Publications
Potentials of Green Hydrogen Production in P2G Systems Based on FPV Installations Deployed on Pit Lakes in Former Mining Sites by 2050 in Poland
Sep 2024
Publication
Green hydrogen production is expected to play a major role in the context of the shift towards sustainable energy stipulated in the Fit for 55 package. Green hydrogen and its derivatives have the capacity to act as effective energy storage vectors while fuel cell-powered vehicles will foster net-zero emission mobility. This study evaluates the potential of green hydrogen production in Power-to-Gas (P2G) systems operated in former mining sites where sand and gravel aggregate has been extracted from lakes and rivers under wet conditions (below the water table). The potential of hydrogen production was assessed for the selected administrative unit in Poland the West Pomerania province. Attention is given to the legal and organisational aspects of operating mining companies to identify the sites suitable for the installation of floating photovoltaic facilities by 2050. The method relies on the use of GIS tools which utilise geospatial data to identify potential sites for investments. Basing on the geospatial model and considering technical and organisational constraints the schedule was developed showing the potential availability of the site over time. Knowing the surface area of the water reservoir the installed power of the floating photovoltaic plant and the production capacity of the power generation facility and electrolysers the capacity of hydrogen production in the P2G system can be evaluated. It appears that by 2050 it should be feasible to produce green fuel in the P2G system to support a fleet of city buses for two of the largest urban agglomerations in the West Pomerania province. Simulations revealed that with a water coverage ratio increase and the planned growth of green hydrogen generation it should be feasible to produce fuel for net-zero emission urban mobility systems to power 200 buses by 2030 550 buses by 2040 and 900 buses by 2050 (for the bus models Maxi (40 seats) and Mega (60 seats)). The results of the research can significantly contribute to the development of projects focused on the production of green hydrogen in a decentralised system. The disclosure of potential and available locations over time can be compared with competitive solutions in terms of spatial planning environmental and societal impact and the economics of the undertaking.
The Potential of Hydrogen-battery Storage Systems for a Sustainable Renewable-based Electrification of Remote Islands in Norway
Oct 2023
Publication
Remote locations and off-grid regions still rely mainly on diesel generators despite the high operating costs and greenhouse gas emissions. The exploitation of local renewable energy sources (RES) in combination with energy storage technologies can be a promising solution for the sustainable electrification of these areas. The aim of this work is to investigate the potential for decarbonizing remote islands in Norway by installing RES-based energy systems with hydrogen-battery storage. A national scale assessment is presented: first Norwegian islands are characterized and classified according to geographical location number of inhabitants key services and current electrification system. Then 138 suitable installation sites are pinpointed through a multiple-step sorting procedure and finally 10 reference islands are identified as representative case studies. A site-specific methodology is applied to estimate the electrical load profiles of all the selected reference islands. An optimization framework is then developed to determine the optimal system configuration that minimizes the levelized cost of electricity (LCOE) while ensuring a reliable 100% renewable power supply. The LCOE of the RES-based energy systems range from 0.21 to 0.63 €/kWh and a clear linear correlation with the wind farm capacity factor is observed (R2 equal to 0.87). Hydrogen is found to be crucial to prevent the oversizing of the RES generators and batteries and ensure long-term storage capacity. The techno-economic feasibility of alternative electrification strategies is also investigated: the use of diesel generators is not economically viable (0.87–1.04 €/kWh) while the profitability of submarine cable connections is highly dependent on the cable length and the annual electricity consumption (0.14–1.47 €/kWh). Overall the cost-effectiveness of RES-based energy systems for off-grid locations in Northern Europe can be easily assessed using the correlations derived in this analysis.
A Novel Sustainable Approach for Site Selection of Underground Hydrogen Storage in Poland Using Deep Learning
Jul 2024
Publication
This research investigates the potential of using bedded salt formations for underground hydrogen storage. We present a novel artificial intelligence framework that employs spatial data analysis and multi-criteria decision-making to pinpoint the most appropriate sites for hydrogen storage in salt caverns. This methodology incorporates a comprehensive platform enhanced by a deep learning algorithm specifically a convolutional neural network (CNN) to generate suitability maps for rock salt deposits for hydrogen storage. The efficacy of the CNN algorithm was assessed using metrics such as Mean Absolute Error (MAE) Mean Squared Error (MSE) Root Mean Square Error (RMSE) and the Correlation Coefficient (R2 ) with comparisons made to a real-world dataset. The CNN model showed outstanding performance with an R2 of 0.96 MSE of 1.97 MAE of 1.003 and RMSE of 1.4. This novel approach leverages advanced deep learning techniques to offer a unique framework for assessing the viability of underground hydrogen storage. It presents a significant advancement in the field offering valuable insights for a wide range of stakeholders and facilitating the identification of ideal sites for hydrogen storage facilities thereby supporting informed decisionmaking and sustainable energy infrastructure development.
Hydrogen Blending in Natural Gas Grid: Energy, Environmental, and Economic Implications in the Residential Sector
Jul 2024
Publication
The forthcoming implementation of national policies towards hydrogen blending into the natural gas grid will affect the technical and economic parameters that must be taken into account in the design of building heating systems. This study evaluates the implications of using hydrogenenriched natural gas (H2NG) blends in condensing boilers and Gas Adsorption Heat Pumps (GAHPs) in a residential building in Rome Italy. The analysis considers several parameters including nonrenewable primary energy consumption CO2 emissions Levelized Cost of Heat (LCOH) and Carbon Abatement Cost (CAC). The results show that a 30% hydrogen blend achieves a primary energy consumption reduction of 12.05% and 11.19% in boilers and GAHPs respectively. The presence of hydrogen in the mixture exerts a more pronounced influence on the reduction in fossil primary energy and CO2 emissions in condensing boilers as it enhances combustion efficiency. The GAHP system turns out to be more cost-effective due to its higher efficiency. At current hydrogen costs the LCOH of both technologies increases as the volume fraction of hydrogen increases. The forthcoming cost reduction in hydrogen will reduce the LCOH and the decarbonization cost for both technologies. At low hydrogen prices the CAC for boilers is lower than for GAHPs; therefore replacing boilers with other gas technologies rather than electric heat pumps increases the risk of creating stranded assets. In conclusion blending hydrogen into the gas grid can be a useful policy to reduce emissions from the overall natural gas consumption during the process of end-use electrification while stimulating the development of a hydrogen economy.
Comparison of Battery Electric Vehicles and Fuel Cell Vehicles
Sep 2023
Publication
In the current context of the ban on fossil fuel vehicles (diesel and petrol) adopted by several European cities the question arises of the development of the infrastructure for the distribution of alternative energies namely hydrogen (for fuel cell electric vehicles) and electricity (for battery electric vehicles). First we compare the main advantages/constraints of the two alternative propulsion modes for the user. The main advantages of hydrogen vehicles are autonomy and fast recharging. The main advantages of battery-powered vehicles are the lower price and the wide availability of the electricity grid. We then review the existing studies on the deployment of new hydrogen distribution networks and compare the deployment costs of hydrogen and electricity distribution networks. Finally we conclude with some personal conclusions on the benefits of developing both modes and ideas for future studies on the subject.
Review of Hydrogen-Driven Power-to-X Technology and Application Status in China
Jul 2024
Publication
Given China’s ambition to realize carbon peak by 2030 and carbon neutralization by 2060 hydrogen is gradually becoming the pivotal energy source for the needs of energy structure optimization and energy system transformation. Thus hydrogen combined with renewable energy has received more and more attention. Nowadays power-to-hydrogen power-to-methanol and power-to-ammonia are regarded as the most promising three hydrogen-driven power-to-X technologies due to the many commercial or demonstration projects in China. In this paper these three hydrogen-driven power-to-X technologies and their application status in China are introduced and discussed. First a general introduction of hydrogen energy policies in China is summarized and then the basic principles technical characteristics trends and challenges of the three hydrogen-driven power-to-X technologies are reviewed. Finally several typical commercial or demonstration projects are selected and discussed in detail to illustrate the development of the power-to-X technologies in China.
Alternative Fuels in Sustainable Logistics—Applications, Challenges, and Solutions
Sep 2024
Publication
Logistics is becoming more cost competitive while customers and regulatory bodies pressure businesses to disclose their carbon footprints creating interest in alternative fuels as a decarbonization strategy. This paper provides a thematic review of the role of alternative fuels in sustainable air land and sea logistics their challenges and potential mitigations. Through an extensive literature survey we determined that biofuels synthetic kerosene natural gas ammonia alcohols hydrogen and electricity are the primary alternative fuels of interest in terms of environmental sustainability and techno-economic feasibility. In air logistics synthetic kerosene from hydrogenated esters and fatty acids is the most promising route due to its high technical maturity although it is limited by biomass sourcing. Electrical vehicles are favorable in road logistics due to cheaper green power and efficient vehicle designs although they are constrained by recharging infrastructure deployment. In sea logistics liquified natural gas is advantageous owing to its supply chain maturity but it is limited by methane slip control and storage requirements. Overall our examination indicates that alternative fuels will play a pivotal role in the logistics networks of the future.
Cost Projection of Global Green Hydrogen Production Scenarios
Nov 2023
Publication
A sustainable future hydrogen economy hinges on the development of green hydrogen and the shift away from grey hydrogen but this is highly reliant on reducing production costs which are currently too high for green hydrogen to be competitive. This study predicts the cost trajectory of alkaline and proton exchange membrane (PEM) electrolyzers based on ongoing research and development (R&D) scale effects and experiential learning consequently influencing the levelized cost of hydrogen (LCOH) projections. Electrolyzer capital costs are estimated to drop to 88 USD/kW for alkaline and 60 USD/kW for PEM under an optimistic scenario by 2050 or 388 USD/kW and 286 USD/kW respectively under a pessimistic scenario with PEM potentially dominating the market. Through a combination of declining electrolyzer costs and a levelized cost of electricity (LCOE) the global LCOH of green hydrogen is projected to fall below 5 USD/kgH2 for solar onshore and offshore wind energy sources under both scenarios by 2030. To facilitate a quicker transition the implementation of financial strategies such as additional revenue streams a hydrogen/carbon credit system and an oxygen one (a minimum retail price of 2 USD/kgO2 ) and regulations such as a carbon tax (minimum 100 USD/tonCO2 for 40 USD/MWh electricity) and a contract-for-difference scheme could be pivotal. These initiatives would act as financial catalysts accelerating the transition to a greener hydrogen economy.
Resilience Assessment of Offshore Wind-to-Hydrogen Systems
Jul 2024
Publication
Low-cost green hydrogen production will be key in reaching net zero carbon emissions by 2050. Green hydrogen can be produced by electrolysis using renewable energy including wind energy. However the configuration of offshore wind-to-hydrogen systems is not yet standardised. For example electrolysis can take place onshore or offshore. This work presents a framework to assess and quantify which configuration is more resilient so that security of hydrogen supply is incorporated in strategic decisions with the following key findings. First resilience should be assessed according to hydrogen supply rather than hydrogen production. This allows the framework to be applicable for all identified system configurations. Second resilience can be quantified according to the quantity ratio and lost revenue of the unsupplied hydrogen.
Analysis of a Distributed Green Hydrogen Infrastructure Designed to Support the Sustainable Mobility of a Heavy-duty Fleet
Aug 2023
Publication
Clean hydrogen is a key pillar for the net zero economy which can be deployed by consistent utilization on heavy-duty transport. This study investigates a distributed green hydrogen infrastructure (DHI) for heavy-duty transportation consisting of on-site hydrogen production storage compression and refueling systems in Italy. Two options for energy supply are analyzed: grid connection using green energy via Power Purchasing Agreements (PPAs) and direct connection to the photovoltaic field respectively. Radiation data are representative of the three main Italian areas namely South (Catania) Center (Roma) and North (Milano). The sensitivity analysis varies the PPA value between 50 V/MWh and 200 V/MWh and the water electrolysis capacity factor between 20% and 100%. The study finds that the LCOH ranges from 7.4 V/kgH2 to 67.8 V/kgH2 for the first option and 5.5 V/kgH2 to 27.5 V/kgH2 for the second option with Southern Italy having the lowest LCOH due to higher solar irradiation. The research shows that a DHI can offer economic and technical benefits for heavy-duty mobility. However the performance is highly influenced by external conditions such as hydrogen demand and electricity prices. This study provides valuable insights into designing and operating a DHI for heavy-duty mobility promoting a carbon-free society.
Multiphysics Performance Assessment of Hydrogen Fuelled Engines
Sep 2023
Publication
In the quest for decarbonisation alternative clean fuels for propulsion systems are sought. There is definite advantage in retaining the well-established principles of operation of combustion engines at the core of future developments with hydrogen as a fuel. Hydrogen is envisaged as a clean source of energy for propulsion of heavy and off-road vehicles as well as in marine and construction sectors. A source of concern is the unexplored effect of hydrogen combustion on dilution and degradation of engine lubricants and their additives and consequently upon tribology of engine contact conjunctions. These potential problems can adversely affect engine efficiency durability and operational integrity. Use of different fuels and their method of delivery produces distinctive combustion characteristics that can affect the energy losses associated with in-cylinder components and their durability. Therefore detailed predictive analysis should support the developments of such new generation of eco-friendly engines. Different fundamental physics underpin the various aspects of a pertinent detailed analysis. These include thermodynamics of combustion in-cylinder tribological interactions of contacting surfaces and blowby of generated gasses. This paper presents such an integrated multi-physics analysis of internal combustion engines with focus on hydrogen as the fuel. Such an in-depth and computationally efficient analysis has not hitherto been reported in the literature. The results show implications for lubricant degradation due to the use of hydrogen in the performance of in-cylinder components and the underlying physical principles.
Heat Integration of Liquid Hydrogen-Fueled Hybrid Electric Ship Propulsion System
Nov 2023
Publication
This study introduced the methodology for integrating ethylene glycol/water mixture (GW) systems which supply heat energy to the liquid hydrogen (LH2 ) fuel gas supply system (FGSS) and manage the temperature conditions of the battery system. All systems were designed and simulated based on the power demand of a 2 MW class platform supply vessel assumed as the target ship. The LH2 FGSS model is based on Aspen HYSYS V14 and the cell model that makes up the battery system is implemented based on a Thevenin model with four parameters. Through three different simulation cases the integrated GW system significantly reduced electric power consumption for the GW heater during ship operations achieving reductions of 1.38% (Case 1) 16.29% (Case 2) and 27.52% (Case 3). The energy-saving ratio showed decreases of 1.86% (Case 1) 21.01% (Case 2) and 33.80% (Case 3) in overall energy usage within the GW system. Furthermore an examination of the battery system’s thermal management in the integrated GW system demonstrated stable cell temperature control within ±3 K of the target temperature making this integration a viable solution for maintaining normal operating temperatures despite relatively higher fluctuations compared to an independent GW system.
Experimental Characterization of the Operational Behavior of a Catalytic Recombiner for Hydrogen Mitigation
Sep 2023
Publication
One of the significant safety concerns in large-scale storage and transportation of liquefied (cryogenic) hydrogen (LH2) is the formation of flammable hydrogen/air mixtures after leakages during storage or transportation. Especially in maritime transportation hydrogen accumulations could occur within large and congested geometries. The installation of passive auto-catalytic recombiners (PARs) is a suitable mitigation measure for local areas where venting is insufficient or even impossible. Numerical models describing the operational behavior of PARs are required to allow for optimizing the location and assessing the efficiency of the mitigation measure. In the present study the operational behavior of a PAR with a compact design has been experimentally investigated. In order to obtain data for model validation an experimental program has been performed in the REKO-4 facility a 5.5 m³ vessel. The test procedure includes two phases steady-state and dynamic. The results provide insights into the hydrogen recombination rates and catalyst temperatures under different boundary conditions.
