Publications
Electrosynthesized Ni-P Nanospheres with High Activity and Selectivity Towards Photoelectrochemical Plastics Reforming
May 2021
Publication
Photoelectrochemical reforming of plastic waste offers an environmentally-benign and sustainable route for hydrogen generation. Nonetheless little attention was paid to develop electrocatalysts that can efficiently and selectively catalyze oxidative transformation of valueless plastic wastes into valued chemicals. Herein we report on facile electrosynthesis of nickel-phosphorus nanospheres (nanoNi-P) and their versatility in catalyzing hydrogen generation water oxidation and reforming of polyethylene terephthalate (PET). Notably composite of nanoNi-P with carbon nanotubes (CNT/nanoNi-P) requires −180 mV overpotential to drive hydrogen generation at -100 mA cm−2. Besides CV-activated nanoNi-P (nanoNi-P(CV)) was shown to be capable of reforming PET into formate with high selectivity (Faradic efficiency= ∼100 %). Efficient and selective generation of hydrogen and formate from PET reforming is realized utilizing an Earth-abundant photoelectrochemical platform based on nanoNi-P(CV)-modified TiO2 nanorods photoanode and CNT/nanoNi-P cathode. This work paves a path for developing artificial leaf for simultaneous environmental mitigation and photosynthesis of renewable fuels and valued chemicals.
Raw Biomass Electroreforming Coupled to Green Hydrogen Generation
Mar 2021
Publication
Despite the tremendous progress of coupling organic electrooxidation with hydrogen generation in a hybrid electrolysis electroreforming of raw biomass coupled to green hydrogen generation has not been reported yet due to the rigid polymeric structures of raw biomass. Herein we electrooxidize the most abundant natural amino biopolymer chitin to acetate with over 90% yield in hybrid electrolysis. The overall energy consumption of electrolysis can be reduced by 15% due to the thermodynamically and kinetically more favorable chitin oxidation over water oxidation. In obvious contrast to small organics as the anodic reactant the abundance of chitin endows the new oxidation reaction excellent scalability. A solar-driven electroreforming of chitin and chitin-containing shrimp shell waste is coupled to safe green hydrogen production thanks to the liquid anodic product and suppression of oxygen evolution. Our work thus demonstrates a scalable and safe process for resource upcycling and green hydrogen production for a sustainable energy future.
Volumetric Analysis Technique for Analyzing the Transport Properties of Hydrogen Gas in Cylindrical-shaped Rubbery Polymers
Mar 2021
Publication
We report volumetric analysis techniques to analyze the transport properties of hydrogen dissolved in cylindrical-shaped polymers. The techniques utilize the volume measurement of the released hydrogen from rubber by gas collection in a graduated cylinder after charging sample with high-pressure hydrogen and subsequent decompression. We further improve the graduated cylinder with some modifications such as reading the electrical capacitance of the water level using electrodes and changing the sample loading position. From the measurement results the uptake (C∞) diffusion coefficient (D) and solubility (S) of hydrogen are quantified with an upgraded diffusion analysis program. These methods are applied to three cylindrical rubbers. Dual adsorption behaviors with increasing pressure are observed for all the samples. C∞ follows Henry’s law up to ~15 MPa whereas Langmuir model applies up to 90 MPa. D shows Knudsen and bulk diffusion behavior below and above pressure respectively. A COMSOL simulation is compared with experimental observations.
Synthesizing the High Surface Area g-C3N4 for Greatly Enhanced Hydrogen Production
Jul 2021
Publication
Adjusting the structure of g-C3N4 to significantly enhance its photocatalytic activity has attracted considerable attention. Herein a novel sponge-like g-C3N4 with a porous structure is prepared from the annealing of protonated melamine under N2/H2 atmosphere (PH-CN). Compared to bulk g-C3N4 via calcination of melamine under ambient atmosphere (B-CN) PH-CN displays thinner nanosheets and a higher surface area (150.1 m2/g) which is a benefit for shortening the diffusion distance of photoinduced carriers providing more active sites and finally favoring the enhancement of the photocatalytic activity. Moreover it can be clearly observed from the UV-vis spectrum that PH-CN displays better performance for harvesting light compared to B-CN. Additionally the PH-CN is prepared with a larger band gap of 2.88 eV with the Fermi level and conduction band potential increased and valence band potential decreased which could promote the water redox reaction. The application experiment results show that the hydrogen evolution rate on PH-CN was nearly 10 times higher than that of B-CN which was roughly 4104 μmol h−1 g−1. The method shown in this work provides an effective approach to adjust the structure of g-C3N4with considerable photocatalytic hydrogen evolution activity.
Hydrous Hydrazine Decomposition for Hydrogen Production Using of Ir/CeO2: Effect of Reaction Parameters on the Activity
May 2021
Publication
In the present work an Ir/CeO2 catalyst was prepared by the deposition–precipitation method and tested in the decomposition of hydrazine hydrate to hydrogen which is very important in the development of hydrogen storage materials for fuel cells. The catalyst was characterised using different techniques i.e. X-ray photoelectron spectroscopy (XPS) transmission electron microscopy (TEM) scanning electron microscopy (SEM) equipped with X-ray detector (EDX) and inductively coupled plasma—mass spectroscopy (ICP-MS). The effect of reaction conditions on the activity and selectivity of the material was evaluated in this study modifying parameters such as temperature the mass of the catalyst stirring speed and concentration of base in order to find the optimal conditions of reaction which allow performing the test in a kinetically limited regime.
The Future of Gas Infrastructure Remuneration in Spain
Oct 2019
Publication
The European Union (EU) has adopted ambitious decarbonization targets for 2050.
Renewable electricity and electrification are the key drivers but are not sufficient on their own to meet the targets. A number of countries expect decarbonized gas (e.g. renewable hydrogen and biomethane) to be part of a future decarbonized energy system.
Within that context this paper examines proposals recently issued by Spain’s energy regulator (CNMC) to define the methodology for remunerating gas distribution and transmission networks and LNG regasification terminals. Their proposals would reduce significantly the remuneration of these activities. Bearing in mind the objective of decarbonization this paper analyzes key features of the proposals and concludes with recommendations. We suggest:
Link to document on OIES website
Renewable electricity and electrification are the key drivers but are not sufficient on their own to meet the targets. A number of countries expect decarbonized gas (e.g. renewable hydrogen and biomethane) to be part of a future decarbonized energy system.
Within that context this paper examines proposals recently issued by Spain’s energy regulator (CNMC) to define the methodology for remunerating gas distribution and transmission networks and LNG regasification terminals. Their proposals would reduce significantly the remuneration of these activities. Bearing in mind the objective of decarbonization this paper analyzes key features of the proposals and concludes with recommendations. We suggest:
- Adoption of a common methodology for remunerating new investment in gas and electricity infrastructure assets. The Regulatory Asset Base (RAB) approach is a suitable methodology especially for high-risk investment to integrate hydrogen.
- CNMC reconsideration of its proposals for existing assets. The aim should be to ensure that even if remuneration is reduced to some extent investors will still be compensated adequately and that the companies will continue to support the investments needed to digitalize processes deliver natural gas and eventually deliver renewable gas where it is economic to do so. This is an important signal for current and future investors whose investments will be regulated by the CNMC.
