Transmission, Distribution & Storage
Synthesis of Spherical V-Nb-Mo-Ta-W High-Entropy Alloy Powder Using Hydrogen Embrittlement and Spheroidization by Thermal Plasma
Dec 2019
Publication
V-Nb-Mo-Ta-W high-entropy alloy (HEA) one of the refractory HEAs is considered as a next-generation structural material for ultra-high temperature uses. Refractory HEAs have low castability and machinability due to their high melting temperature and low thermal conductivity. Thus powder metallurgy becomes a promising method for fabricating components with refractory HEAs. Therefore in this study we fabricated spherical V-Nb-Mo-Ta-W HEA powder using hydrogen embrittlement and spheroidization by thermal plasma. The HEA ingot was prepared by vacuum arc melting and revealed to have a single body-centered cubic phase. Hydrogen embrittlement which could be achieved by annealing in a hydrogen atmosphere was introduced to get the ingot pulverized easily to a fine powder having an angular shape. Then the powder was annealed in a vacuum atmosphere to eliminate the hydrogen from the hydrogenated HEA resulting in a decrease in the hydrogen concentration from 0.1033 wt% to 0.0003 wt%. The angular shape of the HEA powder was turned into a spherical one by inductively-coupled thermal plasma allowing to fabricate spherical V-Nb-Mo-Ta-W HEA powder with a d50 value of 28.0 μm.
Insight into Anomalous Hydrogen Adsorption on Rare Earth Metal Decorated on 2 Dimensional Hexagonal Boron Nitride a Density Functional Theory Study
Mar 2020
Publication
Hydrogen interaction with metal atoms is of prime focus for many energy related applications like hydrogen storage hydrogen evolution using catalysis etc. Although hydrogen binding with many main group alkaline and transition metals is quite well understood its binding properties with lanthanides are not well reported. In this article by density functional theory studies we show how a rare earth metal cerium binds with hydrogen when decorated over a heteropolar 2D material hexagonal boron nitride. Each cerium adatom is found to bind eight hydrogen molecules which is a much higher number than has been reported for transition metal atoms. However the highest binding energy occurs at four hydrogen molecules. This anomaly therefore is investigated in the present article using first-principles calculations. The number density of hydrogen molecules adsorbed over the cerium adatom is explained by investigating the electronic charge volume interactions owing to a unique geometrical arrangement of the guest hydrogen molecules. The importance of geometrical encapsulation in enhancing electronic interactions is explained.
Critical Assessment of the Effect of Atmospheric Corrosion Induced Hydrogen on Mechanical Properties of Advanced High Strength Steel
Dec 2020
Publication
Hydrogen absorption into steel during atmospheric corrosion has been of a strong concern during last decades. It is technically important to investigate if hydrogen absorbed under atmospheric exposure conditions can significantly affect mechanical properties of steels. The present work studies changes of mechanical properties of dual phase (DP) advanced high strength steel specimens with sodium chloride deposits during corrosion in humid air using Slow Strain Rate Test (SSRT). Additional annealed specimens were used as reference in order to separate the possible effect of absorbed hydrogen from that of corrosion deterioration. Hydrogen entry was monitored in parallel experiments using hydrogen electric resistance sensor (HERS) and thermal desorption mass spectrometry (TDMS). SSRT results showed a drop in elongation and tensile strength by 42% and 6% respectively in 27 days of atmospheric exposure. However this decrease cannot be attributed to the effect of absorbed hydrogen despite the increase in hydrogen content with time of exposure. Cross-cut analysis revealed considerable pitting which was suggested to be the main reason for the degradation of mechanical properties
Seasonal Energy Storage in Aluminium for 100 Percent Solar Heat and Electricity Supply
Sep 2019
Publication
In order to reduce anthropogenic global warming governments around the world have decided to reduce CO2 emissions from fossil fuels dramatically within the next decades. In moderate and cold climates large amounts of fossil fuels are used for space heating and domestic hot water production in winter. Although on an annual base solar energy is available in large quantities in these regions least of the solar resource is available in winter when most of the energy is needed. Therefore solutions are needed to store and transfer renewable energy from summer to winter. In this paper a seasonal energy storage based on the aluminium redox cycle (Al3+→Al→ Al3+) is proposed. For charging electricity from solar or other renewable sources is used to convert aluminium oxide or aluminium hydroxide to elementary aluminium (Al3+→Al). In the discharging process aluminium is oxidized (Al→Al3+) releasing hydrogen heat and aluminium hydroxide or aluminium oxide as a by-product. Hydrogen is used in a fuel cell to produce electricity. Heat produced from the aluminium oxidation process and by the fuel cell is used for domestic hot water production and space heating. The chemical reactions and energy balances are presented and simulation results are shown for a system that covers the entire energy demand for electricity space heating and domestic hot water of a new multi-family building with rooftop photovoltaic energy in combination with the seasonal Al energy storage cycle. It shows that 7–11 kWp of photovoltaic installations and 350–530 kg Al would be needed per apartment for different Swiss climates. Environmental life cycle data shows that the global warming potential and non-renewable primary energy consumption can be reduced significantly compared to today's common practice of heating with natural gas and using electricity from the ENTSO-E network. The presumptive cost were estimated and indicate a possible cost-competitiveness for this system in the near future.
Highly Porous Organic Polymers for Hydrogen Fuel Storage
Apr 2019
Publication
Hydrogen (H2) is one of the best candidates to replace current petroleum energy resources due to its rich abundance and clean combustion. However the storage of H2presents a major challenge. There are two methods for storing H2 fuel chemical and physical both of which have some advantages and disadvantages. In physical storage highly porous organic polymers are of particular interest since they are low cost easy to scale up metal-free and environmentally friendly.
In this review highly porous polymers for H2 fuel storage are examined from five perspectives:
(a) brief comparison of H2 storage in highly porous polymers and other storage media;
(b) theoretical considerations of the physical storage of H2 molecules in porous polymers;
(c) H2 storage in different classes of highly porous organic polymers;
(d) characterization of microporosity in these polymers; and
(e) future developments for highly porous organic polymers for H2 fuel storage. These topics will provide an introductory overview of highly porous organic polymers in H2 fuel storage.
In this review highly porous polymers for H2 fuel storage are examined from five perspectives:
(a) brief comparison of H2 storage in highly porous polymers and other storage media;
(b) theoretical considerations of the physical storage of H2 molecules in porous polymers;
(c) H2 storage in different classes of highly porous organic polymers;
(d) characterization of microporosity in these polymers; and
(e) future developments for highly porous organic polymers for H2 fuel storage. These topics will provide an introductory overview of highly porous organic polymers in H2 fuel storage.
