Publications
Techno-Economic Assessment of Pink Hydrogen Produced from Small Modular Reactors for Maritime Applications
Jul 2025
Publication
This paper presents a techno-economic assessment of liquid hydrogen produced from small modular reactors (SMRs) for maritime applications. Pink hydrogen is examined as a carbon-free alternative to conventional marine fuels leveraging the zero-emission profile and dispatchable nature of nuclear energy. Using Greece as a case study the analysis includes both production and transportation costs along with a sensitivity analysis on key parameters influencing the levelized cost of hydrogen (LCOH) such as SMR and electrolyzer CAPEX uranium cost and SMR operational lifetime. Results show that with an SMR CAPEX of 10000 EUR/kW the LCOH reaches 6.64 EUR/kg which is too high to compete with diesel under current market conditions. Economic viability is achieved only if carbon costs rise to 0.387 EUR/kg and diesel prices exceed 0.70 EUR/L. Under these conditions a manageable deployment of fewer than 1000 units (equivalent to 77 GW) is sufficient to achieve economies of mass production. Conversely lower carbon and fuel prices require over 10000 units (770 GW) rendering their establishment impractical.
Life Cycle Net Energy Assessment of Sustainable H2 Production and Hydrogenation of Chemicals in a Coupled Photoelectrochemical Device
Feb 2023
Publication
Green hydrogen has been identified as a critical enabler in the global transition to sustainable energy and decarbonized society but it is still not economically competitive compared to fossil-fuel-based hydrogen. To overcome this limitation we propose to couple photoelectrochemical (PEC) water splitting with the hydrogenation of chemicals. Here we evaluate the potential of coproducing hydrogen and methyl succinic acid (MSA) by coupling the hydrogenation of itaconic acid (IA) inside a PEC water splitting device. A negative net energy balance is predicted to be achieved when the device generates only hydrogen but energy breakeven can already be achieved when a small ratio (~2%) of the generated hydrogen is used in situ for IA-to-MSA conversion. Moreover the simulated coupled device produces MSA with much lower cumulative energy demand than conventional hydrogenation. Overall the coupled hydrogenation concept offers an attractive approach to increase the viability of PEC water splitting while at the same time decarbonizing valuable chemical production.
Perspectives for a Sustainable Implementation of Super-green Hydrogen Production by Photoelectrochemical Technology in Hard-to-abate Sectors
May 2023
Publication
The energy transition's success hinges on the effectiveness to curbing carbon emissions from hard-to-abate sectors. Hydrogen (H2) has been proposed as the candidate vector that could be used to replace fossils in such energy-intensive industries. Despite green H2 via solar-powered water electrolysis being a reality today the overall defossilization of the hard-to-abate sectors by electrolytic H2 would be unfeasible as it relies on the availability of renewable electricity. In this sense the unbiassed photoelectrochemical water splitting (PEC) as inspired by natural photosynthesis may be a promising alternative expected in the long term. PEC could be partly or even completely decoupled from renewable electricity and then could produce H2 autonomously. However some remaining challenges still limit PEC water splitting to operate sustainably. These limitations need to be evaluated before the scaling up and implementation. A prospective life cycle assessment (LCA) has been used to elucidate a positive performance scenario in which the so-called super-green H2 or photo-H2 could be a sustainable alternative to electro-H2. The study has defined future scenarios by conducting a set of sensitivity assessments determining the figures of operating parameters such as i) the energy to produce the cell; ii) solar-to-hydrogen efficiency (STH); and iii) lifetime. These parameters have been evaluated based on two impact categories: i) Global Warming Potential (GWP); and ii) fossil Abiotic Depletion Potentials (fADP). The mature water electrolysis was used for benchmarking in order to elucidate the target performance in which PEC technology could be positively implemented at large-scale. Efficiencies over 10% (STH) and 7 years of lifetime are compulsory in the coming developments to achieve a positive scaling-up.
A Hybrid Perspective on Energy Transition Pathways: Is Hydrogen the Key for Norway?
Jun 2021
Publication
Hydrogen may play a significant part in sustainable energy transition. This paper discusses the sociotechnical interactions that are driving and hindering development of hydrogen value chains in Norway. The study is based on a combination of qualitative and quantitative methods. A multi-level perspective (MLP) is deployed to discuss how exogenous trends and uncertainties interact with processes and strategies in the national energy system and how this influences the transition potential associated with Norwegian hydrogen production. We explore different transition pathways towards a low-emission society in 2050 and find that Norwegian hydrogen production and its deployment for decarbonization of maritime and heavy-duty transport decarbonisation of industry and flexibility services may play a crucial role. Currently the development is at a branching point where national coordination is crucial to unlock the potential. The hybrid approach provides new knowledge on underlying system dynamics and contributes to the discourse on pathways in transition studies.
