Publications
Review and Evaluation of Hydrogen and Air Heat Exchangers for Fuel Cell-Powered Electric Aircraft Propulsion
Mar 2025
Publication
Hydrogen fuel cell systems are a viable option for electrified aero engines due to their efficiency and environmental benefits. However integrating these systems presents challenges notably in terms of overall system weight and thermal management. Heat exchangers are crucial for the effective thermal management system of electric propulsion systems in commercial electrified aviation. This paper provides a comprehensive review of various heat exchanger types and evaluates their potential applications within these systems. Selection criteria are established based on the specific requirements for air and hydrogen heat exchangers in electrified aircraft. The study highlights the differences in weighting criteria for these two types of heat exchangers and applies a weighted point rating system to assess their performance. Results indicate that extended surface microchannel and printed circuit heat exchangers exhibit significant promise for aviation applications. The paper also identifies key design challenges and research needs particularly in enhancing net heat dissipation increasing compactness improving reliability and ensuring effective integration with aircraft systems.
Evaluating the Role of Hydrogen as an Energy Carrier: Perspectives on Low-Emission Applications
Oct 2025
Publication
Application of low-emission hydrogen production methods in the decarbonization process remains a highly relevant topic particularly in the context of sustainable hydrogen value chains. This study evaluates hydrogen applications beyond industry focusing on its role as an energy carrier and applying multi-criteria decision analysis (MCDA) to assess economics environmental impact efficiency and technological readiness. The analysis confirmed that hydrogen use for heating was the most competitive non-industrial application (ranking first in 66%) with favorable efficiency and costs. Power generation placed among the top two alternatives in 75% of cases. Transport end-use was less suitable due to compression requirements raising emissions to 272–371 g CO2/kg H2 and levelizing the cost of hydrogen (LCOH) to 13–17 EUR/kg. When H2 transport was included new pipelines and compressed H2 clearly outperformed other methods for short- and long-distances adding only 3.2–3.9% to overall LCOH. Sensitivity analysis confirmed that electricity price variations had a stronger influence on LCOH than capital expenditures. Comparing electrolysis technologies yielded that proton-exchange membrane and solid oxide reduced costs by 12–20% and CO2 emissions by 15–25% compared to alkaline. The study highlights heating end-use and compressed hydrogen and pipeline transport proving MCDA to be useful for selecting scalable pathways.
Levelised Cost of Hydrogen (LCOH) Calculator Manual - Update of the May 2024 Manual
May 2025
Publication
The LCOH calculator manual explains the methodology behind the calculator in detail and demonstrates how the calculator can be used.<br/>In this second version the default prices are updated based on the latest data available in the calculator and a new use case is introduced on changing the economic lifetime and cost of capital of an electrolysis installation.
Cruel Utopia of the Seas? Multiple Risks Challenge the Singular Hydrogen Hype in Finnish Maritime Logistics
Oct 2025
Publication
To address the global climate crisis maritime logistics are undergoing a transition away from fossil-based energy sources. The transition is envisaged to be both green (involving renewables) and digital (involving various kinds of digitalization). Much of the hope rests on the new hydrogen economy involving the build-up of infrastructure for hydrogen-derived alternative fuels such as methanol and ammonia. Indeed the new hydrogen economy is often portrayed as set to revolutionize maritime transport. The hope behind the hype reflects a belief in the performativity of hypes: some technological phenomenon will eventually materialise in innovation and business practices. In this paper we critically analyse the current hydrogen hype in the field of Finnish maritime logistics as a paradigmatic case of performative techno-optimism. Based on causal network analysis and thematic analysis of expert interviews and workshop data we argue that the phenomenon of performative techno-optimism is more nuanced than hitherto presented in the related literature. We showcase a variety of stances along a spectrum ranging from radical optimism to radical pessimism. Furthermore our causal network analysis indicates that the current green and digital transition of maritime transport is caught in a systemic catch-22: transitioning to alternative fuels in maritime logistics faces a lock-in of between overly cautious demand for alternative fuels leading to overly cautious investment in supply which only secures the modest demand. Finally our thematic analysis of techno-optimist stances suggests the following two major ways out of the systemic dilemma: large-scale technological innovations and global regulatory solutions.
Sorption-enhanced Steam Reforming Technology for Promoting Hydrogen Production with In-situ CO2 Capture: Recent Advances and Prospects
Aug 2025
Publication
Sorption-enhanced steam reforming (SorESR) is an advanced thermochemical process integrating in-situ CO2 capture via solid sorbents to significantly enhance hydrogen production and purity. By coupling CO2 adsorption with steam reforming SorESR shifts the reaction equilibrium toward increased H₂ yield surpassing the limitations of conventional steam reforming (SR). The efficacy of SorESR critically depends on the physicochemical properties of the solid CO2 sorbents employed. This review critically evaluates widely studied sorbents including Ca-based Mg-based hydrotalcite-like and alkali ceramic sorbents focusing on their CO2 capture capacity reaction kinetics thermal stability and cyclic durability under SR conditions. Furthermore recent progress in multifunctional sorbent-catalysts that synergistically facilitate catalytic steam reforming alongside CO2 sorption is critically discussed. Moreover the review summarises recent performance achievements and proposes strategies to improve sorbent capacity and reaction kinetics thereby making the SorESR process more appealing for commercial applications. Large-scale SorESR implementation is expected to substantially increase hydrogen production efficiency while concurrently reducing CO2 emissions and advancing sustainable energy technologies. This review offers novel insights into the development of advanced sorbent-catalyst systems and provides new strategies for enhancing SorESR efficiency and scalability for commercial H2 Production.
System Efficiency Analysis of Direct Coupled PV-PEM Electrolyzer Systems
Oct 2025
Publication
Green hydrogen is an important technology in the energy transition with potential to decarbonize industrial processes increase renewable energy use and reduce reliance on fossil fuels yet it currently accounts for less than 1% of global hydrogen demand. One promising approach to expand production is the direct coupling of photovoltaic–electrolyzer systems. In this study overall and sub-system efficiencies were analyzed for different system setups coupling points and operating conditions such as temperature and irradiance. The highest overall system efficiencies were found to be more than 18%. The effect of varying irradiances on the coupled efficiency was not more than 5.7%. Different system designs optimized for different irradiances led to effects such as an increase in current density at the electrolyzer and thus an increase in the overvoltage which resulted in an overall efficiency loss of more than 3%. A key finding was that aligning the PV maximum power point with the electrolyzer polarization curve enables consistently high system efficiencies across the investigated irradiances. The findings were validated with two real life systems reproducing the coupling efficiencies of the model with 12%–14% including loss factors and approximately 18% for a direct coupled system respectively
Vehicle Peak Power Management System: Design, Development, and Testing of a Fuel Cell and Supercapacitor Hybrid
Oct 2025
Publication
The passive combination of fuel cells and supercapacitors possesses promising applications in the automotive industry due to its ability to decrease stack size maintain peak power capacity improve system productivity and go away with the need for additional control all without Direct current to Direct Current (DC/DC) converters. This research describes the steps to create and evaluate a fuel cell (FC) and supercapacitor (SC) passive hybrid electrical system for a 60-V lightweight vehicle. Also study offers a thorough design approach and model and experimentally to validate every passive hybrid testing station component. When both concepts are stable the voltage errors are about 2 % and 3 % respectively for fuel cells and supercapacitors. The results of the experiments provide more evidence that the passive design is effective under step loads and driving cycles. The results of the measurements match the models used to simulate the passive hybrid system if a step load voltage is used. A smaller FC stack is possible since the fuel cell controls the steady-state current. Alternatively the supercapacitors provide varying currents because of their reduced resistance. This study use a driving cycle to show that the FC stack can lower its output to 25 % of the peak power required by the load.