The Role of Underground Salt Caverns in Renewable Energy Peaking: A Review
Nov 2024
Publication
To address the inherent intermittency and instability of renewable energy the construction of large-scale energy storage facilities is imperative. Salt caverns are internationally recognized as excellent sites for large-scale energy storage. They have been widely used to store substances such as natural gas oil air and hydrogen. With the global transition in energy structures and the increasing demand for renewable energy load balancing there is broad market potential for the development of salt cavern energy storage technologies. There are three types of energy storage in salt caverns that can be coupled with renewable energy sources namely salt cavern compressed air energy storage (SCCAES) salt cavern hydrogen storage (SCHS) and salt cavern flow battery (SCFB). The innovation of this paper is to comprehensively review the current status and future development trends of these three energy storage methods. Firstly the development status of these three energy storage methods both domestically and internationally is reviewed. Secondly according to the characteristics of these three types of energy storage methods some key technical challenges are proposed to be focused on. The key technical challenge for SCCAES is the need to further reduce the cost of the ground equipment; the key technical challenge for SCHS is to prevent the risk of hydrogen leakage; and the key technical challenge for SCFB is the need to further increase the concentration of the active substance in the huge salt cavern. Finally some potential solutions are proposed based on these key technical challenges. This work is of great significance in accelerating the development of salt cavern energy storage technologies in coupled renewable energy.
Simulations of Hydrogen Dispersion from Fuel Cell Vehicles' Leakages Inside Full-scale Tunnel
Sep 2023
Publication
In this work real scale experiments involving hydrogen dispersion inside a road tunnel have been modelled using the Computational Fluid Dynamics (CFD) methodology. The aim is to assess the performance of the ADREA-HF CFD tool against full-scale tunnel dispersion data resulting from high-pressure hydrogen leakage through Thermal Pressure Relief Device (TPRD) of a vehicle. The assessment was performed with the help of experiments conducted by the French Alternative Energies and Atomic Energy Commission (CEA) in a real inclined tunnel in France. In the experiments helium as hydrogen surrogate has been released from 200 bar storage pressure. Several tests were carried out examining different TPRD sizes and release directions (upwards and downwards). For the CFD evaluation two tests were considered: one with downwards and one with upwards release both through a TPRD with a diameter of 2 mm. The comparison between the CFD results and the experiments shows the good predictive capabilities of the ADREA-HF code that can be used as a safety tool in hydrogen dispersion studies. The comparison reveals some of the strengths and weaknesses of both the CFD and the experiments. It is made clear that CFD can contribute to the design of the experiments and to the interpretation of the experimental results.
Comparative Life Cycle Greenhouse Gas Analysis of Clean Hydrogen Pathways: Assessing Domestic Production and Overseas Import in South Korea
Sep 2023
Publication
The development of a Clean Hydrogen Standard based on life-cycle greenhouse gas (GHG) emissions is gaining prominence on the international agenda. Thus a framework for assessing life-cycle GHG emissions for clean hydrogen pathways is necessary. In this study the comprehensive datasets and effects of various scenarios encompassing hydrogen production carriers (liquid hydrogen ammonia methylcyclohexane) carbon capture and storage (CCS) target analysis year (2021 2030) to reflect trends of greening grid electricity and potential import countries on aggregated life-cycle GHG emissions were presented. South Korea was chosen as a case study region and the low-carbon alternatives were suggested for reducing aggregated emissions to meet the Korean standard (5 kgCO2e/kgH2). First capturing and storing nearly entire (>90%) CO2 from fossil- and waste-based production pathways is deemed essential. Second when repurposing the use of hydrogen that was otherwise used internally applying a penalty for substitution is appropriate leading to results notably exceeding the standard. Third for electrolysis-based hydrogen using renewable or nuclear electricity is essential. Lastly when hydrogen is imported in a well-to-point-of-delivery (WtP) perspective using renewable electricity during hydrogen conversion into a carrier and reusing the produced hydrogen for endothermic reconversion reaction are recommended. By implementing the developed calculation framework to other countries' cases it was observed that importing hydrogen to regions having scope of WtP or above (e.g. well-to-wheel) might not meet the threshold due to additional emissions from importation processes. Additionally for hydrogen carriers undergoing the endothermic reconversion the approach to reduce WtP emissions (reusing produced hydrogen) may conflict with the approach to reduce well-to-gate (WtG) emission (using external fossilbased fuel). The discrepancy highlights the need to set a broader scope of emissions assessment to effectively promote the life-cycle emission reduction efforts of hydrogen importers. This study contributes to the field of clean hydrogen GHG emission assessment offering a robust database and calculation framework while addressing the effects of greening grid electricity and CCS implementation proposing low-carbon alternatives and GHG assessment scope to achieve global GHG reduction.
A Review of Gas Phase Inhibition of Gaseous Hydrogen Embrittlement in Pipeline Steels
Feb 2024
Publication
The addition of small amounts of certain gases such as O2 CO and SO2 may mitigate hydrogen embrittlement in high-pressure gas transmission pipelines that transport hydrogen. To practically implement such inhibition in gas transmission pipelines a comprehensive understanding and quantification of this effect are essential. This review examines the impact of various added gases to hydrogen including typical odorants on gaseous hydrogen embrittlement of steels and evaluates their inhibition effectiveness. O2 CO and SO2 were found to be effective inhibitors of hydrogen embrittlement. Yet the results in the literature have not always been consistent partly because of the diverse range of mechanical tests and their parameters. The absence of systematic studies hinders the evaluation of the feasibility of using gas phase inhibitors for controlling gaseous hydrogen embrittlement. A method to quantify the effectiveness of gas phase inhibition is proposed using gas phase permeation studies.
Investigation of a Community-based Clean Energy System Holistically with Renewable and Hydrogen Energy Options for Better Sustainable Development
Jan 2024
Publication
This study develops a novel community-based integrated energy system where hydrogen and a combination of renewable energy sources are considered uniquely for implementation. In this regard three different communities situated in Kenya the United States and Australia are studied for hydrogen production and meeting the energy demands. To provide a variety of energy demands this study combines a multigenerational geothermal plant with a hybrid concentrated solar power and photovoltaic solar plant. Innovations in hydrogen production and renewable energy are essential for reducing carbon emissions. By combining the production of hydrogen with renewable energy sources this system seeks to move away from the reliance on fossil fuels and toward sustainability. The study investigates various research subjects using a variety of methods. The performance of the geothermal source is considered through energetic and exergetic thermodynamic analysis. The software System Advisor Model (SAM) and RETscreen software packages are used to analyze the other sub-systems including Concentrate Solar PV solar and Combined Heat and Power Plant. Australian American and Kenyan communities considered for this study were found to have promising potential for producing hydrogen and electricity from renewable sources. The geothermal output is expected to be 35.83 MW 122.8 MW for space heating 151.9 MW for industrial heating and 64.25 MW for hot water. The overall geothermal energy and exergy efficiencies are reported as 65.15% and 63.54% respectively. The locations considered are expected to have annual solar power generation and hydrogen production capacities of 158MW 237MW 186MW 235 tons 216 tons and 313 tons respectively.
Emission Reduction and Cost-benefit Analysis of the Use of Ammonia and Green Hydrogen as Fuel for Marine Applications
Dec 2023
Publication
Increasingly stringent emission standards have led shippers and port operators to consider alternative energy sources which can reduce emissions while minimizing capital investment. It is essential to understand whether there is a certain economic investment gap for alternative energy. The present work mainly focuses on the simulation study of ships using ammonia and hydrogen fuels arriving at Guangzhou Port to investigate the emission advantages and cost-benefit analysis of ammonia and hydrogen as alternative fuels. By collecting actual data and fuel consumption emissions of ships arriving at Guangzhou Port the present study calculated the pollutant emissions and cost of ammonia and hydrogen fuels substitution. As expected it is shown that with the increase of NH3 in fuel mixed fuels will effectively reduce CO and CO2 emissions. Compared to conventional fuel the injection of NH3 increases the NOx emission. However the cost savings of ammonia fuel for CO2 SOx and PM10 reduction are higher than that for NOx. In terms of pollutants ammonia is less expensive than conventional fuels when applied to the Guangzhou Port. However the cost of fuel supply is still higher than conventional energy as ammonia has not yet formed a complete fuel supply and storage system for ships. On the other hand hydrogen is quite expensive to store and transport resulting in higher overall costs than ammonia and conventional fuels even if no pollutants are produced. At present conventional fuels still have advantage in terms of cost. With the promotion of ammonia fuel technology and application the cost of supply will be reduced. It is predicted that by 2035 ammonia will not only have emission reduction benefits but also will have a lower overall economic cost than conventional fuels. Hydrogen energy will need longer development and technological breakthroughs due to the limitation of storage conditions.
Greenhouse Gas Emissions Performance of Electric, Hydrogen and Fossil-Fuelled Freight Trucks with Uncertainty Estimates Using a Probabilistic Life-Cycle Assessment (pLCA)
Jan 2024
Publication
This research conducted a probabilistic life-cycle assessment (pLCA) into the greenhouse gas (GHG) emissions performance of nine combinations of truck size and powertrain technology for a recent past and a future (largely decarbonised) situation in Australia. This study finds that the relative and absolute life-cycle GHG emissions performance strongly depends on the vehicle class powertrain and year of assessment. Life-cycle emission factor distributions vary substantially in their magnitude range and shape. Diesel trucks had lower life-cycle GHG emissions in 2019 than electric trucks (battery hydrogen fuel cell) mainly due to the high carbon-emission intensity of the Australian electricity grid (mainly coal) and hydrogen production (mainly through steam–methane reforming). The picture is however very different for a more decarbonised situation where battery electric trucks in particular provide deep reductions (about 75–85%) in life-cycle GHG emissions. Fuel-cell electric (hydrogen) trucks also provide substantial reductions (about 50–70%) but not as deep as those for battery electric trucks. Moreover hydrogen trucks exhibit the largest uncertainty in emissions performance which reflects the uncertainty and general lack of information for this technology. They therefore carry an elevated risk of not achieving the expected emission reductions. Battery electric trucks show the smallest (absolute) uncertainty which suggests that these trucks are expected to deliver the deepest and most robust emission reductions. Operational emissions (on-road driving and vehicle maintenance combined) dominate life-cycle emissions for all vehicle classes. Vehicle manufacturing and upstream emissions make a relatively small contribution to life-cycle emissions from diesel trucks (
CFD Analysis of Delayed Ignition Hydrogen Releases from a Train Inside a Tunnel
Sep 2023
Publication
In the present work we present the results of numerical simulations involving the dispersion and combustion of a hydrogen cloud released in an empty tunnel. The simulations were conducted with the use of ADREA-HF CFD code and the results are compared with measurements from experiments conducted by HSE in a tunnel with the exact same geometry. The length of the tunnel is equal to 70 m and the maximum height from the floor is equal to 3.25 m. Hydrogen release is considered to occur from a train containing pressurized hydrogen stored at 580 bars. The release diameter is equal to 4.7 mm and the release direction is upwards. Initially dispersion simulation was performed in order to define the initial conditions for the deflagration simulations. The effect of the initial wind speed and the effect of the ignition delay time were investigated. An extensive grid sensitivity study was conducted in order to achieve grid independent results. The CFD model takes into account the flame instabilities that are developed as the flame propagates inside the tunnel and turbulence that exists in front of the flame front. Pressure predictions are compared against experimental measurements revealing a very good performance of the CFD model.
Comparative Analysis of Marine Alternative Fuels for Offshore Supply Vessels
Nov 2024
Publication
This paper provides an in-depth analysis of alternative fuels including liquefied natural gas (LNG) hydrogen ammonia and biofuels assessing their feasibility based on operational requirements availability safety concerns and the infrastructure needed for large-scale adoption. Moreover it examines hybrid and fully electric propulsion systems considering advancements in battery technology and the integration of renewable energy sources such as wind and solar power to further reduce SOV emissions. Key findings from this research indicate that LNG serves as a viable short- to medium-term solution for reducing GHG emissions in the SOV sector due to its relatively lower carbon content compared to MDO and HFO. This paper finally insists that while LNG presents an immediate opportunity for emission reduction in the SOV sector a combination of hydrogen ammonia and hybrid propulsion systems will be necessary to meet long-term decarbonisation goals. The findings underscore the importance of coordinated industry efforts technological innovation and supportive regulatory frameworks to overcome the technical economic and infrastructural challenges associated with decarbonising the maritime industry.
Batteries or Hydrogen or Both for Grid Electricity Storage Upon Full Electrification of 145 Countries with Wind-Water-Solar?
Jan 2024
Publication
Grids require electricity storage. Two emerging storage technologies are battery storage (BS) and green hydrogen storage (GHS) (hydrogen produced and compressed with clean-renewable electricity stored then returned to electricity with a fuel cell). An important question is whether GHS alone decreases system cost versus BS alone or BS+GHS. Here energy costs are modeled in 145 countries grouped into 24 regions. Existing conventional hydropower (CH) storage is used along with new BS and/or GHS. A method is developed to treat CH for both baseload and peaking power. In four regions only CH is needed. In five CH+BS is lowest cost. Otherwise CH+BS+GHS is lowest cost. CH+GHS is never lowest cost. A metric helps estimate whether combining GHS with BS reduces cost. In most regions merging (versus separating) grid and non-grid hydrogen infrastructure reduces cost. In sum worldwide grid stability may be possible with CH+BS or CH+BS+GHS. Results are subject to uncertainties.
Literature Review on Life Cycle Assessment of Transportation Alternative Fuels
Aug 2023
Publication
Environmental concerns such as global warming and human health damage are intensifying and the transportation sector significantly contributes to carbon and harmful emissions. This review examines the life cycle assessment (LCA) of alternative fuels (AF) evaluating current research on fuel types LCA framework development life cycle inventory (LCI) and impact selection. The objectives of this paper are: (1) to compare various AF LCA frameworks and develop a comprehensive framework for the transportation sector; (2) to identify emission hotspots of different AFs through simulations and real-world cases; (3) to review AF LCA research; (4) to extract valuable information for potential future research directions. The analysis reveals that all stages except for hydrogen use have an environmental impact. LCA boundaries and LCIs vary considerably depending on the raw materials production processes and products involved leading to different emission hotspots. Due to knowledge or data limitations some stages remain uncalculated in the current study emphasizing the need for further refinement of the AF LCI. Future research should also explore the various impacts of widespread adoption of alternative fuels in transportation encompassing social economic and environmental aspects. Lastly the review provides structured recommendations for future research directions.
