Publications
2D MXene: From Synthesis to Storage - Exploring their Potential as Sparking Materials for Hydrogen Storage
Jul 2025
Publication
In the advancing landscape of sustainable energy the development of efficient and reversible hydrogen storage materials operable under ambient conditions remains a critical challenge for material scientists and the broader research community. Hydrogen owing to its exceptionally high energy density is regarded as a leading candidate for facilitating the transition from conventional fossil fuels to cleaner renewable energy systems. However alongside its production the safe and efficient storage of hydrogen presents a significant bottleneck due to its low volumetric density and associated safety concerns.<br/>Conventional storage techniques such as high-pressure compression and cryogenic liquefaction though widely used demand complex infrastructure and carry substantial safety risks. These limitations have steered growing interest toward solid-state hydrogen storage systems that rely on physisorption or chemisorption mechanisms preferably operating near ambient conditions. Consequently the pursuit of materials with favourable thermodynamics and kinetics for reversible hydrogen uptake and release has become imperative. Among the emerging candidates MXenes a class of two-dimensional (2D) materials comprising transition metal carbides nitrides or carbonitrides have garnered significant attention due to their high surface area tuneable surface chemistry and excellent conductivity.<br/>Despite the growing body of literature on hydrogen storage using MXenes a comprehensive evaluation that bridges the gap between theoretical predictions and experimental realities remains limited. This review addresses that gap by critically examining current strategies for solid-state hydrogen storage with a particular emphasis on MXene-based materials. It highlights the influence of synthesis techniques on structural properties discusses the mechanisms of hydrogen interaction with MXene surfaces and evaluates their practical implications in real-world applications. While the potential of MXenes in hydrogen storage is considerable it is not yet fully realized. This article provides an in-depth assessment of the current advancements challenges and future directions for MXene-based materials in the context of hydrogen storage offering valuable insights for both fundamental research and applied energy systems.
Numerical Simulation of the Transport and the Thermodynamic Properties of Imported Natural Gas Inected with Hydrogen in the Manifold
Nov 2023
Publication
Blending hydrogen with natural gas (NG) is an efficient method for transporting hydrogen on a large scale at a low cost. The manifold at the NG initial station is an important piece of equipment that enables the blending of hydrogen with NG. However there are differences in the components and component contents of imported NG from different countries. The components of hydrogen-blended NG can affect the safety and efficiency of transportation through pipeline systems. Therefore numerical simulations were performed to investigate the blending process and changes in the thermodynamic properties of four imported NGs and hydrogen in the manifold. The higher the heavy hydrocarbon content in the imported NG the longer the distance required for the gas to mix uniformly with hydrogen in the pipeline. Hydrogen blending reduces the temperature and density of NG. The gas composition is the main factor affecting the molar calorific value of a gas mixture and hydrogen blending reduces the molar calorific value of NG. The larger the content of high-molar calorific components in the imported NG the higher the molar calorific value of the gas after hydrogen blending. Increasing both the temperature and hydrogen mixing ratio reduces the Joule-Thomson coefficient of the hydrogen-blended NG. The results of this study provide technical references for the transport of hydrogen-blended NG.
An Estimation of Green Hydrogen Generation from Wind Energy: A Case Study from KSA
Sep 2023
Publication
Actually green hydrogen is viewed as a fundamental component in accelerating energy transition and empowering a sustainable future. The current study focuses on the estimation of green hydrogen generation by using wind energy via electrolysis in four sites located in Saudi Arabia. Results showed that the yearly amount of hydrogen that could be generated by using wind turbine ranges between 2542877 kg in Rafha and 3676925 kg in Dhahran. The hydrogen generated could be used to fuel vehicles and decrease the amount of GHG emission from vehicles in KSA. Also hydrogen may be used to store the excess of wind energy and to support the achievement of vision 2030 of the Kingdom. An economic assessment is carried out also in this paper. Results showed that the LCOH by using wind energy in KSA ranges from 2.82 $/kg to 3.81 $/kg.
Charting the Course: Navigating Decarbonisation Pathways in Greece, Germany, The Netherlands, and Spain’s Industrial Sectors
Jul 2024
Publication
In the quest for a sustainable future energy-intensive industries (EIIs) stand at the forefront of Europe’s decarbonisation mission. Despite their significant emissions footprint the path to comprehensive decarbonisation remains elusive at EU and national levels. This study scrutinises key sectors such as non-ferrous metals steel cement lime chemicals fertilisers ceramics and glass. It maps out their current environmental impact and potential for mitigation through innovative strategies. The analysis spans across Spain Greece Germany and the Netherlands highlighting sector-specific ecosystems and the technological breakthroughs shaping them. It addresses the urgency for the industry-wide adoption of electrification the utilisation of green hydrogen biomass bio-based or synthetic fuels and the deployment of carbon capture utilisation and storage to ensure a smooth transition. Investment decisions in EIIs will depend on predictable economic and regulatory landscapes. This analysis discusses the risks associated with continued investment in high-emission technologies which may lead to premature decommissioning and significant economic repercussions. It presents a dichotomy: invest in climate-neutral technologies now or face the closure and offshoring of operations later with consequences for employment. This open discussion concludes that while the technology for near-complete climate neutrality in EIIs exists and is rapidly advancing the higher costs compared to conventional methods pose a significant barrier. Without the ability to pass these costs to consumers the adoption of such technologies is stifled. Therefore it calls for decisive political commitment to support the industry’s transition ensuring a greener more resilient future for Europe’s industrial backbone.
Towards the Design of a Hydrogen-powered Ferry for Cleaner Passenger Transport
Aug 2024
Publication
The maritime transportation sector is a large and growing contributor of greenhouse gas and other emissions. Therefore stringent measures have been taken by the International Maritime Organization to mitigate the environmental impact of the international shipping. These lead to the adoption of new technical solutions involving clean fuels such as hydrogen and high efficiency propulsion technologies that is fuel cells. In this framework this paper proposes a methodological approach aimed at supporting the retrofit design process of a car-passenger ferry operating in the Greece’s western maritime zone whose conventional powertrain is replaced with a fuel cell hybrid system. To this aim first the energy/power requirements and the expected hydrogen consumption of the vessel are determined basing on a typical operational profile retrieved from data provided by the shipping company. Three hybrid powertrain configurations are then proposed where fuel cell and batteries are balanced out according to different design criteria. Hence a new vessel layout is defined for each of the considered options by taking into account on-board weight and space constraints to allocate the components of the new hydrogen-based propulsion systems. Finally the developed vessel configurations are simulated in a virtual towing tank environment in order to assess their hydrodynamic response and compare them with the original one thus providing crucial insights for the design process of new hydrogen-fueled vessel solutions. Findings from this study reveal that the hydrogen-based configurations of the vessel are all characterized by a slight reduction of the payload mainly due to the space required to allocate the hydrogen storage system; instead the hydrodynamic behavior of the H2 powered vessels is found to be similar to the one of the original Diesel configuration; also from a hydrodynamic point of view the results show that mid load operating conditions get relevance for the design process of the hybrid vessels.
The Role of Hydrogen in the Energy Mix: A Scenario Analysis for Turkey Using OSeMOSYS
Dec 2024
Publication
The urgent need to tackle climate change drives the research on new technologies to help the transition of energy systems. Hydrogen is under significant consideration by many countries as a means to reach zero-carbon goals. Turkey has also started to develop hydrogen projects. In this study the role of hydrogen in Turkey’s energy system is assessed through energy modeling using the cost optimization analytical tool Open Source Energy Modelling System (OSeMOSYS). The potential effects of hydrogen blending into the natural gas network in the Turkish energy system have been displayed by scenario development. The hydrogen is produced via electrolysis using renewable electricity. As a result by using hydrogen a significant reduction in carbon dioxide emissions was observed; however the accumulated capital investment value increased. Furthermore it was shown that hydrogen has the potential to reduce Turkey’s energy import dependency by decreasing natural gas demand.
Exploring Decentralized Ammonia Synthesis for Hydrogen Storage and Transport: A Comprehensive CFD Investigation with Experimental Validation and Parametric Study
Sep 2023
Publication
Hydrogen energy plays a vital role in the transition towards a carbon-neutral society but faces challenges in storage and transport as well as in production due to fluctuations in renewable electricity generation. Ammonia (NH3 ) as a carbon-neutral hydrogen carrier offers a promising solution to the energy storage and transport problem. To realize its potential and support the development of a hydrogen economy exploring NH3 synthesis in a decentralized form that integrates with distributed hydrogen production systems is highly needed. In this study a computational fluid dynamics (CFD) model for the Ruthenium (Ru) catalysts-based Haber– Bosch reactor is developed. First a state-of-the-art kinetic model comprehensively describing the complex catalytic reaction is assessed for its sensitivity and applicability to temperature pressure and conversion. Then the kinetic model is integrated into the CFD model and its accuracy is verified through comparison with experimental data obtained from different Ru-based catalysts and operation conditions. Detailed CFD results for a given case are presented offering a visual understanding of thermal gradients and species distributions inside the reactor. Finally a CFD-based parametric study is performed to reveal the impacts of key operation parameters and optimize the NH3 synthesis reactor. The results show that the NH3 production rate is predominantly influenced by temperature with a two-fold difference observed for every 30 ◦C variation while pressure primarily affects the equilibrium. Additionally the affecting mechanism of space velocity is thoroughly discussed and the best value for efficient NH3 synthesis is found to be 180000 h−1. In conclusion the CFD model and simulation results provide valuable insights for the design and control of decentralized NH3 synthesis reactor and operation contributing to the advancement of sustainable energy technologies.
Real-Time Energy Management Strategy of Hydrogen Fuel Cell Hybrid Electric Vehicles Based on Power Following Strategy–Fuzzy Logic Control Strategy Hybrid Control
Nov 2023
Publication
Fuel cell hybrid electric vehicles have the advantages of zero emission high efficiency and fast refuelling etc. and are one of the key directions for vehicle development. The energy management problem of fuel cell hybrid electric vehicles is the key technology for power distribution. The traditional power following strategy has the advantage of a real-time operation but the power correction is usually based only on the state of charge of a lithium battery which causes the operating point of the fuel cell to be in the region of a low efficiency. To solve this problem this paper proposes a hybrid power-following-fuzzy control strategy where a fuzzy logic control strategy is used to optimise the correction module based on the power following strategy which regulates the state of charge while correcting the output power of the fuel cell towards the efficient operating point. The results of the joint simulation with Matlab + Advisor under the Globally Harmonised Light Vehicle Test Cycle Conditions show that the proposed strategy still ensures the advantages of real-time energy management and for the hydrogen fuel cell the hydrogen consumption is reduced by 13.5% and 4.1% compared with the power following strategy and the fuzzy logic control strategy and the average output power variability is reduced by 14.6% and 5.1% respectively which is important for improving the economy of the whole vehicle and prolonging the lifetime of fuel cell.
Feasibility Study on the Provision of Electricity and Hydrogen for Domestic Purposes in the South of Iran using Grid-connected Renewable Energy Plants
Dec 2018
Publication
This work presents a feasibility study on the provision of electricity and hydrogen with renewable grid connected and off-the-grid systems for Bandar Abbas City in the south of Iran. The software HOMER Pro® has been used to perform the analysis. A techno-enviro-economic study comparing a hybrid system consisting of the grid/wind turbine and solar cell is done. The wind turbine is analyzed using four types of commercially available vertical axis wind turbines (VAWTs). According to the literature review no similar study has been performed so far on the feasibility of using VAWTs and also no work exists on the use of a hybrid system in the studied area. The results indicated that the lowest price of providing the required hydrogen was $0.496 which was achieved using the main grid. Also the lowest price of the electricity generated was $1.55 which was obtained through using EOLO VAWT in the main grid/wind turbine/solar cell scenario. Also the results suggested that the highest rate of preventing CO2 emission which was also the lowest rate of using the national grid with 3484 kg/year was associated with EOLO wind turbines where only 4% of the required electricity was generated by the national grid.
Preliminary Assessment of a Hydrogen Farm Including Health and Safety and Capacity Needs
Dec 2024
Publication
The safety engineering design of hydrogen systems and infrastructure worker education and training regulatory compliance and engagement with other stakeholders are significant to the viability and public acceptance of hydrogen farms. The only way to ensure these are accomplished is for the field of hydrogen safety engineering (HSE) to grow and mature. HSE is described as the application of engineering and scientific principles to protect the environment property and human life from the harmful effects of hydrogen-related mishaps and accidents. This paper describes a whole hydrogen farm that produces hydrogen from seawater by alkaline and proton exchange membrane electrolysers then details how the hydrogen gas will be used: some will be stored for use in a combined-cycle gas turbine some will be transferred to a liquefaction plant and the rest will be exported. Moreover this paper describes the design framework and overview for ensuring hydrogen safety through these processes (production transport storage and utilisation) which include legal requirements for hydrogen safety safety management systems and equipment for hydrogen safety. Hydrogen farms are large-scale facilities used to create store and distribute hydrogen which is usually produced by electrolysis using renewable energy sources like wind or solar power. Since hydrogen is a vital energy carrier for industries transportation and power generation these farms are crucial in assisting the global shift to clean energy. A versatile fuel with zero emissions at the point of use hydrogen is essential for reaching climate objectives and decarbonising industries that are difficult to electrify. Safety is essential in hydrogen farms because hydrogen is extremely flammable odourless invisible and also has a small molecular size meaning it is prone to leaks which if not handled appropriately might cause fires or explosions. To ensure the safe and dependable functioning of hydrogen production and storage systems stringent safety procedures are required to safeguard employees infrastructure and the surrounding environment from any mishaps.
An Overview of Hydrogen’s Application for Energy Purposes in Lithuania
Nov 2023
Publication
Hydrogen has emerged as a promising climate-neutral energy carrier able to facilitate the processes of the European Union (EU) energy transition. Green hydrogen production through the electrolysis process has gained increasing interest recently for application in various sectors of the economy. As a result of the increasing renewable energy developments in the EU hydrogen is seen as one of the most promising solutions for energy storage challenges; therefore the leading countries in the energy sector are heavily investing in research of the technical obstacles for hydrogen applications and assessment of the current hydrogen market which in turn leads to the acceleration of the upscaling of hydrogen production. The main objective of this article was to provide a comprehensive overview of various green hydrogen production transportation and industrial application technologies and challenges in Europe with a separate analysis of the situation in Lithuania. Various water electrolysis technologies and their production costs are investigated along with recent developments in storage and transportation solutions. In addition the performances and limitations of electrochemical processes are presented and analysed research trends in the field are discussed and possible solutions for performance and cost improvements are overviewed. This paper proposes a discussion of perspectives in terms of future applications and research directions.
The Impact of Methane Leakage on the Role of Natural Gas in the European Energy Transition
Sep 2023
Publication
Decarbonising energy systems is a prevalent topic in the current literature on climate change mitigation but the additional climate burden caused by methane emissions along the natural gas value chain is rarely discussed at the system level. Considering a two-basket greenhouse gas neutrality objective (both CO2 and methane) we model cost-optimal European energy transition pathways towards 2050. Our analysis shows that adoption of best available methane abatement technologies can entail an 80% reduction in methane leakage limiting the additional environmental burden to 8% of direct CO2 emissions (vs. 35% today). We show that while renewable energy sources are key drivers of climate neutrality the role of natural gas strongly depends on actions to abate both associated CO2 and methane emissions. Moreover clean hydrogen (produced mainly from renewables) can replace natural gas in a substantial proportion of its end-uses satisfying nearly a quarter of final energy demand in a climate-neutral Europe.
Hazard Footprint of Alternative Fuel Storage Concepts for Hydrogen-powered Urban Buses
Nov 2023
Publication
Hydrogen mobility is a powerful strategy to fight climate change promoting the decarbonization of the transportation sector. However the higher flammability of hydrogen in comparison with traditional fuels raises issues concerning the safety of hydrogen-powered vehicles in particular when urban mobility in crowded areas is concerned. In the present study a comparative analysis of alternative hydrogen storage concepts for buses is carried out. A specific inherent safety assessment methodology providing a hazard footprint of alternative hydrogen storage technologies was developed. The approach provides a set of ex-ante safety performance indicators and integrates a sensitivity analysis performed by a Monte Carlo method. Integral models for consequence analysis and a set of baseline frequencies are used to provide a preliminary identification of the worstcase credible fire and explosion scenarios and to rank the inherent safety of alternative concepts. Cryocompressed storage in the supercritical phase resulted as the more hazardous storage concept while cryogenic storage in the liquid phase at ambient pressure scored the highest safety performance. The results obtained support risk-informed decision-making in the shift towards the promotion of sustainable mobility in urban areas.
