Publications
Thermoacoustic Instability Considerations for High Hydrogen Combustion in Lean Premixed Gas Turbine Combustors: A Review
Jan 2021
Publication
Hydrogen is receiving increasing attention as a versatile energy vector to help accelerate the transition to a decarbonised energy future. Gas turbines will continue to play a critical role in providing grid stability and resilience in future low-carbon power systems; however it is recognised that this role is contingent upon achieving increased thermal efficiencies and the ability to operate on carbon-neutral fuels such as hydrogen. An important consideration in the development of gas turbine combustors capable of operating with pure hydrogen or hydrogen-enriched natural gas are the significant changes in thermoacoustic instability characteristics associated with burning these fuels. This article provides a review of the effects of burning hydrogen on combustion dynamics with focus on swirl-stabilised lean-premixed combustors. Experimental and numerical evidence suggests hydrogen can have either a stabilising or destabilising impact on the dynamic state of a combustor through its influence particularly on flame structure and flame position. Other operational considerations such as the effect of elevated pressure and piloting on combustion dynamics as well as recent developments in micromix burner technology for 100% hydrogen combustion have also been discussed. The insights provided in this review will aid the development of instability mitigation strategies for high hydrogen combustion.
Rising To the Challenge of a Hydrogen Economy: The Outlook for Emerging Hydrogen Value Chains, From Production to Consumption
Jul 2021
Publication
For many a large-scale hydrogen economy is essential to a a clean energy future with three quarters of the more than 1100 senior energy professionals we surveyed saying Paris Agreement targets will not be possible without it.
DNV’s research Rising to the challenge of a hydrogen economy explores the outlook for emerging hydrogen value chains from production to consumption. It combines the wider view from the energy industry with commentary from business leaders and experts. Our research finds that the challenge is not in the ambition but in changing the timeline: from hydrogen on the horizon to hydrogen in our homes businesses and transport systems.
We see that the energy industry is rising to this challenge. By 2025 almost half (44%) of energy companies globally involved in hydrogen expect it to account for more than a tenth of their revenue rising to 73% of companies by 2030 – up significantly from just 8% of companies today. The research identifies infrastructure and cost as two of the biggest hurdles while the right regulations are deemed the most powerful enabler followed by carbon pricing. Proving the safety case will also be key to scaling the hydrogen economy.
Download your complimentary copy of DNV’s latest hydrogen research at their website link
DNV’s research Rising to the challenge of a hydrogen economy explores the outlook for emerging hydrogen value chains from production to consumption. It combines the wider view from the energy industry with commentary from business leaders and experts. Our research finds that the challenge is not in the ambition but in changing the timeline: from hydrogen on the horizon to hydrogen in our homes businesses and transport systems.
We see that the energy industry is rising to this challenge. By 2025 almost half (44%) of energy companies globally involved in hydrogen expect it to account for more than a tenth of their revenue rising to 73% of companies by 2030 – up significantly from just 8% of companies today. The research identifies infrastructure and cost as two of the biggest hurdles while the right regulations are deemed the most powerful enabler followed by carbon pricing. Proving the safety case will also be key to scaling the hydrogen economy.
Download your complimentary copy of DNV’s latest hydrogen research at their website link
Fundamentals and Principles of Solid-State Electrochemical Sensors for High Temperature Gas Detection
Dec 2021
Publication
The rapid development of science technology and engineering in the 21st century has offered a remarkable rise in our living standards. However at the same time serious environmental issues have emerged such as acid rain and the greenhouse effect which are associated with the ever-increasing need for energy consumption 85% of which comes from fossil fuels combustion. From this combustion process except for energy the main greenhouse gases-carbon dioxide and steam-are produced. Moreover during industrial processes many hazardous gases are emitted. For this reason gas-detecting devices such as electrochemical gas sensors able to analyze the composition of a target atmosphere in real time are important for further improving our living quality. Such devices can help address environmental issues and inform us about the presence of dangerous gases. Furthermore as non-renewable energy sources run out there is a need for energy saving. By analyzing the composition of combustion emissions of automobiles or industries combustion processes can be optimized. This review deals with electrochemical gas sensors based on solid oxide electrolytes which are employed for the detection of hazardous gasses at high temperatures and aggressive environments. The fundamentals the principle of operation and the configuration of potentiometric amperometric combined (amperometric-potentiometric) and mixed-potential gas sensors are presented. Moreover the results of previous studies on carbon oxides (COx) nitrogen oxides (NOx) hydrogen (H2 ) oxygen (O2 ) ammonia (NH3 ) and humidity (steam) electrochemical sensors are reported and discussed. Emphasis is given to sensors based on oxygen ion and proton-conducting electrolytes.
