Applications & Pathways
Green Hydrogen: A Guide to Policy Making
Nov 2020
Publication
Hydrogen produced with renewable energy sources – or “green” hydrogen – has emerged as a key element to achieve net-zero emissions from heavy industry and transport. Along with net-zero commitments by growing numbers of governments green hydrogen has started gaining momentum based on low-cost renewable electricity ongoing technological improvements and the benefits of greater power-system flexibility.
Hydrogen-based fuels previously attracted interest mainly as an alternative to shore up oil supply. However green hydrogen as opposed to the “grey” (fossil-based) or “blue” (hybrid) varieties also help to boost renewables in the energy mix and decarbonise energy-intensive industries.
This report from the International Renewable Energy Agency (IRENA) outlines the main barriers that inhibiting green hydrogen uptake and the policies needed to address these. It also offers insights on how to kickstart the green hydrogen sector as a key enabler of the energy transition at the national or regional level.
Key pillars of green hydrogen policy making include:
Hydrogen-based fuels previously attracted interest mainly as an alternative to shore up oil supply. However green hydrogen as opposed to the “grey” (fossil-based) or “blue” (hybrid) varieties also help to boost renewables in the energy mix and decarbonise energy-intensive industries.
This report from the International Renewable Energy Agency (IRENA) outlines the main barriers that inhibiting green hydrogen uptake and the policies needed to address these. It also offers insights on how to kickstart the green hydrogen sector as a key enabler of the energy transition at the national or regional level.
Key pillars of green hydrogen policy making include:
- National hydrogen strategy. Each country needs to define its level of ambition for hydrogen outline the amount of support required and provide a reference on hydrogen development for private investment and finance.
- Setting policy priorities. Green hydrogen can support a wide range of end-uses. Policy makers should identify and focus on applications that provide the highest value.
- Guarantees of origin. Carbon emissions should be reflected over the whole lifecycle of hydrogen. Origin schemes need to include clear labels for hydrogen and hydrogen products to increase consumer awareness and facilitate claims of incentives.
- Governance system and enabling policies. As green hydrogen becomes mainstream policies should cover its integration into the broader energy system. Civil society and industry must be involved to maximise the benefits.
- Subsequent briefs will explore the entire hydrogen value chain providing sector-by-sector guidance on the design and implementation of green hydrogen policies.
Electrification Opportunities in the Medium- and Heavy-Duty Vehicle Segment in Canada
Jun 2021
Publication
The medium- and heavy-duty (MD/HD) vehicle sector is a large emitter of greenhouse gases. It will require drastic emissions reductions to realize a net-zero carbon future. This study conducts fourteen short feasibility investigations in the Canadian context to evaluate the merits of battery electric or hydrogen fuel cell alternatives to conventional city buses inter-city buses school buses courier vehicles (step vans) refuse trucks long-haul trucks and construction vehicles. These “clean transportation alternatives” were evaluated for practicality economics and emission reductions in comparison to their conventional counterparts. Conclusions were drawn on which use cases would be best suited for accelerating the transformation of the MD/HD sector.
The Fuel Cell Industry Review 2020
Jan 2020
Publication
The Fuel Cell Industry Review 2020 offers data analysis and commentary on key events in the industry in 2020. Now in its seventh year the Review has been compiled by a team led by E4tech - a specialist energy strategy consultancy with deep expertise in the hydrogen and fuel cell sector (see www.e4tech.com).
Despite the title of this publication we’ve said before that the fuel cell ‘industry’ is not a single industry at all. As those inside it know it is divided by different materials stages of maturity applications and regions – all contributors to the fact it has taken time to get going. But it does seem to be getting traction. Part of that is down to decades of hard work and investment in R&D technology improvement and demonstrations. Thankfully part of it is also down to changes in external conditions. Improving air quality is increasingly non-negotiable. Reducing greenhouse gas emissions likewise. And all while maintaining economic development and opportunity.
The growth spurt of the battery industry allied with some of the drivers above has catalysed thinking in where and how fuel cells can fit. Countries and regions which did not support batteries early on are scrambling to catch up and wish not to risk a repeat of their errors with fuel cells. So support is being targeted at industrial development and competitiveness as well as solving societal problems. Which in turn is helping industry to decide on and take investment steps: Weichai’s 20000 unit per annum PEM factory in China; Daimler and Volvo setting up their fuel cell truck JV; CHEM Energy building a factory for remote systems in S Africa."
Despite the title of this publication we’ve said before that the fuel cell ‘industry’ is not a single industry at all. As those inside it know it is divided by different materials stages of maturity applications and regions – all contributors to the fact it has taken time to get going. But it does seem to be getting traction. Part of that is down to decades of hard work and investment in R&D technology improvement and demonstrations. Thankfully part of it is also down to changes in external conditions. Improving air quality is increasingly non-negotiable. Reducing greenhouse gas emissions likewise. And all while maintaining economic development and opportunity.
The growth spurt of the battery industry allied with some of the drivers above has catalysed thinking in where and how fuel cells can fit. Countries and regions which did not support batteries early on are scrambling to catch up and wish not to risk a repeat of their errors with fuel cells. So support is being targeted at industrial development and competitiveness as well as solving societal problems. Which in turn is helping industry to decide on and take investment steps: Weichai’s 20000 unit per annum PEM factory in China; Daimler and Volvo setting up their fuel cell truck JV; CHEM Energy building a factory for remote systems in S Africa."
Macroeconomic Implications of Switching to process-emission-free Iron and Steel Production in Europe
Nov 2018
Publication
Climate change is one of the most serious threats to the human habitat. The required structural change to limit anthropogenic forcing is expected to fundamentally change daily social and economic life. The production of iron and steel is a special case of economic activities since it is not only associated with combustion but particularly with process emissions of greenhouse gases which have to be dealt with likewise. Traditional mitigation options of the sector like efficiency measures substitution with less emission-intensive materials or scrap-based production are bounded and thus insufficient for rapid decarbonization necessary for complying with long-term climate policy targets. Iron and steel products are basic materials at the core of modern socio-economic systems additionally being essential also for other mitigation options like hydro and wind power. Therefore a system-wide assessment of recent technological developments enabling almost complete decarbonization of the sector is substantially relevant. Deploying a recursive-dynamic multi-region multi-sector computable general equilibrium approach we investigate switches from coke-to hydrogen-based iron and steel technologies in a scenario framework where industry decisions (technological choice and timing) and climate policies are mis-aligned. Overall we find that the costs of industry transition are moderate but still ones that may represent a barrier for implementation because the generation deciding on low-carbon technologies and bearing (macro)economic costs might not be the generation benefitting from it. Our macroeconomic assessment further indicates that anticipated bottom-up estimates of required additional domestic renewable electricity tend to be overestimated. Relative price changes in the economy induce electricity substitution effects and trigger increased electricity imports. Sectoral carbon leakage is an imminent risk and calls for aligned course of action of private and public actors.
Green Hydrogen in Europe – A Regional Assessment: Substituting Existing Production with Electrolysis Powered by Renewables
Nov 2020
Publication
The increasing ambition of climate targets creates a major role for hydrogen especially in achieving carbon-neutrality in sectors presently difficult to decarbonise. This work examines to what extent the currently carbon-intensive hydrogen production in Europe could be replaced by water electrolysis using electricity from renewable energy resources (RES) such as solar photovoltaic onshore/offshore wind and hydropower (green hydrogen). The study assesses the technical potential of RES at regional and national levels considering environmental constraints land use limitations and various techno-economic parameters. It estimates localised clean hydrogen production and examines the capacity to replace carbon-intensive hydrogen hubs with ones that use RES-based water electrolysis. Findings reveal that -at national level- the available RES electricity potential exceeds the total electricity demand and the part for hydrogen production from electrolysis in all analysed countries. At regional level from the 109 regions associated with hydrogen production (EU27 and UK) 88 regions (81%) show an excess of potential RES generation after covering the annual electricity demand across all sectors and hydrogen production. Notably 84 regions have over 50% excess RES electricity potential after covering the total electricity demand and that for water electrolysis. The study provides evidence on the option to decarbonize hydrogen production at regional level. It shows that such transformation is possible and compatible with the ongoing transition towards carbon–neutral power systems in the EU. Overall this work aims to serve as a tool for designing hydrogen strategies in harmony with renewable energy policies.
