Publications
Development of a Generalized Integral Jet Model
Sep 2017
Publication
Integral type models to describe stationary plumes and jets in cross-flows (wind) have been developed since about 1970. These models are widely used for risk analysis to describe the consequences of many different scenarios. Alternatively CFD codes are being applied but computational requirements still limit the number of scenarios that can be dealt with using CFD only. The integral models however are not suited to handle transient releases such as releases from pressurized equipment where the initially high release rate decreases rapidly with time. Further on gas ignition a second model is needed to describe the rapid combustion of the flammable part of the plume (flash fire) and a third model has to be applied for the remaining jet fire. The objective of this paper is to describe the first steps of the development of an integral-type model describing the transient development and decay of a jet of flammable gas after a release from a pressure container. The intention is to transfer the stationary models to a fully transient model capable to predict the maximum extension of short-duration high pressure jets. The model development is supported by conducting a set of transient ignited and unignited spontaneous releases at initial pressures between 25bar and 400bar. These data forms the basis for the presented model development approach.
Security Risk Analysis of a Hydrogen Fueling Station with an On-site Hydrogen Production System Involving Methylcyclohexane
Sep 2017
Publication
Although many studies have looked at safety issues relating to hydrogen fuelling stations few studies have analyzed the security risks such as deliberate attack of the station by threats such as terrorists and disgruntled employees. The purpose of this study is to analyze security risks for a hydrogen fuelling station with an on-site production of hydrogen from methylcyclohexane. We qualitatively conducted a security risk analysis using American Petroleum Institute Standard 780 as a reference for the analysis. The analysis identified 93 scenarios including pool fires. We quantitatively simulated a pool fire scenario unique to the station to analyze attack consequences. Based on the analysis and the simulation we recommend countermeasures to prevent and mitigate deliberate attacks.
Effect of Expansion Ratio on Flame Acceleration During Hydrogen Fueled Gas Explosions
Sep 2019
Publication
A precise understanding of the flame turbulence induced by cellular instabilities is indispensable to perform an appropriate risk assessment of hydrogen fuelled gas explosion. In this research Darrieus Landau instability (DL instability) whose effect on gas explosion is remarkable was experimentally examined. The DL instability is essentially caused by a volumetric expansion of burned gas at flame front. Therefore in order to examine the effects of volumetric expansion ratio the experiments were conducted using H2-O2-N2-Ar gas mixtures of various volumetric expansion ratio conditions by changing N2-Ar ratio. When Ar content ratio is increased the flame temperature becomes higher and volumetric expansion ratio is increased owing to lower specific heat of Ar. The experiments were conducted in nearly unconfined conditions of laboratory-scale and large-scale. Gas mixtures were filled in a 10 cm diameter soap bubble for the laboratory-scale and in a plastic tent of thin vinyl sheet of 1m3 for the large-scale. The gas mixtures were ignited by an electric spark and blast wave and flame speed were measured simultaneously by using a pressure sensor and a high-speed video camera. The DL instability owing to volumetric expansion accelerates flame propagation. In addition the intensity of blast wave was greatly raised depending on flame acceleration which can be explained by an acoustic theory. The effects of expansion ratio and experimental scales on flame propagation and blast wave were analyzed in detail. These results are quite important to perform an appropriate consequence analysis of accidental explosion of hydrogen.
Operation of UK Gas Appliances with Hydrogen Blended Natural Gas
Sep 2019
Publication
The HyDeploy project has undertaken a programme of work to assess the effect of hydrogen addition on the safety and performance of gas appliances and installations. A representative set of eight appliances have been assessed in laboratory experiments with a range of test gases that explored high and low Wobbe Number and hydrogen concentrations up to 28.4 % mol/mol. Tests have demonstrated that the addition of hydrogen does not affect the key hazard areas of CO production light back flame out or the operation of flame failure devices. It was identified that for some designs of gas fire appliances the operation of the oxygen depletion sensors may be affected by the addition of hydrogen and further studies in this area are planned. A laboratory based study was supported by an onsite testing programme where 133 installations were assessed for gas tightness appliance combustion safety and operation against normal line natural gas G20 reference gas and two hydrogen blended gases. Where installations were gas tight for natural gas analysis showed that no additional leakage occurred with hydrogen blended gases. There were also no issues identified with the combustion performance of appliances and onsite results were in line with those obtained in the laboratory testing programme.
Numerical and Experimental Investigation of H2-air and H2-O2 Detonation Parameters in a 9 m Long Tube, Introduction of a New Detonation Model
Sep 2017
Publication
Experimental and numerical investigation of hydrogen-air and hydrogen-oxygen detonation parameters was performed. A new detonation model was introduced and validated against the experimental data. Experimental set-up consisted of 9 m long tube with 0.17 m in diameter where pressure was measured with piezoelectric transducers located along the channel. Numerical simulations were performed within OpenFoam code based on progress variable equation where the detonative source term accounts for autoignition effects. Autoignition delay times were computed at a simulation run-time with the use of a multivariate regression model where independent variables were: pressure temperature and fuel concentration. The dependent variable was the autoignition delay time. Range of the analyzed gaseous mixture composition varied between 20% and 50% of hydrogen-air and 50%–66% of hydrogen in oxygen. Simulations were performed using LES one-equation eddy viscosity turbulence model in 2D and 3D. Calculations were validated against experimental data.
Tokyo Gas’ Efforts Regarding Impact Assessment on Surroundings and Emergency Response Training
Sep 2017
Publication
In Japan 82 commercial Hydrogen Refuelling Stations (HRSs) were constructed as of March 1 2017 but few impact assessments have been reported on the surroundings at HRS. In addition as HRSs become more widespread the number of HRSs around narrow urban areas will also increase. Thus the necessity of impact assessments on the surroundings of HRSs is expected to increase. In order to confirm that the influence from our HRS is not problematic to the surrounding residences we conducted an impact assessment on the surroundings at HRS by using the actual HRS construction plan. Although safety is one of the objects of an impact assessment in Japan the safety of an HRS is guaranteed by observing the High Pressure Gas Safety Act its Technical Standards and other related regulations. On the other hand if an accident such as a hydrogen leak or hydrogen fire occurs at an HRS it becomes important to prevent secondary disasters and to minimize influence on the surroundings by means of an initial response by the operators of the HRS. Therefore we have conducted training to improve the emergency response capability of the HRS operators and to prevent secondary disasters. In this paper we describe the abovementioned information with regard to an impact assessment on the surroundings and for emergency response training.
Safety of Hydrogen Powered Industrial Trucks, Lessons Learned and Existing Codes and Standards Gaps
Sep 2011
Publication
This paper provides an introduction to the powered industrial truck application of fuel cell power systems the safety similarities with the automotive application and safety lessons learned. Fuel Cell niche markets have proven their value to many early adopters. How has the automotive market provided a springboard for these niche applications? How are niche markets revealing gaps in current safety approaches? What is different about the powered industrial truck application and what new codes and standards are needed to accommodate those differences?