A Review of Fuel Cell Powertrains for Long-Haul Heavy-Duty Vehicles: Technology, Hydrogen, Energy and Thermal Management Solutions
Dec 2022
Publication
Long-haul heavy-duty vehicles including trucks and coaches contribute to a substantial portion of the modern-day European carbon footprint and pose a major challenge in emissions reduction due to their energy-intensive usage. Depending on the hydrogen fuel source the use of fuel cell electric vehicles (FCEV) for long-haul applications has shown significant potential in reducing road freight CO2 emissions until the possible maturity of future long-distance battery-electric mobility. Fuel cell heavy-duty (HD) propulsion presents some specific characteristics advantages and operating constraints along with the notable possibility of gains in powertrain efficiency and usability through improved system design and intelligent onboard energy and thermal management. This paper provides an overview of the FCEV powertrain topology suited for long-haul HD applications their operating limitations cooling requirements waste heat recovery techniques state-of-the-art in powertrain control energy and thermal management strategies and over-the-air route data based predictive powertrain management including V2X connectivity. A case study simulation analysis of an HD 40-tonne FCEV truck is also presented focusing on the comparison of powertrain losses and energy expenditures in different subsystems while running on VECTO Regional delivery and Long-haul cycles. The importance of hydrogen fuel production pathways onboard storage approaches refuelling and safety standards and fleet management is also discussed. Through a comprehensive review of the H2 fuel cell powertrain technology intelligent energy management thermal management requirements and strategies and challenges in hydrogen production storage and refuelling this article aims at helping stakeholders in the promotion and integration of H2 FCEV technology towards road freight decarbonisation.
Extremely Halophilic Biohydrogen Producing Microbial Communities from High-Salinity Soil and Salt Evaporation Pond
Jun 2021
Publication
Extreme halophiles offer the advantage to save on the costs of sterilization and water for biohydrogen production from lignocellulosic waste after the pretreatment process with their ability to withstand extreme salt concentrations. This study identifies the dominant hydrogen-producing genera and species among the acclimatized extremely halotolerant microbial communities taken from two salt-damaged soil locations in Khon Kaen and one location from the salt evaporation pond in Samut Sakhon Thailand. The microbial communities’ V3–V4 regions of 16srRNA were analyzed using high-throughput amplicon sequencing. A total of 345 operational taxonomic units were obtained and the high-throughput sequencing confirmed that Firmicutes was the dominant phyla of the three communities. Halanaerobium fermentans and Halanaerobacter lacunarum were the dominant hydrogen-producing species of the communities. Spatial proximity was not found to be a determining factor for similarities between these extremely halophilic microbial communities. Through the study of the microbial communities strategies can be developed to increase biohydrogen molar yield.
Validation of GreenH2armony® as a Tool for the Computation of Harmonised Life-Cycle Indicators of Hydrogen
Apr 2020
Publication
The Life Cycle Assessment (LCA) methodology is often used to check the environmental suitability of hydrogen energy systems usually involving comparative studies. However these comparative studies are typically affected by inconsistent methodological choices between the case studies under comparison. In this regard protocols for the harmonisation of methodological choices in LCA of hydrogen are available. The step-by-step application of these protocols to a large number of case studies has already resulted in libraries of harmonised carbon energy and acidification footprints of hydrogen. In order to foster the applicability of these harmonisation protocols a web-based software for the calculation of harmonised life-cycle indicators of hydrogen has recently been developed. This work addresses—for the first time—the validation of such a tool by checking the deviation between the available libraries of harmonised carbon energy and acidification footprints of hydrogen and the corresponding tool-based harmonised results. A high correlation (R2 > 0.999) was found between the library- and tool-based harmonised life-cycle indicators of hydrogen thereby successfully validating the software. Hence this tool has the potential to effectively promote the use of harmonised life-cycle indicators for robust comparative LCA studies of hydrogen energy systems significantly mitigating misinterpretation.
