Italy
On the Climate Impacts of Blue Hydrogen Production
Nov 2021
Publication
Natural gas based hydrogen production with carbon capture and storage is referred to as blue hydrogen. If substantial amounts of CO2 from natural gas reforming are captured and permanently stored such hydrogen could be a low-carbon energy carrier. However recent research raises questions about the effective climate impacts of blue hydrogen from a life cycle perspective. Our analysis sheds light on the relevant issues and provides a balanced perspective on the impacts on climate change associated with blue hydrogen. We show that such impacts may indeed vary over large ranges and depend on only a few key parameters: the methane emission rate of the natural gas supply chain the CO2 removal rate at the hydrogen production plant and the global warming metric applied. State-of-the-art reforming with high CO2 capture rates combined with natural gas supply featuring low methane emissions does indeed allow for substantial reduction of greenhouse gas emissions compared to both conventional natural gas reforming and direct combustion of natural gas. Under such conditions blue hydrogen is compatible with low-carbon economies and exhibits climate change impacts at the upper end of the range of those caused by hydrogen production from renewable-based electricity. However neither current blue nor green hydrogen production pathways render fully “net-zero” hydrogen without additional CO2 removal.
SNG Generation via Power to Gas Technology: Plant Design and Annual Performance Assessment
Nov 2020
Publication
Power to gas (PtG) is an emerging technology that allows to overcome the issues due to the increasingly widespread use of intermittent renewable energy sources (IRES). Via water electrolysis power surplus on the electric grid is converted into hydrogen or into synthetic natural gas (SNG) that can be directly injected in the natural gas network for long-term energy storage. The core units of the Power to synthetic natural gas (PtSNG) plant are the electrolyzer and the methanation reactors where the renewable electrolytic hydrogen is converted to synthetic natural gas by adding carbon dioxide. A technical issue of the PtSNG plant is the different dynamics of the electrolysis unit and the methanation unit. The use of a hydrogen storage system can help to decouple these two subsystems and to manage the methanation unit for assuring long operation time and reducing the number of shutdowns. The purpose of this paper is to evaluate the energy storage potential and the technical feasibility of the PtSNG concept to store intermittent renewable sources. Therefore different plant sizes (1 3 and 6 MW) have been defined and investigated by varying the ratio between the renewable electric energy sent to the plant and the total electric energy generated by the renewable energy source (RES) facility based on a 12 MW wind farm. The analysis has been carried out by developing a thermochemical and electrochemical model and a dynamic model. The first allows to predict the plant performance in steady state. The second allows to forecast the annual performance and the operation time of the plant by implementing the control strategy of the storage unit. The annual overall efficiencies are in the range of 42–44% low heating value (LHV basis). The plant load factor i.e. the ratio between the annual chemical energy of the produced SNG and the plant capacity results equal to 60.0% 46.5% and 35.4% for 1 3 and 6 MW PtSNG sizes respectively.
Study of Hydrogen Enriched Premixed Flames
Sep 2005
Publication
In the present paper the theoretical study of the un-stretched laminar premixed flames of hydrogen-methane mixtures is carried out by using the detailed reaction mechanism GRI-Mech 3.0 implemented in the CHEMKIN software to find out the effect of hydrogen addition on the hybrid fuel burning velocity. The model results show that the laminar burning velocity of the hydrogen-methane mixtures is not the linear regression of those of the pure fuels since it results substantially less than the proportional averaging of the values for the fuel constituents. Moreover the effect of hydrogen addition in terms of enhancement of the mixture laminar burning velocity with respect to the methane is relevant only at very high values of the hydrogen content in the hybrid mixtures (> 70 % mol.). The performed sensitivity analysis shows that these results can be attributed to kinetics and in particular to the concentration of H radicals: depending on the hydrogen content in the fuels mixture the production of the H radicals can affect the limiting reaction step for methane combustion. Two regimes are identified in the hydrogen-methane combustion. The first regime is controlled by the methane reactivity the hydrogen being not able to significantly affect the laminar burning velocity (< 70 % mol.). In the second regime the hydrogen combustion has a relevant role as its high content in the hybrid fuel leads to a significant H radicals pool thus enhancing the reaction rate of the more slowly combusting methane.
Dynamic Modeling of a PEM Fuel Cell Power Plant for Flexibility Optimization and Grid Support
Jun 2022
Publication
The transition toward high shares of non-programmable renewable energy sources in the power grid requires an increase in the grid flexibility to guarantee grid reliability and stability. This work developed within the EU project Grasshopper identifies hydrogen Fuel Cell (FC) power plants based on low temperature PEM cells as a source of flexibility for the power grid. A dynamic numerical model of the flexible FC system is developed and tested against experimental data from a 100-kW pilot plant built within the Grasshopper project. The model is then applied to assess the flexible performance of a 1 MW system in order to optimize the scale-up of the pilot plant to the MW-size. Simulations of load-following operation show the flexibility of the plant which can ramp up and down with a ramp rate depending only on an externally imposed limit. Warm-up simulations allow proposing solutions to limit the warm-up time. Of main importance are the minimization of the water inventory in the system and the construction of a compact system which minimizes the distance between the components.
Combustion Characterization in a Diffusive Gas Turbine Burner for Hydrogen-Compliant Applications
Jun 2022
Publication
The target of net-zero emissions set by the 2015 Paris Agreement has strongly commissioned the energy production sector to promote decarbonization renewable sources exploitation and systems efficiency. In this framework the utilization of hydrogen as a long-term energy carrier has great potential. This paper is concerned with the combustion characterization in a non-premixed gas turbine burner originally designed for natural gas when it is fed with NG-H2 blends featuring hydrogen content from 0 to 50% in volume. The final aim is to retrofit a 40 MW gas turbine. Starting from the operational data of the engine a CFD model of the steady-state combustion process has been developed with reference to the base load NG conditions by reducing the fuel mass-flow rate by up to 17% to target the baseline turbine inlet temperature. When the fuel is blended with hydrogen for a given temperature at turbine inlet an increase in the peak temperature up to 800 K is obtained if no countermeasures are taken. Furthermore the flame results are more intense and closer to the injector in the case of hydrogen blending. The results of this work hint at the necessity of carefully analyzing the possible NOx compensation strategies as well as the increased thermal stresses on the injector.
Proton Exchange Membrane Electrolyzer Emulator for Power Electronics Testing Applications
Mar 2021
Publication
This article aims to develop a proton exchange membrane (PEM) electrolyzer emulator. This emulator is realized through an equivalent electrical scheme. It allows taking into consideration the dynamic operation of PEM electrolyzers which is generally neglected in the literature. PEM electrolyzer dynamics are reproduced by the use of supercapacitors due to the high value of the equivalent double-layer capacitance value. Steady-state and dynamics operations are investigated in this work. The design criteria are addressed. The PEM electrolyzer emulator is validated by using a 400-W commercial PEM electrolyzer. This emulator is conceived to test new DC-DC converters to supply the PEM ELs and their control as well avoiding the risk to damage a real electrolyzer for experiment purposes. The proposed approach is valid both for a single cell and for the whole stack emulation.
Roadmap to Achieving Sustainable Development via Green Hydrogen
Jan 2023
Publication
The conversion to renewable energy can be achieved when cities and communities start to depend on sustainable resources capable of providing for the basic needs of the community along with a reduction in the daily problems and issues that people face. These issues such as poverty hunger sanitation and economic difficulties are highlighted in the Sustainable Development Goals (SDGs) which aim to limit and eradicate these problems along with other environmental obstacles including climate change and Greenhouse Gases (GHGs). These SDGs containing 17 goals target each sector and provide propositions to solve such devastating problems. Hydrogen contributes to the targets of these sustainable developments since through its implementation in different industries the levels of GHG will drop and thus contribute to the climate change which Earth is facing. Further through the usage of such resources many job opportunities will also be developed thus enhancing the economy and lifting the status of society. This paper classifies the four different types of hydrogen and outlines the differences between them. The paper then emphasizes the importance of green hydrogen use within the shipping industry transportation and infrastructure along with economic and social development through job opportunities. Furthermore this paper provides case studies tackling green hydrogen status in the United Kingdom United States of America and European Union as well as Africa United Arab of Emirates and Asia. Finally challenges and recommendations concerning the green hydrogen industry are addressed. This paper aims to relate the use of green hydrogen to the direct and indirect goals of SDG.
Review on the Status of the Research on Power‐to‐Gas Experimental Activities
Aug 2022
Publication
In recent years power‐to‐gas technologies have been gaining ground and are increasingly proving their reliability. The possibility of implementing long‐term energy storage and that of being able to capture and utilize carbon dioxide are currently too important to be ignored. However sys‐ tems of this type are not yet experiencing extensive realization in practice. In this study an overview of the experimental research projects and the research and development activities that are currently part of the power‐to‐gas research line is presented. By means of a bibliographical and sitographical analysis it was possible to identify the characteristics of these projects and their distinctive points. In addition the main research targets distinguishing these projects are presented. This provides an insight into the research direction in this regard where a certain technological maturity has been achieved and where there is still work to be done. The projects found and analyzed amount to 87 mostly at laboratory scale. From these what is most noticeable is that research is currently focusing heavily on improving system efficiency and integration between components.
Review and Perspectives of Key Decarbonization Drivers to 2030
Jan 2023
Publication
Global climate policy commitments are encouraging the development of EU energy policies aimed at paving the way for cleaner energy systems. This article reviews key decarbonization drivers for Italy considering higher environmental targets from recent European Union climate policies. Energy efficiency the electrification of final consumption the development of green fuels increasing the share of renewable energy sources in the electric system and carbon capture and storage are reviewed. A 2030 scenario is designed to forecast the role of decarbonization drivers in future energy systems and to compare their implementation with that in the current situation. Energy efficiency measures will reduce final energy consumption by 15.6% as primary energy consumption will decrease by 19.8%. The electrification of final consumption is expected to increase by 6.08%. The use of green fuels is estimated to triple as innovative fuels may go to market at scale to uphold the ambitious decarbonization targets set in the transportation sector. The growing trajectory of renewable sources in the energy mix is confirmed as while power generation is projected to increase by 10% the share of renewables in that generation is expected to increase from 39.08% to 78.16%. Capture and storage technologies are also expected to play an increasingly important role. This article has policy implications and serves as a regulatory reference in the promotion of decarbonization investments.
An Extensive Review of Liquid Hydrogen in Transportation with Focus on the Maritime Sector
Sep 2022
Publication
The European Green Deal aims to transform the EU into a modern resource-efficient and competitive economy. The REPowerEU plan launched in May 2022 as part of the Green Deal reveals the willingness of several countries to become energy independent and tackle the climate crisis. Therefore the decarbonization of different sectors such as maritime shipping is crucial and may be achieved through sustainable energy. Hydrogen is potentially clean and renewable and might be chosen as fuel to power ships and boats. Hydrogen technologies (e.g. fuel cells for propulsion) have already been implemented on board ships in the last 20 years mainly during demonstration projects. Pressurized tanks filled with gaseous hydrogen were installed on most of these vessels. However this type of storage would require enormous volumes for large long-range ships with high energy demands. One of the best options is to store this fuel in the cryogenic liquid phase. This paper initially introduces the hydrogen color codes and the carbon footprints of the different production techniques to effectively estimate the environmental impact when employing hydrogen technologies in any application. Afterward a review of the implementation of liquid hydrogen (LH2 ) in the transportation sector including aerospace and aviation industries automotive and railways is provided. Then the focus is placed on the maritime sector. The aim is to highlight the challenges for the adoption of LH2 technologies on board ships. Different aspects were investigated in this study from LH2 bunkering onboard utilization regulations codes and standards and safety. Finally this study offers a broad overview of the bottlenecks that might hamper the adoption of LH2 technologies in the maritime sector and discusses potential solutions.
Sizing and Performance Analysis of Hydrogen- and Battery-Based Powertrains, Integrated into a Passenger Train for a Regional Track, Located in Calabria (Italy)
Aug 2022
Publication
In order to decarbonize the rail industry the development of innovative locomotives with the ability to use multiple energy sources constituting hybrid powertrains plays a central role in transitioning from conventional diesel trains. In this paper four configurations based on suitable combinations of fuel cells and/or batteries are designed to replace or supplement a diesel/overhead line powertrain on a real passenger train (the Hitachi Blues) tested on an existing regional track the Catanzaro Lido–Reggio Calabria line (Italy) managed by Trenitalia SpA. (Italy). The configurations (namely battery–electrified line full-battery fuel cell–battery–electrified line and fuel cell–battery) are first sized with the intention of completing a round trip then integrated on board with diesel engine replacement in mind and finally occupy a portion of the passenger area within two locomotives. The achieved performance is thoroughly examined in terms of fuel cell efficiency (greater than 47%) hydrogen consumption (less than 72 kg) braking energy recovery (approximately 300 kWh) and battery interval SOC.
Impacts of Renewable Energy Resources on Effectiveness of Grid-Integrated Systems: Succinct Review of Current Challenges and Potential Solution Strategies
Sep 2020
Publication
This study is aimed at a succinct review of practical impacts of grid integration of renewable energy systems on effectiveness of power networks as well as often employed state-of-the-art solution strategies. The renewable energy resources focused on include solar energy wind energy biomass energy and geothermal energy as well as renewable hydrogen/fuel cells which although not classified purely as renewable resources are a famous energy carrier vital for future energy sustainability. Although several world energy outlooks have suggested that the renewable resources available worldwide are sufficient to satisfy global energy needs in multiples of thousands the different challenges often associated with practical exploitation have made this assertion an illusion to date. Thus more research efforts are required to synthesize the nature of these challenges as well as viable solution strategies hence the need for this review study. First brief overviews are provided for each of the studied renewable energy sources. Next challenges and solution strategies associated with each of them at generation phase are discussed with reference to power grid integration. Thereafter challenges and common solution strategies at the grid/electrical interface are discussed for each of the renewable resources. Finally expert opinions are provided comprising a number of aphorisms deducible from the review study which reveal knowledge gaps in the field and potential roadmap for future research. In particular these opinions include the essential roles that renewable hydrogen will play in future energy systems; the need for multi-sectoral coupling specifically by promoting electric vehicle usage and integration with renewable-based power grids; the need for cheaper energy storage devices attainable possibly by using abandoned electric vehicle batteries for electrical storage and by further development of advanced thermal energy storage systems (overviews of state-of-the-art thermal and electrochemical energy storage are also provided); amongst others.
Experimental Investigation on CO2 Methanation Process for Solar Energy Storage Compared to CO2-Based Methanol Synthesis
Jun 2017
Publication
The utilization of the captured CO2 as a carbon source for the production of energy storage media offers a technological solution for overcoming crucial issues in current energy systems. Solar energy production generally does not match with energy demand because of its intermittent and non-programmable nature entailing the adoption of storage technologies. Hydrogen constitutes a chemical storage for renewable electricity if it is produced by water electrolysis and is also the key reactant for CO2 methanation (Sabatier reaction). The utilization of CO2 as a feedstock for producing methane contributes to alleviate global climate changes and sequestration related problems. The produced methane is a carbon neutral gas that fits into existing infrastructure and allows issues related to the aforementioned intermittency and non-programmability of solar energy to be overcome. In this paper an experimental apparatus composed of an electrolyzer and a tubular fixed bed reactor is built and used to produce methane via Sabatier reaction. The objective of the experimental campaign is the evaluation of the process performance and a comparison with other CO2 valorization paths such as methanol production. The investigated pressure range was 2–20 bar obtaining a methane volume fraction in outlet gaseous mixture of 64.75% at 8 bar and 97.24% at 20 bar with conversion efficiencies of respectively 84.64% and 99.06%. The methanol and methane processes were compared on the basis of an energy parameter defined as the spent energy/stored energy. It is higher for the methanol process (0.45) with respect to the methane production process (0.41–0.43) which has a higher energy storage capability.