Optimal Hydrogen Carrier: Holistic Evaluation of Hydrogen Storage and Transportation Concepts for Power Generation, Aviation, and Transportation
Oct 2022
Publication
The storage of excess electrical generation enabled through the electrolytic production of hydrogen from water would allow “load-shifting” of power generation. This paves the way for hydrogen as an energy carrier to be further used as a zero‑carbon fuel for land air and sea transportation. However challenges in hydrogen storage and transportation ultimately pose restrictions on its wider adaption along horizontal and vertical vectors. This paper investigates chemical energy carriers ranging from small molecules such as ammonia and methane to formic acid as well as other more complex hydrocarbons in response to this timely engineering problem. The hydrogenation and dehydrogenation of such carrier molecules require energy lowering the effective net heating value of hydrogen up to 32 %. Different carrier approaches are discussed in the light of availability energetics water requirements and suitability for applications in power generation shipping trucking and aviation supplemented by a comprehensive safety review making this study unique in its field. It is found that hydrogen delivered without a carrier is ideal for power generation applications due to the large quantities required. Aviation would benefit from either ammonia or hydrogen and is generally a field challenging to decarbonize. Ammonia appears also to be a good medium for shipping hydrogen between continents and to power container ships due to its high energy density and lower liquid temperature compared with hydrogen. At the same time ammonia can also be used to power the ship's engine. Long-haul trucking would benefit the most from cryogenic or compressed hydrogen due to the lower quantities required and purity requirements of the fuel cells.
Effects of Oxidants on Hydrogen Spontaneous Ignition: Experiments and Modelling
Sep 2017
Publication
Experiments were performed on the influence of oxidants (air pure oxygen O2 and pure nitrous oxide N2O at atmospheric pressure) in the straight expansion tube after the burst disk on the hydrogen spontaneous ignition. The lowest pressure at which the spontaneous ignition is observed has been researched for a 4 mm diameter tube with a length of 10 cm for the two oxidant gases. The ignition phenomenon is observed with a high speed camera and the external overpressures are measured. Numerical simulations have also been conducted with the high resolution CFD approach detailed chemistry formerly developed by Wen and co-workers. Comparison is made between the predictions and the experimental data.
Empirical Profiling of Cold Hydrogen Plumes Formed from Venting of LH2 Storage Vessels
Sep 2017
Publication
Liquid hydrogen (LH2) storage is viewed as a viable approach to assure sufficient hydrogen capacity at commercial fuelling stations. Presently LH2 is produced at remote facilities and then transported to the end-use site by road vehicles (i.e. LH2 tanker trucks). Venting of hydrogen to depressurize the transport storage tank is a routine part of the LH2 delivery and site transfer process. The behaviour of cold hydrogen plumes has not been well characterized because of the sparsity of empirical field data which can lead to overly conservative safety requirements. Committee members of the National Fire Protection Association (NFPA) Standard 2 [1] formed the Hydrogen Storage Safety Task Group which consists of hydrogen producers safety experts and computational fluid dynamics modellers has identified the lack of understanding of hydrogen dispersion during LH2 venting of storage vessels as a critical gap for establishing safety distances at LH2 facilities especially commercial hydrogen fuelling stations. To address this need the National Renewable Energy Laboratory Sensor Laboratory in collaboration with the NFPA Hydrogen Storage Task Group developed a prototype Cold Hydrogen Plume Analyzer to empirically characterize the hydrogen plume formed during LH2 storage tank venting. The prototype analyzer was field deployed during an actual LH2 venting process. Critical findings included
- Hydrogen above the lower flammable limit (LFL) was detected as much as 2 m lower than the release point which is not predicted by existing models.
- Personal monitors detected hydrogen at ground level although at levels below the LFL.
- A small but inconsistent correlation was found between oxygen depletion and the hydrogen concentration.
- A negligible to non-existent correlation was found between in-situ temperature measurements and the hydrogen concentration.
Validation Testing In Support Of Hydrogen Codes and Standards Developments
Sep 2011
Publication
New codes and standards are being developed to facilitate the safe deployment of emerging hydrogen technologies. Hydrogen markets will benefit from standards that address the specific properties of hydrogen hydrogen effects on strength of materials and hydrogen compressed gas storage at pressures up to 70 MPa. The need for validation of new hydrogen requirements has been identified by codes and standards technical committees. The US Department of Energy (DOE) office of Energy Efficiency and Renewable Energy (EERE) has tasked the National Renewable Energy Laboratory (NREL) with the role of supporting hydrogen codes and standards research and development needs. NREL has provided validation test support to several new standards development efforts including pressure testing of 70 MPa on board vehicle storage systems flaw testing of stationary hydrogen tanks fill protocols for hydrogen fuel dispensing and hydrogen compatibility testing for hydrogen pressure relief devices (HPRD’s). Validation test results are presented for these four specific standards development needs.
Interaction of Hydrogen Jets with Hot Surfaces
Sep 2017
Publication
The formation of hydrogen jets from pressurized sources and its ignition when hitting hot devices has been studied by many projects. The transient jets evolve with high turbulence depending on the configuration of the nozzle and especially the pressure in the hydrogen reservoir. In addition the length of the jets and the flames generated by ignition at a hot surface varies. Parameters to be varied were initial pressure of the source (2.5 10 20 and 40 MPa) distance between the nozzle and the hot surface (3 5 and 7 m) and temperature of the hot surface (between 400 and 1000 K). The interaction of the hydrogen jets is visualized by high-speed cinematography techniques which allow analysing the jet characteristics. By combination of various methods of image processing the visibility of the phenomena on the videos taken at 15 000 fps was improved. In addition high-speed NIR spectroscopy was used to obtain temperature profiles of the expanding deflagrations. The jets ignite already above 450 K for conditions mainly from the tubular source at 40 MPa. In addition the propagation of the flame front depends on all three varied parameters: temperature of the hot surface pressure in the reservoir and distance between nozzle and hot surface. In most cases also upstream propagation occurs. A high turbulence seems to lead to the strong deflagrations. At high temperatures of the ignition sources the interaction leads to fast deflagration and speeds up- and downstream of the jet. The deflagration velocity is close to velocity of sound and emission of pressure waves occurs.
