of the undertaking.
A Novel Sustainable Approach for Site Selection of Underground Hydrogen Storage in Poland Using Deep Learning
Jul 2024
Publication
This research investigates the potential of using bedded salt formations for underground hydrogen storage. We present a novel artificial intelligence framework that employs spatial data analysis and multi-criteria decision-making to pinpoint the most appropriate sites for hydrogen storage in salt caverns. This methodology incorporates a comprehensive platform enhanced by a deep learning algorithm specifically a convolutional neural network (CNN) to generate suitability maps for rock salt deposits for hydrogen storage. The efficacy of the CNN algorithm was assessed using metrics such as Mean Absolute Error (MAE) Mean Squared Error (MSE) Root Mean Square Error (RMSE) and the Correlation Coefficient (R2 ) with comparisons made to a real-world dataset. The CNN model showed outstanding performance with an R2 of 0.96 MSE of 1.97 MAE of 1.003 and RMSE of 1.4. This novel approach leverages advanced deep learning techniques to offer a unique framework for assessing the viability of underground hydrogen storage. It presents a significant advancement in the field offering valuable insights for a wide range of stakeholders and facilitating the identification of ideal sites for hydrogen storage facilities thereby supporting informed decisionmaking and sustainable energy infrastructure development.
Mapping the Future of Green Hydrogen: Integrated Analysis of Poland and the EU’s Development Pathways to 2050
Aug 2023
Publication
This article presents the results of a comparative scenario analysis of the “green hydrogen” development pathways in Poland and the EU in the 2050 perspective. We prepared the scenarios by linking three models: two sectoral models for the power and transport sectors and a Computable General Equilibrium model (d-Place). The basic precondition for the large-scale use of hydrogen in both Poland and in European Union countries is the pursuit of ambitious greenhouse gas reduction targets. The EU plans indicate that the main source of hydrogen will be renewable energy (RES). “Green hydrogen” is seen as one of the main methods with which to balance energy supply from intermittent RES such as solar and wind. The questions that arise concern the amount of hydrogen required to meet the energy needs in Poland and Europe in decarbonized sectors of the economy and to what extent can demand be covered by internal production. In the article we estimated the potential of the production of “green hydrogen” derived from electrolysis for different scenarios of the development of the electricity sector in Poland and the EU. For 2050 it ranges from 76 to 206 PJ/y (Poland) and from 4449 to 5985 PJ/y (EU+). The role of hydrogen as an energy storage was also emphasized highlighting its use in the process of stabilizing the electric power system. Hydrogen usage in the energy sector is projected to range from 67 to 76 PJ/y for Poland and from 1066 to 1601 PJ/y for EU+ by 2050. Depending on the scenario this implies that between 25% and 35% of green hydrogen will be used in the power sector as a long-term energy storage.
The Possibility of Using Hydrogen as a Green Alternative to Traditional Marine Fuels on an Offshore Vessel Serving Wind Farms
Nov 2024
Publication
Achieving the required decarbonisation targets by the shipping industry requires a transition to technologies with zero or near-zero greenhouse gas (GHG) emissions. One promising shipping fuel with zero emission of exhaust gases (including CO2) is green hydrogen. This type of fuel recognised as a 100% clean solution is being investigated for feasible use on a service offshore vessel (SOV) working for offshore wind farms. This study aims to examine whether hydrogen may be used on an SOV in terms of the technical and economic challenges associated with the design process and other factors. In the analyses a reference has been made to the current International Maritime Organization (IMO) guidelines and regulations. In this study it was assumed that hydrogen would be directly combusted in a reciprocating internal combustion engine. This engine type was reviewed. In further research hydrogen fuel cell propulsion systems will also be considered. The hydrogen demand was calculated for the assumed data of the SOV and then the volume and number of highpressure tanks were estimated. The analyses revealed that the SOV cannot undertake 14-day missions using hydrogen fuel stored in cylinders on board. These cylinders occupy 66% of the ship’s current volume and their weight including the modular system accounts for 62% of its deadweight. The costs are over 100% higher compared to MDO and LNG fuels and 30% higher than methanol. The actual autonomy of the SOV with hydrogen fuel is 3 days.
