Publications
Sustainability Assessment of Fuel Cell Buses in Public Transport
May 2018
Publication
Hydrogen fuel cell (H2FC) buses operating in every day public transport services around Europe are assessed for their sustainability against environmental economic and social criteria. As part of this assessment the buses are evaluated against diesel buses both in terms of sustainability and in terms of meeting real world requirements with respect to operational performance. The study concludes that H2FC buses meet operability and performance criteria and are sustainable environmentally when ‘green’ hydrogen is used. The economic sustainability of the buses in terms of affordability achieves parity with their fossil fuel equivalent by 2030 when the indirect costs to human health and climate change are included. Societal acceptance by those who worked with and used the buses supports the positive findings of earlier studies although satisfactory operability and performance are shown to be essential to positive attitudes. Influential policy makers expressed positive sentiments only if ‘green’ hydrogen is used and the affordability issues can be addressed. No “show-stopper” is identified that would prevent future generations from using H2FC buses in public transport on a broad scale due to damage to the environment or to other factors that impinge on quality of life.
Green Hydrogen: A New Flexibility Source for Security Constrained Scheduling of Power Systems with Renewable Energies
Apr 2021
Publication
Green hydrogen i.e. the hydrogen generated from renewable energy sources (RES) will significantly contribute to a successful energy transition. Besides to facilitate the integration and storage of RES this promising energy carrier is well capable to efficiently link various energy sectors. By introduction of green hydrogen as a new flexibility source to power systems it is necessary to investigate its possible impacts on the generation scheduling and power system security. In this paper a security-constrained multi-period optimal power flow (SC-MPOPF) model is developed aiming to determine the optimal hourly dispatch of generators as well as power to hydrogen (P2H) units in the presence of large-scale renewable energy sources (RES). The proposed model characterizes the P2H demand flexibility in the proposed SC-MPOPF model taking into account the electrolyzer behavior reactive power support of P2H demands and hydrogen storage capability. The developed SC-MPOPF model is applied to IEEE 39-bus system and the obtained numerical results demonstrate the role of P2H flexibility on cost as well as RES's power curtailment reduction.
Why Can’t We Just Burn Hydrogen? Challenges When Changing Fuels in an Existing Infrastructure
Feb 2021
Publication
The current global consumption of natural gas as a fuel is roughly 4 trillion cubic meters per year. In terms of energy the demand for natural gas exceeds the global demand for fossil fuels for transportation. Despite this observation the challenges to natural gas end use that arise when changing the composition of the fuel are largely absent from public policy and research agendas whereas for transportation fuels the issues are more appreciated. Natural gas is delivered via complex networks of interconnected pipelines to end users for direct and indirect heating in household and industrial sectors and for power generation. This interconnectedness is a crucial aspect of the challenge for introducing new fuels.<br/>In this paper we discuss the issues that arise from changing fuel properties for an existing population of end-use equipment. To illustrate the issues we will consider the changes in (combustion) performance of domestic combustion equipment and gas engines for power generation in response to substituting natural gas by hydrogen or hydrogen/natural gas blends. During the discussion we shall also indicate methods for characterizing the properties of the fuel and identify the combustion challenges that must be addressed for a successful transition from the current fuel mix to whatever the future mix may be.
Evaluation Techniques of Hydrogen Permeation in Sealing Rubber Materials
Dec 2020
Publication
Three techniques for determining the hydrogen permeation properties of rubber samples were developed based on the volumetric and gravimetric measurements of released H2 gas after sample decompression. These methods include gas chromatography (GC) by thermal desorption analysis (TDA) volumetric collection (VC) measurement of hydrogen by graduated cylinder and gravimetric (GM) measurement by electronic balance. By measuring the released hydrogen against elapsed time after the decompression of pressure the charging amount (C0) and diffusivity (D) were obtained with the developed diffusion analysis program. From these values the solubility (S) and permeability (P) of polymers were evaluated through the relations of Henry's law and P=SD respectively. The developed techniques were applied to three kinds of spherically shaped sealing rubber materials. D S and P were analyzed as a function of pressure. The transport behaviors obtained in the three methods are discussed and compared with the characteristics of each measuring technique. The correlations between transport parameters and carbon black filler or density are discussed.