Sustainable Green Energy Transition in Saudia Arabia: Characterizing Policy Framework, Interrelations and Future Research Directions
Jun 2024
Publication
By 2060 the Kingdom of Saudi Arabia (KSA) aims to achieve net zero greenhouse gas (GHG) emissions targeting 50% renewable energy and reducing 278 million tonnes of CO2 equivalent annually by 2030 under Vision 2030. This ambitious roadmap focuses on economic diversification global engagement and enhanced quality of life. The electricity sector with a 90 GW installed capacity as of 2020 is central to decarbonization aiming for a 55% reduction in emissions by 2030. Saudi Energy Efficiency Centre’s Energy Efficiency Action Plan aims to reduce power intensity by 30% by 2030 while the NEOM project showcases a 4 GW green hydrogen facility reflecting the country’s commitments to sustainability and technological innovation. Despite being the largest oil producer and user Saudi Arabia must align with international CO2 emission reduction targets. Currently there is no state-of-the-art energy policy framework to guide a sustainable energy transition. In the academic literature there is also lack of effort in developing comprehensive energy policy framework. This study provides a thorough and comprehensive analysis of the entire energy industry spanning from the stage of production to consumption incorporating sustainability factors into the wider discussion on energy policy. It establishes a conceptual framework for the energy policy of Saudi Arabia that corresponds with Vision 2030. A total of hundred documents (e.g. 25 original articles and 75 industry reports) were retrieved from Google Scholar Web of Science Core Collection Database and Google Search and then analyzed. Results showed that for advancing the green energy transition areas such as strategies for regional and cross-sectoral collaboration adoption of international models human capital development and public engagement technological innovation and research; and resource conservation environmental protection and climate change should move forward exclusively from an energy policy perspective. This article's main contribution is developing a comprehensive and conceptual policy framework for Saudi Arabia's sustainable green energy transition aligned with Vision 2030. The framework integrates social economic and environmental criteria and provides critical policy implications and research directions for advancing energy policy and sustainable practices in the country.
Comparative Study of Electric and Hydrogen Mobility Infrastructures for Sustainable Public Transport: A PyPSA Optimization for a Remote Island Context
Jul 2024
Publication
Decarbonizing road transportation is vital for addressing climate change given that the sector currently contributes to 16% of global GHG emissions. This paper presents a comparative analysis of electric and hydrogen mobility infrastructures in a remote context i.e. an off-grid island. The assessment includes resource assessment and sizing of renewable energy power plants to facilitate on-site self-production. We introduce a comprehensive methodology for sizing the overall infrastructure and carry out a set of techno-economic simulations to optimize both energy performance and cost-effectiveness. The levelized cost of driving at the hydrogen refueling station is 0.40 e/km i.e. 20% lower than the electric charging station. However when considering the total annualized cost the battery-electric scenario (110 ke/year) is more favorable compared to the hydrogen scenario (170 ke/year). To facilitate informed decision-making we employ a multi-criteria decision-making analysis to navigate through the techno-economic findings. When considering a combination of economic and environmental criteria the hydrogen mobility infrastructure emerges as the preferred solution. However when energy efficiency is taken into account electric mobility proves to be more advantageous.
Comparative Life cycle Greenhouse Gas Emission and Cost Assessment of Hydrogen Fuel and Power for Singapore
Feb 2025
Publication
To identify lower-carbon and cost-effective hydrogen supplies for fuel and power generation in Singapore we assessed the cradle-to-gate greenhouse gas (GHG) emissions and the landed costs of over fifty supply chains from Malaysia and Australia with current and emerging blue turquoise and green hydrogen production and carrier technologies. We found that with current technologies the total life cycle global warming potential of local H2 production using steam methane reforming with carbon capture (4.47 kg CO2e/kg H2) is lower than importing solar-generated green H2 from Australia transported as NH3 (6.48 kg CO2e/kg H2) due to large emissions from conversion and transportation processes in the latter supply chain. When also considering emerging technologies turquoise H2 produced with the thermal decomposition of methane locally or in Malaysia is the most economical solution while wind-generated H2 from Australia transported as liquefied H2 or NH3 produce the least GHG emissions. In addition we projected the impacts of the Singapore carbon tax methane abatement in NG production and reduction of renewable energy embodied emissions and costs on the supply chains in the year 2030. We estimated that with the expected renewable energy improvements the emissions and costs of power generated from imported solar-powered H2 could drop by as much as 74% and 70% respectively.
Linking Cost Decline and Demand Surge in the Hydrogen Market: A Case Study in China
Jun 2023
Publication
Hydrogen is crucial in achieving global energy transition and carbon neutrality goals. Existing market estimates typically presume linear or exponential growth but fail to consider how market demand responds to the declining cost of underlying technologies. To address this this study utilizes a learning curve model to project the cost of electrolyzers and its subsequent impact on hydrogen market aligning with a premise that the market demand is proportional to the cost of hydrogen. In a case study of China’s hydrogen market projecting from 2020 to 2060 we observed substantial differences in market evolution compared to exponential growth scenarios. Contrary to exponential growth scenarios China’s hydrogen market experiences faster growth during the 2020–2040 period rather than later. Such differences underscore the necessity for proactive strategic planning in emerging technology markets particularly for those experiencing rapid cost decline such as hydrogen. The framework can also be extended to other markets by using local data providing valuable insights to investors policymakers and developers engaged in the hydrogen market.
Toward Green Steel: Modelling and Environmental Economic Analysis of Iron Direct Reduction with Different Reducing Gases
Sep 2023
Publication
The objective of the paper is to simulate the whole steelmaking process cycle based on Direct Reduced Iron and Electric Arc Furnace technologies by modeling for the first time the reduction furnace based on kinetic approach to be used as a basis for the environmental and techno-economic plant analysis by adopting different reducing gases. In addition the impact of carbon capture section is discussed. A complete profitability analysis has been conducted for the first time adopting a Monte Carlo simulation approach.<br/>In detail the use of syngas from methane reforming syngas and hydrogen from gasification of municipal solid waste and green hydrogen from water electrolysis are analyzed. The results show that the Direct Reduced Iron process with methane can reduce CO2 emissions by more than half compared to the blast furnace based-cycle and with the adoption of carbon capture greenhouse gas emissions can be reduced by an additional 40%. The use of carbon capture by amine scrubbing has a limited economic disadvantage compared to the scenario without it becoming profitable once carbon tax is included in the analysis. However it is with the use of green hydrogen from electrolyzer that greenhouse gas emissions can be cut down almost completely. To have an environmental benefit compared with the methane-based Direct Reduced Iron process the green hydrogen plant must operate for at least 5136 h per year (64.2% of the plant's annual operating hours) on renewable energy.<br/>In addition the use of syngas and separated hydrogen from municipal solid waste gasification is evaluated demonstrating its possible use with no negative effects on the quality of produced steel. The results show that hydrogen use from waste gasification is more economic with respect to green hydrogen from electrolysis but from the environmental viewpoint the latter results the best alternative. Comparing the use of hydrogen and syngas from waste gasification it can be stated that the use of the former reducing gas results preferable from both the economic and environmental viewpoint.
Thermal Sprayed Protective Coatings for Bipolar Plates of Hydrogen Fuel Cells and Water Electrolysis Cells
Mar 2024
Publication
As one core component in hydrogen fuel cells and water electrolysis cells bipolar plates (BPs) perform multiple important functions such as separating the fuel and oxidant flow providing mechanical support conducting electricity and heat connecting the cell units into a stack etc. On the path toward commercialization the manufacturing costs of bipolar plates have to be substantially reduced by adopting low-cost and easy-to-process metallic materials (e.g. stainless steel aluminum or copper). However these materials are susceptible to electrochemical corrosion under harsh operating conditions resulting in long-term performance degradation. By means of advanced thermal spraying technologies protective coatings can be prepared on bipolar plates so as to inhibit oxidation and corrosion. This paper reviews several typical thermal spraying technologies including atmospheric plasma spraying (APS) vacuum plasma spraying (VPS) and high-velocity oxygen fuel (HVOF) spraying for preparing coatings of bipolar plates particularly emphasizing the effect of spraying processes on coating effectiveness. The performance of coatings relies not only on the materials as selected or designed but also on the composition and microstructure practically obtained in the spraying process. The temperature and velocity of in-flight particles have a significant impact on coating quality; therefore precise control over these factors is demanded.
Opportunities and Challenges of Hydrogen Ports: An Empirical Study in Australia and Japan
Jul 2024
Publication
This paper investigated the opportunities and challenges of integrating ports into hydrogen (H2 ) supply chains in the context of Australia and Japan because they are leading countries in the field and are potential leaders in the upcoming large-scale H2 trade. Qualitative interviews were conducted in the two countries to identify opportunities for H2 ports necessary infrastructure and facilities key factors for operations and challenges associated with the ports’ development followed by an online survey investigating the readiness levels of H2 export and import ports. The findings reveal that there are significant opportunities for both countries’ H2 ports and their respective regions which encompass business transition processes and decarbonisation. However the ports face challenges in areas including infrastructure training standards and social licence and the sufficiency and readiness levels of port infrastructure and other critical factors are low. Recommendations were proposed to address the challenges and barriers encountered by H2 ports. To optimise logistics operations within H2 ports and facilitate effective integration of H2 applications this paper developed a user-oriented working process framework to provide guidance to ports seeking to engage in the H2 economy. Its findings and recommendations contribute to filling the existing knowledge gap pertaining to H2 ports.
Economic and Environmental Potential of Green Hydrogen Carriers (GHCs) Produced via Reduction of Amine-capture CO2
Jun 2023
Publication
Hydrogen is deemed as a crucial component in the transition to a carbon-free energy system and researchers are actively working to realize the hydrogen economy. While hydrogen derived from renewable energy sources is a promising means of providing clean energy to households and industries its practical usage is currently hindered by difficulties in transportation and storage. Due to the extreme operating conditions required for liquefying hydrogen various hydrogen carriers are being considered which can be transported and stored at mild operating conditions and provide hydrogen at the site of usage. Among various candidates green hydrogen carriers obtained via carbon dioxide utilization have been proposed as an economically and environmentally feasible option. Herein the potential of using methanol and formic acid as green hydrogen carriers are evaluated regarding various production and dehydrogenation pathways within a hydrogen distribution system including the recycle of carbon dioxide. Recent progress in carbon dioxide utilization processes especially conversion of carbon dioxide captured in amine solutions have demonstrated promising results for methanol and formic acid production. This study analyzes seven scenarios that consider carbon dioxide utilization-based thermocatalytic and electrochemical methanol and formic acid production as well as different dehydrogenation pathways and compares them to the scenario of delivering liquefied hydrogen. The scenarios are thoroughly analyzed via techno-economic analysis and life cycle assessment methods. The results of the study indicate that methanol-based options are economically viable reducing the cost up to 43% compared to liquefied hydrogen delivery. As for formic acid only the electrochemical production method is profitable retaining 10% less cost compared to liquefied hydrogen delivery. In terms of environmental impact all of the scenarios show higher global warming impact values than liquefied hydrogen distribution. However results show that in an optimistic case where wind electricity is widely used electrochemical formic acid production is competitive with liquefied hydrogen distribution retaining 39% less global warming impact values. This is because high conversion can be achieved at mild operating conditions for the production and dehydrogenation reactions of formic acid reducing the input of utilities other than electricity. This study suggests that while methanol can be a shortterm solution for hydrogen distribution electrochemical formic acid production may be a viable long-term option.
Mapping the Future of Green Hydrogen: Integrated Analysis of Poland and the EU’s Development Pathways to 2050
Aug 2023
Publication
This article presents the results of a comparative scenario analysis of the “green hydrogen” development pathways in Poland and the EU in the 2050 perspective. We prepared the scenarios by linking three models: two sectoral models for the power and transport sectors and a Computable General Equilibrium model (d-Place). The basic precondition for the large-scale use of hydrogen in both Poland and in European Union countries is the pursuit of ambitious greenhouse gas reduction targets. The EU plans indicate that the main source of hydrogen will be renewable energy (RES). “Green hydrogen” is seen as one of the main methods with which to balance energy supply from intermittent RES such as solar and wind. The questions that arise concern the amount of hydrogen required to meet the energy needs in Poland and Europe in decarbonized sectors of the economy and to what extent can demand be covered by internal production. In the article we estimated the potential of the production of “green hydrogen” derived from electrolysis for different scenarios of the development of the electricity sector in Poland and the EU. For 2050 it ranges from 76 to 206 PJ/y (Poland) and from 4449 to 5985 PJ/y (EU+). The role of hydrogen as an energy storage was also emphasized highlighting its use in the process of stabilizing the electric power system. Hydrogen usage in the energy sector is projected to range from 67 to 76 PJ/y for Poland and from 1066 to 1601 PJ/y for EU+ by 2050. Depending on the scenario this implies that between 25% and 35% of green hydrogen will be used in the power sector as a long-term energy storage.
Recent Research Progresses and Challenges for Practical Application of Large-Scale Solar Hydrogen Production
Dec 2024
Publication
Solar hydrogen production is a promising pathway for sustainable CO2 -free hydrogen production. It is mainly classified into three systems: photovoltaic electrolysis (PV-EC) photoelectrochemical (PEC) system and particulate photocatalytic (PC) system. However it still has trouble in commercialization due to the limitation of performance and economic feasibility in the large-scale system. In this review the challenges of each large-scale system are respectively summarized. Based on this summary recent approaches to solving these challenges are introduced focusing on core components fabrication processes and systematic designs. In addition several demonstrations of large-scale systems under outdoor conditions and performances of upscaled systems are introduced to understand the current technical level of solar-driven hydrogen production systems for commercialization. Finally the future outlooks and perspectives on the practical application of large-scale solar-driven hydrogen production are discussed.
The Impact of Country-specific Investment Risks on the Levelised Costs of Green Hydrogen Production
Jun 2024
Publication
Green hydrogen is central to the global energy transition. This paper introduces a renewable hydrogen production system model that optimizes hydrogen production on a worldwide 50 km × 50 km grid considering country-specific investment risks. Besides the renewable energy’s impact on the hydrogen production system (HPS) design we analyze the effect of country-specific interest rates on the levelized cost of hydrogen (LCOH) production. Over one-third (40.0%) of all cells have an installed solar PV capacity share between 50% and 70% 76.4% have a hybrid (onshore wind and solar PV) configuration. Hydrogen storage is deployed rather than battery storage to balance hydrogen production via electrolysis and hydrogen demand. Hybrid HPSs can significantly reduce the LCOH production compared to non-hybrid designs whereas country-specific interest rates can lead to significant increases diminishing the relative competitiveness of countries with abundant renewable energy resources compared to countries with fewer resources but fewer investment risks.
Operational Implications of Transporting Hydrogen via a High Pressure Gas Network
Feb 2025
Publication
Transporting hydrogen gas has long been identified as one of the key issues to scaling up the hydrogen economy. Among various means of transportation many countries are considering using the existing natural gas pipeline networks for hydrogen transmission. This paper examines the implications of transporting hydrogen on the operational metrics of the high-pressure natural gas networks. A model of the GB high-pressure gas network was developed which has a high granularity with 294 nodes 356 pipes and 24 compressor stations. The model was developed using Synergi Gas a hydraulic pipeline network simulation software. By performing unsteady-state analysis pressure levels linepack levels and compressor energy consumption were simulated with 10-minute time steps. Additionally component tracing analysis was utilised to examine the variations in gas composition when hydrogen is injected into the gas network. Five scenarios were developed: one benchmark scenario representing the network transporting natural gas in 2018; one scenario where demand and supply levels are projected for 2035 but no hydrogen was transported by the network; two hydrogen injection scenarios in 2035 considering different geographical locations for hydrogen injection into the gas network; and lastly one pure hydrogen transmission scenario for 2050. The studies found that the GB’s high-pressure gas network could accept 20% volumetric hydrogen injection without significantly impacting network operation. Pressure levels and compressor energy consumption remain within the operational range. The geographical distribution of hydrogen injection points would highly affect the percentage of hydrogen across the network. Pure hydrogen transportation will cause significant variations in network linepack and increase compressor energy consumption significantly compared to other case studies. The findings signal that operating a network with pure hydrogen is possible only when it is prepared for these changes.
