Safety
Best Practice in Numerical Simulation and CFD Benchmarking. Results from the SUSANA Project
Sep 2017
Publication
Correct use of Computational Fluid Dynamics (CFD) tools is essential in order to have confidence in the results. A comprehensive set of Best Practice Guidelines (BPG) in numerical simulations for Fuel Cells and Hydrogen applications has been one of the main outputs of the SUSANA project. These BPG focus on the practical needs of engineers in consultancies and industry undertaking CFD simulations or evaluating CFD simulation results in support of hazard/risk assessments of hydrogen facilities as well as on the needs of regulatory authorities. This contribution presents a summary of the BPG document. All crucial aspects of numerical simulations are addressed such as selection of the physical models domain design meshing boundary conditions and selection of numerical parameters. BPG cover all hydrogen safety relative phenomena i.e. release and dispersion ignition jet fire deflagration and detonation. A series of CFD benchmarking exercises are also presented serving as examples of appropriate modelling strategies.
Experimental Study on Vented Hydrogen Deflagrations in a Low Strength Enclosure
Oct 2015
Publication
This paper describes an experimental programme on vented hydrogen deflagrations which formed part of the Hyindoor project carried out for the EU Fuel Cells and Hydrogen Joint Undertaking. The purpose of this study was to investigate the validity of analytical models used to calculate overpressures following a low concentration hydrogen deflagration. Other aspects of safety were also investigated such as lateral flame length resulting from explosion venting. The experimental programme included the investigation of vented hydrogen deflagrations from a 31 m3 enclosure with a maximum internal overpressure target of 10 kPa (100 mbar). The explosion relief was provided by lightly covered openings in the roof or sidewalls. Uniform and stratified initial hydrogen distributions were included in the test matrix and the location of the ignition source was also varied. The maximum hydrogen concentration used within the enclosure was 14% v/v. The hydrogen concentration profile within the enclosure was measured as were the internal and external pressures. Infrared video images were obtained of the gases vented during the deflagrations. Findings show that the analytical models were generally conservative for overpressure predictions. Flame lengths were found to be far less than suggested by some guidance. Along with the findings the methodology test conditions and corresponding results are presented.
Safety Criteria for the Transport of Hydrogen in Permanently Mounted Composite Pressure Vessels
Sep 2019
Publication
The recent growth of the net of hydrogen fuelling stations increases the demands to transport compressed hydrogen on road by battery vehicles or tube-trailers both in composite pressure vessels. As a transport regulation the ADR is applicable in Europe and adjoined regions and is used for national transport in the EU. This regulation provides requirements based on the behaviour of each individual pressure vessel regardless of the pressure of the transported hydrogen and relevant consequences resulting from generally possible worst case scenarios such as sudden rupture. In 2012 the BAM (German Federal Institute for Materials Research and Testing) introduced consequence-dependent requirements and established them in national transport requirements concerning the “UN service life checks” etc. to consider the transported volume and pressure of gases. This results in a requirement that becomes more restrictive as the product of pressure and volume increases. In the studies presented here the safety measures for hydrogen road transport are identified and reviewed through a number of safety measures from countries including Japan the USA and China. Subsequently the failure consequences of using trailer vehicles the related risk and the chance are evaluated. A benefit-related risk criterion is suggested to add to regulations and to be defined as a safety goal in standards for hydrogen transport vehicles and for mounted pressure vessels. Finally an idea is given for generating probabilistic safety data and for highly efficient evaluation without a significant increase of effort.
Hydrogen Storage – Industrial Prospectives
Sep 2011
Publication
The topic of this paper is to give an historical and technical overview of hydrogen storage vessels and to detail the specific issues and constraints of hydrogen energy uses. Hydrogen as an industrial gas is stored either as a compressed or as a refrigerated liquefied gas. Since the beginning of the last century hydrogen is stored in seamless steel cylinders. At the end of the 60 s tubes also made of seamless steels were used; specific attention was paid to hydrogen embrittlement in the 70 s. Aluminum cylinders were also used for hydrogen storage since the end of the 60 s but their cost was higher compared to steel cylinders and smaller water capacity. To further increase the service pressure of hydrogen tanks or to slightly decrease the weight metallic cylinders can be hoop-wrapped. Then with specific developments for space or military applications fully-wrapped tanks started to be developed in the 80 s. Because of their low weight they started to be used in for portable applications: for vehicles (on-board storages of natural gas) for leisure applications (paint-ball) etc… These fully-wrapped composite tanks named types III and IV are now developed for hydrogen energy storage; the requested pressure is very high (from 700 to 850 bar) leads to specific issues which are discussed. Each technology is described in term of materials manufacturing technologies and approval tests. The specific issues due to very high pressure are depicted. Hydrogen can also be stored in liquid form (refrigerated liquefied gases). The first cryogenic vessels were used in the 60s. In the following the main characteristics of this type of storage will be indicated.
Numerical Study on the Influence of Different Boundary Conditions on the Efficiency of Hydrogen Recombiners Inside a Car Garage
Oct 2015
Publication
Passive auto-catalytic recombiners (PARs) have the potential to be used in the future for the removal of accidentally released hydrogen inside confined areas. PARs could be operated both as stand-alone or backup safety devices e.g. in case of active ventilation failure.
Recently computational fluid dynamics (CFD) simulations have been performed in order to demonstrate the principal performance of a PAR during a postulated hydrogen release inside a car garage. This fundamental study has now been extended towards a variation of several boundary conditions including PAR location hydrogen release scenario and active venting operation. The goal of this enhanced study is to investigate the sensitivity of the PAR operational behaviour for changing boundary conditions and to support the identification of a suitable PAR positioning strategy. For the simulation of PAR operation the in-house code REKO-DIREKT has been implemented in the CFD code ANSYS-CFX 15.
In a first step the vertical position of the PAR and the thermal boundary conditions of the garage walls have been modified. In a subsequent step different hydrogen release modes have been simulated which result either in a hydrogen-rich layer underneath the ceiling or in a homogeneous hydrogen distribution inside the garage. Furthermore the interaction of active venting and PAR operation has been investigated.
As a result of this parameter study the optimum PAR location was identified to be close underneath the garage ceiling. In case of active venting failure the PAR efficiently reduces the flammable gas volume (hydrogen concentration > 4 vol.%) for both stratified and homogeneous distribution. However the simulations indicate that the simultaneous operation of active venting and PAR may in some cases reduce the overall efficiency of hydrogen removal. Consequently a well-matched arrangement of both safety systems is required in order to optimize the overall efficiency. The presented CFD-based approach is an appropriate tool to support the assessment of the efficiency of PAR application for plant design and safety considerations with regard to the use of hydrogen in confined areas.
