Publications
A Hydrogen Fuelled LH2 Tanker Ship Design
May 2021
Publication
This study provides a detailed philosophical view and evaluation of a viable design for a large liquid hydrogen tanker fuelled by liquid hydrogen. Established methods for determining tank sizing ship stability and ship characteristics were used to evaluate the preliminary design and performance of the liquefied hydrogen tanker named ‘JAMILA’ designed specifically to transport liquid hydrogen. JAMILA is designed around four large liquid hydrogen tanks with a total capacity of ∼280000 m3 and uses the boil-off gas for propulsion for the loaded leg of the journey. The ship is 370 m long 75 m wide and draws 10.012 m at full load. It has a fully loaded displacement tonnage of 232000 tonnes to carry 20000 tonnes of hydrogen. Its propulsion system contains a combined-cycle gas turbine of approximately 50 MW. The volume of the hydrogen cargo pressurised to 0.5 MPa primarily determines the size and displacement of the ship.
Role of Grain Boundaries in Hydrogen Embrittlement of Alloy 725: Single and Bi-crystal Microcantilever Bending Study
Jan 2022
Publication
In situ electrochemical microcantilever bending tests were conducted in this study to investigate the role of grain boundaries (GBs) in hydrogen embrittlement (HE) of Alloy 725. Specimens were prepared under three different heat treatment conditions and denoted as solution-annealed (SA) aged (AG) and over-aged (OA) samples. For single-crystal beams in an H-containing environment all three heat-treated samples exhibited crack formation and propagation; however crack propagation was more severe in the OA sample. The anodic extraction of H presented similar results as those under the H-free condition indicating the reversibility of the H effect under the tested conditions. Bi-crystal micro-cantilevers bent under H-free and H-charged conditions revealed the significant role of the GB in the HE of the beams. The results indicated that the GB in the SA sample facilitated dislocation dissipation whereas for the OA sample it caused the retardation of crack propagation. For the AG sample testing in an H-containing environment led to the formation of a sharp severe crack along the GB path.
Direct Evidence for Solid-like Hydrogen in a Nanoporous Carbon Hydrogen Storage Material at Supercritical Temperatures
Jul 2015
Publication
Here we report direct physical evidence that confinement of molecular hydrogen (H2) in an optimized nanoporous carbon results in accumulation of hydrogen with characteristics commensurate with solid H2 at temperatures up to 67 K above the liquid vapor critical temperature of bulk H2. This extreme densification is attributed to confinement of H2 molecules in the optimally sized micropores and occurs at pressures as low as 0.02 MPa. The quantities of contained solid-like H2 increased with pressure and were directly evaluated using in situ inelastic neutron scattering and confirmed by analysis of gas sorption isotherms. The demonstration of the existence of solid-like H2 challenges the existing assumption that supercritical hydrogen confined in nanopores has an upper limit of liquid H2 density. Thus this insight offers opportunities for the development of more accurate models for the evaluation and design of nanoporous materials for high capacity adsorptive hydrogen storage.
Nuclear-Renewables Energy System for Hydrogen and Electricity Production
May 2011
Publication
In the future the world may have large stranded resources of low-cost wind and solar electricity. Renewable electricity production does not match demand and production is far from major cities. The coupling of nuclear energy with renewables may enable full utilization of nuclear and renewable facilities to meet local electricity demands and export pipeline hydrogen for liquid fuels fertilizer and metals production. Renewables would produce electricity at full capacity in large quantities. The base-load nuclear plants would match electricity production with demand by varying the steam used for electricity versus hydrogen production. High-temperature electrolysis (HTE) would produce hydrogen from water using (a) steam from nuclear plants and (b) electricity from nuclear plants and renewables. During times of peak electricity demand the HTE cells would operate in reverse fuel cell mode to produce power substituting for gas turbines that are used for very few hours per year and that thus have very high electricity costs. The important net hydrogen production would be shipped by pipeline to customers. Local hydrogen storage would enable full utilization of long-distance pipeline capacity with variable production. The electricity and hydrogen production were simulated with real load and wind data to understand under what conditions such systems are economic. The parametric case study uses a wind-nuclear system in North Dakota with hydrogen exported to the Chicago refinery market. North Dakota has some of the best wind conditions in the United States and thus potentially low-cost wind. The methodology allows assessments with different economic and technical assumptions - including what electrolyzer characteristics are most important for economic viability.
A 1000 MWth Boiler for Chemical-looping Combustion of Solid Fuels – Discussion of Design and Costs
May 2015
Publication
More than 2000 h of solid-fuel CLC operation in a number of smaller pilot units clearly indicate that the concept works. A scale-up of the technology to 1000 MWth is investigated in terms of mass and heat balances flows solids inventories boiler dimensions and the major differences between a full-scale Circulating Fluidized-Bed (CFB) boiler and a Chemical-Looping Combustion CFB (CLC–CFB). Furthermore the additional cost of CLC–CFB relative to CFB technology is analysed and found to be 20 €/tonne CO2. The largest cost is made up of compression of CO2 which is common to all capture technologies. Although the need for oxygen to manage incomplete conversion is estimated to be only a tenth of that of oxy-fuel combustion oxygen production is nonetheless the second largest cost. Other significant costs include oxygen-carrier material increased boiler cost and steam for fluidization of the fuel reactor.
Catalytic Hydrogen Production from Methane: A Review on Recent Progress and Prospect
Aug 2020
Publication
Natural gas (Methane) is currently the primary source of catalytic hydrogen production accounting for three quarters of the annual global dedicated hydrogen production (about 70 M tons). Steam–methane reforming (SMR) is the currently used industrial process for hydrogen production. However the SMR process suffers with insufficient catalytic activity low long-term stability and excessive energy input mostly due to the handling of large amount of CO2 coproduced. With the demand for anticipated hydrogen production to reach 122.5 M tons in 2024 novel and upgraded catalytic processes are desired for more effective utilization of precious natural resources. In this review we summarized the major descriptors of catalyst and reaction engineering of the SMR process and compared the SMR process with its derivative technologies such as dry reforming with CO2 (DRM) partial oxidation with O2 autothermal reforming with H2O and O2. Finally we discussed the new progresses of methane conversion: direct decomposition to hydrogen and solid carbon and selective oxidation in mild conditions to hydrogen containing liquid organics (i.e. methanol formic acid and acetic acid) which serve as alternative hydrogen carriers. We hope this review will help to achieve a whole picture of catalytic hydrogen production from methane.
Gas Goes Green: Tomorrow's Heat, Today's Opportunity
Sep 2021
Publication
Cutting-edge world-leading energy network innovation is vital to ensuring that our economy can continue to access the energy it needs to safeguard jobs and to maintain our international competitiveness as the world goes through decarbonisation. In this report we build on the 2020 Gas Goes Green Zero Carbon Commitment to set out the scale of investment that Britain’s gas networks wish to deliver to hydrogen innovation projects and preparing the gas networks. This work will be focused over the next ten years creating highly-skilled high-tech green jobs through investment and ensuring that the impact of that innovation is felt in communities across the UK.
A Hot Syngas Purification System Integrated with Downdraft Gasification of Municipal Solid Waste
Jan 2019
Publication
Gasification of municipal solid waste (MSW) with subsequent utilization of syngas in gas engines/turbines and solid oxide fuel cells can substantially increase the power generation of waste-to-energy facilities and optimize the utilization of wastes as a sustainable energy resources. However purification of syngas to remove multiple impurities such as particulates tar HCl alkali chlorides and sulfur species is required. This study investigates the feasibility of high temperature purification of syngas from MSW gasification with the focus on catalytic tar reforming and desulfurization. Syngas produced from a downdraft fixed-bed gasifier is purified by a multi-stage system. The system comprises of a fluidized-bed catalytic tar reformer a filter for particulates and a fixed-bed reactor for dechlorination and then desulfurization with overall downward cascading of the operating temperatures throughout the system. Novel nano-structured nickel catalyst supported on alumina and regenerable Ni-Zn desulfurization sorbent loaded on honeycomb are synthesized. Complementary sampling and analysis methods are applied to quantify the impurities and determine their distribution at different stages. Experimental and thermodynamic modeling results are compared to determine the kinetic constraints in the integrated system. The hot purification system demonstrates up to 90% of tar and sulfur removal efficiency increased total syngas yield (14%) and improved cold gas efficiency (12%). The treated syngas is potentially applicable in gas engines/turbines and solid oxide fuel cells based on the dew points and concentration limits of the remaining tar compounds. Reforming of raw syngas by nickel catalyst for over 20 h on stream shows strong resistance to deactivation. Desulfurization of syngas from MSW gasification containing significantly higher proportion of carbonyl sulfide than hydrogen sulfide traces of tar and hydrogen chloride demonstrates high performance of Ni-Zn sorbents.