- Clarification of the methodology for remunerating renewable gas facilities. If renewable gas (especially hydrogen) requires access to regulated gas networks the CNMC methodology must provide suitable incentives to invest in network expansion and upgrading as required as well as to maintain natural gas operations. Even if no decision is made in the short-term regarding hydrogen it would be prudent to leave the door open by making the regulation compatible with future decisions involving hydrogen development.
- Consideration of potentially stranded assets. The CNMC and the Government should coordinate over the remuneration of infrastructure assets when national policy decisions may lead to the stranding of these assets.
- Decarbonization of the energy system as a whole. The CNMC and the Government should consider how best to promote the decarbonization of the energy system as a whole rather than its individual parts and what role is to be played by regulated networks and by unregulated initiatives in competitive markets especially for the development of hydrogen systems.
Link to document on OIES website
Review of the Durability of Polymer Electrolyte Membrane Fuel Cell in Long-Term Operation: Main Influencing Parameters and Testing Protocols
Jul 2021
Publication
Durability is the most pressing issue preventing the efficient commercialization of polymer electrolyte membrane fuel cell (PEMFC) stationary and transportation applications. A big barrier to overcoming the durability limitations is gaining a better understanding of failure modes for user profiles. In addition durability test protocols for determining the lifetime of PEMFCs are important factors in the development of the technology. These methods are designed to gather enough data about the cell/stack to understand its efficiency and durability without causing it to fail. They also provide some indication of the cell/stack’s age in terms of changes in performance over time. Based on a study of the literature the fundamental factors influencing PEMFC long-term durability and the durability test protocols for both PEMFC stationary and transportation applications were discussed and outlined in depth in this review. This brief analysis should provide engineers and researchers with a fast overview as well as a useful toolbox for investigating PEMFC durability issues.
Combined Cooling and Power Management Strategy for a Standalone House Using Hydrogen and Solar Energy
May 2021
Publication
Tropical climate is characterized by hot temperatures throughout the year. In areas subject to this climate air conditioning represents an important share of total energy consumption. In some tropical islands there is no electric grid; in these cases electricity is often provided by diesel generators. In this study in order to decarbonize electricity and cooling production and to improve autonomy in a standalone application a microgrid producing combined cooling and electrical power was proposed. The presented system was composed of photovoltaic panels a battery an electrolyzer a hydrogen tank a fuel cell power converters a heat pump electrical loads and an adsorption cooling system. Electricity production and storage were provided by photovoltaic panels and a hydrogen storage system respectively while cooling production and storage were achieved using a heat pump and an adsorption cooling system respectively. The standalone application presented was a single house located in Tahiti French Polynesia. In this paper the system as a whole is presented. Then the interaction between each element is described and a model of the system is presented. Thirdly the energy and power management required in order to meet electrical and thermal needs are presented. Then the results of the control strategy are presented. The results showed that the adsorption cooling system provided 53% of the cooling demand. The use of the adsorption cooling system reduced the needed photovoltaic panel area the use of the electrolyzer and the use of the fuel cell by more than 60% and reduced energy losses by 7% (compared to a classic heat pump) for air conditioning.
In Situ Neutron Radiography Investigations of Hydrogen Related Processes in Zirconium Alloys
Jun 2021
Publication
In situ neutron radiography experiments can provide information about diffusive processes and the kinetics of chemical reactions. The paper discusses requirements for such investigations. As examples of the zirconium alloy Zircaloy-4 the hydrogen diffusion the hydrogen uptake during high-temperature oxidation in steam and the reaction in nitrogen/steam and air/steam atmospheres results of in situ neutron radiography investigations are reviewed and their benefit is discussed.
Evaluation of Safety Measures of a Hydrogen Fueling Station Using Physical Modeling
Oct 2018
Publication
Hydrogen fueling stations are essential for operating fuel cell vehicles. If multiple safety measures in a hydrogen fueling station fail simultaneously it could lead to severe consequences. To analyze the risk of such a situation we developed a physical model of a hydrogen fueling station which when using the temperature pressure and flow rate of hydrogen could be simulated under normal and abnormal operating states. The physical model was validated by comparing the analytical results with the experimental results of an actual hydrogen fueling station. By combining the physical model with a statistical method we evaluated the significance of the safety measures in the event wherein multiple safety measures fail simultaneously. We determined the combinations of failures of safety measures that could lead to accidents and suggested a measure for preventing and mitigating the accident scenario.
Hydrogen-Rich Gas Production from Two-Stage Catalytic Pyrolysis of Pine Sawdust with Nano-NiO/Al2O3 Catalyst
Feb 2022
Publication
Hydrogen production from biomass pyrolysis is economically and technologically attractive from the perspectives of energy and the environment. The two-stage catalytic pyrolysis of pine sawdust for hydrogen-rich gas production is investigated using nano-NiO/Al2O3 as the catalyst at high temperatures. The influences of residence time (0–30 s) and catalytic temperature (500–800 ◦C) on pyrolysis performance are examined in the distribution of pyrolysis products gas composition and gas properties. The results show that increasing the residence time decreased the solid and liquid products but increased gas products. Longer residence times could promote tar cracking and gas-phase conversion reactions and improve the syngas yield H2/CO ratio and carbon conversion. The nano-NiO/A12O3 exhibits excellent catalytic activity for tar removal with a tar conversion rate of 93% at 800 ◦C. The high catalytic temperature could significantly improve H2 and CO yields by enhancing the decomposition of tar and gas-phase reactions between CO2 and CH4 . The increasing catalytic temperature increases the dry gas yield and carbon conversion but decreases the H2/CO ratio and low heating value.
Hydrogen Dispersion and Ventilation Effects in Enclosures under Different Release Conditions
Apr 2021
Publication
Hydrogen is an explosive gas which could create extremely hazardous conditions when released into an enclosure. Full-scale experiments of hydrogen release and dispersion in the confined space were conducted. The experiments were performed for hydrogen release outflow of 63 × 10−3 m3/s through a single nozzle and multi-point release way optionally. It was found that the hydrogen dispersion in an enclosure strongly depends on the gas release way. Significantly higher hydrogen stratification is observed in a single nozzle release than in the case of the multi-point release when the gas concentration becomes more uniform in the entire enclosure volume. The experimental results were confirmed on the basis of Froud number analysis. The CFD simulations realized with the FDS code by NIST allowed visualization of the experimental hydrogen dispersion phenomenon and confirmed that the varied distribution of hydrogen did not affect the effectiveness of the accidental mechanical ventilation system applied in the tested room.
Technology Investment Roadmap First Low Emissions Technology Statement – 2020 Global Leadership in Low Emissions Technologies
Sep 2020
Publication
Australia’s Technology Investment Roadmap is a strategy to accelerate development and commercialisation of low emissions technologies.
Annual low emissions statements are key milestones of the roadmap process. These statements prioritise low emissions technologies with potential to deliver the strongest economic and emissions reduction outcomes for Australia. They focus government investment on new and emerging technologies.
In this Statement
The first Low Emissions Technology Statement presents a vision of a prosperous Australia recognised as a global low emissions technology leader
Annual low emissions statements are key milestones of the roadmap process. These statements prioritise low emissions technologies with potential to deliver the strongest economic and emissions reduction outcomes for Australia. They focus government investment on new and emerging technologies.