Explainable Prognostics-optimization of Hydrogen Carrier Biogas Engines in an Integrated Energy System using a Hybrid Game-theoretic Approach with XGBoost and Statistical Methods
Jul 2025
Publication
Biogas is a renewable fuel source that helps the circular economy by turning organic waste into energy. This study tackles existing research gaps by exploring the use of biogas as a hydrogen carrier in dual-fuel engine systems. It additionally employs explainable machine learning techniques for predictive modelling and interpretive analysis. The dual-fuel engine was powered with biogas as main fuel while biodiesel-diesel blend was used as pilot fuel. The engine was tested at different Compression Ratios (CR) and Brake Powers (BP). The generated data from testing was used to develop the mathematical models and parametric optimization of engine performance and emissions using Response Surface Methodology (RSM). Desirability-based optimization identified optimal results: a Peak Cylinder Pressure (Pmax) of 54.97 bar and a brake thermal efficiency (BTE) of 24.35 % achieved at a CR of 18.3 and a BP of 3.3 kW. The predictive machine learning approach Extreme Gradient Boosting (XGBoost) was employed to develop predictive models. XGBoost precisely forecasted engine performance and emissions with Coefficient of Determination (R2 ) values (up to 0.9960) and minimal Mean Absolute Percentage Error (MAPE) values (1.47–4.89 %) for all parameters. SHapley Additive exPlanations (SHAP) based analysis identified BP as the predominant feature with a normalized importance score reaching up to 0.9 surpassing that of CR. These findings underscore the potential of biogas as a viable sustainable fuel and highlight the role of explainable prediction–optimization frameworks can play in achieving optimal engine performance and emission control.
Thermal Design of a System for Mobile Powersupply
Sep 2023
Publication
Ever more stringent emission regulations for vehicles encourage increasing numbers of battery electric vehicles on the roads. A drawback of storing electric energy in a battery is the comparable low energy density low driving range and the higher propensity to deplete the energy storage before reaching the destination especially at low ambient temperatures. When the battery is depleted stranded vehicles can either be towed or recharged with a mobile recharging station. Several technologies of mobile recharging stations already exist however most of them use fossil fuels to recharge battery electric vehicles. The proposed novel zero emission solution for mobile charging is a combined high voltage battery and hydrogen fuel cell charging station. Due to the thermal characteristics of the fuel cell and high voltage battery (which allow only comparable low coolant temperatures) the thermal design for this specific application (available heat exchanger area zero vehicle speed air flow direction) becomes challenging and is addressed in this work. Experimental methods were used to obtain reliable thermal and electric power measurement data of a 30 kW fuel cell system which is used in the Mobile Hydrogen Powersupply. Subsequently simulation methods were applied for the thermal design and optimisation of the coolant circuits and heat exchangers. It is shown that an battery electric vehicle charging power of 22 kW requires a heat exchanger area of 1 m2 of which 60 % is used by the fuel cell heat exchanger and the remainder by the battery heat exchanger to achieve steady state operation at the highest possible ambient temperature of 436 °C. Furthermore the simulation showed that when the charging power of 22 kW is solely provided by the high voltage battery the highest possible ambient temperature is 42 °C. When the charging power is decreased operation up to the maximum ambient temperatures of 45 °C can be achieved. The results of maximum charging power and limiting ambient temperature give insights for further system improvements which are: sizing of fuel cell or battery trailer design and heat exchanger area operation strategy of the system (power split between high voltage battery and fuel cell) as well as possible dynamic operation scenarios.
Instances of Safety-Related Advances in Hydrogen as Regards Its Gaseous Transport and Buffer Storage and Its Solid-State Storage
Jul 2024
Publication
As part of the ongoing transition from fossil fuels to renewable energies advances are particularly expected in terms of safe and cost-effective solutions. Publicising instances of such advances and emphasising global safety considerations constitute the rationale for this communication. Knowing that high-strength steels can prove economically relevant in the foreseeable future for transporting hydrogen in pipelines by limiting the pipe wall thickness required to withstand high pressure one advance relates to a bench designed to assess the safe transport or renewableenergy-related buffer storage of hydrogen gas. That bench has been implemented at the technology readiness level TRL 6 to test initially intact damaged or pre-notched 500 mm-long pipe sections with nominal diameters ranging from 300 to 900 mm in order to appropriately validate or question the use of reputedly satisfactory predictive models in terms of hydrogen embrittlement and potential corollary failure. The other advance discussed herein relates to the reactivation of a previously fruitful applied research into safe mass solid-state hydrogen storage by magnesium hydride through a new public–private partnership. This latest development comes at a time when markets have started driving the hydrogen economy bearing in mind that phase-change materials make it possible to level out heat transfers during the absorption/melting and solidification/desorption cycles and to attain an overall energy efficiency of up to 80% for MgH2 -based compacts doped with expanded natural graphite.
Internal Combustion Engines and Carbon-Neutral Fuels: A Perspective on Emission Neutrality in the European Union
Mar 2024
Publication
Nowadays there is an intense debate in the European Union (EU) regarding the limits to achieve the European Green Deal to make Europe the first climate-neutral continent in the world. In this context there are also different opinions about the role that thermal engines should play. Furhermore there is no clear proposal regarding the possibilities of the use of green hydrogen in the transport decarbonization process even though it should be a key element. Thus there are still no precise guidelines regarding the role of green hydrogen with it being exclusively used as a raw material to produce E-fuels. This review aims to evaluate the possibilities of applying the different alternative technologies available to successfully complete the process already underway to achieve Climate Neutrality by about 2050 depending on the maturity of the technologies currently available and those anticipated to be available in the coming decades.
Energy Management Strategy Based on Reinforcement Learning and Frequency Decoupling for Fuel Cell Hybrid Powertrain
Apr 2024
Publication
This study presents a Two-Layer Deep Deterministic Policy Gradient (TL-DDPG) energy management strategy for Hydrogen fuel cell hybrid train that aims to solve the problem that traditional reinforcement learning strategies require high initial values and are difficult to optimize global variables. Augmenting the optimization capabilities of the inner layer a frequency decoupling algorithm integrates into the outer layer furnishing a fitting initial value for strategy optimization. This addition aims to bolster the stability of fuel cell output thereby enhancing the overall efficiency of the hybrid power system. In comparison with the traditional reinforcement learning algorithm the proposed approach demonstrates notable improvements: a reduction in hydrogen consumption per 100 km by 16.3 kg a 9.7% increase in the output power stability of the fuel cell and a 1.8% enhancement in its efficiency.
Hydrogen Storage Solutions for Residential Heating: A Thermodynamic and Economic Analysis with Scale-up Potential
Jul 2024
Publication
The study presents a thermodynamic and economic assessment of different hydrogen storage solutions for heating purposes powered by PV panels of a 10-apartment residential building in Milan and it focuses on compressed hydrogen liquid hydrogen and metal hydride. The technical assessment involves using Python to code thermodynamic models to address technical and thermodynamic performances. The economic analysis evaluates the CAPEX the ROI and the cost per unit of stored hydrogen and energy. The study aims to provide an accurate assessment of the thermodynamic and economic indicators of three of the storage methods introduced in the literature review pointing out the one with the best techno-economic performance for further development and research. The performed analysis shows that compressed hydrogen represents the best alternative but its cost is still too high for small residential applications. Applying the technology to a big system case would enable the solution making it economically feasible.
Material Challenges and Hydrogen Embrittlement Assessment for Hydrogen Utilisation in Industrial Scale
Sep 2023
Publication
Hydrogen has been studied extensively as a potential enabler of the energy transition from fossil fuels to renewable sources. It promises a feasible decarbonisation route because it can act as an energy carrier a heat source or a chemical reactant in industrial processes. Hydrogen can be produced via renewable energy sources such as solar hydro or geothermic routes and is a more stable energy carrier than intermittent renewable sources. If hydrogen can be stored efficiently it could play a crucial role in decarbonising industries. For hydrogen to be successfully implemented in industrial systems its impact on infrastructure needs to be understood quantified and controlled. If hydrogen technology is to be economically feasible we need to investigate and understand the retrofitting of current industrial infrastructure. Currently there is a lack of comprehensive knowledge regarding alloys and components performance in long-term hydrogen-containing environments at industrial conditions associated with high-temperature hydrogen processing/production. This review summarises insights into the gaps in hydrogen embrittlement (HE) research that apply to high-temperature high-pressure systems in industrial processes and applications. It illustrates why it is still important to develop characterisation techniques and methods for hydrogen interaction with metals and surfaces under these conditions. The review also describes the implications of using hydrogen in large-scale industrial processes.
Numerical Study on the Use of Ammonia/Hydrogen Fuel Blends for Automotive Sparking-ignition Engines
Jun 2023
Publication
The importance of new alternative fuels has assumed great relevance in the last decades to face the issues of global warming and pollutant emissions from energy production. The scientific community is responsible for developing solutions to achieve the necessary environmental restriction policies. In this context ammonia appears as a potential fuel candidate and energy vector that may solve the technological difficulties of using hydrogen (H2 ) directly in internal combustion engines. Its high hydrogen content per unit mass higher energy density than liquid hydrogen well-developed infrastructure and experience in handling and storage make it suitable to be implemented as a long-term solution. In this work a virtual engine model was developed to perform prospective simulations of different operating conditions using ammonia and H2 -enriched ammonia as fuel in a spark-ignition (SI) engine integrating a chemical kinetics model and empirical correlations for combustion prediction. In addition specific conditions were evaluated to consider and to understand the governing parameters of ammonia combustion using computational fluid dynamics (CFD) simulations. Results revealed similar thermal efficiency than methane fuel with considerable improvements after appropriate H2 - enrichment. Moreover increasing the intake temperature and the turbulence intensity inside the cylinder evinced significant reductions in combustion duration. Finally higher compression ratios ensure efficiency gains with no evidence of abnormal combustion (knocking) even at high compression ratios (above 16:1) and low engine speeds (800 rpm). Numerical simulations showed the direct influence of the flame front surface area and the turbulent combustion velocity on efficiency reflecting the need for optimizing the SI engines design paradigm for ammonia applications.
Proactive Emergency Response Strategies for First Responders to Hydrogen Gas Leakages in Vehicles
Feb 2024
Publication
The widespread use of fossil fuels in automobiles has become a concern particularly in light of recent frequent natural disasters prompting a shift towards eco-friendly vehicles to mitigate greenhouse gas emissions. This shift is evident in the rapidly increasing registration rates of hydrogen vehicles. However with the growing presence of hydrogen vehicles on roads a corresponding rise in related accidents is anticipated posing new challenges for first responders. In this study computational fluid dynamics analysis was performed to develop effective response strategies for first responders dealing with high-pressure hydrogen gas leaks in vehicle accidents. The analysis revealed that in the absence of blower intervention a vapor cloud explosion from leaked hydrogen gas could generate overpressure exceeding 13.8 kPa potentially causing direct harm to first responders. In the event of a hydrogen vehicle accident requiring urgent rescue activities the appropriate response strategy must be selected. The use of blowers can aid in developing a variety of strategies by reducing the risk of a vapor cloud explosion. Consequently this study offers a tailored response strategy for first responders in hydrogen vehicle leak scenarios emphasizing the importance of situational assessment at the incident site.
Safety Calculations for Emerging Technologies
Sep 2023
Publication
As part of executing 25 hydrogen-based Power to X (PtX) projects our team of Safety consultants has completed safety and risk assessments for a number of hydrogen production developments. Drawing on this experience we will present the importance of making comparisons between hydrogen specific data sources such as HyRAM and conventional oil and gas data sets and calculation methods to ensure that project design is carried out to the most appropriate data and provides a robust solution to demonstrate risks are managed. This presentation will be based on case studies where Fire and Explosion Risk Assessments (FERA) and Quantitative Risk Assessments (QRA) were conducted. The frequency calculations for these assessments used the release frequencies and ignition probabilities provided in HyRAM. However it is noted that the HyRAM ignition probabilities are derived from a correlation from oil and gas assessments in the 1990s. The oil and gas approach has moved on from this data source and now derives ignition probabilities based on the type of facility and fluid characteristics. To address this evolution a comparison was made between the leak frequencies for equipment in hydrogen service and established oil and gas release frequencies from IOGP. In addition a comparison between the HyRAM recommended ignition probabilities and the correlations used for oil and gas (from OEUK formerly UKOOA) was conducted. By taking this approach it was confirmed that the UKOOA data was more conservative and sensitivity calculations were carried out. It was also noted that as hydrogen technologies are emerging there is a level of uncertainty around the data and comparisons must be regularly made to ensure the most appropriate basis for calculations is used.
Development of Liquid Organic Hydrogen Carriers for Hydrogen Storage and Transport
Jan 2024
Publication
The storage and transfer of energy require a safe technology to mitigate the global environmental issues resulting from the massive application of fossil fuels. Fuel cells have used hydrogen as a clean and efficient energy source. Nevertheless the storage and transport of hydrogen have presented longstanding problems. Recently liquid organic hydrogen carriers (LOHCs) have emerged as a solution to these issues. The hydrogen storage technique in LOHCs is more attractive than those of conventional energy storage systems like liquefaction compression at high pressure and methods of adsorption and absorption. The release and acceptance of hydrogen should be reversible by LOHC molecules following favourable reaction kinetics. LOHCs comprise liquid and semi-liquid organic compounds that are hydrogenated to store hydrogen. These hydrogenated molecules are stored and transported and finally dehydrogenated to release the required hydrogen for supplying energy. Hydrogenation and dehydrogenation are conducted catalytically for multiple cycles. This review elaborates on the characteristics of different LOHC molecules based on their efficacy as energy generators. Additionally different catalysts used for both hydrogenation and dehydrogenation are discussed.
Visualisation and Quantification of Wind-induced Variability in Hydrogen Clouds Following Releases of Liquid Hydrogen
Sep 2023
Publication
Well characterized experimental data for consequence model validation is important in progressing the use of liquid hydrogen as an energy carrier. In 2019 the Health and Safety Executive (HSE) undertook a series of liquid hydrogen dispersion and combustion experiments as a part of the Pre-normative Research for Safe Use of Liquid Hydrogen (PRESLHY) project. In partnership between the National Renewable Energy Laboratory (NREL) and HSE time and spatially varying hydrogen concentration measurements were made in 25 dispersion experiments and 23 congested ignition experiments associated with PRESLHY WP3 and WP5 respectively. These measurements were undertaken using the hydrogen wide area monitoring system developed by NREL. During the 23 congested ignition experiments high variability was observed in the measured explosion severity during experiments with similar initial conditions. This led to the conclusion that wind including localized gusts had a large influence on the dispersion of the hydrogen and therefore the quantity of hydrogen that was present in the congested region of the explosions. Using the hydrogen concentration measurements taken immediately prior to ignition the hydrogen clouds were visualized in an attempt to rationalize the variability in overpressure between the tests. Gaussian process regression was applied to quantify the variability of the measured hydrogen concentrations. This analysis could also be used to guide modifications in experimental designs for future research on hydrogen combustion behavior.