Co-Combustion of Hydrogen with Diesel and Biodiesel (RME) in a Dual-Fuel Compression-Ignition Engine
Jun 2023
Publication
The utilization of hydrogen for reciprocating internal combustion engines remains a subject that necessitates thorough research and careful analysis. This paper presents a study on the co-combustion of hydrogen with diesel fuel and biodiesel (RME) in a compression-ignition piston engine operating at maximum load with a hydrogen content of up to 34%. The research employed engine indication and exhaust emissions measurement to assess the engine’s performance. Engine indication allowed for the determination of key combustion stages including ignition delay combustion time and the angle of 50% heat release. Furthermore important operational parameters such as indicated pressure thermal efficiency and specific energy consumption were determined. The evaluation of dual-fuel engine stability was conducted by analyzing variations in the coefficient of variation in indicated mean effective pressure. The increase in the proportion of hydrogen co-combusted with diesel fuel and biodiesel had a negligible impact on ignition delay and led to a reduction in combustion time. This effect was more pronounced when using biodiesel (RME). In terms of energy efficiency a 12% hydrogen content resulted in the highest efficiency for the dual-fuel engine. However greater efficiency gains were observed when the engine was powered by RME. It should be noted that the hydrogen-powered engine using RME exhibited slightly less stable operation as measured by the COVIMEP value. Regarding emissions hydrogen as a fuel in compression ignition engines demonstrated favorable outcomes for CO CO2 and soot emissions while NO and HC emissions increased.
Hydrogen Storage Potential in Natural Gas Deposits in the Polish Lowlands
Jan 2024
Publication
In the future the development of a zero-carbon economy will require large-scale hydrogen storage. This article addresses hydrogen storage capacities a critical issue for large-scale hydrogen storage in geological structures. The aim of this paper is to present a methodology to evaluate the potential for hydrogen storage in depleted natural gas reservoirs and estimate the capacity and energy of stored hydrogen. The estimates took into account the recoverable reserves of the reservoirs hydrogen parameters under reservoir conditions and reservoir parameters of selected natural gas reservoirs. The theoretical and practical storage capacities were assessed in the depleted natural gas fields of N and NW Poland. Estimates based on the proposed methodology indicate that the average hydrogen storage potential for the studied natural gas fields ranges from 0.01 to 42.4 TWh of the hydrogen energy equivalent. Four groups of reservoirs were distinguished which differed in recovery factor and technical hydrogen storage capacity. The issues presented in the article are of interest to countries considering large-scale hydrogen storage geological research organizations and companies generating electricity from renewable energy sources.
Alternative Fuels for General Aviation Piston Engines: A Comprehensive Review
Oct 2025
Publication
This review synthesizes recent research on alternative fuels for piston-engine aircraft and related propulsion technologies. Biofuels show substantial promise but face technological economic and regulatory barriers to widespread adoption. Among liquid options biodiesel offers a high cetane number and strong lubricity yet suffers from poor low-temperature flow and reduced combustion efficiency. Alcohol fuels (bioethanol biomethanol) provide high octane numbers suited to high-compression engines but are limited by hygroscopicity and phase-separation risks. Higher-alcohols (biobutanol biopropanol) combine favorable heating values with stable combustion and emerge as particularly promising candidates. Biokerosene closely matches conventional aviation kerosene and can function as a drop-in fuel with minimal engine modifications. Emissions outcomes are mixed across studies: certain biofuels reduce NOx or CO while others elevate CO2 and HC underscoring the need to optimize combustion and advance second- to fourth-generation biofuel production pathways. Beyond biofuels hydrogen engines and hybrid-electric systems offer compelling routes to lower emissions and improved efficiency though they require new infrastructure certification frameworks and cost reductions. Demonstrated test flights with biofuels synthetic fuels and hydrogen confirm technical feasibility. Overall no single option fully replaces aviation gasoline today; instead a combined trajectory—biofuels alongside hydrogen and hybrid-electric propulsion—defines a pragmatic medium- to long-term pathway for decarbonizing general aviation.
