Publications
Constrained Extended Kalman Filter Design and Application for On-line State Estimation of High-order Polymer Electrolyte Membrane Fuel Cell Systems
Jun 2021
Publication
In this paper an alternative approach to extended Kalman filtering (EKF) for polymer electrolyte membrane fuel cell (FC) systems is proposed. The goal is to obtain robust real-time capable state estimations of a high-order FC model for observer applications mixed with control or fault detection. The introduced formulation resolves dependencies on operating conditions by successive linearization and constraints allowing to run the nonlinear FC model at significantly lower sampling rates than with standard approaches. The proposed method provides state estimates for challenging operating conditions such as shut-down and start-up of the fuel cell for which the unconstrained EKF fails. A detailed comparison with the unscented Kalman filter shows that the proposed EKF reconstructs the outputs equally accurate but nine times faster. An application to measured data from an FC powered passenger car is presented yielding state estimates of a real FC system which are validated based on the applied model.
Energy Saving in Public Transport Using Renewable Energy
Jan 2017
Publication
Hydrogen produced by renewable sources represents an interesting way to reduce the energetic dependence on fossil fuels in the transportation sector. This paper shows a feasibility study for the production storage and distribution of hydrogen in the western Sicilian context using three different renewable sources: wind biomass and sea wave. The objective of this study is the evaluation of the hydrogen demand needed to replace all diesel supplied buses with electrical buses equipped with fuel cells. An economic analysis is presented with the evaluation of the avoidable greenhouse gas emissions. Four different scenarios correlate the hydrogen demand for urban transport to the renewable energy resources present in the territories and to the modern technologies available for the production of hydrogen. The study focuses on the possibility of tapping into the potential of renewable energies (wind biomass and sea wave) for the production of hydrogen by electrolysis. The use of hydrogen would reduce significantly the emissions of particulate and greenhouse gases in the urban districts under analysis.
Impact and Challenges of Reducing Petroleum Consumption for Decarbonization
Apr 2022
Publication
This study aimed to identify the impact of achieving the 1.5 ◦C target on the petroleum supply chain in Japan and discuss the feasibility and challenges of decarbonization. First a national material flow was established for the petroleum supply chain in Japan including processes for crude petroleum refining petroleum product manufacturing plastic resin and product manufacturing and by-product manufacturing. In particular by-product manufacturing processes such as hydrogen gaseous carbon dioxide and sulfur were selected because they are utilized in other industries. Next the outlook for the production of plastic resin hydrogen dry ice produced from carbon dioxide gas and sulfur until 2050 was estimated for reducing petroleum consumption required to achieve the 1.5 ◦C target. As a result national petroleum treatment is expected to reduce from 177048.00 thousand kl in 2019 to 126643.00 thousand kl in 2030 if the reduction in petroleum consumption is established. Along with this decrease plastic resin production is expected to decrease from 10500.00 thousand ton in 2019 to 7511.00 thousand ton by 2030. Conversely the plastic market is expected to grow steadily and the estimated plastic resin production in 2030 is expected to be 20079.00 thousand ton. This result indicates that there is a large output gap between plastic supply and demand. To mitigate this gap strongly promoting the recycling of waste plastics and making the price competitiveness of biomass plastics equal to that of petroleum-derived plastics are necessary
Development of Visible-Light-Driven Rh–TiO2-CeO2 Hybrid Photocatalysts for Hydrogen Production
Jul 2021
Publication
Visible-light-driven hydrogen production through photocatalysis has attracted enormous interest owing to its great potential to address energy and environmental issues. However photocatalysis possesses several limitations to overcome for practical applications such as low light absorption efficiency rapid charge recombination and poor stability of photocatalysts. Here the preparation of efficient noble metal–semiconductor hybrid photocatalysts for photocatalytic hydrogen production is presented. The prepared ternary Rh–TiO2–CeO2 hybrid photocatalysts exhibited excellent photocatalytic performance toward the hydrogen production reaction compared with their counterparts ascribed to the synergistic combination of Rh TiO2 and CeO2.
Deployment of Fuel Cell Vehicles and Hydrogen Refueling Station Infrastructure: A Global Overview and Perspectives
Jul 2022
Publication
Hydrogen fuel cell vehicles can complement other electric vehicle technologies as a zeroemission technology and contribute to global efforts to achieve the emission reduction targets. This article spotlights the current deployment status of fuel cells in road transport. For this purpose data collection was performed by the Advanced Fuel Cells Technology Collaboration Programme. Moreover the available incentives for purchasing a fuel cell vehicle in different countries were reviewed and future perspectives summarized. Based on the collected information the development trends in the last five years were analyzed and possible further trends that could see the realization of the defined goals derived. The number of registered vehicles was estimated to be 51437 units with South Korea leading the market with 90% of the vehicles being concentrated in four countries. A total of 729 hydrogen refueling stations were in operation with Japan having the highest number of these. The analysis results clearly indicate a very positive development trend for fuel cell vehicles and hydrogen refueling stations in 2021 with the highest number of new vehicles and stations in a single year paralleling the year’s overall economic recovery. Yet a more ambitious ramp-up in the coming years is required to achieve the set targets.
Review on Blended Hydrogen-fuel Internal Combustion Engines: A Case Study for China
Apr 2022
Publication
Under the dual pressure of energy conservation and environmental protection the internal combustion engine industry is facing huge challenges and it is imperative to find new clean energy. Hydrogen energy is expected to replace traditional fossil fuels as an excellent fuel for internal combustion engines because of its clean continuous regeneration and good combustion performance. This review article focuses on the research and development of blended hydrogen-fuel internal combustion engines in China since the beginning of this century. The main achievements gained by Chinese researchers in performing research on the effects of the addition of hydrogen into engines which predominantly include many types of hydrogen-blended engines such as gasoline diesel natural gas and alcohol engines rotary engines are discussed and analyzed in these areas of the engine’s performance and the combustion and emission characteristics etc. The merits and demerits of blended hydrogen-fuel internal combustion engines could be concluded and summarized after discussion. Finally the development trend and direction of exploration on hydrogen-fuel internal combustion engines could also be forecasted for relevant researchers.
Synthesis and Characterization of Carbon-Based Composites for Hydrogen Storage Application
Dec 2021
Publication
Recent development shows that carbon-based composites are proving to be the most promising materials in hydrogen energy production storage and conversion applications. In this study composites of the copper-based metal-organic framework with different ratios of graphite oxide have been prepared for hydrogen storage application. The developed materials are characterized by X-ray diffraction (XRD) gravimetric thermal analysis (TGA) scanning electron microscopy (SEM) and BET. The newly developed composites have an improved crystalline structure and an increased surface area. The results of the experiment showed that the composite material MOF/GO 20% can store 6.12% of hydrogen at −40 ◦C.
Heat to Hydrogen by RED—Reviewing Membranes and Salts for the RED Heat Engine Concept
Dec 2021
Publication
The Reverse electrodialysis heat engine (REDHE) combines a reverse electrodialysis stack for power generation with a thermal regeneration unit to restore the concentration difference of the salt solutions. Current approaches for converting low-temperature waste heat to electricity with REDHE have not yielded conversion efficiencies and profits that would allow for the industrialization of the technology. This review explores the concept of Heat-to-Hydrogen with REDHEs and maps crucial developments toward industrialization. We discuss current advances in membrane development that are vital for the breakthrough of the RED Heat Engine. In addition the choice of salt is a crucial factor that has not received enough attention in the field. Based on ion properties relevant for both the transport through IEMs and the feasibility for regeneration we pinpoint the most promising salts for use in REDHE which we find to be KNO3 LiNO3 LiBr and LiCl. To further validate these results and compare the system performance with different salts there is a demand for a comprehensive thermodynamic model of the REDHE that considers all its units. Guided by such a model experimental studies can be designed to utilize the most favorable process conditions (e.g. salt solutions).
Characterization of the Hazards from Jet Releases of Hydrogen
Sep 2005
Publication
Hydrogen is a convenient energy storage medium; it can be produced from fossil fuels and biomass via chemical conversion processes or from intermittent renewable sources like wind and solar via electrolysis. It is the fuel of choice for the clean fuel-cell vehicles of the future. If the general public are to use hydrogen as a vehicle fuel customers must be able to handle hydrogen with the same degree of confidence and with comparable risk as conventional liquid and gaseous fuels. For the safe design of retail facilities through the development of appropriate codes and standards it is essential to understand all the hazards that could arise following an accidental release of hydrogen. If it is to be stored and used as a high-pressure gas the hazards associated with jet releases from accidental leaks must be considered. This paper describes work by Shell and the Health and Safety Laboratory to characterise the hazards from jet releases of hydrogen. Jet release experiments have been carried out using small leaks (circular holes ranging from 1 mm to 12 mm diameter) at system pressures up to 150 barg. Concentration measurements were made in the unignited free jets to determine the extent of the flammable cloud generated. Ignited jets were observed both in the visible and infrared to determine the flame size and shape. The experimental results for the extent of the flammable cloud and jet flame length were found to be in good agreement with model predictions.
On the Climate Impacts of Blue Hydrogen Production
Nov 2021
Publication
Natural gas based hydrogen production with carbon capture and storage is referred to as blue hydrogen. If substantial amounts of CO2 from natural gas reforming are captured and permanently stored such hydrogen could be a low-carbon energy carrier. However recent research raises questions about the effective climate impacts of blue hydrogen from a life cycle perspective. Our analysis sheds light on the relevant issues and provides a balanced perspective on the impacts on climate change associated with blue hydrogen. We show that such impacts may indeed vary over large ranges and depend on only a few key parameters: the methane emission rate of the natural gas supply chain the CO2 removal rate at the hydrogen production plant and the global warming metric applied. State-of-the-art reforming with high CO2 capture rates combined with natural gas supply featuring low methane emissions does indeed allow for substantial reduction of greenhouse gas emissions compared to both conventional natural gas reforming and direct combustion of natural gas. Under such conditions blue hydrogen is compatible with low-carbon economies and exhibits climate change impacts at the upper end of the range of those caused by hydrogen production from renewable-based electricity. However neither current blue nor green hydrogen production pathways render fully “net-zero” hydrogen without additional CO2 removal.
Climate Impact Reduction Potentials of Synthetic Kerosene and Green Hydrogen Powered Mid-Range Aircraft Concepts
Jun 2022
Publication
One of aviation’s major challenges for the upcoming decades is the reduction in its climate impact. As synthetic kerosene and green hydrogen are two promising candidates their potentials in decreasing the climate impact is investigated for the mid-range segment. Evolutionary advancements for 2040 are applied first with an conventional and second with an advanced low-NOx and low-soot combustion chamber. Experts and methods from all relevant disciplines are involved starting from combustion turbofan engine overall aircraft design fleet level and climate impact assessment allowing a sophisticated and holistic evaluation. The main takeaway is that both energy carriers have the potential to strongly reduce the fleet level climate impact by more than 75% compared with the reference. Applying a flight-level constraint of 290 and a cruise Mach number of 0.75 causing 5% higher average Direct Operating Costs (DOC) the reduction is even more than 85%. The main levers to achieve this are the advanced combustion chamber an efficient contrail avoidance strategy in this case a pure flight-level constraint and the use of CO2 neutral energy carrier in a descending priority order. Although vehicle efficiency gains only lead to rather low impact reduction they are very important to compensate the increased costs of synthetic fuels or green hydrogen.
SNG Generation via Power to Gas Technology: Plant Design and Annual Performance Assessment
Nov 2020
Publication
Power to gas (PtG) is an emerging technology that allows to overcome the issues due to the increasingly widespread use of intermittent renewable energy sources (IRES). Via water electrolysis power surplus on the electric grid is converted into hydrogen or into synthetic natural gas (SNG) that can be directly injected in the natural gas network for long-term energy storage. The core units of the Power to synthetic natural gas (PtSNG) plant are the electrolyzer and the methanation reactors where the renewable electrolytic hydrogen is converted to synthetic natural gas by adding carbon dioxide. A technical issue of the PtSNG plant is the different dynamics of the electrolysis unit and the methanation unit. The use of a hydrogen storage system can help to decouple these two subsystems and to manage the methanation unit for assuring long operation time and reducing the number of shutdowns. The purpose of this paper is to evaluate the energy storage potential and the technical feasibility of the PtSNG concept to store intermittent renewable sources. Therefore different plant sizes (1 3 and 6 MW) have been defined and investigated by varying the ratio between the renewable electric energy sent to the plant and the total electric energy generated by the renewable energy source (RES) facility based on a 12 MW wind farm. The analysis has been carried out by developing a thermochemical and electrochemical model and a dynamic model. The first allows to predict the plant performance in steady state. The second allows to forecast the annual performance and the operation time of the plant by implementing the control strategy of the storage unit. The annual overall efficiencies are in the range of 42–44% low heating value (LHV basis). The plant load factor i.e. the ratio between the annual chemical energy of the produced SNG and the plant capacity results equal to 60.0% 46.5% and 35.4% for 1 3 and 6 MW PtSNG sizes respectively.
The Challenges of Hydrogen Storage on a Large Scale
Sep 2021
Publication
With the growing success of green hydrogen the general trend is for increased hydrogen production and large quantities of storage. Engie’s projects have grown from a few kilos of hydrogen to the quest for large scale production and associated storage – e.g. several tons or tens of tons. Although a positive sign for Engie’s projects it does inevitably result in challenges in new storage methods and in risks management related to such facilities; particularly with hydrogen facilities being increasingly placed in the vicinity of general public sites. For example a leak on hydrogen storage can generate significant thermal and overpressure effects on surrounding people/facilities in the event of ignition. Firewalls can be installed to protect individuals / infrastructure from thermal effects but the adverse result is that this solution can increase the violence of an explosion in case of delayed ignition or confinement. The manner of emergency intervention on a pool fire of hydrogen is also totally different from intervention on compressed gaseous hydrogen. The first part of this presentation will explain different means to store hydrogen in large quantities. The second part will present for each storage the specific risks generated. The third and final part will explain how these risks can be addressed on a technical point of view by safety devices or by other solutions (separation distance passive/active means …).