Freeze-dried Ammonia Borane-polyethylene Oxide Composites: Phase Behaviour and Hydrogen Release
Feb 2018
Publication
A solid-state hydrogen storage material comprising ammonia borane (AB) and polyethylene oxide (PEO) has been produced by freeze-drying from aqueous solutions from 0% to 100% AB by mass. The phase mixing behaviour of AB and PEO has been investigated using X-ray diffraction which shows that a new ‘intermediate’ crystalline phase exists different from both AB and PEO as observed in our previous work (Nathanson et al. 2015). It is suggested that hydrogen bonding interactions between the ethereal oxygen atom (–O–) in the PEO backbone and the protic hydrogen atoms attached to the nitrogen atom (N–H) of AB molecules promote the formation of a reaction intermediate leading to lowered hydrogen release temperatures in the composites compared to neat AB. PEO also acts to significantly reduce the foaming of AB during hydrogen release. A temperature-composition phase diagram has been produced for the AB-PEO system to show the relationship between phase mixing and hydrogen release.
Flexible Power and Hydrogen Production: Finding Synergy Between CCS and Variable Renewables
Dec 2019
Publication
The expansion of wind and solar power is creating a growing need for power system flexibility. Dispatchable power plants with CO2 capture and storage (CCS) offer flexibility with low CO2 emissions but these plants become uneconomical at the low running hours implied by renewables-based power systems. To address this challenge the novel gas switching reforming (GSR) plant was recently proposed. GSR can alternate between electricity and hydrogen production from natural gas offering flexibility to the power system without reducing the utilization rate of the capital stock embodied in CCS infrastructure. This study assesses the interplay between GSR and variable renewables using a power system model which optimizes investment and hourly dispatch of 13 different technologies. Results show that GSR brings substantial benefits relative to conventional CCS. At a CO2 price of V100/ton inclusion of GSR increases the optimal wind and solar share by 50% lowers total system costs by 8% and reduces system emissions from 45 to 4 kgCO2/MWh. In addition GSR produces clean hydrogen equivalent to about 90% of total electricity demand which can be used to decarbonize transport and industry. GSR could therefore become a key enabling technology for a decarbonization effort led by wind and solar power.
Expert Opinion Analysis on Renewable Hydrogen Storage Systems Potential in Europe
Nov 2016
Publication
Among the several typologies of storage technologies mainly on different physical principles (mechanical electrical and chemical) hydrogen produced by power to gas (P2G) from renewable energy sources complies with chemical storage principle and is based on the conversion of electrical energy into chemical energy by means of the electrolysis of water which does not produce any toxic or climate-relevant emission. This paper aims to pinpoint the potential uses of renewable hydrogen storage systems in Europe analysing current and potential locations regulatory framework governments’ outlooks economic issues and available renewable energy amounts. The expert opinion survey already used in many research articles on different topics including energy has been selected as an effective method to produce realistic results. The obtained results highlight strategies and actions to optimize the storage of hydrogen produced by renewables to face varying electricity demand and generation-driven fluctuations reducing the negative effects of the increasing share of renewables in the energy mix of European Countries.
Study on Early Business Cases for H2 In Energy Storage and More Broadly Power to H2 Applications
Jun 2017
Publication
Hydrogen is widely recognised as a promising option for storing large quantities of renewable electricity over longer periods. For that reason in an energy future where renewables are a dominant power source opportunities for Power to- Hydrogen in the long-term appear to be generally acknowledged. The key challenge today is to identify concrete short-term investment opportunities based on sound economics and robust business cases. The focus of this study is to identify these early business cases and to assess their potential replicability within the EU from now until 2025. An essential part and innovative approach of this study is the detailed analysis of the power sector including its transmission grid constraints.
Metal Hydride Hydrogen Compressors
Feb 2014
Publication
Metal hydride (MH) thermal sorption compression is an efficient and reliable method allowing a conversion of energy from heat into a compressed hydrogen gas. The most important component of such a thermal engine – the metal hydride material itself – should possess several material features in order to achieve an efficient performance in the hydrogen compression. Apart from the hydrogen storage characteristics important for every solid H storage material (e.g. gravimetric and volumetric efficiency of H storage hydrogen sorption kinetics and effective thermal conductivity) the thermodynamics of the metal–hydrogen systems is of primary importance resulting in a temperature dependence of the absorption/desorption pressures). Several specific features should be optimised to govern the performance of the MH-compressors including synchronisation of the pressure plateaus for multi-stage compressors reduction of slope of the isotherms and hysteresis increase of cycling stability and life time together with challenges in system design associated with volume expansion of the metal matrix during the hydrogenation.<br/>The present review summarises numerous papers and patent literature dealing with MH hydrogen compression technology. The review considers (a) fundamental aspects of materials development with a focus on structure and phase equilibria in the metal–hydrogen systems suitable for the hydrogen compression; and (b) applied aspects including their consideration from the applied thermodynamic viewpoint system design features and performances of the metal hydride compressors and major applications.
Aging Effects on Modelling and Operation of a Photovoltaic System with Hydrogen Storage
Jun 2021
Publication
In this work the aging effects on modelling and operation of a photovoltaic system with hydrogen storage in terms of energy production decrease and demand for additional hydrogen during 10 years of the system operation was analysed for the entire energy system for the first time. The analyses were performed with the support of experimental data for the renewable energy system composed of photovoltaic modules fuel cell electrolysers hydrogen storage and hydrogen backup.<br/>It has been found that the total degradation of the analysed system can be described by the proposed parameter – unit additional hydrogen consumption ratio. The results reveal a 33.2–36.2% increase of the unit fuel requirement from an external source after 10 years in reference to the initial condition. Degradation of the components can on the other hand be well described with the unit hydrogen consumption ratio by fuel cell for electricity or the unit electricity consumption ratio by electrolyser for hydrogen production which has been found to vary for the electrolyser in the range of 4.6–4.9% and for the fuel cell stack in the range of 13.4–15.1% during the 10 years of the system operation. The analyses indicate that this value depends on the load profile and PV module types and the system performance decline is non-linear."