Study of Activity and Super-Capacitance Exhibited by Bifunctional Raney 2.0 Catalyst for Alkaline Water-Splitting Electrolysis
Dec 2020
Publication
Low-cost high-performance coatings for hydrogen production via electrolytic water-splitting are of great importance for de-carbonising energy. In this study the Raney2.0 coating was analysed using various electrochemical techniques to assess its absolute performance and it was confirmed to have an extremely low overpotential for hydrogen evolution of just 28 mV at 10 mA/cm2. It was also confirmed to be an acceptable catalyst for oxygen evolution making it the highest performing simple bifunctional electrocatalyst known. The coating exhibits an extremely high capacitance of up to 1.7 F/cm2 as well as being able to store 0.61 J/cm2 in the form of temporary hydride deposits. A new technique is presented that performs a best-fit of a transient simulation of an equivalent circuit containing a constant phase element to cyclic voltammetry measurements. From this the roughness factor of the coating was calculated to be approximately 40000 which is the highest figure ever reported for this type of material. The coating is therefore an extremely useful improved bifunctional coating for the continued roll-out of alkaline electrolysis for large-scale renewable energy capture via hydrogen production.
Effect of Hydrogen and Strain-Induced Martensite on Mechanical Properties of AISI 304 Stainless Steel
Jul 2016
Publication
Plastic deformation and strain-induced martensite (SIM α′) transformation in metastable austenitic AISI 304 stainless steel were investigated through room temperature tensile tests at strain rates ranging from 2 × 10−6 to 2 × 10−2/s. The amount of SIM was measured on the fractured tensile specimens using a feritscope and magnetic force microscope. Elongation to fracture tensile strength hardness and the amount of SIM increased with decreasing the strain rate. The strain-rate dependence of RT tensile properties was observed to be related to the amount of SIM. Specifically SIM formed during tensile tests was beneficial in increasing the elongation to fracture hardness and tensile strength. Hydrogen suppressed the SIM formation leading to hydrogen softening and localized brittle fracture.
ZnO@ZIF-8 Core-Shell Structure Gas Sensors with Excellent Selectivity to H2
Jun 2021
Publication
As the energy crisis becomes worse hydrogen as a clean energy source is more and more widely used in industrial production and people’s daily life. However there are hidden dangers in hydrogen storage and transportation because of its flammable and explosive features. Gas detection is the key to solving this problem. High quality sensors with more practical and commercial value must be able to accurately detect target gases in the environment. Emerging porous metal-organic framework (MOF) materials can effectively improve the selectivity of sensors as a result of high surface area and coordinated pore structure. The application of MOFs for surface modification to improve the selectivity and sensitivity of metal oxides sensors to hydrogen has been widely investigated. However the influence of MOF modified film thickness on the selectivity of hydrogen sensors is seldom studied. Moreover the mechanism of the selectivity improvement of the sensors with MOF modified film is still unclear. In this paper we prepared nano-sized ZnO particles by a homogeneous precipitation method. ZnO nanoparticle (NP) gas sensors were prepared by screen printing technology. Then a dense ZIF-8 film was grown on the surface of the gas sensor by hydrothermal synthesis. The morphology the composition of the elements and the characters of the product were analyzed by X-ray diffraction analysis (XRD) transmission electron microscope (TEM) scanning electron microscope (SEM) energy dispersive spectrometer (EDS) Brunauer-Emmett-Teller (BET) and differential scanning calorimetry (DSC). It is found that the ZIF-8 film grown for 4 h cannot form a dense core-shell structure. The thickness of ZIF-8 reaches 130 nm at 20 h. Through the detection and analysis of hydrogen (1000 ppm) ethanol (100 ppm) and acetone (50 ppm) from 150 °C to 290 °C it is found that the response of the ZnO@ZIF-8 sensors to hydrogen has been significantly improved while the response to ethanol and acetone was decreased. By comparing the change of the response coefficient when the thickness of ZIF-8 is 130 nm the gas sensor has a significantly improved selectivity to hydrogen at 230 °C. The continuous increase of the thickness tends to inhibit selectivity. The mechanism of selectivity improvement of the sensors with different thickness of the ZIF-8 films is discussed.