Combined Cooling and Power Management Strategy for a Standalone House Using Hydrogen and Solar Energy
May 2021
Publication
Tropical climate is characterized by hot temperatures throughout the year. In areas subject to this climate air conditioning represents an important share of total energy consumption. In some tropical islands there is no electric grid; in these cases electricity is often provided by diesel generators. In this study in order to decarbonize electricity and cooling production and to improve autonomy in a standalone application a microgrid producing combined cooling and electrical power was proposed. The presented system was composed of photovoltaic panels a battery an electrolyzer a hydrogen tank a fuel cell power converters a heat pump electrical loads and an adsorption cooling system. Electricity production and storage were provided by photovoltaic panels and a hydrogen storage system respectively while cooling production and storage were achieved using a heat pump and an adsorption cooling system respectively. The standalone application presented was a single house located in Tahiti French Polynesia. In this paper the system as a whole is presented. Then the interaction between each element is described and a model of the system is presented. Thirdly the energy and power management required in order to meet electrical and thermal needs are presented. Then the results of the control strategy are presented. The results showed that the adsorption cooling system provided 53% of the cooling demand. The use of the adsorption cooling system reduced the needed photovoltaic panel area the use of the electrolyzer and the use of the fuel cell by more than 60% and reduced energy losses by 7% (compared to a classic heat pump) for air conditioning.
Synergistic Hybrid Marine Renewable Energy Harvest System
Mar 2024
Publication
This paper proposes a novel hybrid marine renewable energy-harvesting system to increase energy production reduce levelized costs of energy and promote renewable marine energy. Firstly various marine renewable energy resources and state-of-art technologies for energy exploitation and storage were reviewed. The site selection criteria for each energy-harvesting approach were identified and a scoring matrix for site selection was proposed to screen suitable locations for the hybrid system. The Triton Knoll wind farm was used to demonstrate the effectiveness of the scoring matrix. An integrated energy system was designed and FE modeling was performed to assess the effects of additional energy devices on the structural stability of the main wind turbine structure. It has been proven that the additional energy structures have a negligible influence on foundation/structure deflection.
A Review of Decarbonization Options for the Glass Industry
May 2021
Publication
The glass industry is part of the energy-intensive industry posing a major challenge to fulfill the CO2 reduction targets of the Paris Climate Agreement. The segments of the glass industry e.g. container or flat glass are quite diverse and attribute to different glass products with different requirements to product quality and various process options. To address the challenge of decarbonizing the glass industry firstly an inventory of current glass products processes and applied technologies in terms of energy efficiency and CO2 emissions is conducted. Secondly decarbonization options are identified and structured according to fuel substitution waste heat recovery and process intensification. Due to the high share of energy-related CO2 emissions electrical melting and hydrogen combustion or a combination of both are the most promising options to decarbonize the glass industry but further research design adjustments and process improvements are necessary. Furthermore electricity and hydrogen prices have to decrease or fossil fuels must become more expensive to be cost-competitive relative to fossil fuels and respective infrastructures have to be constructed or adjusted. Various heat recovery options have great potential for CO2 savings but can be technically challenging or have not yet been considered for techno-economic reasons.
The Role of Electrofuels under Uncertainties for the Belgian Energy Transition
Jul 2021
Publication
Wind and solar energies present a time and space disparity that generally leads to a mismatch between the demand and the supply. To harvest their maximum potentials one of the main challenges is the storage and transport of these energies. This challenge can be tackled by electrofuels such as hydrogen methane and methanol. They offer three main advantages: compatibility with existing distribution networks or technologies of conversion economical storage solution for high capacity and ability to couple sectors (i.e. electricity to transport to heat or to industry). However the level of contribution of electric-energy carriers is unknown. To assess their role in the future we used whole-energy system modelling (EnergyScope Typical Days) to study the case of Belgium in 2050. This model is multi-energy and multi-sector. It optimises the design of the overall system to minimise its costs and emissions. Such a model relies on many parameters (e.g. price of natural gas efficiency of heat pump) to represent as closely as possible the future energy system. However these parameters can be highly uncertain especially for long-term planning. Consequently this work uses the polynomial chaos expansion method to integrate a global sensitivity analysis in order to highlight the influence of the parameters on the total cost of the system. The outcome of this analysis points out that compared to the deterministic cost-optimum situation the system cost accounting for uncertainties becomes higher (+17%) and twice more uncertain at carbon neutrality and that electrofuels are a major contribution to the uncertainty (up to 53% in the variation of the costs) due to their importance in the energy system and their high uncertainties their higher price and uncertainty.
EUA- Bringing Hydrogen Alive
Apr 2021
Publication
The UK is on course to become a global leader in hydrogen technology. Over £3bn is ready to be invested into hydrogen today. The pace of activity is rapid and the opportunities are vast.
Join us at our free to attend event where you will gain unique insights into how the Hydrogen industry is progressing together with exclusive access to future plans.
The dynamic and lively session will demonstrate the viability of hydrogen as a key component to achieve Net Zero.
Confirmed contributors include:
Join us at our free to attend event where you will gain unique insights into how the Hydrogen industry is progressing together with exclusive access to future plans.
The dynamic and lively session will demonstrate the viability of hydrogen as a key component to achieve Net Zero.
Confirmed contributors include:
- National Grid Gas Transmission
- Cadent
- Chris Train Previous CEO Cadent
- DNV
- Worcester Bosch
- ITM Power
- Northern Gas Networks
- Decarbonising Heat in Buildings - New Research Findings from the Gas Distribution Networks
Transportation in a 100% Renewable Energy System
Jan 2018
Publication
A 100% renewable economy would give a lasting solution to the challenges raised by climate change energy security sustainability and pollution. The conversion of the present transport system appears to be one of the most difficult aspects of such renewable transition. This study reviews the technologies and systems that are being proposed or proven as alternative to fossil-fuel based transportation and their prospects for their entry into the post-carbon era from both technological and energetic viewpoints. The energetic cost of the transition from the current transportation system into global 100% renewable transportation is estimated as well as the electrical energy required for the operation of the new renewable transportation sector. A 100% renewable transport providing the same service as global transport in 2014 would demand about 18% less energy. The main reduction is expected in road transport (69%) but the shipping and air sectors would notably increase their consumptions: 163% and 149% respectively. The analysis concludes that a 100% renewable transportation is feasible but not necessarily compatible with indefinite increase of resources consumption. The major material and energy limitations and obstacles of each transport sector for this transition are shown.
Performance Analysis of Hydrogen Fuel Cell with Two-stage Turbo Compressor for Automotive Applications
May 2021
Publication
This paper discusses the numerical modeling of an automobile fuel cell system using a two-stage turbo-compressor for air supply. The numerical model incorporates essential input parameters for air and hydrogen flow. The model also performed mass and energy balances across different components such as pump fan heat-exchanger air compressor and keeps in consideration the pressure losses across flow pipes and various mechanical parts. The compressor design process initiates with numerical analysis of the preliminary design of a highly efficient two-stage turbo compressor with an expander as a single-stage compressor has several limitations in terms of efficiency and pressure ratio. The compressor’s design parameters were carefully studied and analyzed with respect to the highly efficient fuel cell stack (FCS) used in modern hydrogen vehicles. The model is solved to evaluate the overall performance of PEM FCS. The final compressor has a total pressure and temperature of 4.2 bar and 149.3°C whereas the required power is 20.08kW with 3.18kW power losses and having a combined efficiency of 70.8%. According to the FC model with and without expander the net-power outputs are 98.15kW and 88.27kW respectively and the maximum efficiencies are 65.1% and 59.1% respectively. Therefore it can be concluded that a two-stage turbo compressor with a turbo-expander can have significant effects on overall system power and efficiency. The model can be used to predict and optimize system performance for PEM FCS at different operating conditions.