Designing a Photovoltaic–Wind Energy Mix with Energy Storage for Low-Emission Hydrogen Production
Feb 2025
Publication
In the introduction to this article a brief overview of the generated energy and the power produced by the photovoltaic systems with a peak power of 3 MWp and different tilt and orientation of the photovoltaic panels is given. The characteristics of the latest systems generating energy by wind turbines with a capacity of 3.45 MW are also presented. In the subsequent stages of the research the necessity of balancing the energy in power networks powered by a mix of renewable energy sources is demonstrated. Then a calculation algorithm is presented in the area of balancing the energy system powered by a photovoltaic–wind energy mix and feeding the low-emission hydrogen production process. It is analytically and graphically demonstrated that the process of balancing the entire system can be influenced by structural changes in the installation of the photovoltaic panels. It is proven that the tilt angle and orientation of the panels have a significant impact on the level of power generated by the photovoltaic system and thus on the energy mix in individual hourly intervals. Research has demonstrated that the implementation of planned design changes in the assembly of panels in a photovoltaic system allows for a reduction in the size of the energy storage system by more than 2 MWh. The authors apply actual measurement data from a specific geographical context i.e. from the Lublin region in Poland. The calculations use both traditional statistical methods and probabilistic analysis. Balancing the generated power and the energy produced for the entire month considered in hourly intervals throughout the day is the essence of the calculations made by the authors.
Low-Emission Hydrogen for Transport—A Technology Overview from Hydrogen Production to Its Use to Power Vehicles
Aug 2025
Publication
This article provides an overview of current hydrogen technologies used in road transport with particular emphasis on their potential for decarbonizing the mobility sector. The author analyzes both fuel cells and hydrogen combustion in internal combustion engines as two competing approaches to using hydrogen as a fuel. He points out that although fuel cells offer higher efficiency hydrogen combustion technologies can be implemented more quickly because of their compatibility with existing drive systems. The article emphasizes the importance of hydrogen’s source—so-called green hydrogen produced from renewable energy sources has the greatest ecological potential. Issues related to the storage distribution and safety of hydrogen use in transport are also analyzed. The author also presents the current state of refueling infrastructure and forecasts for its development in selected countries until 2030. He points to the need to harmonize legal regulations and to support the development of hydrogen technologies at the national and international levels. He also highlights the need to integrate the energy and transport sectors to effectively utilize hydrogen as an energy carrier. The article presents a comprehensive analysis of technologies policies and markets identifying hydrogen as a key link in the energy transition. In conclusion the author emphasizes that the future of hydrogen transport depends not only on technical innovations but above all on coherent strategic actions and infrastructure investments.
Probabilistic Analysis of Electricity Production from a Photovoltaic–Wind Energy Mix for Sustainable Transport Needs
Nov 2024
Publication
Renewable Energy Sources (RESs) are characterized by high unevenness cyclicality and seasonality of energy production. Due to the trends in the production of electricity itself and the utilization of hydrogen distributed generation systems are preferred. They can be connected to the energy distribution network or operate without its participation (off-grid). However in both cases such distributed energy sources should be balanced in terms of power generation. According to the authors it is worth combining different RESs to ensure the stability of energy production from such a mix. Within the mix the sources can complement and replace each other. According to the authors an effective system for generating energy from RESs should contain at least two different sources and energy storage. The purpose of the analyses and calculations performed is to determine the characteristics of energy generation from a photovoltaic system and a wind turbine with a specific power and geographical location in the Lublin region in Poland. Another important goal is to determine the substitutability of the sources studied. Probabilistic analysis will be used to determine the share of given energy sources in the energy mix and will allow us to estimate the size of the stationary energy storage. The objective of these procedures is to strive for the highest possible share of renewable energy in the total energy required to charge electric vehicle fleets and to produce low-emission hydrogen for transportation. The article proves that the appropriately selected components of the photovoltaic and wind energy mix located in the right place lead to the self-balancing of the local energy network using a small energy storage. The conclusions drawn from the conducted research can be used by RES developers who intend to invest in new sources of power generation to produce low-emission hydrogen. This is in line with the current policy of the European Union aimed at climate and energy transformation of many companies using green hydrogen.
Thermodynamic Analysis of Gas Turbine Systems Fueled by a CH4/H2 Mixture
Jan 2025
Publication
In the coming years as a result of changing climate policies and finite fossil fuel resources energy producers will be compelled to introduce new fuels with lower carbon footprints. One of the solutions is hydrogen which can be burned or co-fired with methane in energy generation systems. Therefore this study presents a thermodynamic and emission analysis of a gas turbine fueled by a mixture of CH4 and H2 as well as pure hydrogen. Numerical studies were conducted for the actual operating parameters of the LM6000 gas turbine in both simple and combined cycles. Aspen Hysys and Chemkin-Pro 2023R1 commercial software were used for the calculations. It was demonstrated that with a constant turbine inlet temperature set at 1723 K the thermal efficiency increased from 39.4% to 40.2% for the gas turbine cycle and from 49% to 49.4% for the combined cycle gas turbine. Nitrogen oxides emissions were calculated using the reactor network revealing that an increase in H2 content above 20%vol. in the fuel leads to a significant rise in nitric oxides emissions. In the case of pure H2 emissions are more than three times higher than for CH4 . The main reason for this increase in emissions was identified as the greater presence of H O and OH radicals in the reaction zone causing an acceleration in the formation of nitric oxides.