Exergy and Exergoeconomic Analysis of Hydrogen and Power Cogeneration Using an HTR Plant
Mar 2021
Publication
This paper proposes using sodium-cooled fast reactor technologies for use in hydrogen vapor methane (SMR) modification. Using three independent energy rings in the Russian BN-600 fast reactor steam is generated in one of the steam-generating cycles with a pressure of 13.1 MPa and a temperature of 505 °C. The reactor's second energy cycles can increase the gas-steam mixture's temperature to the required amount for efficient correction. The 620 ton/hr 540 °C steam generated in this cycle is sufficient to supply a high-temperature synthesis current source (700 °C) which raises the steam-gas mixture's temperature in the reactor. The proposed technology provides a high rate of hydrogen production (approximately 144.5 ton/hr of standard H2) also up to 25% of the original natural gas in line with existing SMR technology for preparing and heating steam and gas mixtures will be saved. Also exergy analysis results show that the plant's efficiency reaches 78.5% using HTR heat for combined hydrogen and power generation.
Recent Progress on the Key Materials and Components for Proton Exchange Membrane Fuel Cells in Vehicle Applications
Jul 2016
Publication
Fuel cells are the most clean and efficient power source for vehicles. In particular proton exchange membrane fuel cells (PEMFCs) are the most promising candidate for automobile applications due to their rapid start-up and low-temperature operation. Through extensive global research efforts in the latest decade the performance of PEMFCs including energy efficiency volumetric and mass power density and low temperature startup ability have achieved significant breakthroughs. In 2014 fuel cell powered vehicles were introduced into the market by several prominent vehicle companies. However the low durability and high cost of PEMFC systems are still the main obstacles for large-scale industrialization of this technology. The key materials and components used in PEMFCs greatly affect their durability and cost. In this review the technical progress of key materials and components for PEMFCs has been summarized and critically discussed including topics such as the membrane catalyst layer gas diffusion layer and bipolar plate. The development of high-durability processing technologies is also introduced. Finally this review is concluded with personal perspectives on the future research directions of this area.
Insights into the Principles, Design Methodology and Applications of Electrocatalysts Towards Hydrogen Evolution Reaction
Apr 2021
Publication
The electrolysis of water for sustainable hydrogen producing is a crucial segment of various emerging clean-energy technologies. However pursuing an efficient and cheap alternative catalyst to substitute state-of-the-art platinum-group electrocatalysts remains a prerequisite for the commercialization of this technology. Typically precious-metal-free catalysts have always much lower activities towards hydrogen production than that of Pt-group catalysts. To explore high-performance catalysts maximally exposed active sites rapid charge transfer ability and desirable electronic configuration are essentially demanded. Herein the fundamentals of hydrogen evolution reaction will be briefly described and the main focus will be on the interfacial engineering strategies by means of constructing defect structure creating heterojunction phase engineering lattice strain control designing hierarchical architecture and doping heteroatoms to effectively proliferate the catalytic active sites facilitate the electron diffusion and regulate the electronic configuration of numerous transition metals and their nitrides carbides sulfides phosphides as well as oxides achieving a benchmark performance of platinum-free electrocatalysts for the hydrogen evolution reaction. This review unambiguously offers proof that the conventional cheap and earth-abundant transition metal-based substances can be translated into an active water splitting catalyst by the rational and controllable interfacial designing.