Bipolar Electrolysis Cells with Hydride Ion-proton Conductor Heterejunctions
Oct 2025
Publication
Protonic solid oxide electrolysis cells are pivotal for environmentally sustainable hydrogen production via water splitting but suffer from efficiency losses due to partial hole conductivity. Here we introduce a device architecture based on a hydride-ion (H− )/proton (H+ ) bipolar electrolyte which exploits electrochemical rectification at a heteroionic interface to overcome this limitation. The perovskite-type BaZr0.5In0.5O2.75 electrolyte undergoes an in situ transformation under electrolysis conditions forming an H+ -conducting hydrate layer adjacent to the anode and an H− -conducting oxyhydride layer near the cathode governed by competitive thermodynamic equilibria of hydration and hydrogenation. This bipolar configuration enables high Faradaic currents through the superior H− ion conductivity of the oxyhydride phase stabilized by cathodic potentials while facilitating continuous H+ /H− interconversion at the interface. Furthermore electrochemical hydrogenation generates an electron-depleted interfacial layer that effectively suppresses hole conduction. Consequently the cells achieve efficiencies of ∼95% at 1.0 A cm− 2 surpassing conventional H+ unipolar designs.
Ultrasonic Time-of-flight Measurement of Hydrogen Blending Ratios for Industrial Combustion Applications
Oct 2025
Publication
Hydrogen blending offers significant potential for decarbonizing natural gas-based thermal processes particularly in the steel and cement sectors. Due to its distinct combustion properties compared to natural gas – such as lower minimum air requirements and altered flame speeds – the hydrogen fraction of the fuel must be monitored for combustion control. In this study we present an ultrasonic time-of-flight measurement system for hydrogen concentrations of 0–40% in natural gas. The system is verified with test gas mixtures at laboratory scale and validated in a technical-scale setup using a real blower burner (< 60 kW). We evaluate uncertainty of the hydrogen fraction measurement and analyze the influence of varying natural gas compositions. We show that standard uncertainties below 4% can be achieved without knowledge of the specific natural gas composition. Our results provide insights for measurement system design and support the safe application of hydrogen in thermal systems for industrial processes.
Hydrogen Valleys to Foster Local Decarbonisation Targets: A Multiobjective Optimisation Approach for Energy Planning
Oct 2025
Publication
Hydrogen Valley represents localised ecosystems that enable the integrated production storage distribution and utilisation of hydrogen to support the decarbonisation of the energy system. However planning such integrated systems necessitates a detailed evaluation of their interconnections with variable renewable generation sector coupling and system flexibility. The novelty of this work lies in addressing a critical gap in system-level modelling for Hydrogen Valleys by introducing an optimization-based framework to determine their optimal configuration. This study focuses on the scenario-based multiobjective design of local hydrogen energy systems considering renewable integration infrastructure deployment and sector coupling. We developed and simulated three scenarios based on varying hydrogen pathways and penetration levels using the EnergyPLAN model implemented through a custom MATLAB Toolbox. Several decision variables such as renewable energy capacity electrolyser size and hydrogen storage were optimised to minimise CO₂ emissions total annual system cost and critical excess electricity production simultaneously. The findings show that Hydrogen Valley deployment can reduce CO₂ emissions by up to 30 % triple renewable penetration in the primary energy supply and lower the levelized cost of hydrogen from 7.6 €/kg to 5.6 €/kg despite a moderate increase in the total cost of the system. The approach highlights the potential of sector coupling and Power-to-X technologies in enhancing system flexibility and supporting green hydrogen integration. The outcome of our research offers valuable insights for policymakers and planners seeking to align local hydrogen strategies with broader decarbonisation targets and regulatory frameworks.
Proposal for an Energy Efficiency Index for Green Hydrogen Production—An Integrated Approach
Jun 2025
Publication
In the context of mounting concerns over carbon emissions and the need to accelerate the energy transition green hydrogen has emerged as a strategic solution for decarbonizing hard-to-abate sectors. This paper introduces a methodological innovation by proposing the Green Hydrogen Efficiency Index (GHEI) a unified and quantitative framework that integrates multiple stages of the hydrogen value chain into a single comparative metric. The index encompasses six core criteria: electricity source water treatment electrolysis efficiency compression end-use conversion and associated greenhouse gas emissions. Each are normalized and weighted to reflect different performance priorities. Two weighting profiles are adopted: a first profile which assigns equal importance to all criteria referred to as the balanced profile and a second profile derived using the analytic hierarchy process (AHP) based on structured expert judgment named the AHP profile. The methodology was developed through a systematic literature review and was applied to four representative case studies sourced from the academic literature covering diverse configurations and geographies. The results demonstrate the GHEI’s capacity to distinguish the energy performance of different green hydrogen routes and support strategic decisions related to technology selection site planning and logistics optimization. The results highlight the potential of the index to contribute to more sustainable hydrogen value chains and advance decarbonization goals by identifying pathways that minimize energy losses and maximize system efficiency
Prioritization of the Critical Factors of Hydrogen Transportation in Canada Using the Intuitionistic Fuzzy AHP Method
Jun 2025
Publication
Hydrogen is a potential source of imminent clean energy in the future with its transportation playing a crucial role in allowing large-scale deployment. The challenge lies in selecting an effective sustainable and scalable transportation alternative. This study develops a multi-criteria decision-making (MCDM) framework based on the intuitionistic fuzzy analytic hierarchy process (IF-AHP) to evaluate land-based hydrogen transportation alternatives across Canada. The framework includes uncertainty and decision-maker hesitation through the application of triangular intuitionistic fuzzy numbers (TIFNs). Seven factors their subsequent thirty-three subfactors and three alternatives to hydrogen transportation were identified through a literature review. Pairwise comparison was aggregated among factors subfactors and alternatives from three decision makers using an intuitionistic fuzzy weighted average and priority weights were computed using entropy-based weight. The results show that safety and economic efficiency emerged as the most influential factors in the evaluation of hydrogen transportation alternatives followed by environmental impact security and social impact and public health in ascending order. Among the alternatives tube truck transport obtained the highest overall weight (0.3551) followed by pipelines (0.3272) and rail lines (0.3251). The findings suggest that the tube ruck is currently the most feasible transport option for land-based hydrogen distribution that aims to provide a transition of Canada’s energy mix.
Accident Analysis Modeling and Case Study of Hydrogen Refueling Station Using Root Cause Analysis (RCA)
Jun 2025
Publication
As the global transition to carbon neutrality accelerates hydrogen energy has emerged as a key alternative to fossil fuels due to its potential to reduce carbon emissions. Many countries including Korea are constructing hydrogen refueling stations; however safety concerns persist due to accidents caused by equipment failures and human errors. While various accident analysis models exist the application of the root cause analysis (RCA) technique to hydrogen refueling station accidents remains largely unexplored. This study develops an RCA modeling map specifically for hydrogen refueling stations to identify not only direct and indirect causes of accidents but also root causes and applies it to actual accident cases to provide basic data for identifying the root causes of future hydrogen refueling station accidents. The RCA modeling map developed in this study uses accident cause investigation data from accident investigation reports over the past five years which include information on the organizational structure and operational status of hydrogen refueling stations as well as the RCA handbook. The primary defect sources identified were equipment defect personal defect and other defects. The problem categories which were the substructures of the primary defect source “equipment defect” consisted of four categories: the equipment design problem the equipment installation/fabrication problem the equipment reliability program problem and the equipment misuse problem. Additionally the problem categories which were the substructures of the primary defect source “personal defect” consisted of two categories: the company employee problem and the contract employee problem. The problem categories which were the substructures of the primary defect source “other defects” consisted of three categories: sabotage/horseplay natural phenomena and other. Compared to existing accident investigation reports which identified only three primary causes the RCA modeling map revealed nine distinct causes demonstrating its superior analytical capability. In conclusion the proposed RCA modeling map provides a more systematic and comprehensive approach for investigating accident causes at hydrogen refueling stations which could significantly improve safety practices and assist in quickly identifying root causes more efficiently in future incidents.