Technical and Commercial Challenges of Proton-Exchange Membrane (PEM) Fuel Cells
Dec 2020
Publication
This review critically evaluates the latest trends in fuel cell development for portable and stationary fuel cell applications and their integration into the automotive industry. Fast start-up high efficiency no toxic emissions into the atmosphere and good modularity are the key advantages of fuel cell applications. Despite the merits associated with fuel cells the high cost of the technology remains a key factor impeding its widespread commercialization. Therefore this review presents detailed information into the best operating conditions that yield maximum fuel cell performance. The paper recommends future research geared towards robust fuel cell geometry designs as this determines the cell losses and material characterization of the various cell components. When this is done properly it will support a total reduction in the cost of the cell which in effect will reduce the total cost of the system. Despite the strides made by the fuel cell research community there is a need for public sensitization as some people have reservations regarding the safety of the technology. This hurdle can be overcome if there is a well-documented risk assessment which also needs to be considered in future research activities.
The Route from Green H2 Production through Bioethanol Reforming to CO2 Catalytic Conversion: A Review
Mar 2022
Publication
Currently a progressively different approach to the generation of power and the production of fuels for the automotive sector as well as for domestic applications is being taken. As a result research on the feasibility of applying renewable energy sources to the present energy scenario has been progressively growing aiming to reduce greenhouse gas emissions. Following more than one approach the integration of renewables mainly involves the utilization of biomass-derived raw material and the combination of power generated via clean sources with conventional power generation systems. The aim of this review article is to provide a satisfactory overview of the most recent progress in the catalysis of hydrogen production through sustainable reforming and CO2 utilization. In particular attention is focused on the route that starting from bioethanol reforming for H2 production leads to the use of the produced CO2 for different purposes and by means of different catalytic processes passing through the water–gas shift stage. The newest approaches reported in the literature are reviewed showing that it is possible to successfully produce “green” and sustainable hydrogen which can represent a power storage technology and its utilization is a strategy for the integration of renewables into the power generation scenario. Moreover this hydrogen may be used for CO2 catalytic conversion to hydrocarbons thus giving CO2 added value.
Numerical Investigation of Thermal Hazards from Under-expanded Hydrogen Jet Fires using a New Scheme for the Angular Discretization of the Radiative Intensity
Sep 2021
Publication
In the context of a numerical investigation of thermal hazards from two under-expanded hydrogen jet fires results from a newly-developed thermal radiation module of the ADREA-HF computational fluid dynamics (CFD) code were validated against two physical experiments. The first experiment was a vertical under-expanded hydrogen jet fire at 170 bar with the objective of the numerical investigation being to capture the spatial distribution of the radial radiative heat flux at a given time instant. In the second case a horizontal under-expanded hydrogen jet fire at 340 bar was considered. Here the objective was to capture the temporal evolution of the radial radiative heat flux at selected fixed points in space. The numerical study employs the eddy dissipation model for combustion and the finite volume method (FVM) for the calculation of the radiative intensity. The FVM was implemented using a novel angular discretization scheme. By dividing the unit sphere into an arbitrary number of exactly equal angular control volumes this new scheme allows for more flexibility and efficiency. A demonstration of numerical convergence as a function the number of both spatial and angular control volumes was performed.
The EOS Project- A SOFC Pilot Plant in Italy Safety Aspects
Sep 2005
Publication
This paper deals with the main safety aspects of the EOS project. The partners of the project – Politecnico di Torino Gas Turbine Technologies (GTT Siemens group) Hysylab (Hydrogen System Laboratory) of Environment Park and Regione Piemonte – aim to create the main node of a regional fuel cell generator network. As a first step the Pennsylvania-based Stationary Fuel Cells division of Siemens Westinghouse Power Corporation (SWPC) supplied GTT with a CHP 100 kWe SOFC (Solide Oxide Fuel Cell) field unit fuelled by natural gas with internal reforming. The fuel cell is connected to the electricity national grid and provides part of the industrial district energy requirement. The thermal energy from the fuel cells is used for heating and air-conditioning of GTT offices bringing the total first Law efficiency of the plant to 70-80%. In the second phase of the EOS project (2007/2008) the maximum power produced by the SOFC systems installed in the GTT EOS test room will be increased to a total of about 225 kWe by means of an additional SOFC generator rated 125 kWe and up to 115 kWth. The paper provides information about the safety analysis which was performed during the main steps of the design of the system i.e. the HAZOP during the SOFC design by SWPC and the safety evaluations during the test hall design by GTT and Politecnico di Torino.
Heat Recovery from a PtSNG Plant Coupled with Wind Energy
Nov 2021
Publication
Power to substitute natural gas (PtSNG) is a promising technology to store intermittent renewable electricity as synthetic fuel. Power surplus on the electric grid is converted to hydrogen via water electrolysis and then to SNG via CO2 methanation. The SNG produced can be directly injected into the natural gas infrastructure for long-term and large-scale energy storage. Because of the fluctuating behaviour of the input energy source the overall annual plant efficiency and SNG production are affected by the plant operation time and the standby strategy chosen. The re-use of internal (waste) heat for satisfying the energy requirements during critical moments can be crucial to achieving high annual efficiencies. In this study the heat recovery from a PtSNG plant coupled with wind energy based on proton exchange membrane electrolysis adiabatic fixed bed methanation and membrane technology for SNG upgrading is investigated. The proposed thermal recovery strategy involves the waste heat available from the methanation unit during the operation hours being accumulated by means of a two-tanks diathermic oil circuit. The stored heat is used to compensate for the heat losses of methanation reactors during the hot-standby state. Two options to maintain the reactors at operating temperature have been assessed. The first requires that the diathermic oil transfers heat to a hydrogen stream which is used to flush the reactors in order to guarantee the hot-standby conditions. The second option entails that the stored heat being recovered for electricity production through an Organic Rankine Cycle. The electricity produced is used to compensate the reactors heat losses by using electrical trace heating during the hot-standby hours as well as to supply energy to ancillary equipment. The aim of the paper is to evaluate the technical feasibility of the proposed heat recovery strategies and how they impact on the annual plant performances. The results showed that the annual efficiencies on an LHV basis were found to be 44.0% and 44.3% for the thermal storage and electrical storage configurations respectively.
Stress Corrosion Cracking of Gas Pipeline Steels of Different Strength
Jul 2016
Publication
With the development of the natural gas industry gas transmission pipelines have been developed rapidly in terms of safety economy and efficiency. Our recent studies have shown that an important factor of main pipelines serviceability loss under their long-term service is the in-bulk metal degradation of the pipe wall. This leads to the loss of the initial mechanical properties primarily resistance to brittle fracture which were set in engineering calculations at the pipeline design stage. At the same time stress corrosion cracking has been identified as one of the predominant failures in pipeline steels in humid environments which causes rupture of high-pressure gas transmission pipes as well as serious economic losses and disasters.
In the present work the low-carbon pipeline steels with different strength levels from the point of view of their susceptibility to stress corrosion cracking in the as-received state and after in-laboratory accelerated degradation under environmental conditions similar to those of an acidic soil were investigated. The main objectives of this study were to determine whether the development of higher strength materials led to greater susceptibility to stress corrosion cracking and whether degraded pipeline steels became more susceptible to stress corrosion cracking than in the as-received state. The procedure of accelerated degradation of pipeline steels was developed and introduced in laboratory under the combined action of axial loading and hydrogen charging. It proved to be reliable and useful to performed laboratory simulation of in-service degradation of pipeline steels with different strength. The in-laboratory degraded 17H1S and X60 pipeline steels tested in the NS4 solution saturated with CO2 under open circuit potential revealed the susceptibility to stress corrosion cracking reflected in the degradation of mechanical properties and at the same time the degraded X60 steel showed higher resistance to stress corrosion cracking than the degraded 17H1S steel. Fractographic observation confirmed the pipeline steels hydrogen embrittlement caused by the permeated hydrogen.
In the present work the low-carbon pipeline steels with different strength levels from the point of view of their susceptibility to stress corrosion cracking in the as-received state and after in-laboratory accelerated degradation under environmental conditions similar to those of an acidic soil were investigated. The main objectives of this study were to determine whether the development of higher strength materials led to greater susceptibility to stress corrosion cracking and whether degraded pipeline steels became more susceptible to stress corrosion cracking than in the as-received state. The procedure of accelerated degradation of pipeline steels was developed and introduced in laboratory under the combined action of axial loading and hydrogen charging. It proved to be reliable and useful to performed laboratory simulation of in-service degradation of pipeline steels with different strength. The in-laboratory degraded 17H1S and X60 pipeline steels tested in the NS4 solution saturated with CO2 under open circuit potential revealed the susceptibility to stress corrosion cracking reflected in the degradation of mechanical properties and at the same time the degraded X60 steel showed higher resistance to stress corrosion cracking than the degraded 17H1S steel. Fractographic observation confirmed the pipeline steels hydrogen embrittlement caused by the permeated hydrogen.
Main Hydrogen Production Processes: An Overview
May 2021
Publication
Due to its characteristics hydrogen is considered the energy carrier of the future. Its use as a fuel generates reduced pollution as if burned it almost exclusively produces water vapor. Hydrogen can be produced from numerous sources both of fossil and renewable origin and with as many production processes which can use renewable or non-renewable energy sources. To achieve carbon neutrality the sources must necessarily be renewable and the production processes themselves must use renewable energy sources. In this review article the main characteristics of the most used hydrogen production methods are summarized mainly focusing on renewable feedstocks furthermore a series of relevant articles published in the last year are reviewed. The production methods are grouped according to the type of energy they use; and at the end of each section the strengths and limitations of the processes are highlighted. The conclusions compare the main characteristics of the production processes studied and contextualize their possible use.
Optimal Design of Stand-alone Solutions Based on RES + Hydrogen Storage Feeding Off-grid Communities
Apr 2021
Publication
Concerning off-grid areas diesel engines still dominate the scene of local electricity generation despite the related pollution concerns and high operating costs. There is thus a huge global potential in remote areas for exploiting local renewable energy sources (RES) in place of fossil generation. Energy storage systems become hence essential for off-grid communities to cope with the issue of RES intermittency allowing them to rely on locally harvested RES. In this work we analysed different typologies of off-grid renewable power systems involving batteries and hydrogen as means to store energy to find out which is the most cost-effective configuration in remote areas. Both Li-ion and lead-acid batteries were included in the analysis and both alkaline and PEM electrolysis technologies were considered for the production of hydrogen. Starting from single cell electrochemical models the performance curves of the electrolyser and fuel cell devices were derived for a more detailed techno-economic assessment. Lifetimes of batteries and H2-based components were also computed based on how the power-to-power (P2P) system operates along the reference year. The particle swarm optimization (PSO) algorithm was employed to find the component sizes that allow minimizing the levelized cost of energy (LCOE) while keeping the off-grid area energy autonomous. As a case study the Ginostra village on the island of Stromboli (North of Sicily Southern Italy) was analysed since it is well representative of small insular locations in the Mediterranean area. The renewable P2P solution (0.51 €/kWh for the cheapest configuration) was found to be economically preferable than the current existing power system relying on diesel generators (0.86 €/kWh). Hydrogen in particular can prevent the oversizing of both battery and PV systems thus reducing the final cost of electricity delivered by the P2P system. Moreover unlike diesel generators the RES-based configuration allows avoiding the production of local air pollutants and GHG emissions during its operation.
How to Give a renewed Chance to Natural Gas as Feed for the Production of Hydrogen: Electric MSR Coupled with CO2 Mineralization
Sep 2021
Publication
Recent years have seen a growing interest in water electrolysis as a way to store renewable electric energy into chemical energy through hydrogen production. However today the share of renewable energy is still limited and there is the need to have a continuous use of H2 for industrial chemicals applications. Firstly the paper discusses the use of electrolysis - connected to a conventional grid - for a continuous H2 production in terms of associated CO2 emissions and compares such emissions with conventional methane steam reforming (MSR). Therefore it explores the possibility to use electrical methane steam reforming (eMSR) as a way to reduce the CO2 emissions. As a way to have zero emissions carbon mineralization of CO2 is coupled - instead of in-situ carbon capture and storage technology (CCS) - to eMSR; associated relevant cost of production is evaluated for different scenarios. It appears that to minimize such production cost carbonate minerals must be reused in the making of other industrial products since the amount of carbonates generated by the process is quite significant.
Electrification and Sustainable Fuels: Competing for Wind and Sun (complement to the Policy brief)
May 2021
Publication
This study seeks to answer a simple question: will we have enough renewable electricity to meet all of the EU's decarbonisation objectives and if not what should be the priorities and how to address the remaining needs for energy towards carbon neutrality? Indeed if not the policy push for green hydrogen would not be covered by enough green electricity to match the “energy efficiency and electrification first” approach outlined in the system integration communication and a prioritization of green electricity uses complemented by other solutions (import of green electricity or sustainable fuels CCS...) would be advisable [1]. On one hand we show that the principle “Energy efficiency and electrification first” results in an electricity demand which will be very difficult to satisfy domestically with renewable energy. On the other hand green hydrogen and other sustainable fuels will be needed for a carbon neutral industry for the replacement of the fuel for aviation and navigation and as strategic green energy reserves. The detailed modelling of these interactions is challenging given the large uncertainties on technology and infrastructure development. Therefore we offer a “15 minutes” decarbonization scenario based on general and transparent technical considerations and very straightforward “back-of-envelope” calculations. This working paper contains the calculations and assumptions in support of the accompanying policy brief with the same title which focuses instead on the main take-aways.
Recent Combustion Strategies in Gas Turbines for Propulsion and Power Generation toward a Zero-Emissions Future: Fuels, Burners, and Combustion Techniques
Oct 2021
Publication
The effects of climate change and global warming are arising a new awareness on the impact of our daily life. Power generation for transportation and mobility as well as in industry is the main responsible for the greenhouse gas emissions. Indeed currently 80% of the energy is still produced by combustion of fossil fuels; thus great efforts need to be spent to make combustion greener and safer than in the past. For this reason a review of the most recent gas turbines combustion strategy with a focus on fuels combustion techniques and burners is presented here. A new generation of fuels for gas turbines are currently under investigation by the academic community with a specific concern about production and storage. Among them biofuels represent a trustworthy and valuable solution in the next decades during the transition to zero carbon fuels (e.g. hydrogen and ammonia). Promising combustion techniques explored in the past and then abandoned due to their technological complexity are now receiving renewed attention (e.g. MILD PVC) thanks to their effectiveness in improving the efficiency and reducing emissions of standard gas turbine cycles. Finally many advances are illustrated in terms of new burners developed for both aviation and power generation. This overview points out promising solutions for the next generation combustion and opens the way to a fast transition toward zero emissions power generation.
Hydrogen as an Energy Vector to Optimize the Energy Exploitation of a Self-consumption Solar Photovoltaic Facility in a Dwelling House
Nov 2019
Publication
Solar photovoltaic (PV) plants coupled with storage for domestic self-consumption purposes seem to be a promising technology in the next years as PV costs have decreased significantly and national regulations in many countries promote their installation in order to relax the energy requirements of power distribution grids. However electrochemical storage systems are still unaffordable for many domestic users and thus the advantages of self-consumption PV systems are reduced. Thus in this work the adoption of hydrogen systems as energy vectors between a PV plant and the energy user is proposed. As a preliminary study in this work the design of a PV and hydrogen-production self-consumption plant for a single dwelling is described. Then a technical and economic feasibility study conducted by modeling the facility within the Homer Energy Pro energy systems analysis tool is reported. The proposed system will be able to provide back not only electrical energy but also thermal energy through a fuel cell or refined water covering the fundamental needs of the householders (electricity heat or cooling and water). Results show that although the proposed system effectively increases the energy local use of the PV production and reduces significantly the energy injections or demands into/from the power grid avoiding power grid congestions and increasing the nano-grid resilience operation and maintenance costs may reduce its economic attractiveness for a single dwelling.