Hydrogen Double Compression-expansion Engine (H2DCEE): A Sustainable Internal Combustion Engine with 60%+ Brake Thermal Efficiency Potential at 45 Bar BMEP
May 2022
Publication
Hydrogen (H2) internal combustion engines may represent cost-effective and quick solution to the issue of the road transport decarbonization. A major factor limiting their competitiveness relative to fuel cells (FC) is the lower efficiency. The present work aims to demonstrate the feasibility of a H2 engine with FC-like 60%+ brake thermal efficiency (BTE) levels using a double compression-expansion engine (DCEE) concept combined with a high pressure direct injection (HPDI) nonpremixed H2 combustion. Experimentally validated 3D CFD simulations are combined with 1D GT-Power simulations to make the predictions. Several modifications to the system design and operating conditions are systematically implemented and their effects are investigated. Addition of a catalytic burner in the combustor exhaust insulation of the expander dehumidification of the EGR and removal of the intercooling yielded 1.5 1.3 0.8 and 0.5%-point BTE improvements respectively. Raising the peak pressure to 300 bar via a larger compressor further improved the BTE by 1.8%-points but should be accompanied with a higher injector-cylinder differential pressure. The λ of ~1.4 gave the optimum tradeoff between the mechanical and combustion efficiencies. A peak BTE of 60.3% is reported with H2DCEE which is ~5%-points higher than the best diesel-fueled DCEE alternative.
Design and Analysis of a New Renewable-Nuclear Hybrid Energy System for Production of Hydrogen, Fresh Water and Power
Nov 2021
Publication
This paper investigates an integrated system where solar energy system (with 75MWp bifacial PV arrays) and nuclear power plant (with 2×10MWt HTR-10 type pebble bed reactors) are hybridized and integrated with a 72MWe capacity high-temperature solid oxide electrolysis (SOE) unit to produce hydrogen fresh water and electrical power. Bifacial PV plant is integrated to system for supplying electricity with a low LCOE and zero-carbon system. A Rankine cycle is integrated to generate power from the steam that generated from nuclear heat. According to the available irradiance; the steam is diverted between steam turbine and high-temperature electrolyzer for hydrogen and power generation. Multi-effect desalination unit is integrated to exploit the excess heat to generate fresh water. A system performance assessment is carried out by energy and exergy efficiencies thermodynamically. The bifacial PV plant is analyzed in six selected latitudes in order to assess the feasibility and applicability of the system. Numerous time-dependent analyses are carried out to study the effects of varying inputs such as solar radiation intensity. For 20MWt nuclear 75MWp solar capacity; hydrogen productions are found to be between 0.036 and 0.562kg/s. Among the Northern Hemisphere latitudes the peak daily hydrogen production rate is expected to reach 25.9 tons of hydrogen per day for the 75 °N case mostly with the influence of low temperature and high albedo. The pitch distance change is increased the hydrogen production rate by 28% between 3 m and 7 m tracker spacing. The overall system energy efficiency is obtained between 21.8% and 24.2% where the overall system exergy efficiency is found between 18.6% and 21.1% under dynamic conditions for the 45°N latitude case.
Photocatalytic Production of Hydrogen from Binary Mixtures of C-3 Alcohols on Pt/TiO2: Influence of Alcohol Structure
Oct 2018
Publication
The effect of alcohol structure on photocatalytic production of H2 from C-3 alcohols was studied on 0.5% Pt/TiO2. A C-2 alcohol (ethanol) was also included for comparative purposes. For individual reactions from 10% v/v aqueous solutions of alcohols hydrogen production followed the order ethanol ≈ propan-2-ol > propan-1- ol > propane-123-triol > propane-12-diol > propane-13-diol. The process was found to be quite sensitive to the presence of additional alcohols in the reaction medium as evidenced by competitive reactions. Therefore propan-2-ol conversion was retarded in the presence of traces of the other alcohols this effect being particularly significant for vicinal diols. Additional experiments showed that adsorption of alcohols on Pt/TiO2 followed the order propane-123-triol > propane-12-diol > propane-13-diol > propan-1-ol > ethanol > propan-2-ol. Adsorption studies (DRIFT) and monitoring of reaction products showed that the main photocatalyzed process for propan-2-ol and propan-1-ol transformation is dehydrogenation to the corresponding carbonyl compound (especially for propan-2-ol both in the liquid and the gas phase). In the case of liquid-phase transformation of propan-1-ol ethane was also detected which is indicative of the dissociative mechanism to lead to the corresponding C-1 alkane. All in all competitive reactions proved to be very useful for mechanistic studies.
Optimising Onshore Wind with Energy Storage Considering Curtailment
May 2022
Publication
Operating energy storage alongside onshore wind can improve its economics whilst providing a pathway for otherwise curtailed generation. In this work we present a framework to evaluate the economic potential of onshore wind co-located with battery storage (BS) and a hydrogen electrolyser (HE). This model is applied to a case study in Great Britain using historic data and considering local network charges and the cost of using curtailed power capturing an often neglected element of competition. We use a Markov Chain to model wind curtailment and determine the optimised scheduling of the storage as we vary price parameters and storage sizing. Finally by considering storage CAPEX and comparing against the case with no storage we can determine the value added (or lost) by different sized BS and HE for an onshore wind owner as a function of power purchase agreement (PPA) and green hydrogen market price. Results show that value added increases when HE is increased and when BS is decreased. Additionally a 10 MW electrolysers uses 27% more curtailed wind than 10 MW BS.
The Hydrogen Energy Infrastructure Development in Japan
Nov 2018
Publication
The actual start of the full-scale hydrogen energy infrastructure operations is scheduled to 2020 in Japan. The scope of factors and policy for the hydrogen infrastructure development in Japan is made. The paper provides observation for the major undergoing and already done projects for each link within hydrogen infrastructure chain – from production to end-user applications. Implications for the Russian energy policy are provided.
How Long Will Combustion Vehicles Be Used? Polish Transport Sector on the Pathway to Climate Neutrality
Nov 2021
Publication
Transformation of road transport sector through replacing of internal combustion vehicles with zero-emission technologies is among key challenges to achievement of climate neutrality by 2050. In a constantly developing economy the demand for transport services increases to ensure continuity in the supply chain and passenger mobility. Deployment of electric technologies in the road transport sector involves both businesses and households its pace depends on the technological development of zero-emission vehicles presence of necessary infrastructure and regulations on emission standards for new vehicles entering the market. Thus this study attempts to estimate how long combustion vehicles will be in use and what the state of the fleet will be in 2050. For obtainment of results the TR3E partial equilibrium model was used. The study simulates the future fleet structure in passenger and freight transport. The results obtained for Poland for the climate neutrality (NEU) scenario show that in 2050 the share of vehicles using fossil fuels will be ca. 30% in both road passenger and freight transport. The consequence of shifts in the structure of the fleet is the reduction of CO2 emissions ca. 80% by 2050 and increase of the transport demand for electricity and hydrogen.
Study of Hydrogen Enriched Premixed Flames
Sep 2005
Publication
In the present paper the theoretical study of the un-stretched laminar premixed flames of hydrogen-methane mixtures is carried out by using the detailed reaction mechanism GRI-Mech 3.0 implemented in the CHEMKIN software to find out the effect of hydrogen addition on the hybrid fuel burning velocity. The model results show that the laminar burning velocity of the hydrogen-methane mixtures is not the linear regression of those of the pure fuels since it results substantially less than the proportional averaging of the values for the fuel constituents. Moreover the effect of hydrogen addition in terms of enhancement of the mixture laminar burning velocity with respect to the methane is relevant only at very high values of the hydrogen content in the hybrid mixtures (> 70 % mol.). The performed sensitivity analysis shows that these results can be attributed to kinetics and in particular to the concentration of H radicals: depending on the hydrogen content in the fuels mixture the production of the H radicals can affect the limiting reaction step for methane combustion. Two regimes are identified in the hydrogen-methane combustion. The first regime is controlled by the methane reactivity the hydrogen being not able to significantly affect the laminar burning velocity (< 70 % mol.). In the second regime the hydrogen combustion has a relevant role as its high content in the hybrid fuel leads to a significant H radicals pool thus enhancing the reaction rate of the more slowly combusting methane.
Developing New Understanding of Photoelectrochemical Water Splitting Via In-situ Techniques: A Review on Recent Progress
Mar 2014
Publication
Photoelectrochemical (PEC) water splitting is a promising technology for solar hydrogen production to build a sustainable renewable and clean energy economy. Given the complexity of the PEC water splitting processes it is important to note that developing in-situ techniques for studying PEC water splitting presents a formidable challenge. This review is aimed at highlighting advantages and disadvantages of each technique while offering a pathway of potentially combining several techniques to address different aspects of interfacial processes in PEC water splitting. We reviewed recent progress in various techniques and approaches utilized to study PEC water splitting focusing on spectroscopic and scanning-probe methods.
The Development of an Assessment Framework to Determine the Technical Hydrogen Production Potential from Wind and Solar Energy
Jun 2022
Publication
Electrolytic hydrogen produced from wind and solar energy is considered a long-term option for multi-sectoral decarbonization. The study objective is to develop a framework for assessing country-level hydrogen technical potential from wind and solar energy. We apply locational suitability and zonal statistical analyses methods in a geographic information system-based environment to derive granular insights on non-captive technically exploitable hydrogen potential in high-resource locations. Seven setback factors were considered for locational suitability and integrated with modules developed for evaluating the wind and solar resource penetration from open-source theoretical renewable resource geospatial data and electricity-to-hydrogen conversion analyses. The technique applied in this study would be a relevant contribution to determining national and regional-wide electrolytic hydrogen production potentials in other jurisdictions with requisite adjustments to data and technical constraints. The results from the case study country Canada – a major hydrogen-producing country – show that the technical hydrogen potentials from wind and solar energy are approximately 1897 and 448 million metric tonnes per year respectively at least 6.3 times greater than global hydrogen demand in 2019. When we integrated locational data on enabling infrastructure we discovered that the lack of access to power transmission lines in low-population-density areas of the country significantly reduces the exploitable wind- and solar-based hydrogen potential by over 80% and 6% respectively. The findings of this study show that in the absence of spatial data on infrastructural constraints the exploitable hydrogen potential in a jurisdiction can be overestimated leading to improper guidance for policy and decision-makers.
North East Network & Industrial Cluster Development – Summary Report A Consolidated Summary Report by SGN & Wood
Nov 2021
Publication
In response to the global climate emergency governments across the world are aiming to lower greenhouse gas emissions to slow the damaging effects of climate change.<br/>The Scottish Government has set a target of net zero emissions by 2045. Already a global leader in renewable energy and low-carbon technology deployment Scotland’s energy landscape is set to undergo more change as it moves toward becoming carbon-neutral. Key to that change will be the transition from natural gas to zero-carbon gases like hydrogen and biomethane.<br/>Scotland’s north-east and central belt are home to some of its largest industrial carbon emitters. The sector’s reliance on natural gas means that it emits 11.9Mt of CO2 emissions per year says NECCUS: the equivalent of 2.6 million cars or roughly all the cars in Scotland. Most homes and businesses across Scotland also use natural gas for heating.<br/>Our North-East Network and Industrial Cluster project is laying the foundations for the rapid decarbonisation of this high-emitting sector. We’ve published a report outlining the practical steps needed to rapidly decarbonise a significant part of Scotland’s homes and industry. It demonstrates how hydrogen can play a leading role in delivering the Scottish Government’s target of one million homes with low carbon heat by 2030.<br/>The research published with global consulting and engineering advisor Wood sets out a transformational and accelerated pathway to 100% hydrogen for Scotland’s gas networks which you can see on the map below. It also details the feasibility of a CO2 collection network to securely capture transport and store carbon dioxide emissions deep underground.
East Coast Hydrogen Feasibility Report
Nov 2021
Publication
The highlights of the report include:
- East Coast Hydrogen has the potential to connect up to 7GW of hydrogen production by 2030 alone exceeding the UK Government’s 5GW by 2030 target in a single project. It represents an unmissable opportunity for government and the private sector to work together in delivering on our ambitious decarbonisation targets.
- East Coast Hydrogen can use the natural assets of the North of England including existing and potential hydrogen storage facilities and build on the hydrogen production in two of the UK’s largest industrial clusters in the North East and North West in turn ensuring significant private sector investment in the UK’s industrial heartlands.
- This would be the first step in the conversion of our national gas grid to hydrogen and will act as a blueprint for subsequent conversions across the UK.
- The project will also demonstrate the innovation engineering capabilities and economic opportunity in the North and create tens of thousands of highly skilled Green jobs in the future hydrogen economy."
Law and Policy Review on Green Hydrogen Potential in ECOWAS Countries
Mar 2022
Publication
This paper aims to review existing energy-sector and hydrogen-energy-related legal policy and strategy documents in the ECOWAS region. To achieve this aim current renewable-energyrelated laws acts of parliament executive orders presidential decrees administrative orders and memoranda were analyzed. The study shows that ECOWAS countries have strived to design consistent legal instruments regarding renewable energy in developing comprehensive legislation and bylaws to consolidate it and to encourage investments in renewable energy. Despite all these countries having a legislative basis for regulating renewable energy there are still weaknesses that revolve around the law and policy regarding its possible application in green hydrogen production and use. The central conclusion of this review paper is that ECOWAS member states presently have no official hydrogen policies nor bylaws in place. The hydrogen rise presents a challenge and opportunity for members to play an important role in the fast-growing global hydrogen market. Therefore these countries need to reform their regulatory frameworks and align their policies by introducing green hydrogen production in order to accomplish their green economy transition for the future and to boost the continent’s sustainable development.
Dynamic Modeling of a PEM Fuel Cell Power Plant for Flexibility Optimization and Grid Support
Jun 2022
Publication
The transition toward high shares of non-programmable renewable energy sources in the power grid requires an increase in the grid flexibility to guarantee grid reliability and stability. This work developed within the EU project Grasshopper identifies hydrogen Fuel Cell (FC) power plants based on low temperature PEM cells as a source of flexibility for the power grid. A dynamic numerical model of the flexible FC system is developed and tested against experimental data from a 100-kW pilot plant built within the Grasshopper project. The model is then applied to assess the flexible performance of a 1 MW system in order to optimize the scale-up of the pilot plant to the MW-size. Simulations of load-following operation show the flexibility of the plant which can ramp up and down with a ramp rate depending only on an externally imposed limit. Warm-up simulations allow proposing solutions to limit the warm-up time. Of main importance are the minimization of the water inventory in the system and the construction of a compact system which minimizes the distance between the components.