CFD Model Based Ann Prediction of Flammable Vapor Colour Formed by Liquid Hydrogen Spill
Sep 2021
Publication
Unintended releases can occur during the production storage transportation and filling of liquid hydrogen which may cause devastating consequences. In the present work liquid hydrogen leak is modeled in ANSYS Fluent with the numerical model validated using the liquid hydrogen spill test data. A three-layer artificial neural network (ANN) model is built in which the wind speed ground temperature leakage time and leakage rate are taken as the inputs the horizontal diffusion distance and vertical diffusion distance of combustible gas as the outputs of the ANN. The representative sample data derived from the detailed calculation results of the numerical model are selected via the orthogonal experiment method to train and verify the back propagation (BP) neural network. Comparing the calculation results of the formula fitting with the sample data the results show that the established ANN model can quickly and accurately predict the horizontal and vertical diffusion distance of flammable vapor cloud relatively. The influences of four parameters on the horizontal hazard distance as well as vertical hazard height are predicted and analyzed in the case of continuous overflow of liquid hydrogen using the ANN model.
Delivering Net-zero Carbon Heat: Technoeconomic and Whole-system Comparisons of Domestic Electricity- and Hydrogen-driven Technologies in the UK
Apr 2022
Publication
Proposed sustainable transition pathways for moving away from natural gas in domestic heating focus on two main energy vectors: electricity and hydrogen. Electrification would be implemented by using vapourcompression heat pumps which are currently experiencing market growth in many countries. On the other hand hydrogen could substitute natural gas in boilers or be used in thermally–driven absorption heat pumps. In this paper a consistent thermodynamic and economic methodology is developed to assess the competitiveness of these options. The three technologies along with the option of district heating are for the first time compared for different weather/ambient conditions and fuel-price scenarios first from a homeowner’s and then from a wholeenergy system perspective. For the former two-dimensional decision maps are generated to identify the most cost-effective technologies for different combinations of fuel prices. It is shown that in the UK hydrogen technologies are economically favourable if hydrogen is supplied to domestic end-users at a price below half of the electricity price. Otherwise electrification and the use of conventional electric heat pumps will be preferred. From a whole-energy system perspective the total system cost per household (which accounts for upstream generation and storage as well as technology investment installation and maintenance) associated with electric heat pumps varies between 790 and 880 £/year for different scenarios making it the least-cost decarbonisation pathway. If hydrogen is produced by electrolysis the total system cost associated with hydrogen technologies is notably higher varying between 1410 and 1880 £/year. However this total system cost drops to 1150 £/year with hydrogen produced cost-effectively by methane reforming and carbon capture and storage thus reducing the gap between electricity- and hydrogen-driven technologies.
Hydrogen Tank Rupture in Fire in the Open Atmosphere: Hazard Distance Defined by Fireball
Feb 2021
Publication
The engineering correlations for assessment of hazard distance defined by a size of fireball after either liquid hydrogen spill combustion or high-pressure hydrogen tank rupture in a fire in the open atmosphere (both for stand-alone and under-vehicle tanks) are presented. The term “fireball size” is used for the maximum horizontal size of a fireball that is different from the term “fireball diameter” applied to spherical or semi-spherical shape fireballs. There are different reasons for a fireball to deviate from a spherical shape e.g. in case of tank rupture under a vehicle the non-instantaneous opening of tank walls etc. Two conservative correlations are built using theoretical analysis numerical simulations and experimental data available in the literature. The theoretical model for hydrogen fireball size assumes complete isobaric combustion of hydrogen in air and presumes its hemispherical shape as observed in the experiments and the simulations for tank rupturing at the ground level. The dependence of the fireball size on hydrogen mass and fireball’s diameter-to-height ratio is discussed. The correlation for liquid hydrogen release fireball is based on the experiments by Zabetakis (1964). The correlations can be applied as engineering tools to access hazard distances for scenarios of liquid or gaseous hydrogen storage tank rupture in a fire in the open atmosphere
The Effect of Hydrogen Enrichment, Flame-flame Interaction, Confinement, and Asymmetry on the Acoustic Response of a Model Can Combustor
Apr 2022
Publication
To maximise power density practical gas turbine combustion systems have several injectors which can lead to complex interactions between flames. However our knowledge about the effect of flame-flame interactions on the flame response the essential element to predict the stability of a combustor is still limited. The present study investigates the effect of hydrogen enrichment flame-flame interaction confinement and asymmetries on the linear and non-linear acoustic response of three premixed flames in a simple can combustor. A parametric study of the linear response characterised by the flame transfer function (FTF) is performed for swirling and non-swirling flames. Flame-flame interactions were achieved by changing the injector spacing and the level of hydrogen enrichment by power from 10 to 50%. It was found that the latter had the most significant effect on the flame response. Asymmetry effects were investigated by changing one of the flames by using a different bluff-body to alter both the flame shape and flow field. The global flame response showed that the asymmetric cases can be reconstructed using a superposition of the two symmetric cases where all three bluff-bodies and flames are the same. Overall the linear response characterised by the flame transfer function (FTF) showed that the effect of increasing the level of hydrogen enrichment is more pronounced than the effect of the injector spacing. Increasing hydrogen enrichment results in more compact flames which minimises flame-flame interactions. More compact flames increase the cut-off frequency which can lead to self-excited modes at higher frequencies. Finally the non-linear response was characterised by measuring the flame describing function (FDF) at a frequency close to a self-excited mode of the combustor for different injector spacings and levels of hydrogen enrichment. It is shown that increasing the hydrogen enrichment leads to higher saturation amplitude whereas the effect of injector spacing has a comparably smaller effect.
