Publications
Advancing Europe's Energy Systems- Stationary Fuel Cells in Distributed Generation
Mar 2015
Publication
Stationary fuel cells can play a beneficial role in Europe's changing energy landscape. The energy systems across Europe face significant challenges as they evolve against the backdrop of an ambitious climate agenda. As energy systems integrate more and more generation capacity from intermittent renewables numerous challenges arise. Amongst others Europe's energy systems of the future require new concepts for complementary supply such as efficient distributed power generation from natural gas. At the same time significant investments to modernise the electricity grid infrastructure are needed. Long-term storage solutions become a growing priority to ensure permanent power supply e.g. power-to-gas. Moreover Europe puts greater emphasis on energy efficiency in order to save primary energy reduce fuel imports and increase energy security.
Against this background distributed generation from stationary fuel cells promises significant benefits. This study outlines a pathway for commercialising stationary fuel cells in Europe The present study outlines a pathway for commercialising stationary fuel cells in Europe. It produces a comprehensive account of the current and future market potential for fuel cell distributed energy generation in Europe benchmarks stationary fuel cell technologies against competing conventional technologies in a variety of use cases and assesses potential business models for commercialisation. Considering the results of the technological and commercial analysis the study pinpoints focus areas for further R&D to sustain innovation and provides recommendations for supportive policy frameworks.
The study has been sponsored by the Fuel Cells and Hydrogen Joint Undertaking. Compiled by Roland Berger Strategy Consultants it builds on an interactive approach involving a coalition of more than 30 companies public institutions and associations from the stakeholder community of the European stationary fuel cell industry.
Against this background distributed generation from stationary fuel cells promises significant benefits. This study outlines a pathway for commercialising stationary fuel cells in Europe The present study outlines a pathway for commercialising stationary fuel cells in Europe. It produces a comprehensive account of the current and future market potential for fuel cell distributed energy generation in Europe benchmarks stationary fuel cell technologies against competing conventional technologies in a variety of use cases and assesses potential business models for commercialisation. Considering the results of the technological and commercial analysis the study pinpoints focus areas for further R&D to sustain innovation and provides recommendations for supportive policy frameworks.
The study has been sponsored by the Fuel Cells and Hydrogen Joint Undertaking. Compiled by Roland Berger Strategy Consultants it builds on an interactive approach involving a coalition of more than 30 companies public institutions and associations from the stakeholder community of the European stationary fuel cell industry.
Simulation-based Safety Investigation of a Hydrogen Fueling Station with an On-site Hydrogen Production System Involving Methylcyclohexane
Jan 2017
Publication
Adequate safety measures are crucial for preventing major accidents at hydrogen fuelling stations. In particular risk analysis of the domino effect at hydrogen fuelling stations is essential because knock-on accidents are likely to intensify the consequences of a relatively small incident. Several risk assessment studies have focused on hydrogen fuelling stations but none have investigated accidental scenarios related to the domino effect at such stations. Therefore the purpose of this study is to identify a domino effect scenario analyze the scenario by using simulations and propose safety measures for preventing and mitigating of the scenario. In this hazard identification study we identified the domino effect scenario of a hydrogen fuelling station with an on-site hydrogen production system involving methylcyclohexane and investigated through simulations of the scenario. The simulations revealed that a pool fire of methylcyclohexane or toluene can damage the process equipment and that thermal radiation may cause the pressurized hydrogen tanks to rupture. The rupture-type vent system can serve as a critical safety measure for preventing and mitigating the examined scenario.
Highly Porous Organic Polymers for Hydrogen Fuel Storage
Apr 2019
Publication
Hydrogen (H2) is one of the best candidates to replace current petroleum energy resources due to its rich abundance and clean combustion. However the storage of H2presents a major challenge. There are two methods for storing H2 fuel chemical and physical both of which have some advantages and disadvantages. In physical storage highly porous organic polymers are of particular interest since they are low cost easy to scale up metal-free and environmentally friendly.
In this review highly porous polymers for H2 fuel storage are examined from five perspectives:
(a) brief comparison of H2 storage in highly porous polymers and other storage media;
(b) theoretical considerations of the physical storage of H2 molecules in porous polymers;
(c) H2 storage in different classes of highly porous organic polymers;
(d) characterization of microporosity in these polymers; and
(e) future developments for highly porous organic polymers for H2 fuel storage. These topics will provide an introductory overview of highly porous organic polymers in H2 fuel storage.
In this review highly porous polymers for H2 fuel storage are examined from five perspectives:
(a) brief comparison of H2 storage in highly porous polymers and other storage media;
(b) theoretical considerations of the physical storage of H2 molecules in porous polymers;
(c) H2 storage in different classes of highly porous organic polymers;
(d) characterization of microporosity in these polymers; and
(e) future developments for highly porous organic polymers for H2 fuel storage. These topics will provide an introductory overview of highly porous organic polymers in H2 fuel storage.
Hy4Heat Progress Report
Jan 2021
Publication
Hy4Heat’s mission is to establish if it is technically possible safe and convenient to replace natural gas (methane) with hydrogen in residential and commercial buildings and gas appliances. This will enable the government to determine whether to proceed to a community trial.
There is growing international consensus that hydrogen will be essential to successfully tackling climate change. So BEIS is working to develop hydrogen as a strategic decarbonised energy carrier for the UK which will be an essential element of the UK’s efforts to transform and decarbonise our energy system in line with our legally binding 2050 net zero commitment. Hydrogen can be used across multiple end-use sectors including industry transport heat and power. BEIS is looking to support and develop low carbon hydrogen production methods which will position hydrogen as a highly effective decarbonisation option particularly in hard-to electrify sectors and processes.
At the end of 2017 BEIS appointed Arup to be the programme manager for the Hy4Heat programme. Arup partnered with technical and industry specialists: Kiwa Gastec Progressive Energy Embers and Yo Energy and together the team oversees the programme and technical management of all the work packages. For the past three years Hy4Heat has been exploring whether replacing natural gas (methane) with hydrogen for domestic heating and cooking is feasible and could be part of a plausible potential pathway to help meet heat decarbonisation targets. To do this the programme has been seeking to provide the technical performance usability and safety evidence to demonstrate whether hydrogen can be used for heat in buildings.
This report and any attachment is freely available on the Hy4Heat website here. The report can also be downloaded directly by clicking on the pdf icon above.
There is growing international consensus that hydrogen will be essential to successfully tackling climate change. So BEIS is working to develop hydrogen as a strategic decarbonised energy carrier for the UK which will be an essential element of the UK’s efforts to transform and decarbonise our energy system in line with our legally binding 2050 net zero commitment. Hydrogen can be used across multiple end-use sectors including industry transport heat and power. BEIS is looking to support and develop low carbon hydrogen production methods which will position hydrogen as a highly effective decarbonisation option particularly in hard-to electrify sectors and processes.
At the end of 2017 BEIS appointed Arup to be the programme manager for the Hy4Heat programme. Arup partnered with technical and industry specialists: Kiwa Gastec Progressive Energy Embers and Yo Energy and together the team oversees the programme and technical management of all the work packages. For the past three years Hy4Heat has been exploring whether replacing natural gas (methane) with hydrogen for domestic heating and cooking is feasible and could be part of a plausible potential pathway to help meet heat decarbonisation targets. To do this the programme has been seeking to provide the technical performance usability and safety evidence to demonstrate whether hydrogen can be used for heat in buildings.
This report and any attachment is freely available on the Hy4Heat website here. The report can also be downloaded directly by clicking on the pdf icon above.