Examining Dynamics of Hydrogen Supply Chains
Mar 2025
Publication
Hydrogen is poised to play a pivotal role in achieving net-zero targets and advancing green economies. However a range of complex operational challenges hinders its planning production delivery and adoption. At the same time numerous drivers within the hydrogen value chain present significant opportunities. This paper investigates the intricate relationships between these drivers and barriers associated with hydrogen supply chain (HSC). Utilising expert judgment in combination Grey-DEMATEL technique we propose a framework to assess the interplay of HSC drivers and barriers. Gaining insight into these relationships not only improves access to hydrogen but also foster innovation in its development as a low-carbon resource. The use of prominence scores and net influence rankings for each driver and barrier in the framework provides a comprehensive understanding of their relative significance and impact. Our findings demonstrate that by identifying and accurately mapping these attributes clear cause-and-effect relationships can be established contributing to a more nuanced understanding of the HSC. These insights have broad implications across operational policy scholarly and social domains. For instance this framework can aid stakeholders in recognizing the range of opportunities available by addressing key barriers to hydrogen adoption.
Economic Value Creation of Artificial Intelligence in Supporting Variable Renewable Energy Resource Integration to Power Systems: A Systematic Review
Mar 2025
Publication
The integration of Variable Renewable Energy (VRE) sources in power systems is increased for a sustainable environment. However due to the intermittent nature of VRE sources formulating efficient economic dispatching strategies becomes challenging. This systematic review aims to elucidate the economic value creation of Artificial Intelligence (AI) in supporting the integration of VRE sources into power systems by reviewing the role of AI in mitigating costs related to balancing profile and grid with a focus on its applications for generation and demand forecasting market design demand response storage solutions power quality enhancement and predictive maintenance. The proposed study evaluates the AI potential in economic efficiency and operational reliability improvement by analyzing the use cases with various Renewable Energy Resources (RERs) including wind solar geothermal hydro ocean bioenergy hydrogen and hybrid systems. Furthermore the study also highlights the development and limitations of AI-driven approaches in renewable energy sector. The findings of this review aim to highlight AI’s critical role in optimizing VRE integration ultimately informing policymakers researchers and industry stakeholders about the potential of AI for an economically sustainable and resilient energy infrastructure.
Optimization Control of Flexible Power Supply System Applied to Offshore Wind–Solar Coupled Hydrogen Production
Jun 2025
Publication
The inherent randomness and intermittency of offshore renewable energy sources such as wind and solar power pose significant challenges to the stable and secure operation of the power grid. These fluctuations directly affect the performance of grid-connected systems particularly in terms of harmonic distortion and load response. This paper addresses these challenges by proposing a novel harmonic control strategy and load response optimization approach. An integrated three-winding transformer filter is designed to mitigate high-frequency harmonics and a control strategy based on converter-side current feedback is implemented to enhance system stability. Furthermore a hybrid PI-VPI control scheme combined with feedback filtering is employed to improve the system’s transient recovery capability under fluctuating load and generation conditions. Experimental results demonstrate that the proposed control algorithm based on a transformer-oriented model effectively suppresses low-order harmonic currents. In addition the system exhibits strong anti-interference performance during sudden voltage and power variations providing a reliable foundation for the modulation and optimization of offshore wind–solar coupled hydrogen production power supply systems.
Medium Speed Lean Hydrogen Engine Modelling and Validation
Sep 2025
Publication
Hydrogen spark-ignition direct-injection engines result in no carbon emissions at use but NOX remains a challenge. This study demonstrates that with lean combustion (ϕ < 0.38) in-cylinder NOX can be reduced to a quarter of the current maritime regulatory limit. An original contribution of this work is the use of speciesresolved emissions formation across multiple engine load conditions. A novel chemically detailed combustion modelling framework was developed in CHEMKIN-Pro incorporating the evolution of the CRECK C1–C3 NOX mechanism for improved high-pressure accuracy. The framework was extensively validated using crank-angleresolved data across 9–18 bar loads. The model accurately reproduced pressure traces heat release angles and NOX. Mechanistic analysis revealed a shift from thermal Zeldovich NOX to intermediate-species (notably N2Odriven) as equivalence ratio and pressure varied. The findings highlighted the use of a high-fidelity chemical kinetic modelling framework not only to match experimental results but to gain physically grounded insight into actionable near-zero emission strategies.
Environmental Implications of Alternative Production, Distribution, Storage, and Leakage Rates of Hydrogen from Offshore Wind in Norway
Jun 2025
Publication
Renewable hydrogen offers compelling climate mitigation prospects with Norway possessing the opportunity to become a main global producer given its unique combination of wind energy potential available infrastructure and political motivation. However comprehensive environmental impact assessments of hydrogen from offshore wind are lacking and hydrogen leakage rates remain uncertain. A life-cycle assessment of hydrogen production from offshore wind farms in Norway is presented where different combinations of turbines (floating or bottomfixed) storage options (tank or salt cavern) and distribution methods (trucks or pipelines) are considered. Climate change impacts are assessed across the supply chain using global warming potential 100 (GWP100) and 20 (GWP20) and include hydrogen leakage contributions. The results range from 1.56 ± 0.14–2.28 ± 0.14 kg CO2-eq/kg H2 for GWP100 and 2.96 ± 0.76 and 3.75 ± 0.76 kg CO2-eq/kg H2 for GWP20 and are on average 55 % and 45 % lower than those of blue hydrogen respectively. At a default rate of 5 % hydrogen leakage contributes 50–63 % of the total impact for GWP20 and 25–37 % for GWP100. If higher-end leakage rates from literature are considered the impacts increase to 3.46 kg CO2-eq/kg H2 for GWP100 which is still lower than that of blue hydrogen. The scenario combining bottom-fixed turbines salt cavern storage and pipeline distribution presents the lowest environmental impacts. However while bottom-fixed turbines generally offer lower impacts floating turbines pose lesser risk to marine biodiversity. Overall infrastructure represents the main driver of environmental impacts. Mitigation in this area will improve potential benefits.
Thermo-Catalytic Decomposition of Natural Gas: Connections Between Deposited Carbon Nanostructure, Active Sites and Kinetic Rates
Oct 2025
Publication
Thermo-catalytic decomposition (TCD) presents a promising pathway for producing hydrogen from natural gas without emitting CO2. This process represents a form of fossil fuel decarbonization where the byproduct rather than being a greenhouse gas is a solid carbon material with potential for commercial value. This study examines the dynamic behavior of TCD showing that carbon formed during the reaction first enhances and later dominates methane decomposition. Three types of carbon materials were employed as starting catalysts. Methane decomposition was continuously monitored using on-line Fourier transform infrared (FT-IR) spectroscopy. The concentration and nature of surface-active sites were determined using a two-step approach: oxygen chemisorption followed by elemental analysis through X-ray photoelectron spectroscopy (XPS). Changes in the morphology and nanostructure of the carbon catalysts both before and after TCD were examined using high-resolution transmission electron microscopy (HRTEM). Thermogravimetric analysis (TGA) was used to study the reactivity of the TCD deposits in relation to the initial catalysts. Partial oxidation altered the structural and surface chemistry of the initial carbon catalysts resulting in activation energies of 69.7–136.7 kJ/mol for methane. The presence of C2 and C3 species doubled methane decomposition (12% → 24%). TCD carbon displayed higher reactivity than the nascent catalysts and sustained long-term activity.