Effect of Hydrogen Addition on the Energetic and Ecologic Parameters of an SI Engine Fueled by Biogas
Jan 2021
Publication
The global policy solution seeks to reduce the usage of fossil fuels and greenhouse gas (GHG) emissions and biogas (BG) represents a solutions to these problems. The use of biogas could help cope with increased amounts of waste and reduce usage of fossil fuels. Biogas could be used in compressed natural gas (CNG) engines but the engine electronic control unit (ECU) needs to be modified. In this research a spark ignition (SI) engine was tested for mixtures of biogas and hydrogen (volumetric hydrogen concentration of 0 14 24 33 and 43%). In all experiments two cases of spark timing (ST) were used: the first for an optimal mixture and the second for CNG. The results show that hydrogen increases combustion quality and reduces incomplete combustion products. Because of BG’s lower burning speed the advanced ST increased brake thermal efficiency (BTE) by 4.3% when the engine was running on biogas. Adding 14 vol% of hydrogen (H2 ) increases the burning speed of the mixture and enhances BTE by 2.6% at spark timing optimal for CNG (CNG ST) and 0.6% at the optimal mixture ST (mixture ST). Analyses of the rate of heat release (ROHR) temperature and pressure increase in the cylinder were carried out using utility BURN in AVL BOOST software.
Comprehensive Performance Evaluation of Densified Liquid Hydrogen/Liquid Oxygen as Propulsion Fuel
Jan 2022
Publication
Densified liquid hydrogen/liquid oxygen is a promising propulsion fuel in the future. In order to systematically demonstrate the benefits and challenges of densified liquid hydrogen/liquid oxygen a transient thermodynamical model considering the heat leakage temperature rise engine thrust pressurization pressure of the tank and wall thickness of tank is developed in the present paper and the performance of densified liquid hydrogen/liquid oxygen as propulsion fuel is further evaluated in actual application. For liquid hydrogen/liquid oxygen tanks at different structural dimensions the effects of many factors such as temperature rise during propellant ground parking lift of engine thrust mass reduction of the tank structure and extension of spacecraft in‐orbit time are analyzed to demonstrate the comprehensive performance of liquid hydrogen/liquid oxygen after densification. Meanwhile the problem of subcooling combination matching of liquid hydro‐ gen/liquid oxygen is proposed for the first time. Combining the fuel consumption and engine thrust lifting the subcooling combination matching of liquid hydrogen/liquid oxygen at different mixing ratios and constant mixing ratios are discussed respectively. The results show that the relative engine thrust enhances by 6.96% compared with the normal boiling point state in the condition of slush hydrogen with 50% solid content and enough liquid oxygen. The in‐orbit time of spacecraft can extend about 2–6.5 days and 24–95 days for slush hydrogen with 50% solid content and liquid oxygen in the triple point state in different cryogenic tanks respectively. Due to temperature rise during parking the existing adiabatic storage scheme and filling scheme for densification LH2 need to be redesigned and for densification LO2 are suitable. It is found that there is an optimal subcooling matching relation after densification of liquid hydrogen/liquid oxygen as propulsion fuel. In other words the subcooling temperature of liquid hydrogen/liquid oxygen is not the lower the bet‐ ter but the matching relationship between LH2 subcooling degree and LO2 subcooling degree needs to be considered at the same time. It is necessary that the LO2 was cooled to 69.2 K and 54.5 K when the LH2 of 13.9 K and SH2 with 45% was adopted respectively. This research provides theoretical support for the promotion and application of densification cryogenic propellants.
A Preliminary Energy Analysis of a Commercial CHP Fueled with H2NG Blends Chemically Supercharged by Renewable Hydrogen and Oxygen
Dec 2016
Publication
Currently Power-to-Gas technologies are considered viable solutions to face the onset problems associated with renewable capacity firming. Indeed carbon-free hydrogen production converting renewable electricity excess and its injection into natural gas pipelines is considered a short- to medium-term solution. In this way the so-called H2NG blends can be fired within internal combustion engines and micro gas turbines operating in CHP mode offering better environmental-energy performances in machines. As regards the distributed energy generation scenario the local H2 production by means of electrolysis for methane enrichment will be more cost-effective if the oxygen is fruitfully used instead of venting it out like a by-product as usually occurs. This study focuses on the usefulness of using that oxygen to enrich the air-fuel mixture of an internal combustion engine for micro-CHP applications once it has been fuelled with H2NG blends. Thus the main aim of this paper is to provide a set of values for benchmarking in which H2NG blends ranging in 0%-15% vol. burn within an ICE in partial oxy-fuel conditions. In particular a preliminary energy analysis was carried out based on experimental data reporting the engine operating parameters gains and losses in both electrical and heat recovery efficiency. The oxygen content in the air varies up to 22% vol. A Volkswagen Blue Tender CHP commercial version (19.8 kWel. of rated electrical power output) was considered as the reference machine and its energy characterization was reported when it operated under those unconventional conditions.
Recent Advances in Carbon Dioxide Conversion: A Circular Bioeconomy Perspective
Jun 2021
Publication
Managing the concentration of atmospheric CO2 requires a multifaceted engineering strategy which remains a highly challenging task. Reducing atmospheric CO2 (CO2R) by converting it to value-added chemicals in a carbon neutral footprint manner must be the ultimate goal. The latest progress in CO2R through either abiotic (artificial catalysts) or biotic (natural enzymes) processes is reviewed herein. Abiotic CO2R can be conducted in the aqueous phase that usually leads to the formation of a mixture of CO formic acid and hydrogen. By contrast a wide spectrum of hydrocarbon species is often observed by abiotic CO2R in the gaseous phase. On the other hand biotic CO2R is often conducted in the aqueous phase and a wide spectrum of value-added chemicals are obtained. Key to the success of the abiotic process is understanding the surface chemistry of catalysts which significantly governs the reactivity and selectivity of CO2R. However in biotic CO2R operation conditions and reactor design are crucial to reaching a neutral carbon footprint. Future research needs to look toward neutral or even negative carbon footprint CO2R processes. Having a deep insight into the scientific and technological aspect of both abiotic and biotic CO2R would advance in designing efficient catalysts and microalgae farming systems. Integrating the abiotic and biotic CO2R such as microbial fuel cells further diversifies the spectrum of CO2R.
Critical Materials for Water Electrolysers at the Example of the Energy Transition in Germany
Feb 2021
Publication
The present work aims to identify critical materials in water electrolysers with potential future supply constraints. The expected rise in demand for green hydrogen as well as the respective implications on material availability are assessed by conducting a case study for Germany. Furthermore the recycling of end‐of‐life (EoL) electrolysers is evaluated concerning its potential in ensuring the sustainable supply of the considered materials. As critical materials bear the risk of raising production costs of electrolysers substantially this article examines the readiness of this technology for industrialisation from a material perspective. Except for titanium the indicators for each assessed material are scored with a moderate to high (platinum) or mostly high (iridium scandium and yttrium) supply risk. Hence the availability of these materials bears the risk of hampering the scale‐up of electrolysis capacity. Although conventional recycling pathways for platinum iridium and titanium already exist secondary material from EoL electrolysers will not reduce the dependence on primary resources significantly within the period under consideration—from 2020 until 2050. Notably the materials identified as critical are used in PEM and high temperature electrolysis whereas materials in alkaline electrolysis are not exposed to significant supply risks.
Hydrogen and Renewable Energy Sources Integrated System for Greenhouse Heating
Sep 2013
Publication
A research is under development at the Department of Agro-Environmental Sciences of the University of Bari “Aldo Moro” in order to investigate the suitable solutions of a power system based on solar energy (photovoltaic) and hydrogen integrated with a geothermal heat pump for powering a self sustained heated greenhouse. The electrical energy for heat pump operation is provided by a purpose-built array of solar photovoltaic modules which supplies also a water electrolyser system controlled by embedded pc; the generated dry hydrogen gas is conserved in suitable pressured storage tank. The hydrogen is used to produce electricity in a fuel cell in order to meet the above mentioned heat pump power demand when the photovoltaic system is inactive during winter night-time or the solar radiation level is insufficient to meet the electrical demand. The present work reports some theoretical and observed data about the electrolyzer operation. Indeed the electrolyzer has required particular attention because during the experimental tests it did not show a stable operation and it was registered a performance not properly consistent with the predicted performance by means of the theoretical study.