Numerical Prediction of Forced-ignition Limit in High-pressurized Hydrogen Jet Flow Through a Pinhole
Sep 2017
Publication
The numerical simulations on the high-pressure hydrogen jet are performed by using the unsteady three-dimensional compressible Navier-Stokes equations with multi-species conservation equations. The present numerical results show that the highly expanded hydrogen free jet observes and the distance between the Mach disc and the nozzle exit agrees well with the empirical equation. The time-averaged H2 concentration of the numerical simulations agrees well with the experimental data and the empirical equation. The numerical simulation of ignition in a hydrogen jet is performed to show the flame behaviour from the calculated OH iso surface. We predicted the ignition and no-ignition region from the present numerical results about the forced ignition in the high-pressurized hydrogen jet.
Measurements of Flow Velocity and Scalar Concentration in Turbulent Multi-component Jets
Sep 2017
Publication
Buoyancy effects and nozzle geometry can have a significant impact on turbulent jet dispersion. This work was motivated by applications involving hydrogen. Using helium as an experimental proxy buoyant horizontal jets issuing from a round orifice on the side wall of a circular tube were analyzed experimentally using particle image velocimetry (PIV) and planar laser-induced fluorescence (PLIF) techniques simultaneously to provide instantaneous and time-averaged flow fields of velocity and concentration. Effects of buoyancy and asymmetry on the resulting flow structure were studied over a range of Reynolds numbers and gas densities. Significant differences were found between the centreline trajectory spreading rate and velocity decay of conventional horizontal round axisymmetric jets issuing through flat plates and the pipeline leak-representative jets considered in the present study. The realistic pipeline jets were always asymmetric and found to deflect about the jet axis in the near field. In the far field it was found that the realistic pipeline leak geometry causes buoyancy effects to dominate much sooner than expected compared to horizontal round jets issuing through flat plates.
Application of the Validated 3D Multiphase-multicomponent CFD Model to an Accidental Liquid Hydrogen Release Scenario in a Liquefication Plant
Sep 2017
Publication
Hydrogen-air mixtures are flammable in a wide range of compositions and have a low ignition energy compared to gaseous hydrocarbons. Due to its low density high buoyancy and diffusivity the mixing is strongly enhanced which supports distribution into large volumes if accidentally released. Economically valuable discontinuous transportation over large distances is only expected using liquid hydrogen (LH2). Releases of LH2 at its low temperature (20.3 K at 0.1 MPa) have additional hazards besides the combustible character of gaseous hydrogen (GH2). Hazard assessment requires simulation tools capable of calculating the pool spreading as well as the gas distribution for safety assessments of existing the future liquid hydrogen facilities. Evaluating possible risks the following process steps are useful:
- Possible accident release scenarios need to be identified for a given plant layout.
- Environmental boundary conditions such as wind conditions and humidity need to be identified and worst case scenarios have to be identified.
- A model approach based on this information which is capable of simulating LH2 releases vaporization rates and atmospheric dispersion of the gaseous hydrogen.
- Evaluate and verify safety distances identify new risks and/or extract certain design rules.
Experimental Measurements of Structural Displacement During Hydrogen Vented Deflagrations for FE Model Validation
Sep 2017
Publication
Vented deflagration tests were conducted by UNIPI at B. Guerrini Laboratory during the experimental campaign for HySEA project. Experiments included homogeneous hydrogen-air mixture in a 10-18% vol. range of concentrations contained in an about 1 m3 enclosure called SSE (Small Scale Enclosure). Displacement measurements of a test plate were taken in order to acquire useful data for the validation of FE model developed by IMPETUS Afea. In this paper experimental facility displacement measurement system and FE model are briefly described then comparison between experimental data and simulation results is discussed.
Blending Ammonia into Hydrogen to Enhance Safety through Reduced Burning Velocity
Sep 2019
Publication
Laminar burning velocities (SL) of hydrogen/ammonia mixtures in air at atmospheric pressure were studied experimentally and numerically. The blending of hydrogen with ammonia two fuels that have been proposed as promising carriers for renewable energy causes the laminar flame speed of the mixture SL to decrease significantly. However details of this have not previously available. Systematic measurements were therefore performed for a series of hydrogen/ammonia mixtures with wide ranges of mole fractions of blended ammonia (XNH3) and equivalence ratio using a heat flux method based on heat flux of a flat flame transferred to the burner surface. It was found that the mixture of XNH3 = 40% has a value of SL close to that of methane which is the dominant component of natural gas. Using three chemical kinetic mechanisms available in the literature i.e. the well-known GRI-Mech 3.0 mechanism and two mechanisms recently released SL were also modelled for the cases studied. However the discrepancies between the experimental and numerical results can exceed 50% with the GRI-Mech 3.0 mechanism. Discrepancies were also found between the numerical results obtained with different mechanisms. These results can contribute to an increase in both the safety and efficiency of the coutilization of these two types of emerging renewable fuel and to guiding the development of better kinetic models.
Prevention of Hydrogen Accumulation Inside the Vacuum Vessel Pressure Suppression System of the ITER Facility by Means of Passive Auto-catalytic Recombiners
Sep 2017
Publication
Hydrogen safety is a relevant topic for both nuclear fission and fusion power plants. Hydrogen generated in the course of a severe accident may endanger the integrity of safety barriers and may result in radioactive releases. In the case of the ITER fusion facility accident scenarios with water ingress consider the release of hydrogen into the suppression tank (ST) of the vacuum vessel pressure suppression system (VVPSS). Under the assumption of additional air ingress the formation of flammable gas mixtures may lead to explosions and safety component failure.<br/>The installation of passive auto-catalytic recombiners (PARs) inside the ST which are presently used as safety devices inside the containments of nuclear fission reactors is one option under consideration to mitigate such a scenario. PARs convert hydrogen into water vapor by means of passive mechanisms and have been qualified for operation under the conditions of a nuclear power plant accident since the 1990s.<br/>In order to support on-going hydrogen safety considerations simulations of accident scenarios using the CFD code ANSYS-CFX are foreseen. In this context the in-house code REKO-DIREKT is coupled to CFX to simulate PAR operation. However the operational boundary conditions for hydrogen recombination (e.g. temperature pressure gas mixture) of a fusion reactor scenario differ significantly from those of a fission reactor. In order to enhance the code towards realistic PAR operation a series of experiments has been performed in the REKO-4 facility with specific focus on ITER conditions. These specifically include operation under sub-atmospheric pressure (0.2–1.0 bar) gas compositions ranging from lean to rich H2/O2 mixtures and superposed flow conditions.<br/>The paper gives an overview of the experimental program presents results achieved and gives an outlook on the modelling approach towards accident scenario simulation.