Analysis of Standard and Innovative Methods for Allocating Upstream and Refinery GHG Emissions to Oil Products
Sep 2017
Publication
Alternative fuel policies need accurate and transparent methods to find the embedded carbon intensity of individual refinery products. This study investigates different ways of allocating greenhouse gases emissions deriving from refining and upstream crude oil supply. Allocation methods based on mass energy content economic value and innovatively added-value are compared with the marginal refining emissions calculated by CONCAWE’s linear-programming model to the average EU refinery which has been adopted as reference in EU legislation. Beside the most important transportation fuels (gasoline diesel kerosene/jet fuel and heavy fuel oil) the analysis extends to petroleum coke and refinery hydrogen. Moreover novel criteria based on the implications due to hydrogen usage by each fuel pathway have been introduced to test the consistency of the analyzed approaches. It is found that only two economic-based allocation methods are consistent with the introduced criteria. These two methods also give negative refinery emissions for heavy products which is coherent with the marginal emissions calculated through the CONCAWE refinery model. The recommended allocation methods are transparent and use only publicly available statistical data so they may be useful not only for future EU legislation but also in jurisdictions where a representative refinery model is not available.
Electric Load Influence on Performances of a Composite Plant for Hydrogen Production from RES and its Conversion in Electricity
Nov 2019
Publication
The analysis here presented investigates the influence of electrical load on the operational performances of a plant for hydrogen production from solar energy and its conversion in electricity via a fuel cell. The plant is an actual one currently under construction in Reggio Calabria (Italy) at the site of the Mediterranean university campus; it is composed of a Renewable Energy Source (RES) section (photovoltaic panels) a hydrogen production section and a fuel cell power section feeding the electrical energy demand of the load. Two different load configurations have been analysed and simulations have been carried out through HomerTM simulation code. Results allow interesting conclusions regarding the plant operation to be drawn. The study could have a remarkable role in supporting further research activities aimed at the assessment of the optimal configuration of this type of pioneering plants designed for feeding electrical loads possibly in a self-sufficient way.
Water Electrolysis for the Production of Hydrogen to Be Employed in the Ironmaking and Steelmaking Industry
Nov 2021
Publication
The way to decarbonization will be characterized by the huge production of hydrogen through sustainable routes. Thus the basic production way is water electrolysis sustained by renewable energy sources allowing for obtaining “green hydrogen”. The present paper reviews the main available technologies for the water electrolysis finalized to the hydrogen production. We describe the fundamental of water electrolysis and the problems related to purification and/or desalinization of water before electrolysis. As a matter of fact we describe the energy efficiency issues with particular attention to the potential application in the steel industry. The fundamental aspects related to the choice of high-temperature or low-temperature technologies are analyzed.
Control of Electrons’ Spin Eliminates Hydrogen Peroxide Formation During Water Splitting
Jul 2017
Publication
The production of hydrogen through water splitting in a photoelectrochemical cell suffers from an overpotential that limits the efficiencies. In addition hydrogen-peroxide formation is identified as a competing process affecting the oxidative stability of photoelectrodes. We impose spin-selectivity by coating the anode with chiral organic semiconductors from helically aggregated dyes as sensitizers; Zn-porphyrins and triarylamines. Hydrogen peroxide formation is dramatically suppressed while the overall current through the cell correlating with the water splitting process is enhanced. Evidence for a strong spin-selection in the chiral semiconductors is presented by magnetic conducting (mc-)AFM measurements in which chiral and achiral Zn-porphyrins are compared. These findings contribute to our understanding of the underlying mechanism of spin selectivity in multiple electron-transfer reactions and pave the way toward better chiral dye-sensitized photoelectrochemical cells.
Economic Analysis of Hydrogen Household Energy Systems Including Incentives on Energy Communities and Externalities: A Case Study in Italy
Sep 2021
Publication
The building sector is one of the key energy consumers worldwide. Fuel cell micro-Cogeneration Heat and Power systems for residential and small commercial applications are proposed as one of the most promising innovations contributing to the transition towards a sustainable energy infrastructure. For the application and the diffusion of these systems in addition to their environmental performance it is necessary however to evaluate their economic feasibility. In this paper a life cycle assessment of a fuel cell/photovoltaic hybrid micro-cogeneration heat and power system for a residential building is integrated with a detailed economic analysis. Financial indicators (net present cost and payback time are used for studying two different investments: reversible-Solid Oxide Fuel Cell and natural gas SOFC in comparison to a base scenario using a homeowner perspective approach. Moreover two alternative incentives scenarios are analysed and applied: net metering and self-consumers’ groups (or energy communities). Results show that both systems obtain annual savings but their high capital costs still would make the investments not profitable. However the natural gas Solide Oxide Fuel Cell with the net metering incentive is the best scenario among all. On the contrary the reversible-Solid Oxide Fuel Cell maximizes its economic performance only when the self-consumers’ groups incentive is applied. For a complete life cycle cost analysis environmental impacts are monetized using three different monetization methods with the aim to internalize (considering them into direct cost) the externalities (environmental costs). If externalities are considered as an effective cost the natural gas Solide Oxide Fuel Cell system increases its saving because its environmental impact is lower than in the base case one while the reversible-Solid Oxide Fuel Cell system reduces it.
Hydrogen and Oxygen Production via Water Splitting in a Solar-Powered Membrane Reactor—A Conceptual Study
Jan 2021
Publication
Among the processes for producing hydrogen and oxygen from water via the use of solar energy water splitting has the advantage of being carried out in onestep. According to thermodynamics this process exhibits conversions of practical interest at very high temperatures and needs efficient separation systems in order to separate the reaction products hydrogen and oxygen. In this conceptual work the behaviour of a membrane reactor that uses two membranes perm-selective to hydrogen and oxygen is investigated in the temperature range 2000–2500 °C of interest for coupling this device with solar receivers. The effect of the reaction pressure has been evaluated at 0.5 and 1 bar while the permeate pressure has been fixed at 100 Pa. As a first result the use of the membrane perm-selective to oxygen in addition to the hydrogen one has improved significantly the reaction conversion that for instance at 0.5 bar and 2000 °C moves from 9.8% up to 18.8%. Based on these critical data a preliminary design of a membrane reactor consisting of a Ta tubular membrane separating the hydrogen and a hafnia camera separating the oxygen is presented: optimaloperating temperature of the reactor results in being around 2500 °C a value making impracticable its coupling with solar receivers even in view of an optimistic development of this technology. The study has verified that at 2000 °C with a water feed flow rate of 1000 kg h−1 about 200 and 100 m3 h−1 of hydrogen and oxygen are produced. In this case a surface of the hafnia membrane of the order of hundreds m2 is required: the design of such a membrane device may be feasible when considering special reactor configurations.
Green Synthetic Fuels: Renewable Routes for the Conversion of Non-Fossil Feedstocks into Gaseous Fuels and Their End Uses
Jan 2020
Publication
Innovative renewable routes are potentially able to sustain the transition to a decarbonized energy economy. Green synthetic fuels including hydrogen and natural gas are considered viable alternatives to fossil fuels. Indeed they play a fundamental role in those sectors that are difficult to electrify (e.g. road mobility or high-heat industrial processes) are capable of mitigating problems related to flexibility and instantaneous balance of the electric grid are suitable for large-size and long-term storage and can be transported through the gas network. This article is an overview of the overall supply chain including production transport storage and end uses. Available fuel conversion technologies use renewable energy for the catalytic conversion of non-fossil feedstocks into hydrogen and syngas. We will show how relevant technologies involve thermochemical electrochemical and photochemical processes. The syngas quality can be improved by catalytic CO and CO2 methanation reactions for the generation of synthetic natural gas. Finally the produced gaseous fuels could follow several pathways for transport and lead to different final uses. Therefore storage alternatives and gas interchangeability requirements for the safe injection of green fuels in the natural gas network and fuel cells are outlined. Nevertheless the effects of gas quality on combustion emissions and safety are considered.
Enhanced Performance and Durability of Low Catalyst Loading PEM Water Electrolyser Based on a Short-side Chain Perfluorosulfonic Ionomer
Sep 2016
Publication
Water electrolysis supplied by renewable energy is the foremost technology for producing ‘‘green” hydrogen for fuel cell vehicles. In addition the ability to rapidly follow an intermittent load makes electrolysis an ideal solution for grid-balancing caused by differences in supply and demand for energy generation and consumption. Membrane-electrode assemblies (MEAs) designed for polymer electrolyte membrane (PEM) water electrolysis based on a novel short-side chain (SSC) perfluorosulfonic acid (PFSA) membrane Aquivion with various cathode and anode noble metal loadings were investigated in terms of both performance and durability. Utilizing a nanosized Ir0.7Ru0.3O solid solution anode catalyst and a supported Pt/C cathode catalyst in combination with the Aquivion membrane gave excellent electrolysis performances exceeding 3.2 A cm-2 at 1.8 V terminal cell voltage ( 80% efficiency) at 90 ºC in the presence of a total catalyst loading of 1.6 mg cm−2. A very small loss of efficiency corresponding to 30 mV voltage increase was recorded at 3 A cm 2 using a total noble metal catalyst loading of less than 0.5 mg cm−2 (compared to the industry standard of 2 mg cm−2). Steady-state durability tests carried out for 1000 h at 1 A cm -2 showed excellent stability for the MEA with total noble metal catalyst loading of 1.6 mg cm−2 (cell voltage increase 5 lV/h). Moderate degradation rate (cell voltage increase 15 lV/h) was recorded for the low loading 0.5 mg cm-2 MEA. Similar stability characteristics were observed in durability tests at 3 A cm−2. These high performance and stability characteristics were attributed to the enhanced proton conductivity and good stability of the novel membrane the optimized structural properties of the the enhanced proton conductivity and good stability of the novel membrane the optimized structural properties of the the enhanced proton conductivity and good stability of the novel membrane the optimized structural properties of the Ir and Ru oxide solid solution and the enrichment of Ir species on the surface for the anodic catalyst.
Experimental Characterization of an Alkaline Electrolyser and a Compression System for Hydrogen Production and Storage
Aug 2021
Publication
Storing renewable energy in chemicals like hydrogen can bring various benefits like high energy density seasonal storability possible cost reduction of the final product and the potential to let renewable power penetrate other markets and to overcome their intermittent availability. In the last year’s production of this gas from renewable energy sources via electrolysis has grown its reputation as one feasible solution to satisfy future zero-emission energy demand. To extend the exploitation of Renewable Energy Source (RES) small-scale conversion plants seem to be an interesting option. In view of a possible widespread adoption of these types of plants the authors intend to present the experimental characterization of a small-scale hydrogen production and storage plant. The considered experimental plant is based on an alkaline electrolyser and an air-driven hydrogen compression and storage system. The results show that the hydrogen production-specific consumption is on average 77 kWh/kgH2 . The hydrogen compressor energy requirement is on average 15 kWh/kgH2 (data referred to the driving compressed air). The value is higher than data found in literature (4.4–9.3 kWh/kgH2 ) but the difference can be attributed to the small size of the considered compressor and the choice to limit the compression stages.
Micro and Macro Mechanical Analysis of Gas Pipeline Steels
Sep 2017
Publication
The actual safety margins of gas pipelines depend on a number of factors that include the mechanical characteristics of the material. The evolution with time of the metal properties can be evaluated by mechanical tests performed at different scales seeking for the best compromise between the simplicity of the experimental setup to be potentially employed in situ and the reliability of the results. Possible alternatives are comparatively assessed on pipeline steels of different compositions and in different states.
Optimisation-based System Designs for Deep Offshore Wind Farms including Power to Gas Technologies
Feb 2022
Publication
A large deployment of energy storage solutions will be required by the stochastic and non-controllable nature of most renewable energy sources when planning for higher penetration of renewable electricity into the energy mix. Various solutions have been suggested for dealing with medium- and long-term energy storage. Hydrogen and ammonia are two of the most frequently discussed as they are both carbon-free fuels. In this paper the authors analyse the energy and cost efficiency of hydrogen and ammonia-based pathways for the storage transportation and final use of excess electricity from an offshore wind farm. The problem is solved as a linear programming problem simultaneously optimising the size of each problem unit and the respective time-dependent operational conditions. As a case study we consider an offshore wind farm of 1.5 GW size located in a reference location North of Scotland. The energy efficiency and cost of the whole chain are evaluated and compared with competitive alternatives namely batteries and liquid hydrogen storage. The results show that hydrogen and ammonia storage can be part of the optimal solution. Moreover their use for long-term energy storage can provide a significant cost-effective contribution to an extensive penetration of renewable energy sources in national energy systems.
Photovoltaic and Hydrogen Plant Integrated with a Gas Heat Pump for Greenhouse Heating: A Mathematical Study
Feb 2018
Publication
Nowadays the traditional energy sources used for greenhouse heating are fossil fuels such as LPG diesel and natural gas. The global energy demand will continue to grow and alternative technologies need to be developed in order to improve the sustainability of crop production in protected environments. Innovative solutions are represented by renewable energy plants such as photovoltaic wind and geothermal integrated systems however these technologies need to be connected to the power grid in order to store the energy produced. On agricultural land power grids are not widespread and stand-alone renewable energy systems should be investigated especially for greenhouse applications. The aim of this research is to analyze by means of a mathematical model the energy efficiency of a photovoltaic (8.2 kW) hydrogen (2.5 kW) and ground source gas heat pump (2.2 kW) integrated in a stand-alone system used for heating an experimental greenhouse tunnel (48 m2 ) during the winter season. A yearlong energy performance analysis was conducted for three different types of greenhouse cover materials a single layer polyethylene film an air inflated-double layer polyethylene film and a double acrylic or polycarbonate. The results of one year showed that the integrated system had a total energy efficiency of 14.6%. Starting from the electric energy supplied by the photovoltaic array the total efficiency of the hydrogen and ground source gas heat pump system was 112% if the coefficient of the performance of the heat pump is equal to 5. The heating system increased the greenhouse air temperatures by 3–9 ◦C with respect to the external air temperatures depending on the greenhouse cover material used.
Numerical Evaluation of the Effect of Fuel Blending with CO2 and H2 on the Very Early Corona‐Discharge Behavior in Spark Ignited Engines
Feb 2022
Publication
Reducing green‐house gases emission from light‐duty vehicles is compulsory in order to slow down the climate change. The application of High Frequency Ignition systems based on the Corona discharge effect has shown the potential to extend the dilution limit of engine operating conditions promoting lower temperatures and faster combustion events thus higher thermal and indicating efficiency. Furthermore predicting the behavior of Corona ignition devices against new sustainable fuel blends including renewable hydrogen and biogas is crucial in order to deal with the short‐intermediate term fleet electric transition. The numerical evaluation of Corona‐induced discharge radius and radical species under those conditions can be helpful in order to capture local effects that could be reached only with complex and expensive optical investigations. Using an ex‐ tended version of the Corona one‐dimensional code previously published by the present authors the simulation of pure methane and different methane–hydrogen blends and biogas–hydrogen blends mixed with air was performed. Each mixture was simulated both for 10% recirculated exhaust gas dilution and for its corresponding dilute upper limit which was estimated by means of chemical kinetics simulations integrated with a custom misfire detection criterion.
Toward a Non-destructive Diagnostic Analysis Tool of Exercises Pipelines: Models and Experiences
Dec 2018
Publication
Strategic networks of hydrocarbon pipelines in long time service are adversely affected by the action of aggressive chemicals transported with the fluids and dissolved in the environment. Material degradation phenomena are amplified in the presence of hydrogen and water elements that increase the material brittleness and reduce the safety margins. The risk of failure during operation of these infrastructures can be reduced if not prevented by the continuous monitoring of the integrity of the pipe surfaces and by the tracking of the relevant bulk properties. A fast and potentially non-destructive diagnostic tool of material degradation which may be exploited in this context is based on the instrumented indentation tests that can be performed on metals at different scales. Preliminary validation studies of the significance of this methodology for the assessment of pipeline integrity have been carried out with the aid of interpretation models of the experiments. The main results of this ongoing activity are illustrated in this contribution.