Techno-Economic Analysis of Solid Oxide Fuel Cell-Gas Turbine Hybrid Systems for Stationary Power Applications Using Renewable Hydrogen
Jun 2023
Publication
Solid oxide fuel cell (SOFC)–gas turbine (GT) hybrid systems can produce power at high electrical efficiencies while emitting virtually zero criteria pollutants (e.g. ozone carbon monoxide oxides of nitrogen and sulfur and particulate matters). This study presents new insights into renewable hydrogen (RH2 )-powered SOFC–GT hybrid systems with respect to their system configuration and techno-economic analysis motivated by the need for clean on-demand power. First three system configurations are thermodynamically assessed: (I) a reference case with no SOFC off-gas recirculation (II) a case with cathode off-gas recirculation and (III) a case with anode off-gas recirculation. While these configurations have been studied in isolation here we provide a detailed performance comparison. Moreover a techno-economic analysis is conducted to study the economic competitiveness of RH2 -fueled hybrid systems and the economies of scale by offering a comparison to natural gas (NG)-fueled systems. Results show that the case with anode off-gas recirculation with 68.50%-lower heating value (LHV) at a 10 MW scale has the highest efficiency among the studied scenarios. When moving from 10 MW to 50 MW the efficiency increases to 70.22%-LHV. These high efficiency values make SOFC–GT hybrid systems highly attractive in the context of a circular economy as they outcompete most other power generation technologies. The cost-of-electricity (COE) is reduced by about 10% when moving from 10 MW to 50 MW from USD 1976/kW to USD 1668/kW respectively. Renewable H2 is expected to be economically competitive with NG by 2030 when the U.S. Department of Energy’s target of USD 1/kg RH2 is reached.
A Review of Alternative Processes for Green Hydrogen Production Focused on Generating Hydrogen from Biomass
Apr 2024
Publication
Hydrogen plays a leading role in achieving a future with net zero greenhouse gas emissions. The present challenge is producing green hydrogen to cover the fuel demands of transportation and industry to gain independence from fossil fuels. This review’s goal is to critically demonstrate the existing methods of biomass treatment and assess their ability to scale up. Biomass is an excellent hydrogen carrier and biomass-derived processes are the main target for hydrogen production as they provide an innovative pathway to green hydrogen production. Comparing the existing processes thermochemical treatment is found to be far more evolved than biological or electrochemical treatment especially with regard to scaling prospects.
Blue, Green, and Turquoise Pathways for Minimizing Hydrogen Production Costs from Steam Methane Reforming with CO2 Capture
Nov 2022
Publication
Rising climate change ambitions require large-scale clean hydrogen production in the near term. “Blue” hydrogen from conventional steam methane reforming (SMR) with pre-combustion CO2 capture can fulfil this role. This study therefore presents techno-economic assessments of a range of SMR process configurations to minimize hydrogen production costs. Results showed that pre-combustion capture can avoid up to 80% of CO2 emissions cheaply at 35 €/ton but the final 20% of CO2 capture is much more expensive at a marginal CO2 avoidance cost around 150 €/ton. Thus post-combustion CO2 capture should be a better solution for avoiding the final 20% of CO2. Furthermore an advanced heat integration scheme that recovers most of the steam condensation enthalpy before the CO2 capture unit can reduce hydrogen production costs by about 6%. Two hybrid hydrogen production options were also assessed. First a “blue-green” hydrogen plant that uses clean electricity to heat the reformer achieved similar hydrogen production costs to the pure blue configuration. Second a “blue turquoise” configuration that replaces the pre-reformer with molten salt pyrolysis for converting higher hydrocarbons to a pure carbon product can significantly reduce costs if carbon has a similar value to hydrogen. In conclusion conventional pre-combustion CO2 capture from SMR is confirmed as a good solution for kickstarting the hydrogen economy and it can be tailored to various market conditions with respect to CO2 electricity and pure carbon prices.
The Green Hydrogen Revolution
Jul 2023
Publication
Green hydrogen is considered the most suitable choice for the future energy market both as energy storage media energy vector and fuel for transportation industry and other applications. In the last twenty years increasing efforts have been dedicated to green hydrogen technologies development but still today a number of issues are claimed in justifying the delay in its large scale application and the star vation of its market. Moreover some new questions seem ready to be put on the table for justifying the delay in green hydrogen technologies applications. In this paper a critical analysis of recent literature and institutional reports is carried out with the aim of understanding what is the real state of the play. In particular peculiar advantages and shortcomings of different green hydrogen technologies (biomass pyrolysis and gasification water electrolysis etc.) have been analysed and compared with a focus on the electrolysis process as the most promising method for large scale and distributed generation of hydrogen. Some geopolitical and economic aspects associated with the transition to a green hydrogen economy - including the feared exacerbation of the water crisis - have been widely examined and discussed with the purpose of identifying approaches and solutions to accelerate the mentioned transition.