Experimental Determination of Minimum Ignition Current (MIC) for Hydrogen & Methane Mixtures for the Determination of the Explosion Group Corresponding to IEC 60079-20-1
Sep 2017
Publication
Power to gas could get an important issue in future permitting the valorisation of green electric excess energy by producing hydrogen mixing it with natural gas (NG) and use the NG grid as temporary storage. NG grid stakeholders expect that blends up to 20% seem to be a realistic scenario. The knowledge of the explosion group for these hydrogen/NG (H2NG) mixtures is a necessary information for the choice of equipment and protective systems intended for the use in potentially explosive atmospheres of these mixtures. Therefore we determined experimentally the minimum ignition current (MIC) the MIC ratios referenced on MIC of pure methane corresponding to IEC 60079-20-1 standard. The results are compared to those obtained by maximum experimental safe gap (MESG) the second standardized method. The tested gas mixtures started from 2 vol.% volume admixture in methane rising in 2% steps up to 20 vol.% of hydrogen. The interpretation of these results could conduct to consider methane/hydrogen mixtures containing more than 14 vol.% of hydrogen as Group IIB gases.
Delayed Explosion of Hydrogen High Pressure Jets: An Inter Comparison Benchmark Study
Sep 2017
Publication
Delayed explosions of accidental high pressure hydrogen releases are an important risk scenario for safety studies of production plants transportation pipelines and fuel cell vehicles charging stations. As a consequence the assessment of the associated consequences requires accurate and validated prediction based on modelling and experimental approaches. In the frame of the French working group dedicated to the evaluation of computational fluid dynamics (CFD) codes for the modelling of explosion phenomena this study is dedicated to delayed explosions of high pressure releases. Two participants using two different codes have evaluated the capacity of CFD codes to reproduce explosions of high pressure hydrogen releases. In the first step the jet dispersion is modelled and simulation results are compared with experimental data in terms of axial and radial concentration dilution velocity decay and turbulent characteristics of jets. In the second step a delayed explosion is modelled and compared to experimental data in terms of overpressure at different monitor points. Based on this investigation several recommendations for CFD modelling of high pressure jets explosions are suggested.
Green H2 Production by Water Electrolysis Using Cation Exchange Membrane: Insights on Activation and Ohmic Polarization Phenomena
Dec 2021
Publication
Low-temperature electrolysis by using polymer electrolyte membranes (PEM) can play an important role in hydrogen energy transition. This work presents a study on the performance of a proton exchange membrane in the water electrolysis process at room temperature and atmospheric pressure. In the perspective of applications that need a device with small volume and low weight a miniaturized electrolysis cell with a 36 cm2 active area of PEM over a total surface area of 76 cm2 of the device was used. H2 and O2 production rates electrical power energy efficiency Faradaic efficiency and polarization curves were determined for all experiments. The effects of different parameters such as clamping pressure and materials of the electrodes on polarization phenomena were studied. The PEM used was a catalyst-coated membrane (Ir-Pt-Nafion™ 117 CCM). The maximum H2 production was about 0.02 g min−1 with a current density of 1.1 A cm−2 and a current power about 280 W. Clamping pressure and the type of electrode materials strongly influence the activation and ohmic polarization phenomena. High clamping pressure and electrodes in titanium compared to carbon electrodes improve the cell performance and this results in lower ohmic and activation resistances.
Political, Economic and Environmental Concerns: Discussion
Jun 2017
Publication
This session concerned the political economic and environmental impact on the hydrogen economy due to hydrogen embrittlement.
This article is a transcription of the recorded discussion of ‘Political economic and environmental concerns’ at the Royal Society Scientific Discussion Meeting Challenges of Hydrogen and Metals 16–18 January 2017. The text is approved by the contributors. G.C.G.S. transcribed the session and F.F.D. assisted in the preparation of the manuscript.
Link to document download on Royal Society Website
This article is a transcription of the recorded discussion of ‘Political economic and environmental concerns’ at the Royal Society Scientific Discussion Meeting Challenges of Hydrogen and Metals 16–18 January 2017. The text is approved by the contributors. G.C.G.S. transcribed the session and F.F.D. assisted in the preparation of the manuscript.
Link to document download on Royal Society Website
Study of Fire Risk and Accidents Emergency Disposal Technology System of Hydrogen Fuel Vehicles
Sep 2017
Publication
As the energy crisis and environment pollution growing severely the hydrogen fuel motor vehicle has got more and more attention many automobile companies and research institutions invest significant R&D resources to research and develop the hydrogen fuel vehicles. With the development of the hydrogen fuel cell vehicles and hydrogen fuel motor vehicles the hydrogen had more to more extensive application. According to the categories of the hydrogen fuel vehicles the characteristics of hydrogen fuel vehicle fire risk and accidents are analyzed in this paper. As for hydrogen fuel cell vehicles the function of its key components such as the fuel cell the high-pressure storage tank is presented firstly. Then based on the low density fast diffusion and flammable of hydrogen the probable scenarios of accident such as fuel leak jet flame are analyzed and the fire risk of the key components and the whole vehicle is evaluated. Finally the development trend of the emergency warning system of hydrogen fuel cell vehicles is analyzed and some recommendations are proposed referring to the detection pre-warning and control technologies used in the industrial sites. Aiming at the hydrogen car structure characteristics and the fire accident modes and accidents evolution rules the emergency disposal technology system for hydrogen fuel motor vehicles is put forward.
Structural Response for Vented Hydrogen Deflagrations: Coupling CFD and FE Tools
Sep 2017
Publication
This paper describes a methodology for simulating the structural response of vented enclosures during hydrogen deflagrations. The paper also summarises experimental results for the structural response of 20-foot ISO (International Organization for Standardization) containers in a series of vented hydrogen deflagration experiments. The study is part of the project Improving hydrogen safety for energy applications through pre-normative research on vented deflagrations (HySEA). The project is funded by the Fuel Cells and Hydrogen 2 Joint Undertaking under grant agreement No 671461. The HySEA project focuses on vented hydrogen deflagrations in containers and smaller enclosures with internal congestion representative of industrial applications. The structural response modelling involves one-way coupling of pressure loads taken either directly from experiments or from simulations with the computational fluid dynamics (CFD) tool FLACS to the non-linear finite element (FE) IMPETUS Afea Solver. The performance of the FE model is evaluated for a range of experiments from the HySEA project in both small-scale enclosures and 20-foot ISO containers. The paper investigates the sensitivity of results from the FE model to the specific properties of the geometry model. The performance of FLACS is evaluated for a selected set of experiments from the HySEA project. Furthermore the paper discusses uncertainties associated with the combined modelling approach.
European Hydrogen Safety Training Programme for First Responders: Hyresponse Outcomes and Perspectives
Sep 2017
Publication
The paper presents the outcomes of the HyResponse project i.e. the European Hydrogen Safety Training Programme for first responders. The threefold training is described: the content of the educational training is presented the operational training platform and its mock-up real scale transport and hydrogen stationary installations are detailed and the innovative virtual tools and training exercises are highlighted. The paper underlines the outcomes the three pilot sessions as well as the Emergency Response Guide available on the HyResponse’s public website. The next steps for widespread dissemination into the community are discussed.