The Role of Green and Blue Hydrogen in the Energy Transition—A Technological and Geopolitical Perspective
Dec 2020
Publication
Hydrogen is currently enjoying a renewed and widespread momentum in many national and international climate strategies. This review paper is focused on analysing the challenges and opportunities that are related to green and blue hydrogen which are at the basis of different perspectives of a potential hydrogen society. While many governments and private companies are putting significant resources on the development of hydrogen technologies there still remains a high number of unsolved issues including technical challenges economic and geopolitical implications. The hydrogen supply chain includes a large number of steps resulting in additional energy losses and while much focus is put on hydrogen generation costs its transport and storage should not be neglected. A low-carbon hydrogen economy offers promising opportunities not only to fight climate change but also to enhance energy security and develop local industries in many countries. However to face the huge challenges of a transition towards a zero-carbon energy system all available technologies should be allowed to contribute based on measurable indicators which require a strong international consensus based on transparent standards and targets.
Solid-State Hydrogen Storage Systems and the Relevance of a Gender Perspective
Sep 2021
Publication
This paper aims at addressing the exploitation of solid-state carriers for hydrogen storage with attention paid both to the technical aspects through a wide review of the available integrated systems and to the social aspects through a preliminary overview of the connected impacts from a gender perspective. As for the technical perspective carriers to be used for solid-state hydrogen storage for various applications can be classified into two classes: metal and complex hydrides. Related crystal structures and corresponding hydrogen sorption properties are reviewed and discussed. Fundamentals of thermodynamics of hydrogen sorption evidence the key role of the enthalpy of reaction which determines the operating conditions (i.e. temperatures and pressures). In addition it rules the heat to be removed from the tank during hydrogen absorption and to be delivered to the tank during hydrogen desorption. Suitable values for the enthalpy of hydrogen sorption reaction for operating conditions close to ambient (i.e. room temperature and 1–10 bar of hydrogen) are close to 30 kJ·molH2 −1 . The kinetics of the hydrogen sorption reaction is strongly related to the microstructure and to the morphology (i.e. loose powder or pellets) of the carriers. Usually the kinetics of the hydrogen sorption reaction is rather fast and the thermal management of the tank is the rate-determining step of the processes. As for the social perspective the paper arguments that as it occurs with the exploitation of other renewable innovative technologies a wide consideration of the social factors connected to these processes is needed to reach a twofold objective: To assess the extent to which a specific innovation might produce positive or negative impacts in the recipient socioeconomic system and from a sociotechnical perspective to explore the potential role of the social components and dynamics in fostering the diffusion of the innovation itself. Within the social domain attention has been paid to address the underexplored relationship between the gender perspective and the enhancement of hydrogen-related energy storage systems. This relationship is taken into account both in terms of the role of women in triggering the exploitation of hydrogen-based storage playing as experimenter and promoter and in terms of the intertwined impact of this innovation in their current conditions at work and in daily life.
Dynamic Simulation and Thermoeconomic Analysis of a Hybrid Renewable System Based on PV and Fuel Cell Coupled with Hydrogen Storage
Nov 2021
Publication
The production of “green hydrogen” is currently one of the hottest topics in the field of renewable energy systems research. Hydrogen storage is also becoming more and more attractive as a flexible solution to mitigate the power fluctuations of solar energy systems. The most promising technology for electricity-to-hydrogen conversion and vice versa is the reversible solid-oxide cell (SOC). This device is still very expensive but it exhibits excellent performance under dynamic operating conditions compared to the competing devices. This work presents the dynamic simulation of a prototypal renewable plant combining a 50 kW photovoltaic (PV) field with a 50 kW solid-oxide electrolyzer cell (SOEC) and a compressed hydrogen tank. The electricity is used to meet the energy demand of a dwelling located in the area of Campi Flegrei (Naples). The SOC efficiency is simulated by developing a mathematical model in MATLAB®. The model also calculates the cell operating temperature as a function of the input current. Once the optimal values of the operating parameters of the SOC are calculated the model is integrated in the transient system simulation tool (TRNSYS) for dynamic analysis. Furthermore this work presents a parametric analysis of the hydrogen storage system (HSS). The results of the energy and environmental analyses show that the proposed system can reach a primary energy saving by 70% and an amount of saved CO2 of 28 tons/year. Some possible future market scenarios are considered for the economic analysis. In the most realistic case the optimal configuration shows a simple pay back lower than 10 years and a profit index of 46%.
Numerical Modeling of Energy Systems Based on Micro Gas Turbine: A Review
Jan 2022
Publication
In the context of the great research pulse on clean energy transition distributed energy systems have a key role especially in the case of integration of both renewable and traditional energy sources. The stable interest in small-scale gas turbines can further increase owing to their flexibility in both operation and fuel supply. Since their not-excellent electrical efficiency research activities on micro gas turbine (MGT) are focused on the performance improvements that are achievable in several ways like modifying the Brayton cycle integrating two or more plants using cleaner fuels. Hence during the last decades the growing interest in MGT-based energy systems encouraged the development of many numerical approaches aimed to provide a reliable and effective prediction of the energy systems’ behavior. Indeed numerical modeling can help to individuate potentialities and issues of each enhanced layout or hybrid energy system and this review aims to discuss the various layout solutions proposed by researchers with particular attention to recent publications highlighting the adopted modeling approaches and methods.
Integration of Battery and Hydrogen Energy Storage Systems with Small-scale Hydropower Plants in Off-grid Local Energy Communities
Apr 2024
Publication
The energy transition is pushing towards a considerable diffusion of local energy communities based on renewable energy systems and coupled with energy storage systems or energy vectors to provide independence from fossil fuels and limit carbon emissions. Indeed the variable and intermittent nature of renewables make them inadequate to satisfy the end-users’ electricity demand throughout the whole day; thus the study of energy storage systems considering their seasonal storage behaviour (e.g. energy-power coupling selfdischarge loss and minimum state of charge) is fundamental to guarantee the proper energy coverage. This work aims at identifying the off-grid operation of a local energy community powered by a 220 kW small-scale hydropower plant in the center of Italy using either a battery energy storage system or a hydrogen one with the Calliope framework. Results show that whereas the hydrogen storage system is composed of a 137 kW electrolyser a 41 kW fuel cell and a storage of 5247 kgH2 a battery system storage system would have a capacity of 280 MWh. Even though the battery storage has a better round-trip efficiency its self-discharge loss and minimum state of charge limitation involve a discharging phase with a steeper slope thus requiring considerable economic investments because of the high energy-to-power ratio.
The Use of Hydrogen for Traction in Freight Transport: Estimating the Reduction in Fuel Consumption and Emissions in a Regional Context
Jan 2023
Publication
The Italian National Recovery and Resilience Plan (NRRP) includes among other measures investments in hydrogen vehicle refuelling stations intending to promote the use of fuel cell electric vehicles (FCEVs) for long-haul freight transport. This paper evaluates the impact that this action could have on CO2 emissions and fuel consumption focusing on a case study of the Campania region. The proposed approach which can also be transferred to other geographical contexts requires the implementation of a freight road transport simulation model; this model is based on the construction of a supply model the estimation of road freight demand and an assignment procedure for computing traffic flows. This study covers the period from 2025 to 2040 according to the forecasts of the NRRP and some assumptions on the action effects; moreover it is assumed that hydrogen is entirely produced from renewable sources (green hydrogen). The key findings from three different scenarios show that savings between 423832 and 778538 tonnes of CO2 and between 144 and 264 million litres of diesel could be obtained.
Innovative Combustion Analysis of a Micro-gas Turbine Burner Supplied with Hydrogen-natural Gas Mixtures
Sep 2017
Publication
The author discusses in this paper the potential of a micro gas turbine (MGT) combustor when operated under unconventional fuel supplied. The combustor of C30 gas turbine is a reverse flow annular combustor. The CFD analysis of the reacting flow is performed with the 3D ANSYS-FLUENT solver. Specific computational experiments refer to the use of hydrogen – natural gas mixtures in order to define the optimal conditions for pilot and main injections in terms of combustion stability and NOx production. The author's methodology relies on an advanced CFD approach that compares different schemes like eddy dissipation concept together with the flamelet- PDF based approach coupled with an accurate study of the turbulent chemistry interaction. Extended kinetic mechanisms are also included in the combustion model. Some test cases are examined to make a comparison of combustion stability and efficiency and pollutant production with high hydrogen / natural gas ratios.
True Cost of Solar Hydrogen
Sep 2021
Publication
Green hydrogen will be an essential part of the future 100% sustainable energy and industry system. Up to one-third of the required solar and wind electricity would eventually be used for water electrolysis to produce hydrogen increasing the cumulative electrolyzer capacity to about 17 TWel by 2050. The key method applied in this research is a learning curve approach for the key technologies i.e. solar photovoltaics (PV) and water electrolyzers and levelized cost of hydrogen (LCOH). Sensitivities for the hydrogen demand and various input parameters are considered. Electrolyzer capital expenditure (CAPEX) for a large utility-scale system is expected to decrease from the current 400 €/kWel to 240 €/kWel by 2030 and to 80 €/kWel by 2050. With the continuing solar PV cost decrease this will lead to an LCOH decrease from the current 31–81 €/ MWhH2LHV (1.0–2.7 €/kgH2) to 20–54 €/MWhH2LHV (0.7–1.8 €/kgH2) by 2030 and 10–27 €/MWhH2LHV (0.3–0.9 €/kgH2) by 2050 depending on the location. The share of PV electricity cost in the LCOH will increase from the current 63% to 74% by 2050.
A Critical Review of Polymer Electrolyte Membrane Fuel Cell Systems for Automotive Applications: Components, Materials, and Comparative Assessment
Mar 2023
Publication
The development of innovative technologies based on employing green energy carriers such as hydrogen is becoming high in demand especially in the automotive sector as a result of the challenges associated with sustainable mobility. In the present review a detailed overview of the entire hydrogen supply chain is proposed spanning from its production to storage and final use in cars. Notably the main focus is on Polymer Electrolyte Membrane Fuel Cells (PEMFC) as the fuel-cell type most typically used in fuel cell electric vehicles. The analysis also includes a cost assessment of the various systems involved; specifically the materials commonly employed to manufacture fuel cells stacks and hydrogen storage systems are considered emphasizing the strengths and weaknesses of the selected strategies together with assessing the solutions to current problems. Moreover as a sought-after parallelism a comparison is also proposed and discussed between traditional diesel or gasoline cars battery-powered electric cars and fuel cell electric cars thus highlighting the advantages and main drawbacks of the propulsion systems currently available on the market.
Hydrogen-Fuel Cell Hybrid Powertrain: Conceptual Layouts and Current Applications
Nov 2022
Publication
Transportation is one of the largest sources of CO2 emissions accounting for more than 20% of worldwide emissions. However it is one of the areas where decarbonization presents the greatest hurdles owing to its capillarity and the benefits that are associated with the use of fossil fuels in terms of energy density storage and transportation. In order to accomplish comprehensive decarbonization in the transport sector it will be required to encourage a genuine transition to low-carbon fuels and the widespread deployment of the necessary infrastructures to allow for a large-scale innovation. Renewable hydrogen shows potential for sustainable transportation applications whether in fuel cell electric vehicles (FCEVs) such as automobiles trucks and trains or as a raw material for ship and airplane synthetic fuels. The present paper aims to present how hydrogen-fuel cell hybrid powertrains for road vehicles work in terms of conceptual layouts and operating strategies. A comprehensive overview of real and current applications is presented concerning existing prototypes and commercially available vehicles with a focus on the main key performance indicators such as efficiency mileage and energy consumption.
Feasibility Analysis of Green Hydrogen Production from Wind
May 2023
Publication
Renewable hydrogen production has an important role in global decarbonization. However when coupled with intermittent and variable sources such as wind or PV electrolyzers are subjected to part-load and dynamic operation. This can lead to low utilization factors and faster degradation of the electrolyzers and affect the specific hydrogen cost. The design and sizing of such electrolysis systems are fundamental to minimize costs. In this study several configurations of an electrolysis system producing green hydrogen from a 39 MWwind farm are compared. The effects of both the size of the plant and the number of separated groups into which it is divided are investigated. Dividing the plant into two separated groups resulted to be enough to increase hydrogen production; a further increase in the number of groups didn't produce significant differences. The most profitable configurations resulted that with one or two groups depending on the hydrogen selling price.
Optimal Design of a Hydrogen-powered Fuel Cell System for Aircraft Applications
Mar 2024
Publication
Recently hydrogen and fuel cells have gained interest as an emerging technology to mitigate the effects of climate change caused by the aviation sector. The aim of this work is to evaluate the applicability of this technology to an existing regional aircraft in order to assess its electrification with the aim of reducing greenhouse gas emissions and achieving sustainability goals. The design of a proton-exchange membrane fuel cell system (PEMFC) with the inclusion of liquid hydrogen storage is carried out. Specifically a general mathematical model is developed which involves multiple scales ranging from individual cells to aircraft scale. First the fuel cell electrochemical model is developed and validated against published polarization curves. Then different sizing approaches are used to compute the overall weight of the hydrogen-based propulsion system in order to optimize the system and minimize its weight. Crucially this work underscores that the feasibility of hydrogenbased fuel cell systems relies not only on hydrogen storage but especially on the electrochemical cell performance which influences the size of the balance of plant and especially its thermal management section. In particular the strategic significance of working with fuel cells at partial loads is demonstrated. This entails achieving an optimal balance between the stacks oversizing and the weights of both hydrogen storage and balance of plant thereby minimizing the overall weight of the system. It is thus shown that an integrated approach is imperative to guide progress towards efficient and implementable hydrogen technology in regional aviation. Furthermore a high-performance PEMFC is analyzed resulting in an overall weight reduction up to nearly 10% compared to the baseline case study. In this way it is demonstrated as technological advancements in PEMFCs can offer further prospects for improving system efficiency.
Assessment of Paper Industry Decarbonization Potential via Hydrogen in a Multi-energy System Scenario: A Case Study
Jul 2023
Publication
Green hydrogen is currently regarded as a key catalyst for the decarbonization of energy-intensive industries. In this context the pulp and paper industry stands out as one of the most demanding given the simultaneous need for large amounts of heat and electricity usually satisfied via cogeneration systems. Given the urgent need for cost-effective solutions in response to the climate crisis it is crucial to analyze the feasibility of retrofitting existing power plants to operate carbon-neutral. The aim of this work is to provide a techno-economic analysis for the conversion of a conventional cogeneration system to run on locally produced hydrogen. Building on the energy consumption of the paper mill the operation of a hydrogen-fuelled gas turbine is modelled in detail. Based on these results a multi-energy system model for the production of green fuel is presented considering production via solar-powered PEM electrolyzers storage in tanks and final use in the gas turbine. An optimal configuration for the system is defined leading to the definition of a solution that ensures a cost of 6.41 /kg for the production of green hydrogen. Finally a sensitivity analysis highlights the close dependence of the economic profitability of the Power-to-X system on the natural gas price. The results indicate that although positive performance is achieved the cost of investment remains still prohibitive for systems of this size and the high initial capital expenditure needs to be supported by incentive policies that facilitate the adoption of hydrogen in industrial applications making it competitive in the short term.
Development of Various Photovoltaic-Driven Water Electrolysis Technologies for Green Solar Hydrogen Generation
Sep 2021
Publication
Sonya Calnan,
Rory Bagacki,
Fuxi Bao,
Iris Dorbandt,
Erno Kemppainen,
Christian Schary,
Rutger Schlatmann,
Marco Leonardi,
Salvatore A. Lombardo,
R. Gabriella Milazzo,
Stefania M. S. Privitera,
Fabrizio Bizzarri,
Carmelo Connelli,
Daniele Consoli,
Cosimo Gerardi,
Pierenrico Zani,
Marcelo Carmo,
Stefan Haas,
Minoh Lee,
Martin Mueller,
Walter Zwaygardt,
Johan Oscarsson,
Lars Stolt,
Marika Edoff,
Tomas Edvinsson and
Ilknur Bayrak Pehlivan
Direct solar hydrogen generation via a combination of photovoltaics (PV) andwater electrolysis can potentially ensure a sustainable energy supply whileminimizing greenhouse emissions. The PECSYS project aims at demonstrating asolar-driven electrochemical hydrogen generation system with an area >10 m 2with high efficiency and at reasonable cost. Thermally integrated PV electrolyzers(ECs) using thin-film silicon undoped and silver-doped Cu(InGa)Se 2 and siliconheterojunction PV combined with alkaline electrolysis to form one unit aredeveloped on a prototype level with solar collection areas in the range from 64 to2600 cm 2 with the solar-to-hydrogen (StH) efficiency ranging from 4 to 13%.Electrical direct coupling of PV modules to a proton exchange membrane EC totest the effects of bifaciality (730 cm 2 solar collection area) and to study the long-term operation under outdoor conditions (10 m 2 collection area) is also inves-tigated. In both cases StH efficiencies exceeding 10% can be maintained over thetest periods used. All the StH efficiencies reported are based on measured gasoutflow using mass flow meters.