The Social Dimensions of Moving Away From Gas Cookers and Hobs- Challenges and Opportunities in Transition to Low Carbon Cooking
May 2020
Publication
Heat is one of the UK’s largest energy-consuming and carbon-emitting sectors and potentially the most difficult to decarbonise. The UK’s Clean Growth Strategy identifies that heat decarbonisation in buildings and industry will likely involve shifting away from natural gas to alternative energy vectors like electricity and hydrogen. This will mean transition of existing cooking appliances away from natural gas resulting in social implications that require detailed analysis for optimal transition.
This report investigates the social dimensions of heat decarbonisation in cooking appliances specifically moving away from gas cookers and hobs. It presents a first step in tackling the following questions.
This report investigates the social dimensions of heat decarbonisation in cooking appliances specifically moving away from gas cookers and hobs. It presents a first step in tackling the following questions.
- How are current carbon-intensive cooking technologies part of existing cooking practices and broader social and material structures?
- What are the challenges and opportunities for cooking heat decarbonisation in terms of consumer acceptance carbon and energy reductions and business/market opportunities?
- What interventions are needed to realise policy objectives of heat de-carbonisation?
- The report builds on interviews with BEIS’s long-term heat strategy experts and key external stakeholders together with a review of secondary data on trends in cooking and appliance use in the UK. Further it presents an annotated bibliography of literature on the social implications of heat decarbonisation and sustainable food transitions more broadly. The multidisciplinary review of the literature is structured around Southerton et al.’s (2011) ISM (Individual- Social- and Material-context) framework for a systemic review of the various change-agents required for transition. Finally a comparative review of the social challenges and opportunities identified in the ISM contexts is presented along with the potential policy interventions in each. The report concludes with a list of recommendations in terms of evidence and data gathering; research; policy; and a set of general recommendations for heat decarbonisation policy.
Hydrogen for a Net Zero GB An Integrated Energy Market Perspective
Jul 2020
Publication
Our new independent report finds that hydrogen can play an important role in UK’s ambitious decarbonisation plan and boost its global industrial competitiveness.
Key insights from this new analysis include:
Key insights from this new analysis include:
- New independent report from Aurora Energy Research shows that hydrogen can meet up to half of Great Britain’s (GB) final energy demand by 2050 providing an important pathway to reaching UK’s ambitious Net Zero targets.
- The report concludes that both blue hydrogen (produced from natural gas after reforming to remove carbon content) and green hydrogen (produced by using power to electrolyse water) are expected to play an important role providing up to 480TWh of hydrogen or c.45% of GB’s final energy demand by 2050.
- All Net Zero scenarios require substantial growth in low-carbon generation such as renewables and nuclear. Large-scale hydrogen adoption could help to integrate renewables into the power system by reducing the power sector requirement for flexibility during peak winter months and boosting revenues for clean power generators by c. £3bn per year by 2050.
- The rollout of hydrogen could accelerate green growth and enable the development of globally competitive low-carbon industrial clusters while utilising UK’s competitive advantage on carbon capture.
- In facilitating the identification of a cost-effective hydrogen pathway there are some low-regret options for Government to explore including the stimulation of hydrogen demand in key sectors the deployment of CCS in strategic locations and the standardisation of networks. These initiatives could form an important part of the UK Government’s post-COVID stimulus plan.
Investigation on System for Renewable Electricity Storage in Small Scale Integrating Photovoltaics, Batteries, and Hydrogen Generator
Nov 2020
Publication
In this article the solution based on hydrogen generation to increase the flexibility of energy storage systems is proposed. Operating characteristics of a hydrogen generator with integrated electrical energy storage and a photovoltaic installation were determined. The key role of the electricity storage in the proposed system was to maintain the highest operating efficiency related to the nominal parameters of the hydrogen generator. The hydrogen generators achieved the highest energy efficiency for the nominal operating point at the highest power output. Lead-acid batteries were used to ensure the optimal operating conditions for the hydrogen generator supplied with renewable energy throughout the day. The proposed system reduces significantly the hydrogen generator nominal power and devices in system operate in such a way to improve their efficiency and durability. The relations between individual components and their constraints were determined. The proposed solution is fully in-line with previously investigated technologies for improving grid stability and can help incorporate renewable energy sources to increase the sustainability of the energy sector and green hydrogen production.
Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation Project
Dec 2011
Publication
This report summarizes the work conducted under U.S. Department of Energy (DOE) under contract DE-FC36-04GO14285 by Mercedes-Benz & Research Development North America (MBRDNA) Chrysler Daimler Mercedes Benz USA (MBUSA) BP DTE Energy and NextEnergy to validate fuel cell technologies for infrastructure transportation as well as assess technology and commercial readiness for the market. The Mercedes Team together with its partners tested the technology by operating and fuelling hydrogen fuel cell vehicles under real world conditions in varying climate terrain and driving conditions. Vehicle and infrastructure data was collected to monitor the progress toward the hydrogen vehicle and infrastructure performance targets of $2.00 to 3.00/gge hydrogen production cost and 2000-hour fuel cell durability. Finally to prepare the public for a hydrogen economy outreach activities were designed to promote awareness and acceptance of hydrogen technology. DTE BP and NextEnergy established hydrogen filling stations using multiple technologies for on-site hydrogen generation storage and dispensing. DTE established a hydrogen station in Southfield Michigan while NextEnergy and BP worked together to construct one hydrogen station in Detroit. BP constructed another fueling station in Burbank California and provided a full-time hydrogen trailer at San Francisco California and a hydrogen station located at Los Angeles International Airportmore.
Hydrogen to Support Electricity Systems
Jan 2020
Publication
The Department of Environment Land Water and Planning (DELWP) engaged GHD Advisory and ACIL Allen to assess the roles opportunities and challenges that hydrogen might play in the future to support Australia’s power systems and to determine whether the relevant electricity system regulatory frameworks are compatible with both enabling an industrial-scale1 hydrogen production capability and the use of hydrogen for power generation.
You can read the full report on the website of the Australian Government at this link
You can read the full report on the website of the Australian Government at this link
Thermodynamic Analysis of a Regenerative Brayton Cycle Using H2, CH4 and H2/CH4 Blends as Fuel
Feb 2022
Publication
Considering a simple regenerative Brayton cycle the impact of using different fuel blends containing a variable volumetric percentage of hydrogen in methane was analysed. Due to the potential of hydrogen combustion in gas turbines to reduce the overall CO2 emissions and the dependency on natural gas further research is needed to understand the impact on the overall thermodynamic cycle. For that purpose a qualitative thermodynamic analysis was carried out to assess the exergetic and energetic efficiencies of the cycle as well as the irreversibilities associated to a subsystem. A single step reaction was considered in the hypothesis of complete combustion of a generic H2/CH4 mixture where the volumetric H2 percentage was represented by fH2 which was varied from 0 to 1 defining the amount of hydrogen in the fuel mixture. Energy and entropy balances were solved through the Engineering Equation Solver (EES) code. Results showed that global exergetic and energetic efficiencies increased by 5% and 2% respectively varying fH2 from 0 to 1. Higher hydrogen percentages resulted in lower exergy destruction in the chamber despite the higher air-excess levels. It was also observed that higher values of fH2 led to lower fuel mass flow rates in the chamber showing that hydrogen can still be competitive even though its cost per unit mass is twice that of natural gas.
Australian and Global Hydrogen Demand Growth Scenario Analysis
Nov 2019
Publication
Deloitte was commissioned by the National Hydrogen Taskforce established by the COAG Energy Council to undertake an Australian and Global Growth Scenario Analysis. Deloitte analysed the current global hydrogen industry its development and growth potential and how Australia can position itself to best capitalise on the newly forming industry.
To conceptualise the possibilities for Australia Deloitte created scenarios to model the realm of possibilities for Australia out to 2050 focusing on identifying the scope and distribution of economic and environmental costs and benefits from Australian hydrogen industry development. This work will aid in analysing the opportunities and challenges to hydrogen industry development in Australia and the actions needed to overcome barriers to industry growth manage risks and best drive industry development.