Mixing and Warming of Cryogenic Hydrogen Releases
Sep 2017
Publication
Laboratory measurements were made on the concentration and temperature fields of cryogenic hydrogen jets. Images of spontaneous Raman scattering from a pulsed planar laser sheet were used to measure the concentration and temperature fields from varied releases. Jets with up to 5 bar pressure with near-liquid temperatures at the release point were characterized in this work. This data is relevant for characterizing unintended leaks from piping connected to cryogenic hydrogen storage tanks such as might be encountered at a hydrogen fuel cell vehicle fuelling station. The average centerline mass fraction was observed to decay at a rate similar to room temperature hydrogen jets while the half-width of the Gaussian profiles of mass fraction were observed to spread more slowly than for room temperature hydrogen. This suggests that the mixing and models for cryogenic hydrogen may be different than for room temperature hydrogen. Results from this work were also compared to a one-dimensional (streamwise) model. Good agreement was seen in terms of temperature and mass fraction. In subsequent work a validated version of this model will be exercised to quantitatively assess the risk at hydrogen fuelling stations with cryogenic hydrogen on-site.
Modeling of Hydrogen Pressurization and Extraction in Cryogenic Pressure Vessels Due to Vacuum Insulation Failure
Sep 2017
Publication
We have analyzed vacuum insulation failure in an automotive cryogenic pressure vessel (also known as cryo-compressed vessel) storing hydrogen (H2). Vacuum insulation failure increases heat transfer into cryogenic vessels by about a factor of 100 potentially leading to rapid pressurization and venting to avoid exceeding maximum allowable working pressure (MAWP). H2 release to the environment may be dangerous if the vehicle is located in a closed space (e.g. a garage or tunnel) at the moment of insulation failure. We therefore consider utilization of the hydrogen in the vehicle fuel cell and electricity dissipation through operation of vehicle accessories or battery charging as an alternative to releasing hydrogen to the environment. We consider two strategies: initiating hydrogen extraction immediately after vacuum insulation failure or waiting until MAWP is reached before extraction. The results indicate that cryogenic pressure vessels have thermodynamic advantages that enable slowing down hydrogen release to moderate levels that can be consumed in the fuel cell and dissipated onboard the vehicle even in the worst case when the vacuum fails with a vessel storing hydrogen at maximum refuel density (70 g/L at 300 bar). The two proposed strategies are therefore feasible and the best alternative can be chosen based on economic and/or implementation constraints.
Energy-efficient Conversion of Microalgae to Hydrogen and Power
Jun 2017
Publication
An integrated system for H2 production from microalgae and its storage is proposed employing enhanced process integration technology (EPI). EPI consists of two core technologies i.e. exergy recovery and process integration. The proposed system includes a supercritical water gasification H2 separation hydrogenation and combined cycle. Microalga Chlorella vulgaris is used as a material for evaluation. The produced syngas is separated to produce highly pure H2. Furthermore to store the produced H2 liquid organic H2 carrier of toluene-and-methylcyclohexane cycle is adopted. The remaining gas is used as fuel for combustion in combined cycle to generate electricity. The effects of fluidization velocity and gasification pressure to energy efficiency are evaluated. From process modelling and calculation it is shown that high total energy efficiency about 60% can be achieved. In addition about 40% of electricity generation efficiency can be realized.
Hydrogen Safety Sensor Performance and Use Gap Analysis
Sep 2017
Publication
Hydrogen sensors are recognized as an important technology for facilitating the safe implementation of hydrogen as an alternative fuel and there are numerous reports of a sensor alarm successfully preventing a potentially serious event. However gaps in sensor metrological specifications as well as in their performance for some applications exist. The U.S. Department of Energy (DOE) Fuel Cell Technologies Office published a short list of critical gaps in the 2007 and 2012 Multiyear Project Plans; more detailed gap analyses were independently performed by the Joint Research Centre (JRC) and the National Renewable Energy Laboratory (NREL). There have been however some significant advances in sensor technologies since these assessments including the commercial availability of hydrogen sensors with fast response times (t90 < 1 s which had been an elusive DOE target since 2007) improved robustness to chemical poisons improved selectivity and improved lifetime and stability. These improvements however have not been universal and typically pertain to select platforms or models. Moreover as hydrogen markets grow and new applications are being explored more demands will be imposed on sensor performance. The hydrogen sensor laboratories at NREL and the JRC are currently updating the hydrogen safety sensor gap analysis through direct interaction with international stakeholders in the hydrogen community especially end users. NREL and the JRC are currently organizing a series of workshops (in Europe and the United States) with sensor developers end-users and other stakeholders in 2017 to identify technology gaps and to develop a path forward to address them. One workshop was held on May 10 in Brussels Belgium at the Headquarters of the Fuel Cell and Hydrogen Joint Undertaking. A second workshop is planned at NREL in Golden CO USA. This paper reviews improvements in sensor technologies in the past 5 to 10 years identifies gaps in sensor performance and use requirements and identifies potential research strategies to address the gaps. The outcomes of the Hydrogen Sensors Workshops are also summarized.
Analysis of Transient Supersonic Hydrogen Release, Dispersion and Combustion
Sep 2017
Publication
A hydrogen leak from a facility which uses highly compressed hydrogen gas (714 bar 800 K) during operation was studied. The investigated scenario involves supersonic hydrogen release from a 10 cm2 leak of the pressurized reservoir turbulent hydrogen dispersion in the facility room followed by an accidental ignition and burn-out of the resulting H2-air cloud. The objective is to investigate the maximum possible flame velocity and overpressure in the facility room in case of a worst-case ignition. The pressure loads are needed for the structural analysis of the building wall response. The first two phases namely unsteady supersonic release and subsequent turbulent hydrogen dispersion are simulated with GASFLOW-MPI. This is a well validated parallel all-speed CFD code which solves the compressible Navier-Stokes equations and can model a broad range of flow Mach numbers. Details of the shock structures are resolved for the under-expanded supersonic jet and the sonic-subsonic transition in the release. The turbulent dispersion phase is simulated by LES. The evolution of the highly transient burnable H2-air mixture in the room in terms of burnable mass volume and average H2-concentration is evaluated with special sub-routines. For five different points in time the maximum turbulent flame speed and resulting overpressures are computed using four published turbulent burning velocity correlations. The largest turbulent flame speed and overpressure is predicted for an early ignition event resulting in 35–71 m/s and 0.13–0.27 bar respectively.