Recently computational fluid dynamics (CFD) simulations have been performed in order to demonstrate the principal performance of a PAR during a postulated hydrogen release inside a car garage. This fundamental study has now been extended towards a variation of several boundary conditions including PAR location hydrogen release scenario and active venting operation. The goal of this enhanced study is to investigate the sensitivity of the PAR operational behaviour for changing boundary conditions and to support the identification of a suitable PAR positioning strategy. For the simulation of PAR operation the in-house code REKO-DIREKT has been implemented in the CFD code ANSYS-CFX 15.
In a first step the vertical position of the PAR and the thermal boundary conditions of the garage walls have been modified. In a subsequent step different hydrogen release modes have been simulated which result either in a hydrogen-rich layer underneath the ceiling or in a homogeneous hydrogen distribution inside the garage. Furthermore the interaction of active venting and PAR operation has been investigated.
As a result of this parameter study the optimum PAR location was identified to be close underneath the garage ceiling. In case of active venting failure the PAR efficiently reduces the flammable gas volume (hydrogen concentration > 4 vol.%) for both stratified and homogeneous distribution. However the simulations indicate that the simultaneous operation of active venting and PAR may in some cases reduce the overall efficiency of hydrogen removal. Consequently a well-matched arrangement of both safety systems is required in order to optimize the overall efficiency. The presented CFD-based approach is an appropriate tool to support the assessment of the efficiency of PAR application for plant design and safety considerations with regard to the use of hydrogen in confined areas.
The Dependence of Fatigue Crack Growth on Hydrogen in Warm-rolled 316 Austenitic Stainless Steel
Sep 2019
Publication
The fatigue crack growth rate of warm-rolled AISI 316 austenitic stainless steel was investigated by controlling rolling strain and temperature in argon and hydrogen gas atmospheres. The fatigue crack growth rates of warm-rolled 316 specimens tested in hydrogen decreased with increasing rolling temperature especially 400 °C. By controlling the deformation temperature and strain the influences of microstructure (including dislocation structure deformation twins and α′ martensite) and its evolution on hydrogen-induced degradation of mechanical properties were separately discussed. Deformation twins deceased and dislocations became more uniform with the increase in rolling temperature inhibiting the formation of dynamic α′ martensite during the crack propagation. In the cold-rolled 316 specimens deformation twins accelerated hydrogen-induced crack growth due to the α′ martensitic transformation at the crack tip. In the warm-rolled specimens the formation of α′ martensite around the crack tip was completely inhibited which greatly reduced the fatigue crack growth rate in hydrogen atmosphere.
Towards a Set of Design Recommendations for Pressure Relief Devices On-board Hydrogen Vehicles
Oct 2015
Publication
Commercial use of hydrogen on-board fuel cell vehicles necessitates the compression of hydrogen gas up to 700 bar raising unique safety challenges. Potential hazards to be addressed include jet fires from high-pressure hydrogen on-board storage. Previous studies investigated effects of jet fires that occur when pressure relief devices (PRDs) on hydrogen fuel cell vehicles activate. This investigation examines plane jets’ axis switching and flame length accounting for compressibility effects and turbulent combustion near the point of release. Comparison with experimental data and previous plane jet simulation results reveal that combustion process does not affect flow dynamics in compressible region of jet flow. Furthermore a theoretical design of a variable aperture pressure relief device is examined which would enable the blow-down time to be minimized while reducing deterministic separation distances is examined using Computational Fluid Dynamics (CFD) techniques. Design recommendations are suggested for a novel PRD design.
A Study on Dispersion Resulting From Liquefied Hydrogen Spilling
Oct 2015
Publication
For massive utilization of hydrogen energy it is necessary to transport a large quantity of hydrogen by liquefied hydrogen carriers. However the current rule on ships carrying liquefied hydrogen in bulks do not address the maritime transport of liquefied hydrogen and the safety assessment of liquefied hydrogen carriage is thus very important. In the present study we spilled liquefied hydrogen and LNG (Liquefied Natural Gas) on the surface of various materials and compared the difference of their spread and dispersion. Liquefied hydrogen immediately dispersed upward compared to LNG. Furthermore we also measured the flammability limit of low temperature hydrogen gas. Its range at low temperature was narrower than the range at normal temperature.
Explosion and Fire Risk Analyses of Maritime Fuel Cell Rooms with Hydrogen
Sep 2017
Publication
A methodology for explosion and fire risk analyses in enclosed rooms is presented. The objectives of this analysis are to accurately predict the risks associated with hydrogen leaks in maritime applications and to use the approach to provide decision support regarding design and risk-prevention and risk mitigating measures. The methodology uses CFD tools and simpler consequence models for ventilation dispersion and explosion scenarios as well as updated frequency for leaks and ignition. Risk is then efficiently calculated with a Monte Carlo routine capturing the transient behavior of the leak. This makes it possible to efficiently obtain effects of sensitivities and design options maintaining safety and reducing costs.
Materials Aspects Associated with the Addition of up to 20 mol% Hydrogen into an Existing Natural Gas Distribution Network
Sep 2019
Publication
The introduction of hydrogen into the UK natural gas main has been reviewed in terms of how materials within the gas distribution network may be affected by contact with up to 80% Natural Gas : 20 mol% hydrogen blend at up to 2 barg. A range of metallic polymeric and elastomeric materials in the gas distribution network (GDN) were assessed via a combination of literature review and targeted practical test programmes.
The work considered:
The work considered:
- The effect of hydrogen on metallic materials identified in the network
- The effect of hydrogen on polymeric materials identified in the network
- The effect of hydrogen exposure on polyethylene pipeline techniques (squeeze off and collar electrofusion)
Development of a Hydrogen and Fuel Cell Vehicle Emergency Response National Template
Sep 2013
Publication
The California Fuel Cell Partnership (CaFCP) is currently working with key stakeholders like the US Department of Energy (DOE) and National Fire Protection Association (NFPA) to develop a national template for educating and training first responders about hydrogen fuel cell-powered vehicles (FCV) and hydrogen fuelling infrastructure. Currently there are several existing programs that either have some related FCV/hydrogen material or have plans to incorporate this in the future. To create a robust national emergency responder (ER) program the strongest elements from these existing programs are considered for incorporation into the template. Working with the key stakeholders the national template will be evaluated on a regular basis to ensure accurate and up to date information and resources and effective teaching techniques for the emergency response community. This paper describes the evaluation process discusses elements of the template and reports on the steps and progress to implementation; all in the effort to effectively support the emergency response community as hydrogen infrastructure develops and FCVs are leased or sold.