Graphitic Carbon Nitride Heterojunction Photocatalysts for Solar Hydrogen Production
Sep 2021
Publication
Photocatalytic hydrogen production is considered as an ideal approach to solve global energy crisis and environmental pollution. Graphitic carbon nitride (g-C3N4) has received extensive consideration due to its facile synthesis stable physicochemical properties and easy functionalization. However the pristine g-C3N4 usually shows unsatisfactory photocatalytic activity due to the limited separation efficiency of photogenerated charge carriers. Generally introducing semiconductors or co-catalysts to construct g–C3N4–based heterojunction photocatalysts is recognized as an effective method to solve this bottleneck. In this review the advantages and characteristics of various types of g–C3N4–based heterojunction are analyzed. Subsequently the recent progress of highly efficient g–C3N4–based heterojunction photocatalysts in the field of photocatalytic water splitting is emphatically introduced. Finally a vision of future perspectives and challenges of g–C3N4–based heterojunction photocatalysts in hydrogen production are presented. Predictably this timely review will provide valuable reference for the design of efficient heterojunctions towards photocatalytic water splitting and other photoredox reactions.
Net Zero Strategy: Build Back Greener
Oct 2021
Publication
Last year the Prime Minister set out his 10 point plan for a green industrial revolution laying the foundations for a green economic recovery from the impact of COVID-19 with the UK at the forefront of the growing global green economy.
This strategy builds on that approach to keep us on track for UK carbon budgets our 2030 Nationally Determined Contribution and net zero by 2050. It includes:
This strategy builds on that approach to keep us on track for UK carbon budgets our 2030 Nationally Determined Contribution and net zero by 2050. It includes:
- our decarbonisation pathways to net zero by 2050 including illustrative scenarios
- policies and proposals to reduce emissions for each sector
- cross-cutting action to support the transition.
Optimal Sizing of Storage Elements for a Vehicle Based on Fuel Cells, Supercapacitors, and Batteries
Mar 2019
Publication
To achieve a vehicle-efficient energy management system an architecture composed of a PEM fuel cell as the main energy source and a hybrid storage system based on battery banks and supercapacitors is proposed. This paper introduces a methodology for the optimal component sizing aiming at minimizing the total cost achieving a cheaper system that can achieve the requirements of the speed profiles. The chosen vehicle is an urban transport bus which must meet the Buenos Aires Driving Cycle and the Manhattan Driving Cycle. The combination of batteries and supercapacitors allows a better response to the vehicle’s power demand since it combines the high energy density of the batteries with the high power density of the supercapacitors allowing the best absorption of energy coming from braking. In this way we address the rapid changes in power without reducing the global efficiency of the system. Optimum use of storage systems and fuel cell is analyzed through dynamic programming.
Impact Assessment of Hydrogen on Transmission Pipeline BPDs in IGEM/TD/1
Jul 2021
Publication
As part of the LTS Futures HyTechnical project IGEM requested that DNV GL undertake an assessment of the possible impact of hydrogen transmission on BPDs to support the development of supplements to the existing suite of natural gas standards to accommodate the possible future use of hydrogen. The current state of knowledge of the behaviour of large scale high pressure hydrogen releases is limited in comparison with the considerable body of data from research and operational experience of natural gas but is adequate to undertake an impact assessment to take account of the different gas outflow and fire characteristics of 100% hydrogen vs. natural gas.<br/>Calculations of the BPDs for 100% hydrogen pipeline fires on an equivalent basis to those in IGEM/TD/1 for natural gas have been performed with a degree of confidence in the results and demonstrated that the equivalent BPDs for 100% hydrogen are approximately 10% smaller than for natural gas. The results are presented graphically in this report.<br/>However hydrogen introduces the potential for substantially higher overpressures than natural gas due to the higher flame speed and wider flammable limits if delayed ignition is a credible event. The overpressure estimates presented in this report are intended to be scoping calculations to put the likely overpressures into context. The results suggest that significant overpressures are possible at the BPDs but there is a lack of evidence to support the estimation of the overpressures following delayed ignition of a large turbulent hydrogen release in the open (in contrast to explosions in confined or congested regions) and there is a high degree of uncertainty in the predictions presented here. It is therefore recommended that large scale pipeline rupture experiments are performed similar to those undertaken previously for hydrogen natural gas and natural gas/hydrogen mixtures but with ignition engineered to take place after a short delay in order to measure the overpressures and provide the means to validate or refine the predictions made.<br/>The analysis has highlighted limitations in the original method of calculating BPDs in IGEM/TD/1 which reflects the techniques available at the time approximately 40 years ago. Since then understanding of the hazards from pipeline failures and the ability to model the consequences and predict the associated risks to people in the surrounding area have advanced very considerably facilitated by software tools and documented in standards such as IGEM/TD/2. These methods allow the highly transient nature of a high pressure gas pipeline rupture release to be modelled more accurately and for the thermal effects of fires on people and buildings to be calculated taking account of the time-varying thermal dose.<br/>For these reasons a simple comparison of the possible overpressure effects of delayed ignition of a 100% hydrogen release at the BPDs can be misleading and implies that the overpressure hazards could be more severe than those for fires which may not be the case. Example calculations have been performed for a representative pipeline case which indicate that using current methods the predicted thermal hazard distances for 100% hydrogen pipeline fires (house burning and escape for people) are substantially greater than those estimated for overpressures following delayed ignition for similar levels of vulnerability. This report addresses buried pipelines only – the potential for more severe explosion overpressure effects for hydrogen releases may be more significant for Above Ground Installations (AGIs) especially where congestion or confinement may be present. It is recommended that similar studies are conducted to quantify the effect of hydrogen conversion on the consequences and risks associated with hydrogen releases at AGIs.<br/>Finally it is stressed that the analysis in this report does not consider the relative risks for 100% hydrogen and the equivalent natural gas pipelines. There remain uncertainties in the failure frequencies for steel pipelines transporting hydrogen and particularly the probability of immediate and delayed ignition. The likelihood of delayed ignition of a large turbulent high pressure hydrogen gas pipeline rupture release may be very low due to the wider flammability limits and lower minimum ignition energy for hydrogen compared with natural gas. Additional research is currently ongoing or planned to address the gaps in knowledge for 100% hydrogen which should allow more robust comparisons of the relative risks to be made in the future.
Stand-Alone Microgrid with 100% Renewable Energy: A Case Study with Hybrid Solar PV-Battery-Hydrogen
Mar 2020
Publication
A 100% renewable energy-based stand-alone microgrid system can be developed by robust energy storage systems to stabilize the variable and intermittent renewable energy resources. Hydrogen as an energy carrier and energy storage medium has gained enormous interest globally in recent years. Its use in stand-alone or off-grid microgrids for both the urban and rural communities has commenced recently in some locations. Therefore this research evaluates the techno-economic feasibility of renewable energy-based systems using hydrogen as energy storage for a stand-alone/off-grid microgrid. Three case scenarios in a microgrid environment were identified and investigated in order to select an optimum solution for a remote community by considering the energy balance and techno-economic optimization. The “HOMER Pro” energy modelling and simulating software was used to compare the energy balance economics and environmental impact amongst the proposed scenarios. The simulation results showed that the hydrogen-battery hybrid energy storage system is the most cost-effective scenario though all developed scenarios are technically possible and economically comparable in the long run while each has different merits and challenges. It has been shown that the proposed hybrid energy systems have significant potentialities in electrifying remote communities with low energy generation costs as well as a contribution to the reduction of their carbon footprint and to ameliorating the energy crisis to achieve a sustainable future.