Techno-economic Modelling of Water Electrolysers in the Range of Several MW to Provide Grid Services While Generating Hydrogen for Different Applications: A Case Study in Spain Applied to Mobility with FCEVs
Jun 2019
Publication
The use of hydrogen as energy carrier is a promising option to decarbonize both energy and transport sectors. This paper presents an advanced techno-economic model for calculation of optimal dispatch of large-scale multi MW electrolysis plants in order to obtain a more accurate evaluation of the feasibility of business cases related to the supply of this fuel for different end uses combined with grid services' provision. The model is applied to the Spanish case using different scenarios to determine the minimum demand required from the FCEV market so that electrolysis facilities featuring several MW result in profitable business cases. The results show that grid services contribute to the profitability of hydrogen production for mobility given a minimum but considerable demand from FCEV fleets.
Potential of New Business Models for Grid Integrated Water Electrolysis
Feb 2018
Publication
Grid integrated water electrolysers have the potential of coupling electric power systems subjected to high shares of renewable energy sources with sectors of hydrogen demand thus contributing to European decarbonization goals in future. We therefore investigate the business potential of future electrolyser applications in cross-commodity arbitrage trading by applying a complex power market simulation method for future scenarios and different European countries. Based on this we evaluate the potential of additional provision of grid services towards grid operators in order to increase the electrolyser utilization ratio. For this we use a method that identifies measures of transmission grid operators in order to ensure secure grid operation. In this context uncertain hydrogen prices and different sectors of hydrogen demand are addressed through sensitivities of different hydrogen sales prices. The analysis shows a high dependency of business model efficiency on the hydrogen price. While cross-commodity arbitrage trading can achieve profitability for the transportation sector applications for the industry sector and natural gas system are less efficient. The results however indicate that for these less efficient applications grid service provision can be an option of increasing the electrolyser utilization ratio thus increasing its profitability.
Techno-economic Assessment of Electrolytic Hydrogen in China Considering Wind-solar-load Characteristic
Jan 2023
Publication
Hydrogen production by electrolysis is considered an essential means of consuming renewable energy in the future. However the current assessment of the potential of renewable energy electrolysis for hydrogen production is relatively simple and the perspective is not comprehensive. Here we established a Combined Wind and Solar Electrolytic Hydrogen system considering the influence of regional wind-solar-load characteristics and transmission costs to evaluate the hydrogen production potential of 31 provincial-level regions in China in 2050. The results show that in 2050 the levelized cost of hydrogen (LCOH) in China’s provincial regions will still be higher than 10 ¥/kg which is not cost-competitive compared to the current hydrogen production from fossil fuels. It is more cost-effective to deploy wind turbines than photovoltaic in areas with similar wind and solar resources or rich in wind resources. Wind-solar differences impact LCOH equipment capacity configuration and transmission cost composition while load fluctuation significantly impacts LCOH and electricity storage configuration. In addition the sensitivity analysis of 11 technical and economic parameters showed differences in the response performance of LCOH changes to different parameters and the electrolyzer conversion efficiency had the most severe impact. The analysis of subsidy policy shows that for most regions (except Chongqing and Xizang) subsidizing the unit investment cost of wind turbines can minimize LCOH. Nevertheless from the perspective of comprehensive subsidy effect subsidy cost and hydrogen energy development it is more cost-effective to take subsidies for electrolysis equipment with the popularization of hydrogen
Establishing the State of the Art for the Definition of Safety Distances for Hydrogen Refuelling Stations