Hydrogen Wide Area Monitoring of LH2 Releases
Sep 2019
Publication
The characterization of liquid hydrogen (LH2) releases has been identified as an international research priority to expand the safe use of hydrogen as an energy carrier. The elucidation of LH2 release behavior will require the development of dispersion and other models guided and validated by empirical field measurements such as those afforded by Hydrogen Wide Area Monitoring (HyWAM). HyWAM can be defined as the quantitative spatial and temporal three-dimensional monitoring of planned or unintentional hydrogen releases. With support provided through the FCH JU Prenormative Research for the Safe Use of Liquid Hydrogen (PRESLHY) program HSE performed a series of LH2 releases to characterize the dispersion and pooling behavior of cold hydrogen releases. The NREL Sensor Laboratory developed a HyWAM system based upon a distributed array of point sensors that is amenable for profiling cold hydrogen plumes. The NREL Sensor Laboratory and HSE formally committed to collaborate on profiling the LH2 releases. This collaboration included the integration of the NREL HyWAM into the HSE LH2 release hardware. This was achieved through a deployment plan jointly developed by the NREL and HSE personnel. Under this plan the NREL Sensor Laboratory provided multiple HyWAM modules that accommodated 32 sampling points for near-field hydrogen profiling during the HSE PRESLHY LH2 releases. The NREL HyWAM would be utilized throughout the LH2 release study performed under PRESLHY by HSE including Work Package 3 (WP3—Release and Mixing--Rainout) and subsequent work packages (WP4—Ignition and WP5—Combustion). Under the auspices of the PRESLHY WP6 (Implementation) data and findings from the HSE LH2 Releases are to be made available to stakeholders in the hydrogen community. Comprehensive data analysis and dissemination is ongoing but the integration of the NREL HyWAM into the HSE LH2 Release Apparatus and its performance as well as some key outcomes of the LH2 releases in WP3 are presented.
A GIS-based Risk Assessment for Hydrogen Transport: A Case Study in Yokohama City
Sep 2019
Publication
Risk assessment of hazardous material transport by road is critical in considering the spatial features of the transport route. However previous studies that focused on hydrogen transport were unable to reflect the spatial features in their risk assessments. Hence this study aims to assess the risk of hydrogen transport by road considering the spatial features of the transport route based on a geographic information system (GIS). This risk assessment method is conducted through a case study in Yokohama which is an advanced city for hydrogen economy in Japan. In our assessment the risk determined by multiplying the frequency of accidents with the consequence was estimated by road segments that constitute the entire transport route. The effects of the road structure and traffic volumes were reflected in the estimation of the frequency and consequence for each road segment. All estimations of frequency consequence and risk were conducted on a GIS compiled with the information regarding the road network and population. In the case study in Yokohama the route for the transport of compressed hydrogen was virtually set from the near-term perspectives. Based on the case study results the risks of the target transport route were assessed at an acceptable level under the previous risk criteria. The results indicated that the risks fluctuated according to the road segments. This implies that the spatial features of the transport route significantly affect the corresponding risks. This finding corroborates the importance of considering spatial features in the risk assessment of hydrogen transport by road. Furthermore the discussion of this importance leads to the capability of introducing hydrogen energy careers with high transport efficiency and transport routing to avoid high risk road segments as risk countermeasures.
Study of a Post-fire Verification Method for the Activation Status of Hydrogen Cylinder Pressure Relief Devices
Oct 2015
Publication
To safely remove from its fire accident site a hydrogen fuel cell vehicle equipped with a carbon fiber reinforced plastic composite cylinder for compressed hydrogen (CFRP cylinder) and to safely keep the burnt vehicle in a storage facility it is necessary to verify whether the thermally-activated pressure relief device (TPRD) of the CFRP cylinder has already been activated releasing the hydrogen gas from the cylinder. To develop a simple post-fire verification method on TPRD activation the present study was conducted on the using hydrogen densitometer and Type III and Type IV CFRP cylinders having different linings. As the results TPRD activation status can be determined by measuring hydrogen concentrations with a catalytic combustion hydrogen densitometer at the cylinder's TPRD gas release port.
CFD Study of the Unignited and Ignited Hydrogen Releases from TRPD Under a Fuel Cell Car
Oct 2015
Publication
This paper describes a CFD study of a scenario involving the vertical downward release of hydrogen from a thermally-activated pressure relief device (TPRD) under a fuel cell car. The volumetric source model is applied to simulate hydrogen release dynamics during the tank blowdown process. Simulations are conducted for both unignited and ignited releases from onboard storage at 35 MPa and 70 MPa with TPRD orifice 4.2 mm. Results show that after TPRD opening the hazards associated with the release of hydrogen lasts less than two minutes and the most hazardous timeframe occurs within ten seconds of the initiation of the release. The deterministic separation distances for unignited releases are longer than those for ignited releases indicating that the separation distances are dominated by delayed ignition events rather than immediate ignition events. The deterministic separation distances for both unignited and ignited hydrogen downward releases under the car are significantly shorter than those of free jets. To ensure the safety of people a deterministic separation distance of at least 10 m for 35 MPa releases is required. This distance should be increased to 12 m for the 70 MPa release case. To ensure that the concentration of hydrogen is always less than 4% at the location of the air intake of buildings the deterministic separation distance should be at least 11 m for 35 MPa releases and 13 m for 70 MPa releases.
Analysis of the Parametric-Acoustic Instability for Safety Assessment of Hydrogen-Air Mixtures in Closed Volumes
Sep 2011
Publication
The acoustic to the parametric instability has been studied for H2-air mixtures at normal conditions. Two approaches for the investigation of the problem have been considered. The simplified analytical model proposed by Bychkov was selected initially. Its range of applicability resulted to be very restricted and therefore numerical solutions of the problem were taken into account. The results obtained were used to study the existence of spontaneous transition from the acoustic to the parametric instability for different fuel concentrations. Finally the growth rate of the instabilities was numerically calculated for a set of typical mixtures for hydrogen safety.
Hydrogen Emergency Response Training for First Responders
Sep 2011
Publication
The U.S. Department of Energy supports the implementation of hydrogen fuel cell technologies by providing hydrogen safety and emergency response training to first responders. A collaboration was formed to develop and deliver a one-day course that uses a mobile fuel cell vehicle (FCV) burn prop designed and built by Kidde Fire Trainers. This paper describes the development of the training curriculum including the design and operation of the FCV prop; describes the successful delivery of this course to over 300 participants at three training centers in California; and discusses feedback and observations received on the course. Photographs and video clips of the training sessions will be presented.