Lower-Carbon Hydrogen Production from Wastewater: A Comprehensive Review
Oct 2024
Publication
Hydrogen has the capability of being a potential energy carrier and providing a long-term solution for sustainable lower-carbon and ecologically benign fuel supply. Because lower-carbon hydrogen is widely used in chemical synthesis it is regarded as a fuel with no emissions for transportation. This review paper offers a novel technique for producing hydrogen using wastewater in a sustainable manner. The many techniques for producing hydrogen with reduced carbon emissions from wastewater are recognized and examined in detail taking into account the available prospects significant obstacles and potential future paths. A comparison of the assessment showed that water electrolysis and dark fermentation technologies are the most effective methods for hydrogen generation from wastewater with microbial electrolysis and photofermentation. Thus the incorporation of systems that are simultaneously producing lower-carbon hydrogen and meant for wastewater treatment is important for the minimization of emissions from greenhouse gases and recovering the energy utilized in the treatment of wastewater.
Simple Energy Model for Hydrogen Fuel Cell Vehicles: Model Development and Testing
Dec 2024
Publication
Hydrogen fuel cell vehicles (HFCVs) are a promising technology for reducing vehicle emissions and improving energy efficiency. Due to the ongoing evolution of this technology there is limited comprehensive research and documentation regarding the energy modeling of HFCVs. To address this gap the paper develops a simple HFCV energy consumption model using new fuel cell efficiency estimation methods. Our HFCV energy model leverages real-time vehicle speed acceleration and roadway grade data to determine instantaneous power exertion for the computation of hydrogen fuel consumption battery energy usage and overall energy consumption. The results suggest that the model’s forecasts align well with real-world data demonstrating average error rates of 0.0% and −0.1% for fuel cell energy and total energy consumption across all four cycles. However it is observed that the error rate for the UDDS drive cycle can be as high as 13.1%. Moreover the study confirms the reliability of the proposed model through validation with independent data. The findings indicate that the model precisely predicts energy consumption with an error rate of 6.7% for fuel cell estimation and 0.2% for total energy estimation compared to empirical data. Furthermore the model is compared to FASTSim which was developed by the National Renewable Energy Laboratory (NREL) and the difference between the two models is found to be around 2.5%. Additionally instantaneous battery state of charge (SOC) predictions from the model closely match observed instantaneous SOC measurements highlighting the model’s effectiveness in estimating real-time changes in the battery SOC. The study investigates the energy impact of various intersection controls to assess the applicability of the proposed energy model. The proposed HFCV energy model offers a practical versatile alternative leveraging simplicity without compromising accuracy. Its simplified structure reduces computational requirements making it ideal for real-time applications smartphone apps in-vehicle systems and transportation simulation tools while maintaining accuracy and addressing limitations of more complex models.
Energy Storage Strategy - Narrative
Feb 2023
Publication
This narrative document sets out the main rationale for hydrogen storage development at scale in the UK: - To meet net zero the UK will need considerable energy storage - Hydrogen storage will be a major and essential part of this - Physical hydrogen storage is needed in the UK - Only geological hydrogen storage can deliver at the scale needed within the timescales for net zero - Geological hydrogen storage should be supported through a viable business model now to ensure it comes online in the 2030s.
Reversible Solid Oxide Cell Coupled to an Offshore Wind Turbine as a Poly-generation Energy System for Auxiliary Backup Generaiton and Hydrogen Production
Nov 2022
Publication
The coupling of a reversible Solid Oxide Cell (rSOC) with an offshore wind turbine is investigated to evaluate the mutual benefits in terms of local energy management. This integrated system has been simulated with a dynamic model under a control algorithm which manages the rSOC operation in relation to the wind resource implementing a local hydrogen storage with a double function: (i) assure power supply to the wind turbine auxiliary systems during power shortages (ii) valorize the heat produced to cover the desalinization system needs. With an export-based strategy which maximize the rSOC capacity factor up to 15 tons of hydrogen could be produced for other purposes. The results show the compatibility between the auxiliary systems supply of a 2.3 MW wind turbine and a 120/21 kWe rSOC system which can cover the auxiliaries demand during wind shortages or maintenance. The total volume required by such a system occupy less than the 2% if compared with the turbine tower volume. Additionally thermal availability exceeds the desalination needs representing a promising solution for small-scale onsite desalination in offshore environments.
Solar Hydrogen Production and Storage in Solid Form: Prospects for Materials and Methods
Sep 2024
Publication
Climatic changes are reaching alarming levels globally seriously impacting the environment. To address this environmental crisis and achieve carbon neutrality transitioning to hydrogen energy is crucial. Hydrogen is a clean energy source that produces no carbon emissions making it essential in the technological era for meeting energy needs while reducing environmental pollution. Abundant in nature as water and hydrocarbons hydrogen must be converted into a usable form for practical applications. Various techniques are employed to generate hydrogen from water with solar hydrogen production—using solar light to split water—standing out as a cost-effective and environmentally friendly approach. However the widespread adoption of hydrogen energy is challenged by transportation and storage issues as it requires compressed and liquefied gas storage tanks. Solid hydrogen storage offers a promising solution providing an effective and low-cost method for storing and releasing hydrogen. Solar hydrogen generation by water splitting is more efficient than other methods as it uses self-generated power. Similarly solid storage of hydrogen is also attractive in many ways including efficiency and cost-effectiveness. This can be achieved through chemical adsorption in materials such as hydrides and other forms. These methods seem to be costly initially but once the materials and methods are established they will become more attractive considering rising fuel prices depletion of fossil fuel resources and advancements in science and technology. Solid oxide fuel cells (SOFCs) are highly efficient for converting hydrogen into electrical energy producing clean electricity with no emissions. If proper materials and methods are established for solar hydrogen generation and solid hydrogen storage under ambient conditions solar light used for hydrogen generation and utilization via solid oxide fuel cells (SOFCs) will be an efficient safe and cost-effective technique. With the ongoing development in materials for solar hydrogen generation and solid storage techniques this method is expected to soon become more feasible and cost-effective. This review comprehensively consolidates research on solar hydrogen generation and solid hydrogen storage focusing on global standards such as 6.5 wt% gravimetric capacity at temperatures between −40 and 60 ◦C. It summarizes various materials used for efficient hydrogen generation through water splitting and solid storage and discusses current challenges in hydrogen generation and storage. This includes material selection and the structural and chemical modifications needed for optimal performance and potential applications.
Green Hydrogen and its Unspoken Challenges for Energy Justice
Oct 2024
Publication
Green hydrogen is often promoted as a key facilitator for the clean energy transition but its implementation raises concerns around energy justice. This paper examines the socio-political and techno-economic challenges that green hydrogen projects may pose to the three tenets of energy justice: distributive procedural and recognition justice. From a socio-political perspective the risk of neocolonial resource extraction uneven distribution of benefits exclusion of local communities from decision-making and disregard for indigenous rights and cultures threaten all three justice tenets. Techno-economic factors such as water scarcity land disputes and resource-related conflicts in potential production hotspots further jeopardise distributive and recognition justice. The analysis framed by an adapted PEST model reveals that while green hydrogen holds promise for sustainable development its implementation must proactively address these justice challenges. Failure to do so could perpetuate injustices exploitation and marginalisation of vulnerable communities undermining the sustainability goals it aims to achieve. The paper highlights the need for inclusive and equitable approaches that respect local sovereignty integrate diverse stakeholders and ensure fair access and benefit-sharing. Only by centring justice considerations can the transition to green hydrogen catalyse positive social change and realise its full potential as a driver of sustainable energy systems.
Hydrogen Equipment Enclosure Risk Reduction through Earlier Detection of Component Failures
Sep 2023
Publication
Hydrogen component reliability and the hazard associated with failure rates is a critical area of research for the successful implementation and growth of hydrogen technology across the globe. The research team has partnered to quantify system risk reduction through earlier detection of hydrogen component failures. A model of hydrogen dispersion in a hydrogen equipment enclosure has been developed utilizing experimentally quantified hydrogen component leak rates as inputs. This model provides insight into the impact of hydrogen safety sensors and ventilation on the flammable mass within a hydrogen equipment enclosure. This model also demonstrates the change in safety sensor response time due to detector placement under various leak scenarios. The team looks to improve overall hydrogen system safety through an improved understanding of hydrogen component reliability and risk mitigation methods. This collaboration fits under the work program of IEA Hydrogen Task 43 Subtask E Hydrogen System Safety.
A Systematic Study on Techno-Economic Evaluation of Hydrogen Production
Sep 2023
Publication
This paper aims to perform a systematic review with a bibliometric approach of the technoeconomic evaluation studies of hydrogen production. To achieve this objective a comprehensive outline of hydrogen production processes from fossil and renewable sources is presented. The results reveal that electrolysis classified as water splitting is the most investigated process in the literature since it contributes to a reduction in greenhouse gas emissions and presents other advantages such as maturity and applicability energy efficiency flexibility and energy storage potential. In addition the processes of gasification classified as thermochemical and steam reforming classified as catalytic reforming are worth mentioning. Regarding the biological category there is a balance between research on photo fermentation and dark fermentation. The literature on the techno-economic evaluation of hydrogen production highlights significant gaps including a scarcity of comprehensive studies a lack of emphasis on commercial viability an absence of sensitivity analysis and the need for comparative analyses between production technologies.
Performance Analysis of Hybrid Solar/H2/Battery Renewable Energy System for Residential Electrification
Mar 2019
Publication
Due to the privileged location of Ecuador in terms of solar radiation the analysis and use of renewable energy system (RES) using solar energy has been of great interest during the last years. At the same time the supply support of RES in terms of direct current (DC) can be faced by using fuel cell (FC) systems which can give to the systems fully autonomy from fossil fuels. The aim of this paper is to propose the design of a hybrid photovoltaic-fuel cell-battery (PV-FC-B) system to supply the required electrical energy for residential use in the city of Guayaquil. The feasibility analysis constitutive elements of the system and adjusted variables are computed and presented using a computational tool. The results evidence that this system is not economically viable since the cost of energy (COE) in Ecuador is low compared to the COE of the proposed system. However a more detailed analysis considering the inherent benefits of no emission of pollutant gases is required to have a complete outlook.
Science and Technology of Ammonia Combustion
Nov 2018
Publication
This paper focuses on the potential use of ammonia as a carbon-free fuel and covers recent advances in the development of ammonia combustion technology and its underlying chemistry. Fulfilling the COP21 Paris Agreement requires the de-carbonization of energy generation through utilization of carbon-neutral and overall carbon-free fuels produced from renewable sources. Hydrogen is one of such fuels which is a potential energy carrier for reducing greenhouse-gas emissions. However its shipment for long distances and storage for long times present challenges. Ammonia on the other hand comprises 17.8% of hydrogen by mass and can be produced from renewable hydrogen and nitrogen separated from air. Furthermore thermal properties of ammonia are similar to those of propane in terms of boiling temperature and condensation pressure making it attractive as a hydrogen and energy carrier. Ammonia has been produced and utilized for the past 100 years as a fertilizer chemical raw material and refrigerant. Ammonia can be used as a fuel but there are several challenges in ammonia combustion such as low flammability high NOx emission and low radiation intensity. Overcoming these challenges requires further research into ammonia flame dynamics and chemistry. This paper discusses recent successful applications of ammonia fuel in gas turbines co-fired with pulverize coal and in industrial furnaces. These applications have been implemented under the Japanese ‘Cross-ministerial Strategic Innovation Promotion Program (SIP): Energy Carriers’. In addition fundamental aspects of ammonia combustion are discussed including characteristics of laminar premixed flames counterflow twin-flames and turbulent premixed flames stabilized by a nozzle burner at high pressure. Furthermore this paper discusses details of the chemistry of ammonia combustion related to NOx production processes for reducing NOx and validation of several ammonia oxidation kinetics models. Finally LES results for a gas-turbine-like swirl-burner are presented for the purpose of developing low-NOx single-fuelled ammonia gas turbine combustors.
A 500 kW Hydrogen Fuel Cell-powered Vessel: From Concept to Sailing
Sep 2024
Publication
This paper presents the “Three Gorges Hydrogen Boat No. 1” a novel green hydrogen-powered vessel that has been successfully delivered and is currently sailing. This vessel integrated with a hydrogen production and bunkering station at its dedicated dock achieves zero-carbon emissions. It stores 240 kg of 35 MPa gaseous hydrogen and has a fuel cell system rated at 500 kW. We analysed the engineering details of the marine hydrogen system including hydrogen bunkering storage supply fuel cell and the hybrid power system with lithium-ion batteries. In the first bunkering trial the vessel was safely refuelled with 200 kg of gaseous hydrogen in 156 min via a bunkering station 13 m above the water surface. The maximum hydrogen pressure and temperature recorded during bunkering were 35.05 MPa and 39.04 ◦C respectively demonstrating safe and reliable shore-toship bunkering. For the sea trial the marine hydrogen system operated successfully during a 3-h voyage achieving a maximum speed of 28.15 km/h (15.2 knots) at rated propulsion power. The vessel exhibited minimal noise and vibration and its dynamic response met load change requirements. To prevent rapid load changes to the fuel cells 68 s were used to reach 483 kW from startup and 62 s from 480 kW to zero. The successful bunkering and operation of this hydrogen-powered vessel demonstrates the feasibility of zero-carbon emission maritime transport. However four lessons were identified concerning bunkering speed hydrogen cylinder leakage hydrogen pressure regulator malfunctions and fuel cell room space. The novelty of this work lies in the practical demonstration of a fully operational hydrogen-powered maritime vessel achieving zero emissions encompassing its design building operation and lessons learned. These parameters and findings can be used as a baseline for further engineering research.
Bibliometric Analysis of Global Publications on Management, Trends, Energy, and the Innovation Impact of Green Hydrogen Production
Dec 2024
Publication
The aim of this bibliometric analysis was to evaluate the evolution of scientific research in hydrogen focusing on green hydrogen production storage and utilization. Articles from prominent databases were analyzed revealing a strong emphasis on sustainable hydrogen technologies through keywords like “hydrogen production” “green hydrogen” and “solar power generation”. Mature research areas include production methods and electrolysis while emerging topics such as energy efficiency and policy are gaining traction. The most-cited papers from Energy Conversion and Management to the International Journal of Hydrogen Energy cover techno-economic assessments and case studies on deploying hydrogen technologies. Key findings highlight the variability of the Levelized Cost of Hydrogen (LCOH) across technologies and regions. Deep learning applications including Fast Fourier Transform-based forecasting and explainable AI models are transforming production optimization while Life Cycle Assessment (LCA) emphasizes renewable energy’s role in reducing carbon intensity and resource consumption. Diverse strategies such as fiscal incentives for wind energy and use of urban waste underline the importance of local solutions. This analysis reflects the rapid growth of hydrogen research driven by international collaboration and innovations in sustainable production storage and optimization. It is hoped that this paper will help to shed more light on the current and future understanding of green hydrogen.
Hydrogen Storage Capacity of Salt Caverns and Deep Aquifers Versus Demand for Hydrogen Storage: A Case Study of Poland
Nov 2023
Publication
Geological structures in deep aquifers and salt caverns can play an important role in large-scale hydrogen storage. However more work needs to be done to address the hydrogen storage demand for zero-emission energy systems. Thus the aim of the article is to present the demand for hydrogen storage expressed in the number of salt caverns in bedded rock salt deposits and salt domes or the number of structures in deep aquifers. The analysis considers minimum and maximum hydrogen demand cases depending on future energy system configurations in 2050. The method used included the estimation of the storage capacity of salt caverns in bedded rock salt deposits and salt domes and selected structures in deep aquifers. An estimation showed a large hydrogen storage potential of geological structures. In the case of analyzed bedded rock salt deposits and salt domes the average storage capacity per cavern is 0.05–0.09 TWhH2 and 0.06–0.20 TWhH2 respectively. Hydrogen storage capacity in analyzed deep aquifers ranges from 0.016 to 4.46 TWhH2. These values indicate that in the case of the upper bound for storage demand there is a need for the 62 to 514 caverns depending on considered bedded rock salt deposits and salt domes or the 9 largest analyzed structures in deep aquifers. The results obtained are relevant to the discussion on the global hydrogen economy and the methodology can be used for similar considerations in other countries.