A Capacity Expansion Model of Hydrogen Energy Storage for Urban-Scale Power Systems: A Case Study in Shanghai
Sep 2025
Publication
With the increasing maturity of renewable energy technologies and the pressing need to address climate change urban power systems are striving to integrate a higher proportion of low-carbon renewable energy sources. However the inherent variability and intermittency of wind and solar power pose significant challenges to the stability and reliability of urban power grids. Existing research has primarily focused on short-term energy storage solutions or small-scale integrated energy systems which are insufficient to address the long-term large-scale energy storage needs of urban areas with high renewable energy penetration. This paper proposes a mid-to-long-term capacity expansion model for hydrogen energy storage in urban-scale power systems using Shanghai as a case study. The model employs mixed-integer linear programming (MILP) to optimize the generation portfolios from the present to 2060 under two scenarios: with and without hydrogen storage. The results demonstrate that by 2060 the installed capacity of hydrogen electrolyzers could reach 21.5 GW and the installed capacity of hydrogen power generators could reach 27.5 GW accounting for 30% of the total installed capacity excluding their own. Compared to the base scenario the electricity–hydrogen collaborative energy supply system increases renewable penetration by 11.6% and utilization by 12.9% while reducing the levelized cost of urban comprehensive electricity (LCOUCE) by 2.514 cents/kWh. These findings highlight the technical feasibility and economic advantages of deploying long-term hydrogen storage in urban grids providing a scalable solution to enhance the stability and efficiency of high-renewable urban power systems.
A Multi-Stage Resilience Enhancement Method for Distribution Networks Employing Transportation and Hydrogen Energy Systems
Sep 2025
Publication
The resilience and sustainable development of modern power distribution systems faces escalating challenges due to increasing renewable integration and extreme events. Traditional single-system approaches often overlook the spatiotemporal coordination of cross-domain restoration resources. In this paper we propose a multi-stage resilience enhancement method that employs transportation and hydrogen energy systems. This approach coordinates the pre-event preventive allocation and multi-stage collaborative scheduling of diverse restoration resources including remote-controlled switches (RCSs) mobile hydrogen emergency resources (MHERs) and hydrogen production and refueling stations (HPRSs). The proposed framework supports cross-stage dynamic optimization scheduling enabling the development of adaptive resource dispatch strategies tailored to the characteristics of different stages including prevention fault isolation and service restoration. The model is applicable to complex scenarios involving dynamically changing network topologies and is formulated as a mixed-integer linear programming (MILP) problem. Case studies based on the IEEE 33-bus system show that the proposed method can restore a distribution system’s resilience to approximately 87% of its normal level following extreme events.
Towards Inclusive Path Transplanation: Local Agency for Green Hydrogen Linkage Creation in Namibia
Aug 2025
Publication
Many countries of the Global South struggle to achieve inclusive growth paths despite investment in the exploitation of rich resources. Resource-based industrialization literature stresses the potential for achieving broader development effects via the development of production linkages with local enterprises. The focus lies on market-driven outsourcing dynamics that foster linkage development such as efficiency location-specific knowledge and technology and scale complexity. However little is known about the opportunity space for both policy making and local firms to create these linkages. To address this issue we incorporate the concept of change agency stemming from the path development literature into the discussion on production linkages to show how both (local) firm agency and system-level agency can achieve linkage creation for inclusive path transplantation. We illustrate the framework by scrutinizing the potential inclusion of solar energy companies in Namibia’s emerging green hydrogen economy. The study finds that while the potential for renewable energy companies in Namibia to participate in the value chain is limited an integrated bundle of measures relying on firm- and system-level agency could address peripheral contextual factors overcome entry barriers and leverage further potential for linkage creation in the solar energy sector: mobilizing the local workforce fostering inter-firm cooperation leveraging local advantages creating knowledge institutions enhancing the regulatory framework upgrading infrastructure and enforcing local content regulations.
The European Hydrogen Policy Landscape - Extensive Update of the April 2024 Report
Jan 2025
Publication
This report aims to summarise the status of the European hydrogen policy landscape. It is based on the information available at the European Hydrogen Observatory (EHO) website the leading source of data on hydrogen in Europe. The data presented in this report is based on research conducted by Hydrogen Europe until the end of July 2024 but also goes beyond this timeline for major policies legislations or standards implemented recently. This report builds upon the previous version published in April 2024 which reflected data as of August 2023 providing updated insights on European policies and legislation national strategies national policies and legislation and codes and standards. Interactive data dashboards can be accessed on the website: https://observatory.cleanhydrogen.europa.eu/ The EU policies and legislation section provides insights into the main European policies and legislation relevant to the hydrogen sector which are briefly summarized on content and their potential impact to the sector. The national hydrogen strategies chapter offers a comprehensive examination of the hydrogen strategies adopted in Europe. It summarizes the quantitative indicators that have been published (targets and estimates) and provides brief summaries of the different national strategies that have been adopted. The section referring to national policies and legislation focuses on the policy framework measures incentives and targets in place that have an impact on the development of the respective national hydrogen markets within Europe. The codes and standards section provides information on current European standards and initiatives developed by the standardisation bodies including CEN CENELEC ISO IEC OIML The standards are categorised according to the different stages of the hydrogen value chain: production distribution and storage and end-use applications.
Transient-state Behaviours of Blast Furnace Ironmaking: The Role of Shaft-injected Hydrogen
Aug 2025
Publication
Hydrogen shaft injection into blast furnaces (BFs) has a large potential to eliminate carbon dioxide emissions yet the temporal evolution of thermal and chemical states following shaft-injected hydrogen utilisation has not been reported in the open literature. In this research a recently developed transient-state multifluid BF model is applied to elucidate the temporal evolution of in-furnace phenomena. Besides a domain-average method is adopted to analyse the extensive simulation data to determine the time required to attain the next steady-like state. The results show that the evolution of thermal and chemical conditions varies across different regions with distinct characteristics near the furnace wall. The shifts in iron oxide reduction behaviour are completed within 10 to 20 h after the new operation and the transition time points to the next steady-like states of thermal and chemical conditions are different. As the hydrogen flow rate increases the average transition time decreases. However 2 to 4 days are required for the studied BF to reach a new steady-like state in the considered scenarios. The model offers a cost-effective approach to investigating the transient smelting characteristics of an ironmaking BF with hydrogen injection.
Hydrogen Energy Resource: Overview of Production Techniques, Economy and Application in Microgrid Systems Operation
Sep 2025
Publication
Hydrogen (H2) fuel is one of eco-friendly resources for delivering de-carbonized and sustainable electricity supply in line with the UN’s Sustainable Development Goals 7 and 13 for affordable and clean energy and climate change action respectively. This paper presents a state-of-the art review of the H2 energy resource in terms of its history and evolution production techniques global economy market perspective and application to microgrid systems. It also introduces a systematic classification of the fuel. The production techniques examined include: the thermal approach such as the reforming gasification and thermochemical processes; the photocatalytic approach otherwise called artificial photosynthesis; the biological and photonic approach that involves the photolysis photo-fermentation dark fermentation CO gas fermentation and biomass valorization processes to produce H2 while the electrical approach is based on the chemical dissociation of electrolytes into their constituent ions by the passage of electric current. A particular attention is paid to the potential of the H2 resource in running some energy generators in microgrid systems such as the internal combustion engines microturbines and the fuel cells that are useful for combined heat and power application. The paper introduces different technical configurations topologies and processes that involve the use of green H2 fuel in generating systems and the connection of bus bars power converters battery bank and the electrical and thermal loads. The paper also presents hybrid fuel cell (FC) and PV system simulation using System Advisor Model (SAM) to showcase the use of H2 fuel in a micogrid. The paper provides insightful directions into the H2 economy smart electrical grid and the future prospects.