Solar-driven (Photo)electrochemical Devices for Green Hydrogen Production and Storage: Working Principles and Design
Feb 2024
Publication
The large-scale deployment of technologies that enable energy from renewables is essential for a successful transition to a carbon-neutral future. While photovoltaic panels are one of the main technologies commonly used for harvesting energy from the Sun storage of renewable solar energy still presents some challenges and often requires integration with additional devices. It is believed that hydrogen – being a perfect energy carrier – can become one of the broadly utilised storage alternatives that would effectively mitigate the energy supply and demand issues associated with the intermittent nature of renewable energy sources. Current pathways in the development of green technologies indicate the need for more sustainable material utilisation and more efficient device operation. To address this requirement integration of various technologies for renewable energy harvesting conversion and storage in a single device appears as an advantageous option. From the hydrogen economy perspective systems driven by green solar electricity that allow for (photo)electrochemical water splitting would generate hydrogen with the minimal CO2 footprint. If at the same time one of the device electrodes could store the generated gas and release it on demand the utilisation of critical and often costly elements would be reduced with possible gain in more effective device operation. Although conceptually attractive this cross-disciplinary concept has not gained yet enough attention and only limited number of experimental setups have been designed tested and reported. This review presents the first exhaustive overview and critical examination of various laboratory-scale prototype setups that attempt to combine both the hydrogen production and storage processes in a single unit via integration of a metal hydride-based electrode into a photoelectrochemical cell. The architectures of presented configurations enables direct solar energy to hydrogen conversion and its subsequent storage in a single device which – in some cases – can also release the stored (hydrogen) energy on demand. In addition this work explores perspectives and challenges related with the potential upscaling of reviewed solar-to-hydrogen storage systems trying to map and indicate the main future directions of their technological development and optimization. Finally the review also combines information and expertise scattered among various research fields with the aim of stimulating much-needed exchange of knowledge to accelerate the progress in the development and deployment of optimum green hydrogen-based solutions.
Modern Hydrogen Technologies in the Face of Climate Change—Analysis of Strategy and Development in Polish Conditions
Aug 2023
Publication
The energy production market based on hydrogen technologies is an innovative solution that will allow the industry to achieve climate neutrality in the future in Poland and in the world. The paper presents the idea of using hydrogen as a modern energy carrier and devices that in cooperation with renewable energy sources produce the so-called green hydrogen and the applicable legal acts that allow for the implementation of the new technology were analyzed. Energy transformation is inevitable and according to reports on good practices in European Union countries hydrogen and the hydrogen value chain (production transport and transmission storage use in transport and energy) have wide potential. Thanks to joint projects and subsidies from the EU initiatives supporting hydrogen technologies are created such as hydrogen clusters and hydrogen valleys and EU and national strategic programs set the main goals. Poland is one of the leaders in hydrogen production both in the world and in Europe. Domestic tycoons from the energy refining and chemical industries are involved in the projects. Eight hydrogen valleys that have recently been created in Poland successfully implement the assumptions of the “Polish Hydrogen Strategy until 2030 with a perspective until 2040” and “Energy Policy of Poland until 2040” which are in line with the assumptions of the most important legal acts of the EU including the European Union’s energy and climate policy the Green Deal and the Fit for 55 Package. The review of the analysis of the development of hydrogen technologies in Poland shows that Poland does not differ from other European countries. As part of the assumptions of the European Hydrogen Strategy and the trend related to the management of energy surpluses electrolyzers with a capacity of at least 6 GW will be installed in Poland in 2020–2024. It is also assumed that in the next phase planned for 2025–2030 hydrogen will be a carrier in the energy system in Poland. Poland as a member of the EU is the creator of documents that take into account the assumptions of the European Union Commission and systematically implement the assumed goals. The strategy of activities supporting the development of hydrogen technologies in Poland and the value chain includes very extensive activities related to among others obtaining hydrogen using hydrogen in transport energy and industry developing human resources for the new economy supporting the activities of hydrogen valley stakeholders building hydrogen refueling stations and cooperation among Poland Slovakia and the Czech Republic as part of the HydrogenEagle project.
No more items...