Low Energy Hydrogen Sensor
Sep 2011
Publication
A new silicon-based hydrogen sensor for measurements at high concentrations near the lower flammable limit of hydrogen (40000 ppm) is presented. Due to operation at room temperature the power consumption of the sensor is smaller than that of other sensors on the market by several orders magnitude. Further development of the sensor system could lead to battery powered or even energy-independent operation. As sensor fabrication is based on semiconductor technology low-cost production can be achieved for the mass market. The sensor investigated showed good long-term stability combined with a fast response on the basis of cyclic thermal activations. This was demonstrated by a stress test that simulated the activation and measurement cycles experienced by the sensor in one year. Finite element method was used to further reduce the power consumption of the thermal activation. This resulted in an average power consumption of 2 × 10−6 W for the sensor activation.
Development of an Italian Fire Prevention Technical Rule For Hydrogen Pipelines
Sep 2011
Publication
This paper summarizes the current results of the theoretical and experimental activity carried out by the Italian Working Group on the fire prevention safety issues in the field of the hydrogen transport in pipelines. From the theoretical point of view a draft document has been produced beginning from the regulations in force on the natural gas pipelines; these have been reviewed corrected and integrated with the instructions suitable to the use of hydrogen. From the experimental point of view an apparatus has been designed and installed at the University of Pisa; this apparatus has allowed the simulation of hydrogen releases from a pipeline with and without ignition of hydrogen-air mixture. The experimental data have helped the completion of the above-mentioned draft document with the instructions about the safety distances. The document has been improved for example pipelines above ground (not buried) are allowed due to the knowledge acquired by means of the experimental campaign. The safety distances related to this kind of piping has been chosen on the base of risk analysis. The work on the text contents is concluded and the document is currently under discussion with the Italian stakeholders involved in the hydrogen applications.
Numerical Study of Spontaneous Ignition in Pressurized Hydrogen Release Through a Length of Tube with Local Contraction
Sep 2011
Publication
Numerical investigations have been conducted on the effect of the internal geometry of a local contraction on the spontaneous ignition of pressurized hydrogen release through a length of tube using a 5th-order WENO scheme. A mixture-averaged multi-component approach was used for accurate calculation of molecular transport. The auto-ignition and combustion chemistry were accounted for using a 21-step kinetic scheme. It is found that a local contraction can significantly facilitate the occurrence of spontaneous ignition by producing elevated flammable mixture and enhancing turbulent mixing from shock formation reflection and interaction. The first ignition kernel is observed upstream the contraction. It then quickly propagates along the contact interface and transits to a partially premixed flame due to the enhanced turbulent mixing. The partially premixed flames are highly distorted and overlapped with each other. Flame thickening is observed which is due to the merge of thin flames. The numerical predictions suggested that sustained flames could develop for release pressure as low as 25 bar. For the release pressure of 18 bar spontaneous ignition was predicted but the flame was soon quenched. To some extent this finding is consistent with Dryer et al.'s experimental observation in that the minimum release pressure required to induce a spontaneous ignition for the release through a tube with internal geometries is only 20.4 bar.
Threshold Stress Intensity Factor for Hydrogen Assisted Cracking of Cr-Mo Steel Used as Stationary Storage Buffer of a Hydrogen Refueling Station
Oct 2015
Publication
In order to determine appropriate value for threshold stress intensity factor for hydrogen-assisted cracking (KIH) constant-displacement and rising-load tests were conducted in high-pressure hydrogen gas for JIS-SCM435 low alloy steel (Cr-Mo steel) used as stationary storage buffer of a hydrogen refuelling station with 0.2% proof strength and ultimate tensile strength equal to 772 MPa and 948 MPa respectively. Thresholds for crack arrest under constant displacement and for crack initiation under rising load were identified. The crack arrest threshold under constant displacement was 44.3 MPa m1/2 to 44.5 MPa m1/2 when small-scale yielding and plane-strain criteria were satisfied and the crack initiation threshold under rising load was 33.1 MPa m1/2 to 41.1 MPa m1/2 in 115 MPa hydrogen gas. The crack arrest threshold was roughly equivalent to the crack initiation threshold although the crack initiation threshold showed slightly more conservative values. It was considered that both test methods could be suitable to determine appropriate value for KIH for this material.
Applying Risk Management Strategies Prudently
Sep 2011
Publication
During the current global financial crisis the term “Risk Management” is often heard. Just as the causes for the financial problems are elusive so is a complete definition of what Risk Management means. The answer is highly dependent upon your perceptions of “risk” and your appetite for assuming risks. The proposed paper will explore these issues with some brief case studies as they apply to hydrogen industrial applications hydrogen refuelling stations and fuel cell technologies for distributed generation.
Specifically the paper will identify the various risk exposures from the perspective of the project developers original equipment suppliers end users project funding sources and traditional insurance providers. What makes this evaluation intriguing is that it is a mixed bag of output capacities Combine Heat & Power (CHP) potential and technology maturity. Therefore the application considerations must be part of any overall Risk Management program.
Specifically the paper will identify the various risk exposures from the perspective of the project developers original equipment suppliers end users project funding sources and traditional insurance providers. What makes this evaluation intriguing is that it is a mixed bag of output capacities Combine Heat & Power (CHP) potential and technology maturity. Therefore the application considerations must be part of any overall Risk Management program.
Risk Reduction Potential of Accident Prevention and Mitigation Features
Sep 2011
Publication
Quantitative Risk Assessment (QRA) can help to establish a set of design and operational requirements in hydrogen codes and standards that will ensure safe operation of hydrogen facilities. By analyzing a complete set of possible accidents in a QRA the risk drivers for these facilities can be identified. Accident prevention and mitigation features can then be analyzed to determine which are the most effective in addressing these risk drivers and thus reduce the risk from possible accidents. Accident prevention features/methods such as proper material selection and preventative maintenance are included in the design and operation of facilities. Accident mitigation features are included to reduce or terminate the potential consequences from unintended releases of hydrogen. Mitigation features can be either passive or active in nature. Passive features do not require any component to function in order to prevent or mitigate a hydrogen release. Examples of passive mitigation features include the use of separation distances barriers and flow limiting orifices. Active mitigation features initiate when specific conditions occur during an accident in order to terminate an accident or reduce its consequences. Examples of active mitigation features include detection and isolation systems fire suppression systems and purging systems. A concept being pursued by the National Fire Protection Association (NFPA) hydrogen standard development is to take credit for prevention and mitigation features as a means to reduce separation distances at hydrogen facilities. By utilizing other mitigation features the risk from accidents can be decreased and risk-informed separation distances can be reduced. This paper presents some preliminary QRA results where the risk reduction potential for several active and passive mitigation features was evaluated. These measures include automatic leak detection and isolation systems the use of flow limiting orifices and the use of barriers. Reducing the number of risk-significant components in a system was also evaluated as an accident prevention method. In addition the potential reduction in separation distances if such measures were incorporated at a facility was also determined.