Balancing Wind-power Fluctuation Via Onsite Storage Under Uncertainty Power-to-hydrogen-to-power Versus Lithium Battery
Oct 2019
Publication
Imbalance costs caused by forecasting errors are considerable for grid-connected wind farms. In order to reduce such costs two onsite storage technologies i.e. power-to-hydrogen-to-power and lithium battery are investigated considering 14 uncertain technological and economic parameters. Probability density distributions of wind forecasting errors and power level are first considered to quantify the imbalance and excess wind power. Then robust optimal sizing of the onsite storage is performed under uncertainty to maximize wind-farm profit (the net present value). Global sensitivity analysis is further carried out for parameters prioritization to highlight the key influential parameters. The results show that the profit of power-to-hydrogen-to-power case is sensitive to the hydrogen price wind forecasting accuracy and hydrogen storage price. When hydrogen price ranges in (2 6) €/kg installing only electrolyzer can earn profits over 100 k€/MWWP in 9% scenarios with capacity below 250 kW/MWWP under high hydrogen price (over 4 €/kg); while installing only fuel cell can achieve such high profits only in 1.3% scenarios with capacity below 180 kW/MWWP. Installing both electrolyzer and fuel cell (only suggested in 22% scenarios) results in profits below 160 k€/MWWP and particularly 20% scenarios allow for a profit below 50 k€/MWWP due to the contradictory effects of wind forecasting error hydrogen and electricity price. For lithium battery investment cost is the single highly influential factor which should be reduced to 760 €/kWh. The battery capacity is limited to 88 kW h/MWWP. For profits over 100 k€/MWWP (in 3% scenarios) the battery should be with an investment cost below 510 €/kWh and a depth of discharge over 63%. The power-to-hydrogen-to-power case is more advantageous in terms of profitability reliability and utilization factor (full-load operating hours) while lithium battery is more helpful to reduce the lost wind and has less environmental impact considering current hydrogen market.
Location-dependent Effect of Nickel on Hydrogen Dissociation and Diffusion on Mg (0001) Surface: Insights into Hydrogen Storage Material Design
Apr 2021
Publication
Density functional theory (DFT) calculations have been performed to investigate the hydrogen dissociation and diffusion on Mg (0001) surface with Ni incorporating at various locations. The results show that Ni atom is preferentially located inside Mg matrix rather than in/over the topmost surface. Further calculations reveal that Ni atom locating in/over the topmost Mg (0001) surface exhibits excellent catalytic effect on hydrogen dissociation with an energy barrier of less than 0.05 eV. In these cases the rate-limiting step has been converted from hydrogen dissociation to surface diffusion. In contrast Ni doping inside Mg bulk not only does little help to hydrogen dissociation but also exhibits detrimental effect on hydrogen diffusion. Therefore it is crucial to stabilize the Ni atom on the surface or in the topmost layer of Mg (0001) surface to maintain its catalytic effect. For all the case of Ni-incorporated Mg (0001) surfaces the hydrogen atom prefers firstly immigrate along the surface and then penetrate into the bulk. It is expected that the theoretical findings in the present study could offer fundamental guidance to future designing on efficient Mg-based hydrogen storage materials.
Modifications in the Composition of CuO/ZnO/Al2O3 Catalyst for the Synthesis of Methanol by CO2 Hydrogenation
Jun 2021
Publication
Renewable methanol obtained from CO2 and hydrogen provided from renewable energy was proposed to close the CO2 loop. In industry methanol synthesis using the catalyst CuO/ZnO/Al2O3 occurs at a high pressure. We intend to make certain modification on the traditional catalyst to work at lower pressure maintaining high selectivity. Therefore three heterogeneous catalysts were synthesized by coprecipitation to improve the activity and the selectivity to methanol under mild conditions of temperature and pressure. Certain modifications on the traditional catalyst Cu/Zn/Al2O3 were employed such as the modification of the synthesis time and the addition of Pd as a dopant agent. The most efficient catalyst among those tested was a palladium-doped catalyst 5% Pd/Cu/Zn/Al2O3. This had a selectivity of 64% at 210 °C and 5 bar.
Seasonal and Multi-Seasonal Energy Storage by Power-to-Methane Technology
Jun 2021
Publication
The time-range of applicability of various energy-storage technologies are limited by self-discharge and other inevitable losses. While batteries and hydrogen are useful for storage in a time-span ranging from hours to several days or even weeks for seasonal or multi-seasonal storage only some traditional and quite costly methods can be used (like pumped-storage plants Compressed Air Energy Storage or energy tower). In this paper we aim to show that while the efficiency of energy recovery of Power-to-Methane technology is lower than for several other methods due to the low self-discharge and negligible standby losses it can be a suitable and cost-effective solution for seasonal and multi-seasonal energy storage.
Molecular Dynamics Studies of Hydrogen Effect on Intergranular Fracture in α-Iron
Nov 2020
Publication
In the current study the effect of hydrogen atoms on the intergranular failure of α-iron is examined by a molecular dynamics (MD) simulation. The effect of hydrogen embrittlement on the grain boundary (GB) is investigated by diffusing hydrogen atoms into the grain boundaries using a bicrystal body-centered cubic (BCC) model and then deforming the model with a uniaxial tension. The Debye Waller factors are applied to illustrate the volume change of GBs and the simulation results suggest that the trapped hydrogen atoms in GBs can therefore increase the excess volume of GBs thus enhancing intergranular failure. When a constant displacement loading is applied to the bicrystal model the increased strain energy can barely be released via dislocation emission when H is present. The hydrogen pinning effect occurs in the current dislocation slip system <111>{112}. The hydrogen atoms facilitate cracking via a decrease of the free surface energy and enhance the phase transition via an increase in the local pressure. Hence the failure mechanism is prone to intergranular failure so as to release excessive pressure and energy near GBs. This study provides a mechanistic framework of intergranular failure and a theoretical model is then developed to predict the intergranular cracking rate
Research on the Concept of Hydrogen Supply Chains and Power Grids Powered by Renewable Energy Sources: A Scoping Review with the Use of Text Mining
Jan 2022
Publication
The key direction of political actions in the field of sustainable development of the energy sector and economy is the process of energy transformation (decarbonization) and increasing the share of renewable energy sources (RES) in the supply of primary energy. Regardless of the indisputable advantages RES are referred to as unstable energy sources. A possible solution might be the development of the concept of hydrogen supply chains especially the so-called green hydrogen obtained in the process of electrolysis from electricity produced from RES. The aim of the research undertaken in the article is to identify the scope of research carried out in the area of hydrogen supply chains and to link this research with the issues of the operation of electricity distribution networks powered by RES. As a result of the scoping review and the application of the text-mining method using the IRaMuTeQ tool which includes the analysis of the content of 12 review articles presenting the current research achievements in this field over the last three years (2016–2020) it was established that the issues related to hydrogen supply chains including green hydrogen are still not significantly associated with the problem of the operation of power grids. The results of the conducted research allow formulating recommendations for further research areas.