Altering Carbonate Wettability for Hydrogen Storage: The Role of Surfactant and CO2 Floods
Oct 2025
Publication
Underground hydrogen storage (UHS) in depleted oil and gas fields is pivotal for balancing large-scale renewable-energy systems yet the wettability of reservoir rocks in contact with hydrogen after decades of Enhanced Oil Recovery (EOR) operations remains poorly quantified. This work experimentally investigates how two common EOR legacies cationic surfactant (city-trimethyl-ammonium bromide CTAB) and supercritical carbon dioxide (SC–CO2) flooding alter rock–water–Hydrogen (H2) wettability in carbonate formations. Contact angles were measured on dolomite and limestone rock slabs at 30–75 ◦C and 3.4–17.2 MPa using a high-pressure captive-bubble cell. Crude-oil aging shifted clean dolomite from strongly water-wet (θ ~ 28–29◦) to intermediate-wet (θ ≈ 84◦). Subsequent immersion in dilute CTAB solutions (0.5–2 wt %) fully reversed this effect restoring or surpassing the original water-wetness (θ ≈ 21–28◦). Limestone samples exposed to SC-CO2 at 60–80 ◦C became more hydrophilic (θ ≈ 18–30◦) relative to untreated controls; moderate carbonate dissolution (≤6 × 103 ppm Ca2+) produced the most significant improvement in water-wetness whereas severe dissolution yielded diminishing returns. These findings show that many mature reservoirs are already water-wet (post-CO2) or can be easily re-wetted (via residual CTAB). Across all scenarios sample wettability showed little sensitivity to pressure but higher temperature consistently promoted stronger water-wetness. Future work should include dynamic core-flooding experiments with realistic reservoir.
Unified Case Study Analysis of Techno-Economic Tools to Study the Viability of Off-Grid Hydrogen Production Plants
Sep 2025
Publication
The increasing interest in off-grid green hydrogen production has elevated the importance of reliable techno-economic assessment (TEA) tools to support investment and planning decisions. However limited operational data and inconsistent modeling approaches across existing tools introduce significant uncertainty in cost estimations. This study presents a comprehensive review and comparative analysis of seven TEA tools—ranging from simplified calculators to advanced hourly based simulation platforms—used to estimate the Levelized Cost of Hydrogen (LCOH) in off-grid Hydrogen Production Plants (HPPs). A standardized simulation framework was developed to input consistent technical economic and financial parameters across all tools allowing for a horizontal comparison. Results revealed a substantial spread in LCOH values from EUR 5.86/kg to EUR 8.71/kg representing a 49% variation. This discrepancy is attributed to differences in modeling depth treatment of critical parameters (e.g. electrolyzer efficiency capacity factor storage and inflation) and the tools’ temporal resolution. Tools that included higher input granularity hourly data and broader system components tended to produce more conservative (higher) LCOH values highlighting the cost impact of increased modeling realism. Additionally the total project cost—more than hydrogen output—was identified as the key driver of LCOH variability across tools. This study provides the first multi-tool horizontal testing protocol a methodological benchmark for evaluating TEA tools and underscores the need for harmonized input structures and transparent modeling assumptions. These findings support the development of more consistent and reliable economic evaluations for off-grid green hydrogen projects especially as the sector moves toward commercial scale-up and policy integration.
Techno-Economic Assessment of Hydrogen-Based Power-to-Power Systems: Operational Strategies and Feasibility Within Energy Communities
Jun 2025
Publication
In the context of the evolving energy landscape the need to harness renewable energy sources (RESs) has become increasingly imperative. Within this framework hydrogen emerges as a promising energy storage vector offering a viable solution to the flexibility challenges caused by the inherent variability of RESs. This work investigates the feasibility of integrating a hydrogen-based energy storage system within an energy community in Barcelona using surplus electricity from photovoltaic (PV) panels. A power-to-power configuration is modelled through a comprehensive methodology that determines optimal component sizing based on high-resolution real-world data. This analysis explores how different operational strategies influence the system’s cost-effectiveness. The methodology is thus intended to assist in the early-stage decision-making process offering a flexible approach that can be adapted to various market conditions and operational scenarios. The results show that under the current conditions the combination of PV generation energy storage and low-cost grid electricity purchases yield the most favourable outcomes. However in a long-term perspective considering projected cost reductions for hydrogen technologies strategies including energy sales back to the grid become more profitable. This case study offers a practical example of balancing engineering and economic considerations providing replicable insights for designing hydrogen storage systems in similar energy communities.
Recent Progress in Seawater Splitting Hydrogen Production Assisted by Value-Added Electrooxidation Reactions
Jun 2025
Publication
Electrolysis of abundant seawater resources is a promising approach for hydrogen production. However the high-concentration chloride ion in seawater readily induces the chlorine evolution reaction (CER) resulting in catalyst degradation and decreased electrolysis efficiency. In recent years the electrooxidation of small organic molecules (e.g. methanol) biomass-derived compounds (e.g. 5-hydroxymethylfurfural) and plastic monomers (e.g. ethylene glycol) has been seen to occur at lower potentials to substitute for the traditional oxygen evolution reaction (OER) and CER. This alternative approach not only significantly reduces energy consumption for hydrogen production but also generates value-added products at the anode. This review provides a comprehensive summary of research advancements in value-added electrooxidation reaction-assisted seawater hydrogen production technologies and emphasizes the underlying principles of various reactions and catalyst design methodologies. Finally the current challenges in this field and potential future research directions are systematically discussed.
Economic Viability of Hydrogen Production via Plasma Thermal Degradation of Natural Gas
Jun 2025
Publication
This study evaluated the economic feasibility of producing hydrogen from natural gas via thermal degradation in a plasma reactor. Plasma pyrolysis where natural gas passes through the space between electrodes and serves as the working medium enables high hydrogen yields without emitting carbon monoxide or carbon dioxide. Instead the primary products are hydrogen and solid carbon. Unlike conventional methods this approach requires no catalysts addressing a major technological limitation. A thermodynamic equilibrium model based on Gibbs free energy minimization was used to analyze the process over a temperature range of 500–2500 K. The results indicate an optimal temperature of approximately 1500 K which achieved a 99.5% methane conversion by mass. Considering the capital and operating costs and profit margins the hydrogen production cost was estimated at 3.49 EUR/kg. The sensitivity analysis revealed that the price of solid carbon had the most significant impact which potentially raised the hydrogen cost to 4.53 EUR/kg or reduced it to 1.70 EUR/kg.
Numerical Investigation of Premixed Hydrogen Combustion in Dual-fuel Marine Engines at High Load
Jun 2025
Publication
Zero-emission fuels are expected to drive the maritime sector decarbonisation with hydrogen emerging as a long-term solution. This study aims to investigate by using CFD modelling a hydrogen fuelled marine dual-fuel engine to identify operating settings ranges for different hydrogen energy fractions (HEF) as well as parametrically optimise the diesel fuel injection timing and temperature at inlet valve closing (IVC). A large marine four-stroke engine with nominal power of 10.5 MW at 500 rev/m is considered assuming operation at 90 % load and hydrogen injection in the cylinders intake ports. CFD models are developed for several operating scenarios in both diesel and dual-fuel modes. The models are validated against measured data for the engine diesel mode and literature data for a hydrogen-fuelled light-duty engine. A convergence study is conducted to select the grid compromising between computational effort and accuracy. Parametric runs for 20 % 40 % and 60 % HEF with different IVC temperature and diesel start of injection are modelled to quantify the engine performance emissions and combustion characteristics. A single parameter optimisation is conducted to determine the most effective pilot diesel injection timings. The results reveal the IVC temperature range for stable hydrogen combustion to avoid incomplete combustion at low IVC temperature and knocking above 360 K. The proposed settings lead to higher peak heat release rate and in-cylinder pressure compared to the diesel mode without exceeding the permissible in-cylinder pressure rise limits for 60 % HEF. However NOx emissions increase to 12.9 g/kWh in the dual-fuel mode. The optimal start of injection (SOI) for the diesel fuel in the case of 60 % HEF is found 8 ◦CA BTDC resulting in an indicated thermal efficiency of 43.2 % and stable combustion. Advancing SOI beyond the optimal value results in incomplete combustion. This is the first study on hydrogen use in large marine four-stroke engines providing insights for the engine design and operation and as such it contributes to the maritime industry decarbonisation efforts.