Ignitability and Mixing of Underexpanded Hydrogen Jets
Sep 2011
Publication
Reliable methods are needed to predict ignition boundaries that result from compressed hydrogen bulk storage leaks without complex modelling. To support the development of these methods a new high-pressure stagnation chamber has been integrated into Sandia National Laboratories’ Turbulent Combustion Laboratory so that relevant compressed gas release scenarios can be replicated. For the present study a jet with a 10:1 pressure ratio issuing from a small 0.75 mm radius nozzle has been examined. Jet exit shock structure was imaged by Schlieren photography while quantitative Planar Laser Rayleigh Scatter imaging was used to measure instantaneous hydrogen mole fractions downstream of the Mach disk. Measured concentration statistics and ignitable boundary predictions compared favorably to analytic reconstructions of downstream jet dispersion behaviour. Model results were produced from subsonic jet dispersion models and by invoking self-similarity jet scaling arguments with length scaling by experimentally measured effective source radii. Similar far field reconstructions that relied on various notional nozzle models to account for complex jet exit shock phenomena failed to satisfactorily predict the experimental findings. These results indicate further notional nozzle refinement is needed to improve the prediction fidelity. Moreover further investigation is required to understand the effect of different pressure ratios on measured virtual origins used in the jet dispersion model.
Simulation of the Efficiency of Hydrogen Recombiners as Safety Devices
Sep 2011
Publication
Passive auto-catalytic recombiners (PARs) are used as safety devices in the containments of nuclear power plants (NPPs) for the removal of hydrogen that may be generated during specific reactor accident scenarios. In the presented study it was investigated whether a PAR designed for hydrogen removal inside a NPP containment would perform principally inside a typical surrounding of hydrogen or fuel cell applications. For this purpose a hydrogen release scenario inside a garage – based on experiments performed by CEA in the GARAGE facility (France) – has been simulated with and without PAR installation. For modelling the operational behaviour of the PAR the in-house code REKO-DIREKT was implemented in the CFD code ANSYS-CFX. The study was performed in three steps: First a helium release scenario was simulated and validated against experimental data. Second helium was replaced by hydrogen in the simulation. This step served as a reference case for the unmitigated scenario. Finally the numerical garage setup was enhanced with a commercial PAR model. The study shows that the PAR works efficiently by removing hydrogen and promoting mixing inside the garage. The hot exhaust plume promotes the formation of a thermal stratification that pushes the initial hydrogen rich gas downwards and in direction of the PAR inlet. The paper describes the code implementation and simulation results.
Numerical Study on Detailed Mechanism of H2-Air Flame Jet Ignition
Sep 2013
Publication
Jet ignition was recognized in the 1970s and has since been applied to automobile engines such as the Honda CVCC. In the 1990s jet ignition was observed in explosions and was seen as a problem that may relate to jet ignition. Our group presented jet ignition experimentally and numerically in 1999 and later using LIF measurements with the same experimental vessel as used in 1999. However the detailed mechanism of jet ignition was not clarified at that time. The target of this study is to clarify how jet ignition happens and to understand the detailed mechanism of flame jet ignition.
Ignition of Flammable Hydrogen & Air Mixtures by Controlled Glancing Impacts in Nuclear Waste Decommissioning
Sep 2013
Publication
Conditions are examined under which mechanical stimuli produced by striking controlled blows can result in sparking and ignition of hydrogen in air mixtures. The investigation principally concerns magnesium thermite reaction as the ignition source and focuses on the conditions and thermomechanical parameters that are involved in determining the probability of ignition. It is concluded that the notion of using the kinetic energy of impact as the main criterion in determining whether an ignition event is likely or not is much less useful than considering the parameters which determine the maximum temperature produced in a mechanical stimuli event. The most influential parameter in determining ignition frequency or probability is the velocity of sliding movement during mechanical stimuli. It is also clear that the kinetic energy of a moving hammer head is of lesser importance than the normal force which is applied during contact. This explains the apparent discrepancy in previous studies between the minimum kinetic energy thought to be necessary to allow thermite sparking and gas ignition to occur with drop weight impacts and glancing blow impacts. In any analysis of the likelihood of mechanical stimuli to cause ignition the maximum surface temperature generated should be determined and considered in relation to the temperatures that would be required to initiate hot surface reactions sufficient to cause sparking and ignition.
Real-size Calculation of High-pressure Hydrogen Flow and its Auto-ignition in Cylindrical Tube
Sep 2013
Publication
A real-size calculation is performed for high-pressure hydrogen release in a tube using the axisymmetric Navier–Stokes equations with the full hydrogen chemistry. A Harten–Yee-type total variation diminishing scheme and point-implicit method are used to integrate the governing equations. The calculated real-size results show that the leading shock wave velocity is similar to that calculated using a smaller tube. The mixing process and ignition behaviour of high-pressure hydrogen are explained in detail; the velocity shear layer and Kelvin–Helmholtz instability are the main causes of mixing of hydrogen with air and ignition in the high-temperature region behind the leading shock wave.
Hydrogen Self-Ignition In Pressure Relief Devices
Sep 2009
Publication
In future pressure relief devices (PRDs) should be installed on hydrogen vehicles to prevent a hydrogen container burst in the event of a nearby fire. Weakening of the container at elevated temperature could result in such burst. In this case the role of a PRD is to release some or all of the system fluid in the event of an abnormally high pressure. The paper analyzes the possibility of hydrogen self-ignition at PRD operation and ways of its prevention.
Safety Distances: Comparison of the Methodologies for Their Determination
Sep 2011
Publication
In this paper a study on the comparison between the different methodologies for the determination of the safety distances proposed by Standard Organizations and national Regulations is presented. The application of the risk-informed approach is one of the methodologies used for the determination of safety distances together with the risk-based approach. One of the main differences between the various methodologies is the risk criterion chosen. In fact a critical point is which level of risk should be used and then which are the harm events that must be considered. The harm distances are evaluated for a specified leak diameter that is a consequence of some parameters used in the various methodologies. The values of the safety distances proposed by Standard Organizations and national Regulations are a demonstration of the different approaches of the various methodologies especially in the choice of the leak diameter considered.