Study of the Effect of Addition of Hydrogen to Natural Gas on Diaphragm Gas Meters
Jun 2020
Publication
Power-to-gas technology plays a key role in the success of the energy transformation. This paper addresses issues related to the legal and technical regulations specifying the rules for adding hydrogen to the natural gas network. The main issue reviewed is the effects of the addition of hydrogen to natural gas on the durability of diaphragm gas meters. The possibility of adding hydrogen to the gas network requires confirmation of whether within the expected hydrogen concentrations long-term operation of gas meters will be ensured without compromising their metrological properties and operational safety. Methods for testing the durability of gas meters applied at test benches and sample results of durability tests of gas meters are presented. Based on these results a metrological and statistical analysis was carried out to establish whether the addition of hydrogen affects the durability of gas meters over time. The most important conclusion resulting from the conducted study indicates that for the tested gas meter specimens there was no significant metrological difference between the obtained changes of errors of indications after testing the durability of gas meters with varying hydrogen content (from 0% to 15%).
Biomass Derived Porous Nitrogen Doped Carbon for Electrochemical Devices
Mar 2017
Publication
Biomass derived porous nanostructured nitrogen doped carbon (PNC) has been extensively investigated as the electrode material for electrochemical catalytic reactions and rechargeable batteries. Biomass with and without containing nitrogen could be designed and optimized to prepare PNC via hydrothermal carbonization pyrolysis and other methods. The presence of nitrogen in carbon can provide more active sites for ion absorption improve the electronic conductivity increase the bonding between carbon and sulfur and enhance the electrochemical catalytic reaction. The synthetic methods of natural biomass derived PNC heteroatomic co- or tri-doping into biomass derived carbon and the application of biomass derived PNC in rechargeable Li/Na batteries high energy density Li–S batteries supercapacitors metal-air batteries and electrochemical catalytic reaction (oxygen reduction and evolution reactions hydrogen evolution reaction) are summarized and discussed in this review. Biomass derived PNCs deliver high performance electrochemical storage properties for rechargeable batteries/supercapacitors and superior electrochemical catalytic performance toward hydrogen evolution oxygen reduction and evolution as promising electrodes for electrochemical devices including battery technologies fuel cell and electrolyzer.
Freeze-dried Ammonia Borane-polyethylene Oxide Composites: Phase Behaviour and Hydrogen Release
Feb 2018
Publication
A solid-state hydrogen storage material comprising ammonia borane (AB) and polyethylene oxide (PEO) has been produced by freeze-drying from aqueous solutions from 0% to 100% AB by mass. The phase mixing behaviour of AB and PEO has been investigated using X-ray diffraction which shows that a new ‘intermediate’ crystalline phase exists different from both AB and PEO as observed in our previous work (Nathanson et al. 2015). It is suggested that hydrogen bonding interactions between the ethereal oxygen atom (–O–) in the PEO backbone and the protic hydrogen atoms attached to the nitrogen atom (N–H) of AB molecules promote the formation of a reaction intermediate leading to lowered hydrogen release temperatures in the composites compared to neat AB. PEO also acts to significantly reduce the foaming of AB during hydrogen release. A temperature-composition phase diagram has been produced for the AB-PEO system to show the relationship between phase mixing and hydrogen release.
The Impact of Disruptive Powertrain Technologies on Energy Consumption and Carbon Dioxide Emissions from Heavy-duty Vehicles
Jan 2020
Publication
Minimising tailpipe emissions and the decarbonisation of transport in a cost effective way remains a major objective for policymakers and vehicle manufacturers. Current trends are rapidly evolving but appear to be moving towards solutions in which vehicles which are increasingly electrified. As a result we will see a greater linkage between the wider energy system and the transportation sector resulting in a more complex and mutual dependency. At the same time major investments into technological innovation across both sectors are yielding rapid advancements into on-board energy storage and more compact/lightweight on-board electricity generators. In the absence of sufficient technical data on such technology holistic evaluations of the future transportation sector and its energy sources have not considered the impact of a new generation of innovation in propulsion technologies. In this paper the potential impact of a number of novel powertrain technologies are evaluated and presented. The analysis considers heavy duty vehicles with conventional reciprocating engines powered by diesel and hydrogen hybrid and battery electric vehicles and vehicles powered by hydrogen fuel cells and freepiston engine generators (FPEGs). The benefits are compared for each technology to meet the expectations of representative medium and heavy-duty vehicle drivers. Analysis is presented in terms of vehicle type vehicle duty cycle fuel economy greenhouse gas (GHG) emissions impact on the vehicle etc.. The work shows that the underpinning energy vector and its primary energy source are the most significant factor for reducing primary energy consumption and net CO2 emissions. Indeed while an HGV with a BEV powertrain offers no direct tailpipe emissions it produces significantly worse lifecycle CO2 emissions than a conventional diesel powertrain. Even with a de-carbonised electricity system (100 g CO2/kWh) CO2 emissions are similar to a conventional Diesel fuelled HGV. For the HGV sector range is key to operator acceptability of new powertrain technologies. This analysis has shown that cumulative benefits of improved electrical powertrains on-board storage efficiency improvements and vehicle design in 2025 and 2035 mean that hydrogen and electric fuelled vehicles can be competitive on gravimetric and volumetric density. Overall the work demonstrates that presently there is no common powertrain solution appropriate for all vehicle types but how subtle improvements at a vehicle component level can have significant impact on the design choices for the wider energy system.
Flexible Power and Hydrogen Production: Finding Synergy Between CCS and Variable Renewables
Dec 2019
Publication
The expansion of wind and solar power is creating a growing need for power system flexibility. Dispatchable power plants with CO2 capture and storage (CCS) offer flexibility with low CO2 emissions but these plants become uneconomical at the low running hours implied by renewables-based power systems. To address this challenge the novel gas switching reforming (GSR) plant was recently proposed. GSR can alternate between electricity and hydrogen production from natural gas offering flexibility to the power system without reducing the utilization rate of the capital stock embodied in CCS infrastructure. This study assesses the interplay between GSR and variable renewables using a power system model which optimizes investment and hourly dispatch of 13 different technologies. Results show that GSR brings substantial benefits relative to conventional CCS. At a CO2 price of V100/ton inclusion of GSR increases the optimal wind and solar share by 50% lowers total system costs by 8% and reduces system emissions from 45 to 4 kgCO2/MWh. In addition GSR produces clean hydrogen equivalent to about 90% of total electricity demand which can be used to decarbonize transport and industry. GSR could therefore become a key enabling technology for a decarbonization effort led by wind and solar power.
Mathematical Modeling and Simulation of Hydrogen-fueled Solid Oxide Fuel Cell System for Micro-grid Applications - Effect of Failure and Degradation on Transient Performance
May 2020
Publication
We use a detailed solid oxide fuel cell (SOFC) model for micro-grid applications to analyze the effect of failure and degradation on system performance. Design and operational constraints on a component and system level are presented. A degrees of freedom analysis identifies controlled and manipulated system variables which are important for control. Experimental data are included to model complex degradation phenomena of the SOFC unit. Rather than using a constant value a spatially distributed degradation rate as function of temperature and current density is used that allows to study trajectory based performance deterioration. The SOFC unit is assumed to consist of multiple stacks. The failure scenario studied is the loss of one individual SOFC stack e.g. due to breakage of sealing or a series of fuel cells. Simulations reveal that degradation leads to significant drifts from the design operating point. Moreover failure of individual stacks may bring the still operating power generation unit into a regime where further failures and accelerated degradation is more likely. It is shown that system design dimensioning operation and control are strongly linked. Apart from specific quantitative results perhaps the main practical contribution are the collected constraints and the degrees of freedom analysis.