Scenarios to Decarbonize Austria’s Energy Consumption and the Role of Underground Hydrogen Storage
May 2022
Publication
The European Union is aiming at reaching greenhouse gas (GHG) emission neutrality in 2050. Austria’s current greenhouse gas emissions are 80 million t/year. Renewable Energy (REN) contributes 32% to Austria’s total energy consumption. To decarbonize energy consumption a substantial increase in energy generation from renewable energy is required. This increase will add to the seasonality of energy supply and amplifies the seasonality in energy demand. In this paper the seasonality of energy supply and demand in a Net-Zero Scenario are analyzed for Austria and requirements for hydrogen storage derived. We looked into the potential usage of hydrogen in Austria and the economics of hydrogen generation and technology and market developments to assess the Levelized Cost of Hydrogen (LCOH). Then we cover the energy consumption in Austria followed by the REN potential. The results show that incremental potential of up to 140 TWh for hydropower photovoltaic (PV) and wind exists in Austria. Hydropower generation and PV is higher in summer- than in wintertime while wind energy leads to higher energy generation in wintertime. The largest incremental potential is PV with agrivoltaic systems significantly increasing the area amenable for PV compared with PV usage only. Battery Electric Vehicles (BEV) and Fuel Cell Vehicles (FCV) use energy more efficiently than Internal Combustion Engine (ICE) cars; however the use of hydrogen for electricity generation significantly decreases the efficiency due to electricity–hydrogen– electricity conversion. The increase in REN use and the higher demand for energy in Austria in wintertime require seasonal storage of energy. We developed three scenarios Externally Dependent Scenario (EDS) Balanced Energy Scenario (BES) or Self-Sustained Scenario (SSS) for Austria. The EDS scenario assumes significant REN import to Austria whereas the SSS scenario relies on REN generation within Austria. The required hydrogen storage would be 10.82 bn m3 for EDS 13.34 bn m3 for BES and 18.69 bn m3 for SSS. Gas and oil production in Austria and the presence of aquifers indicates that sufficient storage capacity might be available. Significant technology development is required to be able to implement hydrogen as an energy carrier and to balance seasonal energy demand and supply.
Metallurgical and Hydrogen Effects on the Small Punch Tested Mechanical Properties of PH-13-8Mo Stainless Steel
Oct 2018
Publication
PH13-8Mo is a precipitation hardened martensitic stainless steel known for its high strength but also for its high sensitivity to hydrogen embrittlement. Small punch test SPT (also referred to as the ball punch test BPT) is a relatively simple and new technique to assess the mechanical properties of samples under biaxial loading conditions. The current study utilizes the unique loading conditions of SPT to investigate the mechanical behavior and fracture prior to and after the hydrogen charging of PH13-8Mo steel. The mechanical characteristics were investigated at different metallurgical conditions: solution and quenched (SQ); fully-aged (550 °C for 4 h) and over-aged (600 °C for 4 h). Samples were cathodically hydrogen charged in a 1 M H2SO4 solution containing NaAsO2 (0.125 mg/L) at 50 mA/cm2 for different durations of 0.5 h 2 h and 19 h and compared to the as-heat-treated condition. A fractographic examination was performed following the SPT measurements by scanning electron microscopy (SEM). Transmission electron microscopy (TEM) and x-ray diffraction (XRD) analyses were used as complementary characterization tools. It is shown that upon hydrogen charging the SPT fracture mode changes from ductile to completely brittle with a transition of mixed mode cracking also affecting the SPT load-displacement curve.
Thermochemical Recuperation to Enable Efficient Ammonia-Diesel Dual-Fuel Combustion in a Compression Ignition Engine
Nov 2021
Publication
A thermochemical recuperation (TCR) reactor was developed and experimentally evaluated with the objective to improve dual-fuel diesel–ammonia compression ignition engines. The novel system simultaneously decomposed ammonia into a hydrogen-containing mixture to allow high diesel fuel replacement ratios and oxidized unburned ammonia emissions in the exhaust overcoming two key shortcomings of ammonia combustion in engines from the previous literature. In the experimental work a multi-cylinder compression ignition engine was operated in dual-fuel mode using intake-fumigated ammonia and hydrogen mixtures as the secondary fuel. A full-scale catalytic TCR reactor was constructed and generated the fuel used in the engine experiments. The results show that up to 55% of the total fuel energy was provided by ammonia on a lower heating value basis. Overall engine brake thermal efficiency increased for modes with a high exhaust temperature where ammonia decomposition conversion in the TCR reactor was high but decreased for all other modes due to poor combustion efficiency. Hydrocarbon and soot emissions were shown to increase with the replacement ratio for all modes due to lower combustion temperatures and in-cylinder oxidation processes in the late part of heat release. Engine-out oxides of nitrogen (NOx) emissions decreased with increasing diesel replacement levels for all engine modes. A higher concentration of unburned ammonia was measured in the exhaust with increasing replacement ratios. This unburned ammonia predominantly oxidized to NOx species over the oxidation catalyst used within the TCR reactor. Ammonia substitution thus increased post-TCR reactor ammonia and NOx emissions in this work. The results show however that engine-out NH3 -to-NOx ratios were suitable for passive selective catalytic reduction thus demonstrating that both ammonia and NOx from the engine could be readily converted to N2 if the appropriate catalyst were used in the TCR reactor.
Solid-State Hydrogen Storage for a Decarbonized Society
Nov 2021
Publication
Humanity is confronted with one of the most significant challenges in its history. The excessive use of fossil fuel energy sources is causing extreme climate change which threatens our way of life and poses huge social and technological problems. It is imperative to look for alternate energy sources that can replace environmentally destructive fossil fuels. In this scenario hydrogen is seen as a potential energy vector capable of enabling the better and synergic exploitation of renewable energy sources. A brief review of the use of hydrogen as a tool for decarbonizing our society is given in this work. Special emphasis is placed on the possibility of storing hydrogen in solid-state form (in hydride species) on the potential fields of application of solid-state hydrogen storage and on the technological challenges solid-state hydrogen storage faces. A potential approach to reduce the carbon footprint of hydrogen storage materials is presented in the concluding section of this paper.
Combustion Characterization in a Diffusive Gas Turbine Burner for Hydrogen-Compliant Applications
Jun 2022
Publication
The target of net-zero emissions set by the 2015 Paris Agreement has strongly commissioned the energy production sector to promote decarbonization renewable sources exploitation and systems efficiency. In this framework the utilization of hydrogen as a long-term energy carrier has great potential. This paper is concerned with the combustion characterization in a non-premixed gas turbine burner originally designed for natural gas when it is fed with NG-H2 blends featuring hydrogen content from 0 to 50% in volume. The final aim is to retrofit a 40 MW gas turbine. Starting from the operational data of the engine a CFD model of the steady-state combustion process has been developed with reference to the base load NG conditions by reducing the fuel mass-flow rate by up to 17% to target the baseline turbine inlet temperature. When the fuel is blended with hydrogen for a given temperature at turbine inlet an increase in the peak temperature up to 800 K is obtained if no countermeasures are taken. Furthermore the flame results are more intense and closer to the injector in the case of hydrogen blending. The results of this work hint at the necessity of carefully analyzing the possible NOx compensation strategies as well as the increased thermal stresses on the injector.
Proton Exchange Membrane Electrolyzer Emulator for Power Electronics Testing Applications
Mar 2021
Publication
This article aims to develop a proton exchange membrane (PEM) electrolyzer emulator. This emulator is realized through an equivalent electrical scheme. It allows taking into consideration the dynamic operation of PEM electrolyzers which is generally neglected in the literature. PEM electrolyzer dynamics are reproduced by the use of supercapacitors due to the high value of the equivalent double-layer capacitance value. Steady-state and dynamics operations are investigated in this work. The design criteria are addressed. The PEM electrolyzer emulator is validated by using a 400-W commercial PEM electrolyzer. This emulator is conceived to test new DC-DC converters to supply the PEM ELs and their control as well avoiding the risk to damage a real electrolyzer for experiment purposes. The proposed approach is valid both for a single cell and for the whole stack emulation.
Boosting the H2 Production Efficiency via Photocatalytic Organic Reforming: The Role of Additional Hole Scavenging System
Nov 2021
Publication
The simultaneous photocatalytic H2 evolution with environmental remediation over semiconducting metal oxides is a fascinating process for sustainable fuel production. However most of the previously reported photocatalytic reforming showed nonstoichiometric amounts of the evolved H2 when organic substrates were used. To explain the reasons for this phenomenon a careful analysis of the products and intermediates in gas and aqueous phases upon the photocatalytic hydrogen evolution from oxalic acid using Pt/TiO2 was performed. A quadrupole mass spectrometer (QMS) was used for the continuous flow monitoring of the evolved gases while high performance ion chromatography (HPIC) isotopic labeling and electron paramagnetic resonance (EPR) were employed to understand the reactions in the solution. The entire consumption of oxalic acid led to a ~30% lower H2 amount than theoretically expected. Due to the contribution of the photoKolbe reaction mechanism a tiny amount of formic acid was produced then disappeared shortly after the complete consumption of oxalic acid. Nevertheless a much lower concentration of formic acid was generated compared to the nonstoichiometric difference between the formed H2 and the consumed oxalic acid. Isotopic labeling measurements showed that the evolved H2 HD and/or D2 matched those of the solvent; however using D2O decreased the reaction rate. Interestingly the presence of KI as an additional hole scavenger with oxalic acid had a considerable impact on the reaction mechanism and thus the hydrogen yield as indicated by the QMS and the EPR measurements. The added KI promoted H2 evolution to reach the theoretically predictable amount and inhibited the formation of intermediates without affecting the oxalic acid degradation rate. The proposed mechanism by which KI boosts the photocatalytic performance is of great importance in enhancing the overall energy efficiency for hydrogen production via photocatalytic organic reforming.
Integrated Energy System Powered a Building in Sharjah Emirates in the United Arab Emirates
Jan 2023
Publication
In this study a green hydrogen system was studied to provide electricity for an office building in the Sharjah emirate in the United Arab Emirates. Using a solar PV a fuel cell a diesel generator and battery energy storage; a hybrid green hydrogen energy system was compared to a standard hybrid system (Solar PV a diesel generator and battery energy storage). The results show that both systems adequately provided the power needed for the load of the office building. The cost of the energy for both the basic and green hydrogen energy systems was 0.305 USD/kWh and 0.313 USD/kWh respectively. The cost of the energy for both systems is very similar even though the capital cost of the green hydrogen energy system was the highest value; however the replacement and operational costs of the basic system were higher in comparison to the green hydrogen energy system. Moreover the impact of the basic system in terms of the carbon footprint was more significant when compared with the green hydrogen system. The reduction in carbon dioxide was a 4.6 ratio when compared with the basic system.
Fire Safety of Hydrogen-Fuelled Vehicles- System-Level Bonfire Test
Sep 2005
Publication
The European Community requires a vehicle-level bonfire test for vehicles using plastic fuel tanks for conventional fuels (ECE R-34 Annex 5). A similar test could be applied to hydrogen-fuelled vehicles. It would test a realistic vehicle with its complete fuel and safety systems. An advantage of such a test is that the same test could be applied independent of the hydrogen storage technology (compressed gas liquid or hydride). There are currently standards for bonfire testing of a bare Compressed Natural Gas (CNG) tank and its Pressure Relief Device (PRD). This standard is FMVSS 304 in the U.S. and ISO 15869-1 in Europe. Japan has a similar standard. It requires that a bare tank and its associated PRD be subjected to a propane flame for 20 minutes. The tank must either survive or safely vent its contents. No modern composite wound tank is expected to survive for 20 minutes – so this is not a tank test but really a PRD test. The test procedure requires the PRD to be shielded from direct impingement of the flames – but the shield is not well specified. If it shields the PRD too well the PRD will not activate and the tank will burst. This paper describes the results of a CNG and a hydrogen tank burst from such tests. The mechanical energy released is enormous. It is simply unacceptable to allow the tank to burst – the PRD and venting system must work. Organizations in the U.S Europe and Japan are in the process of modifying the CNG tank bonfire test for compressed hydrogen storage. A bare tank with a single PRD is not a good simulation of a hydrogen fuel system installed in an actual vehicle. There will usually be multiple tanks plumbed together at either the tank pressure or at the intermediate pressure (after the pressure regulator). There may be more than one PRD. The tank may be shielded (from debris) or insulated to protect it from an underbody pool fire. Also the heat transfer from the simulated pool fire (propane flame) will be very different when mounted in a vehicle versus the bare tank test. A vehicle-level pool fire test will alleviate these problems. It is therefore recommended that the bare tank test be replaced by or augmented with a vehicle-level bonfire test similar to ECE R-34 Annex 5.
Comparative Cost Assessment of Sustainable Energy Carriers Produced from Natural Gas Accounting for Boil-off Gas and Social Cost of Carbon
Jun 2020
Publication
As a result of particular locations of large-scale energy producers and increases in energy demand transporting energy has become one of the key challenges of energy supply. For a long-distance ocean transportation transfer of energy carriers via ocean tankers is considered as a decent solution compared to pipelines. Due to cryogenic temperatures of energy carriers heat leaks into storage tanks of these carriers causes a problem called boil-off gas (BOG). BOG losses reduce the quantity of energy carriers which affects their economic value. Therefore this study proposes to examine the effects of BOG economically in production and transportation phases of potential energy carriers produced from natural gas namely; liquefied natural gas (LNG) dimethyl-ether (DME) methanol liquid ammonia (NH3) and liquid hydrogen (H2). Mathematical approach is used to calculate production and transportation costs of these energy carriers and to account for BOG as a unit cost within the total cost. The results of this study show that transportation costs of LNG liquid ammonia methanol DME and liquid hydrogen from natural gas accounting for BOG are 0.74 $/GJ 1.09 $/GJ 0.68 $/GJ 0.53 $/GJ and 3.24 $/GJ respectively. DME and methanol can be more economic compared to LNG to transport the energy of natural gas for the same ship capacity. Including social cost of carbon (SCC) within the total cost of transporting the energy of natural gas the transportation cost of liquid ammonia is 1.11 $/GJ whereas LNG transportation cost rises significantly to 1.68 $/GJ at SCC of 137 $/t CO2 eq. Consequently liquid ammonia becomes economically favored compared to LNG. Transportation cost of methanol (0.70 $/GJ) and DME (0.55 $/GJ) are also lower than LNG however liquid hydrogen transportation cost (3.24 $/GJ) is still the highest even though the increment of the cost is about 0.1% as SCC included within the transportation cost.