Achieving Net Zero Emissions in Italy by 2050: Challenges and Opportunities
Dec 2021
Publication
This paper contributes to the climate policy discussion by focusing on the challenges and opportunities of reaching net zero emissions by 2050 in Italy. To support Italian energy planning we developed energy roadmaps towards national climate neutrality consistent with the Paris Agreement objectives and the IPCC goal of limiting the increase in global surface temperature to 1.5 ◦C. Starting from the Italian framework these scenarios identify the correlations among the main pillars for the change of the energy paradigm towards net emissions by 2050. The energy scenarios were developed using TIMES-RSE a partial equilibrium and technology-rich optimization model of the entire Italian energy system. Subsequently an in-depth analysis was developed with the sMTISIM a long-term simulator of power system and electricity markets. The results show that to achieve climate neutrality by 2050 the Italian energy system will have to experience profound transformations on multiple and strongly related dimensions. A predominantly renewable-based energy mix (at least 80–90% by 2050) is essential to decarbonize most of the final energy consumption. However the strong increase of non-programmable renewable sources requires particular attention to new flexibility resources needed for the power system such as Power-to-X. The green fuels produced from renewables via Power-to-X will be a vital energy source for those sectors where electrification faces technical and economic barriers. The paper’s findings also confirm that the European “energy efficiency first” principle represents the very first step on the road to climate neutrality.
Assessing Sizing Optimality of OFF-GRID AC-Linked Solar PV-PEM Systems for Hydrogen Production
Jul 2023
Publication
Herein a novel methodology to perform optimal sizing of AC-linked solar PV-PEM systems is proposed. The novelty of this work is the proposition of the solar plant to electrolyzer capacity ratio (AC/AC ratio) as optimization variable. The impact of this AC/AC ratio on the Levelized Cost of Hydrogen (LCOH) and the deviation of the solar DC/AC ratio when optimized specifically for hydrogen production are quantified. Case studies covering a Global Horizontal Irradiation (GHI) range of 1400e2600 kWh/m2 -year are assessed. The obtained LCOHs range between 5.9 and 11.3 USD/kgH2 depending on sizing and location. The AC/AC ratio is found to strongly affect cost production and LCOH optimality while the optimal solar DC/AC ratio varies up to 54% when optimized to minimize the cost of hydrogen instead of the cost of energy only. Larger oversizing is required for low GHI locations; however H2 production is more sensitive to sizing ratios for high GHI locations.
The Green Hydrogen Revolution
Jul 2023
Publication
Green hydrogen is considered the most suitable choice for the future energy market both as energy storage media energy vector and fuel for transportation industry and other applications. In the last twenty years increasing efforts have been dedicated to green hydrogen technologies development but still today a number of issues are claimed in justifying the delay in its large scale application and the star vation of its market. Moreover some new questions seem ready to be put on the table for justifying the delay in green hydrogen technologies applications. In this paper a critical analysis of recent literature and institutional reports is carried out with the aim of understanding what is the real state of the play. In particular peculiar advantages and shortcomings of different green hydrogen technologies (biomass pyrolysis and gasification water electrolysis etc.) have been analysed and compared with a focus on the electrolysis process as the most promising method for large scale and distributed generation of hydrogen. Some geopolitical and economic aspects associated with the transition to a green hydrogen economy - including the feared exacerbation of the water crisis - have been widely examined and discussed with the purpose of identifying approaches and solutions to accelerate the mentioned transition.
Combining Renewable Sources Towards Negative Carbon Emission Hydrogen
Apr 2023
Publication
Multi-energy systems that combine different energy sources and carriers to improve the overall technical economic and environmental performance can boost the energy transition. In this paper we posit an innovative multi-energy system for green hydrogen production that achieves negative carbon emissions by combining bio-fuel membraneintegrated steam reforming and renewable electricity electrolysis. The system produces green hydrogen and carbon dioxide both at high purity. We use thermo-chemical models to determine the system performance and optimal working parameters. Specifically we focus on its ability to achieve negative carbon emissions. The results show that in optimal operating conditions the system can capture up to 14.1 g of CO2 per MJ of stored hydrogen and achieves up to 70% storage efficiency. Therefore we prove that a multi-energy system may reach the same efficiency of an average electrolyzer while implementing carbon capture. In the same optimal operating conditions the system converts 7.8 kg of biogas in 1 kg of hydrogen using 3.2 kg of oxygen coming from the production of 6.4 kg of hydrogen through the electrolyzer. With such ratios we estimate that the conversion of all the biogas produced in Europe with our system could result in the installation of additional dedicated 800 GWp - 1280 GWp of photovoltaic power or of 266 GWp - 532 GWp of wind power without affecting the distribution grid and covering yearly the 45% of the worldwide hydrogen demand while removing from the atmosphere more than 2% of the European carbon dioxide emissions.
A Hydrogen-fuelled Compressed Air Energy Storage System for Flexibility Reinforcement and Variable Renewable Energy Integration in Grids with High Generation Curtailment
Mar 2024
Publication
Globally the increasing share of renewables prominently driven by intermittent sources such as solar and wind power poses significant challenges to the reliability of current electrical infrastructures leading to the adoption of extreme measures such as generation curtailment to preserve grid security. Within this framework it is essential to develop energy storage systems that contribute to reinforce the flexibility and security of power grids while simultaneously reducing the share of generation curtailment. Therefore this study investigates the performance of an integrated photovoltaic-hydrogen fuelled-compressed air energy storage system whose configuration is specifically conceived to enable the connection of additional intermittent sources in already saturated grids. The yearly and seasonal performance of the integrated energy storage system specifically designed to supply flexibility services are evaluated for a scenario represented by a real grid with high-variable renewables penetration and frequent dispatchability issues. Results show that the integrated system with performanceoptimized components and a new energy management strategy minimizes photovoltaic energy curtailment otherwise around 50% to as low as 4% per year achieving system efficiencies of up to 62% and reinforces the grid by supplying inertial power for up to 20% of nighttime hours. In conclusion the integrated plant operating with zero emissions on-site hydrogen production and optimized for non-dispatchable photovoltaic energy utilization proves to be effective in integrating new variable renewable sources and reinforcing saturated grids particularly during spring and summer.
Italian Offshore Platform and Depleted Reservoir Conversion in the Energy Transition Perspective
Aug 2023
Publication
New hypotheses for reusing platforms reaching their end-of-life have been investigated in several works discussing the potential conversions of these infrastructures from recreational tourism to fish farming. In this perspective paper we discuss the conversion options that could be of interest in the context of the current energy transition with reference to the off-shore Italian scenario. The study was developed in support of the development of a national strategy aimed at favoring a circular economy and the reuse of existing infrastructure for the implementation of the energy transition. Thus the investigated options include the onboard production of renewable energy hydrogen production from seawater through electrolyzers CO2 capture and valorization and platform reuse for underground fluid storage in depleted reservoirs once produced through platforms. Case histories are developed with reference to a typical fictitious platform in the Adriatic Sea Italy to provide an engineering-based approach to these different conversion options. The coupling of the platform with the underground storage to set the optimal operational conditions is managed through the forecast of the reservoir performance with advanced numerical models able to simulate the complexity of the phenomena occurring in the presence of coupled hydrodynamic geomechanical geochemical thermal and biological processes. The results of our study are very encouraging because they reveal that no technical environmental or safety issues prevent the conversion of offshore platforms into valuable infrastructure contributing to achieving the energy transition targets as long as the selection of the conversion option to deploy is designed taking into account the system specificity and including the depleted reservoir to which it is connected when relevant. Socio-economic issues were not investigated as they were out of the scope of the project.
How Far Away is Hydrogen? Its Role in the Medium and Long-term Decarbonisation of the European Energy System
Nov 2015
Publication
Hydrogen is a promising avenue for decarbonising energy systems and providing flexibility. In this paper the JRC-EU-TIMES model – a bottom-up technology-rich model of the EU28 energy system – is used to assess the role of hydrogen in a future decarbonised Europe under two climate scenarios current policy initiative (CPI) and long-term decarbonisation (CAP). Our results indicate that hydrogen could become a viable option already in 2030 – however a long-term CO2 cap is needed to sustain the transition. In the CAP scenario the share of hydrogen in the final energy consumption of the transport and industry sectors reaches 5% and 6% by 2050. Low-carbon hydrogen production technologies dominate and electrolysers provide flexibility by absorbing electricity at times of high availability of intermittent sources. Hydrogen could also play a significant role in the industrial and transport sectors while the emergence of stationary hydrogen fuel cells for hydrogen-to-power would require significant cost improvements over and above those projected by the experts.
Blind-prediction: Estimating the Consequences of Vented Hydrogen Deflagrations for Homogeneous Mixtures in a 20-foot ISO Container
Sep 2017
Publication
Trygve Skjold,
Helene Hisken,
Sunil Lakshmipathy,
Gordon Atanga,
Marco Carcassi,
Martino Schiavetti,
James R. Stewart,
A. Newton,
James R. Hoyes,
Ilias C. Tolias,
Alexandros G. Venetsanos,
Olav Roald Hansen,
J. Geng,
Asmund Huser,
Sjur Helland,
Romain Jambut,
Ke Ren,
Alexei Kotchourko,
Thomas Jordan,
Jérome Daubech,
Guillaume Lecocq,
Arve Grønsund Hanssen,
Chenthil Kumar,
Laurent Krumenacker,
Simon Jallais,
D. Miller and
Carl Regis Bauwens
This paper summarises the results from a blind-prediction study for models developed for estimating the consequences of vented hydrogen deflagrations. The work is part of the project Improving hydrogen safety for energy applications through pre-normative research on vented deflagrations (HySEA). The scenarios selected for the blind-prediction entailed vented explosions with homogeneous hydrogen-air mixtures in a 20-foot ISO container. The test program included two configurations and six experiments i.e. three repeated tests for each scenario. The comparison between experimental results and model predictions reveals reasonable agreement for some of the models and significant discrepancies for others. It is foreseen that the first blind-prediction study in the HySEA project will motivate developers to improve their models and to update guidelines for users of the models.
Magnesium Based Materials for Hydrogen Based Energy Storage: Past, Present and Future
Jan 2019
Publication
Volodymyr A. Yartys,
Mykhaylo V. Lototskyy,
Etsuo Akiba,
Rene Albert,
V. E. Antonov,
Jose-Ramón Ares,
Marcello Baricco,
Natacha Bourgeois,
Craig Buckley,
José Bellosta von Colbe,
Jean-Claude Crivello,
Fermin Cuevas,
Roman V. Denys,
Martin Dornheim,
Michael Felderhoff,
David M. Grant,
Bjørn Christian Hauback,
Terry D. Humphries,
Isaac Jacob,
Petra E. de Jongh,
Jean-Marc Joubert,
Mikhail A. Kuzovnikov,
Michel Latroche,
Mark Paskevicius,
Luca Pasquini,
L. Popilevsky,
Vladimir M. Skripnyuk,
Eugene I. Rabkin,
M. Veronica Sofianos,
Alastair D. Stuart,
Gavin Walker,
Hui Wang,
Colin Webb,
Min Zhu and
Torben R. Jensen
Magnesium hydride owns the largest share of publications on solid materials for hydrogen storage. The “Magnesium group” of international experts contributing to IEA Task 32 “Hydrogen Based Energy Storage” recently published two review papers presenting the activities of the group focused on magnesium hydride based materials and on Mg based compounds for hydrogen and energy storage. This review article not only overviews the latest activities on both fundamental aspects of Mg-based hydrides and their applications but also presents a historic overview on the topic and outlines projected future developments. Particular attention is paid to the theoretical and experimental studies of Mg-H system at extreme pressures kinetics and thermodynamics of the systems based on MgH2 nanostructuring new Mg-based compounds and novel composites and catalysis in the Mg based H storage systems. Finally thermal energy storage and upscaled H storage systems accommodating MgH2 are presented.
The Role of the Flow Field Generated by Venting Process on the Pressure Time History of a Vented Deflagration
Sep 2017
Publication
Vented deflagrations are one of the most challenging phenomenon to be replicated numerically in order to predict its resulting pressure time history. As a matter of fact a number of different phenomena can contribute to modify the burning velocity of a gas mixture undergoing a deflagration especially when the flame velocity is considerably lower than the speed of sound. In these conditions acceleration generated by both the flow field induced by the expanding flame and from discontinuities as the vent opening and the venting of the combustion products affect the burning velocity and the burning behaviour of the flame. In particular the phenomena affecting the pressure time history of a deflagration after the flame front reaches the vent area such as flame acoustic interaction and local pressure peaks seem to be closely related to a change in the burning behaviour induced by the venting process. Flame acoustic interaction and local pressure peaks arise as a consequence of the change in the burning behaviour of the flame. This paper analyses the video recording of the flame front produced during the TP experimental campaign performed by UNIPI in the project HySEA to analyse qualitatively the contribution of the generated flow field in a vented deflagration in its pressure-time history.
Greenhouse Gas Implications of Extending the Service Life of PEM Fuel Cells for Automotive Applications: A Life Cycle Assessment
Feb 2022
Publication
A larger adoption of hydrogen fuel-cell electric vehicles (FCEVs) is typically included in the strategies to decarbonize the transportation sector. This inclusion is supported by life-cycle assessments (LCAs) which show the potential greenhouse gas (GHG) emission benefit of replacing internal combustion engine vehicles with their fuel cell counterpart. However the literature review performed in this study shows that the effects of durability and performance losses of fuel cells on the life-cycle environmental impact of the vehicle have rarely been assessed. Most of the LCAs assume a constant fuel consumption (ranging from 0.58 to 1.15 kgH2/100 km) for the vehicles throughout their service life which ranges in the assessments from 120000 to 225000 km. In this study the effect of performance losses on the life-cycle GHG emissions of the vehicles was assessed based on laboratory experiments. Losses have the effect of increasing the life-cycle GHG emissions of the vehicle up to 13%. Moreover this study attempted for the first time to investigate via laboratory analyses the GHG implications of replacing the hydrophobic polymer for the gas diffusion medium (GDM) of fuel cells to increase their durability. LCA showed that when the service life of the vehicle was fixed at 150000 km the GHG emission savings of using an FC with lower performance losses (i.e. FC coated with fluorinated ethylene propylene (FEP) instead of polytetrafluoroethylene (PTFE)) are negligible compared to the overall life-cycle impact of the vehicle. Both the GDM coating and the amount of hydrogen saved account for less than 2% of the GHG emissions arising during vehicle operation. On the other hand when the service life of the vehicle depends on the operability of the fuel cell the global warming potential per driven km of the FEP-based FCEV reduces by 7 to 32%. The range of results depends on several variables such as the GHG emissions from hydrogen production and the initial fuel consumption of the vehicle. Higher GHG savings are expected from an FC vehicle with high consumption of hydrogen produced with fossil fuels. Based on the results we recommend the inclusion of fuel-cell durability in future LCAs of FCEVs. We also advocate for more research on the real-life performance of fuel cells employing alternative materials.