Evaluating the Potential for Underground Hydrogen Storage (UHS) in Lithuania: A Review of Geological Viability and Storage Integrity
Feb 2025
Publication
The aim of this study is to review and identify H2 storage suitability in geological reservoirs of the Republic of Lithuania. Notably Lithuania can store clean H2 effectively and competitively because of its wealth of resources and well-established infrastructure. The storage viability in Lithuanian geological contexts is highlighted in this study. In addition when it comes to injectivity and storage capacity salt caverns and saline aquifers present less of a challenge than other kinds of storage medium. Lithuania possesses sizable subterranean reservoirs (Cambrian rocks) that can be utilized to store H2. For preliminary assessment the cyclic H2 injection and production simulation is performed. A 10-year simulation of hydrogen injection and recovery in the Syderiai saline aquifer demonstrated the feasibility of UHS though efficiency was reduced by nearly 50% when using a single well for both injection and production. The study suggests using separate wells to improve efficiency. However to guarantee economic injectivity and containment security a detailed assessment of the geological structures is required specifically at the pore scale level. The volumetric approach estimated a combined storage capacity of approximately 898.5 Gg H2 (~11 TWh) for the Syderiai and Vaskai saline aquifers significantly exceeding previous estimates. The findings underscore the importance of detailed geological data and further research on hydrogen-specific factors to optimize UHS in Lithuania. Addressing technical geological and environmental challenges through multidisciplinary research is essential for advancing UHS implementation and supporting Lithuania’s transition to a sustainable energy system. UHS makes it possible to maximize the use of clean energy reduce greenhouse gas emissions and build a more sustainable and resilient energy system. Hence intensive research and advancements are needed to optimize H2 energy for broader applications in Lithuania.
Innovative Aircraft Propulsive Configurations: Technology Evaluation and Operations in the SIENA Project
Mar 2025
Publication
In this paper developed in the context of the Clean Sky 2 project SIENA (Scalability Investigation of hybrid-Electric concepts for Next-generation Aircraft) an extensive analysis is carried out to identify and accelerate the development of innovative propulsion technologies and architectures that can be scaled across five aircraft categories from small General Aviation airplanes to long-range airliners. The assessed propulsive architectures consider various components such as batteries and fuel cells to provide electricity as well as electric motors and jet engines to provide thrust combined to find feasible aircraft architectures that satisfy certification constraints and deliver the required performance. The results provide a comprehensive analysis of the impact of key technology performance indicators on aircraft performance. They also highlight technology switching points as well as the potential for scaling up technologies from smaller to larger aircraft based on different hypotheses and assumptions concerning the upcoming technological advancements of components crucial for the decarbonization of aviation. Given the considered scenarios the common denominator of the obtained results is hydrogen as the main energy source. The presented work shows that for the underlying models and technology assumptions hydrogen can be efficiently used by fuel cells for propulsive and system power for smaller aircraft (General Aviation commuter and regional) typically driven by propellers. For short- to long-range jet aircraft direct combustion of hydrogen combined with a fuel cell to power the on-board subsystems appears favorable. The results are obtained for two different temporal scenarios 2030 and 2050 and are assessed using Payload-Range Energy Efficiency as the key performance indicator. Naturally introducing such innovative architectures will face a lack of applicable regulation which could hamper a smooth entry into service. These regulatory gaps are assessed detailing the level of maturity in current regulations for the different technologies and aircraft categories.
Green Energy and Steel Imports Reduce Europe's Net-zero Infrastructure Needs
Jun 2025
Publication
Importing renewable energy to Europe may offer many potential benefits including reduced energy costs lower pressure on infrastructure development and less land use within Europe. However open questions remain: on the achievable cost reductions how much should be imported whether the energy vector should be electricity hydrogen or derivatives like ammonia or steel and their impact on Europe’s infrastructure needs. This study integrates a global energy supply chain model with a European energy system model to explore net-zero emission scenarios with varying import volumes costs and vectors. We find system cost reductions of 1-10% within import cost variations of ± 20% with diminishing returns for larger import volumes and a preference for methanol steel and hydrogen imports. Keeping some domestic power-to-X production is beneficial for integrating variable renewables leveraging local carbon sources and power-to-X waste heat. Our findings highlight the need for coordinating import strategies with infrastructure policy and reveal maneuvering space for incorporating non-cost decision factors.
Clean Hydrogen Joint Undertaking: Consolidated Annual Activity Report Year 2024
Aug 2025
Publication
The year 2024 saw a year of important developments for the Clean Hydrogen JU continuing built on the achievements of previous years and intensifying the efforts on hydrogen valleys. With a total operational commitment of EUR 203 million and the launch of 22 new projects the overall portfolio reached a total number of 147 projects under active management towards the end of the year. The budget execution reached the outstanding level of 98% in for commitments and 84% in payments in line with previous year showing the JU’s continued effort to use the available credits. In 2024 the JU launched a call for proposals with a budget of EUR 113.5 million covering R&I activities across the whole hydrogen value chain to which was added an amount of EUR 60 million from the RePowerEU plan focusing on hydrogen valleys. That amount served for valleys-related grants and the “Hydrogen Valleys Facility” tender designed for project development assistance that will support Hydrogen Valleys at different levels of maturity. The Hydrogen Valleys concept has become a key instrument for the European Commission to scale up hydrogen technology deployment and establish interconnections between hydrogen ecosystems. At the end of 2024 the Clean Hydrogen JU has already funded 20 hydrogen valleys. This support was complemented by additional credits from third countries and the optimal use- of leftover credits from previous years allowing the award of 29 new grants from the call for 2024.
Comparison of Large Eddy Simulation with Local Species, Temperature and Velocity Measurements in Dual Swirl Confined Hydrogen Flames
Oct 2025
Publication
Developing new injection systems and combustion chambers for hydrogen is a central topic for the new generation of engines. In this effort simulations take a central role but methods developed for conventional hydrocarbons (methane kerosene) must be revisited for hydrogen. Validation then becomes an essential part and clean well documented experiments are needed to guaranty that computational fluid dynamics solvers are as predictive and accurate as expected. In this framework the HYLON case is a swirled hydrogen/air burner used by multiple groups worldwide to validate simulation methods for hydrogen combustion in configurations close to gas turbine burners with experimental data available through the TNF web site. The present study compares recent Raman spectroscopy and Particle Image Velocimetry measurements and Large Eddy Simulations (LES). The LES results are evaluated against a dataset comprising mean and RMS measurements of H2 N2 O2 H2O molar fractions temperature and velocity fields offering new insights into flame stabilization mechanisms. The simulations incorporate conjugate heat transfer to predict the combustor wall temperatures and are conducted for two atmospheric-pressure operating conditions each representing distinct combustion regimes diffusion and partially premixed. Novelty and significance statement Data on confined hydrogen flames in burner similar as industrial ones are limited. This work aims to fill this gap by performing multiple and simultaneous diagnostics on the swirled hydrogen-air flame called HYLON. For the first time in such a swirled configuration mean and RMS fields of temperature main species and velocities are compared to LES allowing new insight into the potential and limits of the models as well as the physics of these flames. These experimental results will be made available on TNF as over 30 research groups worldwide have expressed interest in using them.
Geopolitics of Renewables: Asymmetries, New Interdependencies, and Cooperation around Portuguese Solar Energy and Green Hydrogen Strategies
Oct 2025
Publication
This article explores how the implementation of solar PV and transportation infrastructure – grid or hydrogen pipeline – has implications for various aspects of security cooperation and geopolitical powershifts. Highlighting the emerging intra-European green hydrogen pipeline project H2Med we examine the Portuguese geopolitical ambitions related to their geographical advantage for solar PV energy production. Using media and document analysis we identified two main axes of solar PV implementation in Portugal – one centered on resilience and one on exports – and further explored underlying and resulting tensions in neighboring countries’ energy strategies and cleantech innovation policies. Our analysis revealed that policy prioritizations in solar PV diffusion result in unequal effects on resilience energy security and power shifts. In particular solar PV implementations such as individual to local or regional grid-based ‘prosumption’ setups result in notably different geopolitical effects compared to large-scale solar PV to green hydrogen-production for storage and export. Thereby emerging possibilities of storage and long-distance trade of renewable energies have more significant implications on geopolitics and energy security than what is typically recognized.