Artificial Intelligence-Based Machine Learning toward the Solution of Climate-Friendly Hydrogen Fuel Cell Electric Vehicles
Jul 2022
Publication
The rapid conversion of conventional powertrain technologies to climate-neutral new energy vehicles requires the ramping of electrification. The popularity of fuel cell electric vehicles with improved fuel economy has raised great attention for many years. Their use of green hydrogen is proposed to be a promising clean way to fill the energy gap and maintain a zero-emission ecosystem. Their complex architecture is influenced by complex multiphysics interactions driving patterns and environmental conditions that put a multitude of power requirements and boundary conditions around the vehicle subsystems including the fuel cell system the electric motor battery and the vehicle itself. Understanding its optimal fuel economy requires a systematic assessment of these interactions. Artificial intelligence-based machine learning methods have been emerging technologies showing great potential for accelerated data analysis and aid in a thorough understanding of complex systems. The present study investigates the fuel economy peaks during an NEDC in fuel cell electric vehicles. An innovative approach combining traditional multiphysics analyses design of experiments and machine learning is an effective blend for accelerated data supply and analysis that accurately predicts the fuel consumption peaks in fuel cell electric vehicles. The trained and validated models show very accurate results with less than 1% error.
Hybrid Power Management Strategy with Fuel Cell, Battery, and Supercapacitor for Fuel Economy in Hybrid Electric Vehicle Application
Jun 2022
Publication
The power management strategy (PMS) is intimately linked to the fuel economy in the hybrid electric vehicle (HEV). In this paper a hybrid power management scheme is proposed; it consists of an adaptive neuro-fuzzy inference method (ANFIS) and the equivalent consumption minimization technique (ECMS). Artificial intelligence (AI) is a key development for managing power among various energy sources. The hybrid power supply is an eco-acceptable system that includes a proton exchange membrane fuel cell (PEMFC) as a primary source and a battery bank and ultracapacitor as electric storage systems. The Haar wavelet transform method is used to calculate the stress (σ) on each energy source. The proposed model is developed in MATLAB/Simulink software. The simulation results show that the proposed scheme meets the power demand of a typical driving cycle i.e. Highway Fuel Economy Test Cycle (HWFET) and Worldwide Harmonized Light Vehicles Test Procedures (WLTP—Class 3) for testing the vehicle performance and assessment has been carried out for various PMS based on the consumption of hydrogen overall efficiency state of charge of ultracapacitors and batteries stress on hybrid sources and stability of the DC bus. By combining ANFIS and ECMS the consumption of hydrogen is minimized by 8.7% compared to the proportional integral (PI) state machine control (SMC) frequency decoupling fuzzy logic control (FDFLC) equivalent consumption minimization strategy (ECMS) and external energy minimization strategy (EEMS).
The Pressure Peaking Phenomenon for Ignited Under-Expanded Hydrogen Jets in the Storage Enclosure: Experiments and Simulations for Release Rates of up to 11.5 g/s
Dec 2021
Publication
This work focuses on the experimental and numerical investigation of maximum overpressure and pressure dynamics during ignited hydrogen releases in a storage enclosure e.g. in marine vessel or rail carriage with limited vent size area i.e. the pressure peaking phenomenon (PPP) revealed theoretically at Ulster University in 2010. The CFD model previously validated against small scale experiments in a 1 m3 enclosure is employed here to simulate real-scale tests performed by the University of South-Eastern Norway (USN) in a chamber with a volume of 15 m3 . The numerical study compares two approaches on how to model the ignited hydrogen release conditions for under-expanded jets: (1) notional nozzle concept model with inflow boundary condition and (2) volumetric source model in the governing conservation equations. For the test with storage pressure of 11.78 MPa both approaches reproduce the experimental pressure dynamics and the pressure peak with a maximum 3% deviation. However the volumetric source approach reduces significantly the computational time by approximately 3 times (CFL = 0.75). The sensitivity analysis is performed to study the effect of CFL number the size of the volumetric source and number of iterations per time step. An approach based on the use of a larger size volumetric source and uniform coarser grid with a mesh size of a vent of square size is demonstrated to reduce the duration of simulations by a factor of 7.5 compared to the approach with inflow boundary at the notional nozzle exit. The volumetric source model demonstrates good engineering accuracy in predicting experimental pressure peaks with deviation from −14% to +11% for various release and ventilation scenarios as well as different volumetric source sizes. After validation against experiments the CFD model is employed to investigate the effect of cryogenic temperature in the storage on the overpressure dynamics in the enclosure. For a storage pressure equal to 11.78 MPa it is found that a decrease of storage temperature from 277 K to 100 K causes a twice larger pressure peak in the enclosure due to the pressure peaking phenomenon.
A Catalyst Fusible Link for Hydrogen Detection and Activation of Passive Ventilation Systems
Sep 2021
Publication
This paper presents an experimental study of a hydrogen fusible link developed for use in the detection of hydrogen and in the activation of passive ventilation or other safety systems. Fusible links are commonly used to passively close fire dampers in the event of a fire; they generally consist of two pieces of metal joined together by a low temperature alloy to form a single device. When exposed to fire the link will heat up and eventually melt the alloy causing the metal pieces to separate. The same principle has been adopted for the hydrogen fusible link in which hydrogen recombiner catalyst was coated onto small rectangular brass plates. These plates were then soldered together to create prototypes of the hydrogen fusible link. When the resulting link is exposed to a hydrogen-air mixture an exothermic reaction occurs on the catalyst surface that will heat up the link and melt the solder separating the two sections of the hydrogen fusible link. A series of experiments was performed to characterize the thermal response of the hydrogen fusible links to various hydrogen-air mixtures. The effect of both hydrogen concentration and its rate of accumulation on the increase of catalyst temperature was examined. This study demonstrated the applicability of the hydrogen fusible link for managing hydrogen risk.
Evolutions in Hydrogen and Fuel Cell Standardization: The HarmonHy Experience
Dec 2007
Publication
HarmonHy is a European Union-funded Specific Support Action aiming to make an assessment of the activities on hydrogen and fuel cell regulations codes and standards (RCS) on a worldwide level. On this basis gaps have been identified and potential conflicts between regulations codes and standards have been investigated. Types of document to be referred to include international regional and national standards EU directives UNECE regulations… Particular attention will be paid to the identification of the needs for standards as perceived by the industry as well as to actions aiming to ensure concordance between standards codes and regulations. Standards and regulations require harmonization. HarmonHy pursues the elaboration of an action plan and a roadmap for future work on harmonizing regulations codes and standards on hydrogen and fuel cells on an international level.
Numerical Modeling of a Moderate Hydrogen Leakage in a Typical Two-vented Fuel Cell Configuration
Sep 2021
Publication
Numerical results are presented from two direct numerical simulations (DNS) where a moderate hydrogen leakage is modeled in a typical two-vented fuel cell configuration. The study mimics one of the experimental investigations carried out on the 1 m3 enclosure with a leak flow rate of 10.4 Nl.min−1 [1]. The injection dimensionless Richardson number is at the order of unity and thus characterizes a plume flow which becomes turbulent due to gravitational accelerations. Two large exterior regions are added to the computational domain to model correctly the exchange between the in/out flows at both vents and the outer environment. Two meshes are used in this study; a first consisting of 250 million cells while the second has 2 billion cells to ensure the fine DNS resolution at the level of Kolmogorov and Batchelor length scales. The high performance computation (HPC) platform TRUST is employed where the computational domain is distributed up to 5.104 central processing unit (CPU) cores. A detailed description of the flow structure and the hydrogen dispersion is provided where the sharp effect of the cross-flow on the plume is analyzed. Comparisons versus the experimental measurements show a very good agreement where both the bi-layer Linden regime and the maximal concentration in the top homogeneous layer are correctly reproduced by the DNS. This result is extremely important and breaks the limitations shown previously with statistical RANS approaches and LES models. This study can be considered as a good candidate for any further improvements of the theoretical industrial plume models in general and for the estimation of the non-constant entrainment coefficient in particular.
Everything About Hydrogen Podcast: Why the Fuel Cell World is Different This Time
Aug 2019
Publication
The fuel cell game is not new and for many it is has been a long time coming. Few know this better than Ballard Power Systems the third ever founded Fuel Cell company that has operated since the 1970s. On the show we ask Nicolas Pocard about Ballards history and why this time the market is different for fuel cell companies.
The podcast can be found on their website
The podcast can be found on their website
How to Decarbonise the UKs Freight Sector by 2050
Dec 2020
Publication
To achieve the UK’s net zero target vehicles including heavy-duty vehicles (HDVs) will need to be entirely decarbonised. The UK government has announced that it plans to phase out the sale of all new cars and vans with engines between 2030 and 2035. It has also announced its intention to consult on a similar phase-out for diesel-powered heavy-goods vehicles (HGVs). This study analyses policies and technologies which can contribute to the decarbonisation of the UK's inland freight sector.
It comprises an emissions modelling exercise and a cost analysis for total cost of ownership (TCO) of long-haul trucks. The study shows that for urban and regional deliveries battery electric trucks offer the best option to decarbonise. It also shows that battery electric trucks and those using an overhead catenary infrastructure are likely to be the most cost-effective pathway to decarbonise long-haul trucks by 2050 but that renewable hydrogen could also be an option.
Link to Document Download on Transport & Environment website
It comprises an emissions modelling exercise and a cost analysis for total cost of ownership (TCO) of long-haul trucks. The study shows that for urban and regional deliveries battery electric trucks offer the best option to decarbonise. It also shows that battery electric trucks and those using an overhead catenary infrastructure are likely to be the most cost-effective pathway to decarbonise long-haul trucks by 2050 but that renewable hydrogen could also be an option.
Link to Document Download on Transport & Environment website
Simulation of Turbulent Combustion in a Small-scale Obstructed Chamber Using Flamefoam
Sep 2021
Publication
Dynamic overpressures achieved during the combustion are related to the acceleration experienced by the propagating flame. In the case of premixed turbulent combustion in an obstructed geometry obstacles in the direction of flow result in a complex flame front interaction with the turbulence generated ahead of it. The interaction of flame front and vortex significantly affect the burning rate the rate of pressure rise and achieved overpressure the geometry of accelerating flame front and resulting structures in the flow field. Laboratory-scale premixed turbulent combustion experiments are convenient for the study of flame acceleration by obstacles in higher resolution. This paper presents numerical simulations of hydrogenair mixture combustion experiments performed in the University of Sydney small-scale combustion chamber. The simulations were performed using flameFoam – an open-source premixed turbulent combustion solver based on OpenFOAM. The experimental and numerical pressure evolutions are compared. Furthermore flow structures which develop due to the interaction between the obstacles and the flow are investigated with different obstacle configurations.
Boron Hydrogen Compounds: Hydrogen Storage and Battery Applications
Dec 2021
Publication
About 25 years ago Bogdanovic and Schwickardi (B. Bogdanovic M. Schwickardi: J. Alloys Compd. 1–9 253 (1997) discovered the catalyzed release of hydrogen from NaAlH4 . This discovery stimulated a vast research effort on light hydrides as hydrogen storage materials in particular boron hydrogen compounds. Mg(BH4 )2 with a hydrogen content of 14.9 wt % has been extensively studied and recent results shed new light on intermediate species formed during dehydrogenation. The chemistry of B3H8 − which is an important intermediate between BH4 − and B12H12 2− is presented in detail. The discovery of high ionic conductivity in the high-temperature phases of LiBH4 and Na2B12H12 opened a new research direction. The high chemical and electrochemical stability of closo-hydroborates has stimulated new research for their applications in batteries. Very recently an all-solid-state 4 V Na battery prototype using a Na4 (CB11H12)2 (B12H12) solid electrolyte has been demonstrated. In this review we present the current knowledge of possible reaction pathways involved in the successive hydrogen release reactions from BH4 − to B12H12 2− and a discussion of relevant necessary properties for high-ionic-conduction materials.
Proton Exchange Membrane Hydrogen Fuel Cell as the Grid Connected Power Generator
Dec 2020
Publication
In this paper a proton exchange membrane fuel cell (PEMFC) is implemented as a grid-connected electrical generator that uses hydrogen gas as fuel and air as an oxidant to produce electricity through electrochemical reactions. Analysis demonstrated that the performance of the PEMFC greatly depends on the rate of fuel supply and air supply pressure. Critical fuel and air supply pressures of the PEMFC are analysed to test its feasibility for the grid connection. Air and fuel supply pressures are varied to observe the effects on the PEMFC characteristics efficiency fuel supply and air consumption over time. The PEMFC model is then implemented into an electrical power system with the aid of power electronics applications. Detailed mathematical modelling of the PEMFC is discussed with justification. The PEMFC functions as an electrical generator that is connected to the local grid through a power converter and a transformer. Modulation of the converter is controlled by means of a proportional-integral controller. The two-axis control methodology is applied to the current control of the system. The output voltage waveform and control actions of the controller on the current and frequency of the proposed system are plotted as well. Simulation results show that the PEMFC performs efficiently under certain air and fuel pressures and it can effectively supply electrical power to the grid.
Techno-Economic Evaluation of Hydrogen Production via Gasification of Vacuum Residue Integrated with Dry Methane Reforming
Dec 2021
Publication
The continuous rise of global carbon emissions demands the utilization of fossil fuels in a sustainable way. Owing to various forms of emissions our environment conditions might be affected necessitating more focus of scientists and researchers to upgrade oil processing to more efficient manner. Gasification is a potential technology that can convert fossil fuels to produce clean and environmentally friendly hydrogen fuel in an economical manner. Therefore this study analyzed and examined it critically. In this study two different routes for the production of high-purity hydrogen from vacuum residue while minimizing the carbon emissions were proposed. The first route (Case I) studied the gasification of heavy vacuum residue (VR) in series with dry methane reforming (DMR). The second route studied the gasification of VR in parallel integration with DMR (Case II). After investigating both processes a brief comparison was made between the two routes of hydrogen production in terms of their CO2 emissions energy efficiency energy consumption and environmental and economic impacts. In this study the two vacuum-residue-to-hydrogen (VRTH) processes were simulated using Aspen Plus for a hydrogen production capacity of 50 t/h with 99.9 wt.% purity. The results showed that Case II offered a process energy efficiency of 57.8% which was slightly higher than that of Case I. The unit cost of the hydrogen product for Case II was USD 15.95 per metric ton of hydrogen which was almost 9% lower than that of Case I. In terms of the environmental analysis both cases had comparably low carbon emissions of around 8.3 kg of CO2/kg of hydrogen produced; with such high purity the hydrogen could be used for production of other products further downstream or for industrial applications.