In this Statement
The first Low Emissions Technology Statement presents a vision of a prosperous Australia recognised as a global low emissions technology leader
- priority technologies and economic stretch goals
- Australia’s big technology challenges and opportunities
- Technology Investment Framework
- monitoring transparency and impact evaluation
Synergistic Hybrid Marine Renewable Energy Harvest System
Mar 2024
Publication
This paper proposes a novel hybrid marine renewable energy-harvesting system to increase energy production reduce levelized costs of energy and promote renewable marine energy. Firstly various marine renewable energy resources and state-of-art technologies for energy exploitation and storage were reviewed. The site selection criteria for each energy-harvesting approach were identified and a scoring matrix for site selection was proposed to screen suitable locations for the hybrid system. The Triton Knoll wind farm was used to demonstrate the effectiveness of the scoring matrix. An integrated energy system was designed and FE modeling was performed to assess the effects of additional energy devices on the structural stability of the main wind turbine structure. It has been proven that the additional energy structures have a negligible influence on foundation/structure deflection.
Critical Review of Models for H2-permeation Through Polymers with Focus on the Differential Pressure Method
May 2021
Publication
To reduce loss of hydrogen in storage vessels with high energy-to-weight-ratio new materials especially polymers have to be developed as barrier materials. Very established methods for characterization of barrier materials with permeation measurements are the time-lag and flow rate method along with the differential pressure method which resembles the nature of hydrogen vessel systems very well. Long measurement durations are necessary to gain suitable measurement data for these evaluation methods and often restrictive conditions have to be fulfilled. For these reasons common models for hydrogen permeation through single-layer and multi-layer membranes as well as models for hydrogen gas properties were collected and reviewed. Using current computer power together with these models can reduce measurement time for characterization of the barrier properties of materials while additional information about the quality of the measurement results is obtained.
A Review of Decarbonization Options for the Glass Industry
May 2021
Publication
The glass industry is part of the energy-intensive industry posing a major challenge to fulfill the CO2 reduction targets of the Paris Climate Agreement. The segments of the glass industry e.g. container or flat glass are quite diverse and attribute to different glass products with different requirements to product quality and various process options. To address the challenge of decarbonizing the glass industry firstly an inventory of current glass products processes and applied technologies in terms of energy efficiency and CO2 emissions is conducted. Secondly decarbonization options are identified and structured according to fuel substitution waste heat recovery and process intensification. Due to the high share of energy-related CO2 emissions electrical melting and hydrogen combustion or a combination of both are the most promising options to decarbonize the glass industry but further research design adjustments and process improvements are necessary. Furthermore electricity and hydrogen prices have to decrease or fossil fuels must become more expensive to be cost-competitive relative to fossil fuels and respective infrastructures have to be constructed or adjusted. Various heat recovery options have great potential for CO2 savings but can be technically challenging or have not yet been considered for techno-economic reasons.
The Role of Electrofuels under Uncertainties for the Belgian Energy Transition
Jul 2021
Publication
Wind and solar energies present a time and space disparity that generally leads to a mismatch between the demand and the supply. To harvest their maximum potentials one of the main challenges is the storage and transport of these energies. This challenge can be tackled by electrofuels such as hydrogen methane and methanol. They offer three main advantages: compatibility with existing distribution networks or technologies of conversion economical storage solution for high capacity and ability to couple sectors (i.e. electricity to transport to heat or to industry). However the level of contribution of electric-energy carriers is unknown. To assess their role in the future we used whole-energy system modelling (EnergyScope Typical Days) to study the case of Belgium in 2050. This model is multi-energy and multi-sector. It optimises the design of the overall system to minimise its costs and emissions. Such a model relies on many parameters (e.g. price of natural gas efficiency of heat pump) to represent as closely as possible the future energy system. However these parameters can be highly uncertain especially for long-term planning. Consequently this work uses the polynomial chaos expansion method to integrate a global sensitivity analysis in order to highlight the influence of the parameters on the total cost of the system. The outcome of this analysis points out that compared to the deterministic cost-optimum situation the system cost accounting for uncertainties becomes higher (+17%) and twice more uncertain at carbon neutrality and that electrofuels are a major contribution to the uncertainty (up to 53% in the variation of the costs) due to their importance in the energy system and their high uncertainties their higher price and uncertainty.
Hy4Heat Safety Assessment: Conclusions Report (Incorporating Quantitative Risk Assessment) - Work Package 7
May 2021
Publication
The Hy4Heat Safety Assessment has focused on assessing the safe use of hydrogen gas in certain types of domestic properties and buildings. The summary reports (the Precis and the Safety Assessment Conclusions Report) bring together all the findings of the work and should be looked to for context by all readers. The technical reports should be read in conjunction with the summary reports. While the summary reports are made as accessible as possible for general readers the technical reports may be most accessible for readers with a degree of technical subject matter understanding. All of the safety assessment reports have now been reviewed by the HSE.<br/><br/>A comparative risk assessment of natural gas versus hydrogen gas including a quantitative risk assessment; and identification of control measures to reduce risk and manage hydrogen gas safety for a community demonstration.
EUA- Bringing Hydrogen Alive
Apr 2021
Publication
The UK is on course to become a global leader in hydrogen technology. Over £3bn is ready to be invested into hydrogen today. The pace of activity is rapid and the opportunities are vast.
Join us at our free to attend event where you will gain unique insights into how the Hydrogen industry is progressing together with exclusive access to future plans.
The dynamic and lively session will demonstrate the viability of hydrogen as a key component to achieve Net Zero.
Confirmed contributors include:
Join us at our free to attend event where you will gain unique insights into how the Hydrogen industry is progressing together with exclusive access to future plans.
The dynamic and lively session will demonstrate the viability of hydrogen as a key component to achieve Net Zero.
Confirmed contributors include:
- National Grid Gas Transmission
- Cadent
- Chris Train Previous CEO Cadent
- DNV
- Worcester Bosch
- ITM Power
- Northern Gas Networks
- Decarbonising Heat in Buildings - New Research Findings from the Gas Distribution Networks
Transportation in a 100% Renewable Energy System
Jan 2018
Publication
A 100% renewable economy would give a lasting solution to the challenges raised by climate change energy security sustainability and pollution. The conversion of the present transport system appears to be one of the most difficult aspects of such renewable transition. This study reviews the technologies and systems that are being proposed or proven as alternative to fossil-fuel based transportation and their prospects for their entry into the post-carbon era from both technological and energetic viewpoints. The energetic cost of the transition from the current transportation system into global 100% renewable transportation is estimated as well as the electrical energy required for the operation of the new renewable transportation sector. A 100% renewable transport providing the same service as global transport in 2014 would demand about 18% less energy. The main reduction is expected in road transport (69%) but the shipping and air sectors would notably increase their consumptions: 163% and 149% respectively. The analysis concludes that a 100% renewable transportation is feasible but not necessarily compatible with indefinite increase of resources consumption. The major material and energy limitations and obstacles of each transport sector for this transition are shown.