Multi-Objective Optimization of a Hydrogen Hub for the Decarbonization of a Port Industrial Area
Feb 2022
Publication
Green hydrogen is addressed as a promising solution to decarbonize industrial and mobility sectors. In this context ports could play a key role not only as hydrogen users but also as suppliers for industrial plants with which they have strong commercial ties. The implementation of hydrogen technologies in ports has started to be addressed as a strategy for renewable energy transition but still requires a detailed evaluation of the involved costs which cannot be separated from the correct design and operation of the plant. Hence this study proposes the design and operation optimization of a hydrogen production and storage system in a typical Italian port. Multi-objective optimization is performed to determine the optimal levelized cost of hydrogen in environmental and techno-economic terms. A Polymer Electrolyte Membrane (PEM) electrolyzer powered by a grid-integrated photovoltaic (PV) plant a compression station and two-pressure level storage systems are chosen to provide hydrogen to a hydrogen refueling station for a 20-car fleet and satisfy the demand of the hydrogen batch annealing in a steel plant. The results report that a 341 kWP PV plant 89 kW electrolyzer and 17 kg hydrogen storage could provide hydrogen at 7.80 €/kgH2 potentially avoiding about 153 tCO2eq/year (120 tCO2eq/year only for the steel plant).
Application of Hydrides in Hydrogen Storage and Compression: Achievements, Outlook and Perspectives
Feb 2019
Publication
José Bellosta von Colbe,
Jose-Ramón Ares,
Jussara Barale,
Marcello Baricco,
Craig Buckley,
Giovanni Capurso,
Noris Gallandat,
David M. Grant,
Matylda N. Guzik,
Isaac Jacob,
Emil H. Jensen,
Julian Jepsen,
Thomas Klassen,
Mykhaylo V. Lototskyy,
Kandavel Manickam,
Amelia Montone,
Julian Puszkiel,
Martin Dornheim,
Sabrina Sartori,
Drew Sheppard,
Alastair D. Stuart,
Gavin Walker,
Colin Webb,
Heena Yang,
Volodymyr A. Yartys,
Andreas Züttel and
Torben R. Jensen
Metal hydrides are known as a potential efficient low-risk option for high-density hydrogen storage since the late 1970s. In this paper the present status and the future perspectives of the use of metal hydrides for hydrogen storage are discussed. Since the early 1990s interstitial metal hydrides are known as base materials for Ni – metal hydride rechargeable batteries. For hydrogen storage metal hydride systems have been developed in the 2010s [1] for use in emergency or backup power units i. e. for stationary applications.<br/>With the development and completion of the first submarines of the U212 A series by HDW (now Thyssen Krupp Marine Systems) in 2003 and its export class U214 in 2004 the use of metal hydrides for hydrogen storage in mobile applications has been established with new application fields coming into focus.<br/>In the last decades a huge number of new intermetallic and partially covalent hydrogen absorbing compounds has been identified and partly more partly less extensively characterized.<br/>In addition based on the thermodynamic properties of metal hydrides this class of materials gives the opportunity to develop a new hydrogen compression technology. They allow the direct conversion from thermal energy into the compression of hydrogen gas without the need of any moving parts. Such compressors have been developed and are nowadays commercially available for pressures up to 200 bar. Metal hydride based compressors for higher pressures are under development. Moreover storage systems consisting of the combination of metal hydrides and high-pressure vessels have been proposed as a realistic solution for on-board hydrogen storage on fuel cell vehicles.<br/>In the frame of the “Hydrogen Storage Systems for Mobile and Stationary Applications” Group in the International Energy Agency (IEA) Hydrogen Task 32 “Hydrogen-based energy storage” different compounds have been and will be scaled-up in the near future and tested in the range of 500 g to several hundred kg for use in hydrogen storage applications.
Optimal Operations for Hydrogen-based Energy Storage Systems in Wind Farms via Model Predictive Control
Feb 2021
Publication
Efficient energy production and consumption are fundamental points for reducing carbon emissions that influence climate change. Alternative resources such as renewable energy sources (RESs) used in electricity grids could reduce the environmental impact. Since RESs are inherently unreliable during the last decades the scientific community addressed research efforts to their integration with the main grid by means of properly designed energy storage systems (ESSs). In order to highlight the best performance from these hybrid systems proper design and operations are essential. The purpose of this paper is to present a so-called model predictive controller (MPC) for the optimal operations of grid-connected wind farms with hydrogen-based ESSs and local loads. Such MPC has been designed to take into account the operating and economical costs of the ESS the local load demand and the participation to the electricity market and further it enforces the fulfillment of the physical and the system's dynamics constraints. The dynamics of the hydrogen-based ESS have been modeled by means of the mixed-logic dynamic (MLD) framework in order to capture different behaviors according to the possible operating modes. The purpose is to provide a controller able to cope both with all the main physical and operating constraints of a hydrogen-based storage system including the switching among different modes such as ON OFF STAND-BY and at the same time reduce the management costs and increase the equipment lifesaving. The case study for this paper is a plant under development in the north Norway. Numerical analysis on the related plant data shows the effectiveness of the proposed strategy which manages the plant and commits the equipment so as to preserve the given constraints and save them from unnecessary commutation cycles.
Potentialities of Hydrogen Enriched Natural Gas for Residential Heating Decarbonization and Impact Analysis on Premixed Boilers
Sep 2019
Publication
Nowadays decarbonization of energy economy is a topical theme and several pathways are under discussion. Gaseous fuels will play a primary role during this transition and the production of renewable or low carbon-impact gaseous fuels is necessary to deal with this challenge. Decarbonization will be sustained by an increasing share of renewables which production intermittency can be critical for the energy system. Renewable hydrogen generation is a viable solution since this energy vector can be produced from electricity with a fast response and injected in the existing natural gas infrastructures granting storage capacity and easy transport. Parallelly to the renewable-based energy production fossil-based energy can be exploited with a low carbon impact using methane from reservoirs to produce hydrogen capturing CO2. The mentioned scenarios will lead to hydrogen enrichment of natural gas which impact on the infrastructures is being actively studied. The effect on end-user devices instead is poorly analysed but is fundamental to be assessed. This paper highlights the impact on the widely used premixed condensing boilers which will be fired with hydrogen enriched natural gas in the near future and the changes required to components.
Numerical Analysis of VPSA Technology Retrofitted to Steam Reforming Hydrogen Plants to Capture CO2 and Produce Blue H2
Feb 2022
Publication
The increasing demand for energy and commodities has led to escalating greenhouse gas emissions the chief of which is represented by carbon dioxide (CO2). Blue hydrogen (H2) a lowcarbon hydrogen produced from natural gas with carbon capture technologies applied has been suggested as a possible alternative to fossil fuels in processes with hard-to-abate emission sources including refining chemical petrochemical and transport sectors. Due to the recent international directives aimed to combat climate change even existing hydrogen plants should be retrofitted with carbon capture units. To optimize the process economics of such retrofit it has been proposed to remove CO2 from the pressure swing adsorption (PSA) tail gas to exploit the relatively high CO2 concentration. This study aimed to design and numerically investigate a vacuum pressure swing adsorption (VPSA) process capable of capturing CO2 from the PSA tail gas of an industrial steam methane reforming (SMR)-based hydrogen plant using NaX zeolite adsorbent. The effect of operating conditions such as purge-to-feed ratio and desorption pressure were evaluated in relation to CO2 purity CO2 recovery bed productivity and specific energy consumption. We found that conventional cycle configurations namely a 2-bed 4-step Skarstrom cycle and a 2-bed 6-step modified Skarstrom cycle with pressure equalization were able to concentrate CO2 to a purity greater than 95% with a CO2 recovery of around 77% and 90% respectively. Therefore the latter configuration could serve as an efficient process to decarbonize existing hydrogen plants and produce blue H2.
Health-Conscious Optimization of Long-Term Operation for Hybrid PEMFC Ship Propulsion Systems
Jun 2021
Publication
The need to decarbonize the shipping sector is leading to a growing interest in fuel cell-based propulsion systems. While Polymer Electrolyte Membrane Fuel Cells (PEMFC) represent one of the most promising and mature technologies for onboard implementation they are still prone to remarkable degradation. The same problem is also affecting Lithium-ion batteries (LIB) which are usually coupled with PEMFC in hybrid powertrains. By including the combined degradation effects in an optimization strategy the best compromise between costs and PEMFC/LIB lifetime could be determined. However this is still a challenging yet crucial aspect rarely addressed in the literature and rarely yet explored. To fill this gap a health-conscious optimization is here proposed for the long-term minimization of costs and PEMFC/LIB degradation. Results show that a holistic multi-objective optimization allows a 185% increase of PEMFC/LIB lifetime with respect to a fuel-consumption-minimization-only approach. With the progressive ageing of PEMFC/LIB the hybrid propulsion system modifies the energy management strategy to limit the increase of the daily operation cost. Comparing the optimization results at the beginning and the end of the plant lifetime daily operation costs are increased by 73% and hydrogen consumption by 29%. The proposed methodology is believed to be a useful tool able to give insights into the effective costs involved in the long-term operation of this new type of propulsion system.
Techno-economic Analysis of Hydrogen Production from PV Plants
Jan 2022
Publication
Hydrogen production through electrolysis from renewable sources is expected to play an important role to achieve the reduction targets of carbon dioxide emissions set for the next decades. Electrolysers can use the renewable energy surplus to produce green hydrogen and contribute to making the electrical grid more stable. Hydrogen can be used as medium-long term energy storage converted into other fuels or used as feedstock in industry thus contributing to decarbonise hard-to-abate-sectors. However due to the intermittent and variable nature of solar and wind power the direct coupling of electrolysers with renewables may lead to high production fluctuations and frequent shutdowns. As a consequence accelerated electrolyser degradation and safety issues related to low load operation may arise. In this study simulations of hydrogen production with an electrolyser fed by a PV system are performed in Matlab for a reference year. The effect of PV power fluctuations on the electrolyser operation and production is investigated. The impact of the electrolyser size for a fixed nominal power of the PV plant is also analysed from both energetic and economic points of view.
Solar Hydrogen for High Capacity, Dispatchable, Long-distance Energy transmission – A Case Study for Injection in the Greenstream Natural Gas Pipeline
Nov 2022
Publication
This paper presents the results of techno-economic modelling for hydrogen production from a photovoltaic battery electrolyser system (PBES) for injection into a natural gas transmission line. Mellitah in Libya connected to Gela in Italy by the Greenstream subsea gas transmission line is selected as the location for a case study. The PBES includes photovoltaic (PV) arrays battery electrolyser hydrogen compressor and large-scale hydrogen storage to maintain constant hydrogen volume fraction in the pipeline. Two PBES configurations with different large-scale storage methods are evaluated: PBESC with compressed hydrogen stored in buried pipes and PBESL with liquefied hydrogen stored in spherical tanks. Simulated hourly PV electricity generation is used to calculate the specific hourly capacity factor of a hypothetical PV array in Mellitah. This capacity factor is then used with different PV sizes for sizing the PBES. The levelised cost of delivered hydrogen (LCOHD) is used as the key techno-economic parameter to optimise the size of the PBES by equipment sizing. The costs of all equipment except the PV array and batteries are made to be a function of electrolyser size. The equipment sizes are deemed optimal if PBES meets hydrogen demand at the minimum LCOHD. The techno-economic performance of the PBES is evaluated for four scenarios of fixed and constant hydrogen volume fraction targets in the pipeline: 5% 10% 15% and 20%. The PBES can produce up to 106 kilotonnes of hydrogen per year to meet the 20% target at an LCOHD of 3.69 €/kg for compressed hydrogen storage (PBESC) and 2.81 €/kg for liquid hydrogen storage (PBESL). Storing liquid hydrogen at large-scale is significantly cheaper than gaseous hydrogen even with the inclusion of a significantly larger PV array that is required to supply additional electrcitiy for liquefaction.
Renewable Electricity for Decarbonisation of Road Transport: Batteries or E-Fuels?
Feb 2023
Publication
Road transport is one of the most energy-consuming and greenhouse gas (GHG) emitting sectors. Progressive decarbonisation of electricity generation could support the ambitious target of road vehicle climate neutrality in two different ways: direct electrification with onboard electro-chemical storage or a change of energy vector with e-fuels. The most promising state-of-the-art electrochemical storages for road transport have been analysed considering current and future technologies (the most promising ones) whose use is assumed to occur within the next 10–15 years. Different e-fuels (e-hydrogen e-methanol e-diesel e-ammonia E-DME and e-methane) and their production pathways have been reviewed and compared in terms of energy density synthesis efficiency and technology readiness level. A final energetic comparison between electrochemical storages and e-fuels has been carried out considering different powertrain architectures highlighting the huge difference in efficiency for these competing solutions. E-fuels require 3–5 times more input energy and cause 3–5 times higher equivalent vehicle CO2 emissions if the electricity is not entirely decarbonised.
Comparing e-Fuels and Electrification for Decarbonization of Heavy-Duty Transports
Oct 2022
Publication
The freight sector is expected to keep or even increase its fundamental role for the major modern economies and therefore actions to limit the growing pressure on the environment are urgent. The use of electricity is a major option for the decarbonization of transports; in the heavy-duty segment it can be implemented in different ways: besides full electric-battery powertrains electricity can be used to supply catenary roads or can be chemically stored in liquid or gaseous fuels (e-fuels). While the current EU legislation adopts a tailpipe Tank-To-Wheels approach which results in zero emissions for all direct uses of electricity a Well-To-Wheels (WTW) method would allow accounting for the potential benefits of using sustainable fuels such as e-fuels. In this article we have performed a WTW-based comparison and modelling of the options for using electricity to supply heavy-duty vehicles: e-fuels eLNG eDiesel and liquid Hydrogen. Results showed that the direct use of electricity can provide high Greenhouse Gas (GHG) savings and also in the case of the e-fuels when low-carbonintensity electricity is used for their production. While most studies exclusively focus on absolute GHG savings potential considerations of the need for new infrastructures and the technological maturity of some options are fundamental to compare the different technologies. In this paper an assessment of such technological and non-technological barriers has been conducted in order to compare alternative pathways for the heavy-duty sector. Among the available options the flexibility of using drop-in energy-dense liquid fuels represents a clear and substantial immediate advantage for decarbonization. Additionally the novel approach adopted in this paper allows us to quantify the potential benefits of using e-fuels as chemical storage able to accumulate electricity from the production peaks of variable renewable energies which would otherwise be wasted due to grid limitations.
On the Technology of Solid Oxide Fuel Cell (SOFC) Energy Systems for Stationary Power Generation: A Review
Nov 2022
Publication
This paper presents a comprehensive overview on the current status of solid oxide fuel cell (SOFC) energy systems technology with a deep insight into the techno-energy performance. In recent years SOFCs have received growing attention in the scientific landscape of high efficiency energy technologies. They are fuel flexible highly efficient and environmentally sustainable. The high working temperature makes it possible to work in cogeneration and drive downstream bottomed cycles such as Brayton and Hirn/Rankine ones thus configuring the hybrid system of a SOFC/turbine with very high electric efficiency. Fuel flexibility makes SOFCs independent from pure hydrogen feeding since hydrocarbons can be fed directly to the SOFC and then converted to a hydrogen rich stream by the internal thermochemical processes. SOFC is also able to convert carbon monoxide electrochemically thus contributing to energy production together with hydrogen. SOFCs are much considered for being supplied with biofuels especially biogas and syngas so that biomass gasifiers/SOFC integrated systems contribute to the “waste to energy” chain with a significant reduction in pollution. The paper also deals with the analysis of techno-energy performance by means of ad hoc developed numerical modeling in relation to the main operating parameters. Ample prominence is given to the aspect of fueling emphasizing fuel processing with a deep discussion on the impurities and undesired phenomena that SOFCs suffer. Constituent materials geometry and design methods for the balance of plant were studied. A wide analysis was dedicated to the hybrid system of the SOFC/turbine and to the integrated system of the biomass gasifier/SOFC. Finally an overview of SOFC system manufacturing companies on SOFC research and development worldwide and on the European roadmap was made to reflect the interest in this technology which is an important signal of how communities are sensitive toward clean low carbon and efficient technologies and therefore to provide a decisive and firm impulse to the now outlined energy transition.