Theoretical Limits of Hydrogen Storage in Metal-Organic Frameworks: Opportunities and Trade-offs
Jul 2013
Publication
Because of their high surface areas crystallinity and tunable propertiesmetal−organic frameworks (MOFs) have attracted intense interest as next-generationmaterials for gas capture and storage. While much effort has been devoted to thediscovery of new MOFs a vast catalog of existing MOFs resides within the CambridgeStructural Database (CSD) many of whose gas uptake properties have not beenassessed. Here we employ data mining and automated structure analysis to identify“cleanup” and rapidly predict the hydrogen storage properties of these compounds.Approximately 20 000 candidate compounds were generated from the CSD using analgorithm that removes solvent/guest molecules. These compounds were thencharacterized with respect to their surface area and porosity. Employing the empiricalrelationship between excess H2 uptake and surface area we predict the theoretical total hydrogen storage capacity for the subsetof ∼4000 compounds exhibiting nontrivial internal porosity. Our screening identifies several overlooked compounds having hightheoretical capacities; these compounds are suggested as targets of opportunity for additional experimental characterization.More importantly screening reveals that the relationship between gravimetric and volumetric H2 density is concave downwardwith maximal volumetric performance occurring for surface areas of 3100−4800 m2 /g. We conclude that H2 storage in MOFswill not benefit from further improvements in surface area alone. Rather discovery efforts should aim to achieve moderate massdensities and surface areas simultaneously while ensuring framework stability upon solvent removal.
Energy Efficiency Based Control Strategy of a Three-Level Interleaved DC-DC Buck Converter Supplying a Proton Exchange Membrane Electrolyzer
Aug 2019
Publication
To face the intensive use of natural gas and other fossil fuels to generate hydrogen water electrolysis based on renewable energy sources (RES) seems to be a viable solution. Due to their fast response times and high efficiency proton exchange membrane electrolyzer (PEM EL) is the most suitable technology for long-term energy storage combined with RES. Like fuel cells the development of fit DC-DC converters is mandatory to interface the EL to the DC grid. Given that PEM EL operating voltages are quite low and to meet requirements in terms of output current ripples new emerging interleaved DC-DC converter topologies seem to be the best candidates. In this work a three-level interleaved DC-DC buck converter has been chosen to supply a PEM EL from a DC grid. Therefore the main objective of this paper is to develop a suitable control strategy of this interleaved topology connected to a PEM EL emulator. To design the control strategy investigations have been carried out on energy efficiency hydrogen flow rate and specific energy consumption. The obtained experimental results validate the performance of the converter in protecting the PEM EL during transient operations while guaranteeing correct specific energy consumption.
Techno-Economic Analysis of Low Carbon Hydrogen Production from Offshore Wind Using Battolyser Technology
Aug 2022
Publication
A battolyser is a combined battery electrolyser in one unit. It is based on flow battery technology and can be adapted to produce hydrogen at a lower efficiency than an electrolyser but without the need for rare and expensive materials. This paper presents a method of determining if a battolyser connected to a wind farm makes economic sense based on stochastic modelling. A range of cost data and operational scenarios are used to establish the impact on the NPV and LCOE of adding a battolyser to a wind farm. The results are compared to adding a battery or an electrolyser to a wind farm. Indications are that it makes economic sense to add a battolyser or battery to a wind farm to use any curtailed wind with calculated LCOE at £56/MWh to £58/MWh and positive NPV over a range of cost scenarios. However electrolysers are still too expensive to make economic sense.
R&D Status on Thermochemical IS Process for Hydrogen Production at JAEA
Nov 2012
Publication
Thermochemical hydrogen production process is one of the candidates of industrial fossil fuel free hydrogen production. Japan Atomic Energy Agency (JAEA) has been conducting R&D of the thermochemical water splitting iodine-sulfur (IS) process since the end of 1980s. This paper presents the recent study on the IS process in JAEA. In 2005-2009 test-fabrication of components collection of design database improvement of process components for higher thermal efficiency and proposition of composition measurement method were carried out. On the basis of them the integrity test of process components is carried out in 2010-2014 to examine their integrities in severe process environments. At present a Bunsen reactor which produces acids and incidental equipments has been already manufactured using corrosion resistant materials such as glass lining steel and fluoroplastic lining steel. Flow tests to examine the functionality and integrity of the materials are planned in 2012.
Hydrogen Emissions from the Hydrogen Value Chain-emissions Profile and Impact to Global Warming
Feb 2022
Publication
Future energy systems could rely on hydrogen (H2) to achieve decarbonisation and net-zero goals. In a similar energy landscape to natural gas H2 emissions occur along the supply chain. It has been studied how current gas infrastructure can support H2 but there is little known about how H2 emissions affect global warming as an indirect greenhouse gas. In this work we have estimated for the first time the potential emission profiles (g CO2eq/MJ H2HHV) of H2 supply chains and found that the emission rates of H2 from H2 supply chains and methane from natural gas supply are comparable but the impact on global warming is much lower based on current estimates. This study also demonstrates the critical importance of establishing mobile H2 emission monitoring and reducing the uncertainty of short-lived H2 climate forcing so as to clearly address H2 emissions for net-zero strategies.
Research on Economic and Operating Characteristics of Hydrogen Fuel Cell Cars Based on Real Vehicle Tests
Nov 2021
Publication
With the increase of the requirement for the economy of vehicles and the strengthening of the concept of environmental protection the development of future vehicles will develop in the direction of high efficiency and cleanliness and the current power system of vehicles based on traditional fossil fuels will gradually transition to hybrid power. As an essential technological direction for new energy vehicles the development of fuel cell passenger vehicles is of great significance in reducing transportation carbon emissions stabilizing energy supply and maintaining the sustainable development of the automotive industry. To study the fuel economy of a passenger car with the proton exchange membrane fuel cell (PEMFC) during the operating phase two typical PEMFC passenger cars test vehicles A and B were compared and analyzed. The hydrogen consumption and hydrogen emission under two operating conditions namely the different steady-state power and the Chinese Vehicle Driving Conditions-Passenger Car cycle were tested. The test results show the actual hydrogen consumption rates of vehicle A and vehicle B are 9.77 g/kM and 8.28 g/kM respectively. The average hydrogen emission rates for vehicle A and vehicle B are 1.56 g/(kW·h) and 5.40 g/(kW·h) respectively. By comparing the hydrogen purge valve opening time ratio the differences between test vehicles A and B in control strategy hydrogen consumption and emission rate are analyzed. This study will provide reference data for China to study the economics of the operational phase of PEMFC vehicles.
Hydrogen Production Methods Based on Solar and Wind Energy: A Review
Jan 2023
Publication
Several research works have investigated the direct supply of renewable electricity to electrolysis particularly from photovoltaic (PV) and wind generator (WG) systems. Hydrogen (H2 ) production based on solar energy is considered to be the newest solution for sustainable energy. Different technologies based on solar energy which allow hydrogen production are presented to study their benefits and inconveniences. The technology of water decomposition based on renewable energy sources to produce hydrogen can be achieved by different processes (photochemical systems; photocatalysis systems photo-electrolysis systems bio-photolysis systems thermolysis systems thermochemical cycles steam electrolysis hybrid processes and concentrated solar energy systems). A comparison of the different methods for hydrogen production based on PV and WG systems was given in this study. A comparative study of different types of electrolyzers was also presented and discussed. Finally an economic assessment of green hydrogen production is given. The hydrogen production cost depends on several factors such as renewable energy sources electrolysis type weather conditions installation cost and the productivity of hydrogen per day. PV/H2 and wind/H2 systems are both suitable in remote and arid areas. Minimum maintenance is required and a power cycle is not needed to produce electricity. The concentrated CSP/H2 system needs a power cycle. The hydrogen production cost is higher if using wind/H2 rather than PV/H2 . The green energy sources are useful for multiple applications such as hydrogen production cooling systems heating and water desalination.
The Effects of Perceived Barriers on Innovation Resistance of Hydrogen-Electric Motorcycles
Jun 2018
Publication
As environmental awareness among the public gradually improves it is predicted that the trend of green consumption will make green products enter the mainstream market. Hydrogen-electric motorcycles with eco-friendly and energy-efficient characteristics have great advantages for development. However as a type of innovative product hydrogen-electric motorcycles require further examination with regard to consumer acceptance and external variables of the products. In this study consumer behavioral intention (BI) for the use of hydrogen-electric motorcycles and its influencing factors are discussed using innovation resistance as the basis and environmental concern as the adjusting variable. Consumers’ willingness-to-pay (WTP) for hydrogen-electric motorcycles is estimated using the contingent valuation method (CVM). The results found that (1) perception barriers viz. usage barrier value barrier risk barrier tradition barrier and price barrier are statistically significant whereas image barrier is not; (2) a high degree of environmental concern will reduce the consumers’ innovation resistance to the hydrogen-electric motorcycles; (3) up to 94.79% of the respondents of the designed questionnaire suggested that the promotion of hydrogen-electric motorcycles requires a subsidy of 21.9% of the total price from the government. The mean WTP of consumers for the purchase of hydrogen-electric motorcycles is 10–15% higher than that of traditional motorcycles.
Synergistic Value in Vertically Integrated Power-to-Gas Energy Systems
Oct 2019
Publication
In vertically integrated energy systems integration frequently entails operational gains that must be traded off against the requisite cost of capacity investments. In the context of the model analyzed in this study the operational gains are subject to inherent volatility in both the price and the output of the intermediate product transferred within the vertically integrated structure. Our model framework provides necessary and sufficient conditions for the value (NPV) of an integrated system to exceed the sum of two optimized subsystems on their own. We then calibrate the model in Germany and Texas for systems that combine wind energy with Power-to-Gas (PtG) facilities that produce hydrogen. Depending on the prices for hydrogen in different market segments we find that a synergistic investment value emerges in some settings. In the context of Texas for instance neither electricity generation from wind power nor hydrogen production from PtG is profitable on its own in the current market environment. Yet provided both subsystems are sized optimally in relative terms the attendant operational gains from vertical integration more than compensate for the stand-alone losses of the two subsystems.
Investigation on the Effects of Blending Hydrogen-rich Gas in the Spark-ignition Engine
May 2022
Publication
In order to improve the energy efficiency of the internal combustion engine and replace fossil fuel with alternative fuels a concept of the methanol-syngas engine was proposed and the prototype was developed. Gasoline and dissociated methanol gas (GDM) were used as dual fuels and the engine performance was investigated by simulation and experiments. Dissociated methanol gas is produced by recycling the exhaust heat. The performance and combustion process was studied and compared with the gasoline engine counterpart. There is 1.9% energy efficiency improvement and 5.5% fuel consumption reduction under 2000r/min 100 N · m working condition with methanol substitution ratio of 10%. In addition the engine efficiency further improves with an increase of dissociated methanol gas substitution ratio because of the increased heating value of the fuel and effects of hydrogen. The peak pressure in the cylinder and the peak heat release rate of the GDM engine are higher than that of the original gasoline engine with a phase closer to the top dead center (TDC). Therefore blending hydrogen-rich gas in the spark-ignition engine can recycle the exhaust heat and improve the thermal efficiency of the engine.
Transient Modeling and Performance Analysis of Hydrogen-Fueled Aero Engines
Jan 2023
Publication
With the combustor burning hydrogen as well as the strongly coupled fuel and cooling system the configuration of a hydrogen-fueled aero engine is more complex than that of a conventional aero engine. The performance and especially the dynamic behavior of a hydrogen-fueled aero engine need to be fully understood for engine system design and optimization. In this paper both the transient modeling and performance analysis of hydrogen-fueled engines are presented. Firstly the models specific to the hydrogen-fueled engine components and systems including the hydrogen-fueled combustor the steam injection system a simplified model for a quick NOx emission assessment and the heat exchangers are developed and then integrated to a conventional engine models. The simulations with both Simulink and Speedgoat-based hardware in the loop system are carried out. Secondly the performance analysis is performed for a typical turbofan engine configuration CF6 and for the two hydrogen-fueled engine configurations ENABLEH2 and HySIITE which are currently under research and development by the European Union and Pratt & Whitney respectively. At last the simulation results demonstrate that the developed transient models can effectively reflect the characteristics of hydrogen burning heat exchanging and NOx emission for hydrogen-fueled engines. In most cases the hydrogen-fueled engines show lower specific fuel consumption lower turbine entry temperature and less NOx emissions compared with conventional engines. For example at max thrust state the advanced hydrogen-fueled engine can reduce the parameters mentioned above by about 68.5% 3.7% and 12.7% respectively (a mean value of two configurations).
CFD Modeling and Consequence Analysis of an Accidental Hydrogen Release in a Large Scale Facility
Sep 2013
Publication
In this study the consequences of an accidental release of hydrogen within large scale (>15000 m3) facilities were modelled. To model the hydrogen release an LES Navier–Stokes CFD solver called fireFoam was used to calculate the dispersion and mixing of hydrogen within a large scale facility. The performance of the CFD modelling technique was evaluated through a validation study using experimental results from a 1/6 scale hydrogen release from the literature and a grid sensitivity study. Using the model a parametric study was performed varying release rates and enclosure sizes and examining the concentrations that develop. The hydrogen dispersion results were then used to calculate the corresponding pressure loads from hydrogen-air deflagrations in the facility.
Integrated Power and Propulsion System Optimization for a Planetary-Hopping Robot
Aug 2022
Publication
Missions targeting the extreme and rugged environments on the moon and Mars have rich potential for a high science return although several risks exist in performing these exploration missions. The current generation of robots is unable to access these high-priority targets. We propose using teams of small hopping and rolling robots called SphereX that are several kilograms in mass and can be carried by a large rover or lander and tactically deployed for exploring these extreme environments. Considering that the importance of minimizing the mass and volume of these robot platforms translates into significant mission-cost savings we focus on the optimization of an integrated power and propulsion system for SphereX. Hydrogen is used as fuel for its high energy and it is stored in the form of lithium hydride and oxygen in the form of lithium perchlorate. The system design undergoes optimization using Genetic Algorithms integrated with gradient-based search techniques to find optimal solutions for a mission. Our power and propulsion system as we show in this paper is enabling because the robots can travel long distances to perform science exploration by accessing targets not possible with conventional systems. Our work includes finding the optimal mass and volume of SphereX such that it can meet end-to-end mission requirements.