The full report is available on the Deloitte website at this link
To conceptualise the possibilities for Australia Deloitte created scenarios to model the realm of possibilities for Australia out to 2050 focusing on identifying the scope and distribution of economic and environmental costs and benefits from Australian hydrogen industry development. This work will aid in analysing the opportunities and challenges to hydrogen industry development in Australia and the actions needed to overcome barriers to industry growth manage risks and best drive industry development.
The full report is available on the Deloitte website at this link
The Deltah Lab, a New Multidisciplinary European Facility to Support the H2 Distribution & Storage Economy
Apr 2021
Publication
The target for European decarburization encourages the use of renewable energy sources and H2 is considered the link in the global energy system transformation. So research studies are numerous but only few facilities can test materials and components for H2 storage. This work offers a brief review of H2 storage methods and presents the preliminary results obtained in a new facility. Slow strain rate and fatigue life tests were performed in H2 at 80 MPa on specimens and a tank of AISI 4145 respectively. Besides the storage capacity at 30 MPa of a solid-state system they were evaluated on kg scale by adsorption test. The results have shown the H2 influence on mechanical properties of the steel. The adsorption test showed a gain of 26% at 12 MPa in H2 storage with respect to the empty condition. All samples have been characterized by complementary techniques in order to connect the H2 effect with material properties.
Comparison of Conventional vs. Modular Hydrogen Refuelling Stations and On-Site Production vs. Delivery
Mar 2017
Publication
To meet the needs of public and private stakeholders involved in the development construction and operation of hydrogen fuelling stations needed to support the widespread roll-out of hydrogen fuel cell electric vehicles this work presents publicly available station templates and analyses. These ‘Reference Stations’ help reduce the cost and speed the deployment of hydrogen stations by providing a common baseline with which to start a design enable quick assessment of potential sites for a hydrogen station identify contributors to poor economics and suggest areas of research. This work presents layouts bills of materials piping and instrumentation diagrams and detailed analyses of five new station designs. In the near term delivered hydrogen results in a lower cost of hydrogen compared to on-site production via steam methane reforming or electrolysis although the on-site production methods have other advantages. Modular station concepts including on-site production can reduce lot sizes from conventional assemble-on-site stations.
Thoughts on the Prospects of Renewable Hydrogen
Oct 2020
Publication
In the last two years or so there has been increasing interest in hydrogen as an energy source in Australia and around the world. Notably this is not the first time that hydrogen has caught our collective interest. Most recently the 2000s saw a substantial investment in hydrogen research development and demonstration around the world. Prior to that the oil crises of the 1970s also stimulated significant investment in hydrogen and earlier still the literature on hydrogen was not lacking. And yet the hydrogen economy is still an idea only.<br/>So what if anything might be different this time?<br/>This is an important question that we all need to ask and for which the author can only give two potential answers. First our need to make dramatic reductions in greenhouse gas (GHG) emissions has become more pressing since these previous waves of interest. Second renewable energy is considerably more affordable now than it was before and it has consistently outperformed expectations in terms of cost reductions by even its strongest supporters.<br/>While this dramatic and ongoing reduction in the cost of renewables is very promising our need to achieve substantial GHG emission reductions is the crucial challenge. Moreover meeting this challenge needs to be achieved with as little adverse social and economic impact as possible.<br/>When considering what role hydrogen might play we should first think carefully about the massive scale and complexity of our global energy system and the typical prices of the major energy commodities. This provides insights into what opportunities hydrogen may have. Considering a temperate country with a small population like Australia we see that domestic natural gas and transport fuel markets are comparable to and even larger than the electricity market on an energy basis.
The Role of Critical Minerals in Clean Energy Transitions
May 2021
Publication
Minerals are essential components in many of today’s rapidly growing clean energy technologies – from wind turbines and electricity networks to electric vehicles. Demand for these minerals will grow quickly as clean energy transitions gather pace. This new World Energy Outlook Special Report provides the most comprehensive analysis to date of the complex links between these minerals and the prospects for a secure rapid transformation of the energy sector.
Alongside a wealth of detail on mineral demand prospects under different technology and policy assumptions it examines whether today’s mineral investments can meet the needs of a swiftly changing energy sector. It considers the task ahead to promote responsible and sustainable development of mineral resources and offers vital insights for policy makers including six key IEA recommendations for a new comprehensive approach to mineral security."
Link to International Energy Agency website
Alongside a wealth of detail on mineral demand prospects under different technology and policy assumptions it examines whether today’s mineral investments can meet the needs of a swiftly changing energy sector. It considers the task ahead to promote responsible and sustainable development of mineral resources and offers vital insights for policy makers including six key IEA recommendations for a new comprehensive approach to mineral security."
Link to International Energy Agency website
Optimal Scheduling of Multi-energy Type Virtual Energy Storage System in Reconfigurable Distribution Networks for Congestion Management
Jan 2023
Publication
The virtual energy storage system (VESS) is one of the emerging novel concepts among current energy storage systems (ESSs) due to the high effectiveness and reliability. In fact VESS could store surplus energy and inject the energy during the shortages at high power with larger capacities compared to the conventional ESSs in smart grids. This study investigates the optimal operation of a multi-carrier VESS including batteries thermal energy storage (TES) systems power to hydrogen (P2H) and hydrogen to power (H2P) technologies in hydrogen storage systems (HSS) and electric vehicles (EVs) in dynamic ESS. Further demand response program (DRP) for electrical and thermal loads has been considered as a tool of VESS due to the similar behavior of physical ESS. In the market three participants have considered such as electrical thermal and hydrogen markets. In addition the price uncertainties were calculated by means of scenarios as in stochastic programming while the optimization process and the operational constraints were considered to calculate the operational costs in different ESSs. However congestion in the power systems is often occurred due to the extreme load increments. Hence this study proposes a bi-level formulation system where independent system operators (ISO) manage the congestion in the upper level while VESS operators deal with the financial goals in the lower level. Moreover four case studies have considered to observe the effectiveness of each storage system and the simulation was modeled in the IEEE 33-bus system with CPLEX in GAMS.
Between Hope And Hype: A Hydrogen Vision For The UK
Mar 2021
Publication
There is a growing conversation around the role that hydrogen can play in the future of the UK and how to best harness its potential to secure jobs show climate leadership promote industrial competitiveness and drive innovation. The Government’s ‘Ten Point Plan for a Green Industrial Revolution’ included hydrogen as one of its ten actions targeting 5GW of ‘low carbon’ hydrogen production by 2030. Britain is thus joining the EU US Japan Germany and a host of other countries seeking to be part of the hydrogen economy of the future.<br/><br/>A focus on clean green hydrogen within targeted sectors and hubs can support multiple Government goals – including demonstrating climate leadership reducing regional inequalities through the ‘levelling up’ agenda and ensuring a green and cost-effective recovery from the coronavirus pandemic which prioritises jobs and skills. A strategic hydrogen vision must be honest and recognise where green hydrogen does not present the optimal pathway for decarbonisation – for instance where alternative solutions are already readily available for roll-out are more efficient and cost-effective. A clear example is hydrogen use for heating where it is estimated to require around 30 times more offshore wind farm capacity than currently available to produce enough green hydrogen to replace all gas boilers as well as adding costs for consumers.<br/><br/>This paper considers the offer of hydrogen for key Government priorities – including an inclusive and resilient economic recovery from the pandemic demonstrating climate leadership and delivering for all of society across the UK. It assesses existing evidence and considers the risks and opportunities and how they might inform a strategic vision for the UK. Ahead of the forthcoming Hydrogen Strategy it sets expectations for Government and outlines key recommendations.