Evaluation of Corrosion, Mechanical Properties and Hydrogen Embrittlement of Casing Pipe Steels with Different Microstructure
Dec 2021
Publication
In the research the corrosion and mechanical properties as well as susceptibility to hydrogen embrittlement of two casing pipe steels were investigated in order to assess their serviceability in corrosive and hydrogenating environments under operation in oil and gas wells. Two carbon steels with different microstructures were tested: the medium carbon steel (MCS) with bainitic microstructure and the medium-high carbon steel (MHCS) with ferrite–pearlite microstructure. The results showed that the corrosion resistance of the MHCS in CO2-containing acid chloride solution simulating formation water was significantly lower than that of the MCS which was associated with microstructure features. The higher strength MCS with the dispersed microstructure was less susceptible to hydrogen embrittlement under preliminary electrolytic hydrogenation than the lower strength MHCS with the coarse-grained microstructure. To estimate the embrittlement of steels the method of the FEM load simulation of the specimens with cracks was used. The constitutive relations of the true stress–strain of the tested steels were defined. The stress and strain dependences in the crack tip were calculated. It was found that the MHCS was characterized by the lower plasticity on the stage of the neck formation of the specimen and the lower fracture toughness than the other one. The obtained results demonstrating the limitations of the usage of casing pipes made of the MHCS with the coarse-grained ferrite/pearlite microstructure in corrosive and hydrogenating environments were discussed.
Prospects of Enhancing the Understanding of Material-hydrogen Interaction by Novel In-situ and In-operando Methods
Jan 2022
Publication
A main scientific and technical challenge facing the implementation of new and sustainable energy sources is the development and improvement of materials and components. In order to provide commercial viability of these applications an intensive research in material-hydrogen (H) interaction is required. This work provides an overview of recently developed in-situ and in-operando H-charging methods and their applicability to investigate mechanical properties H-absorption characteristics and H embrittlement (HE) susceptibility of a wide range of materials employed in H-related technologies such as subsea oil and gas applications nuclear fusion and fuel cells.
Influence of Pressure, Temperature and Organic Surface Concentration on Hydrogen Wettability of Caprock; Implications for Hydrogen Geo-storage
Sep 2021
Publication
Hydrogen (H2) as a cleaner fuel has been suggested as a viable method of achieving the decarbonization objectives and meeting increasing global energy demand. However successful implementation of a full-scale hydrogen economy requires large-scale hydrogen storage (as hydrogen is highly compressible). A potential solution to this challenge is injecting hydrogen into geologic formations from where it can be withdrawn again at later stages for utilization purposes. The geostorage capacity of a porous formation is a function of its wetting characteristics which strongly influence residual saturations fluid flow rate of injection rate of withdrawal and containment security. However literature severely lacks information on hydrogen wettability in realistic geological and caprock formations which contain organic matter (due to the prevailing reducing atmosphere). We therefore measured advancing (θa) and receding (θr) contact angles of mica substrates at various representative thermo-physical conditions (pressures 0.1-25 MPa temperatures 308–343 K and stearic acid concentrations of 10−9 - 10−2 mol/L). The mica exhibited an increasing tendency to become weakly water-wet at higher temperatures lower pressures and very low stearic acid concentration. However it turned intermediate-wet at higher pressures lower temperatures and increasing stearic acid concentrations. The study suggests that the structural H2 trapping capacities in geological formations and sealing potentials of caprock highly depend on the specific thermo-physical condition. Thus this novel data provides a significant advancement in literature and will aid in the implementation of hydrogen geo-storage at an industrial scale.
Linking Ab Initio Data on Hydrogen and Carbon in Steel to Statistical and Continuum Descriptions
Mar 2018
Publication
We present a selection of scale transfer approaches from the electronic to the continuum regime for topics relevant to hydrogen embrittlement. With a focus on grain boundary related hydrogen embrittlement we discuss the scale transfer for the dependence of the carbon solution behavior in steel on elastic effects and the hydrogen solution in austenitic bulk regions depending on Al content. We introduce an approximative scheme to estimate grain boundary energies for varying carbon and hydrogen population. We employ this approach for a discussion of the suppressing influence of Al on the substitution of carbon with hydrogen at grain boundaries which is an assumed mechanism for grain boundary hydrogen embrittlement. Finally we discuss the dependence of hydride formation on the grain boundary stiffness
Dynamic Operation of Fischer-Tropsch Reactors for Power-to-liquid Concepts: A Review
Apr 2022
Publication
The Fischer-Tropsch synthesis (FTS) is considered as a power-to-X (PtX) storage concept for converting temporally available excess energy to fuels or chemical compounds without the need of fossil resources. Fluctuating energy supplies demand a load-flexible energy system and a dynamically operating FTS reactor might be beneficial compared to traditional steady-state operations which rely on expensive upstream buffer capacities. This review provides an overview of recent experimental and simulation studies dealing with dynamic FTS operation and summarizes the main findings. The results are presented the two categories process intensification and PtX application. The review further discusses the experimentally difficult task of wide-ranging product characterization with a high temporal resolution. While dynamic reactor operation is often related to a complicated process control which challenges a save and efficient reactor performance the literature findings indicate that for dynamic FTS operation such concerns might not be as critical as assumed at least within well-known boundaries. Researchers further agree that dynamic operation might be a tool for process intensification. Especially hydrogen pulsing seems to be a potentially beneficial operating technique to remove accumulated liquid products restore initial catalyst activity and increase diesel-range productivity. The main challenge in this context is the prevention of high methane selectivity. A lucid future engineering goal seems to be the combination of the two applications: a robust and reliable FTS reactor in a PtX scenario that not only handles a fluctuating feed but uses such variations for process enhancement.
Cohesive Zone Modelling of Hydrogen Assisted Fatigue Crack Growth: The Role of Trapping
Apr 2022
Publication
We investigate the influence of microstructural traps in hydrogen-assisted fatigue crack growth. To this end a new formulation combining multi-trap stress-assisted diffusion mechanism-based strain gradient plasticity and a hydrogen- and fatigue-dependent cohesive zone model is presented and numerically implemented. The results show that the ratio of loading frequency to effective diffusivity governs fatigue crack growth behaviour. Increasing the density of beneficial traps not involved in the fracture process results in lower fatigue crack growth rates. The combinations of loading frequency and carbide trap densities that minimise embrittlement susceptibility are identified providing the foundation for a rational design of hydrogen-resistant alloys.
H21- Leeds City Gate Project Report
Jul 2016
Publication
The H21 Leeds City Gate project is a study with the aim of determining the feasibility from both a technical and economic viewpoint of converting the existing natural gas network in Leeds one of the largest UK cities to 100% hydrogen. The project has been designed to minimise disruption for existing customers and to deliver heat at the same cost as current natural gas to customers. The project has shown that:
The project has provided costs for the scheme and has modelled these costs in a regulatory finance model. In addition the availability of low-cost bulk hydrogen in a gas network could revolutionise the potential for hydrogen vehicles and via fuel cells support a decentralised model of combined heat and power and localised power generation.