Performance Analysis of Hydrogen Fuel Cell with Two-stage Turbo Compressor for Automotive Applications
May 2021
Publication
This paper discusses the numerical modeling of an automobile fuel cell system using a two-stage turbo-compressor for air supply. The numerical model incorporates essential input parameters for air and hydrogen flow. The model also performed mass and energy balances across different components such as pump fan heat-exchanger air compressor and keeps in consideration the pressure losses across flow pipes and various mechanical parts. The compressor design process initiates with numerical analysis of the preliminary design of a highly efficient two-stage turbo compressor with an expander as a single-stage compressor has several limitations in terms of efficiency and pressure ratio. The compressor’s design parameters were carefully studied and analyzed with respect to the highly efficient fuel cell stack (FCS) used in modern hydrogen vehicles. The model is solved to evaluate the overall performance of PEM FCS. The final compressor has a total pressure and temperature of 4.2 bar and 149.3°C whereas the required power is 20.08kW with 3.18kW power losses and having a combined efficiency of 70.8%. According to the FC model with and without expander the net-power outputs are 98.15kW and 88.27kW respectively and the maximum efficiencies are 65.1% and 59.1% respectively. Therefore it can be concluded that a two-stage turbo compressor with a turbo-expander can have significant effects on overall system power and efficiency. The model can be used to predict and optimize system performance for PEM FCS at different operating conditions.
Effect of Hydrogen Addition on the Energetic and Ecologic Parameters of an SI Engine Fueled by Biogas
Jan 2021
Publication
The global policy solution seeks to reduce the usage of fossil fuels and greenhouse gas (GHG) emissions and biogas (BG) represents a solutions to these problems. The use of biogas could help cope with increased amounts of waste and reduce usage of fossil fuels. Biogas could be used in compressed natural gas (CNG) engines but the engine electronic control unit (ECU) needs to be modified. In this research a spark ignition (SI) engine was tested for mixtures of biogas and hydrogen (volumetric hydrogen concentration of 0 14 24 33 and 43%). In all experiments two cases of spark timing (ST) were used: the first for an optimal mixture and the second for CNG. The results show that hydrogen increases combustion quality and reduces incomplete combustion products. Because of BG’s lower burning speed the advanced ST increased brake thermal efficiency (BTE) by 4.3% when the engine was running on biogas. Adding 14 vol% of hydrogen (H2 ) increases the burning speed of the mixture and enhances BTE by 2.6% at spark timing optimal for CNG (CNG ST) and 0.6% at the optimal mixture ST (mixture ST). Analyses of the rate of heat release (ROHR) temperature and pressure increase in the cylinder were carried out using utility BURN in AVL BOOST software.
Hydrothermal Synthesis of Iridium-Substituted NaTaO3 Perovskites
Jun 2021
Publication
Iridium-containing NaTaO3 is produced using a one-step hydrothermal crystallisation from Ta2O5 and IrCl3 in an aqueous solution of 10 M NaOH in 40 vol% H2O2 heated at 240 °C. Although a nominal replacement of 50% of Ta by Ir was attempted the amount of Ir included in the perovskite oxide was only up to 15 mol%. The materials are formed as crystalline powders comprising cube-shaped crystallites around 100 nm in edge length as seen by scanning transmission electron microscopy. Energy dispersive X-ray mapping shows an even dispersion of Ir through the crystallites. Profile fitting of powder X-ray diffraction (XRD) shows expanded unit cell volumes (orthorhombic space group Pbnm) compared to the parent NaTaO3 while XANES spectroscopy at the Ir LIII-edge reveals that the highest Ir-content materials contain Ir4+. The inclusion of Ir4+ into the perovskite by replacement of Ta5+ implies the presence of charge-balancing defects and upon heat treatment the iridium is extruded from the perovskite at around 600 °C in air with the presence of metallic iridium seen by in situ powder XRD. The highest Ir-content material was loaded with Pt and examined for photocatalytic evolution of H2 from aqueous methanol. Compared to the parent NaTaO3 the Ir-substituted material shows a more than ten-fold enhancement of hydrogen yield with a significant proportion ascribed to visible light absorption.
Analysis of Photon-driven Solar-to-hydrogen Production Methods in the Netherlands
Oct 2021
Publication
Hydrogen is deemed necessary for the realization of a sustainable society especially when renewable energy is used to generate hydrogen. As most of the photon-driven hydrogen production methods are not commercially available yet this study has investigated the techno economic and overall performance of four different solar-to hydrogen methods and photovoltaics-based electrolysis methods in the Netherlands. It was found that the photovoltaics-based electrolysis is the cheapest option with production cost of 9.31 $/kgH2. Production cost based on photo-catalytic water splitting direct bio-photolysis and photoelectrochemical water splitting are found to be 18.32 $/kgH2 18.45 $/kgH2 and 18.98 $/kgH2 respectively. These costs are expected to drop significantly in the future. Direct bio-photolysis (potential cost of 3.10 $/kgH2) and photo-catalytic water splitting (3.12 $/kgH2) may become cheaper than photovoltaics-based electrolysis. Based on preferences of three fictional technology investors i.e. a short-term a green and a visionary investor the overall performance of these methods are determined. Photovoltaics-based electrolysis is the most ideal option with photoelectrochemical water splitting a complementary option. While photovoltaics-based electrolysis has an advantage on the short-term because it is a non-integrated energy system on the long-term this might lead to relatively higher cost and performance limitations. Photochemical water splitting are integrated energy systems and have an advantage on the long-term because they need a relatively low theoretical overpotential and benefit from increasing temperatures. Both methods show performance improvements by the use of quantum dots. Bio-photolysis can be self-sustaining and can use wastewater to produce hydrogen but sudden temperature changes could lead to performance decrease.
Comprehensive Performance Evaluation of Densified Liquid Hydrogen/Liquid Oxygen as Propulsion Fuel
Jan 2022
Publication
Densified liquid hydrogen/liquid oxygen is a promising propulsion fuel in the future. In order to systematically demonstrate the benefits and challenges of densified liquid hydrogen/liquid oxygen a transient thermodynamical model considering the heat leakage temperature rise engine thrust pressurization pressure of the tank and wall thickness of tank is developed in the present paper and the performance of densified liquid hydrogen/liquid oxygen as propulsion fuel is further evaluated in actual application. For liquid hydrogen/liquid oxygen tanks at different structural dimensions the effects of many factors such as temperature rise during propellant ground parking lift of engine thrust mass reduction of the tank structure and extension of spacecraft in‐orbit time are analyzed to demonstrate the comprehensive performance of liquid hydrogen/liquid oxygen after densification. Meanwhile the problem of subcooling combination matching of liquid hydro‐ gen/liquid oxygen is proposed for the first time. Combining the fuel consumption and engine thrust lifting the subcooling combination matching of liquid hydrogen/liquid oxygen at different mixing ratios and constant mixing ratios are discussed respectively. The results show that the relative engine thrust enhances by 6.96% compared with the normal boiling point state in the condition of slush hydrogen with 50% solid content and enough liquid oxygen. The in‐orbit time of spacecraft can extend about 2–6.5 days and 24–95 days for slush hydrogen with 50% solid content and liquid oxygen in the triple point state in different cryogenic tanks respectively. Due to temperature rise during parking the existing adiabatic storage scheme and filling scheme for densification LH2 need to be redesigned and for densification LO2 are suitable. It is found that there is an optimal subcooling matching relation after densification of liquid hydrogen/liquid oxygen as propulsion fuel. In other words the subcooling temperature of liquid hydrogen/liquid oxygen is not the lower the bet‐ ter but the matching relationship between LH2 subcooling degree and LO2 subcooling degree needs to be considered at the same time. It is necessary that the LO2 was cooled to 69.2 K and 54.5 K when the LH2 of 13.9 K and SH2 with 45% was adopted respectively. This research provides theoretical support for the promotion and application of densification cryogenic propellants.