Critical Challenges in Biohydrogen Production Processes from the Organic Feedstocks
Aug 2020
Publication
The ever-increasing world energy demand drives the need for new and sustainable renewable fuel to mitigate problems associated with greenhouse gas emissions such as climate change. This helps in the development toward decarbonisation. Thus in recent years hydrogen has been seen as a promising candidate in global renewable energy agendas where the production of biohydrogen gains more attention compared with fossil-based hydrogen. In this review biohydrogen production using organic waste materials through fermentation biophotolysis microbial electrolysis cell and gasification are discussed and analysed from a technological perspective. The main focus herein is to summarise and criticise through bibliometric analysis and put forward the guidelines for the potential future routes of biohydrogen production from biomass and especially organic waste materials. This research review claims that substantial efforts currently and in the future should focus on biohydrogen production from integrated technology of processes of (i) dark and photofermentation (ii) microbial electrolysis cell (MEC) and (iii) gasification of combined different biowastes. Furthermore bibliometric mapping shows that hydrogen production from biomethanol and the modelling process are growing areas in the biohydrogen research that lead to zero-carbon energy soon.
Decommissioning Platforms to Offshore Solar System: Road to Green Hydrogen Production from Seawater
May 2023
Publication
With more than 140 offshore platforms identified in Malaysian water to be decommissioned within 10 years it is critical for the Oil and Gas operators to re-evaluate the overall decommissioning strategies for a more sustainable approach. A revision to the current decommissioning options with inclusion of green decommissioning plan to the overall decision tree will assist in accelerating sustainable decision making. Using the advantage of the available 3D modelling from Naviswork and convert to PVSyst software for solar analysis to the one of the shortlisted offshore gas complexes in Malaysia three solar powered generation scenario was evaluated with aimed to establish the best integrated system on a modified decommissioned unmanned processing platform to generate cleaner energy. Financial assessment inclusive of Levelized Cost of Electricity as well as environmental assessment for each scenario are evaluated together. From the study optimum tilt angle was determined resulted to best annual solar yield of 257MWh with performance ratio (PR) of 87% for on-grid scenario 1. Off-grid scenario 3 is used to understand the estimated green hydrogen production. A desktop investigation conducted to three (3) type of electrolysers resulted to 8.6 kg to 18 kg of green hydrogen based on the average daily solar yield produced in scenario 3. Using Proton Electron Membrane electrolyser to simulate the PV solar-to-hydrogen offshore system it is observed that 98% of annual solar fraction can be achieved with annual performance ratio of 74.5% with levelized cost of Hydrogen (LCOH) of $10.95 per kg. From financial assessment this study justifies platforms repurpose to renewable energy concept to be an attractive option since cost to decommission the identified complex was observed to be 11 times greater compared to investing for this proposed concept.
A Comparison of Well-to-Wheels Energy Use and Emissions of Hydrogen Fuel Cell, Electric, LNG, and Diesel-Powered Logistics Vehicles in China
Jul 2023
Publication
Global energy and environmental issues are becoming increasingly serious and the promotion of clean energy and green transportation has become a common goal for all countries. In the logistics industry traditional fuels such as diesel and natural gas can no longer meet the requirements of energy and climate change. Hydrogen fuel cell logistics vehicles are expected to become the mainstream vehicles for future logistics because of their “zero carbon” advantages. The GREET model is computer simulation software developed by the Argonne National Laboratory in the USA. It is extensively utilized in research pertaining to the energy and environmental impact of vehicles. This research study examines four types of logistics vehicles: hydrogen fuel cell vehicles (FCVs) electric vehicles LNG-fueled vehicles and diesel-fueled vehicles. Diesel-fueled logistics vehicles are currently the most abundant type of vehicle in the logistics sector. LNG-fueled logistics vehicles are considered as a short-term alternative to diesel logistics vehicles while electric logistics vehicles are among the most popular types of new-energy vehicles currently. We analyze and compare their well-to-wheels (WTW) energy consumption and emissions with the help of GREET software and conduct lifecycle assessments (LCAs) of the four types of vehicles to analyze their energy and environmental benefits. When comparing the energy consumption of the four vehicle types electric logistics vehicles (EVs) have the lowest energy consumption with slightly lower energy consumption than FCVs. When comparing the nine airborne pollutant emissions of the four vehicle types the emissions of the FCVs are significantly lower than those of spark-ignition internal combustion engine logistics vehicles (SI ICEVs) compression-ignition direct-injection internal combustion engine logistics vehicles (CIDI ICEVs) and EVs. This study fills a research gap regarding the energy consumption and environmental impact of logistics vehicles in China.