Impact of Experimentally Measured Relative Permeability Hysteresis on Reservoir-scale Performance of Undergound Hydrogen Storage (UHS)
Jan 2024
Publication
Underground Hydrogen Storage (UHS) is an emerging large-scale energy storage technology. Researchers are investigating its feasibility and performance including its injectivity productivity and storage capacity through numerical simulations. However several ad-hoc relative permeability and capillary pressure functions have been used in the literature with no direct link to the underlying physics of the hydrogen storage and production process. Recent relative permeability measurements for the hydrogen-brine system show very low hydrogen relative permeability and strong liquid phase hysteresis very different to what has been observed for other fluid systems for the same rock type. This raises the concern as to what extend the existing studies in the literature are able to reliably quantify the feasibility of the potential storage projects. In this study we investigate how experimentally measured hydrogen-brine relative permeability hysteresis affects the performance of UHS projects through numerical reservoir simulations. Relative permeability data measured during a hydrogen-water core-flooding experiment within ADMIRE project is used to design a relative permeability hysteresis model. Next numerical simulation for a UHS project in a generic braided-fluvial water-gas reservoir is performed using this hysteresis model. A performance assessment is carried out for several UHS scenarios with different drainage relative permeability curves hysteresis model coefficients and injection/production rates. Our results show that both gas and liquid relative permeability hysteresis play an important role in UHS irrespective of injection/production rate. Ignoring gas hysteresis may cause up to 338% of uncertainty on cumulative hydrogen production as it has negative effects on injectivity and productivity due to the resulting limited variation range of gas saturation and pressure during cyclic operations. In contrast hysteresis in the liquid phase relative permeability resolves this issue to some extent by improving the displacement of the liquid phase. Finally implementing relative permeability curves from other fluid systems during UHS performance assessment will cause uncertainty in terms of gas saturation and up to 141% underestimation on cumulative hydrogen production. These observations illustrate the importance of using relative permeability curves characteristic of hydrogen-brine system for assessing the UHS performances.
Process Design and Improvement for Hydrogen Production Based on Thermodynamic Analysis: Practical Application to Real-world On-site Hydrogen Refueling Stations
Sep 2023
Publication
An energy source transition is necessary to realize carbon neutrality emphasizing the importance of a hydrogen economy. The transportation sector accounted for 27% of annual carbon emissions in 2019 highlighting the increasing importance of transitioning to hydrogen vehicles and establishing hydrogen refueling stations (HRSs). In particular HRSs need to be prioritized for deploying hydrogen vehicles and developing hydrogen supply chains. Thus research on HRS is important for achieving carbon neutrality in the transportation sector. In this study we improved the efficiency and scaled up the capacity of an on-site HRS (based on steam methane reforming with a hydrogen production rate of 30 Nm3/h) in Seoul Korea. This HRS was a prototype with low efficiency and capacity. Its efficiency was increased through thermodynamic analysis and heat exchanger network synthesis. Furthermore the process was scaled up from 30 Nm3/h to 150 Nm3/h to meet future hydrogen demand. The results of exergy analysis indicated that the exergy destruction in the reforming reactor and heat exchanger accounted for 58.1% and 19.8% respectively of the total exergy destruction. Thus the process was improved by modifying the heat exchanger network to reduce the exergy losses in these units. Consequently the thermal and exergy efficiencies were increased from 75.7% to 78.6% and from 68.1% to 70.4% respectively. The improved process was constructed and operated to demonstrate its performance. The operational and simulation data were similar within the acceptable error ranges. This study provides guidelines for the design and installation of low-carbon on-site HRSs.
The Roadmap for a Green Hydrogen Economy in Trinidad & Tobago
Nov 2022
Publication
This publication presents the results of a pre-feasibility study to introduce a green hydrogen (GH2) market in Trinidad and Tobago (T&T). The study analyzed the potential supply and competitiveness of producing GH2 in T&T and the actions needed to build a foundation for producing green ammonia and methanol. The study updated previous estimates of renewable energy generation potential in the country. The study also highlighted Trinidad and Tobago's comparative advantage to produce GH2 with its ability to capitalize on existing infrastructure its know-how and capabilities and its long-standing trade relations. Lastly the study identifies demonstration projects and created a roadmap for developing a low carbon hydrogen economy in Trinidad and Tobago.
Use of Existing Gas Infrastructure in European Hydrogen Economy
Apr 2023
Publication
The rapidly increasing production volume of clean hydrogen creates challenges for transport infrastructure. This study improves understanding of hydrogen transport options in Europe and provides more detailed analysis on the prospects for hydrogen transport in Finland. Previous studies and ongoing pipeline projects were reviewed to identify potential and barriers to hydrogen transport. A fatigue life assessment tool was built because material challenges have been one of the main concerns of hydrogen transportation. Many European countries aim at utilizing existing gas infrastructure for hydrogen. Conducted studies and pilot facilities have provided promising results. Hydrogen reduces the fatigue life of the pipeline but existing pipelines can be used for hydrogen if pressure variation is maintained at a reasonable level and the maximum operation pressure is limited. Moreover the use of existing pipelines can reduce hydrogen transport costs but the suitability of every pipeline for hydrogen must be analyzed and several issues such as leakage leakage detection effects of hydrogen on pipeline assets and end users corrosion maintenance and metering of gas flow must be considered. The development of hydrogen transport will vary within countries depending on the structure of the existing gas infrastructure and on the future hydrogen use profile.
Environmental-economic Sustainability of Hydrogen and Ammonia Fuels for Short Sea Shipping Operations
Jan 2024
Publication
Alternative fuels of low or zero carbon content can decarbonise the shipping operations. This study aims at assessing the lifetime environmental-economic sustainability of ammonia and hydrogen as alternatives to diesel fuel for short sea shipping cargo vessels. A model is employed to calculate key performance indicators representing the lifetime financial sustainability and environmental footprint of the case ship using a realistic operating profile and considering several scenarios with different diesel substitution rates. Scenarios meeting the carbon emissions reduction targets set by the International Maritime Organisation (IMO) for 2030 are identified whereas policy measures for their implementation including the emissions taxation are discussed. The derived results demonstrate that the future implementation of carbon emissions taxation in the ranges of 136–965 €/t for hydrogen and 356–2647 €/t for ammonia can support these fuels financial sustainability in shipping. This study provides insights for adopting zero-carbon fuels and as such impacts the de-risking of shipping decarbonisation.
Multi-Objective Robust Optimization of Integrated Energy System with Hydrogen Energy Storage
Feb 2024
Publication
A novel multi-objective robust optimization model of an integrated energy system with hydrogen storage (HIES) considering source–load uncertainty is proposed to promote the low-carbon economy operation of the integrated energy system of a park. Firstly the lowest total system cost and carbon emissions are selected as the multi-objective optimization functions. The Pareto front solution set of the objective function is applied by compromise planning and the optimal solution among them is obtained by the maximum–minimum fuzzy method. Furthermore the robust optimization (RO) approach is introduced to cope with the source–load uncertainty effectively. Finally it is demonstrated that the illustrated HIES can significantly reduce the total system cost carbon emissions and abandoned wind and solar power. Meanwhile the effectiveness of the proposed model and solution method is verified by analyzing the influence of multi-objective solutions and a robust coefficient on the Chongli Demonstration Project in Hebei Province.
Modelling of Hydrogen Dispersion with Effects
Sep 2023
Publication
The paper shows the latest developments of Gexcon’s consequence modelling software EFFECTS with validation based on hydrogen experimental data for different storage conditions and scenarios including liquid hydrogen two-phase jet releases. The effect of atmospheric turbulence on the dispersion and potential worst-case scenarios of hydrogen which are very different from heavy gas releases are discussed. Beside validation for gaseous hydrogen releases a validation study for pressurised liquid hydrogen jet releases including a sensitivity analysis is performed and the results are compared with experimental data.
A Review of the Research Progress and Application of Key Components in the Hydrogen Fuel Cell System
Jan 2024
Publication
The hydrogen cycle system one of the main systems used for hydrogen fuel cells has many advantages. It can improve the efficiency the water capacity and the management of thermal fuel cells. It can also enhance the safety of the system. Therefore it is widely used in hydrogen fuel cell vehicles. We introduce the structure and principles of hydrogen cycle pumps ejectors and steam separators and analyze and summarize the advantages of the components as well as reviewing the latest research progress and industrialization status of hydrogen cycle pumps and ejectors. The technical challenges in hydrogen circulation systems and the development direction of key technologies in the future are discussed. This paper aims to provide a reference for research concerning hydrogen energy storage application technology in hydrogen fuel cell systems.
Strength of Knowledge and Uncertainties in Safety Regulation of Hydrogen as an Energy Carrier
Sep 2023
Publication
Ahead of a potential large-scale implementation of hydrogen as an energy carrier in society safety regulation systems should be in place to provide a systematic consideration of safety related concerns. Knowledge is essential for regulatory activities. At the same time it is challenging to obtain sufficient information when regulating emerging technologies – it may be difficult to address informational shortcomings in regulatory matters as analysts can be prone to under-communicate the significance of uncertainties. Furthermore Strength of Knowledge (SoK) has been developed to address the quality of background knowledge in risk analyses. An example of a SoK framework is based on the following four conditions that is used to assess whether knowledge can be considered weak or strong: the issue of simplifications availability and reliability of data consensus among experts and general understanding of the phenomena in question. In theory this concept seems relevant for the introduction of hydrogen as an energy carrier mainly because there is little historical data to develop sound analyses creating uncertainties. However there are no clear-cut guidelines as to how knowledge gaps should be handled in the development of regulatory requirements. In this paper we consider the relevance of a specific approach for SoK assessment in the context of safety and security regulation of hydrogen as an energy carrier in society. We conclude that there are some challenges with the proposed framework and argue that further research should be conducted to identify or develop a method for handling uncertainties in regulatory processes regarding hydrogen systems as energy carriers in societies.
Lessons Learned and Recommendations from Analysis of Hydrogen Incidents and Accidents to Support Risk Assessment for the Hydrogen Economy
Feb 2024
Publication
This study addresses challenges associated with hydrogen’s physio-chemical characteristics and the need for safety and public acceptance as a precursor to the emerging hydrogen economy. It highlights the gap in existing literature regarding lessons learned from events in the green hydrogen production value chain. The study aims to use the documented lessons learned from previous hydrogen-related events to assist in enhancing safety measures and to guide stakeholders on how to avoid and mitigate future hydrogen-related events. Given the potential catastrophic consequences robust safety systems are essential for hydrogen economy development. The work underscores the importance of human and operational factors as root causes of these events. The paper recommends establishing a specialized hydrogen-related event database to support risk assessment and risk mitigation thus catering to the growing hydrogen industry’s needs and facilitating quick access to critical information for stakeholders in the private and public sectors.
The Possibility of Using Hydrogen as a Green Alternative to Traditional Marine Fuels on an Offshore Vessel Serving Wind Farms
Nov 2024
Publication
Achieving the required decarbonisation targets by the shipping industry requires a transition to technologies with zero or near-zero greenhouse gas (GHG) emissions. One promising shipping fuel with zero emission of exhaust gases (including CO2) is green hydrogen. This type of fuel recognised as a 100% clean solution is being investigated for feasible use on a service offshore vessel (SOV) working for offshore wind farms. This study aims to examine whether hydrogen may be used on an SOV in terms of the technical and economic challenges associated with the design process and other factors. In the analyses a reference has been made to the current International Maritime Organization (IMO) guidelines and regulations. In this study it was assumed that hydrogen would be directly combusted in a reciprocating internal combustion engine. This engine type was reviewed. In further research hydrogen fuel cell propulsion systems will also be considered. The hydrogen demand was calculated for the assumed data of the SOV and then the volume and number of highpressure tanks were estimated. The analyses revealed that the SOV cannot undertake 14-day missions using hydrogen fuel stored in cylinders on board. These cylinders occupy 66% of the ship’s current volume and their weight including the modular system accounts for 62% of its deadweight. The costs are over 100% higher compared to MDO and LNG fuels and 30% higher than methanol. The actual autonomy of the SOV with hydrogen fuel is 3 days.
Experimental Investigations of the Hydrogen Injectors on the Combustion Characteristics and Performance of a Hydrogen Internal Combustion Engine
Feb 2024
Publication
Hydrogen is regarded as an ideal zero-carbon fuel for an internal combustion engine. However the low mass flow rate of the hydrogen injector and the low volume heat value of the hydrogen strongly restrict the enhancement of the hydrogen engine performance. This experimental study compared the effects of single-injectors and double-injectors on the engine performance combustion pressure heat release rate and the coefficient of variation (CoVIMEP) based on a singlecylinder 0.5 L port fuel injection hydrogen engine. The results indicated that the number of hydrogen injectors significantly influences the engine performance. The maximum brake power is improved from 4.3 kW to 6.12 kW when adding the injector. The test demonstrates that the utilization of the double-injector leads to a reduction in hydrogen obstruction in the intake manifold consequently minimizing the pumping losses. The pump mean effective pressure decreased from −0.049 MPa in the single-injector condition to −0.029 MPa in the double-injector condition with the medium loads. Furthermore the double-injector exhibits excellent performance in reducing the coefficient of variation. The maximum CoVIMEP decreased from 2.18% in the single-injector configuration to 1.92% in the double-injector configuration. This result provides new insights for optimizing hydrogen engine injector design and optimizing the combustion process.
Hydrogen Pipelines vs. HVDC Lines: Should We Transfer Green Molecules or Electrons?
Nov 2023
Publication
As the world races to decarbonize its energy systems the choice between transmitting green energy as electrons through high-voltage direct current (HVDC) lines or as molecules via hydrogen pipelines emerges as a critical decision. This paper considers this pivotal choice and compares the technoeconomic characteristics of these two transmission technologies. Hydrogen pipelines offer the advantage of transporting larger energy volumes but existing projects are dwarfed by the vast networks of HVDC transmission lines. Advocates for hydrogen pipelines see potential in expanding these networks capitalizing on hydrogen’s physical similarities to natural gas and the potential for cost savings. However hydrogen’s unique characteristics such as its small molecular size and compression requirements present construction challenges. On the other hand HVDC lines while less voluminous excel in efficiently transmitting green electrons over long distances. They already form an extensive global network and their efficiency makes them suitable for various applications. Yet intermittent renewable energy sources pose challenges for both hydrogen and electricity systems necessitating solutions like storage and blending. Considering these technologies as standalone competitors belies their complementary nature. In the emerging energy landscape they will be integral components of a complex system. Decisions on which technology to prioritize depend on factors such as existing infrastructure adaptability risk assessment and social acceptance. Furthermore while both HVDC lines and hydrogen pipelines are expected to proliferate other factors such as market maturity of the relevant energy vector government policies and regulatory frameworks around grid development and utilization are also expected to play a crucial role. Energy transition is a multifaceted challenge and accommodating both green molecules and electrons in our energy infrastructure may be the key to a sustainable future. This paper’s insights underline the importance of adopting a holistic perspective and recognising the unique strengths of each technology in shaping a resilient and sustainable energy ecosystem.