Simulation of Thermal Radiation from Hydrogen Under-expanded Jet Fire
Sep 2017
Publication
Thermal hazards from an under-expanded (900 bar) hydrogen jet fire have been numerically investigated. The simulation results have been compared with the flame length and radiative heat flux measured for the horizontal jet fire experiment conducted at INERIS. The release blowdown characteristics have been modelled using the volumetric source as an expanded implementation of the notional nozzle concept. The CFD study employs the realizable k-ε model for turbulence and the Eddy Dissipation Concept for combustion. Radiation has been taken into account through the Discrete Ordinates (DO) model. The results demonstrated good agreement with the experimental flame length. Performance of the model shall be improved to reproduce the radiative properties dynamics during the first stage of the release (time < 10 s) whereas during the remaining blowdown time the simulated radiative heat flux at five sensors followed the trend observed in the experiment.
Corrosion Cracking of Carbon Steels of Different Structure in the Hydrogen Sulfide Environment Under Static Load
Dec 2018
Publication
Hydrogen sulfide corrosion is one of the main reasons of steels destruction in the oil and gas industry. Damages appear as a result of corrosion and hydrogen embrittlement and corrosion cracking occurs when the load is applied. The influence of the steels structure on its stress corrosion cracking under the loads in hydrogen sulfide environment is insufficiently studied. The aim of the study is to determine the influence of the steels structure on its corrosion hydrogenation and corrosion cracking in the NACE hydrogen sulfide solution.<br/>It was established that the corrosion rate and hydrogenation of steel У8 in the NACE solution grows when the structure dispersion increases from perlite to sorbite troostite and martensite. The corrosion rate and hydrogenation of steel 45 are the greatest in pearlite-ferrite while the smallest - in sorbite.<br/>The corrosion of steels У8 and 45 in the NACE solution is localized: the average size of the ulcers is 50 ... 80 μm on the steel У8 and 45 ... 65 μm on steel 45. The depth of ulcers is maximal on the steel У8 with the martensite structure (~ 260 μm) and on the steel 45 with the troostite structure (~ 210 μm).<br/>Static load (σ = 300 MPa) increases the hydrogenation of steels in the hydrogen sulfide environment. The concentration of hydrogen in steel У8 with troostite structure increases by ~ 1.8 times. The concentration of hydrogen in steel 45 with troostite and martensite structures increases by ~ 1.2...1.3 and by ~ 1.4...1.6 times respectively.<br/>The steel У8 with martensite and perlite structures and steel 45 with troostite structure has the lowest resistance to corrosion cracking. Steels destruction depends on both hydrogen permeation and the corrosion localization which leads to the increase of the microelectrochemical heterogeneity of the surfaces.
Experiments on Flame Acceleration and DDT for Stoichiometric Hydrogen/Air Mixture in a Thin Layer Geometry
Sep 2017
Publication
A series of experiments in a thin layer geometry performed at the HYKA test site of the KIT. The experiments on different combustion regimes for lean and stoichiometric H2/air mixtures were performed in a rectangular chamber with dimensions of 20 x 90 x h cm3 where h is the thickness of the layer (h = 1 2 4 6 8 10 mm). Three different layer geometries:
- a smooth channel without obstructions;
- the channel with a metal grid filled 25% of length and
- a metal grid filled 100% of length.
Mn-based Borohydride Synthesized by Ball-milling KBH4 and MnCl2 for Hydrogen Storage
Dec 2013
Publication
In this work a mixed-cation borohydride (K2Mn(BH4)4) with P21/n structure was successfully synthesized by mechanochemical milling of the 2KBH4–MnCl2 sample under argon. The structural and thermal decomposition properties of the borohydride compounds were investigated using XRD Raman spectroscopy FTIR TGA-MS and DSC. Apart from K2Mn(BH4)4 the KMnCl3 and unreacted KBH4 compounds were present in the milled 2KBH4–MnCl2. The two mass loss regions were observed for the milled sample: one was from 100 to 160 °C with a 1.6 ± 0.1 wt% loss (a release of majority hydrogen and trace diborane) which was associated with the decomposition of K2Mn(BH4)4 to form KBH4 boron and finely dispersed manganese; the other was from 165 to 260 °C with a 1.9 ± 0.1 wt% loss (only hydrogen release) which was due to the reaction of KBH4 with KMnCl3 to give KCl boron finely dispersed manganese. Simultaneously the formed KCl could dissolve in KBH4 to yield a K(BH4)xCl1−x solid solution and also react with KMnCl3 to form a new compound K4MnCl6.
Hydrogen Trapping in bcc Iron
May 2020
Publication
Fundamental understanding of H localization in steel is an important step towards theoretical descriptions of hydrogen embrittlement mechanisms at the atomic level. In this paper we investigate the interaction between atomic H and defects in ferromagnetic body-centered cubic (bcc) iron using density functional theory (DFT) calculations. Hydrogen trapping profiles in the bulk lattice at vacancies dislocations and grain boundaries (GBs) are calculated and used to evaluate the concentrations of H at these defects as a function of temperature. The results on H-trapping at GBs enable further investigating H-enhanced decohesion at GBs in Fe. A hierarchy map of trapping energies associated with the most common crystal lattice defects is presented and the most attractive H-trapping sites are identified.
Hydrogen Combustion Experiments in a Vertical Semi-confined Channel
Sep 2017
Publication
Experiments in an obstructed semi-confined vertical combustion channel with a height of 6 m (cross-section 0.4 × 0.4 m) inside a safety vessel of the hydrogen test center HYKA at the Karlsruhe Institute of Technology (KIT) are reported. In the work homogeneous hydrogen-air-mixtures as well as mixtures with different well-defined H2-concentration gradients were ignited either at the top or at the bottom end of the channel. The combustion characteristics were recorded using pressure sensors and sensors for the detection of the flame front that were distributed along the complete channel length. In the tests slow subsonic and fast sonic deflagrations as well as detonations were observed and the conditions for the flame acceleration (FA) to speed of sound and deflagration-to-detonation transition (DDT) are compared with the results of similar experiments performed earlier in a larger semi-confined horizontal channel.
Energy Management Strategy of Hydrogen Fuel Cell/Battery/Ultracapacitor Hybrid Tractor Based on Efficiency Optimization
Dec 2022
Publication
With the application of new energy technology hybrid agricultural machinery has been developed. This article designs a hybrid tractor energy management method to solve the problem of high energy consumption caused by significant load fluctuation of the tractor in field operation. This article first analyzes the characteristics of the hydrogen fuel cell power battery and ultracapacitor and designs a hybrid energy system for the tractor. Second the energy management strategy (EMS) of multi-layer decoupling control based on the Haar wavelet and logic rule is designed to realize the multi-layer decoupling of high-frequency low-frequency and steady-state signals of load demand power. Then the EMS redistributes the decoupled power signals to each energy source. Finally a hardware-in-loop simulation experiment was carried out through the model. The results show that compared with single-layer control strategies such as fuzzy control and power-following control the multi-layer control strategy can allocate the demand power more reasonably and the efficiency of the hydrogen fuel cell is the highest. The average efficiency of the hydrogen fuel cell was increased by 2.87% and 1.2% respectively. Furthermore the equivalent hydrogen consumption of the tractor was reduced by 17.06% and 5.41% respectively within the experimental cycle. It is shown that the multi-layer control strategy considering power fluctuation can improve the vehicle economy based on meeting the power demanded by the whole vehicle load.