Market Uptake and Impact of Key Green Aviation Technologies
Jan 2023
Publication
Steer was appointed by the Directorate-General of Research and Innovation (DG RTD) to undertake an overview of key green aviation technologies and conditions for their market uptake. Steer is being supported in delivery by the Institute of Air Transport and Airport Research of the German Aerospace Centre DLR. The study was undertaken in the context of the Clean Aviation Partnership’s Strategic Research and Innovation Agenda (SRIA) for the period 2030-2050. The objective of the project is to identify the prerequisites for the market entry of climate-neutral aviation technologies as well as the flanking measures required for this to be successful. The scope of the study is hydrogen and electrically powered aircraft in the regional and short/medium range categories taking a holistic view on the technological development and keeping the economic context in mind. The outcome of the study will serve as guidance for the Commission and other actors with regard to further policy or industry initiatives such as in the context of Horizon Europe or the Alliance Zero Emission Aviation.
Hydrogen Net Zero Investment Roadmap: Leading the Way to Net Zero
Apr 2023
Publication
This net zero investment roadmap summarises government’s hydrogen policies and available investment opportunities.
Hydrogen Recombiners for Non-nuclear Hydrogen Safety Applications
Sep 2023
Publication
Hydrogen recombiners are catalyst-based hydrogen mitigation systems that have been successfully implemented in the nuclear industry but have not yet received serious interest from the hydrogen industry. Recombiners have been installed in the containment buildings of many nuclear power plants to prevent the accumulation of hydrogen in potential accidents. The attractiveness of hydrogen recombiners for the nuclear industry is due to the confined state of the containment building where hydrogen cannot be vented easily and its passive design where no power or actions are needed for the unit to operate. Alternatively in the hydrogen industry most applications utilize ventilation to mitigate potential hydrogen accumulation in confined areas and passive safety is not essential. However many applications in the hydrogen industry may utilize hydrogen recombiners from a different approach. For instance recombiners could be utilized in emerging hydrogen areas to minimize the costs of ventilation upgrades or built into hydrogen appliances to avoid vent connections. The potential applications for recombiners in the hydrogen industry have different atmospheric conditions than the nuclear industry which may impact the catalyst in the units and render them less effective. Thus experiments have been performed to investigate the limits of the recombiner catalyst and if modifications to the catalyst can extend their use to the hydrogen industry. This paper will present and discuss the applications of interest conditions that may affect the catalyst and results from experiments investigating the catalyst behaviour at temperatures less than 0 °C and carbon monoxide concentrations up to 1000 ppm.
Evaluation of Hydrogen Blend Stability in Low-Pressure Gas Distribution
Apr 2023
Publication
Natural gas distribution companies are developing ambitious plans to decarbonize the services that they provide in an affordable manner and are accelerating plans for the strategic integration of renewable natural gas and the blending of green hydrogen produced by electrolysis powered with renewable electricity being developed from large new commitments by states such as New York and Massachusetts. The demonstration and deployment of hydrogen blending have been proposed broadly at 20% of hydrogen by volume. The safe distribution of hydrogen blends in existing networks requires hydrogen blends to exhibit similar behavior as current supplies which are also mixtures of several hydrocarbons and inert gases. There has been limited research on the properties of blended hydrogen in low-pressure natural gas distribution systems. Current natural gas mixtures are known to be sufficiently stable in terms of a lack of chemical reaction between constituents and to remain homogeneous through compression and distribution. Homogeneous mixtures are required both to ensure safe operation of customer-owned equipment and for safety operations such as leak detection. To evaluate the stability of mixtures of hydrogen and natural gas National Grid experimentally tested a simulated distribution natural gas pipeline with blends containing hydrogen at up to 50% by volume. The pipeline was outfitted with ports to extract samples from the top and bottom of the pipe at intervals of 20 feet. Samples were analyzed for composition and the effectiveness of odorant was also evaluated. The new results conclusively demonstrate that hydrogen gas mixtures do not significantly separate or react under typical distribution pipeline conditions and gas velocity profiles. In addition the odorant retained its integrity in the blended gas during the experiments and demonstrated that it remains an effective method of leak detection.