This report and any attachment is freely available on the ENA Smarter Networks Portal here. IGEM Members can download the report and any attachment directly by clicking on the pdf icon above.
- The gas network has the correct capacity for such a conversion
- It can be converted incrementally with minimal disruption to customers
- Minimal new energy infrastructure will be required compared to alternatives
- The existing heat demand for Leeds can be met via steam methane reforming and salt cavern storage using technology in use around the world today
The project has provided costs for the scheme and has modelled these costs in a regulatory finance model. In addition the availability of low-cost bulk hydrogen in a gas network could revolutionise the potential for hydrogen vehicles and via fuel cells support a decentralised model of combined heat and power and localised power generation.
This report and any attachment is freely available on the ENA Smarter Networks Portal here. IGEM Members can download the report and any attachment directly by clicking on the pdf icon above.
Pressurized Hydrogen from Charged Liquid Organic Hydrogen Carrier Systems by Electrochemical Hydrogen Compression
Feb 2021
Publication
We demonstrate that the combination of hydrogen release from a Liquid Organic Hydrogen Carrier (LOHC) system with electrochemical hydrogen compression (EHC) provides three decisive advantages over the state-of-the-art hydrogen provision from such storage system: a) The EHC device produces reduced hydrogen pressure on its suction side connected to the LOHC dehydrogenation unit thus shifting the thermodynamic equilibrium towards dehydrogenation and accelerating the hydrogen release; b) the EHC device compresses the hydrogen released from the carrier system thus producing high value compressed hydrogen; c) the EHC process is selective for proton transport and thus the process purifies hydrogen from impurities such as traces of methane. We demonstrate this combination for the production of compressed hydrogen (absolute pressure of 6 bar) from perhydro dibenzyltoluene at dehydrogenation temperatures down to 240 °C in a quality suitable for fuel cell operation e.g. in a fuel cell vehicle. The presented technology may be highly attractive for providing compressed hydrogen at future hydrogen filling stations that receive and store hydrogen in a LOHC-bound manner.
Numerical Simulations of Cryogenic Hydrogen Cooling in Vortex Tubes with Smooth Transitions
Mar 2021
Publication
Improving efficiency of hydrogen cooling in cryogenic conditions is important for the wider applications of hydrogen energy systems. The approach investigated in this study is based on a Ranque-Hilsch vortex tube (RHVT) that generates temperature separation in a working fluid. The simplicity of RHVT is also a valuable characteristic for cryogenic systems. In the present work novel shapes of RHVT are computationally investigated with the goal to raise efficiency of the cooling process. Specifically a smooth transition is arranged between a vortex chamber where compressed gas is injected and the main tube with two exit ports at the tube ends. Flow simulations have been carried out using STAR-CCM+ software with the real-gas Redlich-Kwong model for hydrogen at temperatures near 70 K. It is determined that a vortex tube with a smooth transition of moderate size manifests about 7% improvement of the cooling efficiency when compared vortex tubes that use traditional vortex chambers with stepped transitions and a no-chamber setup with direct gas injection.
Investigation of Mechanical Tests for Hydrogen Embrittlement in Automotive PHS Steels
Aug 2019
Publication
The problem of hydrogen embrittlement in ultra-high-strength steels is well known. In this study slow strain rate four-point bending and permeation tests were performed with the aim of characterizing innovative materials with an ultimate tensile strength higher than 1000 MPa. Hydrogen uptake in the case of automotive components can take place in many phases of the manufacturing process: during hot stamping due to the presence of moisture in the furnace atmosphere high-temperature dissociation giving rise to atomic hydrogen or also during electrochemical treatments such as cataphoresis. Moreover possible corrosive phenomena could be a source of hydrogen during an automobile’s life. This series of tests was performed here in order to characterize two press-hardened steels (PHS)—USIBOR 1500® and USIBOR 2000®—to establish a correlation between ultimate mechanical properties and critical hydrogen concentration.
Hydrogen Embrittlement Evaluation of Micro Alloyed Steels by Means of J-Integral Curve
Jun 2019
Publication
The aim of this work is the evaluation of the hydrogen effect on the J-integral parameter. It is well-known that the micro alloyed steels are affected by Hydrogen Embrittlement phenomena only when they are subjected at the same time to plastic deformation and hydrogen evolution at their surface. Previous works have pointed out the absence of Hydrogen Embrittlement effects on pipeline steels cathodically protected under static load conditions. On the contrary in slow strain rate tests it is possible to observe the effect of the imposed potential and the strain rate on the hydrogen embrittlement steel behavior only after the necking of the specimens. J vs. Δa curves were measured on different pipeline steels in air and in aerated NaCl 3.5 g/L solution at free corrosion potential or under cathodic polarization at −1.05 and −2 V vs. SCE. The area under the J vs. Δa curves and the maximum crack propagation rate were taken into account. These parameters were compared with the ratio between the reduction of area in environment and in air obtained by slow strain rate test in the same environmental conditions and used to rank the different steels.
The Effect of Hydrogen on the Nanoindentation Behavior of Heat Treated 718 Alloy
Oct 2020
Publication
In this study the effect of precipitates on the surface mechanical properties in the presence of hydrogen (H) is investigated by in situ electrochemical nanoindentation. The nickel superalloy 718 is subjected to three different heat treatments leading to different sizes of the precipitates: (i) solution annealing (SA) to eliminate all precipitates (ii) the as-received (AR) sample with fine dispersed precipitates and (iii) the over-aged (OA) specimen with coarser precipitates. The nanoindentation is performed using a conical tip and a new method of reverse imaging is employed to calculate the nano-hardness. The results show that the hardness of the SA sample is significantly affected by H diffusion. However it could be recovered by removing the H from its matrix by applying an anodic potential. Since the precipitates in the OA and AR samples are different they are influenced by H differently. The hardness increase for the OA sample is more significant in −1200mV while for the AR specimen the H is more effective in −1500mV. In addition the pop-in load is reduced when the samples are exposed to cathodic charging and it cannot be fully recovered by switching to an anodic potential.
Integration of Wind Energy, Hydrogen and Natural Gas Pipeline Systems to Meet Community and Transportation Energy Needs: A Parametric Study
Apr 2014
Publication
The potential benefits are examined of the “Power-to-Gas” (P2G) scheme to utilize excess wind power capacity by generating hydrogen (or potentially methane) for use in the natural gas distribution grid. A parametric analysis is used to determine the feasibility and size of systems producing hydrogen that would be injected into the natural gas grid. Specifically wind farms located in southwestern Ontario Canada are considered. Infrastructure requirements wind farm size pipeline capacity geographical dispersion hydrogen production rate capital and operating costs are used as performance measures. The model takes into account the potential production rate of hydrogen and the rate that it can be injected into the local gas grid. “Straw man” systems are examined centered on a wind farm size of 100 MW integrating a 16-MW capacity electrolysis system typically producing 4700 kg of hydrogen per day.