0-D Dynamic Performance Simulation of Hydrogen-Fueled Turboshaft Engine
Oct 2024
Publication
In the last few decades the problem of pollution resulting from human activities has pushed research toward zero or net-zero carbon solutions for transportation. The main objective of this paper is to perform a preliminary performance assessment of the use of hydrogen in conventional turbine engines for aeronautical applications. A 0-D dynamic model of the Allison 250 C-18 turboshaft engine was designed and validated using conventional aviation fuel (kerosene Jet A-1). A dedicated experimental campaign covering the whole engine operating range was conducted to obtain the thermodynamic data for the main engine components: the compressor lateral ducts combustion chamber high- and low-pressure turbines and exhaust nozzle. A theoretical chemical combustion model based on the NASA-CEA database was used to account for the energy conversion process in the combustor and to obtain quantitative feedback from the model in terms of fuel consumption. Once the engine and the turbomachinery of the engine were characterized the work focused on designing a 0-D dynamic engine model based on the engine’s characteristics and the experimental data using the MATLAB/Simulink environment which is capable of replicating the real engine behavior. Then the 0-D dynamic model was validated by the acquired data and used to predict the engine’s performance with a different throttle profile (close to realistic request profiles during flight). Finally the 0-D dynamic engine model was used to predict the performance of the engine using hydrogen as the input of the theoretical combustion model. The outputs of simulations running conventional kerosene Jet A-1 and hydrogen using different throttle profiles were compared showing up to a 64% reduction in fuel mass flow rate and a 3% increase in thermal efficiency using hydrogen in flight-like conditions. The results confirm the potential of hydrogen as a suitable alternative fuel for small turbine engines and aircraft.
Assessment of Energy Footprint of Pure Hydrogen-Supplied Vehicles in Real Conditions of Long-Term Operation
Jul 2024
Publication
The desire to maintain CO2 concentrations in the global atmosphere implies the need to introduce ’new’ energy carriers for transport applications. Therefore the operational consumption of each such potential medium in the ’natural’ exploitation of vehicles must be assessed. A useful assessment method may be the vehicle’s energy footprint resulting from the theory of cumulative fuel consumption presented in the article. Using a (very modest) database of long-term use of hydrogen-powered cars the usefulness of this method was demonstrated. Knowing the energy footprint of vehicles of a given brand and type and the statistical characteristics of the footprint elements it is also possible to assess vehicle fleets in terms of energy demand. The database on the use of energy carriers such as hydrogen in the long-term operation of passenger vehicles is still relatively modest; however as it has been shown valuable data can be obtained to assess the energy demand of vehicles of a given brand and type. Access to a larger operational database will allow for wider use of the presented method.
Hydrogen Production from Methanol–Water Solution and Pure Water Electrolysis Using Nanocomposite Perfluorinated Sulfocationic Membranes Modified by Polyaniline
Oct 2022
Publication
In this work we report the preparation of Nafion membranes containing two different nanocomposite MF-4SC membranes modified with polyaniline (PANI) by the casting method through two different polyaniline infiltration procedures. These membranes were evaluated as a polymer electrolyte membrane for water electrolysis. Operating conditions were optimized in terms of current density stability and methanol concentration. A study was made on the effects on the cell performance of various parameters such as methanol concentration water and cell voltage. The energy required for pure water electrolysis was analyzed at different temperatures for the different membranes. Our experiments showed that PEM electrolyzers provide hydrogen production of 30 mL/min working at 160 mA/cm2 . Our composite PANI membranes showed an improved behavior over pristine perfluorinated sulfocationic membranes (around 20% reduction in specific energy). Methanol–water electrolysis required considerably less (around 65%) electrical power than water electrolysis. The results provided the main characteristics of aqueous methanol electrolysis in which the power consumption is 2.34 kW h/kg of hydrogen at current densities higher than 0.5 A/cm2 . This value is ~20-fold times lower than the electrical energy required to produce 1 kg of hydrogen by water electrolysis.
National Gas FutureGrid Phase 1 Closure Report
Jul 2024
Publication
This project an essential part of the National Gas HyNTS programme endeavours to align the NTS with GB’s net zero ambitions by demonstrating the operational viability of the system with varying hydrogen blends using decommissioned assets typical of the natural gas network today ultimately aiming for 100% hydrogen conveyance. Several desktop studies were undertaken within the HyNTS programme to confirm the theoretical potential of the NTS to transport hydrogen safely and reliably. Further to these studies practical demonstration was deemed necessary to bridge the knowledge gaps and ensure the system’s transition maintains the utmost safety and reliability standards. A range of tests on decommissioned assets were conducted offline in a controlled environment to ensure robust outcomes that will ultimately start to build the safety case for a hydrogen network. The key deliverables and testing achievements of FutureGrid included: • Operational testing with natural gas and 2% 5% 20% and 100% hydrogen to verify the network’s ability to transport hydrogen and varying blends. • Standalone offline testing modules complementing evidence gathered on the main test facility. These address specific areas of concern including material permeation flange integrity asset leakage and rupture consequence which are essential for risk mitigation and safety assurance. FutureGrid is a global first facility and a critical part of National Gas’ hydrogen programme providing physical evidence of the capability of our network to transport hydrogen. It provides key evidence for hydrogen blending alongside 100% hydrogen pipelines which are planned under Project Union our Hydrogen Backbone across GB. FutureGrid is pivotal in the journey to reaching Net Zero by 2050 and is a fully operational proven technical demonstrator. FutureGrid’s repurposed assets are representative of today’s live high pressure gas network and have been subjected to testing at different blends of natural gas with hydrogen and 100% hydrogen; this was achieved with no major findings in differences in terms of how the assets interact with hydrogen. The overall project completion date was delayed from November 2023 to February 2024 due to technical issues with the newly built hydrogen re‑compressor. There were no changes made to the project costs.
Advancing Life Cycle Assessment of Sustainable Green Hydrogen Production Using Domain-Specific Fine-Tuning by Large Language Models Augmentation
Nov 2024
Publication
Assessing the sustainable development of green hydrogen and assessing its potential environmental impacts using the Life Cycle Assessment is crucial. Challenges in LCA like missing environmental data are often addressed using machine learning such as artificial neural networks. However to find an ML solution researchers need to read extensive literature or consult experts. This research demonstrates how customised LLMs trained with domain-specific papers can help researchers overcome these challenges. By starting small by consolidating papers focused on the LCA of proton exchange membrane water electrolysis which produces green hydrogen and ML applications in LCA. These papers are uploaded to OpenAI to create the LlamaIndex enabling future queries. Using the LangChain framework researchers query the customised model (GPT-3.5-turbo) receiving tailored responses. The results demonstrate that customised LLMs can assist researchers in providing suitable ML solutions to address data inaccuracies and gaps. The ability to quickly query an LLM and receive an integrated response across relevant sources presents an improvement over manually retrieving and reading individual papers. This shows that leveraging fine-tuned LLMs can empower researchers to conduct LCAs more efficiently and effectively.
A Gis-based on Application of Monte Carlo and Multi-criteria Decision-making Approach for Site Suitability Analysis of Solar-hydrogen Production: Case of Cameroon
Dec 2024
Publication
This article analyzes and compares three methodologies for identifying suitable regions for solar hydrogen production using photovoltaic panels: AHP (Analytic Hierarchy Process) FAHP (Fuzzy Analytic Hierarchy Process) and MC-FAHP (Monte Carlo FAHP) integrated with GIS (Geographic Information Systems). The study employs ten criteria across technical (Global Horizontal Irra diance temperature slope elevation orientation) economic (distance from transportation and electrical networks) and social (population density proximity to residential areas) factors. Environmental and exclusion criteria define restrictive zones. The analysis reveals that while all three methods agree on areas of low suitability they diverge in their classification of "Suitable" "Highly Suitable" and "Most Suitable" regions. FAHP identifies 229.573 km2 as "Highly Suitable" compared to AHP’s 222.048 km2 and MC-FAHP’s 230.299 km2 for "Suitable" areas. Despite these differences the energy potential is consistent across methods totaling around 79000 TWh/year with MC-FAHP estimating the highest hydrogen production potential at 1.51 billion tons/year. The study concludes that fuzzy-based methods (FAHP and MC-FAHP) better handle uncertainties than traditional AHP. The MC-FAHP method in particular performs well in managing stochastic variability and yielding more reliable results. The findings are validated through a case study in Guider and Maroua highlighting the importance of socio-economic and environmental criteria in decision-making. A sensitivity analysis reveals that economic and social criteria significantly influence land suitability underscoring the importance of criteria selection in decision-making.
Wind-coupled Hydrogen Integration for Commercial Greenhouse Food and Power Production: A Case Study
Oct 2024
Publication
This study investigates the feasibility of using green hydrogen technology produced via Proton Exchange Membrane (PEM) electrolysis powered by a 200 MW wind farm for a commercial Greenhouse in Ontario Canada. Nine different scenarios are analyzed exploring various approaches to hydrogen (H2) production transportation and utilization for electricity generation. The aim is to transition from using natural gas to using varying combinations of H2 and natural gas that include 10 % 20 % and 100 % of H2 with 90 % 80 % and 0 % of natural gas to generate 13.3 MW from Combined Heat and Power (CHP) engines. The techno-economic parameters considered for the study are the levelized cost of hydrogen (LCOH) payback period (PBT) internal rate of return (IRR) and discounted payback period (DPB). The study found that a 10 % H2-Natural Gas blend using existing wired or transmission line (W-10H2) with 5 days of storage capacity and 2190 h of CHP operation per year had the lowest cost with a LCOH of USD 3.69/kg. However 100 % of H2 using existing wired or transmission line (W-100H2) with the same storage and operation hours revealed better PBT IRR and DPB with values of 6.205 years 15.16 % and 7.993 years respectively. It was found impractical to build a new pipeline or transport H2 via tube trailer from wind farm site to greenhouse. A sensitivity analysis was also conducted to understand what factors affect the LCOH value the most.
Hydrogen as an Energy Source: A Review of Production Technologies and Challenges of Fuel Cell Vehicles
Oct 2024
Publication
The significant growth of both the global population and economy in recent years has led to a rise in global energy demand. Fossil fuels have a significant contribution to generating energy which has raised concerns about sustainability and environmental impact. There are widespread efforts to find alternative sources in order to reduce dependence on fossil fuels and mitigate their environmental consequences. Among the alternative sources hydrogen has emerged as a promising option due to its potential to be a clean and sustainable energy source. Hydrogen possesses several advantages such as a high calorific value a high reaction rate various sources and the ability to integrate with other renewable energy sources and existing systems. These attributes render hydrogen a stable and reliable energy resource which can help reduce greenhouse gas emissions (GHG) and transition towards a sustainable future. In this review paper distinct hydrogen production technologies such as conventional renewable and nuclear energy are investigated and compared. In addition the challenges and limitations of the application of hydrogen fuel cells on vehicles and hydrogen circulation components are explored. Finally the environmental impact of hydrogen vehicles specifically their role in promoting sustainable development is investigated.
Overview and Prospects of Low-emissions Hydrogen (H2) Energy Systems: Roadmap for a Sustainable H2 Economy
Jul 2024
Publication
Hydrogen (2 ) has a big role to play in energy transition to achieve net-zero carbon emissions by 2050. For 2 to compete with other fuels in the energy market more research is required to mitigate key issues like greenhouse gas (GHG) emissions safety and end-use costs. For these reasons a software-supported technical overview of 2 production storage transportation and utilisation is introduced. Drawbacks and mitigation approaches for 2 technologies were highlighted. The recommended areas include solar thermal or renewable-powered plasma systems for feedstock preheating and oxy-hydrogen combustion to meet operating temperatures and heat duties due to losses; integration of electrolysis of 2 into hydrocarbon reforming methods to replace air separation unit (ASU); use of renewable power sources for electrical units and the introduction of thermoelectric units to maximise the overall efficiency. Furthermore a battolyser system for small-scale energy storage; new synthetic hydrides with lower absorption and desorption energy; controlled parameters and steam addition to the combustor/cylinder and combustors with fitted heat exchangers to reduce emissions and improve the overall efficiency are also required. This work also provided detailed information on any of these systems implementations based on location factors and established a roadmap for 2 production and utilisation. The proposed 2 production technologies are hybrid pyrolysis-electrolysis and integrated AD-MEC and DR systems using renewable bioelectrochemical and low-carbon energy systems. Production and utilisation of synthetic natural gas (NG) using renewablepowered electrolysis of 2 oxy-fuel and direct air capture (DAC) is another proposed 2 energy system for a sustainable 2 economy. By providing these factors and information researchers can work towards pilot development and further efficiency enhancement.
Everything About Hydrogen Podcast: "Stat of the Union" with EAH Hosts
May 2024
Publication
This week’s episode is a discussion between EAH hosts Patrick Molloy Alicia Eastman and Chris Jackson. The team cover the current status of hydrogen regulation innovation financing markets and consolidation. Hanging over most conversations in the decarbonization or future fuels space is the perpetual question: When will investors actually step up with significant capital to help companies make it through the development desert instead of letting promising companies languish in the double dunes of despair? There has been a lot of talk but not a lot of action. Listen to the team unpack recent developments and hopes for the future.
The podcast can be found on their website.
The podcast can be found on their website.
Stakeholder Perspectives on the Scale-up of Green Hydrogen and Electrolyzers
Nov 2023
Publication
Green hydrogen is a promising alternative to fossil fuels. However current production capacities for electrolyzers and green hydrogen are not in line with national political goals and projected demand. Considering these issues we conducted semi-structured interviews to determine the narratives of different stakeholders during this transformation as well as challenges and opportunities for the green hydrogen value chain. We interviewed eight experts with different roles along the green hydrogen value chain ranging from producers and consumers of green hydrogen to electrolyzer manufacturers and consultants as well as experts from the political sphere. Most experts see the government as necessary for scale-up by setting national capacity targets policy support and providing subsidies. However the experts also accuse the governments of delaying development through overregulation and long implementation times for regulations. The main challenges that were identified are the current lack of renewable electricity and demand for green hydrogen. Demand for green hydrogen is influenced by supply costs which partly depend on prices for electrolyzers. However one key takeaway of the interviews is the skeptical assessments by the experts on the currently discussed estimates for price reduction potential of electrolyzers. While demand supply and prices are all factors that influence each other they result in feedback loops in investment decisions for the energy and manufacturing industries. A second key takeaway is that according to the experts current investment decisions in new production capacities are not solely dependent on short-term financial gains but also based on expected first mover advantages. These include experience and market share which are seen as factors for opportunities for future financial gains. Summarized the results present several challenges and opportunities for green hydrogen and electrolyzers and how to address them effectively. These insights contribute to a deeper understanding of the dynamics of the emerging green hydrogen value chain.