Dynamic Investigation and Optimization of a Solar‐Based Unit for Power and Green Hydrogen Production: A Case Study of the Greek Island, Kythnos
Nov 2022
Publication
The aim of the present work is the analysis of a solar‐driven unit that is located on the non‐interconnected island of Kythnos Greece that can produce electricity and green hydrogen. More specifically solar energy is exploited by parabolic trough collectors and the produced heat is stored in a thermal energy storage tank. Additionally an organic Rankine unit is incorporated to generate electricity which contributes to covering the island’s demand in a clean and renewable way. When the power cannot be absorbed by the local grid it can be provided to a water electrolyzer; therefore the excess electricity is stored in the form of hydrogen. The produced hydrogen amount is compressed afterward stored in tanks and then finally can be utilized as a fuel to meet other important needs such as powering vehicles or ferries. The installation is simulated parametrically and optimized on dynamic conditions in terms of energy exergy and finance. According to the results considering a base electrical load of 75 kW the annual energy and exergy efficiencies are found at 14.52% and 15.48% respectively while the payback period of the system is deter‐ mined at 6.73 years and the net present value is equal to EUR 1073384.
The Role of Liquid Hydrogen in Integrated Energy Systems - A Case Study for Germany
May 2023
Publication
Hydrogen (H2) is expected to be a key building block in future greenhouse gas neutral energy systems. This study investigates the role of liquid hydrogen (LH2) in a national greenhouse gas-neutral energy supply system for Germany in 2045. The integrated energy system model suite ETHOS is extended by LH2 demand profiles in the sectors aviation mobility and chemical industry and means of LH2 transportation via inland vessel rail and truck. This case study demonstrates that the type of hydrogen demand (liquid or gaseous) can strongly affect the cost-optimal design of the future energy system. When LH2 demand is introduced to the energy system LH2 import transportation and production grow in importance. This decreases the need for gaseous hydrogen (GH2) pipelines and affects the location of H2 production plants. When identifying no-regret measures it must be considered that the largest H2 consumers are the ones with the highest readiness to use LH2.
Hydrogen Micro-Systems: Households’ Preferences and Economic Futility
Mar 2024
Publication
This study examines the potential market for residential hydrogen systems in light of the trends towards digitalisation and environmental awareness. Based on a survey of 350 participants the results indicate that although energy experts are sceptical about the benefits of residential hydrogen systems due to their high costs households are highly interested in this technology. The sample shows a willingness to invest in hydrogen applications with some households willing to pay an average of 24% more. An economic assessment compared the cost of a residential hydrogen system with conventional domestic energy systems revealing significant additional costs for potential buyers interested in hydrogen applications.
Hydrogen Fuel Cell Integration and Testing in a Hybrid-electric Propulsion Rig
Jun 2023
Publication
On the road towards greener aviation hybrid-electric propulsion systems have emerged as a viable solution. In this paper a system based on hydrogen fuel cells is proposed and evaluated in a laboratory setting with its future integration in a propulsive system in mind and main focus on the ability to lessen the power demand on the opposing side of the bench. The setup consists in a parallel architecture with two power sources: a hydrogen fuel cell and a battery. First the performance of the fuel cell and its capability to provide power to one of the motors are analyzed. Then the entire parallel hybrid system is evaluated. Although the experimental setup was shown to be sub-optimal the results demonstrated the ability of this greener alternative to reduce power demand on the opposing side of the parallel configuration with a reduction of up to 40.3% in the highest load scenario and maximum power output on the fuel cell of 257.8 W. The stack performance was also concluded to be very dependent on the operating temperature.
Recent Research in Solar-Driven Hydrogen Production
Mar 2024
Publication
Climate concerns require immediate actions to reduce the global average temperature increase. Renewable electricity and renewable energy-based fuels and chemicals are crucial for progressive de-fossilization. Hydrogen will be part of the solution. The main issues to be considered are the growing market for H2 and the “green” feedstock and energy that should be used to produce H2 . The electrolysis of water using surplus renewable energy is considered an important development. Alternative H2 production routes should be using “green” feedstock to replace fossil fuels. We firstly investigated these alternative routes through using bio-based methanol or ethanol or ammonia from digesting agro-industrial or domestic waste. The catalytic conversion of CH4 to C and H2 was examined as a possible option for decarbonizing the natural gas grid. Secondly water splitting by reversible redox reactions was examined but using a renewable energy supply was deemed necessary. The application of renewable heat or power was therefore investigated with a special focus on using concentrated solar tower (CST) technology. We finally assessed valorization data to provide a tentative view of the scale-up potential and economic aspects of the systems and determine the needs for future research and developments.
No more items...