Design and Implementation of an Intelligent Energy Management System for Smart Home Utilizing a Multi-agent System
Jul 2022
Publication
Green Hydrogen Microgrid System has been selected as a source of clean and renewable alternative energy because it is undergoing a global revolution and has been identified as a source of clean energy that may aid the country in achieving net-zero emissions in the coming years. The study proposes an innovative Microgrid Renewable hybrid system to achieve these targets. The proposed hybrid renewable energy system combines a photovoltaic generator (PVG) a fuel cell (FC) a supercapacitor (SC) and a home vehicle power supply (V2H) to provide energy for a predefined demand. The proposed architecture is connected to the grid and is highly dependent on solar energy during peak periods. During the night or shading period it uses FC as a backup power source. The SC assists the FC with high charge power. SC performs this way during load transients or quick load changes. A multi-agent system (MAS) was used to build a real energy management system (RT-HEMS) for intelligent coordination between components (MAS). The scheduling algorithm reduces energy consumption by managing the required automation devices without the need for additional network power. It will meet household energy requirements regardless of weather conditions including bright cloudy or rainy conditions. Implementation and discussion of the RT-HEMS ensures that the GHS is functioning properly and that the charge request is satisfied.
Characterisation, Dispersion and Electrostatic Hazards of Liquid Hydrogen for the PRESLHY Project
Sep 2021
Publication
Liquid hydrogen has the potential to form part of the energy strategy in the future due to the need to decarbonise and replace fossil fuels and therefore could see widespread use. Adoption of LH2 means that the associated hazards need to be understood and managed. In recognition of this the European Union Fuel Cells and Hydrogen Joint Undertaking co-funded project PRESLHY undertook prenormative research for the safe use of cryogenic liquid hydrogen in non-industrial settings. Several key scenarios were identified as knowledge gaps and both theoretical and experimental studies were conducted to provide insight into these scenarios. This included experiments studying the evolution/dispersion of a hydrogen cloud following a liquid release and the generation of electrostatic charges in hydrogen plumes and pipework each of which are described and discussed. In addition assessment of the physical phase of the hydrogen flow within the pipework (i.e. liquid gas or two phase) was investigated. The objectives experimental set up and result summary are provided. Data generated from these experiments is to be used to generate and validate theoretical models and ultimately contribute to the development of regulations codes and standards for the storage handling and use of liquid hydrogen.
Roadmap to Achieving Sustainable Development via Green Hydrogen
Jan 2023
Publication
The conversion to renewable energy can be achieved when cities and communities start to depend on sustainable resources capable of providing for the basic needs of the community along with a reduction in the daily problems and issues that people face. These issues such as poverty hunger sanitation and economic difficulties are highlighted in the Sustainable Development Goals (SDGs) which aim to limit and eradicate these problems along with other environmental obstacles including climate change and Greenhouse Gases (GHGs). These SDGs containing 17 goals target each sector and provide propositions to solve such devastating problems. Hydrogen contributes to the targets of these sustainable developments since through its implementation in different industries the levels of GHG will drop and thus contribute to the climate change which Earth is facing. Further through the usage of such resources many job opportunities will also be developed thus enhancing the economy and lifting the status of society. This paper classifies the four different types of hydrogen and outlines the differences between them. The paper then emphasizes the importance of green hydrogen use within the shipping industry transportation and infrastructure along with economic and social development through job opportunities. Furthermore this paper provides case studies tackling green hydrogen status in the United Kingdom United States of America and European Union as well as Africa United Arab of Emirates and Asia. Finally challenges and recommendations concerning the green hydrogen industry are addressed. This paper aims to relate the use of green hydrogen to the direct and indirect goals of SDG.
Cost Assessment of Alternative Fuels for Maritime Transportation in Ireland
Aug 2022
Publication
In this study we investigated the cost-effectiveness of four alternatives: Liquified Natural Gas (LNG) methanol green hydrogen and green ammonia for the case of top 20 most frequently calling ships to Irish ports in 2019 through the Net Present Value (NPV) methodology incorporating the benefits incurred through saved external carbon tax and conventional fuel costs. LNG had the highest NPV (€6166 million) followed by methanol (€1705 million) and green hydrogen (€319 million). Green ammonia utilisation (as a hydrogen carrier) looks inviable due to higher operational costs resulting from its excessive consumption (i.e. losses) during the cracking and purifying processes and its lower net calorific value. Green hydrogen remains the best option to meet future decarbonisation targets although a further reduction in its current fuel price (by 60%) or a significant increment in the proposed carbon tax rate (by 275%) will be required to improve its cost-competitiveness over LNG and methanol.
Optimising Air Quality Co-benefits in a Hydrogen Economy: A Case for Hydrogen-specific Standards for NOx Emissions
Jun 2021
Publication
A global transition to hydrogen fuel offers major opportunities to decarbonise a range of different energyintensive sectors from large-scale electricity generation through to heating in homes. Hydrogen can be deployed as an energy source in two distinct ways in electrochemical fuel cells and via combustion. Combustion seems likely to be a major pathway given that it requires only incremental technological change. The use of hydrogen is not however without side-effects and the widely claimed benefit that only water is released as a by-product is only accurate when it is used in fuel cells. The burning of hydrogen can lead to the thermal formation of nitrogen oxides (NOx – the sum of NO + NO2) via a mechanism that also applies to the combustion of fossil fuels. NO2 is a key air pollutant that is harmful in its own right and is a precursor to other pollutants of concern such as fine particulate matter and ozone. Minimising NOx as a by-product from hydrogen boilers and engines is possible through control of combustion conditions but this can lead to reduced power output and performance. After-treatment and removal of NOx is possible but this increases cost and complexity in appliances. Combustion applications therefore require optimisation and potentially lower hydrogen-specific emissions standards if the greatest air quality benefits are to derive from a growth in hydrogen use
Review on the Status of the Research on Power‐to‐Gas Experimental Activities
Aug 2022
Publication
In recent years power‐to‐gas technologies have been gaining ground and are increasingly proving their reliability. The possibility of implementing long‐term energy storage and that of being able to capture and utilize carbon dioxide are currently too important to be ignored. However sys‐ tems of this type are not yet experiencing extensive realization in practice. In this study an overview of the experimental research projects and the research and development activities that are currently part of the power‐to‐gas research line is presented. By means of a bibliographical and sitographical analysis it was possible to identify the characteristics of these projects and their distinctive points. In addition the main research targets distinguishing these projects are presented. This provides an insight into the research direction in this regard where a certain technological maturity has been achieved and where there is still work to be done. The projects found and analyzed amount to 87 mostly at laboratory scale. From these what is most noticeable is that research is currently focusing heavily on improving system efficiency and integration between components.
Comparative Life Cycle Assessment of Sustainable Energy Carriers Including Production, Storage, Overseas Transport and Utilization
Aug 2020
Publication
Countries are under increasing pressure to reduce greenhouse gas emissions as an act upon the Paris Agreement. The essential emission reductions can be achieved by environmentally friendly solutions in particular the introduction of low carbon or carbon-free fuels. This study presents a comparative life cycle assessment of various energy carriers namely; liquefied natural gas methanol dimethyl ether liquid hydrogen and liquid ammonia that are produced from natural gas or renewables to investigate greenhouse gas emissions generated from the complete life cycle of energy carriers accounting for the leaks as well as boil-off gas occurring during storage and transportation. The entire fuel life cycle is considered consisting of production storage transportation via an ocean tanker to different distances and finally utilization in an internal combustion engine of a road vehicle. The results show that using natural gas as a feedstock total greenhouse gas emissions during production ocean transportation (over 20000 nmi) by a heavy fuel oil-fueled ocean tanker and utilization in an internal combustion engine are 73.96 95.73 93.76 50.83 and 100.54 g CO2 eq. MJ1 for liquified natural gas methanol dimethyl ether liquid hydrogen and liquid ammonia respectively. Liquid hydrogen produced from solar electrolysis is the cleanest energy carrier (42.50 g CO2 eq. MJ1 fuel). Moreover when liquid ammonia is produced via photovoltaic-based electrolysis (60.76 g CO2 eq. MJ1 fuel) it becomes cleaner than liquified natural gas. Although producing methanol and dimethyl ether from biomass results in a large reduction in total greenhouse gas emissions compared to conventional methanol and dimethyl ether production with a value of 73.96 g CO2 eq. per MJ liquified natural gas still represents a cleaner option than methanol and dimethyl ether considering the full life cycle.
Everything About Hydrogen Podcast: So, What's the Big Deal with Hydrogen?
Aug 2019
Publication
This episode is a whistle-stop tour of the hydrogen world. The team explore why hydrogen is making a resurgence as an energy carrier how decarbonising the existing hydrogen market is a huge opportunity and how fuel cells fit into the story.
The podcast can be found on their website
The podcast can be found on their website
Two-Dimensional Photocatalysts for Energy and Environmental Applications
Jun 2022
Publication
The depletion of fossil fuels and onset of global warming dictate the achievement of efficient technologies for clean and renewable energy sources. The conversion of solar energy into chemical energy plays a vital role both in energy production and environmental protection. A photocatalytic approach for H2 production and CO2 reduction has been identified as a promising alternative for clean energy production and CO2 conversion. In this process the most critical parameter that controls efficiency is the development of a photocatalyst. Two-dimensional nanomaterials have gained considerable attention due to the unique properties that arise from their morphology. In this paper examples on the development of different 2D structures as photocatalysts in H2 production and CO2 reduction are discussed and a perspective on the challenges and required improvements is given.
Powertrain Design and Energy Management Strategy Optimization for a Fuel Cell Electric Intercity Coach in an Extremely Cold Mountain Area
Sep 2022
Publication
Facing the challenge that the single-motor electric drive powertrain cannot meet the continuous uphill requirements in the cold mountainous area of the 2022 Beijing Winter Olympics the manuscript adopted a dual-motor coupling technology. Then according to the operating characteristics and performance indicators of the fuel cell (FC)–traction battery hybrid power system the structure design and parameter matching of the vehicle power system architecture were carried out to improve the vehicle’s dynamic performance. Furthermore considering the extremely cold conditions in the Winter Olympics competition area and the poor low-temperature tolerance of core components of fuel cell electric vehicles (FCEV) under extremely cold conditions such as the reduced capacity and service life of traction batteries caused by the rapid deterioration of charging and discharging characteristics the manuscript proposed a fuzzy logic control-based energy management strategy (EMS) optimization method for the proton exchange membrane fuel cell (PEMFC) to reduce the power fluctuation hydrogen consumption and battery charging/discharging times and at the same time to ensure the hybrid power system meets the varying demand under different conditions. In addition the performance of the proposed approach was investigated and validated in an intercity coach in real-world driving conditions. The experimental results show that the proposed powertrain with an optimal control strategy successfully alleviated the fluctuation of vehicle power demand reduced the battery charging/discharging times of traction battery and improved the energy efficiency by 20.7%. The research results of this manuscript are of great significance for the future promotion and application of fuel cell electric coaches in all climate environments especially in an extremely cold mountain area.
Everything About Hydrogen Podcast: Hydrogen 101
Aug 2019
Publication
A 10-minute tour of hydrogen industry technology and terminology for those who are new to the sector or who would simply like a quick review of the basics behind this burgeoning energy source.
Podcast can be found on their website
Podcast can be found on their website
Production of High-purity Hydrogen from Paper Recycling Black Liquor via Sorption Enhanced Steam Reforming
Jul 2020
Publication
Environmentally friendly and energy saving treatment of black liquor (BL) a massively produced waste in Kraft papermaking process still remains a big challenge. Here by adopting a Ni-CaO-Ca12Al14O33 bifunctional catalyst derived from hydrotalcite-like materials we demonstrate the feasibility of producing high-purity H2 (∼96%) with 0.9 mol H2 mol-1 C yield via the sorption enhanced steam reforming (SESR) of BL. The SESRBL performance in terms of H2 production maintained stable for 5 cycles but declined from the 6th cycle. XRD Raman spectroscopy elemental analysis and energy dispersive techniques were employed to rationalize the deactivation of the catalyst. It was revealed that gradual sintering and agglomeration of Ni and CaO and associated coking played important roles in catalyst deactivation and performance degradation of SESRBL while deposition of Na and K from the BL might also be responsible for the declined performance. On the other hand it was demonstrated that the SESRBL process could effectively reduce the emission of sulfur species by storing it as CaSO3. Our results highlight a promising alternative for BL treatment and H2 production thereby being beneficial for pollution control and environment governance in the context of mitigation of climate change.
Progress in Electrical Energy Storage System: A Critical Review
Jan 2009
Publication
Electrical energy storage technologies for stationary applications are reviewed. Particular attention is paid to pumped hydroelectric storage compressed air energy storage battery flow battery fuel cell solar fuel superconducting magnetic energy storage flywheel capacitor/supercapacitor and thermal energy storage. Comparison is made among these technologies in terms of technical characteristics applications and deployment status.
Towards 2050 Net Zero Carbon Infrastructure: A Critical Review of Key Decarbonisation Challenges in the Domestic Heating Sector in the UK
Nov 2023
Publication
One of the most challenging sectors to meet “Net Zero emissions” target by 2050 in the UK is the domestic heating sector. This paper provides a comprehensive literature review of the main challenges of heating systems transition to low carbon technologies in which three distinct categories of challenges are discussed. The first challenge is of decarbonizing heat at the supply side considering specifically the difficulties in integrating hydrogen as a low-carbon heating substitute to the dominant natural gas. The next challenge is of decarbonizing heat at the demand side and research into the difficulties of retrofitting the existing UK housing stock of digitalizing heating energy systems as well as ensuring both retrofits and digitalization do not disproportionately affect vulnerable groups in society. The need for demonstrating innovative solutions to these challenges leads to the final focus which is the challenge of modeling and demonstrating future energy systems heating scenarios. This work concludes with recommendations for the energy research community and policy makers to tackle urgent challenges facing the decarbonization of the UK heating sector.