The Crucial Role of the Lewis Number in Jet Ignition
Sep 2011
Publication
During the early phase of the transient process following a hydrogen leak into the atmosphere a contact surface appears separating hot air from cold hydrogen. Locally the interface is approximately planar. Diffusion occurs potentially leading to ignition. This process was analyzed by Lin˜a´n and Crespo (1976) for Lewis number unity and Lin˜a´n and Williams (1993) for Lewis number less than unity. In addition to conduction these processes are affected by expansion due to the flow which leads to a temperature drop. If chemistry is very temperature-sensitive then the reaction rate peaks close to the hot region where relatively little fuel is present. Indeed the Arrhenius rate drops rapidly as temperature drops much more so than fuel concentration. However the small fuel concentration present close to the airrich side depends crucially upon the balance between fuel diffusion and heat diffusion hence the fuel Lewis number. For Lewis number unity the fuel concentration present due to diffusion is comparable to the rate of consumption due to chemistry. If the Lewis number is less than unity fuel concentration brought in by diffusion is large compared with temperature-controlled chemistry. For a Lewis number greater than unity diffusion is not strong enough to bring in as much fuel as chemistry would be able to burn and combustion is controlled by fuel diffusion. In the former case combustion occurs faster leading to a localized ignition at a finite time determined by the analysis. As long as the temperature drop due to the expansion associated with the multidimensional nature of the jet does not lower significantly the reaction rate up to that point ignition in the jet takes place. For fuel Lewis number greater than unity first the reaction rate is much lower. Second chemistry does not lead to a defined ignition. Eventually expansion will affect the process and ignition does not take place. In summary it appears that the reason why hydrogen is the only fuel for which jet ignition has been observed is a Lewis number effect coupled with a high speed of sound hence a high initial temperature discontinuity.
Detection of Hydrogen Released In a Full-Scale Residential Garage
Sep 2011
Publication
Experiments were conducted to assess detectability of a low-level leak of hydrogen gas and the uniformity of hydrogen concentration at selected sensor placement locations in a realistic setting. A 5%2hydrogen/95%2nitrogen gas mixture was injected at a rate of 350 L/min for about 3/4 hour into a 93m3 residential garage space through a 0.09 m2 square open-top dispersion box located on the floor. Calibrated catalytic sensors were placed on ceiling and wall locations and the sensors detected hydrogen early in the release and continued to measure concentrations to peak and diminishing levels. Experiments were conducted with and without a car parked over the dispersion box. The results show that a car positioned over the dispersion box tends to promote dilution of the hydrogen cause a longer time for locations to reach a fixed threshold and produce lower peak concentrations than with no car present.
RBD-fast Based Sensitivity and Uncertainty Analysis on a Computational Hydrogen Recombiner Test Case
Sep 2017
Publication
Deflagration-to-Detonation Transition Ratio (DDTR) is an important parameter in measuring the hazard of hydrogen detonation at given thermodynamic conditions. It’s among the major tasks to evaluate DDTR in the study of hydrogen safety in a nuclear containment. With CFD tools detailed distribution of thermodynamic parameters at each instant can be simulated with considerable reliability. Then DDTR can be estimated using related CFD output. Forstochastic or epistemic reasons uncertainty always exists in input parameters during computations. This lack of accuracy can finally be reflected in the uncertainty of computation results e.g. DDTR in our consideration. The analysis of the influence of the input uncertainty is therefore a key step to understand the model’s response on the output and possibly to improve the accuracy. The increase of computational power makes it possible to perform statistics-based sensitivity and uncertainty (SU) analysis on CFD simulations. This paper aims at presenting some ideas on the procedure in safety analysis on hydrogen in nuclear containment. A hydrogen recombiner case is constructed and simulated with CFD method. DDTR at each instant is computed using a semi-empirical method. RBD-FAST based SU analysis is performed on the result.
A Numerical Simulation of Hydrogen Diffusion for the Hydrogen Leakage from a Fuel Cell Vehicle in an Underground Parking Garage
Sep 2011
Publication
In the present study the diffusion process of hydrogen leaking from a FCV (Fuel Cell Vehicle) in an underground parking garage is analyzed by numerical simulations in order to assess the risk of a leakage accident. The temporal and spatial evolution of the hydrogen concentration as well as the flammable region in the parking garage was predicted numerically. The effects of the leakage flow rate and an additional ventilation fan were investigated to evaluate the ventilation performance to relieve the accumulation of the hydrogen gas. The volume of the flammable region shows a non-linear growth in time and rapidly increases eventually. The present numerical analysis can provide a physical insight and quantitative data for safety of various hydrogen applications.
Regulations, Codes, and Standards (RCS) For Large Scale Hydrogen Systems
Sep 2017
Publication
Hydrogen has potential applications that require larger-scale storage use and handling systems than currently are employed in emerging-market fuel cell applications. These potential applications include hydrogen generation and storage systems that would support electrical grid systems. There has been extensive work evaluating regulations codes and standards (RCS) for the emerging fuel cell market such as the infrastructure required to support fuel cell electric vehicles. However there has not been a similar RCS evaluation and development process for these larger systems. This paper presents an evaluation of the existing RCS in the United States for large-scale systems and identifies potential RCS gaps. This analysis considers large-scale hydrogen technologies that are currently being employed in limited use but may be more widely used as large-scale applications expand. The paper also identifies areas of potential safety research that would need to be conducted to fill the RCS gaps. U.S. codes define bulk hydrogen storage systems but do not define large-scale systems. This paper evaluates potential applications to define a large-scale hydrogen system relative to the systems employed in emerging technologies such as hydrogen fuelling stations. These large-scale systems would likely be of similar size to or larger than industrial hydrogen systems.
Non-adiabatic Blowdown Model: A Complimentary Tool for the Safety Design of Tank-TPRD System
Sep 2017
Publication
Previous studies have demonstrated that while blowdown pressure is reproduced well by both adiabatic and isothermal analytical models the dynamics of temperature cannot be predicted well by either model. The reason for the last is heat transfer to cooling during expansion gas from the vessel wall. Moreover when exposed to an external fire the temperature inside the vessel increases i.e. when a thermally activated pressure relief device (TPRD) is still closed with subsequent pressure increase that may lead to a catastrophic rupture of the vessel. The choice of a TPRD exit orifice size and design strategy are challenges: to provide sufficient internal pressure drop in a fire when the orifice size is too small; to avoid flame blow off expected with the decrease of pressure during the blowdown; to decrease flame length of subsequent jet fire as much as possible by the decrease of the orifice size under condition of sufficient fire resistance provisions to avoid pressure peaking phenomenon etc. The adiabatic model of blowdown [1] was developed using the Abel-Nobel equation of state and the original theory of underexpanded jet [2]. According to experimental observations e.g. [3] heat transfer plays a significant role during the blowdown. Thus this study aims to modify the adiabatic blowdown model to include the heat transfer to non-ideal gas. The model accounts for a change of gas temperature inside the vessel due to two “competing” processes: the decrease of temperature due to gas expansion and the increase of temperature due to heat transfer from the surroundings e.g. ambience or fire through the vessel wall. This is taken into account in the system of equations of adiabatic blowdown model through the change of energy conservation equation that accounts for heat from outside. There is a need to know the convective heat transfer coefficient between the vessel wall and the surroundings and wall size and properties to define heat flux to the gas inside the vessel. The non-adiabatic model is validated against available experimental data. The model can be applied as a new engineering tool for the inherently safer design of hydrogen tank-TPRD system.