Sep 2021
Publication
Hydrogen is widely considered a clean source of energy from the viewpoint of reduction in carbon dioxide emissions as a countermeasure against global warming and air pollution. Various efforts have been made to develop hydrogen as a viable energy carrier including the implementation of fuel cell vehicles (FCVs) and hydrogen refuelling stations (HRSs). A good network of hydrogen refuelling stations is essential for operating FCVs and several hydrogen refuelling stations have been constructed and are in operation worldwide [1]. However despite the potential benefits of hydrogen its flammability creates significant safety concerns. Furthermore even though the energy density of hydrogen is lower than that of gasoline and there is no carbon present which means the amount of radiant heat flux released during combustion is relatively small hydrogen must be handled at high pressure in order to make the cruising range of a fuel cell vehicle (FCV) equal to that of gasoline-powered vehicles. Therefore it is essential to properly evaluate these safety concerns and take reasonable and effective countermeasures. Approximately 50 accidents and incidents involving HRSs have been reported globally [2]. Sakamoto et al. [2] analysed accidents and incidents at HRSs in Japan and the USA to identify the safety issues. Most types of accidents and incidents are small leakages of hydrogen but some have led to serious consequences such as fire and explosion. Recently there was a serious incident in Norway at Kjørbo where a strong explosion was observed [3] – indeed this was within a short time of two other serious incidents in the USA and South Korea showing that the frequency of such incidents may be higher as deployments increase. Use of hydrogen forklifts (and the associated refuelling infrastructure) is another challenge to consider. Hydrogen refuelling stations are often installed in urban areas facing roads and are readily accessible to everyone. Therefore a key measure to approve the hydrogen refuelling stations is safety distances between the hydrogen infrastructure and the surrounding structures such as office buildings or residential dwellings. Whilst a lot of work has been carried out on safety distances (see e.g. [4-6) the accident scenario assumptions and safety distances varied widely in those studies. As a result no consensus has yet emerged on the safety distances to be used and efforts are still needed to bridge the gap between international standards and local regulations (see e.g. [7-8]). The paper analyses this issue and provides guidance on the way forward.
Experimental Investigation on the Burning Behavior of Homogenous H2-CO-Air Mixtures in an Obstructed Semi-confined Channel
Sep 2021
Publication
In the current work the combustion behavior of hydrogen-carbon monoxide-air mixtures in semiconfined geometries is investigated in a large horizontal channel facility (dimensions 9 m x 3 m x 0.6 m (L x W x H)) as a part of a joint German nuclear safety project. In the channel with evenly distributed obstacles (blockage ratio 50%) and an open to air ground face homogeneous H2-CO-air mixtures are ignited at one end. The combustion behavior of the mixture is analyzed using the signals of pressure sensors modified thermocouples and ionization probes for flame front detection that are distributed along the channel ceiling. In the experiments various fuel concentrations (cH2 + cCO = 14 to 22 Vol%) with different H2:CO ratios (75:25 50:50 and 25:75) are used and the transition regions for a significant flame acceleration to sonic speed (FA) as well as to a detonation (DDT) are investigated. The conditions for the onset of these transitions are compared with earlier experiments performed in the same facility with H2-air mixtures. The results of this work will help to allow a more realistic estimation of the pressure loads generated by the combustion of H2-CO-air mixtures in obstructed semi-confined geometries.
Delivering Clean Growth: CCUS Cost Challenge Taskforce Report
Jul 2018
Publication
An independent report by the CCUS Cost Challenge Taskforce setting out the industry’s view on how best to progress carbon capture usage and storage (CCUS) in the UK in order to enable the UK to have the option of deploying CCUS at scale during the 2030s subject to costs coming down sufficiently.