Replacing Fossil Fuels with Bioenergy in District Heating – Comparison of Technology Options
May 2021
Publication
We combine previously separate models of Northern European power markets local district heating and cooling (DHC2) systems and biomass supply in a single modelling framework to study local and system level impacts of bioenergy technologies in phasing out fossil fuels from a DHC system of the Finnish capital. We model multiple future scenarios and assess the impacts on energy security flexibility provision economic performance and emissions. In the case of Helsinki heat only boiler is a robust solution from economic and climate perspective but reduces local electricity self-sufficiency. Combined heat and power solution is more valuable investment for the system than for the city indicating a conflict of interest and biased results in system level models. Bringing a biorefinery near the city to utilize excess heat would reduce emissions and increase investment's profitability but biomass availability might be a bigger limiting factor. Our results show that the availability of domestic biomass resources constrains bio-based technologies in Southern Finland and further highlights the importance of considering both local and system level impacts. Novel option to boost biorefinery's production with hydrogen from excess electricity is beneficial with increasing shares of wind power.
The NederDrone: A Hybrid Lift, Hybrid Energy Hydrogen UAV
Mar 2021
Publication
Many Unmanned Air Vehicle (UAV) applications require vertical take-off and landing and very long-range capabilities. Fixed-wing aircraft need long runways to land and electric energy is still a bottleneck for helicopters which are not range efficient. In this paper we introduce the NederDrone a hybrid lift hybrid energy hydrogen-powered UAV that can perform vertical take-off and landings using its 12 propellers while flying efficiently in forward flight thanks to its fixed wings. The energy is supplied from a combination of hydrogen-driven Polymer Electrolyte Membrane fuel-cells for endurance and lithium batteries for high-power situations. The hydrogen is stored in a pressurized cylinder around which the UAV is optimized. This work analyses the selection of the concept the implemented safety elements the electronics and flight control and shows flight data including a 3h38 flight at sea while starting and landing from a small moving ship.
Different Scenarios of Electric Mobility: Current Situation and Possible Future Developments of Fuel Cell Vehicles in Italy
Jan 2020
Publication
The diffusion of electric vehicles in Italy has started but some complications weight its spread. At present hybrid technology is the most followed by users due particularly to socioeconomic factors such as cost of investment and range anxiety. After a deep discussion of the Italian scenario the aim of the paper is to recognize whether fuel cell technology may be an enabling solution to overcome pollution problems and respect for the environment. The opportunity to use fuel cells to store electric energy is quite fascinating—the charging times will be shortened and heavy passenger transport should be effortless challenged. On the basis of the present history and by investigating the available information this work reports the current e-mobility state in Italy and forecasts the cities in which a fuel cell charging infrastructure should be more profitable with the intention of granting a measured outlook on the plausible development of this actual niche market.
Hydrogen Fuel Cell Technology for the Sustainable Future of Stationary Applications
Dec 2019
Publication
The climate changes that are becoming visible today are a challenge for the global research community. The stationary applications sector is one of the most important energy consumers. Harnessing the potential of renewable energy worldwide is currently being considered to find alternatives for obtaining energy by using technologies that offer maximum efficiency and minimum pollution. In this context new energy generation technologies are needed to both generate low carbon emissions as well as identifying planning and implementing the directions for harnessing the potential of renewable energy sources. Hydrogen fuel cell technology represents one of the alternative solutions for future clean energy systems. This article reviews the specific characteristics of hydrogen energy which recommends it as a clean energy to power stationary applications. The aim of review was to provide an overview of the sustainability elements and the potential of using hydrogen as an alternative energy source for stationary applications and for identifying the possibilities of increasing the share of hydrogen energy in stationary applications respectively. As a study method was applied a SWOT analysis following which a series of strategies that could be adopted in order to increase the degree of use of hydrogen energy as an alternative to the classical energy for stationary applications were recommended. The SWOT analysis conducted in the present study highlights that the implementation of the hydrogen economy depends decisively on the following main factors: legislative framework energy decision makers information and interest from the end beneficiaries potential investors and existence of specialists in this field.
Novel Fuzzy Control Energy Management Strategy for Fuel Cell Hybrid Electric Vehicles Considering State of Health
Oct 2021
Publication
Due to the low efficiency and high pollution of conventional internal combustion engine vehicles the fuel cell hybrid electric vehicles are expected to play a key role in the future of clean energy transportation attributed to the long driving range short hydrogen refueling time and environmental advantages. The development of energy management strategies has an important impact on the economy and durability but most strategies ignore the aging of fuel cells and the corresponding impact on hydrogen consumption. In this paper a rule-based fuzzy control strategy is proposed based on the constructed data-driven online estimation model of fuel cell health. Then a genetic algorithm is used to optimize this fuzzy controller where the objective function is designed to consider both the economy and durability by combining the hydrogen consumption cost and the degradation cost characterized by the fuel cell health status. Considering that the rule-based strategy is more sensitive to operating conditions this paper uses an artificial neural network for predictive control. The results are compared with those obtained from the genetic algorithm optimized fuzzy controller and are found to be very similar where the prediction accuracy is assessed using MAPE RMSE and 10-fold cross-validation. Experiments show that the developed strategy has a good generalization capability for variable driving cycles.
Hydrogen Addition Influence for the Efficient and Ecological Parameters of Heavy-Duty Natural Gas Si Engine
May 2017
Publication
The paper presents the experimental research results of heavy-duty vehicle (public transport bus) fuelled with natural gas and hydrogen fuel mixtures. Spark ignition six cylinder engine tested with different hydrogen additions (from 5% up to 20% according to volume) in the natural gas fuel. The tests were performed on heavy-duty vehicle’s dyno test stand in company “SG dujos Auto” research laboratory. The tests were carried out at three load points and one engine speed. Engine had originally a port fuel injection and exhaust gas recirculation system. Experiments showed that engine fuelled with hydrogen addition was able to achieve lower fuel consumption and brake specific fuel consumption. It was also possible to achieve small increase of engine efficiency. The exhaust gas measurements showed that hydrogen addition in natural gas reduced the CO CO2 and HC emissions because of the H/C atom ratio change in fuel mixture and improved combustion process. The NOx emission level was decreasing although bigger amounts of hydrogen were used in natural gas fuel.
Process Integration of Green Hydrogen: Decarbonization of Chemical Industries
Sep 2020
Publication
Integrated water electrolysis is a core principle of new process configurations for decarbonized heavy industries. Water electrolysis generates H2 and O2 and involves an exchange of thermal energy. In this manuscript we investigate specific traditional heavy industrial processes that have previously been performed in nitrogen-rich air environments. We show that the individual process streams may be holistically integrated to establish new decarbonized industrial processes. In new process configurations CO2 capture is facilitated by avoiding inert gases in reactant streams. The primary energy required to drive electrolysis may be obtained from emerging renewable power sources (wind solar etc.) which have enjoyed substantial industrial development and cost reductions over the last decade. The new industrial designs uniquely harmonize the intermittency of renewable energy allowing chemical energy storage. We show that fully integrated electrolysis promotes the viability of decarbonized industrial processes. Specifically new process designs uniquely exploit intermittent renewable energy for CO2 conversion enabling thermal integration H2 and O2 utilization and sub-process harmonization for economic feasibility. The new designs are increasingly viable for decarbonizing ferric iron reduction municipal waste incineration biomass gasification fermentation pulp production biogas upgrading and calcination and are an essential step forward in reducing anthropogenic CO2 emissions.
Drivers and Barriers to the Adoption of Fuel Cell Passenger Vehicles and Buses in Germany
Feb 2021
Publication
As policymakers and automotive stakeholders around the world seek to accelerate the electrification of road transport with hydrogen this study focuses on the experiences of Germany a world leader in fuel cell technology. Specifically it identifies and compares the drivers and barriers influencing the production and market penetration of privately-owned fuel cell electric passenger vehicles (FCEVs) and fuel cell electric buses (FCEBs) in public transit fleets. Using original data collected via a survey and 17 interviews we elicited the opinions of experts to examine opportunities and obstacles in Germany from four perspectives: (i) the supply of vehicles (ii) refuelling infrastructure (iii) demand for vehicles and (iv) cross-cutting institutional issues. Findings indicate that despite multiple drivers there are significant challenges hampering the growth of the hydrogen mobility market. Several are more pronounced in the passenger FCEV market. These include the supply and cost of production the lack of German automakers producing FCEVs the profitability and availability of refuelling stations and low demand for vehicles. In light of these findings we extract implications for international policymakers and future studies. This study provides a timely update on efforts to spur the deployment of hydrogen mobility in Germany and addresses the underrepresentation of studies examining both buses and passenger vehicles in tandem.