Estimation of Final Hydrogen Temperature From Refueling Parameters
Oct 2015
Publication
Compressed hydrogen storage is currently widely used in fuel cell vehicles due to its simplicity in tank structure and refuelling process. For safety reason the final gas temperature in the hydrogen tank during vehicle refuelling must be maintained under a certain limit e.g. 85 °C. Many experiments have been performed to find the relations between the final gas temperature in the hydrogen tank and refueling conditions. The analytical solution of the hydrogen temperature in the tank can be obtained from the simplified thermodynamic model of a compressed hydrogen storage tank and it serves as function formula to fit experimental temperatures. From the analytical solution the final hydrogen temperature can be expressed as a weighted average form of initial temperature inflow temperature and ambient temperature inspired by the rule of mixtures. The weighted factors are related to other refuelling parameters such as initial mass initial pressure refuelling time refuelling mass rate average pressure ramp rate (APRR) final mass final pressure etc. The function formula coming from the analytical solution of the thermodynamic model is more meaningful physically and more efficient mathematically in fitting experimental temperatures. The simple uniform formula inspired by the concept of the rule of mixture and its weighted factors obtained from the analytical solution of lumped parameter thermodynamics model is representatively used to fit the experimental and simulated results in publication. Estimation of final hydrogen temperature from refuelling parameters based on the rule of mixtures is simple and practical for controlling the maximum temperature and for ensuring hydrogen safety during fast filling process.
Amorphous Iron-nickel Phosphide Nanocone Arrays as Efficient Bifunctional Electrodes for Overall Water Splitting
May 2020
Publication
The synthesis of low-cost and highly active electrodes for both oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) is very important for water splitting. In this work the novel amorphous iron-nickel phosphide (FeP-Ni) nanocone arrays as efficient bifunctional electrodes for overall water splitting have been in-situ assembled on conductive three-dimensional (3D) Ni foam via a facile and mild liquid deposition process. It is found that the FeP-Ni electrode demonstrates highly efficient electrocatalytic performance toward overall water splitting. In 1 M KOH electrolyte the optimal FeP-Ni electrode drives a current density of 10 mA/cm2 at an overpotential of 218 mV for the OER and 120 mV for the HER and can attain such current density for 25 h without performance regression. Moreover a two-electrode electrolyzer comprising the FeP-Ni electrodes can afford 10 mA/cm2 electrolysis current at a low cell voltage of 1.62 V and maintain long-term stability as well as superior to that of the coupled RuO2/NF‖Pt/C/NF cell. Detailed characterizations confirm that the excellent electrocatalytic performances for water splitting are attributed to the unique 3D morphology of nanocone arrays which could expose more surface active sites facilitate electrolyte diffusion benefit charge transfer and also favourable bubble detachment behaviour. Our work presents a facile and cost-effective pathway to design and develop active self-supported electrodes with novel 3D morphology for water electrolysis.
HyNet North West- from Vision to Reality
Jan 2018
Publication
HyNet North West (NW) is an innovative integrated low carbon hydrogen production distribution and carbon capture utilisation and storage (CCUS) project. It provides hydrogen distribution and CCUS infrastructure across Liverpool Manchester and parts of Cheshire in support of the Government’s Clean Growth Strategy (CGS) and achievement of the UK’s emissions reduction targets.<br/>Hydrogen will be produced from natural gas and sent via a new pipeline to a range of industrial sites for injection as a blend into the existing natural gas network and for use as a transport fuel. Resulting carbon dioxide (CO2) will be captured and together with CO2 from local industry which is already available sent by pipeline for storage offshore in the nearby Liverpool Bay gas fields. Key data for the Project are presented in Table ES1.
Report on Socio-economic Impact of the FCH -JU Activities
Feb 2016
Publication
The FCH JU has with its industry and research partners worked since 2008 to develop and demonstrate FCH technologies along with development of the various business and environmental cases. It has involved a programme of increasingly ambitious demonstrations projects a consistent approach to research and development actions and a long term policy commitment. Developing the business and environmental cases for FCH technologies has created an increasingly compelling vision appealing to a range of stakeholders: to FCH technology businesses themselves assured by the long term commitment of the FCH JU to end users in terms of cost and operational performance potential and as critically to increasing numbers of policy and decision makers attracted by the substantial socio-economic benefits.
Expert Opinion Analysis on Renewable Hydrogen Storage Systems Potential in Europe
Nov 2016
Publication
Among the several typologies of storage technologies mainly on different physical principles (mechanical electrical and chemical) hydrogen produced by power to gas (P2G) from renewable energy sources complies with chemical storage principle and is based on the conversion of electrical energy into chemical energy by means of the electrolysis of water which does not produce any toxic or climate-relevant emission. This paper aims to pinpoint the potential uses of renewable hydrogen storage systems in Europe analysing current and potential locations regulatory framework governments’ outlooks economic issues and available renewable energy amounts. The expert opinion survey already used in many research articles on different topics including energy has been selected as an effective method to produce realistic results. The obtained results highlight strategies and actions to optimize the storage of hydrogen produced by renewables to face varying electricity demand and generation-driven fluctuations reducing the negative effects of the increasing share of renewables in the energy mix of European Countries.
Hydrogen Refuelling Stations in the Netherlands: An Intercomparison of Quantitative Risk Assessments Used for Permitting
May 2018
Publication
As of 2003 15 hydrogen refuelling stations (HRSs) have been deployed in the Netherlands. To become established the HRS has to go through a permitting procedure. An important document of the permitting dossier is the quantitative risk assessment (QRA) as it assesses the risks of the HRS associated to people and buildings in the vicinity of the HRS. In the Netherlands a generic prescribed approach exists on how to perform a QRA however specific guidelines for HRSs do not exist. An intercomparison among the QRAs of permitted HRSs has revealed significant inconsistencies on various aspects of the QRA: namely the inclusion of HRS sub-systems and components the HRS sub-system and component considerations as predefined components the application of failure scenarios the determination of failure frequencies the application of input parameters the consideration of preventive and mitigation measures as well as information provided regarding the HRS surroundings and the societal risk. It is therefore recommended to develop specific QRA guidelines for HRSs.
Opportunities for Hydrogen Energy Technologies Considering the National Energy & Climate Plans
Aug 2020
Publication
The study analyses the role of hydrogen in the National Energy and Climate Plans (NECPs) and identifies and highlights opportunities for hydrogen technologies to contribute to effective and efficient achievement of the 2030 climate and energy targets of the EU and its Member States.<br/>The study focuses on the potential and opportunities of renewable hydrogen produced by electrolysers using renewable electricity and of low-carbon hydrogen produced by steam methane reforming combined with CCS. The opportunities for and impacts of hydrogen deployment are assessed and summarised in individual fiches per Member State.<br/>The study analyses to what extent policy measures and industrial initiatives are already being taken to facilitate large-scale implementation of hydrogen in the current and the next decades. The study concludes by determining the CO2 reduction potential beyond what is foreseen in the NECPs through hydrogen energy technologies estimating the reduction of fossil fuel imports and reliance the prospective cost and the value added and jobs created. National teams working on decarbonisation roadmaps and updates of the NECPs are welcome to consider the opportunities and benefits of hydrogen deployment identified in this study.