The Effect of Hydrogen Containing Fuel Blends Upon Flashback in Swirl Burners
Feb 2011
Publication
Lean premixed swirl combustion is widely used in gas turbines and many other combustion Processes due to the benefits of good flame stability and blow off limits coupled with low NOx emissions. Although flashback is not generally a problem with natural gas combustion there are some reports of flashback damage with existing gas turbines whilst hydrogen enriched fuel blends especially those derived from gasification of coal and/or biomass/industrial processes such as steel making cause concerns in this area. Thus this paper describes a practical experimental approach to study and reduce the effect of flashback in a compact design of generic swirl burner representative of many systems. A range of different fuel blends are investigated for flashback and blow off limits; these fuel mixes include methane methane/hydrogen blends pure hydrogen and coke oven gas. Swirl number effects are investigated by varying the number of inlets or the configuration of the inlets. The well known Lewis and von Elbe critical boundary velocity gradient expression is used to characterise flashback and enable comparison to be made with other available data. Two flashback phenomena are encountered here. The first one at lower swirl numbers involves flashback through the outer wall boundary layer where the crucial parameter is the critical boundary velocity gradient Gf. Values of Gf are of similar magnitude to those reported by Lewis and von Elbe for laminar flow conditions and it is recognised that under the turbulent flow conditions pertaining here actual gradients in the thin swirl flow boundary layer are much higher than occur under laminar flow conditions. At higher swirl numbers the central recirculation zone (CRZ) becomes enlarged and extends backwards over the fuel injector to the burner baseplate and causes flashback to occur earlier at higher velocities. This extension of the CRZ is complex being governed by swirl number equivalence ratio and Reynolds Number. Under these conditions flashback occurs when the cylindrical flame front surrounding the CRZ rapidly accelerates outwards to the tangential inlets and beyond especially with hydrogen containing fuel mixes. Conversely at lower swirl numbers with a modified exhaust geometry hence restricted CRZ flashback occurs through the outer thin boundary layer at much lower flow rates when the hydrogen content of the fuel mix does not exceed 30%. The work demonstrates that it is possible to run premixed swirl burners with a wide range of hydrogen fuel blends so as to substantially minimise flashback behaviour thus permitting wider used of the technology to reduce NOx emissions.
Strategies for Hydrogen-Enriched Methane Flameless Combustion in a Quasi-Industrial Furnace
Jan 2020
Publication
In this present work simulations of 20 kW furnace were carried out with hydrogenenriched methane mixtures to identify optimal geometrical configurations and operating conditions to operate in flameless combustion regime. The objective of this work is to show the advantages of flameless combustion for hydrogen-enriched fuels and the limits of current typical industrial designs for these mixtures. The performances of a semi-industrial combustion chamber equipped with a self-recuperative flameless burner are evaluated with increasing H2 concentrations. For highly H2-enriched mixtures typical burners employed for methane appear to be inadequate to reach flameless conditions. In particular for a typical coaxial injector configuration an equimolar mixture of hydrogen and methane represents the limit for hydrogen enrichment. To achieve flameless conditions different injector geometries and configuration were tested. Fuel dilution with CO2 and H2O was also investigated. Dilution slows the mixing process consequently helping the transition to flameless conditions. CO2 and H2O are typical products of hydrogen generation processes therefore their use in fuel dilution is convenient for industrial applications. Dilution thus allows the use of greater hydrogen percentages in the mixture.
A Comparative Study of Energy Consumption and Recovery of Autonomous Fuel-Cell Hydrogen–Electric Vehicles Using Different Powertrains Based on Regenerative Braking and Electronic Stability Control System
Mar 2021
Publication
Today with the increasing transition to electric vehicles (EVs) the design of highly energy-efficient vehicle architectures has taken precedence for many car manufacturers. To this end the energy consumption and recovery rates of different powertrain vehicle architectures need to be investigated comprehensively. In this study six different powertrain architectures—four independent in-wheel motors with regenerative electronic stability control (RESC) and without an RESC one-stage gear (1G) transmission two-stage gear (2G) transmission continuously variable transmission (CVT) and downsized electric motor with CVT—were mathematically modeled and analyzed under real road conditions using nonlinear models of an autonomous hydrogen fuel-cell electric vehicle (HFCEV). The aims of this paper were twofold: first to compare the energy consumption performance of powertrain architectures by analyzing the effects of the regenerative electronic stability control (RESC) system and secondly to investigate the usability of a downsized electrical motor for an HFCEV. For this purpose all the numerical simulations were conducted for the well-known FTP75 and NEDC urban drive cycles. The obtained results demonstrate that the minimum energy consumption can be achieved by a 2G-based powertrain using the same motor; however when an RESC system is used the energy recovery/consumption rate can be increased. Moreover the results of the article show that it is possible to use a downsized electric motor due to the CVT and this powertrain significantly reduces the energy consumption of the HFCEV as compared to all the other systems. The results of this paper present highly significant implications for automotive manufacturers for designing and developing a cleaner electrical vehicle energy consumption and recovery system.
Hydrogen Insights 2022
Sep 2022
Publication
Authored by the Hydrogen Council in collaboration with McKinsey and Company Hydrogen Insights 2022 presents an updated perspective on hydrogen market development and actions required to unlock hydrogen at scale.
The pipeline of hydrogen projects is continuing to grow but actual deployment is lagging.
680 large-scale project proposals worth USD 240 billion have been put forward but only about 10% (USD 22 billion) have reached final investment decision (FID). While Europe leads in proposed investments (~30%) China is slightly ahead on actual deployment of electrolyzers (200 MW) while Japan and South Korea are leading in fuel cells (more than half of the world’s 11 GW manufacturing capacity).
The urgency to invest in mature hydrogen projects today is greater than ever.
For the world to be on track for net zero emissions by 2050 investments of some USD 700 billion in hydrogen are needed through 2030 – only 3% of this capital is committed today. Ambition and proposals by themselves do not translate into positive impact on climate change; investments and implementation on the ground is needed.
Joint action by the public and private sectors is urgently required to move from project proposals to FIDs.
Both governments and industry need to act to implement immediate actions for 2022 to 2023 – policymakers need to enable demand visibility roll out funding support and ensure international coordination; industry needs to increase supply chain capability and capacity advance projects towards final investment decision (FID) and develop infrastructure for cross-border trade.
The paper can be found on their website.
The pipeline of hydrogen projects is continuing to grow but actual deployment is lagging.
680 large-scale project proposals worth USD 240 billion have been put forward but only about 10% (USD 22 billion) have reached final investment decision (FID). While Europe leads in proposed investments (~30%) China is slightly ahead on actual deployment of electrolyzers (200 MW) while Japan and South Korea are leading in fuel cells (more than half of the world’s 11 GW manufacturing capacity).
The urgency to invest in mature hydrogen projects today is greater than ever.
For the world to be on track for net zero emissions by 2050 investments of some USD 700 billion in hydrogen are needed through 2030 – only 3% of this capital is committed today. Ambition and proposals by themselves do not translate into positive impact on climate change; investments and implementation on the ground is needed.
Joint action by the public and private sectors is urgently required to move from project proposals to FIDs.
Both governments and industry need to act to implement immediate actions for 2022 to 2023 – policymakers need to enable demand visibility roll out funding support and ensure international coordination; industry needs to increase supply chain capability and capacity advance projects towards final investment decision (FID) and develop infrastructure for cross-border trade.
The paper can be found on their website.