Characterization of the Hydrogen Combustion Process in a Scramjet Engine
May 2024
Publication
In this paper by using a large eddy simulation we study the combustion process in the HyShot II scramjet combustor. By conducting a detailed analysis of the mass-fraction distributions of the main species such as H2 H2O and the radicals OH and HO2 of the mass source terms of these main species and of the chemical source term of the energy equation we detect the regions where chemical reactions occur through a diffusion process and the regions where auto-ignition and premixed combustion may develop. The analysis indicates that the combustion process is mainly of diffusive type along a thin shear layer enveloping the hydrogen plume whereas there could be some auto-ignition and/or premixed combustion cores inside the plume.
Numerical Investigation of a Fuel Cell-Powered Agricultural Tractor
Nov 2022
Publication
In recent years growing awareness about environmental issues is pushing humankind to explore innovative technologies to reduce the anthropogenic sources of pollutants. Among these sources internal combustion engines in non-road mobile machinery (NRMM) such as agricultural tractors are one of the most important. The aim of this work is to explore the possibility of replacing the conventional diesel engine with an electric powertrain powered by a hybrid storage system consisting of a small battery pack and a fuel-cell system. The battery pack (BP) is necessary to help the fuel cell manage sudden peaks in power demands. Numerical models of the conventional powertrain and a fuel-cell tractor were carried out. To compare the two powertrains work cycles derived from data collected during real operative conditions were exploited and simulated. For the fuel-cell tractor a control strategy to split the electric power between the battery pack and the fuel cell was explored. The powertrains were compared in terms of greenhouse gas emissions (GHG) according to well-to-wheel (WTW) equivalent CO2 emission factors available in the literature. Considering the actual state-of-the-art hydrogen production methods the simulation results showed that the fuel-cell/battery powertrain was able to accomplish the tasks with a reduction of about 50% of the equivalent CO2 emissions compared to traditional diesel-powered vehicles.
Fluid-dynamics Analyses and Economic Investigation of Offshore Hydrogen Transport via Steel and Composite Pipelines
Apr 2024
Publication
One of the challenges associated with the use of hydrogen is its storage and transportation. Hydrogen pipelines are an essential infrastructure for transporting hydrogen from offshore production sites to onshore distribution centers. This paper presents an innovative analysis of the pressure drops velocity profile and levelized cost of hydrogen (LCOH) in various hydrogen transportation scenarios examining the influence of pipeline type (steel vs. composite) diameter and outlet pressure. The role of the compressor and the pipeline individually and together was assessed for 1000 and 100 tons of hydrogen. Notably the LCOH was highly sensitive to these parameters with the compressor contribution ranging between 21.52% and 85.11% and the pipeline’s share varying from 14.89% to 78.48%. The outflow pressure and diameter of the pipeline have a significant impact on the performance: when 1000 tons of hydrogen is transported the internal pressure drop ranges from 2 to 30 bar and the flow velocity can vary between 2 and 25 m/s. For equivalent hydrogen quantities the composite pipeline exhibits the same trends but with minor variations in the specific values.
Renewable Marine Fuel Production for Decarbonised Maritime Shipping: Pathways, Policy Measures and Transition Dynamics
Jun 2023
Publication
This article investigates the potential of renewable and low-carbon fuel production for the maritime shipping sector using Sweden as a case in focus. Techno-economic modelling and socio-technical transition studies are combined to explore the conditions opportunities and barriers to decarbonising the maritime shipping industry. A set of scenarios have been developed considering demand assumptions and potential instruments such as carbon price energy tax and blending mandate. The study finds that there are opportunities for decarbonising the maritime shipping industry by using renewable marine fuels such as advanced biofuels (e.g. biomethanol) electrofuels (e.g. e-methanol) and hydrogen. Sweden has tremendous resource potential for bio-based and hydrogen-based renewable liquid fuel production. In the evaluated system boundary biomethanol presents the cheapest technology option while e-ammonia is the most expensive one. Green electricity plays an important role in the decarbonisation of the maritime sector. The results of the supply chain optimisation identify the location sites and technology in Sweden as well as the trade flows to bring the fuels to where the bunker facilities are potentially located. Biomethanol and hydrogen-based marine fuels are cost-effective at a carbon price beyond 100 €/tCO2 and 200 €/tCO2 respectively. Linking back to the socio-technical transition pathways the study finds that some shipping companies are in the process of transitioning towards using renewable marine fuels thereby enabling niche innovations to break through the carbon lock-in and eventually alter the socio-technical regime while other shipping companies are more resistant. Overall there is increasing pressure from (inter)national energy and climate policy-making to decarbonise the maritime shipping industry.
Enhancing Safety of Liquid and Vaporised Hydrogen Transfer Technologies in Public Areas for Mobile Applications
Sep 2023
Publication
Federico Ustolin,
Donatella Cirrone,
Vladimir V. Molkov,
Dmitry Makarov,
Alexandros G. Venetsanos,
Stella G. Giannissi,
Giordano Emrys Scarponi,
Alessandro Tugnoli,
Ernesto Salzano,
Valerio Cozzani,
Daniela Lindner,
Birgit Gobereit,
Bernhard Linseisen,
Stuart J. Hawksworth,
Thomas Jordan,
Mike Kuznetsov,
Simon Jallais and
Olga Aneziris
International standards related to cryogenic hydrogen transferring technologies for mobile applications (filling of trucks ships stationary tanks) are missing and there is lack of experience. The European project ELVHYS (Enhancing safety of liquid and vaporized hydrogen transfer technologies in public areas for mobile applications) aims to provide indications on inherently safer and efficient cryogenic hydrogen technologies and protocols in mobile applications by proposing innovative safety strategies which are the results of a detailed risk analysis. This is carried out by applying an inter-disciplinary approach to study both the cryogenic hydrogen transferring procedures and the phenomena that may arise from the loss of containment of a piece of equipment containing hydrogen. ELVHYS will provide critical inputs for the development of international standards by creating inherently safer and optimized procedures and guidelines for cryogenic hydrogen transferring technologies thus increasing their safety level and efficiency. The aim of this paper is twofold: present the state of the art of liquid hydrogen transfer technologies by focusing on previous research projects such as PRESLHY and introduce the objectives and methods planned in the new EU project ELVHYS.
Economic Assessment of Hydrogen Production in a Renewable Energy Community in Italy
Feb 2023
Publication
Renewable Energy Community (REC) is a new paradigm in European Union to produce transform share and sell renewables at a local consumer level also via e-fuel (i.e. hydrogen). This work investigates the economic feasibility of a hydrogen Power-to-Gas (PtG) system realized inside a REC using only excess renewable electricity not consumed by REC itself. A single centralized photovoltaic (PV) plant is directly connected to an electrolyser; a hydrogen compressor and two hydrogen storages at low and high pressure complete the PtG system. A scenario of a REC composed by 450 residential electric users (around 1000 people) has been analysed coupled with described PtG considering eight different sizes of PV plant. In the study Italian subsidies to REC shared energy are evaluated as incentives to hydrogen production. An optimal size of PtG components for each PV size is investigated at the limit of economical sustainability evaluating net present value (NPV) positive and near zero. Results show that for the considered REC it is possible to produce and sell up to around 3 tons per year of green hydrogen at most to the same lowest selling price declared currently in the Italian market (5 €/kg).
Highly Efficient Solar Hydrogen Production through the Use of Bifacial Photovoltaics and Membrane Electrolysis
Jul 2020
Publication
T The large-scale implementation of solar hydrogen production requires an optimal combination of photovoltaic systems with suitably-designed electrochemical cells possibly avoiding power electronics for DC-DC conversion to decrease costs. Here a stable solar-driven water splitting system is presented obtained through the direct connection of a state-of-the-art proton exchange membrane (PEM) electrolyzer to a bifacial silicon hetero junction (SHJ) solar module of three cells in series with total area of 730 cm2 . The bifaciality of the solar module has been optimized through modeling in terms of the number of cells module height and inclination. During outdoor operation in the standard monofacial configuration the system is able to produce 3.7 gr of H2 h 1 m 2 with an irradiation of 1000 W m 2 and a solar-to-hydrogen efficiency (STH) of 11.55%. The same system operating in bifacial mode gives rise to a higher H2 flux and STH efficiency reaching values of 4.2 gr of H2 h 1 m 2 and STH of 13.5%. Such a noticeable difference is achieved through the collection of albedo radiation from the ground by the bifacial PV system. The system has been tested outdoors for more than 55 h exhibiting very good endurance with no appreciable change in production and eff
High-Performance Hydrogen-Fueled Internal Combustion Engines: Feasibility Study and Optimization via 1D-CFD Modeling
Mar 2024
Publication
Hydrogen-powered mobility is believed to be crucial in the future as hydrogen constitutes a promising solution to make up for the non-programmable character of the renewable energy sources. In this context the hydrogen-fueled internal combustion engine represents one of the suitable technical solutions for the future of sustainable mobility. As a matter of fact hydrogen engines suffer from limitations in volumetric efficiency due to the very low density of the fuel. Consequently hydrogen-fueled ICEs can reach sufficient torque and power density only if suitable supercharging solutions are developed. Moreover gaseous-engine performance can be improved to a great extent if direct injection is applied. In this perspective a remarkable know-how has been developed in the last two decades on NG engines which can be successfully exploited in this context. The objective of this paper is twofold. In the first part a feasibility study has been carried out with reference to a typical 2000cc SI engine by means of 1D simulations. This study was aimed at characterizing the performance on the full load curve with respect to a baseline PFI engine fueled by NG. In this phase the turbocharging/supercharging device has not been included in the model in order to quantify the attainable benefits in the absence of any limitation coming from the turbocharger. In the second part of this paper the conversion of a prototype 1400cc direct injection NG engine running with stoichiometric mixture to run on a lean hydrogen combustion mode has been investigated via 1D simulations. The matching between engine and turbocharger has been included in the model and the effects of two different turbomatching choices have been presented and discussed.
On-site Hydrogen Refuelling Station Techno-economic Model for a Fleet of Fuel Cell Buses
May 2024
Publication
Fuel cell electric buses (FCBs) have proven to be a technically viable solution for transportation owing to various advantages such as reliability simplicity better energy efficiency and quietness of operation. However largescale adoption of FCBs is hindered by the lack of extensive and structured infrastructure and the high cost of clean hydrogen. Many studies agree that one of the significant contributors to the lack of competitiveness of green hydrogen is the cost of electricity for its production followed by transportation costs. On the one hand to reduce the investment cost of the electrolyzer high operating hours should be achieved; on the other as the number of operating hours decreases the impact of the electricity costs declines. This paper presents an innovative algorithm for a scalable hydrogen refuelling station (HRS) capable of successfully matching and identifying the most cost-efficient levelized cost of hydrogen (LCOH) produced via electrolysis and connected to the grid based on the HRS components’ cost curves and the hourly average electricity price profile. The objective is to identify the least-cost range of LCOH by considering both the electric energy and the investment costs associated with a hydrogen demand given by different FCB sizes and electrolyzer rated powers. In addition sensitivity analyses have been conducted to quantify the technology cost margins and a cost comparison between the refuelling of an FCB fleet and the recharging infrastructure required for an equivalent fleet of Battery Electric Buse (BEB) has been performed. An LCOH of around 10.5 €/kg varying from 12 €/kg (2 FCB) to 10.2 €/kg (30 FCB) has been found for the best-optimized configurations. The final major conclusion of this paper is that FCB technology is currently not economically competitive. Still a cost contraction of the electric energy price and the electrolyzer capital investment would lead to a 50% decrease in the LCOH. Furthermore increasing renewable energies into the grid may shift the electricity cost curve resulting in higher prices when the BEB recharging demand is more significant. This impact in addition to the peak power load and longer recharging times might contribute to bridging the gap with FCBs.
Techno-Economic Evaluation of Deploying CCS in SMR Based Merchant H2 Production with NG as Feedstock and Fuel
Aug 2017
Publication
Hydrogen is a crucial raw materials to other industries. Globally nearly 90% of the hydrogen or HyCO gas produced is consumed by the ammonia methanol and oil refining industries. In the future hydrogen could play an important role in the decarbonisation of transport fuel (i.e. use of fuel cell vehicles) and space heating (i.e. industrial commercial building and residential heating). This paper summarizes the results of the feasibility study carried out by Amec Foster Wheeler for the IEA Greenhouse Gas R&D Programme (IEA GHG) with the purpose of evaluating the performance and costs of a modern steam methane reforming without and with CCS producing 100000 Nm3 /h H2 and operating as a merchant plant. This study focuses on the economic evaluation of five different alternatives to capture CO2 from SMR. This paper provides an up-to-date assessment of the performance and cost of producing hydrogen without and with CCS based on technologies that could be erected today. This study demonstrates that CO2 could be captured from an SMR plant with an overall capture rate ranging between 53 to 90%. The integration of CO2 capture plant could increase the NG consumption by -0.03 to 1.41 GJ per Nm3 /h of H2. The amount of electricity exported to the grid by the SMR plant is reduced. The levelised cost of H2 production could increase by 2.1 to 5.1 € cent per Nm3 H2 (depending on capture rate and technology selected). This translates to a CO2 avoidance cost of 47 to 70 €/t.
Economic Evaluation of Renewable Hydrogen Integration into Steelworks for the Production of Methanol and Methane
Jun 2022
Publication
This work investigates the cost-efficient integration of renewable hydrogen into steelworks for the production of methane and methanol as an efficient way to decarbonize the steel industry. Three case studies that utilize a mixture of steelworks off-gases (blast furnace gas coke oven gas and basic oxygen furnace gas) which differ on the amount of used off-gases as well as on the end product (methane and/or methanol) are analyzed and evaluated in terms of their economic performance. The most influential cost factors are identified and sensitivity analyses are conducted for different operating and economic parameters. Renewable hydrogen produced by PEM electrolysis is the most expensive component in this scheme and responsible for over 80% of the total costs. Progress in the hydrogen economy (lower electrolyzer capital costs improved electrolyzer efficiency and lower electricity prices) is necessary to establish this technology in the future.
Performance Estimation of a Downsized SI Engine Running with Hydrogen
Jun 2022
Publication
Hydrogen is a carbon-free fuel that can be produced in many ways starting from different sources. Its use as a fuel in internal combustion engines could be a method of significantly reducing their environmental impact. In spark-ignition (SI) engines lean hydrogen–air mixtures can be burnt. When a gaseous fuel like hydrogen is port-injected in an SI engine working with lean mixtures supercharging becomes very useful in order not to excessively penalize the engine performance. In this work the performance of a turbocharged PFI spark-ignition engine fueled by hydrogen has been investigated by means of 1-D numerical simulations. The analysis focused on the engine behavior both at full and partial load considering low and medium engine speeds (1500 and 3000 rpm). Equivalence ratios higher than 0.35 have been considered in order to ensure acceptable cycle-to-cycle variations. The constraints that ensure the safety of engine components have also been respected. The results of the analysis provide a guideline able to set up the load control strategy of a SI hydrogen engine based on the variation of the air to fuel ratio boost pressure and throttle opening. Furthermore performance and efficiency of the hydrogen engine have been compared to those of the base gasoline engine. At 1500 and 3000 rpm except for very low loads the hydrogen engine load can be regulated by properly combining the equivalence ratio and the boost pressure. At 3000 rpm the gasoline engine maximum power is not reached but for each engine load lean burning allows the hydrogen engine achieving much higher efficiencies than those of the gasoline engine. At full load the maximum power output decreases from 120 kW to about 97 kW but the engine efficiency of the hydrogen engine is higher than that of the gasoline one for each full load operating point.