Navigating Algeria Towards a Sustainable Green Hydrogen Future to Empower North Africa and Europe's Clean Hydrogen Transition
Mar 2024
Publication
Algeria richly-endowed with renewable resources is well-positioned to become a vital green hydrogen provider to Europe. Aiming to aid policymakers stakeholders and energy sector participants this study embodies the first effort in literature to investigate the viability and cost-effectiveness of implementing green hydrogen production projects destined for exports to Europe via existing pipelines. A land suitability analysis utilizing multi-criteria decision making (MCDM) coupled with geographical information system (GIS) identified that over 43.55% of Algeria is highly-suitable for hydrogen production. Five optimal locations were investigated utilizing Hybrid Optimization of Multiple Electric Renewables (HOMER) with solar-hydrogen proving the most cost-effective option. Wind-based production offering higher output volumes reaching 968 kg/h requires turbine cost reductions of 17.50% (Ain Salah) to 54.50% (Djanet) to achieve a competitive levelized cost of hydrogen (LCOH) of $3.85/kg with PV systems. A techno-economic sensitivity analysis was conducted identifying Djanet as the most promising location for a 100 MW solar-hydrogen plant with a competitive LCOH ranging from $1.96/kg to $4.85/kg.
Converting Sewage Water into H2 Fuel Gas Using Cu/CuO Nanoporous Photocatalytic Electrodes
Feb 2022
Publication
This work reports on H2 fuel generation from sewage water using Cu/CuO nanoporous (NP) electrodes. This is a novel concept for converting contaminated water into H2 fuel. The preparation of Cu/CuO NP was achieved using a simple thermal combustion process of Cu metallic foil at 550 ◦C for 1 h. The Cu/CuO surface consists of island-like structures with an inter-distance of 100 nm. Each island has a highly porous surface with a pore diameter of about 250 nm. X-ray diffraction (XRD) confirmed the formation of monoclinic Cu/CuO NP material with a crystallite size of 89 nm. The prepared Cu/CuO photoelectrode was applied for H2 generation from sewage water achieving an incident to photon conversion efficiency (IPCE) of 14.6%. Further the effects of light intensity and wavelength on the photoelectrode performance were assessed. The current density (Jph) value increased from 2.17 to 4.7 mA·cm−2 upon raising the light power density from 50 to 100 mW·cm−2 . Moreover the enthalpy (∆H*) and entropy (∆S*) values of Cu/CuO electrode were determined as 9.519 KJ mol−1 and 180.4 JK−1 ·mol−1 respectively. The results obtained in the present study are very promising for solving the problem of energy in far regions by converting sewage water to H2 fuel.
A Preliminary Energy Analysis of a Commercial CHP Fueled with H2NG Blends Chemically Supercharged by Renewable Hydrogen and Oxygen
Dec 2016
Publication
Currently Power-to-Gas technologies are considered viable solutions to face the onset problems associated with renewable capacity firming. Indeed carbon-free hydrogen production converting renewable electricity excess and its injection into natural gas pipelines is considered a short- to medium-term solution. In this way the so-called H2NG blends can be fired within internal combustion engines and micro gas turbines operating in CHP mode offering better environmental-energy performances in machines. As regards the distributed energy generation scenario the local H2 production by means of electrolysis for methane enrichment will be more cost-effective if the oxygen is fruitfully used instead of venting it out like a by-product as usually occurs. This study focuses on the usefulness of using that oxygen to enrich the air-fuel mixture of an internal combustion engine for micro-CHP applications once it has been fuelled with H2NG blends. Thus the main aim of this paper is to provide a set of values for benchmarking in which H2NG blends ranging in 0%-15% vol. burn within an ICE in partial oxy-fuel conditions. In particular a preliminary energy analysis was carried out based on experimental data reporting the engine operating parameters gains and losses in both electrical and heat recovery efficiency. The oxygen content in the air varies up to 22% vol. A Volkswagen Blue Tender CHP commercial version (19.8 kWel. of rated electrical power output) was considered as the reference machine and its energy characterization was reported when it operated under those unconventional conditions.
Recent Advances in Carbon Dioxide Conversion: A Circular Bioeconomy Perspective
Jun 2021
Publication
Managing the concentration of atmospheric CO2 requires a multifaceted engineering strategy which remains a highly challenging task. Reducing atmospheric CO2 (CO2R) by converting it to value-added chemicals in a carbon neutral footprint manner must be the ultimate goal. The latest progress in CO2R through either abiotic (artificial catalysts) or biotic (natural enzymes) processes is reviewed herein. Abiotic CO2R can be conducted in the aqueous phase that usually leads to the formation of a mixture of CO formic acid and hydrogen. By contrast a wide spectrum of hydrocarbon species is often observed by abiotic CO2R in the gaseous phase. On the other hand biotic CO2R is often conducted in the aqueous phase and a wide spectrum of value-added chemicals are obtained. Key to the success of the abiotic process is understanding the surface chemistry of catalysts which significantly governs the reactivity and selectivity of CO2R. However in biotic CO2R operation conditions and reactor design are crucial to reaching a neutral carbon footprint. Future research needs to look toward neutral or even negative carbon footprint CO2R processes. Having a deep insight into the scientific and technological aspect of both abiotic and biotic CO2R would advance in designing efficient catalysts and microalgae farming systems. Integrating the abiotic and biotic CO2R such as microbial fuel cells further diversifies the spectrum of CO2R.
The Potential of Green Ammonia Production to Reduce Renewable Power Curtailment and Encourage the Energy Transition in China
Apr 2022
Publication
The pursuing of inter-regional power transmission to address renewable power curtailment in China has resulted in disappointing gains. This paper evaluates the case of local green ammonia production to address this issue. An improved optimization-based simulation model is applied to simulate lifetime green manufacturing and the impacts of main institutional incentives and oxygen synergy on investment are analysed. Levelized cost of ammonia is estimated at around 820 USD/t which is about twice the present price. The operating rate ammonia price the electrical efficiency of electrolysers and the electricity price are found to be the key factors in green ammonia investment. Carbon pricing and value-added tax exemption exert obvious influences on the energy transition in China. A subsidy of approximately 450 USD/t will be required according to the present price; however this can be reduced by 100 USD/t through oxygen synergy. Compared to inter-regional power transmission green ammonia production shows both economic and environmental advantages. Therefore we propose an appropriate combination of both options to address renewable power curtailment and the integration of oxygen manufacturing into hydrogen production. We consider the findings and policy implications will contribute to addressing renewable power curtailment and boosting the hydrogen economy in China.
Hydrogen Production on Demand by Redox-mediated Electrocatalysis: A Kinetic Study
Aug 2020
Publication
Producing hydrogen from water using a redox mediator on solid electrocatalyst particles in a reactor offers several advantages over classical electrolysis in terms of safety membrane degradation purity and flexibility. Herein vanadium-mediated hydrogen evolution on a commercial and low-cost Mo2C electrocatalyst is studied through the development of a reaction kinetics model. Based on a proposed mechanistic reaction scheme we established a kinetic rate law dependent on the concentration of V2+ the state-of-charge of the vanadium electrolyte from a vanadium redox flow battery and the amount of available catalytic sites on solid Mo2C. Kinetic experiments in transient conditions reveals a first-order dependence on both the concentration of V2+ and the concentration of catalytic active sites and a power law with an exponential factor of 0.57 was measured on the molar ratio V2+/V3+ i.e. on the electrochemical driving force generated on the Mo2C particles. The kinetic rate law was validated by studying the rate of reaction in steady-state conditions using a specially developed rotating ring-disk device (RRD) methodology. The kinetic model was demonstrated to be a useful tool to predict the hydrogen production via the chemical oxidation of V2+ over Mo2C at low pH (> 1 M H2SO4). For a perspective the model was implemented in a semi-batch reactor. The simulations highlight the optimal state-of-charge (SOC) to carry out the reaction in an efficient way for a given demand in hydrogen.