Pt Catalytic Effects on the Corrosion and Hydrogen Chemisorption Properties of Zircaloy-2
Dec 2020
Publication
Noble metals are added to boiling water reactors (BWRs) to mitigate stress corrosion cracking of structural components made from steels and Ni-based alloys and this technology is referred to as Noble Metal Chemical Addition (NMCA) or NobleChemTM. There is a growing concern that NMCA can cause unwanted harmful effects on the corrosion and hydrogen uptake properties of Zircaloy-2 fuel cladding. To investigate this we have subjected Zircaloy-2 fuel claddings to out-of-pile BWR conditions in a custom-built autoclave. These claddings are oxidized in pressurized hot water (280 °C 9 MPa) for 25 60 and 150 days wherein Pt nanoparticles (~10 nm) were simultaneously injected. Cross-sectional focused ion beam cuts made at the oxide-metal interface reveal that the oxide growth is not significantly influenced by the local Pt loadings (≤ 1 µg·cm-2). Surprisingly an inverse correlation was observed between oxide thicknesses and metal's hydrogen contents. Interestingly Pt catalysts have led to diminished hydrogen absorption in specimens with liner exposed to the hot water. Overall Pt catalysts exhibited no detrimental effects on the corrosion rate and hydrogen absorption in Zircaloy-2.
Thickness-Prediction Method Involving Tow Redistribution for the Dome of Composite Hydrogen Storage Vessels
Feb 2022
Publication
Traditional thickness-prediction methods underestimate the actual dome thickness at polar openings leading to the inaccurate prediction of the load-bearing capacity of composite hydrogen storage vessels. A method of thickness prediction for the dome section of composite hydrogen storage vessels was proposed which involved fiber slippage and tow redistribution. This method considered the blocking effect of the port on sliding fiber tows and introduced the thickness correlation to predict the dome thickness at polar openings. The arc length corresponding to the parallel circle radius was calculated and then the actual radius values corresponding to the bandwidth were obtained by the interpolation method. The predicted thickness values were compared with the actual measured thickness. The maximum relative error of the predicted thickness was 4.19% and the mean absolute percentage error was 2.04%. The results show that the present method had a higher prediction accuracy. Eventually this prediction method was used to perform progressive damage analysis on vessels. By comparing with the results of the cubic spline function method the analysis results of the present method approached the actual case. This showed that the present method improved the accuracy of the design.
Polymer–Ceramic Composite Membranes for Water Removal in Membrane Reactors
Jun 2021
Publication
Methanol can be obtained through CO2 hydrogenation in a membrane reactor with higher yield or lower pressure than in a conventional packed bed reactor. In this study we explore a new kind of membrane with the potential suitability for such membrane reactors. Silicone–ceramic composite membranes are synthetized and characterized for their capability to selectively remove water from a mixture containing hydrogen CO2 and water at temperatures typical for methanol synthesis. We show that this membrane can achieve selective permeation of water under such harsh conditions and thus is an alternative candidate for use in membrane reactors for processes where water is one of the products and the yield is limited by thermodynamic equilibrium.
Review on the Influence of Temperature upon Hydrogen Effects in Structural Alloys
Mar 2021
Publication
It is well-documented experimentally that the influence of hydrogen on the mechanical properties of structural alloys like austenitic stainless steels nickel superalloys and carbon steels strongly depends on temperature. A typical curve plotting any hydrogen-affected mechanical property as a function of temperature gives a temperature THEmax where the degradation of this mechanical property reaches a maximum. Above and below this temperature the degradation is less. Unfortunately the underlying physico-mechanical mechanisms are not currently understood to the level of detail required to explain such temperature effects. Though this temperature effect is important to understand in the context of engineering applications studies to explain or even predict the effect of temperature upon the mechanical properties of structural alloys could not be identified. The available experimental data are scattered significantly and clear trends as a function of chemistry or microstructure are difficult to see. Reported values for THEmax are in the range of about 200–340 K which covers the typical temperature range for the design of structural components of about 230–310 K (from −40 to +40 °C). That is the value of THEmax itself as well as the slope of the gradient might affect the materials selection for a dedicated application. Given the current lack of scientific understanding a statistical approach appears to be a suitable way to account for the temperature effect in engineering applications. This study reviews the effect of temperature upon hydrogen effects in structural alloys and proposes recommendations for test temperatures for gaseous hydrogen applications
Application of the Incremental Step Loading Technique to Small Punch Tests on S420 Steel in Acid Environments
Dec 2020
Publication
The Small Punch test has been recently used to estimate mechanical properties of steels in aggressive environments. This technique very interesting when there is shortage of material consists in using a small plane specimen and punch it until it fails. The type of tests normally used are under a constant load in an aggressive environment with the target to determine the threshold stress. However this is an inaccurate technique which takes time as the tests are quite slow. In this paper the Small Punch tests are combined with the step loading technique collected in the standard ASTM F1624 [1] to obtain the value of threshold stress of an S420 steel in a total time of approximately one week. The ASTM F1624 indicates how to apply constant load steps in hydrogen embrittlement environments increasing them subsequently and adapting their duration until the specimen fails. The environment is created by means of cathodic polarization of cylindrical tensile specimens in an acid electrolyte. A batch of standard tests are performed to validate the methodology.
Recent Advances in Pd-Based Membranes for Membrane Reactors
Jan 2017
Publication
Palladium-based membranes for hydrogen separation have been studied by several research groups during the last 40 years. Much effort has been dedicated to improving the hydrogen flux of these membranes employing different alloys supports deposition/production techniques etc. High flux and cheap membranes yet stable at different operating conditions are required for their exploitation at industrial scale. The integration of membranes in multifunctional reactors (membrane reactors) poses additional demands on the membranes as interactions at different levels between the catalyst and the membrane surface can occur. Particularly when employing the membranes in fluidized bed reactors the selective layer should be resistant to or protected against erosion. In this review we will also describe a novel kind of membranes the pore-filled type membranes prepared by Pacheco Tanaka and coworkers that represent a possible solution to integrate thin selective membranes into membrane reactors while protecting the selective layer. This work is focused on recent advances on metallic supports materials used as an intermetallic diffusion layer when metallic supports are used and the most recent advances on Pd-based composite membranes. Particular attention is paid to improvements on sulfur resistance of Pd based membranes resistance to hydrogen embrittlement and stability at high temperature.