Innovative Hybrid Energy Storage Systems with Sustainable Integration of Green Hydrogen and Energy Management Solutions for Standalone PV Microgrids Based on Reduced Fractional Gradient Descent Algorithm
Oct 2024
Publication
This paper investigates innovative solutions to enhance the performance and lifespan of standalone photovoltaic (PV)-based microgrids with a particular emphasis on off-grid communities. A major challenge in these systems is the limited lifespan of batteries. To overcome this issue researchers have created hybrid energy storage systems (HESS) along with advanced power management strategies. This study introduces innovative multi-level HESS approaches and a related energy management strategy designed to alleviate the charge/discharge stress on batteries. Comprehensive Matlab Simulink models of various HESS topologies within standalone PV microgrids are utilized to evaluate system performance under diverse weather conditions and load profiles for rural site. The findings reveal that the proposed HESS significantly extends battery life expectancy compared to existing solutions. Furthermore the paper presents a novel energy management strategy based on the Reduced Fractional Gradient Descent (RFGD) algorithm optimization tailored for hybrid systems that include photovoltaic fuel cell battery and supercapacitor components. This strategy aims to minimize hydrogen consumption of Fuel Cells (FCs) thereby supporting the production of green ammonia for local industrial use. The RFGD algorithm is selected for its minimal user-defined parameters and high convergence efficiency. The proposed method is compared with other algorithms such as the Lyrebird Optimization Algorithm (LOA) and Osprey Optimization Algorithm (OOA). The RFGD algorithm exhibits superior accuracy in optimizing energy management achieving a 15% reduction in hydrogen consumption. Its efficiency is evident from the reduced computational time compared to conventional algorithms. Although minor losses in computational resources were observed they were substantially lower than those associated with traditional optimization techniques. Overall the RFGD algorithm offers a robust and efficient solution for enhancing the performance of hybrid energy systems.
Techno-economic Analysis for Advanced Methods of Green Hydrogen Production
May 2024
Publication
In the ongoing effort to reduce carbon emissions on a worldwide scale green hydrogen which is generated through environmentally responsible processes has emerged as a significant driving force. As the demand for clean energy continues to rise it is becoming increasingly important to have a solid understanding of the technological and economic elements of modern techniques of producing green hydrogen. In the context of green hydrogen generation understanding green hydrogen production's techno-economic features is necessary to reduce carbon emissions and transition to a low-carbon economy. associated with breakthroughs in technology the present study examines the most fascinating and relevant aspects of techno-economic analysis. Despite challenges green hydrogen can help the world move to a cleaner more sustainable energy future with solid analytical frameworks and legislation.
Optimizing Green Hydrogen Strategies in Tunisia: A Combined SWOT-MCDM Approach
Oct 2024
Publication
Tunisia's rapid industrial expansion and population growth have created a pressing energy deficit despite the country's significant yet largely untapped renewable energy potential. This study addressed this challenge by developing a comprehensive framework to identify and evaluate strategies for promoting green hydrogen production from renewable energy sources in Tunisia. A Strength Weakness Opportunity and Threat (SWOT) analysis incorporating social economic and environmental dimensions was conducted to formulate potential solutions. The Step-wise Weight Assessment Ratio Analysis (SWARA) method facilitated the weighting of SWOT factors and subfactors. Subsequently a multi-criteria decision-making approach employing the gray technique for order preference by similarity to ideal solution (TOPSIS-G) method (validated by gray additive ratio assessment (ARAS-G) gray complex proportional assessment (COPRAS-G) and gray multi-objective optimization by ratio analysis (MOORA-G) was used to rank the identified strategies. The SWOT analysis revealed "Strengths" as the most influential factor with a relative weight of 47.3% followed by "Weaknesses" (26.5%) "Threats" (15.6%) and "Opportunities" (10.6%). Specifically experts emphasized Tunisia's renewable energy potential (21.89%) and robust power system (12.11%) as primary strengths. Conversely high investment costs (11.2%) and political instability (7.77%) posed substantial threat. Positive socio-economic impacts represented a key opportunity with a score of 5.2%. As for the strategies prioritizing criteria production cost ranked first with a score of 13.5% followed by environmental impact (12.8%) renewable energy potential (12.0%) and mitigation costs (11.3%). The gray TOPSIS analysis identified two key strategies: leveraging Tunisia's wind and solar resources and fostering regional cooperation for project implementation. The robustness of these strategies is confirmed by the strong correlation between TOPSIS-G ARAS-G COPRAS-G and MOORA-G results. Overall the study provides a comprehensive roadmap and expert-informed decision-support tools offering valuable insights for policymakers investors and stakeholders in Tunisia and other emerging economies facing similar energy challenges.
Numerical Modelling of Hydrogen Release and Dispersion
Jul 2021
Publication
Hydrogen is the most abundant element on earth being a low polluting and high efficiency fuel that can be used for various applications such as power generation heating or transportation. As a reaction to climate change authorities are working for determining the most promising applications for hydrogen one of the best examples of crossborder initiative being the IPCEI (Important Project of Common European Interest) on Hydrogen under development at EU level. Given the large interest for future uses of hydrogen special safety measures have to be implemented for avoiding potential accidents. If hydrogen is stored and used under pressure accidental leaks from pressure vessels may result in fires or explosions. Worldwide researchers are investigating possible accidents generated by hydrogen leaks. Special attention is granted to the atmospheric dispersion after the release so that to avoid fires or explosions. The use of consequence modelling software within safety and risk studies has shown its’ utility worldwide. In this paper there are modelled the consequences of the accidental release and atmospheric dispersion of hydrogen from a pressure tank using state-of-the-art QRA software. The simulation methodology used in this paper uses the “leak” model for carrying out discharge calculations. This model calculates the release rate and state of the gas after its expansion to atmospheric pressure. Accidental release of hydrogen is modelled by taking into account the process and meteorological conditions and the properties of the release point. Simulation results can be used further for land use planning or may be used for establishing proper protection measures for surrounding facilities. In this work we analysed two possible accident scenarios which may occur at an imaginary hydrogen refuelling station accidents caused by the leaks of the pressure vessel with diameters of 10 and 20 mm for a pressure tank filled with hydrogen at 35 MPa / 70 MPa. Process Hazard Analysis Software Tool 8.4 has been used for assessing the effects of the scenarios and for evaluating the hazardous extent around the analysed installation. Accident simulation results have shown that the leak size has an important effect on the flammable/explosive ranges. Also the jet fire’s influence distance is strongly influenced by the pressure and actual size of the accidental release.
Management of Hybrid Wind and Photovoltaic System Electrolyzer for Green Hydrogen Production and Storage in the Presence of a Small Fleet of Hydrogen Vehicles— An Economic Assessment
Dec 2023
Publication
Nowadays with the need for clean and sustainable energy at its historical peak new equipment strategies and methods have to be developed to reduce environmental pollution. Drastic steps and measures have already been taken on a global scale. Renewable energy sources (RESs) are being installed with a growing rhythm in the power grids. Such installations and operations in power systems must also be economically viable over time to attract more investors thus creating a cycle where green energy e.g. green hydrogen production will be both environmentally friendly and economically beneficial. This work presents a management method for assessing wind–solar– hydrogen (H2 ) energy systems. To optimize component sizing and calculate the cost of the produced H2 the basic procedure of the whole management method includes chronological simulations and economic calculations. The proposed system consists of a wind turbine (WT) a photovoltaic (PV) unit an electrolyzer a compressor a storage tank a fuel cell (FC) and various power converters. The paper presents a case study of green hydrogen production on Sifnos Island in Greece through RES together with a scenario where hydrogen vehicle consumption and RES production are higher during the summer months. Hydrogen stations represent H2 demand. The proposed system is connected to the main power grid of the island to cover the load demand if the RES cannot do this. This study also includes a cost analysis due to the high investment costs. The levelized cost of energy (LCOE) and the cost of the produced H2 are calculated and some future simulations correlated with the main costs of the components of the proposed system are pointed out. The MATLAB language is used for all simulations.
A Two-Stage Robust Optimization Strategy for Long-Term Energy Storage and Cascaded Utilization of Cold and Heat Energy in Peer-to-Peer Electricity Energy Trading
Jan 2025
Publication
This study addresses the optimization of urban integrated energy systems (UIESs) under uncertainty in peer-to-peer (P2P) electricity trading by introducing a two-stage robust optimization strategy. The strategy includes a UIES model with a photovoltaic (PV)–green roof hydrogen storage and cascading cold/heat energy subsystems. The first stage optimizes energy trading volume to maximize social welfare while the second stage maximizes operational profit considering uncertainties in PV generation and power prices. The Nested Column and Constraint Generation (NC&CG) algorithm enhances privacy and solution precision. Case studies with three UIESs show that the model improves economic performance energy efficiency and sustainability increasing profits by 1.5% over non-P2P scenarios. Adjusting the robustness and deviation factors significantly impacts P2P transaction volumes and profits allowing system operators to optimize profits and make risk-aligned decisions.
A Holistic Green System Coupling Hydrogen Production with Wastewater Valorisation
May 2022
Publication
Green hydrogen represents a critical underpinning technology for achievingcarbon neutrality. Although researchers often fixate on its energy inputs atruly ‘green’ hydrogen production process would also be sustainable in termsof water and materials inputs. To address this holistic challenge we demon-strate a new green hydrogen production system which can utilize secondarywastewater as the input (preserving scarce fresh water supplies for drinkingand sanitation). The enabling feature of the proposed system is a self-grownbifunctional CoNi electrode which consists of ultrathin spontaneously depos-ited CoNi nanosheets on a three-dimensional nickel foam. As such a greensynthesis process was developed using an immersion procedure at room-temperature with zero net energy input. Testing revealed that the synthesizedCoNi electrodes can reach a current density of 10 mA cm2 at a small overpo-tential of 197 mV for the hydrogen evolution reaction and 315 mV for the oxy-gen evolution reaction in alkalified wastewater. The values are 16.5%and 6.5% smaller than that from precious catalysts (20 wt% Pt/C and RuO 2 respectively). Importantly this CoNi catalyst offers outstanding durability foroverall wastewater splitting. A prototype solar-energy-powered rooftop waste-water splitting system was constructed and can produce more than 100 Lhydrogen on a sunny day in Sydney Australia. Taken together these resultsindicate that it is promising to unlock holistically green routes for hydrogenproduction by wastewater uplifting with regards to water energy and mate-rials synthesis.
Study on the Performance of Membrane Reactor Using Steam Methane Reforming for Hydrogen Production Heated by HTGR
Jun 2025
Publication
Using High-Temperature Gas-cooled Reactor (HTGR) for hydrogen production through steam methane reforming (SMR) offers advantages such as high hydrogen yield methane savings relatively low cost and ease of scale-up. However due to the limitation of the temperature of the heating helium gas the methane conversion ratio of SMR using HTGR is much lower than that of traditional SMR. The membrane reactor (MR) with its high conversion efficiency compact structure and low cost is a suitable way to improve the methane conversion ratio. This study establishes a one-dimensional reaction flow model for MR heated by the helium gas from HTGR. And the model is validated and applied to analyze the performance of MR. The results show that compared to the original reformer tube MR demonstrates superior performance especially at higher methane conversion ratio and hydrogen yield. And the significant impact of sweep gas and membrane thickness on the performance of MR is discussed in detail. This work offers a new insight into highly enhancing the efficiency of SMR for hydrogen production using HTGR.
Hydrogen as a Panacea for Decarbonising Everything? Exploring Contested Hydrogen Pathways in Germany
Oct 2023
Publication
Technological change is often seen as part of the solution to problems of global sustainability. A wide-ranging literature on how path dependent—often fossil fuel-based—socio-technical configurations can be overcome by more sustainable configurations has emerged over the last two decades. One potential transition pathway to transform electricity heat and mobility systems as well as industrial production is the use of hydrogen. In recent years hydrogen has received increasing attention as part of decarbonisation strategies in many countries as well as by international organisations such as the International Energy Agency or the International Renewable Energy Agency. Also in Germany it has become a central component of climate change policy and is seen by some actors almost as a kind of panacea where the use of hydrogen is expected to decarbonise a wide range of sectors. Policy makers have the ambition for Germany to become a leader in hydrogen development and therefore help to contribute to what Grubler called ‘grand patterns of technological change’. The aim of this paper is to analyse whether relevant actors share expectations for transition pathways based on hydrogen which would foster wide diffusion. Our empirical analysis shows that there are multiple contested pathways both in terms of how hydrogen is produced as well as in which applications or sectors it is to be used. This causes uncertainty and slows down hydrogen developments in Germany. We contribute to an emerging literature on the politics of contested transition pathways and also critically engage with Grubler’s ‘grand patterns’ argument. Results support the idea that the concept of socio-technical pathways allows to expose tensions between competing values and interests. The German government is under considerable pressure regarding competing visions on hydrogen transition pathways. A targeted political prioritisation of hydrogen applications could mitigate tensions and support a shared vision.
Prediction of Hydrogen Production in Proton Exchange Membrane Water Electrolysis via Neural Networks
Sep 2024
Publication
Advancements in water electrolysis technologies are crucial for green hydrogen production. Proton exchange membrane water electrolysis (PEMWE) is characterized by its efficiency and environmental benefits. The pre diction and optimization of hydrogen production rates (HPRs) in PEMWE systems is difficult and still challenging because of the complexity of the system as well as the operational parameters. The integration of artificial in telligence (AI) and machine learning (ML) appears to be effective in optimization within the energy sector. Hence this work employs the artificial neural network (ANN) to develop a model that accurately predicts HPR in PEMWE setups. A novel approach is introduced by employing the Levenberg–Marquardt backpropagation (LMBP) algorithm for training the ANN. This model is designed to predict HPR based on critical operational parameters including anode and cathode areas (mm2 ) cell voltage (V) and current (A) water flow rate (mL/ min) power (W) and temperature (K). The optimized ANN configuration features an architecture with 7 input nodes two hidden layers of 64 neurons each and a single output node. The performance of the ANN model was evaluated against conventional regression models using key metrics: mean squared error (MSE) coefficient of determination (R2 ) and mean absolute error (MAE). The findings of this study reveal that the developed ANN model significantly outperforms traditional models achieving an R2 value of 0.9989 and an MAE of 0.012. In comparison random forest (R2 = 0.9795) linear regression (R2 = 0.9697) and support vector machines (R2 = − 0.4812) show lower predictive accuracy underscoring the ANN model’s superior performance. This work demonstrates the efficiency of the LMBP in enhancing hydrogen production forecasts and sets a foundation for future improvements in PEMWE efficiency. By enabling precise control and optimization of operational pa rameters this study contributes to the broader goal of advancing green hydrogen production as a viable and scalable alternative to fossil fuels offering both immediate and long-term benefits to sustainable energy initiatives.
Enabling Large-scale Enhanced Hydrogen Production in Deep Underground Coal Gasification in the Context of a Hydrogen Economy
Dec 2024
Publication
Underground coal gasification (UCG) is an emerging clean energy technology with significant potential for enhanced hydrogen production especially when coupled with water injection. Previous lab-scale studies have explored this potential but the mechanisms driving water-assisted hydrogen enhancement in large-scale deep UCG settings remain unclear. This study addresses this gap using numerical simulations of a large-scale deep coal model designed for hydrogen-oriented UCG. We investigated single-point and multipoint water injection stra tegies to optimize hydrogen production. Additionally we developed a retractable water injection technique to ensure sustained hydrogen output and effective cavity control. Our results indicate that the water–gas shift re action is crucial for increasing hydrogen production. Multipoint injection has been proven to be more effective than single-point injection increasing hydrogen production by 11% with an equal amount of steam. The introduction of retractable injection allows for continuous and efficient hydrogen generation with daily hydrogen production rates of approximately five times that of a conventional injection scheme and an increase in cumulative hydrogen production of approximately 105% over the same time period. Importantly the mul tipoint injection method also helped limit vertical cavity growth mitigating the risk of aquifer contamination. These findings support the potential of UCG as a low-carbon energy source in the transition to a hydrogen economy
Towards Sustainable Hydrogen Production: An Integrated Approach for Sustainability, Complexity, and Systems Thinking in the Energy Sector
Mar 2024
Publication
The energy sector constitutes a dynamic and complex system indicating that its actions are influenced not just by its individual components but also by the emergent behavior resulting from interactions among them. Moreover there are crucial limitations of previous approaches for addressing the sustainability challenge of the energy sector. Changing transforming and integrating paradigms are the most relevant leverage points for transforming a given system. In other words nowadays the integration of new predominant paradigms in order to provide a unified framework could aim at this actual transformation looking for a sustainable future. This research aims to develop a new unified framework for the integration of the following three paradigms: (1) Sustainability (2) Complexity and (3) Systems Thinking which will be applied to achieving sustainable energy production (using hydrogen production as a case study). The novelty of this work relies on providing a holistic perspective through the integration of the aforementioned paradigms considering the multiple and complex interdependencies among the economy the environment and the economy. For this purpose an integrated seven-stage approach is introduced which explores from the starting point of the integration of paradigms to the application of this integration to sustainable energy production. After applying the Three-Paradigm approach for sustainable hydrogen production as a case study 216 feedback loops are identified due to the emerged complexity linked to the analyzed system. Additionally three system dynamics-based models are developed (by increasing the level of complexity) as part of the application of the Three-Paradigm approach. This research can be of interest to a broad professional audience (e.g. engineers policymakers) as looks into the sustainability of the energy sector from a holistic perspective considering a newly developed Three-Paradigm model considering complexity and using a Systems Thinking approach.