Adapting Maintenance Facilities for Hydrogen
Sep 2021
Publication
Transit planners and managers need to be armed with the best information on how to make the transition towards zero emission transit fleets. Although zero emission transit is becoming increasingly necessary many transit operators are unsure of how to make the transition and how to replace their existing infrastructure especially when it comes to on site bus maintenance facilities. Upgrading vehicle maintenance facilities to safely accommodate hydrogen can be a deciding factor in whether an operator chooses to adopt this fuel for its fleet. This paper reviews best practices in hydrogen bus maintenance facilities for transit agencies. It includes safety and infrastructure factors transit managers must consider when transitioning to servicing and maintaining fuel cell electric buses. Although local requirements and regulations vary this paper will help the reader gain insights on what needs to be considered in transitioning a workshop. As with any fuel hydrogen must be treated with respect and care. Today’s hydrogen fuel cell technologies are mature in their safety features. Fuel cell electric buses are designed and built for safety and the protocols for safe storage maintenance and refuelling are well developed and understood.
Advanced Catalysts for the Water Gas Shift Reaction
Apr 2022
Publication
The WGS reaction is an exothermic reaction between carbon monoxide and steam to form carbon dioxide and hydrogen. This reaction which has been used industrially for more than 100 years has recently received a great deal of attention from researchers as one of the ways to produce environmentally acceptable hydrogen from fossil fuels in large quantities. For the application of this reaction on an industrial scale the key is choosing the optimal catalysts that can ensure high CO conversion and have a long lifetime under industrial conditions. Therefore new types of catalysts are being developed that meet these requirements better than the Fe- and Cu-based catalysts commonly used in the past. The WGSR on a commercial nickel-based catalyst and a laboratory-prepared copper and cobalt-based catalyst was tested in a laboratory apparatus set up at the University of Chemistry and Technology Prague. The best performance of the laboratory-prepared catalyst was observed for the catalyst with a Cu content of 14.8 wt% and activated in a hydrogen atmosphere. The laboratory-prepared Co-based catalyst showed good WGSR activity in the temperature range of 200–450 ◦C although this was always inferior to that of the Cu-based catalyst. When subjected to the feed gas containing 0.4 mole% H2S the Co-based catalyst showed good resistance to sulphur poisoning. Therefore Co-based catalysts can be considered good sulphur-tolerant intermediate temperature WGSR catalysts.
Fuel Cell Electrical Vehicles as Mobile Coupled Heat and Power Backup-Plant in Neighbourhoods
Apr 2022
Publication
Fuel cell electric vehicles (FCEVs) can be used during idle times to convert hydrogen into electricity in a decentralised manner thus ensuring a completely renewable energy supply. In addition to the electric power waste heat is generated in the fuel cell stack that can also be used. This paper investigates how the energy demand of a compiled German neighbourhood can be met by FCEVs and identifies potential technical problems. For this purpose energy scenarios are modelled in the Open Energy System Modelling Framework (oemof). An optimisation simulation finds the most energetically favourable solution for the 10-day period under consideration. Up to 49% of the heat demand for heating and hot water can be covered directly by the waste heat of the FCEVs. As the number of battery electric vehicles (BEVs) to be charged increases so does this share. 5 of the 252 residents must permanently provide an FCEV to supply the neighbourhood. The amount of hydrogen required was identified as a problem. If the vehicles cannot be supplied with hydrogen in a stationary way 15 times more vehicles are needed than required in terms of performance due to the energy demand.
The Significance of Formal & Legal Factors in Selecting a Location for a Hydrogen Buffer to Stabilize the Operation of Power Distribution Networks
Oct 2022
Publication
This article presents the conceptual assumptions for the process of identifying and evaluating the formal & legal factors that impact the choice of a hydrogen buffer location to stabilize the operation of power distribution networks. The assumption for the research process was establishing a methodological framework for an in-depth analysis of legislative acts (the EU legislation and the national law) to enable identification of synthetic groups of formal & legal factors to be further analyzed using the DEMATEL method. As a result the cause-and-effect relations between the variables were examined and an in-depth analysis was carried out to investigate the level of impact of the formal & legal factors on the functioning and location of a hydrogen energy buffer.
Performance Analysis of a Zero-Energy Building Using Photovoltaics and Hydrogen Storage
Mar 2023
Publication
The exploitation of renewable energy sources in the building sector is a challenging aspect of achieving sustainability. The incorporation of a proper storage unit is a vital issue for managing properly renewable electricity production and so to avoid the use of grid electricity. The present investigation examines a zero-energy residential building that uses photovoltaics for covering all its energy needs (heating cooling domestic hot water and appliances-lighting needs). The building uses a reversible heat pump and an electrical heater so there is not any need for fuel. The novel aspect of the present analysis lies in the utilization of hydrogen as the storage technology in a power-to-hydrogen-to-power design. The residual electricity production from the photovoltaics feeds an electrolyzer for hydrogen production which is stored in the proper tank under high pressure. When there is a need for electricity and the photovoltaics are not enough the hydrogen is used in a fuel cell for producing the needed electricity. The present work examines a building of 400 m2 floor area in Athens with total yearly electrical demand of 23656 kWh. It was found that the use of 203 m2 of photovoltaics with a hydrogen storage capacity of 34 m3 can make the building autonomous for the year period.
Optimal Energy Management for Hydrogen Economy in a Hybrid Electric Vehicle
Feb 2023
Publication
Fuel cell hybrid electric vehicles (FCEVs) are mainly electrified by the fuel cell (FC) system. As a supplementary power source a battery or supercapacitor (SC) is employed (besides the FC) to enhance the power response due to the slow dynamics of the FC. Indeed the performance of the hybrid power system mainly depends on the required power distribution manner among the sources which is managed by the energy management strategy (EMS). This paper considers an FCEV based on the proton exchange membrane FC (PEMFC)/battery/SC. The energy management strategy is designed to ensure optimum power distribution between the sources considering hydrogen consumption. Its main objective is to meet the electric motor’s required power with economic hydrogen consumption and better electrical efficiency. The proposed EMS combines the external energy maximization strategy (EEMS) and the bald eagle search algorithm (BES). Simulation tests for the Extra-Urban Driving Cycle (EUDC) and New European Driving Cycle (NEDC) profiles were performed. The test is supposed to be performed in typical conditions t = 25 ◦C on a flat road without no wind effect. In addition this strategy was compared with the state machine control strategy classic PI and equivalent consumption minimization strategy. In terms of optimization the proposed approach was compared with the original EEMS particle swarm optimization (PSO)-based EEMS and equilibrium optimizer (EO)-based EEMS. The results confirm the ability of the proposed strategy to reduce fuel consumption and enhance system efficiency. This strategy provides 26.36% for NEDC and 11.35% for EUDC fuel-saving and efficiency enhancement by 6.74% for NEDC and 36.19% for EUDC.
A Review of The Methanol Economy: The Fuel Cell Route
Jan 2020
Publication
This review presents methanol as a potential renewable alternative to fossil fuels in the fight against climate change. It explores the renewable ways of obtaining methanol and its use in efficient energy systems for a net zero-emission carbon cycle with a special focus on fuel cells. It investigates the different parts of the carbon cycle from a methanol and fuel cell perspective. In recent years the potential for a methanol economy has been shown and there has been significant technological advancement of its renewable production and utilization. Even though its full adoption will require further development it can be produced from renewable electricity and biomass or CO2 capture and can be used in several industrial sectors which make it an excellent liquid electrofuel for the transition to a sustainable economy. By converting CO2 into liquid fuels the harmful effects of CO2 emissions from existing industries that still rely on fossil fuels are reduced. The methanol can then be used both in the energy sector and the chemical industry and become an all-around substitute for petroleum. The scope of this review is to put together the different aspects of methanol as an energy carrier of the future with particular focus on its renewable production and its use in high-temperature polymer electrolyte fuel cells (HT-PEMFCs) via methanol steam reforming.
Roadmap Towards Zero Emissions, BEVs and FCEVs
Oct 2021
Publication
A “combined world” of fuel cell electric vehicles (FCEVs) and battery electric vehicles (BEVs) will create a greener transportation sector faster and cheaper than one of the solutions alone. Hydrogen Council with analytical support from McKinsey and Company published a report that highlights the complementary roles of FCEVs and BEVs in a decarbonised transportation sector.