Properties of the Hydrogen Oxidation Reaction on Pt/C catalysts at Optimised High Mass Transport Conditions and its Relevance to the Anode Reaction in PEFCs and Cathode Reactions in Electrolysers
Jul 2015
Publication
Using a high mass transport floating electrode technique with an ultra-low catalyst loading (0.84–3.5 μgPt cm−2) of commonly used Pt/C catalyst (HiSPEC 9100 Johnson Matthey) features in the hydrogen oxidation reaction (HOR) and hydrogen evolution reaction (HER) were resolved and defined which have rarely been previously observed. These features include fine structure in the hydrogen adsorption region between 0.18 < V vs. RHE < 0.36 V vs. RHE consisting of two peaks an asymptotic decrease at potentials greater than 0.36 V vs. RHE and a hysteresis above 0.1 V vs. RHE which corresponded to a decrease in the cathodic scan current by up to 50% of the anodic scan. These features are examined as a function of hydrogen and proton concentration anion type and concentration potential scan limit and temperature. We provide an analytical solution to the Heyrovsky–Volmer equation and use it to analyse our results. Using this model we are able to extract catalytic properties (without mass transport corrections; a possible source of error) by simultaneously fitting the model to HOR curves in a variety of conditions including temperature hydrogen partial pressure and anion/H+ concentration. Using our model we are able to rationalise the pH and hydrogen concentration dependence of the hydrogen reaction. This model may be useful in application to fuel cell and electrolyser simulation studies.
Evaluating Uncertainty in Accident Rate Estimation at Hydrogen Refueling Station Using Time Correlation Model
Nov 2018
Publication
Hydrogen as a future energy carrier is receiving a significant amount of attention in Japan. From the viewpoint of safety risk evaluation is required in order to increase the number of hydrogen refuelling stations (HRSs) implemented in Japan. Collecting data about accidents in the past will provide a hint to understand the trend in the possibility of accidents occurrence by identifying its operation time However in new technology; accident rate estimation can have a high degree of uncertainty due to absence of major accident direct data in the late operational period. The uncertainty in the estimation is proportional to the data unavailability which increases over long operation period due to decrease in number of stations. In this paper a suitable time correlation model is adopted in the estimation to reflect lack (due to the limited operation period of HRS) or abundance of accident data which is not well supported by conventional approaches. The model adopted in this paper shows that the uncertainty in the estimation increases when the operation time is long owing to the decreasing data.
Hydrogen and Hydrogen-derived Fuels through Methane Decomposition of Natural Gas – GHG Emissions and Costs
May 2020
Publication
Hydrogen can be produced from the decomposition of methane (also called pyrolysis). Many studies assume that this process emits few greenhouse gas (GHG) because the reaction from methane to hydrogen yields only solid carbon and no CO2. This paper assesses the life-cycle GHG emissions and the levelized costs for hydrogen provision from methane decomposition in three configurations (plasma molten metal and thermal gas). The results of these configurations are then compared to electrolysis and steam methane reforming (SMR) with and without CO2capture and storage (CCS). Under the global natural gas supply chain conditions hydrogen from methane decomposition still causes significant GHG emissions between 43 and 97 g CO2-eq./MJ. The bandwidth is predominately determined by the energy source providing the process heat i.e. the lowest emissions are caused by the plasma system using renewable electricity. This configuration shows lower GHG emissions compared to the “classical” SMR (99 g CO2-eq./MJ) but similar emissions to the SMR with CCS (46 g CO2-eq./MJ). However only electrolysis powered with renewable electricity leads to very low GHG emissions (3 g CO2-eq./MJ). Overall the natural gas supply is a decisive factor in determining GHG emissions. A natural gas supply with below-global average GHG emissions can lead to lower GHG emissions of all methane decomposition configurations compared to SMR. Methane decomposition systems (1.6 to 2.2 €/kg H2) produce hydrogen at costs substantially higher compared to SMR (1.0 to 1.2 €/kg) but lower than electrolyser (2.5 to 3.0 €/kg). SMR with CCS has the lowest CO2abatement costs (24 €/t CO2-eq. other > 141 €/t CO2-eq.). Finally fuels derived from different hydrogen supply options are assessed. Substantially lower GHG emissions compared to the fossil reference (natural gas and diesel/gasoline) are only possible if hydrogen from electrolysis powered by renewable energy is used (>90% less). The other hydrogen pathways cause only slightly lower or even higher GHG emissions.
Plasmonic Nickel Nanoparticles Decorated on to LaFeO3 Photocathode for Enhanced Solar Hydrogen Generation
Nov 2018
Publication
Plasmonic Ni nanoparticles were incorporated into LaFeO3 photocathode (LFO-Ni) to excite the surface plasmon resonances (SPR) for enhanced light harvesting for enhancing the photoelectrochemical (PEC) hydrogen evolution reaction. The nanostructured LFO photocathode was prepared by spray pyrolysis method and Ni nanoparticles were incorporated on to the photocathode by spin coating technique. The LFO-Ni photocathode demonstrated strong optical absorption and higher current density where the untreated LFO film exhibited a maximum photocurrent of 0.036 mA/cm2 at 0.6 V vs RHE and when incorporating 2.84 mmol Ni nanoparticles the photocurrent density reached a maximum of 0.066 mA/cm2 at 0.6 V vs RHE due to the SPR effect. This subsequently led to enhanced hydrogen production where more than double (2.64 times) the amount of hydrogen was generated compared to the untreated LFO photocathode. Ni nanoparticles were modelled using Finite Difference Time Domain (FDTD) analysis and the results showed optimal particle size in the range of 70–100 nm for Surface Plasmon Resonance (SPR) enhancement.
Renewable Power and Heat for the Decarbonisation of Energy-Intensive Industries
Dec 2022
Publication
The present review provides a catalogue of relevant renewable energy (RE) technologies currently available (regarding the 2030 scope) and to be available in the transition towards 2050 for the decarbonisation of Energy Intensive Industries (EIIs). RE solutions have been classified into technologies based on the use of renewable electricity and those used to produce heat for multiple industrial processes. Electrification will be key thanks to the gradual decrease in renewable power prices and the conversion of natural-gas-dependent processes. Industrial processes that are not eligible for electrification will still need a form of renewable heat. Among them the following have been identified: concentrating solar power heat pumps and geothermal energy. These can supply a broad range of needed temperatures. Biomass will be a key element not only in the decarbonisation of conventional combustion systems but also as a biofuel feedstock. Biomethane and green hydrogen are considered essential. Biomethane can allow a straightforward transition from fossil-based natural gas to renewable gas. Green hydrogen production technologies will be required to increase their maturity and availability in Europe (EU). EIIs’ decarbonisation will occur through the progressive use of an energy mix that allows EU industrial sectors to remain competitive on a global scale. Each industrial sector will require specific renewable energy solutions especially the top greenhouse gas-emitting industries. This analysis has also been conceived as a starting point for discussions with potential decision makers to facilitate a more rapid transition of EIIs to full decarbonisation.
A Host-guest Approach to Fabricate Metallic Cobalt Nanoparticles Embedded in Silk-derived N-doped Carbon Fibers for Efficient Hydrogen Evolution
Feb 2017
Publication
Hydrogen evolution reaction (HER) plays a key role in generating clean and renewable energy. As the most effective HER electrocatalysts Pt group catalysts suffer from severe problems such as high price and scarcity. It is highly desirable to design and synthesize sustainable HER electrocatalysts to replace the Pt group catalysts. Due to their low cost high abundance and high activities cobalt-incorporated N-doped nanocarbon hybrids are promising candidate electrocatalysts for HER. In this report we demonstrated a robust and eco-friendly host-guest approach to fabricate metallic cobalt nanoparticles embedded in N-doped carbon fibers derived from natural silk fibers. Benefiting from the one-dimensional nanostructure the well-dispersed metallic cobalt nanoparticles and the N-doped thin graphitized carbon layer coating the best Co-based electrocatalyst manifests low overpotential (61 mV@10 mA/cm2) HER activity that is comparable with commercial 20% Pt/C and good stability in acid. Our findings provide a novel and unique route to explore high-performance noble-metal-free HER electrocatalysts.