Modelling Liquid Hydrogen Release and Spread on Water
Sep 2017
Publication
Consequence modelling of high potential risks of usage and transportation of cryogenic liquids yet requires substantial improvements. Among the cryogenics liquid hydrogen (LH2) needs especial treatments and a comprehensive understanding of spill and spread of liquid and dispersion of vapor. Even though many of recent works have shed lights on various incidents such as spread dispersion and explosion of the liquid over land less focus was given on spill and spread of LH2 onto water. The growing trend in ship transportation has enhanced risks such as ships’ accidental releases and terrorist attacks which may ultimately lead to the release of the cryogenic liquid onto water. The main goal of the current study is to present a computational fluid dynamic (CFD) approach using OpenFOAM to model release and spread of LH2 over water substrate and discuss previous approaches. It also includes empirical heat transfer equations due to boiling and computation of evaporation rate through an energy balance. The results of the proposed model will be potentially used within another coupled model that predicts gas dispersion]. This work presents a good practice approach to treat pool dynamics and appropriate correlations to identify heat flux from different sources. Furthermore some of the previous numerical approaches to redistribute or in some extend manipulate the LH2 pool dynamic are brought up for discussion and their pros and cons are explained. In the end the proposed model is validated by modelling LH2 spill experiment carried out in 1994 at the Research Centre Juelich in Germany.
A Study of Hydrogen Flame Length with Complex Nozzle Geometry
Sep 2017
Publication
The growing number of hydrogen fillings stations and cars increases the need for accurate models to determine risk. The effect on hydrogen flame length was measured by varying the diameter of the spouting nozzle downstream from the chocked nozzle upstream. The results was compared with an existing model for flame length estimations. The experimental rig was setup with sensors that measured accurately temperature mass flow heat radiation and the pressure range from 0.1 to 11 MPa. The flame length was determined with an in-house developed image-processing tool which analyzed a high-speed film of the each experiment. Results show that the nozzle geometry can cause a deviation as high as 50% compared to estimated flame lengths by the model if wrong assumptions are made. Discharge coefficients for different nozzles has been calculated and presented.
Socio-economic Analysis and Quantitative Risk Assessment Methodology for Safety Design of Onboard Storage Systems
Sep 2017
Publication
Catastrophic rupture of onboard hydrogen storage in a fire is a safety concern. Different passive e.g. fireproofing materials the thermally activated pressure relief device (TPRD) and active e.g. initiation of TPRD by fire sensors safety systems are being developed to reduce hazards from and associated risks of high-pressure hydrogen storage tank rupture in a fire. The probability of such low-frequency highconsequences event is a function of fire resistance rating (FRR) i.e. the time before tank without TPRD ruptures in a fire the probability of TPRD failure etc. This safety issue is “confirmed” by observed recently cases of CNG tanks rupture due to blocked or failed to operate TPRD etc. The increase of FRR by any means decreases the probability of tank rupture in a fire particularly because of fire extinction by first responders on arrival at an accident scene.<br/>This study of socio-economic effects of safety applies a quantitative risk assessment (QRA) methodology to an example of hydrogen vehicles with passive tank protection system on roads in London.<br/>The risk is defined here through the cost of human loss per fuel cell hydrogen vehicle (FCHV) fire accident and fatality rate per FCHV per year. The first step in the methodology is the consequence analysis based on validated deterministic engineering tools to estimate the main identified hazards: overpressure in the blast wave at different distances and the thermal hazards from a fireball in the case of catastrophic tank rupture in a fire. The population can be exposed to slight injury serious injury and fatality after an accident. These effects are determined based on criteria by Health and Safety Executive (UK) and a cost metrics is applied to the number of exposed people in these three harm categories to estimate the cost per an accident. The second step in the methodology is either the frequency or the probability analysis. Probabilities of a vehicle fire and failure of the thermally activated pressure relief device are taken from published sources. A vulnerability probit function is employed to calculate the probability of emergency operations’ failure to prevent tank rupture as a function of a storage tank FRR and time of fire brigade arrival. These later results are integrated to estimate the tank rupture frequency and fatality rate. The risk is presented as a function of fire resistance rating.<br/>The QRA methodology allows to calculate the cost of human loss associated with an FCHV fire accident and demonstrates how the increase of FRR of onboard storage as a safety engineering measure would improve socio-economics of FCHV deployment and public acceptance of the technology.
Sizing and Operation of a Pure Renewable Energy Based Electric System through Hydrogen
Nov 2021
Publication
Today in order to reduce the increase of the carbon dioxide emissions a large number of renewable energy resources (RES) are already implemented. Considering both the intermittency and uncertainty of the RES the energy storage system (ESS) is still needed for balancing and stabilizing the power system. Among different existing categories of ESS the hydrogen storage systems (HSS) have the highest energy density and are crucial for the RES integration. In addition RES are located in faraway regions and are often transmitted to the terminal consumption center through HVDC (high voltage direct current) due to its lower power loss. In this paper we present a power supply system that achieves low-carbon emissions through combined HSS and HVDC technology. First the combined HSS and the HVDC model are established. Secondly the rule-based strategy for operating the HSS microgrid is presented. Then an operating strategy for a typical network i.e. the pure RES generation station-HVDC transmission-microgrids is demonstrated. Finally the best sizing capacities for all components are found by the genetic algorithm. The results prove the efficiency of the presented sizing approach for a pure RES electric system.
Estimation of Filling Time for Compressed Hydrogen Refueling
Mar 2019
Publication
In order to facilitate the application of hydrogen energy and ensure its safety the compressed hydrogen storage tank on board needs to be full of hydrogen gas within 3 minutes. Therefore to meet this requirement the effects of refueling parameters on the filling time need to be investigated urgently. For the purpose of solving this issue a novel analytical solution of filling time is obtained from a lumped parameter model in this paper. According to the equation of state for real gas and dimensionless numbers Nu and Re the function relationships between the filling time and the refueling parameters are presented. These parameters include initial temperature initial pressure inflow temperature final temperature and final pressure. These equations are used to fit the reference data the results of fitting show good agreement. Then the values of fitting parameters are further utilized so as to verify the validity of these formulas. We believe this study can contribute to control the hydrogen filling time and ensure the safety during fast filling process.