The analysis found that each solution has comparable systemic efficiencies and similar CO2 life cycle intensity. From the vehicle user perspective FCEVs and BEVs will provide the flexibility and convenience to meet their specific context of use and geographic location. Additionally the costs of two supporting infrastructure for FCEVs and BEVs is cheaper than one infrastructure network primarily due to the reduced peak loads and avoidance of costly upgrades on the electricity grid. The report’s messages were developed in dialogue with the Observatory Group which consisted of representatives of government agencies and academia as well as associations and companies active in sectors like regenerative electricity generation electricity grid equipment manufacturing electric vehicle charging fleet management.
The paper can be found on their website.
The analysis found that each solution has comparable systemic efficiencies and similar CO2 life cycle intensity. From the vehicle user perspective FCEVs and BEVs will provide the flexibility and convenience to meet their specific context of use and geographic location. Additionally the costs of two supporting infrastructure for FCEVs and BEVs is cheaper than one infrastructure network primarily due to the reduced peak loads and avoidance of costly upgrades on the electricity grid. The report’s messages were developed in dialogue with the Observatory Group which consisted of representatives of government agencies and academia as well as associations and companies active in sectors like regenerative electricity generation electricity grid equipment manufacturing electric vehicle charging fleet management.
The paper can be found on their website.
A Technical Evaluation to Analyse of Potential Repurposing of Submarine Pipelines for Hydrogen and CCS Using Survival Analysis
Oct 2022
Publication
The UK oil and gas sector is mature and a combination of a dwindling resource base and a move towards decarbonisation has led to lower investments and an increasing decommissioning bill. Many existing offshore assets are in the vicinity of potential renewable energy developments or low-carbon facilities. We propose a technical evaluation process to understand whether pipelines might be repurposed to reduce the costs of low-carbon energy investment and oil decommissioning. We identify survival analysis as an effective method to investigate the potential of pipelines repurposing based on historical failure records as it deals with acceptable levels of data gaps and does not require associated field costs for detailed inspection. It provides a close estimate of the anticipated remaining life when compared to feasibility studies. We use survival analysis to examine several repurposing case studies for low-carbon investments. It also demonstrates that several pipeline systems have the potential to operate safely beyond their design life. Detailed records of failure will allow for further development of this methodology in the future.
Hubs and Clusters Approach to Unlock the Development of Carbon Capture and Storage - Case Study in Spain
Jul 2021
Publication
Xiaolong Sun,
Juan Alcalde,
Mahdi Bakhtbidar,
Javier Elío,
Víctor Vilarrasa,
Jacobo Canal,
Julio Ballesteros,
Niklas Heinemann,
Stuart Haszeldine,
Andrew Cavanagh,
David Vega-Maza,
Fernando Rubiera,
Roberto Martínez-Orio,
Gareth Johnson,
Ramon Carbonell,
Ignacio Marzan,
Anna Travé and
Enrique Gomez-Rivas
Many countries have assigned an indispensable role for carbon capture and storage (CCS) in their national climate change mitigation pathways. However CCS deployment has stalled in most countries with only limited commercial projects realised mainly in hydrocarbon-rich countries for enhanced oil recovery. If the Paris Agreement is to be met then this progress must be replicated widely including hydrocarbon-limited countries. In this study we present a novel source-to-sink assessment methodology based on a hubs and clusters approach to identify favourable regions for CCS deployment and attract renewed public and political interest in viable deployment pathways. Here we apply this methodology to Spain where fifteen emission hubs from both the power and the hard-to-abate industrial sectors are identified as potential CO2 sources. A priority storage structure and two reserves for each hub are selected based on screening and ranking processes using a multi-criteria decision-making method. The priority source-to-sink clusters are identified indicating four potential development regions with the North-Western and North-Eastern Spain recognised as priority regions due to resilience provided by different types of CO2 sources and geological structures. Up to 68.7 Mt CO2 per year comprising around 21% of Spanish emissions can be connected to clusters linked to feasible storage. CCS especially in the hard-to-abate sector and in combination with other low-carbon energies (e.g. blue hydrogen and bioenergy) remains a significant and unavoidable contributor to the Paris Agreement’s mid-century net-zero target. This study shows that the hubs and clusters approach can facilitate CCS deployment in Spain and other hydrocarbon-limited countries.
Rethinking "BLEVE Explosion" After Liquid Hydrogen Storage Tank Rupture in a Fire
Sep 2022
Publication
The underlying physical mechanisms leading to the generation of blast waves after liquid hydrogen (LH2) storage tank rupture in a fire are not yet fully understood. This makes it difficult to develop predictive models and validate them against a very limited number of experiments. This study aims at the development of a CFD model able to predict maximum pressure in the blast wave after the LH2 storage tank rupture in a fire. The performed critical review of previous works and the thorough numerical analysis of BMW experiments (LH2 storage pressure in the range 2.0e11.3 bar abs) allowed us to conclude that the maximum pressure in the blast wave is generated by gaseous phase starting shock enhanced by combustion reaction of hydrogen at the contact surface with heated by the shock air. The boiling liquid expanding vapour explosion (BLEVE) pressure peak follows the gaseous phase blast and is smaller in amplitude. The CFD model validated recently against high-pressure hydrogen storage tank rupture in fire experiments is essentially updated in this study to account for cryogenic conditions of LH2 storage. The simulation results provided insight into the blast wave and combustion dynamics demonstrating that combustion at the contact surface contributes significantly to the generated blast wave increasing the overpressure at 3 m from the tank up to 5 times. The developed CFD model can be used as a contemporary tool for hydrogen safety engineering e.g. for assessment of hazard distances from LH2 storage.
Thermodynamic Assessment of a Hybrid Methane Cracking System for Liquified Hydrogen Production and Enhanced Oil Recovery Using CO2
Oct 2022
Publication
Hydrogen fuel production from methane cracking is a cleaner process compared to steam methane reforming due to zero greenhouse gas emissions. Carbon black that is co-produced is valuable and can be marketed to other industries. As this is a high-temperature process using solar energy can further improve its sustainability. In this study an integrated solar methane cracking system is proposed and the efficient utilization of the hydrogen and carbon products is explored. The carbon by-product is used in a direct carbon fuel cell and oxy- combustion. These processes eliminate the need for carbon capture technologies as they produce pure CO2 exhaust streams. The CO2 produced from the systems is used for enhanced oil recovery to produce crude oil. The produced turquoise hydrogen is liquified to make it suitable for exportation. The process is simulated on Aspen Plus® and its energy and exergy efficiencies are evaluated by carrying out a detailed thermodynamic analysis. A reservoir simulation is used to study the amount of oil that can be produced using the captured CO2. The overall system is studied for oil production over 20 years and energy and exergy of efficiencies 42.18% and 40.18% respectively were found. Enhanced oil recovery improves the recovery rate from 24.8% to 64.3%.