Co-CoOx Supported onto TiO2 Coated with Carbon as a Catalyst for Efficient and Stable Hydrogen Generation from Ammonia Borane
Apr 2020
Publication
Ammonia borane (AB) can be catalytically hydrolyzed to provide hydrogen at room temperature due to its high potentaial for hydrogen storage. Non-precious metal heterogeneous catalysts have broad application in the field of energy catalysis. In this article catalysts precursor is obtained from Co-Ti-resorcinol-formaldehyde resin by sol–gel method. Co/TiO2@N-C (CTC) catalyst is prepared by calcining the precursor under high temperature conditions in nitrogen atmosphere. Co-CoOx/TiO2@N-C (COTC) is generated by the controllable oxidation reaction of CTC. The catalyst can effectively promote the release of hydrogen during the hydrolytic dehydrogenation of AB. High hydrogen generation at a specific rate of 5905 mL min−1 gCo−1 is achieved at room temperature. The catalyst retains its 85% initial catalytic activity even for its fifth time use in AB hydrolysis. The synergistic effect among Co Co3O4 and TiO2 promotes the rate limiting step with dissociation and activation of water molecules by reducing its activation energy. The applied method in this study promotes the development of non-precious metals in catalysis for utilization in clean energy sources.
Enabling Efficient Networks For Low Carbon Futures: Options for Governance and Regulation
Sep 2015
Publication
This report summarises key themes emerging from the Energy Technologies Institute’s (ETI) project ‘Enabling efficient networks for low carbon futures’. The project aimed to explore the options for reforming the governance and regulatory arrangements to enable major changes to and investment in the UK’s energy network infrastructures. ETI commissioned four expert perspectives on the challenges and options facing the UK.
Fuel Cells and Hydrogen: Joint Undertaking Programme Review 2013 Final Report
Mar 2014
Publication
The 2013 Programme Review is the third annual review of the FCH JU portfolio of projects. This edition covers over 100 projects funded through annual calls for proposals from 2008 to 2012.<br/>The Programme Review serves to evaluate the achievements of the portfolio of FCH JU-funded projects against FCH JU strategic objectives in terms of advancing technological progress addressing horizontal activities and promoting cooperation with other projects both within the FCH JU portfolio as well as externally.<br/>The 2013 Review confirms that the portfolio of projects supported within energy and transport pillars and within its cross-cutting activities is a solid one aligned with the FCH JU strategic objectives. Industry and research collaboration is strong with SMEs making up 30% of total participants. The continued expansion of demonstration activities in both pillars answers to a greater emphasis on addressing the commercialisation challenge which is bolstered by activities in basic and breakthrough research.
Hazard Identification Study for Risk Assessment of a Hybrid Gasoline-hydrogen Fueling Station with an Onsite Hydrogen Production System Using Organic Hydride
Oct 2015
Publication
Hydrogen infrastructures are important for the commercialization of fuel cell vehicles. Hydrogen storage and transportation are significant topics because it is difficult to safely and effectively treat large amounts of hydrogen because of hydrogen hazards. An organic chemical hydride method keeps and provides hydrogen using hydrogenation and dehydrogenation chemical reactions with aromatic compounds. This method has advantages in that the conventional petrochemical products are used as a hydrogen carrier and petrochemicals are more easily treated than hydrogen because of low hazards. Hydrogen fueling stations are also crucial infrastructures for hydrogen supply. In Japan hybrid gasoline-hydrogen fuelling stations are needed for effective space utilization in urban areas. It is essential to address the safety issues of hybrid fueling stations for inherently safer station construction. We focused on a hybrid gasoline-hydrogen fuelling station with an on-site hydrogen production system using methylcyclohexane as an organic chemical hydride. The purpose of this study is to reveal unique hybrid risks in the station with a hazard identification study (HAZID study). As a result of the HAZID study we identified 314 accident scenarios involving gasoline and organic chemical hydride systems. In addition we suggested improvement safety measures for uniquely worst-case accident scenarios to prevent and mitigate the scenarios.
Hydrogen Production as a Clean Energy Carrier through Heterojunction Semiconductors for Environmental Remediation
Apr 2022
Publication
Today as a result of the advancement of technology and increasing environmental problems the need for clean energy has considerably increased. In this regard hydrogen which is a clean and sustainable energy carrier with high energy density is among the well-regarded and effective means to deliver and store energy and can also be used for environmental remediation purposes. Renewable hydrogen energy carriers can successfully substitute fossil fuels and decrease carbon dioxide (CO2 ) emissions and reduce the rate of global warming. Hydrogen generation from sustainable solar energy and water sources is an environmentally friendly resolution for growing global energy demands. Among various solar hydrogen production routes semiconductor-based photocatalysis seems a promising scheme that is mainly performed using two kinds of homogeneous and heterogeneous methods of which the latter is more advantageous. During semiconductor-based heterogeneous photocatalysis a solid material is stimulated by exposure to light and generates an electron–hole pair that subsequently takes part in redox reactions leading to hydrogen production. This review paper tries to thoroughly introduce and discuss various semiconductor-based photocatalysis processes for environmental remediation with a specific focus on heterojunction semiconductors with the hope that it will pave the way for new designs with higher performance to protect the environment.
Recovery Through Reform: Assessing the climate compatibility of Canada’s COVID-19 response in 2020
Feb 2021
Publication
Governments around the world are leveraging unprecedented amounts of capital to respond to the pandemic and bailing out struggling industries. Trends in energy-related spending indicate that despite the green push the world’s largest economies have still favoured fossil energy over clean energy.<br/><br/>We evaluate energy-related spending in Canada in 2020 (since the onset of COVID-19) using data from the Energy Policy Tracker. Trends in Canada are then compared to flagship policies in key jurisdictions with recent progressive climate policy announcements including France Germany and the United Kingdom. The brief ends with broad recommendations on how Canada can better align its recovery funding with climate action and fossil fuel subsidy reform.<br/><br/>This brief is one of three International Institute for Sustainable Development (IISD) policy briefs in its Recovery Through Reform series which assesses how efforts to achieve a green recovery from COVID-19 in Canada rely on—and can contribute to—fossil fuel subsidy reform.
Study on Early Business Cases for H2 In Energy Storage and More Broadly Power to H2 Applications
Jun 2017
Publication
Hydrogen is widely recognised as a promising option for storing large quantities of renewable electricity over longer periods. For that reason in an energy future where renewables are a dominant power source opportunities for Power to- Hydrogen in the long-term appear to be generally acknowledged. The key challenge today is to identify concrete short-term investment opportunities based on sound economics and robust business cases. The focus of this study is to identify these early business cases and to assess their potential replicability within the EU from now until 2025. An essential part and innovative approach of this study is the detailed analysis of the power sector including its transmission grid constraints.
Advanced Hydrogen and CO2 Capture Technology for Sour Syngas
Apr 2011
Publication
A key challenge for future clean power or hydrogen projects via gasification is the need to reduce the overall cost while achieving significant levels of CO2 capture. The current state of the art technology for capturing CO2 from sour syngas uses a physical solvent absorption process (acid gas removal–AGR) such as Selexol™ or Rectisol® to selectively separate H2S and CO2 from the H2. These two processes are expensive and require significant utility consumption during operation which only escalates with increasing levels of CO2 capture. Importantly Air Products has developed an alternative option that can achieve a higher level of CO2 capture than the conventional technologies at significantly lower capital and operating costs. Overall the system is expected to reduce the cost of CO2 capture by over 25%.<br/>Air Products developed this novel technology by leveraging years of experience in the design and operation of H2 pressure swing adsorption (PSA) systems in its numerous steam methane reformers. Commercial PSAs typically operate on clean syngas and thus need an upstream AGR unit to operate in a gasification process. Air Products recognized that a H2 PSA technology adapted to handle sour feedgas (Sour PSA) would enable a new and enhanced improvement to a gasification system. The complete Air Products CO2 Capture technology (CCT) for sour syngas consists of a Sour PSA unit followed by a low-BTU sour oxycombustion unit and finally a CO2 purification / compression system.