The Future Technological Potential of Hydrogen Fuel Cell Systems for Aviation and Preliminary Co-design of a Hybrid Regional Aircraft Powertrain Through a Mathematical Tool
Feb 2023
Publication
The growing demand for air travel in the commercial sector leads to an increase in global emissions whose mitigation entails transitioning from the current fossil-fuel based generation of aircrafts to a cleaner one within a short timeframe. The use of hydrogen and fuel cells has the potential to reach zero emissions in the aerospace sector provided that required innovation and research efforts are substantially accomplished. Development programs investments and new regulations are needed for this technology to be safe and economical. In this context it makes sense to develop a model-based preliminary design methodology for a hybrid regional aircraft assisted by a battery hybridized fuel cell powertrain. The technological assumptions underlying the study refer to both current and expected data for 2035. The major contribution of the proposed methodology is to provide a mathematical tool that considers the interactions between the choice of components in terms of installed power and energy management. This simultaneous study is done because of the availability of versatile control maps. The tool was then deployed to define current and future technological scenarios for fuel cell battery and hydrogen storage systems by quickly adapting control strategies to different sizing criteria and technical specifications. In this way it is possible to facilitate the estimation of the impact of different sizing criteria and technological features at the aircraft level on the onboard electrical system the management of in-flight power the propulsion methods the impact of the masses on consumption and operational characteristics in a typical flight mission. The proposed combination of advanced sizing and energy management strategies allowed meeting mass and volume constraints with state-of-the-art PEM fuel cell and Li-ion battery specifications. Such a solution corresponds to a high degree of hybridization between the fuel cell system and battery pack (i.e. 300 kW and 750 kWh) whereas projected 2035 specs were demonstrated to help reduce mass and volume by 23 % and 40 % respectively.
Renewable Fuel Production and the Impact of Hydrogen Infrastructure - A Case Study of the Nordics
Apr 2024
Publication
Hard-to-electrify sectors will require renewable fuels to facilitate the green transition in the future. Therefore it is crucial to identify promising production locations while taking into account the local biomass resources variable renewable energy sources and the synergies between sectors. In this study investments and dispatch operations are optimised of a large catalogue of renewable fuel production technologies in the opensource software SpineOpt and this is soft-linked to the comprehensive energy system model Balmorel. We analyse future production pathways by comparing various levels of hydrogen infrastructure including large-scale hydrogen storage and assess system impacts. The results indicate that methanol may provide synergies in its multipurpose use as an early (2030-2040) shipping fuel and later as an aviation fuel through further refining if ammonia becomes more competitive (2050). We furthermore show that a hydrogen infrastructure increases the competitiveness of non-flexible hydrogen-based fuel production technologies. Offshore electrolysis hubs decrease energy system impacts in scenarios with 105 TWh of Nordic hydrogen export. However hydrogen export scenarios are much costlier compared to scenarios with no export unless a high hydrogen price is received. Finally we find that emission taxes in the range of 250-265 euro/tCO2 will be necessary for renewable fuels to become competitive.
A Review on Liquid Hydrogen Fuel Systems in Aircraft Applications for Gas Turbine Engines
Oct 2024
Publication
The transition from traditional aviation fuels to low-emission alternatives such as hydrogen is a crucial step towards a sustainable future for aviation. Conventional jet fuels substantially contribute to greenhouse gas emissions and climate change. Hydrogen fuel especially "green" hydrogen offers great potential for achieving full sustainability in aviation. Hybrid/electric/fuel cell technologies may be used for shorter flights while longrange aircraft are more likely to combust hydrogen in gas turbines. Liquid hydrogen is necessary to minimize storage tank weight but the required fuel systems are at a low technology readiness level and differ significantly from Jet A-1 systems in architecture operation and performance. This paper provides an in-depth review covering the development of liquid hydrogen fuel system design concepts for gas turbines since the 1950s compares insights from key projects such as NASA studies and ENABLEH2 alongside an analysis of recent publications and patent applications and identifies the technological advancements required for achieving zeroemission targets through hydrogen-fuelled propulsion.
Hydrogen Europe Podcast Episode 5 - Industry & Research - Important Cooperation for H2 Sector
Dec 2023
Publication
In this podcast episode Hydrogen Europe CEO Jorgo Chatzimarkakis engages in a dynamic conversation with Hydrogen Europe Research President Luigi Crema. Together they delve into the crucial partnership between industry and research within the hydrogen sector. The episode explores the symbiotic relationship between innovative research initiatives and practical industry applications shedding light on how collaboration fosters advancements in hydrogen technology.
Impact of Green Hydrogen on Climate Change in Peru: An Analysis of Perception, Policies, and Cooperation
Oct 2024
Publication
This research analyzed the impact of green hydrogen (GH) on the dynamics of combating climate change (CC) in Peru for the year 2024 contributing to Sustainable Development Goal 7 focused on affordable and clean energy. The study quantitative and non-experimental in nature used a cross-sectional design and focused on a sample composed of public and private sector officials energy experts and academics evaluating their perception and knowledge about GH and its application in climate policies. The data collection instrument showed good internal consistency with a Cronbach’s alpha value of 0.793. The results revealed that although the adoption of GH is in its early stages it is already considered a vital component in national CC mitigation strategies. A medium positive correlation was identified using the Spearman coefficient (0.418) between GH usage and the effectiveness of mitigation policies as well as its capacity to influence public awareness and promote interinstitutional cooperation. Furthermore it was concluded that the success of GH largely depends on the strengthening of regulatory frameworks investment in infrastructure and the promotion of strategic alliances to facilitate its integration into the national energy matrix. These findings highlight the importance of continuing to develop public policies that promote the use of GH ensuring its sustainability and effectiveness in the fight against climate change in Peru.
Numerical Investigation of the Potential of Using Hydrogen as an Alternative Fuel in an Industrial Burner
Dec 2024
Publication
This study investigates hydrogen and hydrogen-methane mixtures as alternative fuels for industrial burners focusing on combustion dynamics flame stability and emissions. CFD simulations in ANSYS Fluent utilized the RANS framework with the k-ε turbulence model and the mixture fraction/PDF approach. Supporting Python scripts and Cantera-based kinetic modeling employing the GRI-Mech 3.0 mechanism and Zeldovich pathways analyzed equivalence ratios (Φ) adiabatic flame temperatures (Tad) and NOx formation mechanisms. Results revealed non-linear temperature trends with a 50 % hydrogen blend yielding the lowest peak temperature (1880 K) and a 75 % hydrogen blend achieving optimal performance balancing peak temperatures (~1900 K) reduced NOx emissions (5.39 × 10-6) and near-zero CO2 emissions (0.137) though flame stability was impacted by rich mixtures. Pure hydrogen combustion produced the highest peak temperature (2080 K) and NOx emissions (3.82 × 10-5) highlighting the need for NOx mitigation strategies. Mass flow rate (MFR) adjustments and excess air variation significantly influenced emissions with a 25 % MFR increase reducing NOx to 2.8 × 10-5 while higher excess air (e.g. 30 %) raised NOx under lean conditions. Statistical analysis identified Φ hydrogen content (H2%) and flame stability as key factors with 50 %–75 % hydrogen blends minimizing emissions and optimizing performance emphasizing hydrogen’s potential with controlled MFR and air adjustments.
Enhancing Heavy Duty Vehicle Hydrogen Refuelling by Alternative Approach to SAE J2601/2 Protocol and Flow Dynamics
Dec 2024
Publication
This paper analyzes the hydrogen refueling process for heavy-duty vehicles according to the SAE J2601/2 protocol. Attention is paid to two key aspects of the protocol that affect the refueling process: treatment of the storage system from a thermodynamic and geometric point of view and the maximum deliverable flow rate of the station in the refueling process. The effect of the ratio of the inner diameter to the inner length of the total volume on the refueling process was then analyzed and it was shown how far the new approach results deviate from the results obtained by applying the SAE protocol. A total supply of 28 kg was simulated but with three different configurations: 14*2 kg tanks 7*4 kg tanks and 4*7 kg tanks. When analyzing the effect of varying the ratio of inner diameter to inner length it was noted that in the most conservative case there is an overestimation in terms of final temperature for the three configurations of about: 2.1 ◦C 1.4 ◦C and 1.1 ◦C respectively. This aspect has a significant impact on the refueling time which could be reduced by about 9.9% in the first case and about 7.1% and 5.4% in the other two. In addition refueling using the multi-tank approach was simulated for some case studies assimilated to heavy vehicles currently on the market in terms of the amount of hydrogen stored. These refuelings were carried out with stations capable of delivering a maximum flow rate of 120 g/s 180 g/s and 240 g/s. It is inferred that increasing the flow rate from 120 g/s to 180 g/s results in time savings for the three cases of: 35% 34% and 37%. On the other hand running up to 240 g/s results in time savings of: 54% 52% and 55%.
Hydrogen Refueling Infrastructure Design for Personal Mobility Devices using Frugal Engineering Approach
Nov 2012
Publication
More than 150 Hydrogen refueling stations were built around the world in the past 10 years. Much of the technical issues with passenger fuel cell car were discussed and studied. However fuel cell passenger cars are still far from mass production stage. The problem mainly lies with the high cost of fuel cell car production and insufficient hydrogen refueling infrastructure. While the future of fuel cell passenger cars are not clear fuel cell for personal mobility devices like bicycles get more and more attractive. This is mainly due to the simplicity in system design and reducing cost of small size hydrogen fuel cells. But for this technology to be commercialized affordable hydrogen refueling stations is crucial. This study discusses solutions for small sized hydrogen refueling stations based on pressure equalization and simulates the Hydrogen utilization ratio based on different equipment setup. The study is also supported with the experimental data from prototype fuel cell vehicles developed by eMobility in Singapore.
Integration of UN Sustainable Development Goals in National Hydrogen Strategies: A Text Analysis Approach
Jan 2025
Publication
Despite the growing recognition of hydrogen’s potential role in sustainable development there is limited un derstanding of how national hydrogen strategies align with the United Nations Sustainable Development Goals (SDGs). This study addresses this knowledge gap by examining the integration of the SDGs into national hydrogen strategies through text analysis. Among 66 reviewed strategic documents only 15 explicitly reference specific SDGs though SDG-related keywords are widespread particularly regarding SDG 7 (Affordable and Clean Energy) and SDG 13 (Climate Action). Statistical analysis demonstrates a significant link between the presence of hydrogen strategies and both overall SDG performance and progress on most specific SDGs. However countries with hydrogen strategies show lower scores for SDGs 12 (Responsible Consumption and Production) and 13 and there are no significant differences for SDGs 10 (Reduced Inequalities) 14 (Life below Water) and 15 (Life on Land). Our findings highlight the need for more explicit integration of SDGs into hydrogen strategies and better consideration of sustainability synergies and trade-offs providing policymakers with evidence-based guidance for aligning hydrogen strategies with global sustainability objectives.
Functional Resonance Analysis for Emerging Risks in Hydrogen Handling: An Analysis of an Experimental Test
Oct 2024
Publication
Hydrogen is on the rise as a substitute for fossil fuel in the energy sector. While this substitution does not happen dramatically the steady increase in hydrogen related research might be a good indicator of such desire. As it stands there are issues regarding its safe handling and use; consequently the health and safety subsectors observe the situation conspicuously. As we yet to know the behavior of hydrogen in critical situations uncertainties make these tasks prone to emerging risks. Thus hydrogen safety falls under emerging risk studies. Conventional perspective on safety especially regarding the flammable material focuses on calculating the hypothetical risks of failures in system. Resilience Engineering has another perspective as it focuses on normal operations offering new perspectives to tackle emerging risks from a new angle. Born from the heart of Resilience Engineering the Functional Resonance Analysis Method (FRAM) captures sociotechnical systems’ essence in a tangible way. In this study FRAM has been used to model a series of experiments done on hydrogen management to analyze its jet fire. FRAM is used to test whether the method could be suitable to model a system in which emerging risks are present. It is the conclusion of this study that FRAM seems promising in raising risk awareness especially when available data is limited.
Liquid E-fuels for a Sustainable Future: A Comprehensive Review of Production, Regulation, and Technological Innovation
Sep 2025
Publication
The decarbonization of sectors such as aviation maritime transport and heavy-duty mobility—where direct electrification is not yet feasible—requires alternative fuels with high energy density and compatibility with existing infrastructure. This review investigates the potential of liquid synthetic fuels known as liquid electrofuels (or e-fuels) to replace fossil fuels in these hard-to-abate sectors. The objective is to provide a comprehensive integrative assessment of liquid e-fuel development by analyzing production pathways feedstock demands regulatory frameworks and industrial implementation trends. The study reviews three major production processes—Fischer–Tropsch synthesis methanol synthesis and the Haber–Bosch process—used to produce six key synthetic fuels: e-kerosene e-diesel e-methanol e-dimethyl ether e-gasoline and e-ammonia. The methodology includes a systematic review of literature life cycle assessments for water and energy demand and analysis of over 30 large-scale projects worldwide in terms of plant capacity (10–200 MW) production volume capital investment and technology readiness level. Results show that process efficiencies range from 59 % to 89 % with current production costs for synthetic kerosene and methanol varying between 1200–4200 €/ton depending on the pathway and technology maturity. The study finds that polymer electrolyte membrane electrolysis and industrial point-source carbon dioxide capture are the most prevalent technologies among operational plants. Regulatory complexity high capital expenditure and the lack of harmonized sustainability criteria remain key barriers to commercial scaling. This review advances the scientific literature by presenting a novel multi-dimensional framework that connects technical environmental and policy considerations offering a strategic roadmap for accelerating the global deployment of liquid synthetic fuels.
Coupling Wastewater Treatment with Fuel Cells and Hydrogen Technology
Apr 2024
Publication
Fuel cells (FCs) and hydrogen technologies are emerging renewable energy sources with promising results when applied to wastewater treatment (WWT). These devices serve not only for power generation but some specific FCs can be employed for degradation of pollutants and synthesis of intermediates needed in WWT. Microbial FCs are potent devices for WWT even containing refractory pollutants. Despite being a nascent technology with high capital expenses the use of cost-effective materials reduction of operational cost and increased generation of energy and value-added chemicals such as hydrogen will facilitate the market penetration through selected niches and hybridization with alternative WWT technologies.
Laboratory Studies on Underground H2 Storage: Bibliometric Analysis and Review of Current Knowledge
Dec 2024
Publication
: The global demand for energy and the need to mitigate climate change require a shift from traditional fossil fuels to sustainable and renewable energy alternatives. Hydrogen is recognized as a significant component for achieving a carbon-neutral economy. This comprehensive review examines the underground hydrogen storage and particularly laboratory-scale studies related to rock– hydrogen interaction exploring current knowledge. Using bibliometric analysis of data from the Scopus and Web of Science databases this study reveals an exponential increase in scientific publications post-2015 which accounts for approximately 85.26% of total research output in this field and the relevance of laboratory experiments to understand the physicochemical interactions of hydrogen with geological formations. Processes in underground hydrogen storage are controlled by a set of multi-scale parameters including solid properties (permeability porosity composition and geomechanical properties) and fluid properties (liquid and gas density viscosity etc.) together with fluid–fluid and solid–fluid interactions (controlled by solubility wettability chemical reactions etc.). Laboratory experiments aim to characterize these parameters and their evolution simulating real-world storage conditions to enhance the reliability and applicability of findings. The review emphasizes the need to expand research efforts globally to comprehensively address the currently existing issues and knowledge gaps.