PIV-measurements of Reactant Flow in Hydrogen-air Explosions
Sep 2017
Publication
The paper present the work on PIV-measurements of reactant flow velocity in front of propagating flames in hydrogen-air explosions. The experiments was performed with hydrogen-air mixture at atmospheric pressure and room temperature. The experimental rig was a square channel with 45 × 20 mm2 cross section 300 mm long with a single cylindrical obstacle of blockage ratio 1/3. The equipment used for the PIV-measurements was a Firefly diode laser from Oxford lasers Photron SA-Z high-speed camera and a particle seeder producing 1 μm droplets of water. The gas concentrations used in the experiments was 14 and 17 vol% hydrogen in air. The resulting explosion can be characterized as slow since the maximum flow velocity of the reactants was 13 m/s in the 14% mixture and 23 m/s in the 17% mixture. The maximum flow velocities was measured during the flame-vortex interaction and at two obstacle diameters behind the obstacle. The flame-vortex interaction contributed to the flame acceleration by increasing the overall reaction rate and the flow velocity. The flame area as a function of position is the same for both concentrations as the flame passes the obstacle.
Monte-Carlo-analysis of Minimum Load Cycle Requirements for Composite Cylinders for Hydrogen
Sep 2017
Publication
Existing regulations and standards for the approval of composite cylinders in hydrogen service are currently based on deterministic criteria (ISO 11119-3 UN GTR No. 13). This paper provides a systematic analysis of the load cycle properties resulting from these regulations and standards. Their characteristics are compared with the probabilistic approach of the BAM. Based on Monte-Carlo simulations the available design range of all concepts is compared. In addition the probability of acceptance for potentially unsafe design types is determined.
Residual Performance of Composite Pressure Vessels Submitted to Mechanical Impacts
Sep 2017
Publication
Type IV pressure vessels are commonly used for hydrogen on-board stationary or bulk storages. During their lifetime they can be submitted to mechanical impacts creating damage within the composite structure not necessarily correlated to what is visible from the outside. When an impact is suspected or when a cylinder is periodically inspected it is necessary to determine whether it can safely stay in service or not. The FCH JU project Hypactor aims at creating a large database of impacts characterized by various non destructive testing (NDT) methods in order to provide reliable pass-fail criteria for damaged cylinders. This paper presents some of the tests results investigating short term burst) and long term (cycling) performance of impacted cylinders and the recommendations that can be made for impact testing and NDT criteria calibration.
Effectiveness Evaluation of Facilities Protecting from Hydrogen-air Explosion Overpressure
Sep 2011
Publication
The physical processes of the explosion of the hydrogen cloud which is formed as a result of the instantaneous destruction of high-pressure cylinder in the fuelling station are investigated. To simulate the formation of hydrogen-air mixture and its combustion a three-dimensional model of an instantaneous explosion of the gas mixture based on the Euler equations supplemented by the conservation laws of mixture components solved by Godunov method is used. To reduce the influence of the overpressure effects in the shock wave on the surrounding environment it is proposed to use a number of protective measures. An estimation of the efficiency of safety devices is carried out by monitoring the overpressure changes in several critical points. To reduce the pressure load on the construction of protective devices a range of constructive measures is also offered.
Dynamic Load Analysis of Explosion in Inhomogeneous Hydrogen-air Mixtures
Sep 2017
Publication
This paper presents results from experiments on gas explosions in inhomogeneous hydrogen-air mixtures. The experimental channel is 3 m with a cross section of 100 mm by 100 mm and a 0.25 mm ID nozzle for hydrogen release into the channel. The channel is open in one end. Spectral analysis of the pressure in the channel is used to determine dynamic load factors for SDOF structures. The explosion pressures in the channel will fluctuate with several frequencies or modes and a theoretical high DLF is seen when the pressure frequencies and eigen frequencies of the structure matches.
A Dual Zone Thermodynamic Model for Refueling Hydrogen Vehicles
Sep 2017
Publication
With the simple structure and quick refuelling process the compressed hydrogen storage system is currently widely used. However thermal effects during charging-discharging cycle may induce temperature change in storage tank which has significant impact on the performance of hydrogen storage and the safety of hydrogen storage tank. To address this issue we once propose a single zone lumped parameter model to obtain the analytical solution of hydrogen temperature and use the analytical solution to estimate the hydrogen temperature but the effect of the tank wall is ignored. For better description of the heat transfer characteristics of the tank wall a dual zone (hydrogen gas and tank wall) lumped parameter model will be considered for widely representation of the reference (experimental or simulated) data. Now we extend the single zone model to the dual zone model which uses two different temperatures for gas zone and wall zone. The dual zone model contains two coupled differential equations. To solve them and obtain the solution we use the method of decoupling the coupled differential equations and coupling the solutions of the decoupled differential equations. The steps of the method include: (1) Decoupling of coupled differential equations; (2) Solving decoupled differential equations; (3) Coupling of solutions of differential equations; (4) Solving coupled algebraic equations. Herein three cases are taken into consideration: constant inflow/outflow temperature variable inflow/outflow temperature and constant inflow temperature and variable outflow temperature. The corresponding approximate analytical solutions of hydrogen temperature and wall temperature can be obtained. The hydrogen pressure can be calculated from the hydrogen temperature and the hydrogen mass using the equation of state for ideal gas. Besides the two coupled differential equations can also be solved numerically and the simulated solution can also be obtained. This study will help to set up a formula based approach of refuelling protocol for gaseous hydrogen vehicles.
Optimizing Mixture Properties for Accurate Laminar Flame Speed Measurement from Spherically Expanding Flame: Application to H2/O2/N2/He Mixtures
Sep 2019
Publication
The uncertainty on the laminar flame speed extracted from spherically expanding flames can be minimized by using large flame radius data for the extrapolation to zero stretch-rate. However at large radii the hydrodynamic and thermo-diffusive instabilities induce the formation of a complex cellular flame front and limit the range of usable data. In the present study we have employed the flame stability theory of Matalon to optimize the properties of the initial mixture so that transition to cellularity may occur at a pre-determined large radius. This approach was employed to measure the laminar flame speeds of H2/O2/N2/He mixtures with equivalence ratios from 0.6 to 2.0 at pressures of 50/80/100 kPa and a temperature of 300 K. For all the performed experiments the uncertainty related to the extrapolation to zero stretch-rate (performed with the linear curvature model) was below 2% as shown by the position of the data points in the (Lb/Rf;U Lb/Rf;L) plan where Lb is the burned Markstein length; and Rf;L and Rf;U are the flame radii at the lower and upper bounds of the extrapolation range. Comparison of the predictions of four chemical mechanisms with the present unstretched laminar flame speed data indicated an error below 10% for most conditions. In addition unsteady 1-D simulations performed with A-SURF demonstrated that the flame dynamical response to stretch rate could not be captured by the mechanisms. The present work indicates that although the stability theory of Matalon provides a well defined framework to optimize the mixture properties for improved flame speed measurement the uncertainty of some of the required parameters can result in largely over-estimated critical radius for cellularity onset which compromise the accuracy of the optimization procedure.