The Role of Initial Tank Temperature on Refuelling of On-board Hydrogen Tanks
Jun 2016
Publication
The influence of the initial tank temperature on the evolution of the internal gas temperature during the refuelling of on-board hydrogen tanks is investigated in this paper. Two different types of tanks four different fuel delivery temperatures (from ambient temperature refuelling to a pre-cooled hydrogen at −40 °C) several filling rates and initial pressures are considered. It has been found that the final gas temperature increases linearly with the increase of the initial tank temperature while the temperature increase (ΔT) and the final state of charge (SOC) decrease linearly with increasing the initial temperature. This dependency has been found to be larger on type III than on type IV tank and larger the larger the initial pressure. Additionally CFD simulations are performed to better understand the role of the relevant phenomena on the gas temperature histories e.g. gas compression gas mixing and heat transfer. By comparing the results of calculations with adiabatic and diathermal tank walls the effect of the initial gas temperature has been separated from the effect of the initial wall temperature on the process.
Fuel Cells and Hydrogen Technologies in Europe: Financial and Technology Outlook on the European Sector Ambition 2014-2020
Nov 2011
Publication
Sustainable secure and competitive energy supply and transport services are at the heart of the EU2020 strategy towards a low carbon and inclusive economy geared towards a reduction of 80% of CO2 emissions by 2050. This objective has been endorsed by the European Institutions and Member States. It is widely recognised that a technological shift and the deployment of new clean technologies are critical for a successful transition to such a new sustainable economy. Furthermore in addition to bringing a healthier environment and securing energy supply innovation will provide huge opportunities for the European economy. However this paradigm shift will not be purely driven by the market. A strong and determined commitment of public institutions and the private sector together are necessary to support the European political ambition. The period 2014-2020 will be critical to ensure that the necessary investments are realized to support the EU2020 vision. In terms of hydrogen and fuel cell technologies significant investments are required for (a) transportation for scaling up the car fleet and building up of refuelling infrastructure needs (b) hydrogen production technologies to integrate renewable intermittent power sources to the electrical grid (wind and solar) (c) stationary fuel cell applications with large demonstration projects in several European cities and (d) identified early markets (material handling vehicles back-up power systems) to allow for volume developments and decrease of system-costs.<br/>This Report summarizes the sector’s financial ambition to reach Europe’s objectives in 2020.
Modeling Thermal Response of Polymer Composite Hydrogen Cylinders
Oct 2015
Publication
With the anticipated introduction of hydrogen fuel cell vehicles to the market there is an increasing need to address the fire resistance of hydrogen cylinders for onboard storage. Sufficient fire resistance is essential to ensure safe evacuation in the event of car fire accidents. The authors have developed a Finite Element (FE) model for predicting the thermal response of composite hydrogen cylinders within the frame of the open source FE code Elmer. The model accounts for the decomposition of the polymer matrix and effects of volatile gas transport in the composite. Model comparison with experimental data has been conducted using a classical one-dimensional test case of polymer composite subjected to fire. The validated model was then used to analyze a type-4 hydrogen cylinder subjected to an engulfing external propane fire mimicking a published cylinder fire experiment. The external flame is modelled and simulated using the open source code FireFOAM. A simplified failure criteria based on internal pressure increase is subsequently used to determine the cylinder fire resistance.
Kinetics Study and Modelling of Steam Methane Reforming Process Over a NiO/Al2O3 Catalyst in an Adiabatic Packed Bed Reactor
Dec 2016
Publication
Kinetic rate data for steam methane reforming (SMR) coupled with water gas shift (WGS) over an 18 wt. % NiO/α-Al2O3 catalyst are presented in the temperature range of 300–700 °C at 1 bar. The experiments were performed in a plug flow reactor under the conditions of diffusion limitations and away from the equilibrium conditions. The kinetic model was implemented in a one-dimensional heterogeneous mathematical model of catalytic packed bed reactor developed on gPROMS model builder 4.1.0®. The mathematical model of SMR process was simulated and the model was validated by comparing the results with the experimental values. The simulation results were in excellent agreement with the experimental results. The effect of various operating parameters such as temperature pressure and steam to carbon ratio on fuel and water conversion (%) H2 yield (wt. % of CH4) and H2 purity was modelled and compared with the equilibrium values.
Fuel Cells and Hydrogen for Green Energy in European Cities and Regions
Sep 2018
Publication
Fuel cells and hydrogen are a viable solution for European regions and cities to reduce their emissions and realise their green energy transition says new FCH JU study.
In 2017 the FCH JU launched an initiative to support regions and cities in this regard. Today 89 regions and cities participate representing about one quarter of Europe's population surface area and GDP. These regions are pursuing ambitious plans to deploy FCH technology in the coming years. FCH investments totalling about EUR 1.8 billion are planned for these regions in the next 5 years. These planned investments can contribute significantly to further developing the FCH market in Europe and driving the sector towards commercialisation.
The new study provides a detailed insight into the FCH investment plans of the participating regions and cities and points out next steps to be taken for realising a European FCH roadmap with a view to commercialising the technology. In particular the study shows that:
In 2017 the FCH JU launched an initiative to support regions and cities in this regard. Today 89 regions and cities participate representing about one quarter of Europe's population surface area and GDP. These regions are pursuing ambitious plans to deploy FCH technology in the coming years. FCH investments totalling about EUR 1.8 billion are planned for these regions in the next 5 years. These planned investments can contribute significantly to further developing the FCH market in Europe and driving the sector towards commercialisation.
The new study provides a detailed insight into the FCH investment plans of the participating regions and cities and points out next steps to be taken for realising a European FCH roadmap with a view to commercialising the technology. In particular the study shows that:
- European regions and cities need to take action now to realise their ambitious emission reduction targets and improve local air quality.
- Investing in fuel cell and hydrogen technology pays off for cities and regions as it provides a mature safe and competitive zero-emission solution for all their energy needs.
- Regions and cities can benefit from investing in hydrogen and fuel cells not only in environmental terms but also by stimulating local economic growth and creating attractive places to live work and visit.
- The Regions and Cities Initiative provides a unique opportunity to benefit from existing knowledge draw on project development support and financing assistance to realise own FCH deployment projects.
- To enable the realisation of the envisaged FCH deployment plans of the regions and cities continued support will be required for individual projects as well as the coalition at large.