Review of Life Cycle Assessments for Steel and Environmental Analysis of Future Steel Production Scenarios
Oct 2022
Publication
The steel industry is focused on reducing its environmental impact. Using the life cycle assessment (LCA) methodology the impacts of the primary steel production via the blast furnace route and the scrap-based secondary steel production via the EAF route are assessed. In order to achieve environmentally friendly steel production breakthrough technologies have to be implemented. With a shift from primary to secondary steel production the increasing steel demand is not met due to insufficient scrap availability. In this paper special focus is given on recycling methodologies for metals and steel. The decarbonization of the steel industry requires a shift from a coal-based metallurgy towards a hydrogen and electricity-based metallurgy. Interim scenarios like the injection of hydrogen and the use of pre-reduced iron ores in a blast furnace can already reduce the greenhouse gas (GHG) emissions up to 200 kg CO2/t hot metal. Direct reduction plants combined with electrical melting units/furnaces offer the opportunity to minimize GHG emissions. The results presented give guidance to the steel industry and policy makers on how much renewable electric energy is required for the decarbonization of the steel industry
Green Hydrogen Blends with Natural Gas and Its Impact on the Gas Network
Oct 2022
Publication
With increasing shares of variable and uncertain renewable generation in many power systems there is an associated increase in the importance of energy storage to help balance supply and demand. Gas networks currently store and transport energy and they have the potential to play a vital role in longer-term renewable energy storage. Gas and electricity networks are becoming more integrated with quick-responding gas-fired power plants providing a significant backup source for renewable electricity in many systems. This study investigates Ireland’s gas network and operation when a variable green hydrogen input from excess wind power is blended with natural gas. How blended hydrogen impacts a gas network’s operational variables is also assessed by modelling a quasi-transient gas flow. The modelling approach incorporates gas density and a compressibility factor in addition to the gas network’s main pressure and flow rate characteristics. With an increasing concentration of green hydrogen up to 20% in the gas network the pipeline flow rate must be increased to compensate for reduced energy quality due to the lower energy density of the blended gas. Pressure drops across the gas pipeline have been investigated using different capacities of P2H from 18 MW to 124 MW. The results show significant potential for the gas network to store and transport renewable energy as hydrogen and improve renewable energy utilisation without upgrading the gas network infrastructure.
A Study on Green Hydrogen-based Isolated Microgrid
Oct 2022
Publication
This paper assesses the techno-economic feasibility of a green hydrogen-based microgrid for a remote Australian island. Hydrogen can be used to provide clean energy in areas where large-scale renewable energy sources are not feasible owing to geography government regulations or regulatory difficulties. This study not only identifies the appropriate component size for a hydrogen-based microgrid but also provides an economic perspective of decarbonising Thursday Island in Torres Straits Queensland Australia. Due to geographical constraints the green hydrogen production system needs to be distinct from the electrical network. This research shows how to produce green hydrogen transport it and generate power at a low cost. The study was performed utilising the HOMER simulation platform to find the least cost solution. The simulation results demonstrate an AU$0.01 reduction in Levelised Cost of Energy compared to the present electricity generation cost which is AU$0.56. The inclusion of a green hydrogen system will potentially minimise CO2 emissions by 99.6% while ensuring almost 100% renewable penetration. The results of this study will also serve as a guide for the placement of hydrogen-based microgrids in similar remote locations around the world where numerous remote energy systems are located close to each other.
Carbon Capture and Biomass in Industry: A Techno-economic Analysis and Comparison of Negative Emission Options
Apr 2021
Publication
Meeting the Paris Agreement will most likely require the combination of CO2 capture and biomass in the industrial sector resulting in net negative emissions. CO2 capture within the industry has been extensively investigated. However biomass options have been poorly explored with literature alluding to technical and economic barriers. In addition a lack of consistency among studies makes comparing the performance of CO2 capture and/or biomass use between studies and sectors difficult. These inconsistencies include differences in methodology system boundaries level of integration costs greenhouse gas intensity of feedstock and energy carriers and capital cost estimations. Therefore an integrated evaluation of the techno-economic performance regarding CO2 capture and biomass use was performed for five energy-intensive industrial sub-sectors. Harmonization results indicate that CO2 mitigation potentials vary for each sub-sector resulting in reductions of 1.4–2.7 t CO2/t steel (77%–149%) 0.7 t CO2/t cement (92%) 0.2 t CO2/t crude oil (68%) 1.9 t CO2/t pulp (1663%–2548%) and 34.9 t CO2/t H2 (313%). Negative emissions can be reached in the steel paper and H2 sectors. Novel bio-based production routes might enable net negative emissions in the cement and (petro) chemical sectors as well. All the above-mentioned potentials can be reached for 100 €/t CO2 or less. Implementing mitigation options could reduce industrial CO2 emissions by 10 Gt CO2/y by 2050 easily meeting the targets of the 2 ◦C scenario by the International Energy Agency (1.8 Gt CO2/y reduction) for the industrial sector and even the Beyond 2 ◦C scenario (4.2 Gt CO2/y reduction).
Environmental Impact Assessment of Hydrogen Production via Steam Methane Reforming Based on Emissions Data
Oct 2022
Publication
Steam methane reforming (SMR) using natural gas is the most commonly used technology for hydrogen production. Industrial hydrogen production contributes to pollutant emissions which may differ from the theoretical estimates due to process conditions type and state of installed pollution control equipment. The aim of this study was to estimate the impacts of hydrogen production using facilitylevel real emissions data collected from multiple US EPA databases. The study applied the ReCiPe2016 impact assessment method and considered 12 midpoint and 14 endpoint impacts for 33 US SMR hydrogen production facilities. Global warming impacts were mostly driven by CO2 emissions and contributed to 94.6% of the endpoint impacts on human health while global warming impact on terrestrial ecosystems contributed to 98.3% of the total endpoint impacts on ecosystems. The impacts estimated by direct emissions from the 33 facilities were 9.35 kg CO2e/kg H2 which increased to 11.2 kg CO2e/kg H2 when the full life cycle of hydrogen production including upstream emissions was included. The average global warming impact could be reduced by 5.9% and 11.1% with increases in hydrogen production efficiency by 5% and 10% respectively. Potential impact reductions are also found when natural gas hydrogen production feedstock is replaced by renewable sources with the greatest reduction of 78.1% found in hydrogen production via biomass gasification followed by 68.2% reduction in landfill gas and 53.7% reduction in biomethane-derived hydrogen production.
Hydrogen as Energy Carrier: Techno-economic Assessment of Decentralized Hydrogen Production in Germany
Jun 2021
Publication
Political and scientific discussions on changing German energy supply mix and challenges of such energy transition are already well established. At the supply level energy storage seems to be the biggest challenge ahead for such transition. Hydrogen could be one of the solutions for future energy transition if it is produced using renewable energy resources. In order to analyze the future role of hydrogen its economic performance analysis is inevitable. This has been done in this research for a case study site in Cologne. The potential of hydrogen production with the use of solar electricity powered electrolyzers (alkaline and proton exchange membrane (PEM)) has been analyzed. Both grid connected and off grid modes of solar hydrogen production are considered. Economic performance results are presented for six scenarios. Hydrogen produced with the grid connected solar photovoltaics system coupled with alkaline electrolyzers was found the cheapest with the levelized cost of hydrogen (LCOH) at 6.23 V/kg. These costs are comparable with the current hydrogen price at commercial refueling station in Cologne. On the other hand the LCOH of off grid systems with both alkaline and PEM electrolyzers is expensive as expected the most expensive LCOH among six scenarios reached to 57.61 V/kg.
Quantitative Risk Analysis of Scaled-up Hydrogen Facilities
Sep 2021
Publication
Development of hydrogen facilities such as hydrogen refuelling stations (HRS) at scale is a fine balance between economy and safety where an optimal solution would both prevent showstoppers due to cost of increased safety measures and prevent showstoppers due to hydrogen accidents. A detailed Quantitative Risk Analysis (QRA) methodology is presented where the aim is to establish the total risk of the facility and use it to find the right level of safety features such as blast walls and layout. With upscaled hydrogen facilities comes larger area footprints and more potential leak points. These effects will cause increased possible consequence in terms of vapour cloud explosions and increased leak frequencies. Both effects contributing negative to the total risk of the hydrogen facility. At the same time as the number of such facilities is increasing rapidly the frequency of incidents can also increase. A risk-based approach is employed where inherently safe solutions is investigated and cost efficient and acceptable solutions can be established. The present QRA uses well established tools such as SAFETI FLACS and Express which are fitted for hydrogen risks. By using the established Explosion Risk Analysis tool Express the explosion risk inside the station can be found. By using CFD tools actively one can point at physical risk drivers such as equipment layout that can minimize gas cloud build-up on the station. The explosion simulations are further used to find the effects of e.g. blast wall on the pressures affecting on people on the other side of the wall. This is used together with the results from the SAFETI analysis to develop risk contours around the facility. Current standardized safety distances are discussed by considering the effects of scaling and risk drivers on the safety distances. The methodology can be used to develop certain requirement for how hydrogen facilities should be built inherently safe and in cost-efficient ways.