Hydrogen Fuel Cell Road Vehicles: State of the Art and Perspectives
Nov 2020
Publication
Driven by a small number of niche markets and several decades of application research fuel cell systems (FCS) are gradually reaching maturity to the point where many players are questioning the interest and intensity of its deployment in the transport sector in general. This article aims to shed light on this debate from the road transport perspective. It focuses on the description of the fuel cell vehicle (FCV) in order to understand its assets limitations and current paths of progress. These vehicles are basically hybrid systems combining a fuel cell and a lithium-ion battery and different architectures are emerging among manufacturers who adopt very different levels of hybridization. The main opportunity of Fuel Cell Vehicles is clearly their design versatility based on the decoupling of the choice of the number of Fuel Cell modules and hydrogen tanks. This enables manufacturers to meet various specifications using standard products. Upcoming developments will be in line with the crucial advantage of Fuel Cell Vehicles: intensive use in terms of driving range and load capacity. Over the next few decades long-distance heavy-duty vehicles and fleets of taxis or delivery vehicles will develop based on range extender or mild hybrid architectures and enable the hydrogen sector to mature the technology from niche markets to a large-scale market.
Hydrogen-based Integrated Energy and Mobility System for a Real-life Office Environment
Mar 2020
Publication
The current focus on the massive CO2 reduction highlights the need for the rapid development of technology for the production storage transportation and distribution of renewable energy. In addition to electricity we need other forms of energy carriers that are more suitable for energy storage and transportation. Hydrogen is one of the main candidates for this purpose since it can be produced from solar or wind energy and then stored; once needed it can be converted back to electricity using fuel cells. Another important aspect of future energy systems is sector coupling where different sectors e.g. mobility and energy work together to provide better services. In such an integrated system electric vehicles – both battery and hydrogen-based fuel cell – can provide when parked electricity services such as backup power and balancing; when driving they produce no emissions. In this paper we present the concept design and energy management of such an integrated energy and mobility system in a real-life environment at the Shell Technology Centre in Amsterdam. Our results show that storage using hydrogen and salt caverns is much cheaper than using large battery storage systems. We also show that the integration of electric vehicles into the electricity network is technically and economically feasible and that they can provide a flexible energy buffer. Ultimately the results of this study show that using both electricity and hydrogen as energy carriers can create a more flexible reliable and cheaper energy system at an office building.
High Energy Density Storage of Gaseous Marine Fuels: An Innovative Concept and its Application to a Hydrogen Powered Ferry
Apr 2020
Publication
The upcoming stricter limitations on both pollutant and greenhouse gases emissions represent a challenge for the shipping sector. The entire ship design process requires an approach to innovation with a particular focus on both the fuel choice and the power generation system. Among the possible alternatives natural gas and hydrogen based propulsion systems seem to be promising in the medium and long term. Nonetheless natural gas and hydrogen storage still represents a problem in terms of cargo volume reduction. This paper focuses on the storage issue considering compressed gases and presents an innovative solution which has been developed in the European project GASVESSEL® that allows to store gaseous fuels with an energy density higher than conventional intermediate pressure containment systems. After a general overview of natural gas and hydrogen as fuels for shipping a case study of a small Roll-on/Rolloff passenger ferry retrofit is proposed. The study analyses the technical feasibility of the installation of a hybrid power system with batteries and polymer electrolyte membrane fuel cells fuelled by hydrogen. In particular a process simulation model has been implemented to assess the quantity of hydrogen that can be stored on board taking into account boundary conditions such as filling time on shore storage capacity and cylinder wall temperature. The simulation results show that if the fuel cells system is run continuously at steady state to cover the energy need for one day of operation 140 kg of hydrogen are required. Using the innovative pressure cylinder at a storage pressure of 300 bar the volume required by the storage system assessed on the basis of the containment system outer dimensions is resulted to be 15.2 m3 with a weight of 2.5 ton. Even if the innovative type of pressure cylinder allows to reach an energy density higher than conventional intermediate pressure cylinders the volume necessary to store a quantity of energy typical for the shipping sector is many times higher than that required by conventional fuels today used. The analysis points out as expected that the filling process is critical to maximize the stored hydrogen mass and that it is critical to measure the temperature of the cylinder walls in order not to exceed the material limits. Nevertheless for specific application such as the one considered in the paper the introduction of gaseous hydrogen as fuel can be considered for implementing zero local emission propulsion system in the medium term.
Potential for Hydrogen and Power-to-Liquid in a Low-carbon EU Energy System Using Cost Optimization
Oct 2018
Publication
Hydrogen represents a versatile energy carrier with net zero end use emissions. Power-to-Liquid (PtL) includes the combination of hydrogen with CO2 to produce liquid fuels and satisfy mostly transport demand. This study assesses the role of these pathways across scenarios that achieve 80–95% CO2 reduction by 2050 (vs. 1990) using the JRC-EU-TIMES model. The gaps in the literature covered in this study include a broader spatial coverage (EU28+) and hydrogen use in all sectors (beyond transport). The large uncertainty in the possible evolution of the energy system has been tackled with an extensive sensitivity analysis. 15 parameters were varied to produce more than 50 scenarios. Results indicate that parameters with the largest influence are the CO2 target the availability of CO2 underground storage and the biomass potential.
Hydrogen demand increases from 7 mtpa today to 20–120 mtpa (2.4–14.4 EJ/yr) mainly used for PtL (up to 70 mtpa) transport (up to 40 mtpa) and industry (25 mtpa). Only when CO2 storage was not possible due to a political ban or social acceptance issues was electrolysis the main hydrogen production route (90% share) and CO2 use for PtL became attractive. Otherwise hydrogen was produced through gas reforming with CO2 capture and the preferred CO2 sink was underground. Hydrogen and PtL contribute to energy security and independence allowing to reduce energy related import cost from 420 bln€/yr today to 350 or 50 bln€/yr for 95% CO2 reduction with and without CO2 storage. Development of electrolyzers fuel cells and fuel synthesis should continue to ensure these technologies are ready when needed. Results from this study should be complemented with studies with higher spatial and temporal resolution. Scenarios with global trading of hydrogen and potential import to the EU were not included.
Hydrogen demand increases from 7 mtpa today to 20–120 mtpa (2.4–14.4 EJ/yr) mainly used for PtL (up to 70 mtpa) transport (up to 40 mtpa) and industry (25 mtpa). Only when CO2 storage was not possible due to a political ban or social acceptance issues was electrolysis the main hydrogen production route (90% share) and CO2 use for PtL became attractive. Otherwise hydrogen was produced through gas reforming with CO2 capture and the preferred CO2 sink was underground. Hydrogen and PtL contribute to energy security and independence allowing to reduce energy related import cost from 420 bln€/yr today to 350 or 50 bln€/yr for 95% CO2 reduction with and without CO2 storage. Development of electrolyzers fuel cells and fuel synthesis should continue to ensure these technologies are ready when needed. Results from this study should be complemented with studies with higher spatial and temporal resolution. Scenarios with global trading of hydrogen and potential import to the EU were not included.
Strategies to Accelerate the Production and Diffusion of Fuel Cell Electric Vehicles: Experiences from California
Sep 2020
Publication
Fuel cell electric vehicles (FCEVs) can play a key role in accelerating the electrification of road transport. Specifically they offer longer driving ranges and shorter refuelling times relative to Battery Electric Vehicles (BEVs) while reducing needs for space-intensive public charging infrastructure. Although the maturity and market penetration of hydrogen is currently trailing batteries transport planners in several countries are looking to both technologies to reduce carbon emissions and air pollution. Home to the world’s largest on-road fleet of FCEVs California is one such jurisdiction. Experiences in California provide an ideal opportunity to address a gap in literature whereby barriers to FCEV diffusion are well understood but knowledge on actual strategies to overcome these has lacked. This study thus examines governance strategies in California to accelerate the production and diffusion of FCEVs key outcomes lessons learned and unresolved challenges. Evidence is sourced from 19 expert interviews and an examination of diverse documents. Strategies are examined from four perspectives: (i) supply-side (i.e. stimulation of vehicle production) (ii) infrastructure (i.e. construction of refuelling stations and hydrogen production) (iii) demand-side (i.e. stimulation of vehicle adoption) and (iv) institutional (i.e. cross-cutting measures to facilitate collaboration innovation and cost-reduction). Findings reveal a comprehensive mix of stringent regulation market and consumer incentives and public–private collaboration. However significant challenges remain for spurring the development of fuel cell transport in line with initial ambitions. Highlighting these provides important cues for public policy to accelerate the deployment of FCEVs and hydrogen in California and elsewhere.