Case Study: Quantitative Risk Assessment of Hydrogen Blended Natural Gas for an Existing Distribution Network and End-use Equipment in Fort Saskatchewan, Alberta
Sep 2023
Publication
In a first-of-its-kind project for Alberta ATCO Gas and Pipelines Ltd. (ATCO) began delivering a 5% blend of hydrogen (H2) in natural gas into a subsection of the existing Fort Saskatchewan natural gas distribution system (approximately 2100 customers). The project was commissioned in October 2022 with the intention of increasing the blend to 20% H₂ in 2023. As part of project due diligence ATCO in partnership with DNV undertook Quantitative Risk Assessments (QRAs) to understand any risks associated with the introduction of blended gas into its existing distribution system and to its customers. This paper describes key findings from the QRAs through the comparison of risks associated with H2 blended natural gas at concentrations of 5% and 20% H₂ and the current natural gas configuration. The impact of operating pressure and hydrogen blend composition formed a sensitivity study completed as part of this work. To provide context and to help interpret the results an individual risk (IR) level of 1 × 10-6 per year was utilised as a reference threshold for the limit of the ‘broadly acceptable’ risk level and juxtaposed against comparable risk scenarios. Although adding hydrogen increases the IR of ignited releases from mains services meters regulators and end user appliances the ignited release IR was always well below the broadly acceptable reference criterion for all operating pressures and blend cases considered as part of the project. The IR associated with carbon monoxide poisoning dominates the overall IR and the results demonstrate that the reduction in carbon monoxide poisoning associated with the introduction of H₂ blended natural gas negates any incremental risk associated with ignited releases due to H₂ blended gas. The paper also explains how the results of the QRA were incorporated into Engineering Assessments as per the requirements of CSA Z662:19 [1] to justify the conversion of existing natural gas infrastructure to H₂ blended gas infrastructure.
Roles of Bioenergy and Green Hydrogen in Large Scale Energy Storage for Carbon Neutrality
Aug 2023
Publication
A new technical route to incorporate excess electricity (via green hydrogen generation by electrolysis) into a biorefinery to produce modern bioenergy (advanced biofuels) is proposed as a promising alternative. This new route involves storing hydrogen for mobile and stationary applications and can be a three-bird-one-stone solution for the storage of excess electrical energy storage of green hydrogen and high-value utilization of biomass.
Energy Efficiency Analysis of a Fuel Cell Bus Model Using Real Scenarios Generated by Data Collection
Feb 2024
Publication
Modernizing public transportation is crucial given the ongoing call for sustainable mobility. Growing concerns about climate change and the increasingly stringent emissions standards have compelled public transport operators to embrace alternative propulsion vehicles on a broader scale. For the past years the Battery Electric Buses (BEBs) have been the vehicle of choice for public transportation. However an emerging contender in this sector is the Fuel Cell Electric Bus (FCEB). This paper aims to evaluate the way one such vehicle would perform in terms of energy efficiency while being exploited in an urban scenario generated from collected data.
Numerical Simulation of Liquid Hydrogen Evaporation in the Pressurized Tank During Venting
Sep 2023
Publication
CFD modelling of liquified hydrogen boiling and evaporation during the pressurised tank venting is presented. The model is based on the volume-of-fluid method for tracking liquid and gas phases and Lee’s model for phase change. The simulation results are compared against the liquid hydrogen evaporation experiment performed by Tani et al. (2021) in a large-scale pressurised storage tank using experimental pressure dynamics and temperatures measured in gas and liquid phases. The study focuses on tank pressure decrease and recovery phenomena during the first 15 s of the venting process. The model sensitivity have been studied applying different Lee’s model evaporisation-condensation coefficients. The CFD model provided reasonable agreement with the observed pressure and gas phase temperature dynamics during the liquid hydrogen storage depressurisation using Lee’s model coefficient =0.05 s-1. Experimentalists’ hypothesis about particularly intensive boiling in the proximity of thermocouples was supported by close agreement between simulated and experimental saturation temperatures obtained from pressure dynamics.
Comparative Analysis of Solar Cells and Hydrogen Fuels: A Mini Review
Jul 2024
Publication
The aim of this mini-review is to compare the effectiveness and potential of solar cells and hydrogen fuel technologies in clean energy generation. Key aspects such as efficiency scalability environmental footprint and technological maturity are examined. Solar cells are analyzed for their ability to convert sunlight into electricity efficiently and their potential for widespread deployment with minimal environmental impact. Hydrogen fuel technologies are assessed based on their efficiency in hydrogen production scalability and overall environmental footprint from production to end use. The review identifies significant challenges including high costs infrastructure needs and policy requirements as well as opportunities for innovation and market growth. The findings provide insights to guide decision-making towards a sustainable energy future.
Impact of International Transportation Chains on Cost of Green E-hydrogen: Global Cost of Hydrogen and Consequences for Germany and Finland
Jun 2023
Publication
Widely available and low-cost solar photovoltaics and wind power can enable production of renewable electricity-based hydrogen at many locations throughout the world. Hydrogen is expected to emerge as an important energy carrier constituting some of the final energy demand; however its most important role will be as feedstock for further processing to e-fuels e-chemicals and e-steel. Apart from meeting their own hydrogen demand countries may have opportunities to export hydrogen to countries with area limitations or higher production costs. This paper assesses the feasibility of e-hydrogen imports to Germany and Finland from two case regions with a high availability of low-cost renewable electricity Chile and Morocco in comparison to domestic supply. Special attention is paid to the transport infrastructure which has a crucial impact on the economic viability of imports via two routes shipping and pipelines. This study has found that despite lower e-hydrogen production costs in Morocco and Chile compared to Germany and Finland additional transportation costs make imports of e-hydrogen economically unattractive. In early 2020s imported fuel costs are 39–79% and 34–100% higher than e-hydrogen produced in Germany and Finland respectively. In 2050 imported e-hydrogen is projected to be 39–70% more expensive than locally produced e-hydrogen in Germany and 43–54% in the case of Finland. e-Hydrogen may become a fuel that is mostly produced domestically and may be feasible for imports only in specific locations. Local e-hydrogen production may also lower dependence on imports enhance energy security and add jobs.
Comprehensive Techno-economic Assessment of Power Technologies and Synthetic Fuels under Discussion for Ship Applications
Jun 2023
Publication
The decarbonization of the global ship traffic is one of the industry’s greatest challenges for the next decades and will likely only be achieved with the introduction of synthetic fuels. Until now however not one single best technology solution emerged to ideally fit this task. Instead different energy carriers including hydrogen ammonia methanol methane and synthetic diesel are subject of discussion for usage in either internal combustion engines or fuel cells. In order to drive the selection procedure a case study for the year 2030 with all eligible combinations of power technologies and fuels is conducted. The assessment quantifies the technologies’ economic performances for cost-optimized system designs and in dependence of a ship’s mission characteristics. Thereby the influence of trends for electrofuel prices and shipboard volume opportunity costs are examined. Even if gaseous hydrogen is often considered not suitable for large ship applications due to its low volumetric energy density both the comparatively small fuel price and the high efficiency of fuel cells lead to the overall smallest system costs for passages up to 21 days depending on assumed cost parameters. Only for missions longer than seven days fuel cells operating on methanol or ammonia can compete with gaseous hydrogen economically.
Developing a Generalized Framework for Assessing Safety of Hydrogen Vehicles in Tunnels
Sep 2023
Publication
For widespread adoption of hydrogen fuel cell powered vehicles such vehicles need to be able to provide similar transportation capabilities as their gasoline/diesel powered counterparts. Meeting this requirement in many regions will necessitate access to tunnels. Previous work completed at Sandia National Laboratories provided high-fidelity consequence modeling of hydrogen vehicle tunnel crashes for a specific fire scenario in selected Massachusetts tunnels. To consider additional tunnels a generalized tunnel safety analysis framework is being developed. This framework aims to be broader than specific fire scenarios in specific tunnels allowing it to be applied to a range of tunnel geometries vehicle types and crash scenarios. Initial steps in the development of the generalized framework are reported within this work. Representative tunnel characteristics are derived based on data for tunnels in the U.S. Tunnel dimensions shapes and traffic levels are among the many characteristics reported within the data that can be used to inform crash scenario specification. Various crash scenario parameters are varied using lower-fidelity consequence modeling to quantify the impact on resulting safety hazards for time-dependent releases. These lower-fidelity models consider the unignited dispersion of hydrogen gas the thermal effects of jet fires and potential impacts of overpressures. Different sizes/classes of vehicles are considered as the total amount of hydrogen onboard may greatly affect scenario-specific consequences. The generalized framework will allow safety assessments to be both more agile and consistent when applied to different types of tunnels.
Review of the US 2050 Long Term Strategy to Reach Net Zero Carbon Emissions
Jul 2024
Publication
In 2015 during the lead up to the Paris Climate Agreement the United States set forth a Nationally Determined Contribution that outlines national goals for greenhouse gas emission reductions. It was not until 2021 that the US put forth a long-term strategy that lays out the pathway to reach these goals. The US long-term strategy lays the framework for research needs to meet the greenhouse gas emission reduction goals and incentivizes industry to meet the goals using a variety of policies. The five US long term strategy core elements are to decarbonize electricity electrify end uses and switch to clean fuels cut energy waste reduce methane and other non-carbon dioxide greenhouse gas emissions and to scale up carbon dioxide removal. Implementation of the long term strategy has generally been funded by tax incentives and government grants that were approved as part of the Inflation Reduction Act. Political headwinds societal Not in My Backyard resistance long-term economic funding cumbersome permitting requirements and incentives vs. taxation debate are significant policy/nontechnical hurdles. Technical challenges remain regarding effective energy efficiency implementation the use of hydrogen as a fuel cost effective carbon emission treatment nuclear energy expansion renewables expansion and grid integration biofuel integration efficient and safe energy storage and electrical grid adequacy/expansion. This review article condenses the multitude of technical and policy issues facing the US long-term strategy providing readers with an overview of the extent and magnitude of the challenges while outlining possible solutions.
Distributionally Robust Optimal Scheduling of Integrated Energy Systems Including Hydrogen Fuel Cells Considering Uncertainties
Aug 2023
Publication
The economic operation of the integrated energy system faces the problems of coupling between energy production and conversion equipment in the system and the imbalance of various energy demands. Therefore taking system safety as the constraint and minimum economic cost as the objective function including fuel cost operation and maintenance cost this paper proposes the operation dispatching model of the integrated energy system based on hydrogen fuel cell (HFC) including HFC photovoltaic wind turbine electric boiler electric chiller absorption chiller electric energy storage and thermal energy storage equipment. On this basis a distributionally robust optimization (DRO) model is introduced to deal with the uncertainty of wind power and photovoltaic output. In the distributionally robust optimization model Kullback–Leibler (KL) divergence is used to construct an ambiguity set which is mainly used to describe the prediction errors of renewable energy output. Finally the DRO economic dispatching model of the HFC integrated energy system (HFCIES) is established. Besides based on the same load scenario the economic benefits of hybrid energy storage equipment are discussed. The dispatching results show that compared with the scenario of only electric energy storage and only thermal energy storage the economic cost of the scenario of hybrid electric and thermal storage can be reduced by 3.92% and 7.55% respectively and the use of energy supply equipment can be reduced and the stability of the energy storage equipment can be improved.
Explosion Replication Test of FCEV Hydrogen Tank
Sep 2023
Publication
Due to the increased interest in alternative energy sources hydrogen device safety has become paramount. In this study we induced the explosion of a hydrogen tank from a fuel cell electric vehicle (FCEV) by igniting a fire beneath it and disabling the built-in temperature pressure relief device. Three Type 4 tanks were injected gaseous hydrogen at pressures of 700 350 and 10 bar respectively. The incident pressure generated by the tank explosion was measured by pressure transducers positioned at various points around the tank. A protective barrier was installed to examine its effect on the resulting damage and the reflected pressure was measured along the barrier. The internal pressure and external temperature of the tanks were measured in multiple locations. The 700- and 350-bar hydrogen tanks exploded approximately 10 and 16 min after burner ignition respectively. The 10-bar hydrogen tank did not explode but ruptured approximately 29 min after burner ignition The explosions generated blast waves fireballs and fragments. The impact on the surrounding area was evaluated and we verified that the blast pressure fireballs and fragments were almost completely blocked by the protective barrier. The results of this study are expected to improve safety on an FCEV accident scene.
A Review of Current Advances in Ammonia Combustion from the Fundamentals to Applications in Internal Combustion Engines
Aug 2023
Publication
The energy transition from hydrocarbon-based energy sources to renewable and carbon-free energy sources such as wind solar and hydrogen is facing increasing demands. The decarbonization of global transportation could come true via applying carbon-free fuel such as ammonia especially for internal combustion engines (ICEs). Although ammonia has advantages of high hydrogen content high octane number and safety in storage it is uninflammable with low laminar burning velocity thus limiting its direct usage in ICEs. The purpose of this review paper is to provide previous studies and current research on the current technical advances emerging in assisted combustion of ammonia. The limitation of ammonia utilization in ICEs such as large minimum ignition energy lower flame speed and more NOx emission with unburned NH3 could be solved by oxygen-enriched combustion ammonia–hydrogen mixed combustion and plasma-assisted combustion (PAC). In dual-fuel or oxygen-enriched NH3 combustion accelerated flame propagation speeds are driven by abundant radicals such as H and OH; however NOx emission should be paid special attention. Furthermore dissociating NH3 in situ hydrogen by non-noble metal catalysts or plasma has the potential to replace dual-fuel systems. PAC is able to change classical ignition and extinction S-curves to monotonic stretching which makes low-temperature ignition possible while leading moderate NOx emissions. In this review the underlying fundamental mechanism under these technologies are introduced in detail providing new insight into overcoming the bottleneck of applying ammonia in ICEs. Finally the feasibility of ammonia processing as an ICE power source for transport and usage highlights it as an appealing choice for the link between carbon-free energy and power demand.
Phasing Out Steam Methane Reformers with Water Electrolysis in Producing Renewable Hydrogen and Ammonia: A Case Study Based on the Spanish Energy Markets
Jul 2023
Publication
Deploying renewable hydrogen presents a significant challenge in accessing off-takers who are willing to make long-term investments. To address this challenge current projects focus on large-scale deployment to replace the demand for non-renewable hydrogen particularly in ammonia synthesis for fertiliser production plants. The traditional process involving Steam Methane Reformers (SMR) connected to Haber-Bosch synthesis could potentially transition towards decarbonisation by gradually integrating water electrolysis. However the coexistence of these processes poses limitations in accommodating the integration of renewable hydrogen thereby creating operational challenges for industrial hubs. To tackle this issue this paper proposes an optimal dispatch model for producing green hydrogen and ammonia while considering the coexistence of different processes. Furthermore the objective is to analyse external factors that could determine the appropriate regulatory and pricing framework to facilitate the phase-out of SMR in favour of renewable hydrogen production. The paper presents a case study based in Spain utilising data from 2018 2022 and 2030 perspectives on the country's renewable resources gas and electricity wholesale markets pricing ranges and regulatory constraints to validate the model. The findings indicate that carbon emissions taxation and the availability and pricing of Power Purchase Agreements (PPAs) will play crucial roles in this transition - the carbon emission price required for total phasing out SMR with water electrolysis would be around 550 EUR/ton CO2.