The Role of LNG in the Transition Toward Low- and Zero-carbon Shipping
Apr 2021
Publication
Due to its much lower air pollution and potential greenhouse gas (GHG) emissions benefits liquefied natural gas (LNG) is frequently discussed as a fuel pathway towards greener maritime transport. While LNG’s air quality improvements are undeniable there is debate within the sector as to what extent LNG may be able to contribute to decarbonizing shipping. This report “The Role of LNG in the Transition Toward Low- and Zero-Carbon Shipping” considers the potential of LNG to play either a transitional role in which existing LNG infrastructure and vessels could continue to be used with compatible zero-carbon bunker fuels after 2030 or a temporary one in which LNG would be rapidly supplanted by zero-carbon alternatives from 2030. Over concerns about methane leakage which could diminish or even offset any GHG benefits associated with LNG and additional capital expenditures the risk of stranded assets as well as a technology lock-in the report concludes that LNG is unlikely to play a significant role in decarbonizing maritime transport. Instead the research finds that LNG is likely to only be used in niche shipping applications or in its non-liquefied form as a feedstock to kickstart the production of zero-carbon bunker fuels when used in conjunction with carbon capture and storage technology. The research further suggests that new public policy in support of LNG as a bunker fuel should be avoided existing policy support should be reconsidered and methane emissions should be regulated.
Numerical Predictions of a Swirl Combustor Using Complex Chemistry Fueled with Ammonia/Hydrogen Blends
Jan 2020
Publication
Ammonia a chemical that contains high hydrogen quantities has been presented as a candidate for the production of clean power generation and aerospace propulsion. Although ammonia can deliver more hydrogen per unit volume than liquid hydrogen itself the use of ammonia in combustion systems comes with the detrimental production of nitrogen oxides which are emissions that have up to 300 times the greenhouse potential of carbon dioxide. This factor combined with the lower energy density of ammonia makes new studies crucial to enable the use of the molecule through methods that reduce emissions whilst ensuring that enough power is produced to support high-energy intensive applications. Thus this paper presents a numerical study based on the use of novel reaction models employed to characterize ammonia combustion systems. The models are used to obtain Reynolds Averaged Navier-Stokes (RANS) simulations via Star-CCM+ with complex chemistry of a 70%–30% (mol) ammonia–hydrogen blend that is currently under investigations elsewhere. A fixed equivalence ratio (1.2) medium swirl (0.8) and confined conditions are employed to determine the flame and species propagation at various operating atmospheres and temperature inlet values. The study is then expanded to high inlet temperatures high pressures and high flowrates at different confinement boundary conditions. The results denote how the production of NOx emissions remains stable and under 400 ppm whilst higher concentrations of both hydrogen and unreacted ammonia are found in the flue gases under high power conditions. The reduction of heat losses (thus higher temperature boundary conditions) has a crucial impact on further destruction of ammonia post-flame with a raise in hydrogen water and nitrogen through the system thus presenting an opportunity of combustion efficiency improvement of this blend by reducing heat losses. Final discussions are presented as a method to raise power whilst employing ammonia for gas turbine systems.
The Trajectory of Hybrid and Hydrogen Technologies in North American Heavy Haul Operations
Jul 2021
Publication
The central aim of this paper is to provide an up-to-date snapshot of hybrid and hydrogen technology-related developments and activities in the North American heavy haul railway setting placed in the context of the transportation industry more broadly. An overview of relevant alternative propulsion technologies is provided including a discussion of applicability to the transportation sector in general and heavy haul freight rail specifically. This is followed by a discussion of current developments and research in alternative and blended fuels discussed again in both general and specific settings. Key factors and technical considerations for heavy haul applications are reviewed followed by a discussion of non-technical and human factors that motivate a move toward clean energy in North American Heavy Haul systems. Finally current project activities are described to provide a clear understanding of both the status and trajectory of hybrid and hydrogen technologies in the established context.
Impact of Hydrogen on Natural Gas Compositions to Meet Engine Gas Quality Requirements
Oct 2022
Publication
To meet the target of reducing greenhouse gas emissions hydrogen as a carbon-free fuel is expected to play a major role in future energy supplies. A challenge with hydrogen is its low density and volumetric energy value meaning that large tanks are needed to store and transport it. By injecting hydrogen into the natural gas network the transportation issue could be solved if the hydrogen–natural gas mixture satisfies the grid gas quality requirements set by legislation and standards. The end consumers usually have stricter limitations on the gas quality than the grid where Euromot the European association of internal combustion engine manufacturers has specific requirements on the parameters: the methane number and Wobbe index. This paper analyses how much hydrogen can be added into the natural gas grid to fulfil Euromot’s requirements. An average gas composition was calculated based on the most common ones in Europe in 2021 and the results show that 13.4% hydrogen can be mixed with a gas consisting of 95.1% methane 3.2% ethane 0.7% propane 0.3% butane 0.3% carbon dioxide and 0.5% nitrogen. The suggested gas composition indicates for engine manufacturers how much hydrogen can be added into the gas to be suitable for their engines.
Numerical Modeling of Energy Systems Based on Micro Gas Turbine: A Review
Jan 2022
Publication
In the context of the great research pulse on clean energy transition distributed energy systems have a key role especially in the case of integration of both renewable and traditional energy sources. The stable interest in small-scale gas turbines can further increase owing to their flexibility in both operation and fuel supply. Since their not-excellent electrical efficiency research activities on micro gas turbine (MGT) are focused on the performance improvements that are achievable in several ways like modifying the Brayton cycle integrating two or more plants using cleaner fuels. Hence during the last decades the growing interest in MGT-based energy systems encouraged the development of many numerical approaches aimed to provide a reliable and effective prediction of the energy systems’ behavior. Indeed numerical modeling can help to individuate potentialities and issues of each enhanced layout or hybrid energy system and this review aims to discuss the various layout solutions proposed by researchers with particular attention to recent publications highlighting the adopted modeling approaches and methods.
Fuel Flexibility of Solid Oxide Fuel Cells
Aug 2021
Publication
One of the major advantages of SOFCs is their high fuel flexibility. Next to natural gas and hydrogen which are today’s most common fuels for SOFC-systems and cell-/stack-testing respectively various other fuels are applicable as well. In the literature a number of promising results show that available fuels as propane butane ammonia gasoline diesel etc. can be applied. Here the performance of an anode supported cell operated in specialized single cell test benches with different gaseous and liquid fuels and reformates thereof is presented. Fuels as ammonia dissolved urea (AddBlueTM) methane/steam and ethanol/water mixtures can directly be fed to the cell whereas propane and diesel require external reforming. It is shown that in case of a stable fuel supply the cell performance with such fuels is similar to that of appropriate mixtures of H2 N2 CO CO2 and steam if the impact of endothermic reforming or decomposition reactions is considered. Even though a stable fuel cell operation with such fuels is possible in a single cell test bench it should be pointed out that an appropriate fuel processing will be mandatory on the system level.