Model of Local Hydrogen Permeability in Stainless Steel with Two Coexisting Structures
Apr 2021
Publication
The dynamics of hydrogen in metals with mixed grain structure is not well understood at a microscopic scale. One of the biggest issues facing the hydrogen economy is “hydrogen embrittlement” of metal induced by hydrogen entering and diffusing into the material. Hydrogen diffusion in metallic materials is difficult to grasp owing to the non-uniform compositions and structures of metal. Here a time-resolved “operando hydrogen microscope” was used to interpret local diffusion behaviour of hydrogen in the microstructure of a stainless steel with austenite and martensite structures. The martensite/austenite ratios differed in each local region of the sample. The path of hydrogen permeation was inferred from the time evolution of hydrogen permeation in several regions. We proposed a model of hydrogen diffusion in a dual-structure material and verified the validity of the model by simulations that took into account the transfer of hydrogen at the interfaces.
The Path to Net Zero and Progress on Reducing Emissions in Wales
Dec 2020
Publication
These two joint reports required under the Environment (Wales) Act 2016 provide ministers with advice on Wales’ climate targets between now and 2050 and assess progress on reducing emissions to date. Our advice to the Welsh Government is set out in two parts:
Advice Report: The path to a Net Zero Wales provides recommendations on the actions that are needed in Wales including the legislation of a Net Zero target and package of policies to deliver it.
Progress Report: Reducing emissions in Wales looks back at the progress made in Wales since the 2016 Environment (Wales) Act was passed and assesses whether Wales is on track to meet its currently legislated emissions reductions targets.
This work is based on an extensive programme of analysis consultation and consideration by the Committee and its staff building on the evidence published last year for our Net Zero report. It is compatible with our advice on the UK’s Sixth Carbon Budget. In support of the advice in this report we have also published:
Advice Report: The path to a Net Zero Wales provides recommendations on the actions that are needed in Wales including the legislation of a Net Zero target and package of policies to deliver it.
Progress Report: Reducing emissions in Wales looks back at the progress made in Wales since the 2016 Environment (Wales) Act was passed and assesses whether Wales is on track to meet its currently legislated emissions reductions targets.
This work is based on an extensive programme of analysis consultation and consideration by the Committee and its staff building on the evidence published last year for our Net Zero report. It is compatible with our advice on the UK’s Sixth Carbon Budget. In support of the advice in this report we have also published:
- All the charts and data behind the report as well as a separate dataset for the scenarios which sets out more details and data on the pathways than can be included in this report.
- A public Call for Evidence several new research projects three expert advisory groups and deep dives into the roles of local authorities and businesses.
Minimum Emissions Configuration of a Green Energy–Steel System: An Analytical Model
May 2022
Publication
The need to significantly reduce emissions from the steelmaking sector requires effective and ready-to-use technical solutions. With this aim different decarbonization strategies have been investigated by both researchers and practitioners. To this concern the most promising pathway is represented by the replacement of natural gas with pure hydrogen in the direct reduced iron (DRI) production process to feed an electric arc furnace (EAF). This solution allows to significantly reduce direct emissions of carbon dioxide from the DRI process but requires a significant amount of electricity to power electrolyzers adopted to produce hydrogen. The adoption of renewable electricity sources (green hydrogen) would reduce emissions by 95–100% compared to the blast furnace–basic oxygen furnace (BF–BOF) route. In this work an analytical model for the identification of the minimum emission configuration of a green energy–steel system consisting of a secondary route supported by a DRI production process and a renewable energy conversion system is proposed. In the model both technological features of the hydrogen steel plant and renewable energy production potential of the site where it is to be located are considered. Compared to previous studies the novelty of this work consists of the joint modeling of a renewable energy system and a steel plant. This allows to optimize the overall system from an environmental point of view considering the availability of green hydrogen as an inherent part of the model. Numerical experiments proved the effectiveness of the model proposed in evaluating the suitability of using green hydrogen in the steelmaking process. Depending on the characteristics of the site and the renewable energy conversion system adopted decreases in emissions ranging from 60% to 91% compared to the BF–BOF route were observed for the green energy–steel system considered It was found that the environmental benefit of using hydrogen in the secondary route is strictly related to the national energy mix and to the electrolyzers’ technology. Depending on the reference context it was found that there exists a maximum value of the emission factor from the national electricity grid below which is environmentally convenient to produce DRI by using only hydrogen. It was moreover found that the lower the electricity consumption of the electrolyzer the higher the value assumed by the emission factor from the electricity grid which makes the use of hydrogen convenient.