Fuel Cell and Hydrogen Technology- Europe's Journey to a Greener World
Nov 2017
Publication
On the occasion of its 10th Stakeholder forum the FCH JU published a unique and exclusive book. This book sets out the story behind both the FCH JU and fuel cell and hydrogen technology in Europe. It reviews the events leading to its creation and examines the achievements that have allowed Europe to take a leading role in fuel cell and hydrogen excellence. It also looks at what this investment in fuel cell technology will mean for the EU in the coming years
Validation of Leading Point Concept in RANS Simulations of Highly Turbulent Lean Syngas-air Flames with Well-pronounced Diffusional-thermal Effects
Jan 2021
Publication
While significant increase in turbulent burning rate in lean premixed flames of hydrogen or hydrogen-containing fuel blends is well documented in various experiments and can be explained by highlighting local diffusional-thermal effects capabilities of the vast majority of available models of turbulent combustion for predicting this increase have not yet been documented in numerical simulations. To fill this knowledge gap a well-validated Turbulent Flame Closure (TFC) model of the influence of turbulence on premixed combustion which however does not address the diffusional-thermal effects is combined with the leading point concept which highlights strongly perturbed leading flame kernels whose local structure and burning rate are significantly affected by the diffusional-thermal effects. More specifically within the framework of the leading point concept local consumption velocity is computed in extremely strained laminar flames by adopting detailed combustion chemistry and subsequently the computed velocity is used as an input parameter of the TFC model. The combined model is tested in RANS simulations of highly turbulent lean syngas-air flames that were experimentally investigated at Georgia Tech. The tests are performed for four different values of the inlet rms turbulent velocities different turbulence length scales normal and elevated (up to 10 atm) pressures various H2/CO ratios ranging from 30/70 to 90/10 and various equivalence ratios ranging from 0.40 to 0.80. All in all the performed 33 tests indicate that the studied combination of the leading point concept and the TFC model can predict well-pronounced diffusional-thermal effects in lean highly turbulent syngas-air flames with these results being obtained using the same value of a single constant of the combined model in all cases. In particular the model well predicts a significant increase in the bulk turbulent consumption velocity when increasing the H2/CO ratio but retaining the same value of the laminar flame speed.
State of the Art of Hydrogen Production via Pyrolysis of Natural Gas
Jul 2020
Publication
Fossil fuels have to be substituted by climate neutral fuels to contribute to CO2 reduction in the future energy system. Pyrolysis of natural gas is a well-known technical process applied for production of e. g. carbon black.
In the future it might contribute to carbon dioxide-free hydrogen production. Production of hydrogen from natural gas pyrolysis has thus gained interest in research and energy technology in the near past. If the carbon by-product of this process can be used for material production or can be sequestrated the produced hydrogen has a low carbon footprint.
This article reviews literature on the state of the art of methane/ natural gas pyrolysis process developments and at-tempts to assess the technology readiness level (TRL).
In the future it might contribute to carbon dioxide-free hydrogen production. Production of hydrogen from natural gas pyrolysis has thus gained interest in research and energy technology in the near past. If the carbon by-product of this process can be used for material production or can be sequestrated the produced hydrogen has a low carbon footprint.
This article reviews literature on the state of the art of methane/ natural gas pyrolysis process developments and at-tempts to assess the technology readiness level (TRL).
Strategies for Joint Procurement of Fuel Cell Buses
Jun 2018
Publication
The Fuel Cells and Hydrogen Joint Undertaking (FCH JU) has supported a range of initiatives in recent years designed to develop hydrogen fuel cell buses to a point where they can fulfil their promise as a mainstream zero emission vehicle for public transport.<br/>Within this study 90 different European cities and regions have been supported in understanding the business case of fuel cell bus deployment and across these locations. The study analyses the funding and financing for fuel cell bus deployment to make them become a mainstream zero emission choice for public transport providers in cities and regions across Europe. It also outlines possible solutions for further deployment of FC buses beyond the subsidised phase.<br/>In the light of the experience of the joint tender process in the UK and in Germany the study highlights best practices for ordering fuel cell buses. Other innovative instruments explored in other countries for the orders of large quantities of fuel cells buses are presented: Special Purpose Vehicles and centralised purchase office. Finally the study deeply analyses the funding and financing for fuel cell bus deployment to make them become a mainstream zero emission choice for public transport providers in cities and regions across Europe.
Transition of Future Energy System Infrastructure; through Power-to-Gas Pathways
Jul 2016
Publication
Power-to-gas is a promising option for storing interment renewables nuclear baseload power and distributed energy and it is a novel concept for the transition to increased renewable content of current fuels with an ultimate goal of transition to a sustainable low-carbon future energy system that interconnects power transportation sectors and thermal energy demand all together. The aim of this paper is to introduce different Power-to-gas “pathways” including Power to Hydrogen Power to Natural Gas End-users Power to Renewable Content in Petroleum Fuel Power to Power Seasonal Energy Storage to Electricity Power to Zero Emission Transportation Power to Seasonal Storage for Transportation Power to Micro grid Power to Renewable Natural Gas (RNG) to Pipeline (“Methanation”) and Power to Renewable Natural Gas (RNG) to Seasonal Storage. In order to compare the different pathways the review of key technologies of Power-to-gas systems are studied and the qualitative efficiency and benefits of each pathway is investigated from the technical points of view. Moreover different Power-to-gas pathways are discussed as an energy policy option that can be implemented to transition towards a lower carbon economy for Ontario’s energy systems
Study on Hydrogen from Renewable Resources in the EU
Feb 2016
Publication
Hydrogen can be produced from a broad range of renewable energy sources acting as a unique energy hub providing low or zero emission energy to all energy consuming sectors. Technically and efficiently producing hydrogen from renewable sources is a key enabler for these developments.<br/>Traditionally hydrogen has been produced from fossil sources by steam methane reforming of natural gas. At present the technology of choice to produce renewable ‘green’ hydrogen is water electrolysis using renewable electricity. The FCH JU has been supporting research and development of electrolyser technology and application projects aiming to increase the energy efficiency of electrolytic hydrogen production from renewable sources and to reduce costs.<br/>This study complements these activities by focusing on renewable hydrogen generation other than electrolysis. In this report these alternative hydrogen generation technologies are described characterized by their technical capabilities maturity and economic performance and assessed for their future potential.<br/>A methodology has been devised to first identify and structure a set of relevant green hydrogen pathways (eleven pathways depicted in the figure below) analyse them at a level of detail allowing a selection of those technologies which fit into and promise early commercialization in the framework of FCH 2 JU’s funding program.<br/>These originally proposed eleven pathways use solar thermal energy sunlight or biomass as major energy input.
Fuel Cells and Hydrogen: Joint Undertaking Programme Review 2019 Final Report
Nov 2020
Publication
The 2019 Programme Review Report presents the findings of a review into activities supported by the FCH 2 JU under the EU’s Seventh Framework Programme and Horizon 2020 by the European Commission’s Joint Research Centre (JRC ). It pays particular attention to the added value effectiveness and techno-economic efficiency of FCH 2 JU projects assigned to six review panels under two main pillars:<br/>Transport and Energy (TRANSPORT: a.trials and deployment of fuel cell applications and b.the next generation of products) (ENERGY: a.trials and deployment of fuel cell applications b.next generation of products and c.hydrogen for sectoral integration)<br/>Support for market uptake (cross-cutting activities such as standards and consumer awareness)<br/>This report covers all 81 projects that were ongoing for any time between April and October 2018 and assesses the strengths and accomplishments of each panel and areas that would benefit from further attention.
Fuel Cells and Hydrogen: Joint Undertaking Programme Review 2015 Final Report
Apr 2016
Publication
The 2015 Programme Review Report refers to the fifth review of the FCH JU project portfolio and covers 100 projects funded through annual calls for proposals from 2009 to 2013.<br/>The reviews began in 2011 following a recommendation arising from the interim evaluation of the FCH JU which identified the need to ensure that the overall project portfolio fulfilled the objectives of the FCH JU Multi-Annual Implementation and Work Plans.