Hydrogen Informed Gurson Model for Hydrogen Embrittlement Simulation
Jul 2019
Publication
Hydrogen-microvoid interactions were studied via unit cell analyses with different hydrogen concentrations. The absolute failure strain decreases with hydrogen concentration but the failure loci were found to follow the same trend dependent only on stress triaxiality in other words the effects of geometric constraint and hydrogen on failure are decoupled. Guided by the decoupling principle a hydrogen informed Gurson model is proposed. This model is the first practical hydrogen embrittlement simulation tool based on the hydrogen enhanced localized plasticity (HELP) mechanism. It introduces only one additional hydrogen related parameter into the Gurson model and is able to capture hydrogen enhanced internal necking failure of microvoids with accuracy; its parameter calibration procedure is straightforward and cost efficient for engineering purpose
High Proton-Conductive and Temperature-Tolerant PVC-P4VP Membranes towards Medium-Temperature Water Electrolysis
Mar 2022
Publication
Water electrolysis (WE) is a highly promising approach to producing clean hydrogen. Medium-temperature WE (100–350 ◦C) can improve the energy efficiency and utilize the low-grade water vapor. Therefore a high-temperature proton-conductive membrane is desirable to realize the medium-temperature WE. Here we present a polyvinyl chloride (PVC)-poly(4vinylpyridine) (P4VP) hybrid membrane by a simple cross-linking of PVC and P4VP. The pyridine groups of P4VP promote the loading rate of phosphoric acid which delivers the proton conductivity of the PVC-P4VP membrane. The optimized PVC-P4VP membrane with a 1:2 content ratio offers the maximum proton conductivity of 4.3 × 10−2 S cm−1 at 180 ◦C and a reliable conductivity stability in 200 h at 160 ◦C. The PVC-P4VP membrane electrode is covered by an IrO2 anode and a Pt/C cathode delivers not only the high water electrolytic reactivity at 100–180 ◦C but also the stable WE stability at 180 ◦C.
Comparison of Alternative Marine Fuels
Sep 2019
Publication
The overall ambition of the study has been to assess the commercial and operational viability of alternative marine fuels based on review existing academic and industry literature. The approach assesses how well six alternative fuels perform compared to LNG fuel on a set of 11 key parameters. Conventional fuels are not covered in this study however 2020 compliant fuels (HFO+scrubber and low sulphur fuels are included in the conclusion for comparative purposes.
A Study of Hydrogen Embrittlement of SA-372 J Class High Pressure Hydrogen Storage Seamless Cylinder (≥100 MPA)
Nov 2022
Publication
The spinning process will lead to changes in the micro-structure and mechanical properties of the materials in different positions of the high-pressure hydrogen storage cylinder which will show different hydrogen embrittlement resistance in the high-pressure hydrogen environment. In order to fully study the safety of hydrogen storage in large-volume seamless steel cylinders this chapter associates the influence of the forming process with the deterioration of a high-pressure hydrogen cylinder (≥100 MPa). The anti-hydrogen embrittlement of SA-372 grade J steel at different locations of the formed cylinders was studied experimentally in three cylinders. The hydrogen embrittlement experiments were carried out according to method A of ISO 11114-4:2005. The relationship between tensile strength microstructure and hydrogen embrittlement is analyzed which provides comprehensive and reliable data for the safety of hydrogen storage and transmission.
Risks and Opportunities Associated with Decarbonising Rotterdam’s Industrial Cluster
Jun 2019
Publication
The Port of Rotterdam is an important industrial cluster comprising mainly oil refining chemical production and power generation. In 2016 the port’s industry accounted for 19% of the Netherlands’ total CO2 emissions. The Port of Rotterdam Authority is aware that the cluster is heavily exposed to future decarbonisation policies as most of its activities focus on trading handling converting and using fossil fuels. Based on a study for the Port Authority using a mixture of qualitative and quantitative methods our article explores three pathways whereby the port’s industry can maintain its strong position while significantly reducing its CO2 emissions and related risks by 2050. The pathways differ in terms of the EU’s assumed climate change mitigation ambitions and the key technological choices made by the cluster’s companies. The focus of the paper is on identifying key risks associated with each scenario and ways in which these could be mitigated.
An Overview of Water Electrolysis Technologies for Green Hydrogen Production
Oct 2022
Publication
Decarbonizing the planet is one of the major goals that countries around the world have set for 2050 to mitigate the effects of climate change. To achieve these goals green hydrogen that can be produced from the electrolysis of water is an important key solution to tackle global decarbonization. Consequently in recent years there is an increase in interest towards green hydrogen production through the electrolysis process for large-scale implementation of renewable energy based power plants and other industrial and transportation applications. The main objective of this study was to provide a comprehensive review of various green hydrogen production technologies especially on water electrolysis. In this review various water electrolysis technologies and their techno-commercial prospects including hydrogen production cost along with recent developments in electrode materials and their challenges were summarized. Further some of the most successful results also were described. Moreover this review aims to identify the gaps in water electrolysis research and development towards the techno-commercial perspective. In addition some of the commercial electrolyzer performances and their limitations also were described along with possible solutions for cost-effective hydrogen production Finally we outlined our ideas and possible solutions for driving cost-effective green hydrogen production for commercial applications. This information will provide future research directions and a road map for the development/implementation of commercially viable green hydrogen projects.
Green Hydrogen from Anion Exchange Membrane Water Electrolysis: A Review of Recent Developments in Critical Materials and Operating Conditions
Mar 2020
Publication
Hydrogen production using water electrolysers equipped with an anion exchange membrane (AEM) a pure water feed and cheap components such as platinum group metal-free catalysts and stainless steel bipolar plates (BPP) can challenge proton exchange membrane (PEM) electrolysis systems as the state of the art. For this to happen the performance of the AEM electrolyzer must match the compact design stability H2 purity and high current densities of PEM systems. Current research aims at bringing AEM water electrolysis technology to an advanced level in terms of electrolysis cell performance. Such technological advances must be accompanied by demonstration of the cost advantages of AEM systems. The current state of the art in AEM water electrolysis is defined by sporadic reports in the academic literature mostly dealing with catalyst or membrane development. The development of this technology requires a future roadmap for systematic development and commercialization of AEM systems and components. This will include basic and applied research technology development & integration and testing at a laboratory scale of small demonstration units (AEM electrolyzer shortstacks) that can be used to validate the technology (from TRL 2–3 currently to TRL 4–5). This review paper gathers together recent important research in critical materials development (catalysts membranes and MEAs) and operating conditions (electrolyte composition cell temperature performance achievements). The aim of this review is to identify the current level of materials development and where improvements are required in order to demonstrate the feasibility of the technology. Once the challenges of materials development are overcome AEM water electrolysis can drive the future use of hydrogen as an energy storage vector on a large scale (GW) especially in developing countries.
Optimal Design for a Hybrid Microgrid-hydrogen Storage Facility in Saudi Arabia
May 2022
Publication
Background: Sustainable development requires access to afordable reliable and efcient energy to lift billions of people out of poverty and improve their standard of living. The development of new and renewable forms of energy that emit less CO2 may not materialize quickly enough or at a price point that allows people to attain the standard of living they desire and deserve. As a result a parallel path to sustainability must be developed that uses both renewable and clean carbon-based methods. Hybrid microgrids are promoted to solve various electrical and energy-related issues that incorporate renewable energy sources such as photovoltaics wind diesel generation or a combination of these sources. Utilizing microgrids in electric power generation has several benefts including clean energy increased grid stability and reduced congestion. Despite these advantages microgrids are not frequently deployed because of economic concerns. To address these fnancial concerns it is necessary to explore the ideal confguration of micro-grids based on the quantity quality and availability of sustainable energy sources used to install the microgrid and the optimal design of microgrid components. These considerations are refected in net present value and levelized energy cost. Methods: HOMER was used to simulate numerous system confgurations and select the most feasible solution according to the net present value levelizied cost of energy and hydrogen operating cost and renewable fraction. HOMER performed a repeated algorithm process to determine the most feasible system configuration and parameters with the least economic costs and highest benefits to achieve a practically feasible system configuration. Results: This article aimed to construct a cost-effective microgrid system for Saudi Arabia’s Yanbu city using five configurations using excess energy to generate hydrogen. The obtained results indicate that the optimal configuration for the specified area is a hybrid photovoltaic/wind/battery/generator/fuel cell/hydrogen electrolyzer microgrid with a net present value and levelized energy cost of $10.6 billion and $0.15/kWh. Conclusion: With solar photovoltaic and wind generation costs declining building electrolyzers in locations with excellent renewable resource conditions such as Saudi Arabia could become a low-cost hydrogen supply option even when accounting for the transmission and distribution costs of transporting hydrogen from renewable resource locations to end-users. The optimum confguration can generate up to 32132 tons of hydrogen per year (tH2/year) and 380824 tons per year of CO2 emissions can be avoided.
No more items...