Challenges and Solutions of Hydrogen Fuel Cells in Transportation Systems: A Review and Prospects
Jun 2023
Publication
Conventional transportation systems are facing many challenges related to reducing fuel consumption noise and pollutants to satisfy rising environmental and economic criteria. These requirements have prompted many researchers and manufacturers in the transportation sector to look for cleaner more efficient and more sustainable alternatives. Powertrains based on fuel cell systems could partially or completely replace their conventional counterparts used in all modes of transport starting from small ones such as scooters to large mechanisms such as commercial airplanes. Since hydrogen fuel cells (HFCs) emit only water and heat as byproducts and have higher energy conversion efficiency in comparison with other conventional systems it has become tempting for many scholars to explore their potential for resolving the environmental and economic concerns associated with the transportation sector. This paper thoroughly reviews the principles and applications of fuel cell systems for the main transportation schemes including scooters bicycles motorcycles cars buses trains and aerial vehicles. The review showed that fuel cells would soon become the powertrain of choice for most modes of transportation. For commercial long-rage airplanes however employing fuel cells will be limited due to the replacement of the axillary power unit (APU) in the foreseeable future. Using fuel cells to propel such large airplanes would necessitate redesigning the airplane structure to accommodate the required hydrogen tanks which could take a bit more time.
Assessment of a Coupled Electricity and Hydrogen Sector in the Texas Energy System in 2050
Oct 2024
Publication
Due to its ability to reduce emissions in the hard-to-abate sectors hydrogen is expected to play a significant role in future energy systems. This study modifies a sector-coupled dynamic modeling framework for electricity and hydrogen by including policy constraints carbon prices and possible hydrogen pathways and applies it to Texas in 2050. The impact of financial policies including the US clean hydrogen production tax credit on required infrastructure and costs are explored. Due to low natural gas prices financial levers are necessary to promote low-carbon hydrogen production as the optimized solution. The Levelized Costs of Hydrogen are found to be $1.50/kg in the base case (primarily via steam methane reformation production) and lie between $2.10 - 3.10/kg when production is via renewable electrolysis. The supporting infrastructure required to supply those volumes of renewable hydrogen is immense. The hydrogen tax credit was found to be enough to drive production via electrolysis.
Modelling and Operation Strategy Approaches for On-site Hydrogen Refuelling Stations
Aug 2023
Publication
The number of Fuel Cell Electric Vehicles (FCEVs) in circulation has undergone a significant increase in recent years. This trend is foreseen to be stronger in the near future. In correlation with the FCEVs market increase the hydrogen delivery infrastructure must be developed. With this aim many countries have announced ambitious projects. For example Spain has the objective of increasing the number of Hydrogen Refuelling Stations (HRS) with public access from three units in operation currently to about 150 by 2030. HRSs are complex systems with high variability in terms of layout design size of components operational strategy hydrogen generation method or hydrogen generation location. This paper is focused on on-site HRS with electrolysis-based hydrogen production which provides interesting advantages when renewable energy is utilized compared to off-site hydrogen production despite their complexity. To optimize HRS design and operation a simulation model must be implemented. This paper describes a generic on-site HRS with electrolysis-based hydrogen production a cascaded multi-tank storage system with multiple compressors renewable energy sources and multiple types of dispensing formats. A modelling approach of the layout is presented and tested with real-based parameters of an HRS currently under development which is capable of producing 11.34 kg/h of green H2 with irradiation at 1000 W/m2. For the operation an operational strategy is proposed. The modelled system is tested through several simulations. A sensitivity analysis of the effects of hydrogen demand and day-ahead hydrogen production objective on emissions demand satisfaction and variable costs is performed. Simulation results show how the operational strategy has achieved service up to 310 FCEVs refuelling events of heavy duty and light duty FCEVs bringing the total H2 sold up to almost 7200 H2kg in one month of winter. Additionally considering variable costs of the energy from the utility grid the model shows a profit in the range of 21–50 k€ for a daily demand of 60 H2kg/day and 100 H2kg/day respectively. In terms of emissions a year simulation with 60 H2kg/day of demand shows specific emissions in the production of H2 in Spain of 6.26 kgCO2eq/H2kg which represents a greenhouse gas emission intensity of 52.26 kgCO2eq/H2MJ.
Performance Evaluation of a Fuel Cell mCHP System under Different Configurations of Hydrogen Origin and Heat Recovery
Sep 2023
Publication
Motivated by the growing importance of fuel cell systems as the basis for distributed energy generation systems this work considers a micro-combined heat and power (mCHP) generation system based on a fuel cell integrated to satisfy the (power and thermal) energy demands of a residential application. The main objective of this work is to compare the performance of several CHP configurations with a conventional alternative in terms of primary energy consumption greenhouse gas (GHG) emissions and economic viability. For that a simulation tool has been developed to easily estimate the electrical and thermal energy generated by a hydrogen fuel cell and all associated results related to the hydrogen production alternatives: excess or shortfall of electrical and thermal energy CO2 emission factor overall performance operating costs payback period etc. A feasibility study of different configuration possibilities of the micro-CHP generation system has been carried out considering different heat-to-power ratios (HPRs) in the possible demands and analyzing primary energy savings CO2 emissions savings and operating costs. An extensive parametric study has been performed to analyze the effect of the fuel cell’s electric power and number of annual operation hours as parameters. Finally a study of the influence of the configuration parameters on the final results has been carried out. Results show that in general configurations using hydrogen produced from natural gas save more primary energy than configurations with hydrogen production from electricity. Furthermore it is concluded that the best operating points are those in which the generation system and the demand have similar HPR. It has also been estimated that a reduction in renewable hydrogen price is necessary to make these systems profitable. Finally it has been determined that the most influential parameters on the results are the fuel cell electrical efficiencies hydrogen production efficiency and hydrogen cost.
Socio-technical Imaginaries of Climate-neutral Aviation
May 2024
Publication
Limiting global warming to 1.5 ◦C is crucial to prevent the worst effects of climate change. This entails also the decarbonization of the aviation sector which is considered to be a “hard-to-abate” sector and thus requires special attention regarding its sustainability transition. However transition pathways to a potentially climateneutral aviation sector are unclear with different stakeholders having diverse imaginations of the sector's future. This paper aims to analyze socio-technical imaginaries of climate-neutral aviation as different perceptions of various stakeholders on this issue have not been sufficiently explored so far. In that sense this work contributes to the current scientific debate on socio-technical imaginaries of energy transitions for the first time studying the case of the aviation sector. Drawing on six decarbonization reports composed by different interest groups (e.g. industry academia and environmental associations) three imaginaries were explored following the process of a thematic analysis: rethinking travel and behavioral change (travel innovation) radical modernization and technological progress (fleet innovation) and transition to alternative fuels and renewable energy sources (fuel innovation). The results reveal how different and partly conflicting socio-technical imaginaries are co-produced and how the emergence and enforceability of these imaginaries is influenced by the situatedness of their creators indicating that the sustainability transition of aviation also raises political issues. Essentially as socio-technical imaginaries act as a driver for change policymakers should acknowledge the existence of alternative and counter-hegemonic visions created by actors from civil society settings to take an inclusive and equitable approach to implementing pathways towards climate-neutral aviation.
Capacity Expansion Planning of Hydrogen-Enabled Industrial Energy Systems for Carbon Dioxide Peaking
Jul 2024
Publication
As the main contributor of carbon emissions the low-carbon transition of the industrial sector is important for achieving the goal of carbon dioxide peaking. Hydrogen-enabled industrial energy systems (HIESs) are a promising way to achieve the low-carbon transition of industrial energy systems since the hydrogen can be well coordinated with renewable energy sources and satisfy the high and continuous industrial energy demand. In this paper the long-term capacity expansion planning problem of the HIES is formulated from the perspective of industrial parks and the targets of carbon dioxide peaking and the gradual decommissioning of existing equipment are considered as constraints. The results show that the targets of carbon dioxide peaking before different years or with different emission reduction targets can be achieved through the developed method while the economic performance is ensured to some extent. Meanwhile the overall cost of the strategy based on purchasing emission allowance is three times more than the cost of the strategy obtained by the developed method while the emissions of the two strategies are same. In addition long-term carbon reduction policies and optimistic expectations for new energy technologies will help industrial parks build more new energy equipment for clean transformation.
Comprehensive Overview of Recent Research and Industrial Advancements in Nuclear Hydrogen Production
Jun 2024
Publication
As new sources of energy and advanced technologies are used there is a continuous evolution in energy supply demand and distribution. Advanced nuclear reactors and clean hydrogen have the opportunity to scale together and diversify the hydrogen production market away from fossil fuel-based production. Nevertheless the technical uncertainties surrounding nuclear hydrogen processes necessitate thorough research and a solid development effort. This paper aims to position pink hydrogen for nuclear hydrogen production at the forefront of sustainable energy-related solutions by offering a comprehensive review of recent advancements in nuclear hydrogen production covering both research endeavors and industrial applications. It delves into various pink hydrogen generation methodologies elucidating their respective merits and challenges. Furthermore this paper analyzes the evolving landscape of pink hydrogen in terms of its levelized cost by comparatively assessing different production pathways. By synthesizing insights from academic research and industrial practices this paper provides valuable perspectives for stakeholders involved in shaping the future of nuclear hydrogen production.
Low-carbon Economic Dispatch of Hydrogen-containing Integrated Energy System Considering Stepped Demand Response
Apr 2024
Publication
Vigorously developing an integrated energy system (IES) centered on the utilization of hydrogen energy is a crucial strategy to achieve the goal of carbon peaking and carbon neutrality. During the energy conversion process a hydrogen storage system releases a large amount of heat. By integrating a heat recovery mechanism we have developed a sophisticated hydrogen energy utilization model that accommodates multiple operational conditions and maximizes heat recovery thereby enhancing the efficiency of energy use on the supply side. To harness the potential of load-side response an integrated demand response (IDR) model accounting for price and incentives is established and a ladder-type subsidy incentive mechanism is proposed to deeply unlock load-side response capacity. Considering system economics and low carbon an IES source-load coordinated optimal scheduling model is proposed optimizing source-load coordinated operation for optimally integrated economy factoring in reward and punishment ladder-type carbon trading. Demonstrations reveal that the proposed methodology not only improves the efficiency of energy utilization but also minimizes wind energy wastage activates consumer engagement and reduces both system costs and carbon emissions thus proving the effectiveness of our optimization approach.
Pathways to the Hydrogen Economy: A Multidimensional Analysis of the Technological Innovation Systems of Germany and South Korea
Aug 2023
Publication
The global trend towards decarbonization and the demand for energy security have put hydrogen energy into the spotlight of industry politics and societies. Numerous governments worldwide are adopting policies and strategies to facilitate the transition towards hydrogen-based economies. To assess the determinants of such transition this study presents a comparative analysis of the technological innovation systems (TISs) for hydrogen technologies in Germany and South Korea both recognized as global front-runners in advancing and implementing hydrogen-based solutions. By providing a multi-dimensional assessment of pathways to the hydrogen economy our analysis introduces two novel and crucial elements to the TIS analysis: (i) We integrate the concept of ‘quality infrastructure’ given the relevance of safety and quality assurance for technology adoption and social acceptance and (ii) we emphasize the social perspective within the hydrogen TIS. To this end we conducted 24 semi-structured expert interviews applying qualitative open coding to analyze the data. Our results indicate that the hydrogen TISs in both countries have undergone significant developments across various dimensions. However several barriers still hinder the further realization of a hydrogen economy. Based on our findings we propose policy implications that can facilitate informed policy decisions for a successful hydrogen transition.
Advancements and Policy Implications of Green Hydrogen Production from Renewable Sources
Jul 2024
Publication
With the increasingly severe climate change situation and the trend of green energy transformation the development and utilization of hydrogen energy has attracted extensive attention from government industry and academia in the past few decades. Renewable energy electrolysis stands out as one of the most promising hydrogen production routes enabling the storage of intermittent renewable energy power generation and supplying green fuel to various sectors. This article reviews the evolution and development of green hydrogen policies in the United States the European Union Japan and China and then summarizes the key technological progress of renewable energy electrolysis while introducing the progress of hydrogen production from wind and photovoltaic power generation. Furthermore the environmental social and economic benefits of different hydrogen production routes are analyzed and compared. Finally it provides a prospective analysis of the potential impact of renewable energy electrolysis on the global energy landscape and outlines key areas for future research and development.
Hydrogen in the Natural Gas Network—Relevance for Existing Fire Precautions
Jun 2024
Publication
Power-to-gas technology can be used to convert excess power from renewable energies to hydrogen by means of water electrolysis. This hydrogen can serve as “chemical energy storage” and be converted back to electricity or fed into the natural gas grid. In the presented study a leak in a household pipe in a single-family house with a 13 KW heating device was experimentally investigated. An admixture of up to 40% hydrogen was set up to produce a scenario of burning leakage. Due to the outflow and mixing conditions a lifted turbulent diffusion flame was formed. This led to an additional examination point and expanded the aim and novelty of the experimental investigation. In addition to the fire safety experimental simulation of a burning leakage the resulting complex properties of the flame namely the lift-off height flame length shape and thermal radiation have also been investigated. The obtained results of this show clearly that as a consequence of the hydrogen addition the main properties of the flame such as lifting height flame temperature thermal radiation and total heat flux densities along the flame have been changed. To supplement the measurements with thermocouples imaging methods based on the Sobel gradient were used to determine the lifting height and the flame length. In order to analyze the determined values a probability density function was created.
Co-Combustion of Hydrogen with Diesel and Biodiesel (RME) in a Dual-Fuel Compression-Ignition Engine
Jun 2023
Publication
The utilization of hydrogen for reciprocating internal combustion engines remains a subject that necessitates thorough research and careful analysis. This paper presents a study on the co-combustion of hydrogen with diesel fuel and biodiesel (RME) in a compression-ignition piston engine operating at maximum load with a hydrogen content of up to 34%. The research employed engine indication and exhaust emissions measurement to assess the engine’s performance. Engine indication allowed for the determination of key combustion stages including ignition delay combustion time and the angle of 50% heat release. Furthermore important operational parameters such as indicated pressure thermal efficiency and specific energy consumption were determined. The evaluation of dual-fuel engine stability was conducted by analyzing variations in the coefficient of variation in indicated mean effective pressure. The increase in the proportion of hydrogen co-combusted with diesel fuel and biodiesel had a negligible impact on ignition delay and led to a reduction in combustion time. This effect was more pronounced when using biodiesel (RME). In terms of energy efficiency a 12% hydrogen content resulted in the highest efficiency for the dual-fuel engine. However greater efficiency gains were observed when the engine was powered by RME. It should be noted that the hydrogen-powered engine using RME exhibited slightly less stable operation as measured by the COVIMEP value. Regarding emissions hydrogen as a fuel in compression ignition engines demonstrated favorable outcomes for CO CO2 and soot emissions while NO and HC emissions increased.
Flame Visibility in Hydrogen Appliances
Sep 2023
Publication
One of the benefits of the direct use of hydrogen is its ability to be burned in a similar way to natural gas using appliances with which the community is already familiar. This is particularly true for applications where electrification is neither practicable nor desirable. One common example is domestic cooking stoves where the open flame offers numerous real and perceived benefits to the chef. Similarly many commercial and industrial appliances rely on the unique properties of combustion to achieve a desired purpose that cannot readily be replaced by an alternative to an open flame. Despite the enormous decarbonisation potential of the direct replacement of natural gas with hydrogen there are some operational constraints due to the different burning characteristics of hydrogen. One of the challenges is the low visible light emission from hydrogen flames. The change in visible radiation from the combustion of hydrogen compared with natural gas is a safety concern whereby visual observation of a flame may be difficult. This paper aims to provide clarity on the visual appearance of hydrogen flames via a series of measurements of flame visibility and emission spectra accompanied by the assessment of strategies to improve the safe use of hydrogen.