Gas Goes Green: Britain's Hydrogen Network Plan Report
Jan 2021
Publication
Britain stands on the cusp of a world-leading hydrogen revolution and one which we are almost uniquely positioned to take advantage of. With an extensive world-leading gas grid huge amounts of offshore wind resource and liquid energy markets there are few other places as well positioned as the UK to lead the international race to build a hydrogen economy. Published as part of Energy Networks Association’s Gas Goes Green programme Britain’s Hydrogen Network Plan will play a vital role in delivering the UK’s ambitions for hydrogen as set out in the Prime Minister’s Ten Point Plan For A Green Industrial Revolution.<br/>This Plan sets out how Britain’s gas network companies will enable 100% hydrogen to be transported for use in different sectors of the UK economy. It also identifies the wider actions needed to provide hydrogen production and storage showing how transitioning the gas networks to hydrogen will allow hydrogen to play a full role in achieving net zero in the hard to decarbonise sectors such as industry heavy transport and domestic heating saving an estimated 40 million tonnes of CO2 emissions every year. All five of Britain’s gas network companies responsible for owning and operating £24bn of critical national energy infrastructure are committing through this Plan to delivering this work. It forms a key part of their ambition to building the world’s first zero carbon gas grid here in the UK.<br/>Britain’s Hydrogen Network Plan is founded on four tenets that will underpin the role of Britain’s gas network infrastructure in a hydrogen economy. These tenets reflect the breadth and scale of the impact that the transformation of our gas networks will have. They will guide how gas network companies ensure people’s safety in a fast moving and changing energy system. They reflect how the companies will maintain security of supply to our homes and businesses as we move away from the natural gas that has been the bedrock of our energy system for half a century. They will support the public’s ability to choose the right technology so households and businesses can choose the low carbon technologies that are best suited to their needs. And they will deliver jobs and investment so the transition of our gas networks has a lasting and enduring economic impact in communities across the country.<br/>As we look to the future the exciting role that hydrogen has to play in delivering a net zero economy is becoming increasingly clear. We look forward to working closely with the customers we serve the Government and the wider energy industry to turn that ambition into reality.
Trends in Investments, Jobs and Turnover in the Fuel Cells and Hydrogen Sector
Mar 2013
Publication
The Fuel Cells and Hydrogen Joint Undertaking (FCH JU) commissioned this report to a consultancy to get a better understanding of the past and future evolution of the European Fuel Cell and Hydrogen (FC&H) sector and the role that public support has in that evolution.
The results of this report are based on three data sources:
The results of this report are based on three data sources:
- Survey results: A survey was sent out to 458 companies that are liaised to the FCH JU. 154 people responded. (see list in annex)
- Desk research: A wide range of industry reports was consulted to supplement and cross check the results of the survey. However given the still nascent state of the industry the information gathered with this exercise was limited.
- Interviews: Key stakeholders in the European FC&H sector were interviewed to get the qualitative story behind the results from the survey and the desk research. These stakeholders varied from fuel cell manufacturers to government officials from energy companies to automotive OEMs
Photocatalytic Hydrogen Production by Biomimetic Indium Sulfide Using Mimosa Pudica Leaves as Template
Jan 2019
Publication
Biomimetic sulfur-deficient indium sulfide (In2.77S4) was synthesized by a template-assisted hydrothermal method using leaves of Mimosa pudica as a template for the first time. The effect of this template in modifying the morphology of the semiconductor particles was determined by physicochemical characterization revealing an increase in surface area decrease in microsphere size and pore size and an increase in pore volume density in samples synthesized with the template. X-ray photoelectron spectroscopy (XPS) analysis showed the presence of organic sulfur (Ssingle bondO/Ssingle bondC/Ssingle bondH) and sulfur oxide species (single bondSO2 SO32− SO42−) at the surface of the indium sulfide in samples synthesized with the template. Biomimetic indium sulfide also showed significant amounts of Fe introduced as a contaminant present on the Mimosa pudica leaves. The presence of these sulfur and iron species favors the photocatalytic activity for hydrogen production by their acting as a sacrificial reagent and promoting water oxidation on the surface of the templated particles respectively. The photocatalytic hydrogen production rates over optimally-prepared biomimetic indium sulfide and indium sulfide synthesized without the organic template were 73 and 22 μmol g−1 respectively indicating an improvement by a factor of three in the templated sample.
Strategy for Selecting an Optimal Propulsion System of a Liquefied Hydrogen Tanker
Jan 2017
Publication
This study proposed a strategy for selecting an optimal propulsion system of a liquefied hydrogen tanker. Four propulsion system options were conceivable depending on whether the hydrogen BOG (boil-off gas) from the cryogenic cargo tanks was used for fuel or not. These options were evaluated in terms of their economic technological and environmental feasibilities. The comparison scope included not only main machinery but also the BOG handling system with electric generators. Cost-benefit analysis life-cycle costing including carbon tax and an energy efficiency design index were used as measures to compare the four alternative systems. The analytic hierarchy process made scientific decision-making possible. This methodology provided the priority of each attribute through the use of pairwise comparison matrices. Consequently the propulsion system using LNG with hydrogen BOG recovery was determined to be the optimal alternative. This system was appropriate for the tanker that achieved the highest evaluation score.
Metal Hydride Hydrogen Compressors
Feb 2014
Publication
Metal hydride (MH) thermal sorption compression is an efficient and reliable method allowing a conversion of energy from heat into a compressed hydrogen gas. The most important component of such a thermal engine – the metal hydride material itself – should possess several material features in order to achieve an efficient performance in the hydrogen compression. Apart from the hydrogen storage characteristics important for every solid H storage material (e.g. gravimetric and volumetric efficiency of H storage hydrogen sorption kinetics and effective thermal conductivity) the thermodynamics of the metal–hydrogen systems is of primary importance resulting in a temperature dependence of the absorption/desorption pressures). Several specific features should be optimised to govern the performance of the MH-compressors including synchronisation of the pressure plateaus for multi-stage compressors reduction of slope of the isotherms and hysteresis increase of cycling stability and life time together with challenges in system design associated with volume expansion of the metal matrix during the hydrogenation.<br/>The present review summarises numerous papers and patent literature dealing with MH hydrogen compression technology. The review considers (a) fundamental aspects of materials development with a focus on structure and phase equilibria in the metal–hydrogen systems suitable for the hydrogen compression; and (b) applied aspects including their consideration from the applied thermodynamic viewpoint system design features and performances of the metal hydride compressors and major applications.
Methane Cracking as a Bridge Technology to the Hydrogen Economy
Nov 2016
Publication
Shifting the fossil fuel dominated energy system to a sustainable hydrogen economy could mitigate climate change through reduction of greenhouse gas emissions. Because it is estimated that fossil fuels will remain a significant part of our energy system until mid-century bridge technologies which use fossil fuels in an environmentally cleaner way offer an opportunity to reduce the warming impact of continued fossil fuel utilization. Methane cracking is a potential bridge technology during the transition to a sustainable hydrogen economy since it produces hydrogen with zero emissions of carbon dioxide. However methane feedstock obtained from natural gas releases fugitive emissions of methane a potent greenhouse gas that may offset methane cracking benefits. In this work a model exploring the impact of methane cracking implementation in a hydrogen economy is presented and the impact on global emissions of carbon dioxide and methane is explored. The results indicate that the hydrogen economy has the potential to reduce global carbon dioxide equivalent emissions between 0 and 27% when methane leakage from natural gas is relatively low methane cracking is employed to produce hydrogen and a hydrogen fuel cell is applied. This wide range is a result of differences between the scenarios and the CH4 leakage rates used in the scenarios. On the other hand when methane leakage from natural gas is relatively high methane steam reforming is employed to produce hydrogen and an internal combustion engine is applied the hydrogen economy leads to a net increase in global carbon dioxide equivalent emissions between 19 and 27%.
No more items...