Structural Health Monitoring Techniques for Damages Detection in Hydrogen Pressure Vessels
Sep 2013
Publication
Damages due to mechanical impacts on the structural integrity of pressure vessels in composite material to store compressed hydrogen can lead to disastrous failures if they are not detected and fixed on time. A wide variety of damage modes in composites such as delamination and fiber breakage introduced by impact is difficult to be detected by conventional methods. Structural Health Monitoring (SHM) provides a system with the ability to detect and interpret adverse changes in a structure like a pressure vessel. Different types of methods will be proposed for damage detection based on comparing signals to baseline recorded from the undamaged structure. Guided wave based diagnosis method is one of the most effective used techniques due to its sensitivity to small defects. The paper pretend to identify the more adequate inspection methods to classify by smart rules based in artificial intelligence the effect of an impact on the structural integrity of the pressure vessel thus improving the level of safety.
Fatigue and Fracture of High-hardenability Steels for Thick-walled Hydrogen Pressure Vessels
Sep 2017
Publication
Stationary pressure vessels for the storage of large volumes of gaseous hydrogen at high pressure (>70 MPa) are typically manufactured from Cr-Mo steels. These steels display hydrogen-enhanced fatigue crack growth but pressure vessels can be manufactured using defect-tolerant design methodologies. However storage volumes are limited by the wall thickness that can be reliably manufactured for quench and tempered Cr-Mo steels typically not more than 25-35 mm. High-hardenability steels can be manufactured with thicker walls which enables larger diameter pressure vessels and larger storage volumes. The goal of this study is to assess the fracture and fatigue response of high hardenability Ni-Cr-Mo pressure vessel steels for use in high-pressure hydrogen service at pressure in excess of 1000 bar. Standardized fatigue crack growth tests were performed in gaseous hydrogen at frequency of 1Hz and for R-ratios in the range of 0.1 to 0.7. Elastic-plastic fracture toughness measurements were also performed. The measured fatigue and fracture behavior is placed into the context of previous studies on fatigue and fracture of Cr-Mo steels for gaseous hydrogen.
Hydrogen Energy
Feb 2007
Publication
The problem of anthropogenically driven climate change and its inextricable link to our global society’s present and future energy needs are arguably the greatest challenge facing our planet. Hydrogen is now widely regarded as one key element of a potential energy solution for the twenty-first century capable of assisting in issues of environmental emissions sustainability and energy security. Hydrogen has the potential to provide for energy in transportation distributed heat and power generation and energy storage systems with little or no impact on the environment both locally and globally. However any transition from a carbon-based (fossil fuel) energy system to a hydrogen-based economy involves significant scientific technological and socio-economic barriers. This brief report aims to outline the basis of the growing worldwide interest in hydrogen energy and examines some of the important issues relating to the future development of hydrogen as an energy vector.
Link to document download on Royal Society Website
Link to document download on Royal Society Website
Non-monotonic Overpressure vs. H2 Concentration Behaviour During Vented Deflagration. Experimental Results
Oct 2015
Publication
Explosion relief panels or doors are often used in industrial buildings to reduce damages caused by gas explosions. Decades of research have contributed to the understanding of the phenomena involved in gas explosions in order to establish an effective method to predict reliably the explosion overpressure. All the methods predict a monotonic increase of the overpressure with the concentration of the gas in the range from the lower explosion limit to the stoichiometric one. Nevertheless in few cases a non-monotonic behaviour of the maximum developed pressure as a function of hydrogen concentration was reported in the literature. The non-monotonic behaviour was also observed during experimental tests performed at the Scalbatraio laboratory at the University of Pisa in a 25 m3 vented combustion test facility with a vent area of 112 m2. This paper presents the results obtained during the tests and investigates the possible explanations of the phenomena.
Safety Concept of a self-sustaining PEM Hydrogen Electrolyzer System
Sep 2013
Publication
Sustainable electricity generation is gaining importance across the globe against the backdrop of ever- diminishing resources and to achieve significant reductions in CO2 emissions. One of the challenges is storing excess energy generated from wind and solar power. Siemens developed an electrolysis system based on proton exchange membrane (PEM) technology enabling large volumes of energy to be stored through the conversion of electrical energy into hydrogen. In developing this new product range Siemens worked intensively on safe operation with a special focus on safety measures (primary secondary and tertiary). Indeed hydrogen is not only a rapidly diffusing gas with a wide range of flammability but frequent lack of information leads to insecurity among the public. Siemens PEM water electrolyzer operates at a working pressure of 50 bar / 5 MPa. The current product generation is being used for demonstration purposes and fits into a 30 ft. / 9.14 m container. Further industrialized product lines up to double-digit medium voltage ranges will be available on the market short- and mid-term. The system is designed to operate self-sustaining. Therefore special features such as back-up and fail-safe mode supported by remote monitoring and access have been implemented. This paper includes Siemens' approach to develop and implement a safety concept for the PEM water electrolyzer leading into the approval and certification by a Notified Body as well as the lessons learnt from test stand and field experience in this new application field
Ignition of Hydrogen-air Mixtures by Moving Heated Particles
Oct 2015
Publication
Studying thermal ignition mechanisms is a key step for evaluating many ignition hazards. In the present work two-dimensional simulations with detailed chemistry are used to study the reaction pathways of the transient flow and ignition of a stoichiometric hydrogen-air mixture by moving hot spheres. For temperatures above the ignition threshold ignition takes place after a short time between the front stagnation point and separation location depending upon the sphere's surface temperature. Closer to the threshold the volume of gas adjacent to the separation region ignites homogeneously after a longer time. These results demonstrate the importance of boundary layer development and flow separation in the ignition process.
Discussion of Lessons Learned from a Hydrogen Release
Sep 2013
Publication
Just in line with any emerging alternative transportation fuel incidents involving hydrogen used as transportation fuel are learning opportunities for this new and growing industry. This paper includes discussion of many topics in hydrogen safety surrounding the installation operation and maintenance of commercial hydrogen stations or compression storage and dispensing systems.
Vented Hydrogen-air Deflagration in a Small Enclosed Volume
Sep 2013
Publication
Since the rapid development of hydrogen stationary and vehicle fuel cells the last decade it is of importance to improve the prediction of overpressure generated during an accidental explosion which could occur in a confined part of the system. To this end small-scale vented hydrogen–air explosions were performed in a transparent cubic enclosure with a volume of 3375 cm3. The flame propagation was followed with a high speed camera and the overpressure inside the enclosure was recorded using high frequency piezoelectric transmitters. The effects of vent area and ignition location on the amplitude of pressure peaks in the enclosed volume were investigated. Indeed vented deflagration generates several pressures peaks according to the configuration and each peak can be the dominating pressure. The parametric study concerned three ignition locations and five square vent sizes.
No more items...