Safety Analysis of Hydrogen-Powered Train in Different Application Scenarios: A Review
Mar 2025
Publication
Currently there are many gaps in the research on the safety of hydrogen-powered trains and the hazardous points vary across different scenarios. It is necessary to conduct safety analysis for various scenarios in order to develop effective accident response strategies. Considering the implementation of hydrogen power in the rail transport sector this paper reviews the development status of hydrogen-powered trains and the hydrogen leak hazard chain. Based on the literature and industry data a thorough analysis is conducted on the challenges faced by hydrogen-powered trains in the scenario of electrified railways tunnels train stations hydrogen refueling stations and garages. Existing railway facilities are not ready to deal with accidental hydrogen leakage and the promotion of hydrogen-powered trains needs to be cautious.
Pathways for Hydrogen Adoption in the Brazilian Trucking Industry: A Low-Carbon Alternative to Fossil Fuels
Oct 2025
Publication
The growing demand for sustainable solutions in the transportation sector and global decarbonization goals have fueled debate on using hydrogen as an energy source. Although hydrogen’s potential is recognized in Brazil its application in heavy-duty vehicles still faces structural and technological barriers. This study aimed to analyze the viability of hydrogen as an energy alternative for trucks in Brazil. The research adopted an exploratory qualitative approach based on the expert analysis method through semi-structured interviews with development engineers representatives of heavy-duty vehicle manufacturers and researchers specializing in hydrogen technologies. The data were organized into a thematic framework and interpreted using content analysis. The results show that although there is growing interest and ongoing initiatives challenges such as the cost of fuel cells the lack of refueling infrastructure and low technological maturity hinder large-scale adoption. From a theoretical perspective the study contributes by integrating specialized literature with practical insights from key industry players broadening the understanding of the energy transition. In practical terms it outlines some strategic paths such as expanding technological development and forming partnerships. From a social perspective it emphasizes the importance of hydrogen as a pillar for sustainable low-carbon mobility capable of positively impacting public health and mitigating climate change.
Waste to Hydrogen: Steam Gasification of Municipal Solid wastes with Carbon Capture for Enhanced Hydrogen Production
Apr 2025
Publication
The research focuses on enhancing hydrogen production using a blend of municipal solid waste (MSW) with Biomass and mixed plastic waste (MPW) under the Bioenergy with Carbon Capture Utilisation and Storage (BECCUS) concept. The key challenges include optimising the feedstock blends and gasification process parameters to maximise hydrogen yield and carbon dioxide capture. This study introduces a novel approach that employs sorption-enhanced gasification and a high-temperature regenerator reactor. Using this method syngas streams with high hydrogen contents of up to 93 mol% and 66 mol% were produced respectively. Thermodynamic simulations with Aspen Plus® validated the integrated system for achieving high-purity hydrogen (99.99 mol%) and effective carbon dioxide isolation. The system produced 70.33 molH2 /kgfeed when using steam as a gasifying agent while 37.95 molH2 /kgfeed was produced under air gasification conditions. Case I employed a mixture of MSW and wood residue at a ratio of 1:1.25 with steam and calcium oxide added at 2:1 and 0.92:1 respectively resulting in 68.80 molH2 /kgfeed and a CO2 capture efficiency of 92 %. Case II utilised MSW and MPW at a 1:1 ratio with steam and calcium oxide at 2:1 and 0.4:1 respectively producing 100.17 molH2 /kgfeed and achieving a 90.09 % CO2 capture efficiency. The optimised parameters significantly improve hydrogen yield and carbon capture offering valuable insights for BECCUS applications.
The Hydrogen Education and Research Landscape - October 2024
Oct 2025
Publication
This report includes information on European training programmes educational materials and the trends and patterns of research and innovation activity in the hydrogen sector with data of patent registrations and publications. It is based on the information available at the European Hydrogen Observatory (EHO) website (https://observatory.cleanhydrogen.europa.eu/) the leading source of hydrogen data in Europe. The data presented in this report is based on research conducted until the end of August 2024. The training programmes section provides insights into major European training initiatives categorized by location. It allows filtering by type of training focus area and language. It covers a wide range of opportunities such as vocational and professional trainings summer schools and Bachelor's or Master's programmes. The education materials chapter summarizes the publicly accessible educational materials available online. Documents can be searched by educational level by course subject by language or by the year of release. The section referring to research and innovation activity analyses trends and patterns in the hydrogen sector using aggregated datasets of patent registrations and publications by country.
Planning Energy Hubs with Hydrogen and Battery Storage for Flexible Ramping Market Participation
Oct 2025
Publication
The integration of renewable resources with advanced storage technologies is critical for sustainable energy systems. In this paper a planning framework for an energy hub incorporating hydrogen and renewable energy systems is developed with the objective of minimizing operational costs while participating in flexible ramping product (FRP) markets. The energy hub is designed to utilize a hybrid storage system comprising multi-type battery energy storage (BESS) accounting for diverse chemistries and degradation behaviors and hydrogen storage (HS) to meet concurrent electric and hydrogen demands. To address uncertainties in renewable generation and market prices a stochastic optimization model is developed to determine the optimal investment capacities while optimizing operational decisions under uncertainty using scenario-based stochastic programming. Financial risks associated with price and renewable variability are mitigated through the Conditional Value-at-Risk (CVaR) metric. Case studies demonstrate that hybrid storage systems including both BESS and HS can reduce total costs by 23.62% compared to single-storage configurations that rely solely on BESS. Based on the results BESS participates more in providing flexible ramp-up services while HS plays a major role in providing flexible ramp-down services. The results emphasize the critical role of co-optimized hydrogen and multi-type BESS in enhancing grid flexibility and economic viability.
Country Risk Impacts on Export Costs of Green Hydrogen and its Synthetic Downstream Products from the Middle East and North Africa
May 2025
Publication
Green hydrogen produced from renewable energy sources such as wind and solar is increasingly recognized as a critical enabler of the global energy transition and the decarbonization of industrial and transport sectors. The successful adoption of green hydrogen and its derivatives is closely linked to production costs which can vary substantially between countries depending not only on resource potential but also on country-specific financing conditions. These differences arise from country-specific risk factors that affect the costs of capital ultimately influencing investment decisions. However comprehensive assessments that integrate these risks with future cost projections for renewable energy green hydrogen and its synthetic downstream products are lacking. Using the Middle East and North Africa (MENA) as an example this study introduces a novel approach that allows to incorporate mainly qualitative country-specific investment risks into quantitative analyses such as costpotential and energy modelling. Our methodology calculates weighted average costs of capital (WACC) for 17 MENA countries under different risk scenarios providing a more nuanced assessment compared to traditional models that use uniform cost of capital assumptions. The results indicate significant variations in WACC such as between 4.67% in the United Arab Emirates and 24.84% in Yemen or Syria in the business-as-usual scenario. The incorporation of country-specific capital cost scenarios in quantitative analysis is demonstrated by modelling the cost-potential of Fischer-Tropsch (FT) fuels. The results show that countryspecific investment risks significantly impact costs. For instance by 2050 the starting LCOFs in high-risk scenarios can be up to 180% higher than in lowerrisk contexts. This underlines that while renewable energy potential and its cost are important it are the country-specific risk factors—captured through WACC—that have a greater influence in determining the competitiveness of exports and consequently the overall development of the renewable energy green hydrogen and synthetic fuel sectors.