Optimization Strategy for Low-Carbon Economy of Integrated Energy System Considering Carbon Capture-Two Stage Power-to-Gas Hydrogen Coupling
Jun 2024
Publication
To further optimize the low-carbon economy of the integrated energy system (IES) this paper establishes a two-stage P2G hydrogen-coupled electricity–heat–hydrogen–gas IES with carbon capture (CCS). First this paper refines the two stages of P2G and introduces a hydrogen fuel cell (HFC) with a hydrogen storage device to fully utilize the hydrogen energy in the first stage of power-to-gas (P2G). Then the ladder carbon trading mechanism is considered and CCS is introduced to further reduce the system’s carbon emissions while coupling with P2G. Finally the adjustable thermoelectric ratio characteristics of the combined heat and power unit (CHP) and HFC are considered to improve the energy utilization efficiency of the system and to reduce the system operating costs. This paper set up arithmetic examples to analyze from several perspectives and the results show that the introduction of CCS can reduce carbon emissions by 41.83%. In the CCS-containing case refining the P2G two-stage and coupling it with HFC and hydrogen storage can lead to a 30% reduction in carbon emissions and a 61% reduction in wind abandonment costs; consideration of CHP and HFC adjustable thermoelectric ratios can result in a 16% reduction in purchased energy costs.
X-ray Absorpton Spectroscopy Study on Hydrogen Recombination Catalysts of Palladium Nanoparticles on Titanium Oxide under Wet Condition
Sep 2023
Publication
Hydrogen recombination catalyst is useful tool for reducing hydrogen in closed area. The catalyst is known to be poisoned under wet condition in long time use. The study is focused on the behavior of pre-oxidized Pd nanoparticle as the hard-used catalyst in high humidity environment by comparison of alumina and titanium oxide supports using in situ X-ray absorption spectroscopy technique. The reduction of surface oxide layer of Pd/TiO2 was promoted by water during hydrogen recombination although the reduction reaction of Pd/Al2O3 was inhibited by water.
Multiperiod Modeling and Optimization of Hydrogen-Based Dense Energy Carrier Supply Chains
Feb 2024
Publication
The production of hydrogen-based dense energy carriers (DECs) has been proposed as a combined solution for the storage and dispatch of power generated through intermittent renewables. Frameworks that model and optimize the production storage and dispatch of generated energy are important for data-driven decision making in the energy systems space. The proposed multiperiod framework considers the evolution of technology costs under different levels of promotion through research and targeted policies using the year 2021 as a baseline. Furthermore carbon credits are included as proposed by the 45Q tax amendment for the capture sequestration and utilization of carbon. The implementation of the mixed-integer linear programming (MILP) framework is illustrated through computational case studies to meet set hydrogen demands. The trade-offs between different technology pathways and contributions to system expenditure are elucidated and promising configurations and technology niches are identified. It is found that while carbon credits can subsidize carbon capture utilization and sequestration (CCUS) pathways substantial reductions in the cost of novel processes are needed to compete with extant technology pathways. Further research and policy push can reduce the levelized cost of hydrogen (LCOH) by upwards of 2 USD/kg.
A Techno-economic Analysis of Future Hydrogen Reconversion Technologies
Jun 2024
Publication
The transformation of fossil fuel-based power generation systems towards greenhouse gas-neutral ones based on renewable energy sources is one of the key challenges facing contemporary society. The temporal volatility that accompanies the integration of renewable energy (e.g. solar radiation and wind) must be compensated to ensure that at any given time a sufficient supply of electrical energy for the demands of different sectors is available. Green hydrogen which is produced using renewable energy sources via electrolysis can be used to chemically store electrical energy on a seasonal basis. Reconversion technologies are needed to generate electricity from stored hydrogen during periods of low renewable electricity generation. This study presents a detailed technoeconomic assessment of hydrogen gas turbines. These technologies are also superior to fuel cells due to their comparatively low investment costs especially when it comes to covering the residual loads. As of today hydrogen gas turbines are only available in laboratory or small-scale settings and have no market penetration or high technology readiness level. The primary focus of this study is to analyze the effects on gas turbine component costs when hydrogen is used instead of natural gas. Based on these findings an economic analysis addressing the current state of these turbine components is conducted. A literature review on the subsystems is performed considering statements from leading manufactures and researchers to derive the cost deviations and total cost per installed capacity (€/kWel). The results reveal that a hydrogen gas turbine power plant has an expected cost increase of 8.5% compared to a conventional gas turbine one. This leads to an average cost of 542.5 €/kWel for hydrogen gas turbines. For hydrogen combined cycle power plants the expected cost increase corresponds to the cost of the gas turbine system as the steam turbine subsystem remains unaffected by fuel switching. Additionally power plant retrofit potentials were calculated and the respective costs in the case of an upgrade were estimated. For Germany as a case study for an industrialized country the potential of a possible retrofit is between 2.7 and 11.4 GW resulting to a total investment between 0.3 and 1.1 billion €.
Decarbonizing the European Energy System in the Absence of Russian Gas: Hydrogen Uptake and Carbon Capture Developments in the Power, Heat and Industry Sectors
Dec 2023
Publication
Hydrogen and carbon capture and storage are pivotal to decarbonize the European energy system in a broad range of pathway scenarios. Yet their timely uptake in different sectors and distribution across countries are affected by supply options of renewable and fossil energy sources. Here we analyze the decarbonization of the European energy system towards 2060 covering the power heat and industry sectors and the change in use of hydrogen and carbon capture and storage in these sectors upon Europe’s decoupling from Russian gas. The results indicate that the use of gas is significantly reduced in the power sector instead being replaced by coal with carbon capture and storage and with a further expansion of renewable generators. Coal coupled with carbon capture and storage is also used in the steel sector as an intermediary step when Russian gas is neglected before being fully decarbonized with hydrogen. Hydrogen production mostly relies on natural gas with carbon capture and storage until natural gas is scarce and costly at which time green hydrogen production increases sharply. The disruption of Russian gas imports has significant consequences on the decarbonization pathways for Europe with local energy sources and carbon capture and storage becoming even more important. Given the highlighted importance of carbon capture and storage in reaching the climate targets it is essential that policymakers ameliorate regulatory challenges related to these value chains.
Design of an Electric Vehicle Charging System Consisting of PV and Fuel Cell for Historical and Tourist Regions
Jun 2024
Publication
One of the most important problems in the widespread use of electric vehicles is the lack of charging infrastructure. Especially in tourist areas where historical buildings are located the installation of a power grid for the installation of electric vehicle charging stations or generating electrical energy by installing renewable energy production systems such as large-sized PV (photovoltaic) and wind turbines poses a problem because it causes the deterioration of the historical texture. Considering the need for renewable energy sources in the transportation sector our aim in this study is to model an electric vehicle charging station using PVPS (photovoltaic power system) and FC (fuel cell) power systems by using irradiation and temperature data from historical regions. This designed charging station model performs electric vehicle charging meeting the energy demand of a house and hydrogen production by feeding the electrolyzer with the surplus energy from producing electrical energy with the PVPS during the daytime. At night when there is no solar radiation electric vehicle charging and residential energy demand are met with an FC power system. One of the most important advantages of this system is the use of hydrogen storage instead of a battery system for energy storage and the conversion of hydrogen into electrical energy with an FC. Unlike other studies in our study fossil energy sources such as diesel generators are not included for the stable operation of the system. The system in this study may need hydrogen refueling in unfavorable climatic conditions and the energy storage capacity is limited by the hydrogen fuel tank capacity.
Interactions Between Electricity and Hydrogen Markets: A Bi-level Equilibrium Approach
Jul 2025
Publication
Energy systems increasingly rely on the synergistic operations of the electricity and hydrogen markets pursuing decarbonization. In this context it is necessary to develop tools capable of representing the interactions between these two markets to understand the role of hydrogen as an energy vector. This paper introduces a bi-level optimization model that captures the interactions between the electricity and hydrogen markets positioning hydrogen generators as strategic electricity price makers in the power market. The model can be efficiently solved and applied to real-world scenarios by reformulating it as a Mixed Integer Linear Program. The case studies analyze spot market behaviors when hydrogen generators are modeled as price makers in the electricity market. First single-period simulations reveal the effects of price-making and next a year-long simulation assesses broader implications. The findings demonstrate that conventional modeling assumptions such as the price-taker hydrogen generators in the electricity market and constant production cost hypothesis lead to non-optimal hydrogen generation strategies that raise electricity prices while reducing the profit of hydrogen generators and the hydrogen market social welfare. These results highlight the need for models that accurately reflect the interdependencies between these two energy markets.
Exploring the Viability of Utilizing Treated Wastewater as a Sustainable Water Resource for Green Hydrogen Generation Using Solid Oxide Electrolysis Cells (SOECs)
Jul 2023
Publication
In response to the European Union’s initiative toward achieving carbon neutrality the utilization of water electrolysis for hydrogen production has emerged as a promising avenue for decarbonizing current energy systems. Among the various approaches Solid Oxide Electrolysis Cell (SOEC) presents an attractive solution especially due to its potential to utilize impure water sources. This study focuses on modeling a SOEC supplied with four distinct streams of treated municipal wastewaters using the Aspen Plus software. Through the simulation analysis it was determined that two of the wastewater streams could be effectively evaporated and treated within the cell without generating waste liquids containing excessive pollutant concentrations. Specifically by evaporating 27% of the first current and 10% of the second it was estimated that 26.2 kg/m3 and 9.7 kg/m3 of green hydrogen could be produced respectively. Considering the EU’s target for Italy is to have 5 GW of installed power capacity by 2030 and the mass flowrate of the analyzed wastewater streams this hydrogen production could meet anywhere from 0.4% to 20% of Italy’s projected electricity demand.
Techno-Economic Analysis of Clean Hydrogen Production Plants in Sicily: Comparison of Distributed and Centralized Production
Jul 2024
Publication
This paper presents an assessment of the levelized cost of clean hydrogen produced in Sicily a region in Southern Italy particularly rich in renewable energy and where nearly 50% of Italy’s refineries are located making a comparison between on-site production that is near the end users who will use the hydrogen and centralized production comparing the costs obtained by employing the two types of electrolyzers already commercially available. In the study for centralized production the scale factor method was applied on the costs of electrolyzers and the optimal transport modes were considered based on the distance and amount of hydrogen to be transported. The results obtained indicate higher prices for hydrogen produced locally (from about 7 €/kg to 10 €/kg) and lower prices (from 2.66 €/kg to 5.80 €/kg) for hydrogen produced in centralized plants due to economies of scale and higher conversion efficiencies. How-ever meeting the demand for clean hydrogen at minimal cost requires hydrogen distribution pipelines to transport it from centralized production sites to users which currently do not exist in Sicily as well as a significant amount of renewable energy ranging from 1.4 to 1.7 TWh per year to cover only 16% of refineries’ hydrogen needs.
Collaborative Optimization Scheduling of Multi-Microgrids Incorporating Hydrogen-Doped Natural Gas and P2G–CCS Coupling under Carbon Trading and Carbon Emission Constraints
Apr 2024
Publication
In the context of “dual carbon” restrictions on carbon emissions have aĴracted widespread aĴention from researchers. In order to solve the issue of the insufficient exploration of the synergistic emission reduction effects of various low-carbon policies and technologies applied to multiple microgrids we propose a multi-microgrid electricity cooperation optimization scheduling strategy based on stepped carbon trading a hydrogen-doped natural gas system and P2G–CCS coupled operation. Firstly a multi-energy microgrid model is developed coupled with hydrogendoped natural gas system and P2G–CCS and then carbon trading and a carbon emission restriction mechanism are introduced. Based on this a model for multi-microgrid electricity cooperation is established. Secondly design optimization strategies for solving the model are divided into the dayahead stage and the intraday stage. In the day-ahead stage an improved alternating direction multiplier method is used to distribute the model to minimize the cooperative costs of multiple microgrids. In the intraday stage based on the day-ahead scheduling results an intraday scheduling model is established and a rolling optimization strategy to adjust the output of microgrid equipment and energy purchases is adopted which reduces the impact of uncertainties in new energy output and load forecasting and improves the economic and low-carbon operation of multiple microgrids. SeĴing up different scenarios for experimental validation demonstrates the effectiveness of the introduced low-carbon policies and technologies as well as the effectiveness of their synergistic interaction
A Techno-economic Analysis of Global Renewable Hydrogen Value Chains
Jul 2024
Publication
Many countries especially those with a high energy demand but insufficient renewable resources are currently investigating the role that imported low carbon hydrogen may play in meeting future energy requirements and emission reduction targets. A future hydrogen economy is uncertain and predicated on reduced price of hydrogen delivered to customers. Current hydrogen production steam reforming of natural gas or coal gasification is co-located to its end-use as a chemical feedstock. Large-scale multi-source value chains of hydrogen needed to support its use for energy are still at concept phase. This research investigates the combination of technical and economic factors which will determine the viability and competitiveness of two competing large scale renewable hydrogen value chains via ammonia and liquid hydrogen. Using a techno-economic model an evaluation of whether green hydrogen exports to Germany from countries with low-cost renewable electricity production but high-costs of storage distribution and transport will be economically competitive with domestic renewable hydrogen production is conducted. The model developed in Python calculates costs and energy losses for each step in the value chain. This includes production from an optimised combination of solar and/or wind generation capacity optimised storage requirements conversion to ammonia or liquid hydrogen distribution shipping and reconversion. The model can easily be applied to any scenario by changing the inputs and was used to compare export from Chile Namibia and Morocco with production in Germany using a 1 GW electrolyser and 2030 cost scenario in each case.
Sustainability Certification for Renewable Hydrogen: An International Survey of Energy Professionals
Jun 2024
Publication
Hydrogen produced from renewable energy is being promoted to decarbonise global energy systems. To support this energy transition standards certification and labelling schemes (SCLs) aim to differentiate hydrogen products based on their system-wide carbon emissions and method of production characteristics. However being certified as low-carbon clean or green hydrogen does not guarantee broader sustainability across economic environmental social or governance dimensions. Through an international survey of energy-sector and sustainability professionals (n = 179) we investigated the desirable sustainability features for renewable hydrogen SCLs and the perceived advantages and disadvantages of sustainability certification. Our mixed-method study revealed general accordance on the feasible inclusion of diverse sustainability criteria in SCLs albeit with varying degrees of perceived essentiality. Within the confines of the data some differences in viewpoints emerged based on respondents’ geographical and supply chain locations which were associated with the sharing of costs and benefits. Qualitatively respondents found the idea of SCL harmonisation attractive but weighed this against the risks of duplication complicated administrative procedures and contradictory regulation. The implications of this research centre on the need for further studies to inform policy recommendations for an overarching SCL sustainability framework that embodies the principles of harmonisation in the context of multistakeholder governance.
Local and Global Sensitivity Analysis for Railway Upgrading Between Hydrogen Fuel Cell and Electrification
Nov 2024
Publication
In the field of rail transit the UK Department of Transport stated that it will realize a comprehensive transformation of UK railways by 2050 abandoning traditional diesel trains and upgrading them to new environmentally friendly trains. The current mainstream upgrade methods are electrification and hydrogen fuel cells. Comprehensive upgrades are costly and choosing the optimal upgrade method for trams and mainline railways is critical. Without a sensitivity analysis it is difficult for us to determine the influence relationship between each parameter and cost resulting in a waste of cost when choosing a line reconstruction method. In addition by analyzing the sensitivity of different parameters to the cost the primary optimization direction can be determined to reduce the cost. Global higher-order sensitivity analysis enables quantification of parameter interactions showing non-additive effects between parameters. This paper selects the main parameters that affect the retrofit cost and analyzes the retrofit cost of the two upgrade methods in the case of trams and mainline railways through local and global sensitivity analysis methods. The results of the analysis show that given the current UK rail system it is more economical to choose electric trams and hydrogen mainline trains. For trams the speed at which the train travels has the greatest impact on the final cost. Through the sensitivity analysis this paper provides an effective data reference for the current railway upgrading and reconstruction plan and provides a theoretical basis for the next step of train parameter optimization.