The Impact of Climate Targets on Future Steel Production – An Analysis Based on a Global Energy System Model
Apr 2020
Publication
This paper addresses how a global climate target may influence iron and steel production technology deployment and scrap use. A global energy system model ETSAP-TIAM was used and a Scrap Availability Assessment Model (SAAM) was developed to analyse the relation between steel demand recycling and the availability of scrap and their implications for steel production technology choices. Steel production using recycled materials has a continuous growth and is likely to be a major route for steel production in the long run. However as the global average of in-use steel stock increases up to the current average stock of the industrialised economies global steel demand keeps growing and stagnates only after 2050. Due to high steel demand levels and scarcity of scrap more than 50% of the steel production in 2050 will still have to come from virgin materials. Hydrogen-based steel production could become a major technology option for production from virgin materials particularly in a scenario where Carbon Capture and Storage (CCS) is not available. Imposing a binding climate target will shift the crude steel price to approximately 500 USD per tonne in the year 2050 provided that CCS is available. However the increased prices are induced by CO2 prices rather than inflated production costs. It is concluded that a global climate target is not likely to influence the use of scrap whereas it shall have an impact on the price of scrap. Finally the results indicate that energy efficiency improvements of current processes will only be sufficient to meet the climate target in combination with CCS. New innovative techniques with lower climate impact will be vital for mitigating climate change.
Critical Materials for Water Electrolysers at the Example of the Energy Transition in Germany
Feb 2021
Publication
The present work aims to identify critical materials in water electrolysers with potential future supply constraints. The expected rise in demand for green hydrogen as well as the respective implications on material availability are assessed by conducting a case study for Germany. Furthermore the recycling of end‐of‐life (EoL) electrolysers is evaluated concerning its potential in ensuring the sustainable supply of the considered materials. As critical materials bear the risk of raising production costs of electrolysers substantially this article examines the readiness of this technology for industrialisation from a material perspective. Except for titanium the indicators for each assessed material are scored with a moderate to high (platinum) or mostly high (iridium scandium and yttrium) supply risk. Hence the availability of these materials bears the risk of hampering the scale‐up of electrolysis capacity. Although conventional recycling pathways for platinum iridium and titanium already exist secondary material from EoL electrolysers will not reduce the dependence on primary resources significantly within the period under consideration—from 2020 until 2050. Notably the materials identified as critical are used in PEM and high temperature electrolysis whereas materials in alkaline electrolysis are not exposed to significant supply risks.
European Hydrogen Backbone
Jul 2020
Publication
This paper authored by eleven gas infrastructure companies and supported by Guidehouse describes how a dedicated hydrogen infrastructure can be created in
a significant part of the EU between 2030 and 2040 requiring work to start during the 2020s. The hydrogen infrastructure as proposed in this paper fits well with the ambitions of the EU Hydrogen Strategy and the Energy System Integration Strategy plus it aligns well with the goals of the recently announced Clean Hydrogen Alliance to scale up hydrogen enabled by hydrogen transport. Hydrogen clearly gains momentum and this paper aims to provide a contribution towards accelerating a large scale-up of hydrogen by enabling its transport from supply to demand across Europe.
This paper analyses the likely routes across Europe by 2030 2035 and 2040. The included maps show the suggested topology of hydrogen pipelines in ten European countries: Germany France Italy Spain the Netherlands Belgium Czech Republic Denmark Sweden and Switzerland.
You can download the whole report by clicking this link
a significant part of the EU between 2030 and 2040 requiring work to start during the 2020s. The hydrogen infrastructure as proposed in this paper fits well with the ambitions of the EU Hydrogen Strategy and the Energy System Integration Strategy plus it aligns well with the goals of the recently announced Clean Hydrogen Alliance to scale up hydrogen enabled by hydrogen transport. Hydrogen clearly gains momentum and this paper aims to provide a contribution towards accelerating a large scale-up of hydrogen by enabling its transport from supply to demand across Europe.
This paper analyses the likely routes across Europe by 2030 2035 and 2040. The included maps show the suggested topology of hydrogen pipelines in ten European countries: Germany France Italy Spain the Netherlands Belgium Czech Republic Denmark Sweden and Switzerland.
You can download the whole report by clicking this link
Bibliometric Analysis of Global Trends around Hydrogen Production Based on the Scopus Database in the Period 2011–2021
Dec 2022
Publication
Given the increase in population and energy demand worldwide alternative methods have been adopted for the production of hydrogen as a clean energy source. This energy offers an alternative energy source due to its high energy content and without emissions to the environment. In this bibliometric analysis of energy production using electrolysis and taking into account the different forms of energy production. In this analysis it was possible to evaluate the research trends based on the literature in the Scopus database during the years 2011–2021. The results showed a growing interest in hydrogen production from electrolysis and other mechanisms with China being the country with the highest number of publications and the United States TOP in citations. The trend shows that during the first four years of this study (2011–2014) the average number of publications was 74 articles per year from 2015 to 2021 where the growth is an average of 209 articles the journal that published the most on this topic is Applied Energy followed by Energy contributing with almost 33% in the research area. Lastly the keyword analysis identified six important research points for future discussions which we have termed clusters. The study concludes that new perspectives on clean hydrogen energy generation environmental impacts and social acceptance could contribute to the positive evolution of the hydrogen energy industry.
Policy-driven, Narrative-based Evidence Gathering: UK Priorities for Decarbonisation Through Biomass
May 2015
Publication
Evidence-based policy-making has been a much-debated concept. This paper builds on various insights for a novel perspective: policy-driven narrative-based evidence gathering. In a case study of UK priority setting for bioenergy innovation documents and interviews were analysed to identify links between diagnoses of the problem societal visions policy narratives and evidence gathering. This process is illuminated by the theoretical concept of sociotechnical imaginaries—technoscientific projects which the state should promote for a feasible desirable future. Results suggest that evidence has been selectively generated and gathered within a specific future vision whereby bioenergy largely provides an input-substitute within the incumbent centralised infrastructure. Such evidence is attributed to an external expertise thus helping to legitimise the policy framework. Evidence has helped to substantiate policy commitments to expand bioenergy. The dominant narrative has been reinforced by the government’s multi-stakeholder consultation favouring the incumbent industry and by incentive structures for industry co-investment.