Uncomfortable Home Truths - Why Britain Urgently Needs a Low Carbon Heat Strategy Future Gas Series Part 3
Nov 2019
Publication
UK homes are primarily heated by fossil fuels and contribute 13% of UK’s carbon footprint (equivalent to all the UK’s 38.4m cars). The report says this is incompatible with UK climate legislation targeting net-zero economy by 2050. New polling finds that consumers are open to cleaner greener ways to heat their homes into the future but that they are “still in the dark about smarter greener heating solutions and lack access to independent advice to help them make better decisions for their homes pockets and the planet”.<br/><br/>The report – Uncomfortable Home Truths: why Britain urgently needs a low carbon heat strategy – says a bold new national roadmap is needed by 2020 which puts consumers and households at the heart of a revolution in green heat innovation. It recommends the creation of an Olympic-style delivery body to catalyse and coordinate regional innovation and local leadership tailored to different parts of the UK and the nation’s diverse housing stock.<br/><br/>This report is the third in the Future Gas Series which has explored the opportunities and challenges associated with using low carbon gas in the energy system and is backed by cross-party parliamentary co-Chairs
Thermal Management System Architecture for Hydrogen-Powered Propulsion Technologies: Practices, Thematic Clusters, System Architectures, Future Challenges, and Opportunities
Jan 2022
Publication
The thermal management system architectures proposed for hydrogen-powered propulsion technologies are critically reviewed and assessed. The objectives of this paper are to determine the system-level shortcomings and to recognise the remaining challenges and research questions that need to be sorted out in order to enable this disruptive technology to be utilised by propulsion system manufacturers. Initially a scientometrics based co-word analysis is conducted to identify the milestones for the literature review as well as to illustrate the connections between relevant ideas by considering the patterns of co-occurrence of words. Then a historical review of the proposed embodiments and concepts dating back to 1995 is followed. Next feasible thermal management system architectures are classified into three distinct classes and its components are discussed. These architectures are further extended and adapted for the application of hydrogen-powered fuel cells in aviation. This climaxes with the assessment of the available evidence to verify the reasons why no hydrogen-powered propulsion thermal management system architecture has yet been approved for commercial production. Finally the remaining research challenges are identified through a systematic examination of the critical areas in thermal management systems for application to hydrogen-powered air vehicles’ engine cooling. The proposed solutions are discussed from weight cost complexity and impact points of view by a system-level assessment of the critical areas in the field.
Facile Synthesis of Palladium Phosphide Electrocatalysts and their Activity for the Hydrogen Oxidation, Hydrogen Evolutions, Oxygen Reduction and Formic Acid Oxidation Reactions
Nov 2015
Publication
We demonstrate a new approach for producing highly dispersed supported metal phosphide powders with small particle size improved stability and increased electrocatalytic activity towards some useful reactions. The approach involves a one-step conversion of metal supported on high surface area carbon to the metal phosphide utilising a very simple and scalable synthetic process. We use this approach to produce PdP2 and Pd5P2 particles dispersed on carbon with a particle size of 4.5–5.5 nm by converting a commercially available Pd/C powder. The metal phosphide catalysts were tested for the oxygen reduction hydrogen oxidation and evolution and formic acid oxidation reactions. Compared to the unconverted Pd/C material we find that alloying the P at different levels shifts oxide formation on the Pd to higher potentials leading to greater stability during cycling studies (20% more ECSA retained 5k cycles) and in thermal treatment under air. Hydrogen absorption within the PdP2 and Pd5P2 particles is enhanced. The phosphides compare favourably to the most active catalysts reported to date for formic acid oxidation especially PdP2 and there is a significant decrease in poisoning of the surface compared to Pd alone. The mechanistic changes in the reactions studied are rationalised in terms of increased water activation on the surface phosphorus atoms of the catalyst. One of the catalysts PdP2/C is tested in a fuel cell as anode and cathode catalyst and shows good performance.
Hazards Assessment and Technical Actions Due to the Production of Pressured Hydrogen within a Pilot Photovoltaic-electrolyser-fuel Cell Power System for Agricultural Equipment
Jun 2016
Publication
A pilot power system formed by photovoltaic panels alkaline electrolyser and fuel cell stacks was designed and set up to supply the heating system of an experimental greenhouse. The aim of this paper is to analyse the main safety aspects of this power system connected to the management of the pressured hydrogen such as the explosion limits of the mixture hydrogen-oxygen the extension of the danger zone the protection pressure vessels and the system to make unreactive the plant. The electrolyser unit is the core of this plant and from the safety point of view has been equipped with devices able to highlight the mal-functions before they cause damages. Alarm situations are highlighted and the production process is cut off in safe conditions in the event that the operational parameters have an abnormal deviation from the design values. Also the entire power system has been designed so that any failure to its components does not compromise the workers’ safety even if the risk analysis is in progress because technical operation are being carried out for enhancing the plant functionality making it more suitable to the designed task of supplying electrically the green-house heating system during cold periods. Some experimental data pertinent to the solar radiation and the corresponding hydrogen pro-duction rate are also reported. At present it does not exist a well-established safety reference protocol to design the reliability of these types of power plants and then the assumed safety measures even if related to the achieved pilot installation can represent an original base of reference to set up guidelines for designing the safety of power plants in the future available for agricultural purposes.