Sustainable Aviation Fuels: Addressing Barriers to Global Adoption
Oct 2025
Publication
The aviation industry is responsible for approximately 2–3% of worldwide CO2 emissions and is increasingly subjected to demands for the attainment of net-zero emissions targets by the year 2050. Traditional fossil jet fuels which exhibit lifecycle emissions of approximately 89 kg CO2-eq/GJ play a substantial role in exacerbating climate change contributing to local air pollution and fostering energy insecurity. In contrast Sustainable Aviation Fuels (SAFs) derived from renewable feedstocks including biomass municipal solid waste algae or through CO2- and H2-based power-to-liquid (PtL) represent a pivotal solution for the immediate future. SAFs generally accomplish lifecycle greenhouse gas (GHG) reductions of 50–80% (≈20–30 kg CO2-eq/GJ) possess reduced sulfur and aromatic content and markedly diminish particulate emissions thus alleviating both climatic and health-related repercussions. In addition to their environmental advantages SAFs promote energy diversification lessen reliance on unstable fossil fuel markets and invigorate regional economies with projections indicating the creation of up to one million green jobs by 2030. This comprehensive review synthesizes current knowledge on SAF sustainability advantages compared to conventional aviation fuels identifying critical barriers to large-scale deployment and proposing integrated solutions that combine technological innovation supportive policy frameworks and international collaboration to accelerate the aviation industry’s sustainable transformation.
Green Hydrogen: A Pathway to Vietnam’s Energy Security
Oct 2025
Publication
Green hydrogen is increasingly recognized as a pivotal energy carrier in the global transition toward low-carbon energy systems. Beyond its established applications in industry and transportation the development of green hydrogen could accelerate its integration into the power generation sector thus enabling a more sustainable deployment of renewable energy sources. Vietnam endowed with abundant renewable energy potential—particularly solar and wind—has a strong foundation for green hydrogen. This emerging energy source holds significant potential to support the strategic objectives in recent national energy policies aligning with the country’s socio-economic development. However despite this promise the integration of green hydrogen into Vietnam’s energy system remains limited. This paper provides a critical review of the current landscape of green hydrogen in Vietnam examining both the opportunities and challenges associated with its production and deployment. Special attention is given to regulatory frameworks infrastructure readiness and economic viability. Additionally the study also explores the potential of green hydrogen in enhancing energy security within the context of the national energy transition.
Influence of Catalytic Support on Hydrogen Production from Glycerol Steam Reforming
Oct 2025
Publication
The use of hydrogen as an energy carrier represents a promising alternative for mitigating climate change. However its practical application requires achieving a high degree of purity throughout the production process. In this study the influence of the type of catalytic support on H2 production via steam glycerol reforming was evaluated with the objective of obtaining syngas with the highest possible H2 concentration. Three types of support were analyzed: two natural materials (zeolite and dolomite) and one metal oxide alumina. Alumina and dolomite were coated with Ni at different loadings while zeolite was only evaluated without Ni. Reforming experiments were carried out at a constant temperature of 850 ◦C with continuous monitoring of H2 CO2 CO and CH4 concentrations. The results showed that zeolite yielded the lowest H2 concentration (51%) mainly due to amorphization at high temperatures and the limited effectiveness of physical adsorption processes. In contrast alumina and dolomite achieved H2 purities of around 70% which increased with Ni loading. The improvement was particularly significant in dolomite owing to its higher porosity and the recarbonation processes of CaO enabling H2 purities of up to 90%.
Hydrogen Production Through Newly Developed Photocatalytic Nanostructures and Composite Materials
Jun 2025
Publication
Photocatalytic hydrogen (H2) production offers a promising solution to energy shortages and environmental challenges by converting solar energy into chemical energy. Hydrogen as a versatile energy carrier can be generated through photocatalysis under sunlight or via electrolysis powered by solar or wind energy. However the advancement of photocatalysis is hindered by the limited availability of effective visible light-responsive semiconductors and the challenges of charge separation and transport. To address these issues researchers are focusing on the development of novel nanostructured semiconductors and composite materials that can enhance photocatalytic performance. In this paper we provide an overview of the advanced photocatalytic materials prepared so far that can be activated by sunlight and their efficiency in H2 production. One of the key strategies in this research area concerns improving the separation and transfer of electron–hole pairs generated by light which can significantly boost H2 production. Advanced hybrid materials such as organic–inorganic hybrid composites consisting of a combination of polymers with metal oxide photocatalysts and the creation of heterojunctions are seen as effective methods to improve charge separation and interfacial interactions. The development of Schottky heterojunctions Z-type heterojunctions p–n heterojunctions from nanostructures and the incorporation of nonmetallic atoms have proven to reduce photocorrosion and enhance photocatalytic efficiency. Despite these advancements designing efficient semiconductor-based heterojunctions at the atomic scale remains a significant challenge for the realization of large-scale photocatalytic H2 production. In this review state-of-the-art advancements in photocatalytic hydrogen production are presented and discussed in detail with a focus on photocatalytic nanostructures heterojunctions and hybrid composites.
Strategies to Increase Hydrogen Energy Share of a Dual-Fuel Hydrogen–Kerosene Engine for Sustainable General Aviation
Mar 2025
Publication
Reducing CO2 emissions in general aviation is a critical challenge where battery electric and fuel cell technologies face limitations in energy density cost and robustness. As a result hydrogen (H2) dual-fuel combustion is a promising alternative but its practical implementation is constrained by abnormal combustion phenomena such as knocking and pre-ignition which limit the achievable H2 energy share. In response to these challenges this paper focuses on strategies to mitigate these irregular combustion phenomena while effectively increasing the H2 energy share. Experimental evaluations were conducted on an engine test bench using a one-cylinder dual-fuel H2 kerosene (Jet A-1) engine utilizing two strategies including water injection (WI) and rising the air–fuel ratio (AFR) by increasing the boost pressure. Additionally crucial combustion characteristics and emissions are examined and discussed in detail contributing to a comprehensive understanding of the outcomes. The results indicate that these strategies notably increase the maximal possible hydrogen energy share with potential benefits for emissions reduction and efficiency improvement. Finally through the use of 0D/1D simulations this paper offers critical thermodynamic and efficiency loss analyses of the strategies enhancing the understanding of their overall impact.
An International Review of Hydrogen Technology and Policy Developments, with a Focus on Wind- and Nuclear Power-Produced Hydrogen and Natural Hydrogen
Aug 2025
Publication
The potential for hydrogen to reshape energy systems has been recognized for over a century. Yet as decarbonization priorities have sharpened in many regions three distinct frontier areas are critical to consider: hydrogen produced from wind; hydrogen produced from nuclear power; and the development of natural hydrogen. These pathways reflect technology and policy changes including a 54% increase in the globally installed wind capacity since 2020 plus new signs of potential emerging in nuclear energy and natural hydrogen. Broadly speaking there are a considerable number of studies covering hydrogen production from electrolysis yet none systematically examine wind- and nuclear-derived hydrogen natural hydrogen or the policies that enable their adoption in key countries. This article highlights international policy and technology developments with a focus on prime movers: Germany China the US and Russia.
Development of an Experimental Setup for Testing X52 Steel SENT Specimens in Electrolytic Hydrogen to Explore Repurposing Potential of Pipelines
Apr 2025
Publication
Hydrogen is considered a key alternative to fossil fuels in the broader context of ecological transition. Repurposing natural gas pipelines for hydrogen transport is one of the challenges of this approach. However hydrogen can diffuse into metallic lattices leading to hydrogen embrittlement (HE). For this reason typically ductile materials can experience unexpected brittle fractures and it is therefore necessary to assess the HE propensity of the current pipeline network to ensure its fitness for hydrogen transport. This study examines the relationship between the microstructure of the circumferential weld joint in X52 pipeline steel and hydrogen concentration introduced electrolytically. Base material heat affected zone and fused zone were subjected to 1800 3600 7200 and 14400 s of continuous charging with a current density J = − 10 mA/cm2 in an acid solution. Results showed that the fusion zone absorbed the most hydrogen across all charging times while the base material absorbed more hydrogen than the heat-affected zone due to the presence of non-metallic inclusions. Fracture toughness was assessed using single edge notch tension specimens (SENT) in air and electrolytic hydrogen. Results indicate that the base material is particularly vulnerable to hydrogen environments exhibiting the greatest reduction in toughness when exposed to hydrogen compared to air.
No more items...