Greenhouse Gas Abatement in EUROPE—A Scenario-Based, Bottom-Up Analysis Showing the Effect of Deep Emission Mitigation on the European Energy System
Feb 2022
Publication
Greenhouse gas emissions need to be drastically reduced to mitigate the environmental impacts caused by climate change and to lead to a transformation of the European energy system. A model landscape consisting of four final energy consumption sector models with high spatial (NUTS-3) and temporal (hourly) resolution and the multi-energy system model ISAaR is extended and applied to investigate the transformation pathway of the European energy sector in the deep emission mitigation scenario solidEU. The solidEU scenario describes not only the techno-economic but also the socio-political contexts and it includes the EU27 + UK Norway and Switzerland. The scenario analysis shows that volatile renewable energy sources (vRES) dominate the energy system in 2050. In addition the share of flexible sector coupling technologies increases to balance electricity generation from vRES. Seasonal differences are balanced by hydrogen storage with a seasonal storage profile. The deployment rates of vRES in solidEU show that a fast profound energy transition is necessary to achieve European climate protection goals.
Analysis of Stress Corrosion Cracking in X80 Pipeline Steel: An Approach from the Theory of Critical Distances
Dec 2018
Publication
This paper presents an analysis of Stress Corrosion Cracking (SCC) based on the Theory of Critical Distances (TCD). The research is based on an experimental program composed of fracture specimens with notch radius varying from 0 mm (crack-like defect) up to 1 mm and tensile specimens. A pipeline steel was used in this work (X80). It has been analysed in one hydrogen embrittlement situation. The study has been completed with Finite Elements Simulation analysis. The capacity of the TCD to analyse SCC processes has been proven.
Hydrogen Embrittlement Susceptibility of Prestressing Steel Wires: The Role of the Cold-drawing Conditions
Jul 2016
Publication
Prestressing steel wires are highly susceptible to hydrogen embrittlement (HE). Residual stress-strain state produced after wire drawing plays an essential role since hydrogen damage at certain places of the material is directly affected by stress and strain fields. Changes in wire drawing conditions modify the stress and strain fields and consequently the HE susceptibility and life in service of these structural components in the presence of a hydrogenating environment. This paper analyzes the distributions of residual stress and plastic strain obtained after diverse drawing conditions (inlet die angle die bearing length varying die angle and straining path) and their influence on HE susceptibility of the wires. The conditions for industrial cold drawing can thus be optimized thereby producing commercial prestressing steel wires with improved performance against HE phenomena.
EU Hydrogen Strategy: A Case for Urgent Action Towards Implementation
Jul 2020
Publication
Interest in hydrogen as one route to the decarbonisation of energy systems has risen rapidly over the past few years with the publication of a number of hydrogen strategies from countries across the global energy economy. The momentum in Europe has increased sharply this month with the publication of an EU strategy to incorporate hydrogen into its plans for a net zero emission future. This Comment reviews the key elements of this strategy and provides an initial commentary on the main goals. We highlight the challenges that will be faced in meeting hydrogen production targets in particular via the “green hydrogen” route and analyse the plans for expanding the consumption of hydrogen in Europe. We also assess the infrastructure questions that will need to be answered if and when hydrogen takes on a greater role in the region and note the extensive state support that will be needed in the early years of the implementation of the strategy. Despite this though we applaud the ambition laid out by the EU and look forward to the provision of more detailed plans over the coming months and years.
Link to document on OIES website
Link to document on OIES website
No more items...