A Preliminary Study on an Alternative Ship Propulsion System Fueled by Ammonia: Environmental and Economic Assessments
Mar 2020
Publication
The shipping industry is becoming increasingly aware of its environmental responsibilities in the long-term. In 2018 the International Maritime Organization (IMO) pledged to reduce greenhouse gas (GHG) emissions by at least 50% by the year 2050 as compared with a baseline value from 2008. Ammonia has been regarded as one of the potential carbon-free fuels for ships based on these environmental issues. In this paper we propose four propulsion systems for a 2500 Twenty-foot Equivalent Unit (TEU) container feeder ship. All of the proposed systems are fueled by ammonia; however different power systems are used: main engine generators polymer electrolyte membrane fuel cell (PEMFC) and solid oxide fuel cell (SOFC). Further these systems are compared to the conventional main engine propulsion system that is fueled by heavy fuel oil with a focus on the economic and environmental perspectives. By comparing the conventional and proposed systems it is shown that ammonia can be a carbon-free fuel for ships. Moreover among the proposed systems the SOFC power system is the most eco-friendly alternative (up to 92.1%) even though it requires a high lifecycle cost than the others. Although this study has some limitations and assumptions the results indicate a meaningful approach toward solving GHG problems in the maritime industry.
Towards the Efficient and Time-accurate Simulations of Early Stages of Industrial Explosions
Sep 2021
Publication
Combustion during a nuclear reactor accident can result in pressure loads that are potentially fatal for the structural integrity of the reactor containment or its safety equipment. Enabling efficient modelling of such safety-critical scenarios is the goal of ongoing work. In this paper attention is given to capturing early phases of flame propagation. Transient simulations that are not prohibitively expensive for use at industrial scale are required given that a typical flame propagation study takes a large number of simulation time steps to complete. An improved numerical method used in this work is based on explicit time integration by means of Strong Stability Preserving (SSP) Runge-Kutta schemes. These allow an increased time step size for a given level of accuracy—reducing the overall computational effort. Furthermore a wide range of flow conditions is encountered in analysis of accelerating flames: from incompressible to potentially supersonic. In contrast numerical schemes for spatial discretization would often prove lacking in either stability or accuracy outside the intended flow regime—with density-based schemes being traditionally designed and applied to compressible (Ma>0.3) flows. In the present work a formulation of an all-speed density-based numerical flux scheme is used for simulation of slow flames starting from ignition. Validation was carried out using experiments with spherical lean hydrogen flames at laboratory scale. Turbulence conditions in the experiments correspond to those that can arise in a nuclear reactor containment during an accident. Results show that the new numerical method has the potential to predict flame speed and pressure rise at a reduced computational effort.
Economic Dispatch Model of Nuclear High-Temperature Reactor with Hydrogen Cogeneration in Electricity Market
Dec 2021
Publication
Hydrogen produced without carbon emissions could be a useful fuel as nations look to decarbonize their electricity transport and industry sectors. Using the iodine–sulfur (IS) cycle coupled with a nuclear heat source is one method for producing hydrogen without the use of fossil fuels. An economic dispatch model was developed for a nuclear-driven IS system to determine hydrogen sale prices that would make such a system profitable. The system studied is the HTTR GT/H2 a design for power and hydrogen cogeneration at the Japan Atomic Energy Agency’s High Temperature Engineering Test Reactor. This study focuses on the development of the economic model and the role that input data plays in the final calculated values. Using a historical price duration curve shows that the levelized cost of hydrogen (LCOH) or breakeven sale price of hydrogen would need to be 98.1 JPY/m3 or greater. Synthetic time histories were also used and found the LCOH to be 67.5 JPY/m3 . The price duration input was found to have a significant effect on the LCOH. As such great care should be used in these economic dispatch analyses to select reasonable input assumptions.
Far Off-shore Wind Energy-based Hydrogen Production: Technological Assessment and Market Valuation Designs
Jan 2020
Publication
This article provides a techno-economic study on coupled offshore wind farm and green hydrogen production via sea water electrolysis (OWF-H2). Offshore wind energy wind farms (OWF) and water electrolysis (WE) technologies are described. MHyWind (the tool used to perform simulations and optimisations of such plants) is presented as well as the models of the main components in the study. Three case studies focus on offshore wind farms either stand-alone or connected to the grid via export cables coupled with a battery and electrolysis systems either offshore or onshore. Exhaustive searches and optimisations performed allowed for rules of thumb to be derived on the sizing of coupled OWF-H2 plants that minimize costs of hydrogen production (LCoH2 in €/kgH2): Non-connected OWF-H2 coupled to a battery offers the lowest LCoH2 without the costs of H2 transportation when compared to cases where the WE is installed onshore and connected to the OWF. Using a simple power distribution heuristic increasing the number of installed WE allows the system to take advantage of more OWF energy but doesn’t improve plant efficiency whereas a battery always does. Finally within the scope of this study it is observed that power ratios of optimized plant architectures (leading to the lowest LCoH2) are between 0.8-0.9 for PWE/POWF and 0.3-0.35 for PBattery/POWF.
Hydrogen Stratification in Enclosures in Dependence of the Gas Release Momentum
Sep 2021
Publication
The hydrogen dispersion phenomenon in an enclosure depends on the ratio of the gas buoyancy induced momentum. Random diffusive motions of individual gas particles become dominative when the release momentum is low. Then a uniform hydrogen concentration appears in the enclosure instead of the gas stratification below the ceiling. The paper justifies this hypothesis by demonstrating fullscale experimental results of hydrogen dispersion within a confined space under six different release variations. During the experiments hydrogen was released into the test room of 60 m3 volume in two methods: through a nozzle and through 21 points evenly distributed on the emission box cover (multipoint release). Each release method was tested with three different hydrogen volume flow rates (3.17·10−3 m3/s 1.63·10−3 m3/s 3.34·10−4 m3/s). The tests confirm the increase of hydrogen convective upward flow and its stratification tendency relative to increased volume flow. A tendency of more uniform hydrogen cloud distribution when Mach Reynolds and Froud number values decreased was demonstrated. Because the hydrogen dispersion phenomena impact fire and explosive hazards the presented experimental results could help fire protection systems be in an enclosure designed allowing their effectiveness optimization.
Evaluation of Hydrogen-induced Cracking in High-strength Steel Welded Joints by Acoustic Emission Technique
Feb 2020
Publication
Hydrogen-induced cracking behavior in high-strength steel mainly composed of martensite was analyzed by acoustic emission (AE) technique and finite element method (FEM) in slow strain-rate tensile (SSRT) tests and welding tests. The crack initiation was detected by the AE signals and the time evolution of stress concentration and hydrogen diffusion were calculated by FEM. The effect of hardness and plastic strain on the hydrogen diffusion coefficientwas explicitly introduced into the governing equation in FEM. The criterion and indicator parameter for the crack initiation were derived as a function of maximum principal stress and locally accumulated hydrogen concentration. The results showed that the cracking criterion derived by AE and FEM is useful for predicting the cold cracking behavior and determining the critical preheat temperature to prevent hydrogeninduced cracking.
The Role of Clean Hydrogen Value Chain in a Successful Energy Transition of Japan
Aug 2022
Publication
The clean hydrogen in the prioritized value chain platform could provide energy incentives and reduce environmental impacts. In the current study strengths weaknesses opportunities and threats (SWOT) analysis has been successfully applied to the clean hydrogen value chain in different sectors to determine Japan’s clean hydrogen value chain’s strengths weaknesses opportunities and threats as a case study. Japan was chosen as a case study since we believe that it is the only pioneer country in that chain with a national strategy investments and current projects which make it unique in this way. The analyses include evaluations of clean energy development power supply chains regional energy planning and renewable energy development including the internal and external elements that may influence the growth of the hydrogen economy in Japan. The ability of Japan to produce and use large quantities of clean hydrogen at a price that is competitive with fossil fuels is critical to the country’s future success. The implementation of an efficient carbon tax and carbon pricing is also necessary for cost parity. There will be an increasing demand for global policy coordination and inter-industry cooperation. The results obtained from this research will be a suitable model for other countries to be aware of the strengths weaknesses opportunities and threats in this field in order to make proper decisions according to their infrastructures potentials economies and socio-political states in that field.
National Policies, Recent Research Hotspots, and Application of Sustainable Energy: Case of China, USA and European Countries
Aug 2022
Publication
This study tracks the variety of nations dealing with the issue of energy transition. Through process tracing and a cross-national case study a comparison of energy policies research hotspots and technical aspects of three sustainable energy systems (solar cells recharge batteries and hydrogen production) was conducted. We provide an overview of the climate-change political process and identify three broad patterns in energy-related politics in the United States China and Europe (energy neo-liberalism authoritarian environmentalism and integrated-multinational negotiation). The core processes and optimization strategies to improve the efficiency of sustainable energy usage are analyzed. This study provides both empirical and theoretical contributions to research on energy transitions.
Co-production of Hydrogen and Power from Black Liquor Via Supercritical Water Gasification, Chemical Looping and Power Generation
Mar 2019
Publication
An integrated system to harvest efficiently the energy from the waste of pulp mill industry which is black liquor (BL) is proposed and evaluated. The proposed system consists of the supercritical water gasification (SCWG) of BL syngas chemical looping and power generation. To minimize the exergy loss throughout the system and to optimize the energy efficiency process design and integration is conducted by employing the principles of exergy recovery and process integration methods. Hydrogen is set as the main output while power is produced by utilizing the heat generated throughout the process. Process simulation is conducted using a steady state process simulator Aspen Plus. Energy efficiency is defined into three categories: hydrogen production efficiency power generation efficiency and total energy efficiency. From process simulation both of the integrated systems show very high total energy efficiency of about 73%.
From Biogas to Hydrogen: A Techno-Economic Study on the Production of Turquoise Hydrogen and Solid Carbons
Sep 2022
Publication
Biogas is a renewable feedstock that can be used to produce hydrogen through the decomposition of biomethane. However the economics of the process are not well studied and understood especially in cases where solid carbons are also produced and which have a detrimental effect on the performance of the catalysts. The scale as well as product diversification of a biogas plant to produce hydrogen and other value-added carbons plays a crucial role in determining the feasibility of biogasto-hydrogen projects. Through a techno-economic study using the discounted cash flow method it has been shown that there are no feasible sizes of plants that can produce hydrogen at the target price of USD 3/kg or lower. However for self-funded anaerobic digestor plants retrofitting modular units for hydrogen production would only make financial sense at biogas production capacities of more than 412 m3/h. A sensitivity analysis has also shown that the cost competitiveness is dependent on the type of carbon formed and low-grade carbon black has a negative effect on economic feasibility. Hydrogen produced from biogas would thus not be able to compete with grey hydrogen production but rather with current green hydrogen production costs.
Current Legislative Framework for Green Hydrogen Production by Electrolysis Plants in Germany
Mar 2022
Publication
(1) The German energy system transformation towards an entirely renewable supply is expected to incorporate the extensive use of green hydrogen. This carbon-free fuel allows the decarbonization of end-use sectors such as industrial high-temperature processes or heavy-duty transport that remain challenging to be covered by green electricity only. However it remains unclear whether the current legislative framework supports green hydrogen production or is an obstacle to its rollout. (2) This work analyzes the relevant laws and ordinances regarding their implications on potential hydrogen production plant operators. (3) Due to unbundling-related constraints potential operators from the group of electricity transport system and distribution system operators face lacking permission to operate production plants. Moreover ownership remains forbidden for them. The same applies to natural gas transport system operators. The case is less clear for natural gas distribution system operators where explicit regulation is missing. (4) It is finally analyzed if the production of green hydrogen is currently supported in competition with fossil hydrogen production not only by the legal framework but also by the National Hydrogen Strategy and the Amendment of the Renewable Energies Act. It can be concluded that in recent amendments of German energy legislation regulatory support for green hydrogen in Germany was found. The latest legislation has clarified crucial points concerning the ownership and operation of electrolyzers and the treatment of green hydrogen as a renewable energy carrier.
Estimation of the Levelized Cost of Nuclear Hydrogen Production from Light Water Reactors in the United States
Aug 2022
Publication
In June 2021 the United States (US) Department of Energy (DOE) hosted the first-ever Hydrogen Shot Summit which lasted for two days. More than 3000 stockholders around the world were convened at the summit to discuss how low-cost clean hydrogen production would be a huge step towards solving climate change. Hydrogen is a dynamic fuel that can be used across all industrial sectors to lower the carbon intensity. By 2030 the summit hopes to have developed a means to reduce the current cost of clean hydrogen by 80%; i.e. to USD 1 per kilogram. Because of the importance of clean hydrogen towards carbon neutrality the overall DOE budget for Fiscal Year 2021 is USD 35.4 billion and the total budget for DOE hydrogen activities in Fiscal Year 2021 is USD 285 million representing 0.81% of the total DOE budget for 2021. The DOE hydrogen budget of 2021 is estimated to increase to USD 400 million in Fiscal Year 2022. The global hydrogen market is growing and the US is playing an active role in ensuring its growth. Depending on the electricity source used the electrolysis of hydrogen can have no greenhouse gas emissions. When assessing the advantages and economic viability of hydrogen production by electrolysis it is important to take into account the source of the necessary electricity as well as emissions resulting from electricity generation. In this study to evaluate the levelized cost of nuclear hydrogen production the International Atomic Energy Agency Hydrogen Economic Evaluation Program is used to model four types of LWRs: Exelon’s Nine Mile Point Nuclear Power Plant (NPP) in New York; Palo Verde NPP in Arizona; Davis-Besse NPP in Ohio; and Prairie Island NPP in Minnesota. Each of these LWRs has a different method of hydrogen production. The results show that the total cost of hydrogen production for Exelon’s Nine Mile Point NPP Palo Verde NPP Davis-Besse NPP and Prairie Island NPP was 4.85 ± 0.66 4.77 ± 1.36 3.09 ± 1.19 and 0.69 ± 0.03 USD/kg respectively. These findings show that among the nuclear reactors the cost of nuclear hydrogen production using Exelon’s Nine Mile Point NPP reactor is the highest whereas the cost of nuclear hydrogen production using the Prairie Island NPP reactor is the lowest.