Atomistic Modelling of Light-element Co-segregation at Structural Defects in Iron
Dec 2018
Publication
Studying the behaviour of hydrogen in the vicinity of extended defects such as grain boundaries dislocations nanovoids and phase boundaries is critical in understanding the phenomenon of hydrogen embrittlement. A key complication in this context is the interplay between hydrogen and other segregating elements. Modelling the competition of H with other light elements requires an efficient description of the interactions of compositionally complex systems with the system sizes needed to appropriately describe extended defects often precluding the use of direct ab initio approaches. In this regard we have developed novel electronic structure approaches to understand the energetics and mutual interactions of light elements at representative structural features in high-strength ferritic steels. Using this approach we examine the co-segregation of hydrogen with carbon at chosen grain boundaries in α-iron. We find that the strain introduced by segregated carbon atoms at tilt grain boundaries increases the solubility of hydrogen close to the boundary plane giving a higher H concentration in the vicinity of the boundary than in a carbon-free case. Via simulated tensile tests we find that the simultaneous presence of carbon and hydrogen at grain boundaries leads to a significant decrease in the elongation to fracture compared with the carbon-free case.
Decrease in Hydrogen Embrittlement Susceptibility of 10B21 Screws by Bake Aging
Aug 2016
Publication
The effects of baking on the mechanical properties and fracture characteristics of low-carbon boron (10B21) steel screws were investigated. Fracture torque tests and hydrogen content analysis were performed on baked screws to evaluate hydrogen embrittlement (HE) susceptibility. The diffusible hydrogen content within 10B21 steel dominated the fracture behavior of the screws. The fracture torque of 10B21 screws baked for a long duration was affected by released hydrogen. Secondary ion mass spectroscopy (SIMS) result showed that hydrogen content decreased with increasing baking duration and thus the HE susceptibility of 10B21 screws improved. Diffusible hydrogen promoted crack propagation in high-stress region. The HE of 10B21 screws can be prevented by long-duration baking.
Hydrogen Induced Damage in Heavily Cold-Drawn Wires of Lean Duplex Stainless Steel
Sep 2017
Publication
The paper addresses the sensitivity to hydrogen embrittlement of heavily cold-drawn wires made of the new generation of lower alloyed duplex stainless steels often referred to as lean duplex grades. It includes comparisons with similar data corresponding to cold-drawn eutectoid and duplex stainless steels. For this purpose fracture tests under constant load were carried out with wires in the as-received condition and fatigue-precracked in air and exposed to ammonium thiocyanate solution. Microstructure and fractographic observations were essential means for the cracking analysis. The effect of hydrogen-assisted embrittlement on the damage tolerance of lean duplex steels was assessed regarding two macro-mechanical damage models that provide the upper bounds of damage tolerance and accurately approximate the failure behavior of the eutectoid and duplex stainless steels wires.
Energetics of LOHC: Structure-Property Relationships from Network of Thermochemical Experiments and in Silico Methods
Feb 2021
Publication
The storage of hydrogen is the key technology for a sustainable future. We developed an in silico procedure which is based on the combination of experimental and quantum-chemical methods. This method was used to evaluate energetic parameters for hydrogenation/dehydrogenation reactions of various pyrazine derivatives as a seminal liquid organic hydrogen carriers (LOHC) that are involved in the hydrogen storage technologies. With this in silico tool the tempo of the reliable search for suitable LOHC candidates will accelerate dramatically leading to the design and development of efficient materials for various niche applications.
Energy Transition: Measurement Needs for Carbon Capture, Usage and Storage
Jan 2021
Publication
This latest report describes the potential for CCUS as an important technology during the UK’s energy transition and focuses on the role that metrology (the science of measurement) could play in supporting its deployment. High priority measurement needs and challenges identified within this report include:
- Measuring and comparing the efficiency of different capture techniques and configurations to provide confidence in investments into technologies;
- Improving equations of state to support the development of accurate models used for controlling operational conditions;
- Improving CO2 flow measurement to support fiscal and financial metering as well as process control and;
- Improving the understanding and validation of dispersion models for emitted CO2 including plume migration to support safety assessment.
Combined Cooling and Power Management Strategy for a Standalone House Using Hydrogen and Solar Energy
May 2021
Publication
Tropical climate is characterized by hot temperatures throughout the year. In areas subject to this climate air conditioning represents an important share of total energy consumption. In some tropical islands there is no electric grid; in these cases electricity is often provided by diesel generators. In this study in order to decarbonize electricity and cooling production and to improve autonomy in a standalone application a microgrid producing combined cooling and electrical power was proposed. The presented system was composed of photovoltaic panels a battery an electrolyzer a hydrogen tank a fuel cell power converters a heat pump electrical loads and an adsorption cooling system. Electricity production and storage were provided by photovoltaic panels and a hydrogen storage system respectively while cooling production and storage were achieved using a heat pump and an adsorption cooling system respectively. The standalone application presented was a single house located in Tahiti French Polynesia. In this paper the system as a whole is presented. Then the interaction between each element is described and a model of the system is presented. Thirdly the energy and power management required in order to meet electrical and thermal needs are presented. Then the results of the control strategy are presented. The results showed that the adsorption cooling system provided 53% of the cooling demand. The use of the adsorption cooling system reduced the needed photovoltaic panel area the use of the electrolyzer and the use of the fuel cell by more than 60% and reduced energy losses by 7% (compared to a classic heat pump) for air conditioning.
Critical Review of Models for H2-permeation Through Polymers with Focus on the Differential Pressure Method
May 2021
Publication
To reduce loss of hydrogen in storage vessels with high energy-to-weight-ratio new materials especially polymers have to be developed as barrier materials. Very established methods for characterization of barrier materials with permeation measurements are the time-lag and flow rate method along with the differential pressure method which resembles the nature of hydrogen vessel systems very well. Long measurement durations are necessary to gain suitable measurement data for these evaluation methods and often restrictive conditions have to be fulfilled. For these reasons common models for hydrogen permeation through single-layer and multi-layer membranes as well as models for hydrogen gas properties were collected and reviewed. Using current computer power together with these models can reduce measurement time for characterization of the barrier properties of materials while additional information about the quality of the measurement results is obtained.
European Hydrogen Backbone
Jul 2020
Publication
This paper authored by eleven gas infrastructure companies and supported by Guidehouse describes how a dedicated hydrogen infrastructure can be created in
a significant part of the EU between 2030 and 2040 requiring work to start during the 2020s. The hydrogen infrastructure as proposed in this paper fits well with the ambitions of the EU Hydrogen Strategy and the Energy System Integration Strategy plus it aligns well with the goals of the recently announced Clean Hydrogen Alliance to scale up hydrogen enabled by hydrogen transport. Hydrogen clearly gains momentum and this paper aims to provide a contribution towards accelerating a large scale-up of hydrogen by enabling its transport from supply to demand across Europe.