Combustion of Hydrogen Enriched Methane and Biogases Containing Hydrogen in a Controlled Auto-Ignition Engine
Dec 2018
Publication
The paper describes a numerical study of the combustion of hydrogen enriched methane and biogases containing hydrogen in a Controlled Auto Ignition engine (CAI). A single cylinder CAI engine is modelled with Chemkin to predict engine performance comparing the fuels in terms of indicated mean effective pressure engine efficiency and pollutant emissions. The effects of hydrogen and carbon dioxide on the combustion process are evaluated using the GRI-Mech 3.0 detailed radical chain reactions mechanism. A parametric study performed by varying the temperature at the start of compression and the equivalence ratio allows evaluating the temperature requirements for all fuels; moreover the effect of hydrogen enrichment on the auto-ignition process is investigated. The results show that at constant initial temperature hydrogen promotes the ignition which then occurs earlier as a consequence of higher chemical reactivity. At a fixed indicated mean effective pressure hydrogen presence shifts the operating range towards lower initial gas temperature and lower equivalence ratio and reduces NOx emissions. Such reduction somewhat counter-intuitive if compared with similar studies on spark-ignition engines is the result of operating the engine at lower initial gas temperatures.
Goal and Scope in Life Cycle Sustainability Analysis: The Case of Hydrogen Production from Biomass
Aug 2014
Publication
The framework for life cycle sustainability analysis (LCSA) developed within the project CALCAS (Co-ordination Action for innovation in Life-Cycle Analysis for Sustainability) is introducing a truly integrated approach for sustainability studies. However it needs to be further conceptually refined and to be made operational. In particular one of the gaps still hindering the adoption of integrated analytic tools for sustainability studies is the lack of a clear link between the goal and scope definition and the modeling phase. This paper presents an approach to structure the goal and scope phase of LCSA so as to identify the relevant mechanisms to be further detailed and analyzed in the modeling phase. The approach is illustrated with an on-going study on a new technology for the production of high purity hydrogen from biomass to be used in automotive fuel cells.
Why Ultrasonic Gas Leak Detection?
Sep 2021
Publication
Technologies that have traditionally been used in fixed installations to detect hydrogen gas leaks such as Catalytic and Electrochemical Point Sensors have one limitation: in order for a leak to be detected the gas itself must either be in close proximity to the detector or within a pre-defined area. Unfortunately outdoor environmental conditions such as changing wind directions and quick dispersion of the gas cloud from a leaking outdoor installation often cause that traditional gas detection systems may not alert to the presence of gas simply because the gas never reaches the detector. These traditional gas detection systems need to wait for the gas to form a vapor cloud which may or may not ignite and which may or may not allow loss prevention by enabling shutting down the gas facility in time. Ultrasonic Gas Leak Detectors (UGLD) respond at the speed of sound at gas leak initiation unaffected by changing wind directions and dilution of the gas. Ultrasonic Gas Leak Detectors are based on robust microphone technology; they detect outdoor leaks by sensing the distinct high frequency ultrasound emitted by all high pressure gas leaks. With the ultrasonic sensing technology leaking gas itself does not have to reach the sensor – just the sound of the gas leaking. By adding Ultrasonic Gas Leak Detectors for Hydrogen leak detection faster response times and lower operation costs can be obtained.
Performance Assessment of an Integrated Environmental Control System of Civil Hypersonic Vehicles
Apr 2022
Publication
This paper discloses the architecture and related performance of an environment control system designed to be integrated within a complex multi-functional thermal and energy management system that manages the heat loads and generation of electric power in a hypersonic vehicle by benefitting from the presence of cryogenic liquid hydrogen onboard. A bleed-less architecture implementing an open-loop cycle with a boot-strap sub-freezing air cycle machine is suggested. Hydrogen boil-off reveals to be a viable cold source for the heat exchangers of the system as well as for the convective insulation layer designed around the cabin walls. Including a 2 mm boil-off convective layer into the cabin cross-section proves to be far more effective than a more traditional air convective layer of approximately 60 mm. The application to STRATOFLY MR3 a Mach 8 waverider cruiser using liquid hydrogen as propellant confirmed that presence of cryogenic tanks provides up to a 70% reduction in heat fluxes entering the cabin generated outside of it but inside the vehicle by the propulsive system and other onboard systems. The effectiveness of the architecture was confirmed for all Mach numbers (from 0.3 to 8) and all flight altitudes (from sea level to 35 km).
Improved Hydrogen-Production-Based Power Management Control of a Wind Turbine Conversion System Coupled with Multistack Proton Exchange Membrane Electrolyzers
Mar 2020
Publication
This paper deals with two main issues regarding the specific energy consumption in an electrolyzer (i.e. the Faraday efficiency and the converter topology). The first aspect is addressed using a multistack configuration of proton exchange membrane (PEM) electrolyzers supplied by a wind turbine conversion system (WTCS). This approach is based on the modeling of the wind turbine and the electrolyzers. The WTCS and the electrolyzers are interfaced through a stacked interleaved DC–DC buck converter (SIBC) due to its benefits for this application in terms of the output current ripple and reliability. This converter is controlled so that it can offer dynamic behavior that is faster than the wind turbine avoiding overvoltage during transients which could damage the PEM electrolyzers. The SIBC is designed to be connected in array configuration (i.e. parallel architecture) so that each converter operates at its maximum efficiency. To assess the performance of the power management strategy experimental tests were carried out. The reported results demonstrate the correct behavior of the system during transient operation.
Experimental Characterization and Energy Performance Assessment of a Sorption-Enhanced Steam–Methane Reforming System
Aug 2021
Publication
The production of blue hydrogen through sorption-enhanced processes has emerged as a suitable option to reduce greenhouse gas emissions. Sorption-enhanced steam–methane reforming (SESMR) is a process intensification of highly endothermic steam–methane reforming (SMR) ensured by in situ carbon capture through a solid sorbent making hydrogen production efficient and more environmentally sustainable. In this study a comprehensive energy model of SESMR was developed to carry out a detailed energy characterization of the process with the aim of filling a current knowledge gap in the literature. The model was applied to a bench-scale multicycle SESMR/sorbent regeneration test to provide an energy insight into the process. Besides the experimental advantages of higher hydrogen concentration (90 mol% dry basis 70 mol% wet basis) and performance of CO2 capture the developed energy model demonstrated that SESMR allows for substantially complete energy self-sufficiency through the process. In comparison to SMR with the same process conditions (650 ◦C 1 atm) performed in the same experimental rig SESMR improved the energy efficiency by about 10% further reducing energy needs.
Electric Mobility in Portugal: Current Situation and Forecasts for Fuel Cell Vehicles
Nov 2021
Publication
In recent years the growing concern for air quality has led to the development of sustainable vehicles to replace conventional internal combustion engine (ICE) vehicles. Currently the most widespread technology in Europe and Portugal is that of Battery Electric Vehicles (BEV) or plug‐in HEV (PHEV) electric cars but hydrogen‐based transport has also shown significant growth in the commercialization of Fuel Cell Electric Vehicles (FCEV) and in the development of new infrastructural schemes. In the current panorama of EV particular attention should be paid to hydrogen technology i.e. FCEVs which is potentially a valid alternative to BEVs and can also be hybrid (FCHEV) and plug‐in hybrid (FCPHEV). Several sources cited show a positive trend of hydrogen in the transport sector identifying a growing trend in the expansion of hydrogen infrastructure although at this time it is still at an early stage of development. At the moment the cost of building the infrastructure is still high but on the basis of medium/long‐term scenarios it is clear that investments in hydrogen refueling stations will be profitable if the number of Fuel Cell vehicles increases. Conversely the Fuel Cell vehicle market is hampered if there is no adequate infrastructure for hydrogen development. The opportunity to use Fuel Cells to store electrical energy is quite fascinating and bypasses some obstacles encountered with BEVs. The advantages are clear since the charging times are reduced compared to charging from an electric charging post and the long‐distance voyage is made easier as the autonomy is much larger i.e. the psycho‐ sociological anxiety is avoided. Therefore the first part of the paper provides an overview of the current state of electric mobility in Portugal and the strategies adopted by the country. This is necessary to have a clear vision of how a new technology is accepted by the population and develops on the territory that is the propensity of citizens to technological change. Subsequently using current data on EV development and comparing information from recent years this work aims to investigate the future prospects of FCEVs in Portugal by adopting a dynamic model called SERA (Scenario Evaluation and Regionalization Analysis) with which it is possible to identify the Portuguese districts and cities where an FC charging infrastructure is expected to be most beneficial. From the results obtained the districts of Lisbon Porto and Aveiro seem to be the most interested in adopting FC technology. This analysis aims to ensure a measured view of the credible development of this market segment.
Control Strategy Assessment for Improving PEM Fuel Cell System Efficiency in Fuel Cell Hybrid Vehicles
Mar 2022
Publication
Concerns about climate change air pollution and the depletion of oil resources have prompted authorities to enforce increasingly strict rules in the automotive sector. There are several benefits to implementing fuel cell hybrid vehicles (FCHV) in the transportation sector including the ability to assist in reducing greenhouse gas emissions by replacing fossil fuels with hydrogen as energy carriers. This paper examines different control strategies for optimizing the power split between the battery and PEM fuel cell in order to maximize the PEM fuel cell system efficiency and reduce fuel consumption. First the vehicle and fuel cell system models are described. A forward approach is considered to model the vehicle dynamics while a semi-empirical and quasi-static model is used for the PEM fuel cell. Then different rule-based control strategies are analyzed with the aim of maximizing fuel cell system efficiency while ensuring a constant battery state of charge (SOC). The different methods are evaluated while the FCHV is performing both low-load and high-load drive cycles. The hydrogen consumption and the overall fuel cell system efficiency are considered for all testing conditions. The results highlight that in both low-load cycles and high-load cycles the best control strategies achieve a fuel cell system efficiency equal or greater to 33% while achieving a fuel consumption 30% less with respect to the baseline control strategy in low-load drive cycles.
Sector Coupling and Business Models Towards Sustainability: The Case of the Hydrogen Vehicle Industry
Mar 2022
Publication
The concept of sector coupling has been gaining increased momentum in political discourses during 18 the past few years but it has only recently received the attention of international academics. The 19 private sector is particularly relevant to foster sector coupling through entrepreneurial action – 20 specifically innovative business models for more sustainable technologies are needed to promote a 21 transition towards more sustainability. So far however the literature on business models from a 22 sector coupling perspective is scarce yet strongly emerging. To address the identified research gaps 23 and enhance the current knowledge on the emerging hydrogen vehicle industry and sector coupling 24 this study adopts a qualitative and exploratory research approach and builds on information gained 25 in 103 semi-structured interviews to discuss emerging business models in Germany. In particular 33 26 business cases have been analyzed. Anchoring business model theory to the concept of sector 27 coupling this study identifies 12 business model archetypes in the emerging hydrogen vehicle 28 industry and its value chain. It can be shown that while the market is still emerging and the market 29 players are not defined and are evolving companies are currently engaged in finding their position 30 along the value chain fostering vertical integration and promoting cooperation between the 31 different sectors. While this study is relevant for both the academia and the industry it is particularly 2 32 interesting for policy makers shaping the future of sustainable development specifically considering 33 integrated energy systems.
A Statistical Assessment of Blending Hydrogen into Gas Networks
Aug 2021
Publication
The deployment of low-carbon hydrogen in gas grids comes with strategic benefits in terms of energy system integration and decarbonization. However hydrogen thermophysical properties substantially differ from natural gas and pose concerns of technical and regulatory nature. The present study investigates the blending of hydrogen into distribution gas networks focusing on the steady-state fluid dynamic response of the grids and gas quality compliance issues at increasing hydrogen admixture levels. Two blending strategies are analyzed the first of which involves the supply of NG–H2 blends at the city gate while the latter addresses the injection of pure hydrogen in internal grid locations. In contrast with traditional case-specific analyses results are derived from simulations executed over a large number (i.e. one thousand) of synthetic models of gas networks. The responses of the grids are therefore analyzed in a statistical fashion. The results highlight that lower probabilities of violating fluid dynamic and quality restrictions are obtained when hydrogen injection occurs close to or in correspondence with the system city gate. When pure hydrogen is injected in internal grid locations even very low volumes (1% vol of the total) may determine gas quality violations while fluid dynamic issues arise only in rare cases of significant hydrogen injection volumes (30% vol of the total).
Risk Assessment of the Large-Scale Hydrogen Storage in Salt Caverns
May 2021
Publication
Salt caverns are accepted as an ideal solution for high-pressure hydrogen storage. As well as considering the numerous benefits of the realization of underground hydrogen storage (UHS) such as high energy densities low leakage rates and big storage volumes risk analysis of UHS is a required step for assessing the suitability of this technology. In this work a preliminary quantitative risk assessment (QRA) was performed by starting from the worst-case scenario: rupture at the ground of the riser pipe from the salt cavern to the ground. The influence of hydrogen contamination by bacterial metabolism was studied considering the composition of the gas contained in the salt caverns as time variable. A bow-tie analysis was used to highlight all the possible causes (basic events) as well as the outcomes (jet fire unconfined vapor cloud explosion (UVCE) toxic chemical release) and then consequence and risk analyses were performed. The results showed that a UVCE is the most frequent outcome but its effect zone decreases with time due to the hydrogen contamination and the higher contents of methane and hydrogen sulfide.
Green Hydrogen Production from Raw Biogas: A Techno-Economic Investigation of Conventional Processes Using Pressure Swing Adsorption Unit
Feb 2018
Publication
This paper discusses the techno-economic assessment of hydrogen production from biogas with conventional systems. The work is part of the European project BIONICO whose purpose is to develop and test a membrane reactor (MR) for hydrogen production from biogas. Within the BIONICO project steam reforming (SR) and autothermal reforming (ATR) have been identified as well-known technologies for hydrogen production from biogas. Two biogases were examined: one produced by landfill and the other one by anaerobic digester. The purification unit required in the conventional plants has been studied and modeled in detail using Aspen Adsorption. A pressure swing adsorption system (PSA) with two and four beds and a vacuum PSA (VPSA) made of four beds are compared. VPSA operates at sub-atmospheric pressure thus increasing the recovery: results of the simulations show that the performances strongly depend on the design choices and on the gas feeding the purification unit. The best purity and recovery values were obtained with the VPSA system which achieves a recovery between 50% and 60% at a vacuum pressure of 0.1 bar and a hydrogen purity of 99.999%. The SR and ATR plants were designed in Aspen Plus integrating the studied VPSA model and analyzing the behavior of the systems at the variation of the pressure and the type of input biogas. The SR system achieves a maximum efficiency calculated on the LHV of 52% at 12 bar while the ATR of 28% at 18 bar. The economic analysis determined a hydrogen production cost of around 5 €/kg of hydrogen for the SR case.
Flexible Power & Biomass-to-Methanol Plants: Design Optimization and Economic Viability of the Electrolysis Integration
Nov 2021
Publication
This paper assesses the optimal design criteria of a flexible power and biomass to methanol (PBtM) plant conceived to operate both without green hydrogen addition (baseline mode) and with hydrogen addition (enhanced mode) following an intermittent use of the electrolysis system which is turned on when the electricity price allows an economically viable hydrogen production. The assessed plant includes a gasification section syngas cleaning and compression methanol synthesis and purification and heat recovery steam cycle to be flexibly operated. A sorption-enhanced gasification technology allows to produce a tailored syngas for the downstream synthesis in both the baseline and enhanced operating conditions by controlling the in-situ CO2 separation rate. Two designs are assessed for the methanol synthesis unit with two different reactor sizes: (i) a larger reactor designed on the enhanced operation mode (enhanced reactor design – ERD) and (ii) a smaller reactor designed on the baseline operation mode (baseline reactor design – BRD). The ERD design resulted to be preferable from the techno economic perspectives resulting in 20% lower cost of the e-MeOH (30.80 vs. 37.76 €/ GJLHV) with the baseline assumptions (i.e. 80% of electrolyzer capacity factor and 2019 Denmark day-ahead market electricity price). Other important outcomes are: (i) high electrolysis capacity factor is needed to obtain competitive cost of e-MeOH and (ii) advantages of flexibly operated PBtM plants with respect to inflexible PBtM plants are significant in scenarios with high penetration of intermittent renewables leading to low average prices of electricity but also longer periods of high peak prices.
No more items...