A Positive Shift in the Public Acceptability of a Low-Carbon Energy Project After Implementation: The Case of a Hydrogen Fuel Station
Apr 2019
Publication
Public acceptability of low-carbon energy projects is often measured with one-off polls. This implies that opinion-shifts over time are not always taken into consideration by decision makers relying on these polls. Observations have given the impression that public acceptability of energy projects increases after implementation. However this positive shift over time has not yet been systematically studied and is not yet understood very well. This paper aims to fill this gap. Based on two psychological mechanisms loss aversion and cognitive dissonance reduction we hypothesize that specifically people who live in proximity of a risky low-carbon technology—a hydrogen fuel station (HFS) in this case—evaluate this technology as more positive after its implementation than before. We conducted a survey among Dutch citizen living nearby a HFS and indeed found a positive shift in the overall evaluation of HFS after implementation. We also found that the benefits weighed stronger and the risks weaker after the implementation. This shift did not occur for citizens living further away from the HFS. The perceived risks and benefits did not significantly change after implementation neither for citizens living in proximity nor for citizens living further away. The societal implications of the findings are discussed.
New Liquid Chemical Hydrogen Storage Technology
Aug 2022
Publication
The liquid chemical hydrogen storage technology has great potentials for high-density hydrogen storage and transportation at ambient temperature and pressure. However its commercial applications highly rely on the high-performance heterogeneous dehydrogenation catalysts owing to the dehydrogenation difficulty of chemical hydrogen storage materials. In recent years the chemists and materials scientists found that the supported metal nanoparticles (MNPs) can exhibit high catalytic activity selectivity and stability for the dehydrogenation of chemical hydrogen storage materials which will clear the way for the commercial application of liquid chemical hydrogen storage technology. This review has summarized the recent important research progress in the MNP-catalyzed liquid chemical hydrogen storage technology including formic acid dehydrogenation hydrazine hydrate dehydrogenation and ammonia borane dehydrogenation discussed the urgent challenges in the key field and pointed out the future research trends.
Combined Effects of Stress and Temperature on Hydrogen Diffusion in Non-hydride Forming Alloys Applied in Gas Turbines
Jul 2022
Publication
Hydrogen plays a vital role in the utilisation of renewable energy but ingress and diffusion of hydrogen in a gas turbine can induce hydrogen embrittlement on its metallic components. This paper aims to investigate the hydrogen transport in a non-hydride forming alloy such as Alloy 690 used in gas turbines inspired by service conditions of turbine blades i.e. under the combined effects of stress and temperature. An appropriate hydrogen transport equation is formulated accounting for both stress and temperature distributions of the domain in the non-hydride forming alloy. Finite element (FE) analyses are performed to predict steady-state hydrogen distribution in lattice sites and dislocation traps of a double notched specimen under constant tensile load and various temperature fields. Results demonstrate that the lattice hydrogen concentration is very sensitive to the temperature gradients whilst the stress concentration only slightly increases local lattice hydrogen concentration. The combined effects of stress and temperature result in the highest concentration of the dislocation trapped hydrogen in low-temperature regions although the plastic strain is only at a moderate level. Our results suggest that temperature gradients and stress concentrations in turbine blades due to cooling channels and holes make the relatively low-temperature regions susceptible to hydrogen embrittlement.
A Zero Carbon Route to the Supply of High-temperature Heat Through the Integration of Solid Oxide Electrolysis Cells and H2–O2 Combustion
Aug 2022
Publication
Previously suggested options to achieve carbon neutrality involve the use of fossil fuels with carbon capture or exploiting biomass as sources of energy. Industrial high-temperature heating could possibly exploit electrical heating or combustion using hydrogen. However it is difficult to replace all the current coal or natural gas furnaces with these options for chemical industry. In this work a method that integrates solid oxide electrolysis cells (SOEC) and H2–O2 combustion is proposed and the related parameters are modelled to analyze their impacts. There is no waste heat and waste emissions in the proposed option and all substances are recycled. Unlike previous research the heat required for SOEC operation is generated from H2 combustion. The best working condition is under thermoneutral voltage and the highest electricity-to-thermal efficiency that can be achieved is 86.88% under a current density of 12000 A/m2 and operating temperature of 750 ◦C. Ohmic overpotential has the greatest effect on electricity consumption and the anode activation overpotential is the second most important option. Increasing combustion product temperature cannot significantly improve thermal efficiency but can raise the available maximum thermal energy.
Transition to Renewable Energy for Communities: Energy Storage Requirements and Dissipation
Aug 2022
Publication
The transition of residential communities to renewable energy sources is one of the first steps for the decarbonization of the energy sector the reduction of CO2 emissions and the mitigation of global climate change. This study provides information for the development of a microgrid supplied by wind and solar energy which meets the hourly energy demand of a community of 10000 houses in the North Texas region; hydrogen is used as the energy storage medium. The results are presented for two cases: (a) when the renewable energy sources supply only the electricity demand of the community and (b) when these sources provide the electricity as well as the heating needs (for space heating and hot water) of the community. The results show that such a community can be decarbonized with combinations of wind and solar installations. The energy storage requirements are between 2.7 m3 per household and 2.2 m3 per household. There is significant dissipation in the storage–regeneration processes—close to 30% of the current annual electricity demand. The entire decarbonization (electricity and heat) of this community will result in approximately 87500 tons of CO2 emissions avoidance.
Iron as Recyclable Energy Carrier: Feasibility Study and Kinetic Analysis of Iron Oxide Reduction
Oct 2022
Publication
Carbon-free and sustainable energy storage solutions are required to mitigate climate change. One possible solution especially for stationary applications could be the storage of energy in metal fuels. Energy can be stored through reduction of the oxide with green hydrogen and be released by combustion. In this work a feasibility study for iron as possible metal fuel considering the complete energy cycle is conducted. Based on equilibrium calculations it could be shown that the power-to-power efficiency of the iron/iron oxide cycle is 27 %. As technology development requires a more detailed description of both the reduction and the oxidation a first outlook is given on the kinetic analysis of the reduction of iron oxides with hydrogen. Based on thermogravimetric experiments using Fe2O3 Fe3O4 and FeO it could be shown that the reduction is a three-step process. The maximum reduction rate can be achieved with a hydrogen content of 25 %. Based on the experimental results a reaction mechanism and accompanied kinetic data were developed for description of Fe2O3 reduction with H2 under varying experimental conditions.
Review and Perspectives of Key Decarbonization Drivers to 2030
Jan 2023
Publication
Global climate policy commitments are encouraging the development of EU energy policies aimed at paving the way for cleaner energy systems. This article reviews key decarbonization drivers for Italy considering higher environmental targets from recent European Union climate policies. Energy efficiency the electrification of final consumption the development of green fuels increasing the share of renewable energy sources in the electric system and carbon capture and storage are reviewed. A 2030 scenario is designed to forecast the role of decarbonization drivers in future energy systems and to compare their implementation with that in the current situation. Energy efficiency measures will reduce final energy consumption by 15.6% as primary energy consumption will decrease by 19.8%. The electrification of final consumption is expected to increase by 6.08%. The use of green fuels is estimated to triple as innovative fuels may go to market at scale to uphold the ambitious decarbonization targets set in the transportation sector. The growing trajectory of renewable sources in the energy mix is confirmed as while power generation is projected to increase by 10% the share of renewables in that generation is expected to increase from 39.08% to 78.16%. Capture and storage technologies are also expected to play an increasingly important role. This article has policy implications and serves as a regulatory reference in the promotion of decarbonization investments.
An Extensive Review of Liquid Hydrogen in Transportation with Focus on the Maritime Sector
Sep 2022
Publication
The European Green Deal aims to transform the EU into a modern resource-efficient and competitive economy. The REPowerEU plan launched in May 2022 as part of the Green Deal reveals the willingness of several countries to become energy independent and tackle the climate crisis. Therefore the decarbonization of different sectors such as maritime shipping is crucial and may be achieved through sustainable energy. Hydrogen is potentially clean and renewable and might be chosen as fuel to power ships and boats. Hydrogen technologies (e.g. fuel cells for propulsion) have already been implemented on board ships in the last 20 years mainly during demonstration projects. Pressurized tanks filled with gaseous hydrogen were installed on most of these vessels. However this type of storage would require enormous volumes for large long-range ships with high energy demands. One of the best options is to store this fuel in the cryogenic liquid phase. This paper initially introduces the hydrogen color codes and the carbon footprints of the different production techniques to effectively estimate the environmental impact when employing hydrogen technologies in any application. Afterward a review of the implementation of liquid hydrogen (LH2 ) in the transportation sector including aerospace and aviation industries automotive and railways is provided. Then the focus is placed on the maritime sector. The aim is to highlight the challenges for the adoption of LH2 technologies on board ships. Different aspects were investigated in this study from LH2 bunkering onboard utilization regulations codes and standards and safety. Finally this study offers a broad overview of the bottlenecks that might hamper the adoption of LH2 technologies in the maritime sector and discusses potential solutions.
Effects of Compression Ratios on Combustion and Emission Characteristics of SI Engine Fueled with Hydrogen-Enriched Biogas Mixture
Aug 2022
Publication
The effects of hydrogen-enriched biogas on combustion and emissions of a dual-fuel sparkignition engine with different hydrogen concentration ratios were studied numerically. A 1-cylinder spark ignition was used to perform a numerical simulation. To reveal the influence of the compression ratios on combustion and emissions of a gaseous engine the crankshaft of the engine was modified to generate different compression ratios of 8.5 9.0 9.4 10.0 and 10.4. The biogas contained 60 and 40% methane (CH4 ) and carbon dioxide (CO2 ) respectively while the hydrogen fractions used to enrich biogas were 10 20 and 30% of the mixture by volume. The ignition timing is fixed at 350 CA◦ . The results indicate that the in-cylinder pressure combustion temperature and combustion burning speed increase gradually with increasing hydrogen concentration due to the combustion characteristics of hydrogen in blends. As increasing the compression ratio NOx emissions increase proportionally while CO2 emissions decrease gradually. Almost no combustion process occurs as operating the compression ratio below 8.5 when using pure biogas. However adding 20% of hydrogen fraction could improve the combustion process significantly even at a low compression ratio.
Projecting the Future Cost of PEM and Alkaline Water Electrolysers; a CAPEX Model Including Electrolyser Plant Size and Technology Department
Oct 2022
Publication
The investment costs of water electrolysis represent one key challenge for the realisation of renewable hydrogen-based energy systems. This work presents a technology cost assessment and outlook towards 2030 for alkaline electrolysers (AEL) and PEM electrolysers (PEMEL) in the MW to GW range taking into consideration the effects of plant size and expected technology developments. Critical selected data was fitted to a modified power law to describe the cost of an electrolyser plant based on the overall capacity and a learning/technology development rate to derive cost estimations for different PEMEL and AEL plant capacities towards 2030. The analysis predicts that the CAPEX gap between AEL and PEMEL technologies will decrease significantly towards 2030 with plant size until 1 e10 MW range. Beyond this only marginal cost reductions can be expected with CAPEX values approaching 320e400 $/kW for large scale (greater than 100 MW) plants by 2030 with subsequent cost reductions possible. Learning rates for electrolysers were estimated at 25 e30% for both AEL and PEMEL which are significantly higher than the learning rates reported in previous literature.
Sizing and Performance Analysis of Hydrogen- and Battery-Based Powertrains, Integrated into a Passenger Train for a Regional Track, Located in Calabria (Italy)
Aug 2022
Publication
In order to decarbonize the rail industry the development of innovative locomotives with the ability to use multiple energy sources constituting hybrid powertrains plays a central role in transitioning from conventional diesel trains. In this paper four configurations based on suitable combinations of fuel cells and/or batteries are designed to replace or supplement a diesel/overhead line powertrain on a real passenger train (the Hitachi Blues) tested on an existing regional track the Catanzaro Lido–Reggio Calabria line (Italy) managed by Trenitalia SpA. (Italy). The configurations (namely battery–electrified line full-battery fuel cell–battery–electrified line and fuel cell–battery) are first sized with the intention of completing a round trip then integrated on board with diesel engine replacement in mind and finally occupy a portion of the passenger area within two locomotives. The achieved performance is thoroughly examined in terms of fuel cell efficiency (greater than 47%) hydrogen consumption (less than 72 kg) braking energy recovery (approximately 300 kWh) and battery interval SOC.
HydroGenerally - Episode 1: The Colours of Hydrogen
Mar 2022
Publication
This first episode was inspired by an Innovate UK KTN perspective commenting on the UK government’s Hydrogen Strategy released by the Department of Business Energy and Industrial Strategy (BEIS) in August 2021. Following the publication of this perspective it was very evident to our Innovate UK KTN experts that the uses and challenges of ‘blue’ and ‘green’ hydrogens were generating a strong debate depending on their application areas.
Over a 20-minute discussion Simon Steffan and Sam try to answer the questions: how is hydrogen currently produced? How will it be produced in the future? And how will it fit in with the energy system?
The podcast can be found on their website
Over a 20-minute discussion Simon Steffan and Sam try to answer the questions: how is hydrogen currently produced? How will it be produced in the future? And how will it fit in with the energy system?
The podcast can be found on their website
Impacts of Renewable Energy Resources on Effectiveness of Grid-Integrated Systems: Succinct Review of Current Challenges and Potential Solution Strategies
Sep 2020
Publication
This study is aimed at a succinct review of practical impacts of grid integration of renewable energy systems on effectiveness of power networks as well as often employed state-of-the-art solution strategies. The renewable energy resources focused on include solar energy wind energy biomass energy and geothermal energy as well as renewable hydrogen/fuel cells which although not classified purely as renewable resources are a famous energy carrier vital for future energy sustainability. Although several world energy outlooks have suggested that the renewable resources available worldwide are sufficient to satisfy global energy needs in multiples of thousands the different challenges often associated with practical exploitation have made this assertion an illusion to date. Thus more research efforts are required to synthesize the nature of these challenges as well as viable solution strategies hence the need for this review study. First brief overviews are provided for each of the studied renewable energy sources. Next challenges and solution strategies associated with each of them at generation phase are discussed with reference to power grid integration. Thereafter challenges and common solution strategies at the grid/electrical interface are discussed for each of the renewable resources. Finally expert opinions are provided comprising a number of aphorisms deducible from the review study which reveal knowledge gaps in the field and potential roadmap for future research. In particular these opinions include the essential roles that renewable hydrogen will play in future energy systems; the need for multi-sectoral coupling specifically by promoting electric vehicle usage and integration with renewable-based power grids; the need for cheaper energy storage devices attainable possibly by using abandoned electric vehicle batteries for electrical storage and by further development of advanced thermal energy storage systems (overviews of state-of-the-art thermal and electrochemical energy storage are also provided); amongst others.
No more items...