This paper analyses the likely routes across Europe by 2030 2035 and 2040. The included maps show the suggested topology of hydrogen pipelines in ten European countries: Germany France Italy Spain the Netherlands Belgium Czech Republic Denmark Sweden and Switzerland.
You can download the whole report by clicking this link
a significant part of the EU between 2030 and 2040 requiring work to start during the 2020s. The hydrogen infrastructure as proposed in this paper fits well with the ambitions of the EU Hydrogen Strategy and the Energy System Integration Strategy plus it aligns well with the goals of the recently announced Clean Hydrogen Alliance to scale up hydrogen enabled by hydrogen transport. Hydrogen clearly gains momentum and this paper aims to provide a contribution towards accelerating a large scale-up of hydrogen by enabling its transport from supply to demand across Europe.
This paper analyses the likely routes across Europe by 2030 2035 and 2040. The included maps show the suggested topology of hydrogen pipelines in ten European countries: Germany France Italy Spain the Netherlands Belgium Czech Republic Denmark Sweden and Switzerland.
You can download the whole report by clicking this link
Geomechanical Simulation of Energy Storage in Salt Formations
Oct 2021
Publication
A promising option for storing large-scale quantities of green gases (e.g. hydrogen) is in subsurface rock salt caverns. The mechanical performance of salt caverns utilized for long-term subsurface energy storage plays a signifcant role in long-term stability and serviceability. However rock salt undergoes non-linear creep deformation due to long-term loading caused by subsurface storage. Salt caverns have complex geometries and the geological domain surrounding salt caverns has a vast amount of material heterogeneity. To safely store gases in caverns a thorough analysis of the geological domain becomes crucial. To date few studies have attempted to analyze the infuence of geometrical and material heterogeneity on the state of stress in salt caverns subjected to long-term loading. In this work we present a rigorous and systematic modeling study to quantify the impact of heterogeneity on the deformation of salt caverns and quantify the state of stress around the caverns. A 2D fnite element simulator was developed to consistently account for the non-linear creep deformation and also to model tertiary creep. The computational scheme was benchmarked with the already existing experimental study. The impact of cyclic loading on the cavern was studied considering maximum and minimum pressure that depends on lithostatic pressure. The infuence of geometric heterogeneity such as irregularly-shaped caverns and material heterogeneity which involves diferent elastic and creep properties of the diferent materials in the geological domain is rigorously studied and quantifed. Moreover multi-cavern simulations are conducted to investigate the infuence of a cavern on the adjacent caverns. An elaborate sensitivity analysis of parameters involved with creep and damage constitutive laws is performed to understand the infuence of creep and damage on deformation and stress evolution around the salt cavern confgurations.
Power to Hydrogen and Power to Water Using Wind Energy
May 2022
Publication
The need for energy and water security on islands has led to an increase in the use of wind power. However the intermittent nature of wind generation means it needs to be coupled with a storage system. Motivated by this two different models of surplus energy storage systems are investigated in this paper. In both models renewable wind energy is provided by a wind farm. In the first model a pumped hydro storage system (PHS) is used for surplus energy storage while in the second scenario a hybrid pumped hydrogen storage system (HPHS) is applied consisting of a PHS and a hydrogen storage system. The goal of this study is to compare the single and the hybrid storage system to fulfill the energy requirements of the island’s electricity load and desalination demands for domestic and irrigation water. The cost of energy (COE) is 0.287 EUR/kWh for PHS and 0.360 EUR/kWh for HPHS while the loss of load probability (LOLP) is 22.65% for PHS and 19.47% for HPHS. Sensitivity analysis shows that wind speed is the key parameter that most affects COE cost of water (COW) and LOLP indices while temperature affects the results the least.
Mechanical Spectroscopy Investigation of Point Defect-Driven Phenomena in a Cr Martensitic Steel
Oct 2018
Publication
The paper presents and discusses results of mechanical spectroscopy (MS) tests carried out on a Cr martensitic steel. The study regards the following topics: (i) embrittlement induced by Cr segregation; (ii) interaction of hydrogen with C–Cr associates; (iii) nucleation of Cr carbides. The MS technique permitted characterising of the specific role played by point defects in the investigated phenomena: (i) Cr segregation depends on C–Cr associates distribution in as-quenched material in particular a slow cooling rate (~150 K/min) from austenitic field involves an unstable distribution which leads to Cr concentration fluctuations after tempering at 973 K; (ii) hydrogen interacts with C–Cr associates and the phenomenon hinders hydrogen attack (HA) because hydrogen atoms bound by C–Cr associates are not able to diffuse towards grain boundaries and dislocation where CH4 bubbles may nucleate grow and merge to form the typical HA cracks; (iii) C–Cr associates take part in the nucleation mechanism of Cr7C3 carbides and specifically these carbides form by the aggregation of C–Cr associates with 1 Cr atom.
Multiscale Modelling of Hydrogen Transport and Segregation in Polycrystalline Steels
Jun 2018
Publication
A key issue in understanding and effectively managing hydrogen embrittlement in complex alloys is identifying and exploiting the critical role of the various defects involved. A chemo-mechanical model for hydrogen diffusion is developed taking into account stress gradients in the material as well as microstructural trapping sites such as grain boundaries and dislocations. In particular the energetic parameters used in this coupled approach are determined from ab initio calculations. Complementary experimental investigations that are presented show that a numerical approach capable of massive scale-bridging up to the macroscale is required. Due to the wide range of length scales accounted for we apply homogenisation schemes for the hydrogen concentration to reach simulation dimensions comparable to metallurgical process scales. Via a representative volume element approach an ab initio based scale bridging description of dislocation-induced hydrogen aggregation is easily accessible. When we extend the representative volume approach to also include an analytical approximation for the ab initio based description of grain boundaries we find conceptual limitations that hinder a quantitative comparison to experimental data in the current stage. Based on this understanding the development of improved strategies for further efficient scale bridging approaches is foreseen.
The Effect of Cold Rolling on the Hydrogen Susceptibility of 5083 Aluminium Alloy
Oct 2017
Publication
This work focuses in investigating the effect of cold deformation on the cathodic hydrogen charging of 5083 aluminum alloy. The aluminium alloy was submitted to a cold rolling process until the average thickness of the specimens was reduced by 7% and 15% respectively. A study of the structure microhardness and tensile properties of the hydrogen charged aluminium specimens with and without cold rolling indicated that the cold deformation process led to an increase of hydrogen susceptibility of this aluminum alloy.
Hydrogen Impacts on Downstream Installation and Appliances
Nov 2019
Publication
The report analyses the technical impacts to end-users of natural gas in Australian distribution networks when up to 10% hydrogen (by volume) is mixed with natural gas.
The full report can be found at this link.
The full report can be found at this link.
No more items...