Analysing Long-term Opportunities for Offshore Energy System Integration in the Danish North Sea
Aug 2021
Publication
This study analyzes future synergies between the Oil and Gas (O&G) and renewables sectors in a Danish context and explores how exploiting these synergies could lead to economic and environmental benefits. We review and highlight relevant technologies and related projects and synthesize the state of the art in offshore energy system integration. All of these preliminary results serve as input data for a holistic energy system analysis in the Balmorel modeling framework. With a timeframe out to 2050 and model scope including all North Sea neighbouring countries this analysis explores a total of nine future scenarios for the North Sea energy system. The main results include an immediate electrification of all operational Danish platforms by linking them to the shore and/or a planned Danish energy island. These measures result in cost and CO2 emissions savings compared to a BAU scenario of 72% and 85% respectively. When these platforms cease production this is followed by the repurposing of the platforms into hydrogen generators with up to 3.6 GW of electrolysers and the development of up to 5.8 GW of floating wind. The generated hydrogen is assumed to power the future transport sector and is delivered to shore in existing and/or new purpose-built pipelines. The contribution of the O&G sector to this hydrogen production amounts to around 19 TWh which represents about 2% of total European hydrogen demand for transport in 2050. The levelized costs (LCOE) of producing this hydrogen in 2050 are around 4 €2020/kg H2 which is around twice those expected in similar studies. But this does not account for energy policies that may incentivize green hydrogen production in the future which would serve to reduce this LCOE to a level that is more competitive with other sources.
Hydrogen Station Location Planning via Geodesign in Connecticut: Comparing Optimization Models and Structured Stakeholder Collaboration
Nov 2021
Publication
Geodesign is a participatory planning approach in which stakeholders use geographic information systems to develop and vet alternative design scenarios in a collaborative and iterative process. This study is based on a 2019 geodesign workshop in which 17 participants from industry government university and non-profit sectors worked together to design an initial network of hydrogen refueling stations in the Hartford Connecticut metropolitan area. The workshop involved identifying relevant location factors rapid prototyping of station network designs and developing consensus on a final design. The geodesign platform which was designed specifically for facility location problems enables breakout groups to add or delete stations with a simple point-and-click operation view and overlay different map layers compute performance metrics and compare their designs to those of other groups. By using these sources of information and their own expert local knowledge participants recommended six locations for hydrogen refueling stations over two distinct phases of station installation. We quantitatively and qualitatively compared workshop recommendations to solutions of three optimal station location models that have been used to recommend station locations which minimize travel times from stations to population and traffic or maximize trips that can be refueled on origin–destination routes. In a post-workshop survey participants rated the workshop highly for facilitating mutual understanding and information sharing among stakeholders. To our knowledge this workshop represents the first application of geodesign for hydrogen refueling station infrastructure planning.
Use of Hydrogen as Fuel: A Trend of the 21st Century
Jan 2022
Publication
The unbridled use of fossil fuels is a serious problem that has become increasingly evident over the years. As such fuels contribute considerably to environmental pollution there is a need to find new sustainable sources of energy with low emissions of greenhouse gases. Climate change poses a substantial challenge for the scientific community. Thus the use of renewable energy through technologies that offer maximum efficiency with minimal pollution and carbon emissions has become a major goal. Technology related to the use of hydrogen as a fuel is one of the most promising solutions for future systems of clean energy. The aim of the present review was to provide an overview of elements related to the potential use of hydrogen as an alternative energy source considering its specific chemical and physical characteristics as well as prospects for an increase in the participation of hydrogen fuel in the world energy matrix.
No more items...