Technology Pathways, Efficiency Gains and Price Implications of Decarbonising Residential Heat in the UK
Jun 2023
Publication
The UK government’s plans to decarbonise residential heating will mean major changes to the energy system whatever the specific technology pathway chosen driving a range of impacts on users and suppliers. We use an energy system model (UK TIMES) to identify the potential energy system impacts of alternative pathways to low or zero carbon heating. We find that the speed of transitioning can affect the network investment requirements the overall energy use and emissions generated while the primary heating fuel shift will determine which sectors and networks require most investment. Crucially we identify that retail price differences between heating fuels in the UK particularly gas and electricity could erode or eliminate bill savings from switching to more efficient heating systems.
Feasibility Assessment of Alternative Clean Power Systems onboard Passenger Short-Distance Ferry
Sep 2023
Publication
In order to promote low-carbon fuels such as hydrogen to decarbonize the maritime sector it is crucial to promote clean fuels and zero-emission propulsion systems in demonstrative projects and to showcase innovative technologies such as fuel cells in vessels operating in local public transport that could increase general audience acceptability thanks to their showcase potential. In this study a short sea journey ferry used in the port of Genova as a public transport vehicle is analyzed to evaluate a ”zero emission propulsion” retrofitting process. In the paper different types of solutions (batteries proton exchange membrane fuel cell (PEMFC) solid oxide fuel cell (SOFC)) and fuels (hydrogen ammonia natural gas and methanol) are investigated to identify the most feasible technology to be implemented onboard according to different aspects: ferry daily journey and scheduling available volumes and spaces propulsion power needs energy storage/fuel tank capacity needed economics etc. The paper presents a multi-aspect analysis that resulted in the identification of the hydrogen-powered PEMFC as the best clean power system to guarantee for this specific case study a suitable retrofitting of the vessel that could guarantee a zero-emission journey
Feasibility of Green Hydrogen-Based Synthetic Fuel as a Carbon Utilization Option: An Economic Analysis
Sep 2023
Publication
Singapore has committed to achieving net zero emissions by 2050 which requires the pursuit of multiple decarbonization pathways. CO2 utilization methods such as fuel production may provide a fast interim solution for carbon abatement. This paper evaluates the feasibility of green hydrogen-based synthetic fuel (synfuel) production as a method for utilizing captured CO2. We consider several scenarios: a baseline scenario with no changes local production of synfuel with hydrogen imports and overseas production of synfuel with CO2 exports. This paper aims to determine a CO2 price for synfuel production evaluate the economic viability of local versus overseas production and investigate the effect of different cost parameters on economic viability. Using the current literature we estimate the associated production and transport costs under each scenario. We introduce a CO2 utilization price (CUP) that estimates the price of utilizing captured CO2 to produce synfuel and an adjusted CO2 utilization price (CCUP) that takes into account the avoided emissions from crude oil-based fuel production. We find that overseas production is more economically viable compared to local production with the best case CCUP bounds giving a range of 142–148 $/tCO2 in 2050 if CO2 transport and fuel shipping costs are low. This is primarily due to the high cost of hydrogen feedstock especially the transport cost which can offset the combined costs of CO2 transport and fuel shipping. In general we find that any increase in the hydrogen feedstock cost can significantly affect the CCUP for local production. Sensitivity analysis reveals that hydrogen transport cost has a significant impact on the viability of local production and if this cost is reduced significantly local production can be cheaper than overseas production. The same is true if the economies of scale for local production is significantly better than overseas production. A significantly lower carbon capture cost can also the reduce the CCUP significantly.
Designing a Future-proof Gas and Hydrogen Infrastructure for Europe - A Modelling-based Approach
Jun 2023
Publication
Hydrogen has been at the centre of attention since the EU kicked-off its decarbonization agenda at full speed. Many consider it a silver bullet for the deep decarbonization of technically challenging sectors and industries but it is also an attractive option for the gas industry to retain and future-proof its well-developed infrastructure networks. The modelling methodology presented in this report systematically tests the feasibility and cost of different pipeline transportation methods – blending repurposing and dedicated hydrogen pipelines - under different decarbonization pathways and concludes that blending is not a viable solution and pipeline repurposing can lead to excessive investment outlays in the range of EUR 19–25 bn over the modelled period (2020–2050) for the EU-27.
Lifetime Greenhouse Gas Emissions from Offshore Hydrogen Production
Aug 2023
Publication
With a limited global carbon budget it is imperative that decarbonisation decisions are based on accurate holistic accounts of all greenhouse gas (GHG) emissions produced to assess their validity. Here the upstream GHG emissions of potential UK offshore Green and Blue hydrogen production are compared to GHG emissions from hydrogen produced through electrolysis using UK national grid electricity and the ‘business-as-usual’ case of continuing to combust methane. Based on an operational life of 25 years and producing 0.5MtH2 per year for each hydrogen process the results show that Blue hydrogen will emit between 200-262MtCO2e of GHG emissions depending on the carbon capture rates achieved (39%–90%) Green hydrogen produced via electrolysis using 100% renewable electricity from offshore wind will emit 20MtCO2e and hydrogen produced via electrolysis powered by the National Grid will emit between 103-168MtCO2e depending of the success of its NetZero strategy. The ‘business-as-usual’ case of continuing to combust methane releases 250MtCO2e over the same lifetime. This study finds that Blue hydrogen at scale is not compatible with the Paris Agreement reduces energy security and will require a substantial GHG emissions investment which excludes it from being a ‘low carbon technology’ and should not be considered for any decarbonisation strategies going forward.
CFD Modelling of Large Scale Liquid Hydrogen Experiments Indoors and Outdoors
Sep 2023
Publication
The use of liquid hydrogen in maritime applications is expected to grow in the coming years in order to meet the decarbonisation goals that EU countries and countries worldwide have set for 2050. In this context The Norwegian Public Roads Administration commissioned large-scale LH2 dispersion and explosion experiments both indoors and outdoors which were conducted by DNG GL in 2019 to better understand safety aspects of LH2 in the maritime sector. In this work the DNV unignited outdoor and indoor tests have been simulated and compared with the experiments with the aim to validate the ADREA-HF Computational Fluid Dynamics (CFD) code in maritime applications. Three tests two outdoors and one indoors were chosen for the validation. The outdoor tests (test 5 and 6) involved liquid hydrogen release vertically downwards and horizontal to simulate an accidental leakage during bunkering. The indoor test (test 9) involved liquid hydrogen release inside a closed room to simulate an accident inside a tank connection space (TCS) connected to a ventilation mast.
Blue Hydrogen and Industrial Base Products: The Future of Fossil Fuel Exporters in a Net-zero World
May 2022
Publication
Is there a place for today’s fossil fuel exporters in a low-carbon future? This study explores trade channels between energy exporters and importers using a novel electricity-hydrogen-steel energy systems model calibrated to Norway a major natural gas producer and Germany a major energy consumer. Under tight emission constraints Norway can supply Germany with electricity (blue) hydrogen or natural gas with re-import of captured CO2. Alternatively it can use hydrogen to produce steel through direct reduction and supply it to the world market an export route not available to other energy carriers due to high transport costs. Although results show that natural gas imports with CO2 capture in Germany is the least-cost solution avoiding local CO2 handling via imports of blue hydrogen (direct or embodied in steel) involves only moderately higher costs. A robust hydrogen demand would allow Norway to profitably export all its natural gas production as blue hydrogen. However diversification into local steel production as one example of easy-to-export industrial base products offers an effective hedge against the possibility of lower European blue hydrogen demand. Looking beyond Europe the findings of this study are also relevant for the world’s largest energy exporters (e.g. OPEC+) and importers (e.g. developing Asia). Thus it is recommended that large hydrocarbon exporters consider a strategic energy export transition to a diversified mix of blue hydrogen and climate-neutral industrial base products.
Risk Management in a Containerized Metal Hydride Storage System
Sep 2023
Publication
HyCARE project supported by the Clean Hydrogen Partnership of the European Union deals with a prototype of hydrogen storage tank using a solid-state hydrogen carrier. Up to 40 kilograms of hydrogen are stored in twelve tanks at less than 50 barg and less than 100 °C. The innovative design is based on a standard twenty-foot container including twelve TiFe-based metal hydride (MH) hydrogen storage tanks coupled with a thermal energy storage in phase change materials (PCM). This article aims at showing the main risks related to hydrogen storage in a MH system and the safety barriers considered based on HyCARE’s specific risk analysis.<br/>Regarding the TiFe MH material used to store hydrogen experimental tests showed that the exposure of the MH to air or water did not cause spontaneous ignition. Furthermore an explosion within the solid MH cannot propagate due to internal pore size. Additionally in case of leakage the speed of hydrogen desorption from the MH is self-limited which is an important safety characteristic since it reduces the potential consequences from the hydrogen release scenario.<br/>Regarding the integrated system the critical scenarios identified during the risk analysis were: explosion due to release of hydrogen inside or outside the container internal explosion inside MH tanks due to accidental mix of hydrogen and air and asphyxiation due to inert gas accumulation in the container. This identification phase of the risk analysis allowed to pinpoint the most relevant safety barriers already in place and recommend additional ones if needed to further reduce the risk that were later implemented.<br/>The main safety barriers identified were: material and component selection (including the MH selected) safety interlocks safety valves ventilation gas detection and safety distances.<br/>The risk management process based on risk identification and assessment contributed to coherently integrate inherently safe design features and safety barriers.
The Role of Hydrogen and Batteries in Delivering Net Zero in the UK by 2050
Apr 2023
Publication
This report presents an analysis of how hydrogen and battery technologies are likely to be utilised in different sectors within the UK including transportation manufacturing the built environment and power. In particular the report compares the use of hydrogen and battery technology across these sectors. In addition it evaluates where these technologies will be in competition where one technology will dominate and where a combination of the two may be used. This sector analysis draws on DNV’s knowledge and experience within both the battery and hydrogen industries along with a review of studies available in the public domain. The analysis has been incorporated into DNV’s Energy Transition Outlook model an integrated system-dynamics simulation model covering the energy system which provides an independent view of the energy outlook from now until 2050. The modelling which includes data on costs demand supply policy population and economic indicators enables the non-linear interdependencies between different parameters to be considered so that decisions made in one sector influence the decision made in another.
Explosion Mitigation Techniques in Tunnels and their Applicability to Scenarios of Hydrogen Tank Rupture in a Fire
Sep 2023
Publication
This paper presents a comprehensive review of existing explosion mitigation techniques for tunnels and evaluates their applicability in scenarios of hydrogen tank rupture in a fire. The study provides an overview of the current state of the art in tunnel explosion mitigation and discusses the challenges associated with hydrogen explosions in the context of fire incidents. The review shows that there are several approaches available to decrease the effects of explosions including wrapping the tunnel with a flexible and compressible barrier and introducing energy-absorbing flexible honeycomb elements. However these methods are limited to the mitigation of the action and do not consider either the mitigation of the structural response or the effects on the occupants. The study highlights how the structural response is affected by the duration of the action and the natural period of the structural elements and how an accurate design of the element stiffness can be used in order to mitigate the structural vulnerability to the explosion. The review also presents various passive and active mitigation techniques aimed at mitigating the explosion effects on the occupants. Such techniques include tunnel branching ventilation openings evacuation lanes right-angled bends drop-down perforated plates or high-performance fibre-reinforced cementitious composite (HPFRCC) panels for blast shielding. While some of these techniques can be introduced during the tunnel's construction phase others require changes to the already working tunnels. To simulate the effect of blast wave propagation and evaluate the effectiveness of these mitigation techniques a CFD-FEM study is proposed for future analysis. The study also highlights the importance of considering these mitigation techniques to ensure the safety of the public and first responders. Finally the study identifies the need for more research to understand blast wave mitigation by existing structural elements in the application for potential accidents associated with hydrogen tank rupture in a tunnel.
Techno-economic Modelling of Zero-emission Marine Transport with Hydrogen Fuel and Superconducting Propulsion System: Case Study of a Passenger Ferry
Mar 2023
Publication
This paper proposes a techno-economic model for a high-speed hydrogen ferry. The model can describe the system properties i.e. energy demand weight and daily operating expenses of the ferry. A novel aspect is the consideration of superconductivity as a measure for cost saving in the setting where liquid hydrogen (LH2) can be both coolant and fuel. We survey different scenarios for a high-speed ferry that could carry 300 passengers. The results show that despite higher energy demand compressed hydrogen gas is more economical compared with LH2 for now; however constructing large-scale hydrogen liquefaction plants make it competitive in the future. Moreover compressed hydrogen gas is restricted to a shorter distance while LH2 makes longer distances possible and whenever LH2 is accessible using a superconducting propulsion system has a beneficial impact on both energy and cost savings. These effects strengthen if the operational time or the weight of the ferry increases.
Technology Roadmap for Hydrogen-fuelled Transportation in the UK
Apr 2023
Publication
Transportation is the sector responsible for the largest greenhouse gas emission in the UK. To mitigate its impact on the environment and move towards net-zero emissions by 2050 hydrogen-fuelled transportation has been explored through research and development as well as trials. This article presents an overview of relevant technologies and issues that challenge the supply use and marketability of hydrogen for transportation application in the UK covering on-road aviation maritime and rail transportation modes. The current development statutes of the different transportation modes were reviewed and compared highlighting similarities and differences in fuel cells internal combustion engines storage technologies supply chains and refuelling characteristics. In addition common and specific future research needs in the short to long term for the different transportation modes were suggested. The findings showed the potential of using hydrogen in all transportation modes although each sector faces different challenges and requires future improvements in performance and cost development of innovative designs refuelling stations standards and codes regulations and policies to support the advancement of the use of hydrogen.
Critical Mineral Demands May Limit Scaling of Green Hydrogen Production
Jan 2024
Publication
Hydrogen (H2) is widely viewed as critical to the decarbonization of industry and transportation. Water electrolysis powered by renewable electricity commonly referred to as green H2 can be used to generate H2 with low carbon dioxide emissions. Herein we analyze the critical mineral and energy demands associated with green H2 production under three different hypothetical future demand scenarios ranging from 100–1000 Mtpa H2. For each scenario we calculate the critical mineral demands required to build water electrolyzers (i.e. electrodes and electrolyte) and to build dedicated or additional renewable electricity sources (i.e. wind and solar) to power the electrolyzers. Our analysis shows that scaling electrolyzer and renewable energy technologies that use platinum group metals and rare earth elements will likely face supply constraints. Specifically larger quantities of lanthanum yttrium or iridium will be needed to increase electrolyzer capacity and even more neodymium silicon zinc molybdenum aluminum and copper will be needed to build dedicated renewable electricity sources. We find that scaling green H2 production to meet projected netzero targets will require ~24000 TWh of dedicated renewable energy generation which is roughly the total amount of solar and wind projected to be on the grid in 2050 according to some energy transition models. In summary critical mineral constraints may hinder the scaling of green H2 to meet global net-zero emissions targets motivating the need for the research and development of alternative lowemission methods of generating H2
No more items...