Techno-economic Analysis of Underground Hydrogen Storage in Europe
Dec 2023
Publication
Hydrogen storage is crucial to developing secure renewable energy systems to meet the European Union’s 2050 carbon neutrality objectives. However a knowledge gap exists concerning the site-specific performance and economic viability of utilizing underground gas storage (UGS) sites for hydrogen storage in Europe. We compile information on European UGS sites to assess potential hydrogen storage capacity and evaluate the associated current and future costs. The total hydrogen storage potential in Europe is 349 TWh of working gas energy (WGE) with site-specific capital costs ranging from $10 million to $1 billion. Porous media and salt caverns boasting a minimum storage capacity of 0.5 TWh WGE exhibit levelized costs of $1.5 and $0.8 per kilogram of hydrogen respectively. It is estimated that future levelized costs associated with hydrogen storage can potentially decrease to as low as $0.4 per kilogram after three experience cycles. Leveraging these techno-economic considerations we identify suitable storage sites.
Levelized Cost of Biohydrogen from Steam Reforming of Biomethane with Carbon Capture and Storage (Golden Hydrogen)—Application to Spain
Feb 2024
Publication
The production of biohydrogen with negative CO2 emissions through the steam methane reforming of biomethane coupled with carbon capture and storage represents a promising technology particularly for industries that are difficult to electrify. In spite of the maturity of this technology which is currently employed in the production of grey and blue hydrogen a detailed cost model that considers the entire supply chain is lacking in the literature. This study addresses this gap by applying correlations derived from actual facilities producing grey and blue hydrogen to calculate the CAPEX while exploring various feedstock combinations for biogas generation to assess the OPEX. The analysis also includes logistic aspects such as decentralised biogas production and the transportation and storage of CO2 . The levelized cost of golden hydrogen is estimated to range from EUR 1.84 to 2.88/kg compared to EUR 1.47/kg for grey hydrogen and EUR 1.93/kg for blue hydrogen assuming a natural gas cost of EUR 25/MWh and excluding the CO2 tax. This range increases to between 3.84 and 2.92 with a natural gas cost of EUR 40/MWh with the inclusion of the CO2 tax. A comparison with conventional green hydrogen is performed highlighting both prices and potential thereby offering valuable information for decision-making.
Chemical Kinetic Analysis of High-Pressure Hydrogen Ignition and Combustion toward Green Aviation
Jan 2024
Publication
In the framework of the “Multidisciplinary Optimization and Regulations for Low-boom and Environmentally Sustainable Supersonic aviation” project pursued by a consortium of European government and academic institutions coordinated by Politecnico di Torino under the European Commission Horizon 2020 financial support the Italian Aerospace Research Centre is computationally investigating the high-pressure hydrogen/air kinetic combustion in the operative conditions typically encountered in supersonic aeronautic ramjet engines. This task is being carried out starting from the zero-dimensional and one-dimensional chemical kinetic assessment of the complex and strongly pressure-sensitive ignition behavior and flame propagation characteristics of hydrogen combustion through the validation against experimental shock tube and laminar flame speed measurements. The 0D results indicate that the kinetic mechanism by Politecnico di Milano and the scheme formulated by Kéromnès et al. provide the best matching with the experimental ignition delay time measurements carried out in high-pressure shock tube strongly argon-diluted reaction conditions. Otherwise the best behavior in terms of laminar flame propagation is achieved by the Mueller scheme while the other investigated kinetic mechanisms fail to predict the flame speeds at elevated pressures. This confirms the non-linear and intensive pressure-sensitive behavior of hydrogen combustion especially in the critical high-pressure and low-temperature region which is hard to be described by a single all-encompassing chemical model.
Offshore Green Hydrogen Production from Wind Energy: Critical Review and Perspective
Feb 2024
Publication
Hydrogen is envisaged to play a major role in decarbonizing our future energy systems. Hydrogen is ideal for storing renewable energy over longer durations strengthening energy security. It can be used to provide electricity renewable heat power long-haul transport shipping and aviation and in decarbonizing several industrial processes. The cost of green hydrogen produced from renewable via electrolysis is dominated by the cost of electricity used. Operating electrolyzers only during periods of low electricity prices will limit production capacity and underutilize high investment costs in electrolyzer plants. Hydrogen production from deep offshore wind energy is a promising solution to unlock affordable electrolytic hydrogen at scale. Deep offshore locations can result in an increased capacity factor of generated wind power to 60–70% 4–5 times that of onshore locations. Dedicated wind farms for electrolysis can use the majority >80% of the produced energy to generate economical hydrogen. In some scenarios hydrogen can be the optimal carrier to transport the generated energy onshore. This review discusses the opportunities and challenges in offshore hydrogen production using electrolysis from wind energy and seawater. This includes the impact of site selection size of the electrolyzer and direct use of seawater without deionization. The review compares overall electrolysis system efficiency cost and lifetime when operating with direct seawater feed and deionized water feed using reverse osmosis and flash evaporation systems. In the short to medium term it is advised to install a reverse osmosis plant with an ion exchanger to feed the electrolysis instead of using seawater directly.
A Review on Underground Gas Storage Systems: Natural Gas, Hydrogen and Carbon Sequestration
May 2023
Publication
The concept of underground gas storage is based on the natural capacity of geological formations such as aquifers depleted oil and gas reservoirs and salt caverns to store gases. Underground storage systems can be used to inject and store natural gas (NG) or hydrogen which can be withdrawn for transport to end-users or for use in industrial processes. Geological formations can additionally be used to securely contain harmful gases such as carbon dioxide deep underground by means of carbon capture and sequestration technologies. This paper defines and discusses underground gas storage highlighting commercial and pilot projects and the behavior of different gases (i.e. CH4 H2 and CO2) when stored underground as well as associated modeling investigations. For underground NG/H2 storage the maintenance of optimal subsurface conditions for efficient gas storage necessitates the use of a cushion gas. Cushion gas is injected before the injection of the working gas (NG/H2). The behavior of cushion gas varies based on the type of gas injected. Underground NG and H2 storage systems operate similarly. However compared to NG storage several challenges could be faced during H2 storage due to its low molecular mass. Underground NG storage is widely recognized and utilized as a reference for subsurface H2 storage systems. Furthermore this paper defines and briefly discusses carbon capture and sequestration underground. Most reported studies investigated the operating and cushion gas mixture. The mixture of operating and cushion gas was studied to explore how it could affect the recovered gas quality from the reservoir. The cushion gas was shown to influence the H2 capacity. By understanding and studying the different underground system technologies future directions for better management and successful operation of such systems are thereby highlighted.
Blue Hydrogen in the United Kingdom - A Policy & Environmental Case Study
Feb 2025
Publication
Blue hydrogen is one of the energy carriers to be adopted by the United Kingdom to reduce emissions to net Zero by 2050 and its use is majorly influenced by policy and technological innovations. With more than 10 blue hydrogen facilities planning productive offtake from 2025 there is an urgent need to confirm the viability of these proposed facilities to aid decarbonisation and the path to conformity to policy regulation. This study discovers that the Acorn blue hydrogen facility can produce blue hydrogen within the low carbon hydrogen standard set by the United Kingdom’s government. In this study a detailed examination of hydrogen production techniques is conducted using lifecycle assessment (LCA) approach aimed to understand the environmental impact of producing 144 tons of hydrogen per day using Acorn hydrogen facility as a case study. This was followed on with sensitive analysis embracing steam and oxygen consumption and methane leakages the ability of the facility meeting the low carbon hydrogen standard economics and the externality-priced production costs that embody the environmental impact. A gate-to-gate LCA shows that the Acorn hydrogen plant must aim at carbon capture rates of >90% to meet the set UK target of 20 gCO2e/MJLHV. The study further identifies from literature that the autothermal reforming (ATR) system with integrated carbon capture and storage (CCS) production technology as the most environmentally sustainable technology at present in comparison to commercially available options studied. This assessment helps to appraise potentially unintended causes and effects of the production of blue hydrogen that should aid future policy guidance and investments.
IEA TCP Task 43 - Subtask Safety Distances: State of the Art
Sep 2023
Publication
The large deployment of hydrogen technologies for new applications such as heat power mobility and other emerging industrial utilizations is essential to meet targets for CO2 reduction. This will lead to an increase in the number of hydrogen installations nearby local populations that will handle hydrogen technologies. Local regulations differ and provide different safety and/or separation distances in different geographies. The purpose of this work is to give an insight on different methodologies and recommendations developed for hydrogen (mainly) risk management and consequences assessment of accidental scenarios. The first objective is to review available methodologies and to identify the divergent points on the methodology. For this purpose a survey has been launched to obtain the needed inputs from the subtask participants. The current work presents the outcomes of this survey highlighting the gaps and suggesting the prioritization of the actions to take to bridge these gaps.
Research on Fast Frequency Response Control Strategy of Hydrogen Production Systems
Mar 2024
Publication
With the large-scale integration of intermittent renewable energy generation presented by wind and photovoltaic power the security and stability of power system operations have been challenged. Therefore this article proposes a control strategy of a hydrogen production system based on renewable energy power generation to enable the fast frequency response of a grid. Firstly based on the idea of virtual synchronous control a fast frequency response control transformation strategy for the grid-connected interface of hydrogen production systems for renewable energy power generation is proposed to provide active power support when the grid frequency is disturbed. Secondly based on the influence of VSG’s inertia and damping coefficient on the dynamic characteristics of the system a VSG adaptive control model based on particle swarm optimization is designed. Finally based on the Matlab/Simulink platform a grid-connected simulation model of hydrogen production systems for renewable energy power generation is established. The results show that the interface-transformed electrolytic hydrogen production device can actively respond to the frequency disturbances of the power system and participate in primary frequency control providing active support for the frequency stability of the power system under high-percentage renewable energy generation integration. Moreover the system with parameter optimization has better fast frequency response control characteristics.
‘Greening’ an Oil Exporting Country: A Hydrogen, Wind and Gas Turbine Case Study
Feb 2024
Publication
In the quest for achieving decarbonisation it is essential for different sectors of the economy to collaborate and invest significantly. This study presents an innovative approach that merges technological insights with philosophical considerations at a national scale with the intention of shaping the national policy and practice. The aim of this research is to assist in formulating decarbonisation strategies for intricate economies. Libya a major oil exporter that can diversify its energy revenue sources is used as the case study. However the principles can be applied to develop decarbonisation strategies across the globe. The decarbonisation framework evaluated in this study encompasses wind-based renewable electricity hydrogen and gas turbine combined cycles. A comprehensive set of both official and unofficial national data was assembled integrated and analysed to conduct this study. The developed analytical model considers a variety of factors including consumption in different sectors geographical data weather patterns wind potential and consumption trends amongst others. When gaps and inconsistencies were encountered reasonable assumptions and projections were used to bridge them. This model is seen as a valuable foundation for developing replacement scenarios that can realistically guide production and user engagement towards decarbonisation. The aim of this model is to maintain the advantages of the current energy consumption level assuming a 2% growth rate and to assess changes in energy consumption in a fully green economy. While some level of speculation is present in the results important qualitative and quantitative insights emerge with the key takeaway being the use of hydrogen and the anticipated considerable increase in electricity demand. Two scenarios were evaluated: achieving energy self-sufficiency and replacing current oil exports with hydrogen exports on an energy content basis. This study offers for the first time a quantitative perspective on the wind-based infrastructure needs resulting from the evaluation of the two scenarios. In the first scenario energy requirements were based on replacing fossil fuels with renewable sources. In contrast the second scenario included maintaining energy exports at levels like the past substituting oil with hydrogen. The findings clearly demonstrate that this transition will demand great changes and substantial investments. The primary requirements identified are 20529 or 34199 km2 of land for wind turbine installations (for self-sufficiency and exports) and 44 single-shaft 600 MW combined-cycle hydrogen-fired gas turbines. This foundational analysis represents the commencement of the research investment and political agenda regarding the journey to achieving decarbonisation for a country.
Innovations in Hydrogen Storage Materials: Synthesis, Applications, and Prospects
Jul 2024
Publication
Hydrogen globally recognized as the most efficient and clean energy carrier holds the potential to transform future energy systems through its use as a fuel and chemical resource. Although progress has been made in reversible hydrogen adsorption and release challenges in storage continue to impede widespread adoption. This review explores recent advancements in hydrogen storage materials and synthesis methods emphasizing the role of nanotechnology and innovative synthesis techniques in enhancing storage performance and addressing these challenges to drive progress in the field. The review provides a comprehensive overview of various material classes including metal hydrides complex hydrides carbon materials metal-organic frameworks (MOFs) and porous materials. Over 60 % of reviewed studies focused on metal hydrides and alloys for hydrogen storage. Additionally the impact of nanotechnology on storage performance and the importance of optimizing synthesis parameters to tailor material properties for specific applications are summarized. Various synthesis methods are evaluated with a special emphasis on the role of nanotechnology in improving storage performance. Mechanical milling emerges as a commonly used and cost-effective method for fabricating intermetallic hydrides capable of adjusting hydrogen storage properties. The review also explores hydrogen storage tank embrittlement mechanisms particularly subcritical crack growth and examines the advantages and limitations of different materials for various applications supported by case studies showcasing real-world implementations. The challenges underscore current limitations in hydrogen storage materials highlighting the need for improved storage capacity and kinetics. The review also explores prospects for developing materials with enhanced performance and safety providing a roadmap for ongoing advancements in the field. Key findings and directions for future research in hydrogen storage materials emphasize their critical role in shaping future energy systems.
Modeling the Global Annual Carbon Footprint for the Transportation Sector and a Path to Sustainability
Jun 2023
Publication
The transportation industry’s transition to carbon neutrality is essential for addressing sustainability concerns. This study details a model for calculating the carbon footprint of the transportation sector as it progresses towards carbon neutrality. The model aims to support policymakers in estimating the potential impact of various decisions regarding transportation technology and infrastructure. It accounts for energy demand technological advancements and infrastructure upgrades as they relate to each transportation market: passenger vehicles commercial vehicles aircraft watercraft and trains. A technology roadmap underlies this model outlining anticipated advancements in batteries hydrogen storage biofuels renewable grid electricity and carbon capture and sequestration. By estimating the demand and the technologies that comprise each transportation market the model estimates carbon emissions. Results indicate that based on the technology roadmap carbon neutrality can be achieved by 2070 for the transportation sector. Furthermore the model found that carbon neutrality can still be achieved with slippage in the technology development schedule; however delays in infrastructure updates will delay carbon neutrality while resulting in a substantial increase in the cumulative carbon footprint of the transportation sector.
Green Hydrogen Production and Liquefaction Using Offshore Wind Power, Liquid Air, and LNG Cold Energy
Sep 2023
Publication
Coastal regions have abundant off-shore wind energy resources and surrounding areas have large-scale liquefied natural gas (LNG) receiving stations. From the engineering perspectives there are limitations in unstable off-shore wind energy and fluctuating LNG loads. This article offers a new energy scheme to combine these 2 energy units which uses surplus wind energy to produce hydrogen and use LNG cold energy to liquefy and store hydrogen. In addition in order to improve the efficiency of utilizing LNG cold energy and reduce electricity consumption for liquid hydrogen (LH2) production at coastal regions this article introduces the liquid air energy storage (LAES) technology as the intermediate stage which can stably store the cold energy from LNG gasification. A new scheme for LNG-LAES-LH2 hybrid LH2 production is built. The case study is based on a real LNG receiving station at Hainan province China and this article presents the design of hydrogen production/liquefaction process and carries out the optimizations at key nodes and proves the feasibility using specific energy consumption and exergy analysis. In a 100 MW system the liquid air storage round-trip efficiency is 71.0% and the specific energy consumption is 0.189 kWh/kg and the liquid hydrogen specific energy consumption is 7.87 kWh/kg and the exergy efficiency is 46.44%. Meanwhile the corresponding techno-economic model is built and for a LNGLAES-LH2 system with LH2 daily production 140.4 tons the shortest dynamic payback period is 9.56 years. Overall this novel hybrid energy scheme can produce green hydrogen using a more efficient and economical method and also can make full use of surplus off-shore wind energy and coastal LNG cold energy.