Industrial Decarbonisation Policies for a UK Net-Zero Target
Dec 2020
Publication
To inform our Sixth Carbon Budget advice the Climate Change Committee (CCC) asked the University of Leeds to undertake independent research to evaluate which policies (and combinations of policies) would enable industrial decarbonisation in line with the UK’s net zero target without inducing carbon leakage. The research focused on policies applicable to the manufacturing sector but with some consideration also given to the policies required to decarbonise the Fossil Fuel Production and Supply and Non-Road Mobile Machinery sectors. This report:
Sets out a comprehensive review of existing policies;
The paper can be downloaded from the CCC website
Sets out a comprehensive review of existing policies;
- Identifies future policy mechanisms that address key challenges in decarbonising industry;
- Explores how combinations of policies might work together strategically in the form of ‘policy packages’ and how these packages might evolve over the period to 2050;
- Evaluates a series of illustrative policy packages and considers any complementary policies required to minimise carbon leakage and deliver ‘just’ industrial decarbonisation.
- The findings were developed through a combination of literature review and extensive stakeholder engagement with industry government and academic experts.
The paper can be downloaded from the CCC website
Hydrogen and Renewable Energy Sources Integrated System for Greenhouse Heating
Sep 2013
Publication
A research is under development at the Department of Agro-Environmental Sciences of the University of Bari “Aldo Moro” in order to investigate the suitable solutions of a power system based on solar energy (photovoltaic) and hydrogen integrated with a geothermal heat pump for powering a self sustained heated greenhouse. The electrical energy for heat pump operation is provided by a purpose-built array of solar photovoltaic modules which supplies also a water electrolyser system controlled by embedded pc; the generated dry hydrogen gas is conserved in suitable pressured storage tank. The hydrogen is used to produce electricity in a fuel cell in order to meet the above mentioned heat pump power demand when the photovoltaic system is inactive during winter night-time or the solar radiation level is insufficient to meet the electrical demand. The present work reports some theoretical and observed data about the electrolyzer operation. Indeed the electrolyzer has required particular attention because during the experimental tests it did not show a stable operation and it was registered a performance not properly consistent with the predicted performance by means of the theoretical study.
HyDeploy2: Gas Characteristics Summary and Interpretation
Jun 2020
Publication
In order to inform the Quantified Risk Assessment (QRA) and procedures for the Winlaton trial the gas characteristics relating to the behaviour of the flammable gas have been reviewed for blended natural gas mixtures containing 20% mol/mol hydrogen (hereby referred to as “blend”) for normal operation and 50% mol/mol for fault conditions. This work builds on the findings of the previous HyDeploy gas characteristics report HyD-Rep04-V02-Characteristics.<br/>Click on the supplements tab to view the other documents from this report
The Social Dimensions of Moving Away From Gas Cookers and Hobs- Challenges and Opportunities in Transition to Low Carbon Cooking
May 2020
Publication
Heat is one of the UK’s largest energy-consuming and carbon-emitting sectors and potentially the most difficult to decarbonise. The UK’s Clean Growth Strategy identifies that heat decarbonisation in buildings and industry will likely involve shifting away from natural gas to alternative energy vectors like electricity and hydrogen. This will mean transition of existing cooking appliances away from natural gas resulting in social implications that require detailed analysis for optimal transition.
This report investigates the social dimensions of heat decarbonisation in cooking appliances specifically moving away from gas cookers and hobs. It presents a first step in tackling the following questions.
This report investigates the social dimensions of heat decarbonisation in cooking appliances specifically moving away from gas cookers and hobs. It presents a first step in tackling the following questions.
- How are current carbon-intensive cooking technologies part of existing cooking practices and broader social and material structures?
- What are the challenges and opportunities for cooking heat decarbonisation in terms of consumer acceptance carbon and energy reductions and business/market opportunities?
- What interventions are needed to realise policy objectives of heat de-carbonisation?
- The report builds on interviews with BEIS’s long-term heat strategy experts and key external stakeholders together with a review of secondary data on trends in cooking and appliance use in the UK. Further it presents an annotated bibliography of literature on the social implications of heat decarbonisation and sustainable food transitions more broadly. The multidisciplinary review of the literature is structured around Southerton et al.’s (2011) ISM (Individual- Social- and Material-context) framework for a systemic review of the various change-agents required for transition. Finally a comparative review of the social challenges and opportunities identified in the ISM contexts is presented along with the potential policy interventions in each. The report concludes with a list of recommendations in terms of evidence and data gathering; research; policy; and a set of general recommendations for heat decarbonisation policy.
Large-eddy Simulation of Tri-fuel Combustion: Diesel Spray Assisted Ignition of Methanol-hydrogen Blends
May 2021
Publication
Development of marine engines could largely benefit from the broader usage of methanol and hydrogen which are both potential energy carriers. Here numerical results are presented on tri-fuel (TF) ignition using large-eddy simulation (LES) and finite-rate chemistry. Zero-dimensional (0D) and three-dimensional (3D) simulations for n-dodecane spray ignition of methanol/hydrogen blends are performed. 0D results reveal the beneficial role of hydrogen addition in facilitating methanol ignition. Based on LES the following findings are reported: 1) Hydrogen promotes TF ignition significantly for molar blending ratios βX = [H2]/([H2]+[CH3OH]) ≥0.8. 2) For βX = 0 unfavorable heat generation in ambient methanol is noted. We provide evidence that excessive hydrogen enrichment (βX ≥ 0.94) potentially avoids this behavior consistent with 0D results. 3) Ignition delay time is advanced by 23–26% with shorter spray vapor penetrations (10–15%) through hydrogen mass blending ratios 0.25/0.5/1.0. 4) Last adding hydrogen increases shares of lower and higher temperature chemistry modes to total heat release.
Thermodynamic Assessment of the Novel Concept of the Energy Storage System Using Compressed Carbon Dioxide, Methanation and Hydrogen Generator
Jul 2021
Publication
The main aim of this paper is to characterize the concept of a novel energy storage system based on compressed CO2 storage installation that uses an infrastructure of depleted coal mines to provide required volume of tanks and additionally hydrogen generators and a methanation installation to generate synthetic natural gas that can be used within the system or taken out of it e.g. to a gas grid. A detailed mathematical model of the proposed solution was built using own codes and Aspen Plus software. Thermodynamic evaluation aiming at determining parameters composition and streams in all the most important nodes of the system for the nominal point and when changing a defined decision variable δ (in the range from 0.1 to 0.9) was made. The evaluation was made based on the storage efficiency volume of the tanks and flows of energy within the system. The storage efficiency in the nominal point reached 45.08% but was changing in the range from 35.06% (for δ = 0.1) to 63.93% (for δ = 0.9). For the nominal value of δ equal to 0.5 volume of the low-pressure tank (LPT) was equal to 132869 m3 while of the high pressure tank (HPT) to 1219 m3 . When changing δ these volumes were changing from 101900 m3 to 190878 m3 (for LPT) and from 935 to 1751 m3 (for HPT) respectively. Detailed results are presented in the paper and indicate high storage potential of the proposed solution in regions with underground mine infrastructure.
Hydrogen for a Net Zero GB An Integrated Energy Market Perspective
Jul 2020
Publication
Our new independent report finds that hydrogen can play an important role in UK’s ambitious decarbonisation plan and boost its global industrial competitiveness.
Key insights from this new analysis include:
Key insights from this new analysis include:
- New independent report from Aurora Energy Research shows that hydrogen can meet up to half of Great Britain’s (GB) final energy demand by 2050 providing an important pathway to reaching UK’s ambitious Net Zero targets.
- The report concludes that both blue hydrogen (produced from natural gas after reforming to remove carbon content) and green hydrogen (produced by using power to electrolyse water) are expected to play an important role providing up to 480TWh of hydrogen or c.45% of GB’s final energy demand by 2050.