Risk Informed Separation Distances For Hydrogen Refuelling Stations
Sep 2011
Publication
The lay-out requirements developed for hydrogen systems operated in industrial environment are not suitable for the operating conditions specific to hydrogen refuelling stations (service pressure of up to 95 MPa facility for public use). A risk informed rationale has been developed to define and substantiate separation distance requirements in ISO 20100 Gaseous hydrogen – refuelling stations [1]. In this approach priority is given to preventing escalation of small incidents into majors ones with a focus on critical exposures such as places of occupancy (fuelling station retail shop) while optimizing use of the available space from a risk perspective a key objective for being able to retrofit hydrogen refuelling in existing stations.
Cell Failure Mechanisms in PEM Water Electrolyzers
Sep 2011
Publication
PEM water electrolysis offers an efficient and flexible way to produce “green-hydrogen” from renewable (intermittent) energy sources. Most research papers published in the open literature on the subject are addressing performances issues and to date very few information is available concerning the mechanisms of performance degradation and the associated consequences. Results reported in this communication have been used to analyze the failure mechanisms of PEM water electrolysis cells which can ultimately lead to the destruction of the electrolyzer. A two-step process involving firstly the local perforation of the solid polymer electrolyte followed secondly by the catalytic recombination of hydrogen and oxygen stored in the electrolysis compartments has been evidenced. The conditions leading to the onset of such mechanism are discussed and some preventive measures are proposed to avoid accidents.
Regulations, Codes, and Standards (RCS) for Multi-fuel Motor Vehicle Dispensing Station
Sep 2017
Publication
In the United States requirements for liquid motor vehicle fuelling stations have been in place for many years. Requirements for motor vehicle fuelling stations for gaseous fuels including hydrogen are relatively new. These requirements have in the United States been developed along different code and standards paths. The liquid fuels have been addressed in a single document and the gaseous fuels have been addressed in documents specific to an individual gas. The result of these parallel processes is that multi-fuel stations are subject to requirements in several fuelling regulations codes and standards (RCS). This paper describes a configuration of a multi-fuel motor vehicle fuelling station and provides a detailed breakdown of the codes and standards requirements. The multi-fuel station would dispense what the U.S. Department of Energy defines as the six key alternative fuels: biodiesel electricity ethanol hydrogen natural gas and propane. The paper will also identify any apparent gaps in RCS and potential research projects that could help fill these gaps.
Assessment of Safety for Hydrogen Fuel Cell Vehicle
Sep 2011
Publication
A prospective global market share of Electric vehicle (EV) Hybrid electric vehicle (HEV) and Hydrogen Fuel Cell Vehicle (HFCV) is expected to grow due to stringent emission regulation and oil depletion. However it is essential to secure protection against high-pressure hydrogen gas and high-voltage in fuel cell vehicles and thus needs to develop a technique for safety assessment of HFCV. In this experiment 8 research institutes including the Korea Automobile Testing and Research Institute Hyundai Motor Company took part in. This project was supported by the Ministry of Land Transportation and Maritime Affairs of the Republic of Korea.
Effect of Rotation on Ignition Thresholds of Stoichiometric Hydrogen Mixtures
Sep 2017
Publication
Successful transition to a hydrogen economy calls for a deep understanding of the risks associated with its widespread use. Accidental ignition of hydrogen by hot surfaces is one of such risks. In the present study we investigated the effect that rotation has on the reported ignition thresholds by numerically determining the minimum surface temperature required to ignite stoichiometric hydrogen-air using a hot horizontal cylinder rotating at various angular velocities ω. Numerical experiments showed a weak but interesting dependence of the ignition thresholds on rotation: the ignition thresholds increased by 8 K from 931 K to 939 K with increasing angular velocity (0 ≤ ω ≤ 240 rad/s). A further increase to ω = 480 rad/s resulted in a decrease in ignition surface temperature to 935 K. Detailed analysis of the flow patterns inside the vessel and in close proximity to the hot surface brought about by the combined effect of buoyancy and rotation as well as of the distribution of the wall heat flux along the circumference of the cylinder support our previous findings in which regions where temperature gradients are small were found to be prone to ignition.
The Residual Strength of Automotive Hydrogen Cylinders After Exposure to Flames
Sep 2017
Publication
Fuel cell vehicles and some compressed natural gas vehicles are equipped with carbon fiber reinforced plastic (CFRP) composite cylinders. Each of the cylinders has a pressure relief device designed to detect heat and release the internal gas to prevent the cylinder from bursting in a vehicle fire accident. Yet in some accident situations the fire may be extinguished before the pressure relief device is activated leaving the high-pressure fuel gas inside the fire-damaged cylinder. To handle such a cylinder safely after an accident it is necessary that the cylinder keeps a sufficient post-fire strength against its internal gas pressure but in most cases it is difficult to accurately determine cylinder strength at the accident site. One way of solving this problem is to predetermine the post-fire burst strengths of cylinders by experiments. In this study automotive CFRP cylinders having no pressure relief device were exposed to a fire to the verge of bursting; then after the fire was extinguished the residual burst strengths and the overall physical state of the test cylinders were examined. The results indicated that the test cylinders all recorded a residual burst strength at least twice greater than their internal gas pressure for tested cylinders with new cylinder burst to nominal working pressure in the range 2.67–4.92 above the regulated ratio of 2.25.
Experiments on the Combustion Behaviour of Hydrogen-Carbon Monoxide-Air Mixtures
Sep 2019
Publication
As a part of a German nuclear safety project on the combustion behaviour of hydrogen-carbon monoxide-air mixtures small scale experiments were performed to determine the lower flammability limit and the laminar burning velocity of such mixtures. The experiments were performed in a spherical explosion bomb with a free volume of 8.2 litre. The experimental set-up is equipped with a central spark ignition and quartz glass windows for optical access. Further instrumentation included pressure and temperature sensors as well as high-speed shadow-videography. A wide concentration range for both fuel gases was investigated in numerous experiments from the lower flammability limits up to the stoichiometric composition of hydrogen carbon monoxide and air (H2-CO-air) mixtures. The laminar burning velocities were determined from the initial pressure increase after the ignition and by using high-speed videos taken during the experiments.
No more items...