It Is Not the Same Green: A Comparative LCA Study of Green Hydrogen Supply Network Pathways
Jul 2024
Publication
Green hydrogen (H2 ) a promising clean energy source garnering increasing attention worldwide can be derived through various pathways resulting in differing levels of greenhouse gas emissions. Notably Green H2 production can utilize different methods such as integrating standard photovoltaic panels thermal photovoltaic or concentrated photovoltaic thermal collectors with electrolyzers. Furthermore it can be conditioned to different states or carriers including liquefied H2 compressed H2 ammonia and methanol and stored and transported using various methods. This paper employs the Life Cycle Assessment methodology to compare 18 different green hydrogen pathways and provide recommendations for greening the hydrogen supply chain. The findings indicate that the production pathway utilizing concentrated photovoltaic thermal panels for electricity generation and hydrogen compression in the conditioning and transportation stages exhibits the lowest environmental impact emitting only 2.67 kg of CO2 per kg of H2 .
Techno-economics of Renewable Hydrogen Export: A Case Study for Australia-Japan
Jul 2024
Publication
The shift from fossil fuels to clean energy carriers such as renewable H2 is imminent. Consequently a global H2 market is taking shape involving countries with limited or insufficient energy resources importing from renewable-rich countries. This study evaluates the techno-economics of renewable hydrogen (H2) export in a globally significant scenario in which Australia exports to Japan. To gain insight into the immediate realisable future the base year was selected as 2030 with a consequently small (in export terms) hydrogen production rate of 100 t/day landed capacity. Electricity was generated by photovoltaic arrays (PV) connected directly to proton exchange membrane (PEM) electrolyser plant allowing for flexible gaseous hydrogen (GH2) production. To enhance the fidelity of the technoeconomic model we incorporated rarely applied but impactful parameters including dynamic efficiency and the overload capacity of PEM electrolysers. The GH2 produced was assumed to be converted into condensed forms suitable for export by sea: liquid hydrogen (LH2) and the chemical carriers liquid ammonia (LNH3) methanol (MeOH) methylcyclohexane (MCH). These were assumed to be reconverted to GH2 at the destination. LNH3 and MCH emerged as promising carriers for export yielding the lowest landed levelised cost of hydrogen (LCOH). LH2 yielded the highest LCOH unless boiloff gas could be managed effectively and cheaply. A sensitivity analysis showed that a lower weighted average cost of capital (WACC) and scale-up can significantly reduce the landed LCOH. Increasing the production rate to 1000 t/day landed capacity very significantly lowered the landed LCOH providing a strong incentive to scale up and optimise the entire supply chain as fast as possible.
Hydrogen Production, Transporting and Storage Processes—A Brief Review
Sep 2024
Publication
This review aims to enhance the understanding of the fundamentals applications and future directions in hydrogen production techniques. It highlights that the hydrogen economy depends on abundant non-dispatchable renewable energy from wind and solar to produce green hydrogen using excess electricity. The approach is not limited solely to existing methodologies but also explores the latest innovations in this dynamic field. It explores parameters that influence hydrogen production highlighting the importance of adequately controlling the temperature and concentration of the electrolytic medium to optimize the chemical reactions involved and ensure more efficient production. Additionally a synthesis of the means of transport and materials used for the efficient storage of hydrogen is conducted. These factors are essential for the practical feasibility and successful deployment of technologies utilizing this energy resource. Finally the technological innovations that are shaping the future of sustainable use of this energy resource are emphasized presenting a more efficient alternative compared to the fossil fuels currently used by society. In this context concrete examples that illustrate the application of hydrogen in emerging technologies are highlighted encompassing sectors such as transportation and the harnessing of renewable energy for green hydrogen production.
Development of a Dynamic Mathematical Model of PEM Electrolyser for Integration into Large-scale Power Systems
May 2024
Publication
Proton exchange membrane (PEM) electrolyser stands as a promising candidate for sustainable hydrogen pro duction from renewable energy sources (RESs). Given the fluctuating nature of RESs accurate modelling of the PEM electrolyser is crucial. Nonetheless complex models of the PEM electrolyser demand substantial time and resource investments when integrating them into a large-scale power system. The majority of introduced models in the literature are either overly intricate or fail to effectively reproduce the dynamic behaviour of the PEM electrolyser. To this end this article aims to develop a model that not only captures the dynamic response of the PEM electrolyser crucial for conducting flexibility studies in the power system but also avoids complexity for seamless integration into large-scale simulations without comprising accuracy. To verify the model it is vali dated against static and dynamic experimental data. Compared to the investigated experimental cases the model exhibited an average error of 0.66% and 3.93% in the static and dynamic operation modes respectively.
Experimental Investigation of Hydrogen-Air Flame Propagation in Fire Extinguishing Foam
Sep 2023
Publication
An important element of modern firefighting is sometimes the use of foam. After the use of extinguishing foam on vehicles or machinery operated by compressed gases it is conceivable that masses of foam were enriched by escaping fuel gas. Furthermore new foam creation enriched with a high level of fuel gas from the deposed foam solution becomes theoretically possible. The aim of this study was to carry out basic experimental investigations on the combustion of water-based H2/air foam. Ignition tests were carried out in a transparent and vertically oriented cylindrical tube (d = 0.09 m; 1.5 m length) and a rectangular thin layer channel (0.02 m x 0.2 m; 2 m length). Additionally results from larger scale tests performed inside a pool (0.30 m x 1 m x 2 m) are presented. All ducts are semi-confined and a foam generator fills the ducts from below with the defined foam. The foams vary in type and concentration of the foaming agent and hydrogen concentration. The expansion ratio of the combustible foam is in the range of 20 to 50 and the investigated H2-concentrations vary from 8 to 70 % H2 in air. High-speed imaging is used to observe the combustion and determine flame velocities. The study shows that foam is flammable over a wide range of H2-concentrations from 9 to 65 % H2 in air. For certain H2/air-mixtures an abrupt flame acceleration is observed. The velocity of combustion increases rapidly by an order of magnitude and reaches velocities of up to 80 m/s.
Life Cycle Analysis of Hydrogen Production by Different Alkaline Electrolyser Technologies Sourced with Renewable Energy
Jul 2024
Publication
Green hydrogen has been considered a promising alternative to fossil fuels in chemical and energy applications. In this study a life cycle analysis is conducted for green hydrogen production sourced with a mixture of renewable energy sources (50 % solar and 50 % wind energy). Two advanced technologies of alkaline electrolysis are selected and compared for hydrogen production: pressurised alkaline electrolyser and capillary-fed alkaline electrolyser. The different value chain stages were assessed in SimaPro enabling the assessment of the environmental impacts of a green hydrogen production project with 60 MW capacity and 20 years lifetime. The results evaluate the environmental impacts depending on the components construction and operation requirements. The results demonstrated that capillary-fed alkaline electrolyser technology has lower potential environmental impacts by around 17 % than pressurised alkaline electrolyser technology for all the process stages. The total global warming potential was found to be between 1.98 and 2.39 kg of carbon dioxide equivalent per kg of hydrogen. This study contributes to the electrolysers industry and the planning of green hydrogen projects for many applications towards decarbonization and sustainability.
Review of Fuel Cell Technologies and Applications for Sustainable Microgrid Systems
Aug 2020
Publication
The shift from centralized to distributed generation and the need to address energy shortage and achieve the sustainability goals are among the important factors that drive increasing interests of governments planners and other relevant stakeholders in microgrid systems. Apart from the distributed renewable energy resources fuel cells (FCs) are a clean pollution-free highly efficient flexible and promising energy resource for microgrid applications that need more attention in research and development terms. Furthermore they can offer continuous operation and do not require recharging. This paper examines the exciting potential of FCs and their utilization in microgrid systems. It presents a comprehensive review of FCs with emphasis on the developmental status of the different technologies comparison of operational characteristics and the prevailing techno-economic barriers to their progress and the future outlook. Furthermore particular attention is paid to the applications of the FC technologies in microgrid systems such as grid-integrated grid-parallel stand-alone backup or emergency power and direct current systems including the FC control mechanisms and hybrid designs and the technical challenges faced when employing FCs in microgrids based on recent developments. Microgrids can help to strengthen the existing power grid and are also suitable for mitigating the problem of energy poverty in remote locations. The paper is expected to provide useful insights into advancing research and developments in clean energy generation through microgrid systems based on FCs.
Multi-criteria Site Selection Workflow for Geological Storage of Hydrogen in Depleted Gas Fields: A Case for the UK
Oct 2023
Publication
Underground hydrogen storage (UHS) plays a critical role in ensuring the stability and security of the future clean energy supply. However the efficiency and reliability of UHS technology depend heavily on the careful and criteria-driven selection of suitable storage sites. This study presents a hybrid multi-criteria decision-making framework integrating the Analytical Hierarchy Process (AHP) and Preference Ranking Organisation Method for Enrichment of Evaluations (PROMETHEE) to identify and select the best hydrogen storage sites among depleted gas reservoirs in the UK. To achieve this a new set of site selection criteria is proposed in light of the technical and economic aspects of UHS including location reservoir rock quality and tectonic characteristics maximum achievable hydrogen well deliverability rate working gas capacity cushion gas volume requirement distance to future potential hydrogen clusters and access to intermittent renewable energy sources (RESs). The framework is implemented to rank 71 reservoirs based on their potential and suitability for UHS. Firstly the reservoirs are thoroughly evaluated for each proposed criterion and then the AHP-PROMETHEE technique is employed to prioritise the criteria and rank the storage sites. The study reveals that the total calculated working gas capacity based on single-well plateau withdrawal rates is around 881 TWh across all evaluated reservoirs. The maximum well deliverability rates for hydrogen withdrawal are found to vary considerably among the sites; however 22 % are estimated to have deliverability rates exceeding 100 sm3 /d and 63 % are located within a distance of 100 km from a major hydrogen cluster. Moreover 70 % have access to nearby RESs developments with an estimated cumulative RESs capacity of approximately 181 GW. The results highlight the efficacy of the proposed multicriteria site selection framework. The top five highest-ranked sites for UHS based on the evaluated criteria are the Cygnus Hamilton Saltfleetby Corvette and Hatfield Moors gas fields. The insights provided by this study can contribute to informed decision-making sustainable development and the overall progress of future UHS projects within the UK and globally.
Temperature Control Strategy for Hydrogen Fuel Cell Based on IPSO-Fuzzy-PID
Dec 2024
Publication
Hydrogen fuel cell water-thermal management systems suffer from slow response time system vibration and large temperature fluctuations of load current changes. In this paper Logistic chaotic mapping adaptively adjusted inertia weight and asymmetric learning factors are integrated to enhance the particle swarm optimization (PSO) algorithm and combine it with fuzzy control to propose an innovative improved particle swarm optimization-Fuzzy control strategy. The use of chaotic mapping to initialize the particle population effectively enhances the variety within the population which subsequently improves the ability to search globally and prevents the algorithm from converging to a local optimum solution prematurely; by improving the parameters of learning coefficients and inertia weight the global and local search abilities are balanced at different stages of the algorithm so as to strengthen the algorithm’s convergence certainty while reducing the dependency on expert experience in fuzzy control. In this article a fuel cell experimental platform is constructed to confirm the validity and efficiency of the recommended strategy and the analysis reveals that the improved particle swarm optimization (IPSO) algorithm demonstrates better convergence performance than the standard PSO algorithm. The IPSO-Fuzzy-PID management approach is capable of providing a swift response and significantly diminishing the overshoot in the system’s performance to maintain the system’s safe and stable execution.
The Economic Competitiveness of Hydrogen Fuel Cell-Powered Trucks: A Review of Total Cost of Ownership Estimates
May 2024
Publication
This paper investigates the economic competitiveness of hydrogen-powered trucks. It reviews the growing number of papers that provide an estimate of the total cost of ownership (TCO) of hydrogen-powered trucks relative to their diesel equivalents. It examines the methodology applied the variables considered the data used for estimation and the results obtained. All reviewed studies conclude that hydrogen-powered trucks are not currently cost-competitive while they might become competitive after 2030. The conclusion holds across truck types and sizes hydrogen pathways mission profiles and countries. However we find that there is still a huge area of uncertainty regarding the purchase price of hydrogen-powered trucks and the cost of hydrogen which hampers the reliability of the results obtained. Various areas of methodological improvements are suggested.
Whole System Impacts of Decarbonising Transport with Hydrogen: A Swedish Case Study
Oct 2024
Publication
This study aims to carry out a techno-economic analysis of different hydrogen supply chain designs coupled with the Swedish electricity system to study the inter-dependencies between them. Both the hydrogen supply chain designs and the electricity system were parameterized with data for 2030. The supply chain designs comprehend centralised production decentralised production a combination of both and with/without seasonal variation in hydrogen demand. The supply chain design is modelled to minimize the overall cost while meeting the hydrogen demands. The outputs of the supply chain model include the hydrogen refuelling stations’ locations the electrolyser’s locations and their respective sizes as well as the operational schedule. The electricity system model shows that the average electricity prices in Sweden for zones SE1 SE2 SE3 and SE4 will be 4.28 1.88 8.21 and 8.19 €/MWh respectively. The electricity is mainly generated from wind and hydropower (around 42% each) followed by nuclear (14%) solar (2%) and then bio-energy (0.3%). In addition the hydrogen supply chain design that leads to a lower overall cost is the decentralised design with a cost of 1.48 and 1.68 €/kgH2 in scenarios without and with seasonal variation respectively. The seasonal variation in hydrogen demand increases the cost of hydrogen regardless of the supply chain design.
Knowledge, Skills, and Attributes Needed for Developing a Hydrogen Engineering Workforce: A Systematic Review of Literature on Hydrogen Engineering Education
May 2024
Publication
Growth in Australia’s demand for engineers is fast outpacing supply. A significant challenge for Australia to achieve high projected low emissions hydrogen export targets by 2030 will be finding engineers with suitable knowledge skills and attributes to deliver hydrogen engineering projects safely and sustainably. This systematic review investigates educational outcomes needed to develop a hydrogen engineering workforce. Sixteen relevant studies published between 2003 and 2023 were identified to explore “What key knowledge skills and attributes support the development of a hydrogen engineering workforce?”. While these studies advocated the need for training and prescribed areas of required knowledge for the low-emissions hydrogen sector there was limited empirical evidence that informed what knowledge skills and attributes are relevant for entry to practice. This finding represents a significant opportunity for researchers to engage with employers and engineering practitioners within emerging low-emissions hydrogen sector capture empirical evidence and inform the design of educational programs.
A Newly Proposed Method for Hydrogen Storage in a Metal Hydride Storage Tank Intended for Maritime and Inland Shipping
Aug 2023
Publication
The utilisation of hydrogen in ships has important potential in terms of achieving the decarbonisation of waterway transport which produces approximately 3% of the world’s total emissions. However the utilisation of hydrogen drives in maritime and inland shipping is conditioned by the efficient and safe storage of hydrogen as an energy carrier on ship decks. Regardless of the type the constructional design and the purpose of the aforesaid vessels the preferred method for hydrogen storage on ships is currently high-pressure storage with an operating pressure of the fuel storage tanks amounting to tens of MPa. Alternative methods for hydrogen storage include storing the hydrogen in its liquid form or in hydrides as adsorbed hydrogen and reformed fuels. In the present article a method for hydrogen storage in metal hydrides is discussed particularly in a certified low-pressure metal hydride storage tank—the MNTZV-159. The article also analyses the 2D heat conduction in a transversal cross-section of the MNTZV-159 storage tank for the purpose of creating a final design of the shape of a heat exchanger (intensifier) that will help to shorten the total time of hydrogen absorption into the alloy i.e. the filling process. Based on the performed 3D calculations for heat conduction the optimisation and implementation of the intensifier into the internal volume of a metal hydride alloy will increase the performance efficiency of the shell heat exchanger of the MNTZV-159 storage tank. The optimised design increased the cooling power by 46.1% which shortened the refuelling time by 41% to 2351 s. During that time the cooling system which comprised the newly designed internal heat transfer intensifier was capable of eliminating the total heat from the surface of the storage tank thus preventing a pressure increase above the allowable value of 30 bar.
No more items...