- All Net Zero scenarios require substantial growth in low-carbon generation such as renewables and nuclear. Large-scale hydrogen adoption could help to integrate renewables into the power system by reducing the power sector requirement for flexibility during peak winter months and boosting revenues for clean power generators by c. £3bn per year by 2050.
- The rollout of hydrogen could accelerate green growth and enable the development of globally competitive low-carbon industrial clusters while utilising UK’s competitive advantage on carbon capture.
- In facilitating the identification of a cost-effective hydrogen pathway there are some low-regret options for Government to explore including the stimulation of hydrogen demand in key sectors the deployment of CCS in strategic locations and the standardisation of networks. These initiatives could form an important part of the UK Government’s post-COVID stimulus plan.
Geomechanical Simulation of Energy Storage in Salt Formations
Oct 2021
Publication
A promising option for storing large-scale quantities of green gases (e.g. hydrogen) is in subsurface rock salt caverns. The mechanical performance of salt caverns utilized for long-term subsurface energy storage plays a signifcant role in long-term stability and serviceability. However rock salt undergoes non-linear creep deformation due to long-term loading caused by subsurface storage. Salt caverns have complex geometries and the geological domain surrounding salt caverns has a vast amount of material heterogeneity. To safely store gases in caverns a thorough analysis of the geological domain becomes crucial. To date few studies have attempted to analyze the infuence of geometrical and material heterogeneity on the state of stress in salt caverns subjected to long-term loading. In this work we present a rigorous and systematic modeling study to quantify the impact of heterogeneity on the deformation of salt caverns and quantify the state of stress around the caverns. A 2D fnite element simulator was developed to consistently account for the non-linear creep deformation and also to model tertiary creep. The computational scheme was benchmarked with the already existing experimental study. The impact of cyclic loading on the cavern was studied considering maximum and minimum pressure that depends on lithostatic pressure. The infuence of geometric heterogeneity such as irregularly-shaped caverns and material heterogeneity which involves diferent elastic and creep properties of the diferent materials in the geological domain is rigorously studied and quantifed. Moreover multi-cavern simulations are conducted to investigate the infuence of a cavern on the adjacent caverns. An elaborate sensitivity analysis of parameters involved with creep and damage constitutive laws is performed to understand the infuence of creep and damage on deformation and stress evolution around the salt cavern confgurations.
The Global Status of CCS 2019: Targeting Climate Change
Dec 2019
Publication
CCS is an emissions reduction technology critical to meeting global climate targets. The Global Status of CCS 2019 documents important milestones for CCS over the past 12 months its status across the world and the key opportunities and challenges it faces. We hope this report will be read and used by governments policy-makers academics media commentators and the millions of people who care about our climate.
Power to Hydrogen and Power to Water Using Wind Energy
May 2022
Publication
The need for energy and water security on islands has led to an increase in the use of wind power. However the intermittent nature of wind generation means it needs to be coupled with a storage system. Motivated by this two different models of surplus energy storage systems are investigated in this paper. In both models renewable wind energy is provided by a wind farm. In the first model a pumped hydro storage system (PHS) is used for surplus energy storage while in the second scenario a hybrid pumped hydrogen storage system (HPHS) is applied consisting of a PHS and a hydrogen storage system. The goal of this study is to compare the single and the hybrid storage system to fulfill the energy requirements of the island’s electricity load and desalination demands for domestic and irrigation water. The cost of energy (COE) is 0.287 EUR/kWh for PHS and 0.360 EUR/kWh for HPHS while the loss of load probability (LOLP) is 22.65% for PHS and 19.47% for HPHS. Sensitivity analysis shows that wind speed is the key parameter that most affects COE cost of water (COW) and LOLP indices while temperature affects the results the least.
Mechanical Spectroscopy Investigation of Point Defect-Driven Phenomena in a Cr Martensitic Steel
Oct 2018
Publication
The paper presents and discusses results of mechanical spectroscopy (MS) tests carried out on a Cr martensitic steel. The study regards the following topics: (i) embrittlement induced by Cr segregation; (ii) interaction of hydrogen with C–Cr associates; (iii) nucleation of Cr carbides. The MS technique permitted characterising of the specific role played by point defects in the investigated phenomena: (i) Cr segregation depends on C–Cr associates distribution in as-quenched material in particular a slow cooling rate (~150 K/min) from austenitic field involves an unstable distribution which leads to Cr concentration fluctuations after tempering at 973 K; (ii) hydrogen interacts with C–Cr associates and the phenomenon hinders hydrogen attack (HA) because hydrogen atoms bound by C–Cr associates are not able to diffuse towards grain boundaries and dislocation where CH4 bubbles may nucleate grow and merge to form the typical HA cracks; (iii) C–Cr associates take part in the nucleation mechanism of Cr7C3 carbides and specifically these carbides form by the aggregation of C–Cr associates with 1 Cr atom.
Multiscale Modelling of Hydrogen Transport and Segregation in Polycrystalline Steels
Jun 2018
Publication
A key issue in understanding and effectively managing hydrogen embrittlement in complex alloys is identifying and exploiting the critical role of the various defects involved. A chemo-mechanical model for hydrogen diffusion is developed taking into account stress gradients in the material as well as microstructural trapping sites such as grain boundaries and dislocations. In particular the energetic parameters used in this coupled approach are determined from ab initio calculations. Complementary experimental investigations that are presented show that a numerical approach capable of massive scale-bridging up to the macroscale is required. Due to the wide range of length scales accounted for we apply homogenisation schemes for the hydrogen concentration to reach simulation dimensions comparable to metallurgical process scales. Via a representative volume element approach an ab initio based scale bridging description of dislocation-induced hydrogen aggregation is easily accessible. When we extend the representative volume approach to also include an analytical approximation for the ab initio based description of grain boundaries we find conceptual limitations that hinder a quantitative comparison to experimental data in the current stage. Based on this understanding the development of improved strategies for further efficient scale bridging approaches is foreseen.
Clean or Renewable – Hydrogen and Power-to-gas in EU Energy Law
Aug 2020
Publication
Interest in hydrogen as a carbon-neutral energy carrier is on the rise around the globe including in Europe. In particular power-to-gas as a technology to transform electricity to hydrogen is receiving ample attention. This article scrutinises current updates in the energy law framework of the EU to explain the legal pre-conditions for the various possible applications of power-to-gas technology. It highlights the influence of both electricity and gas legislation on conversion storage and transmission of hydrogen and demonstrates why ‘green’ hydrogen might come with certain legal privileges under the Renewable Energy Directive attached to it as opposed to the European Commission’s so-called ‘clean’ hydrogen. The article concludes by advocating for legal system integration in EU energy law namely merging the currently distinct EU electricity and gas law frameworks into one unified EU Energy Act.
The Effect of Cold Rolling on the Hydrogen Susceptibility of 5083 Aluminium Alloy
Oct 2017
Publication
This work focuses in investigating the effect of cold deformation on the cathodic hydrogen charging of 5083 aluminum alloy. The aluminium alloy was submitted to a cold rolling process until the average thickness of the specimens was reduced by 7% and 15% respectively. A study of the structure microhardness and tensile properties of the hydrogen charged aluminium specimens with and without cold rolling indicated that the cold deformation process led to an increase of hydrogen susceptibility of this aluminum alloy.
No more items...