Experimental Investigation of the Effects of Simultaneous Hydrogen and Nitrogen Addition on the Emissions and Combustion of a Diesel Engine
Jan 2014
Publication
Overcoming diesel engine emissions trade-off effects especially NOx and Bosch smoke number (BSN) requires investigation of novel systems which can potentially serve the automobile industry towards further emissions reduction. Enrichment of the intake charge with H2 þ N2 containing gas mixture obtained from diesel fuel reforming system can lead to new generation low polluting diesel engines. This paper investigates the effect of simultaneous H2 þ N2 intake charge enrichment on the emissions and combustion of a compression ignition engine. Bottled H2 þ N2 was simultaneously admitted into the intake pipe of the engine in 4% steps starting from 4% (2% H2 þ 2% N2) up to 16% (v/v). The results showed that under specific operating conditions H2 þ N2 enrichment can offer simultaneous NOx BSN and CO emissions reduction. Apart from regulated emissions nitrogen exhaust components were measured. Marginal N2O and zero NH3 emissions were obtained. NO/NO2 ratio increases when speed or load increases. Under low speed low load operation the oxidation of NO is enhanced by the addition of H2 þ N2 mixture. Finally admission of H2 þ N2 has a detrimental effect on fuel consumption
Integrating Housing Stock and Energy System Models as a Strategy to Improve Heat Decarbonisation Assessments
Aug 2014
Publication
The UK government heat strategy is partially based on decarbonisation pathways from the UK MARKAL energy system model. We review how heat provision is represented in UK MARKAL identifying a number of shortcomings and areas for improvement. We present a completely revised model with improved estimations of future heat demands and a consistent representation of all heat generation technologies. This model represents all heat delivery infrastructure for the first time and uses dynamic growth constraints to improve the modelling of transitions according to innovation theory. Our revised model incorporates a simplified housing stock model which is used produce highly-refined decarbonisation pathways for residential heat provision. We compare this disaggregated model against an aggregated equivalent which is similar to the existing approach in UK MARKAL. Disaggregating does not greatly change the total residential fuel consumption in two scenarios so the benefits of disaggregation will likely be limited if the focus of a study is elsewhere. Yet for studies of residential heat disaggregation enables us to vary consumer behaviour and government policies on different house types as well as highlighting different technology trends across the stock in comparison with previous aggregated versions of the model.
Renewable/Fuel Cell Hybrid Power System Operation Using Two Search Controllers of the Optimal Power Needed on the DC Bus
Nov 2020
Publication
In this paper the optimal and safe operation of a hybrid power system based on a fuel cell system and renewable energy sources is analyzed. The needed DC power resulting from the power flow balance on the DC bus is ensured by the FC system via the air regulator or the fuel regulator controlled by the power-tracking control reference or both regulators using a switched mode of the above-mentioned reference. The optimal operation of a fuel cell system is ensured by a search for the maximum of multicriteria-based optimization functions focused on fuel economy under perturbation such as variable renewable energy and dynamic load on the DC bus. Two search controllers based on the global extremum seeking scheme are involved in this search via the remaining fueling regulator and the boost DC–DC converter. Thus the fuel economy strategies based on the control of the air regulator and the fuel regulator respectively on the control of both fueling regulators are analyzed in this study. The fuel savings compared to fuel consumed using the static feed-forward control are 6.63% 4.36% and 13.72% respectively under dynamic load but without renewable power. With renewable power the needed fuel cell power on the DC bus is lower so the fuel cell system operates more efficiently. These percentages are increased to 7.28% 4.94% and 14.97%.
Electrolyzer Performance Analysis of an Integrated Hydrogen Power System for Greenhouse Heating. A Case Study
Jul 2016
Publication
A greenhouse containing an integrated system of photovoltaic panels a water electrolyzer fuel cells and a geothermal heat pump was set up to investigate suitable solutions for a power system based on solar energy and hydrogen feeding a self-sufficient geothermal-heated greenhouse. The electricity produced by the photovoltaic source supplies the electrolyzer; the manufactured hydrogen gas is held in a pressure tank. In these systems the electrolyzer is a crucial component; the technical challenge is to make it work regularly despite the irregularity of the solar source. The focus of this paper is to study the performance and the real energy efficiency of the electrolyzer analyzing its operational data collected under different operating conditions affected by the changeable solar radiant energy characterizing the site where the experimental plant was located. The analysis of the measured values allowed evaluation of its suitability for the agricultural requirements such as greenhouse heating. On the strength of the obtained result a new layout of the battery bank has been designed and exemplified to improve the performance of the electrolyzer. The evaluations resulting from this case study may have a genuine value therefore assisting in further studies to better understand these devices and their associated technologies.
A Smart Strategy for Sizing of Hybrid Renewable Energy System to Supply Remote Loads in Saudi Arabia
Oct 2021
Publication
The use of hybrid renewable energy systems (HRES) has become the best option for supplying electricity to sites remote from the central power system because of its sustainability environmental friendliness and its low cost of energy compared to many conventional sources such as diesel generators. Due to the intermittent nature of renewable energy resources there is a need however for an energy storage system (ESS) to store the surplus energy and feed the energy deficit. Most renewable sources used battery storage systems (BSS) a green hydrogen storage system (GHSS) and a diesel generator as a backup for these sources. Batteries are very expensive and have a very short lifetime and GHSS have a very expensive initial cost and many security issues. In this paper a system consisting of wind turbines and a photovoltaic (PV) array with a pumped hydro energy storage (PHES) system as the main energy storage to replace the expensive and short lifetime batteries is proposed. The proposed system is built to feed a remote area called Dumah Aljandal in the north of Saudi Arabia. A smart grid is used via a novel demand response strategy (DRS) with a dynamic tariff to reduce the size of the components and it reduces the cost of energy compared to a flat tariff. The use of the PHES with smart DRS reduced the cost of energy by 34.2% and 41.1% compared to the use of BSS and GHSS as an ESS respectively. Moreover the use of 100% green energy sources will avoid the emission of an estimated 2.5 million tons of greenhouse gases every year. The proposed system will use a novel optimization algorithm called the gradually reduced particles of particle swarm optimization (GRP-PSO) algorithm to enhance the exploration and exploitation during the searching iterations. The GRP-PSO reduces the convergence time to 58% compared to the average convergence time of 10 optimization algorithms used for comparison. A sensitivity analysis study is introduced in this paper in which the effect of ±20% change in wind speed and solar irradiance are selected and the system showed a low effect of these resources on the Levelized cost of energy of the HRES. These outstanding results proved the superiority of using a pumped-storage system with a dynamic tariff demand response strategy compared to the other energy storage systems with flat-rate tariffs.
Building an Optimal Hydrogen Transportation System for Mobility, Focus on Minimizing the Cost of Transportation via Truck
Jan 2018
Publication
The approach developed aims to identify the methodology that will be used to deliver the minimum cost for hydrogen infrastructure deployment using a mono-objective linear optimisation. It focuses on minimizing both capital and operation costs of the hydrogen transportation based on transportation via truck which represents the main focus of this paper and a cost-minimal pipeline system in the case of France and Germany. The paper explains the mathematical model describing the link between the hydrogen production via electrolysers and the distribution for mobility needs. The main parameters and the assumed scenario framework are explained. Subsequently the transportation of hydrogen via truck using different states of aggregation is analysed as well as the transformation and storage of hydrogen. This is used finally to build a linear programming aiming to minimize the sum of costs of hydrogen transportation between the different nodes and transformation/storage within the nodes.
No more items...