Publications
Modelling and Experimental Analysis of a Polymer Electrolyte Membrane Water Electrolysis Cell at Different Operating Temperatures
Nov 2018
Publication
In this paper a simplified model of a Polymer Electrolyte Membrane (PEM) water electrolysis cell is presented and compared with experimental data at 60 ◦C and 80 ◦C. The model utilizes the same modelling approach used in previous work where the electrolyzer cell is divided in four subsections: cathode anode membrane and voltage. The model of the electrodes includes key electrochemical reactions and gas transport mechanism (i.e. H2 O2 and H2O) whereas the model of the membrane includes physical mechanisms such as water diffusion electro osmotic drag and hydraulic pressure. Voltage was modelled including main overpotentials (i.e. activation ohmic concentration). First and second law efficiencies were defined. Key empirical parameters depending on temperature were identified in the activation and ohmic overpotentials. The electrodes reference exchange current densities and change transfer coefficients were related to activation overpotentials whereas hydrogen ion diffusion to Ohmic overvoltages. These model parameters were empirically fitted so that polarization curve obtained by the model predicted well the voltage at different current found by the experimental results. Finally from the efficiency calculation it was shown that at low current densities the electrolyzer cell absorbs heat from the surroundings. The model is not able to describe the transients involved during the cell electrochemical reactions however these processes are assumed relatively fast. For this reason the model can be implemented in system dynamic modelling for hydrogen production and storage where components dynamic is generally slower compared to the cell electrochemical reactions dynamics.
Numerical Study of Hydrogen Addition Effects on Aluminum Particle Combustion
Sep 2021
Publication
In this study the combustion of submicron-sized Al particles in air was studied numerically with a particular focus on the effect of hydrogen addition. Oxidation of the Al particles and the interaction with hydrogen-related intermediates were considered by regarding them as liquid-phase molecules initially. Zero- and One-dimensional numerical simulations were then carried out to investigate the effect of the hydrogen addition on fundamental combustion characteristics of the Al flame by calculating properties such as ignition delay time and flame speed. Our attention was paid to how the hydrogen chemistry is coupled with the Al oxidation process. Numerical results show that the hydrogen addition generally reduces the reactivity of Al such that the flame speed and temperature decrease while it can greatly shorten ignition delay times of the Al flame depending on initial temperatures.
Expectations as a Key to Understanding Actor Strategies in the Field of Fuel Cell and Hydrogen Vehicles
Feb 2012
Publication
Due to its environmental impact the mobility system is increasingly under pressure. The challenges to cope with climate change air quality depleting fossil resources imply the need for a transition of the current mobility system towards a more sustainable one. Expectations and visions have been identified as crucial in the guidance of such transitions and more specifically of actor strategies. Still it remained unclear why the actors involved in transition activities appear to change their strategies frequently and suddenly. The empirical analysis of the expectations and strategies of three actors in the field of hydrogen and fuel cell technology indicates that changing actor strategies can be explained by rather volatile expectations related to different levels. Our case studies of the strategies of two large car manufacturers and the German government demonstrate that the car manufacturers refer strongly to expectations about the future regime while expectations related to the socio-technical landscape level appear to be crucial for the strategy of the German government.
Hydrogen Intensified Synthesis Processes to Valorise Process Off-gases in Integrated Steelworks
Jul 2023
Publication
Ismael Matino,
Stefano Dettori,
Amaia Sasiain Conde,
Valentina Colla,
Alice Petrucciani,
Antonella Zaccara,
Vincenzo Iannino,
Claudio Mocci,
Alexander Hauser,
Sebastian Kolb,
Jürgen Karl,
Philipp Wolf-Zoellner,
Stephane Haag,
Michael Bampaou,
Kyriakos Panopoulos,
Eleni Heracleousa,
Nina Kieberger,
Katharina Rechberger,
Leokadia Rog and
Przemyslaw Rompalski
Integrated steelworks off-gases are generally exploited to produce heat and electricity. However further valorization can be achieved by using them as feedstock for the synthesis of valuable products such as methane and methanol with the addition of renewable hydrogen. This was the aim of the recently concluded project entitled “Intelligent and integrated upgrade of carbon sources in steel industries through hydrogen intensified synthesis processes (i3 upgrade)”. Within this project several activities were carried out: from laboratory analyses to simulation investigations from design development and tests of innovative reactor concepts and of advanced process control to detailed economic analyses business models and investigation of implementation cases. The final developed methane production reactors arerespectively an additively manufactured structured fixedbed reactor and a reactor setup using wash-coated honeycomb monoliths as catalyst; both reactors reached almost full COx conversion under slightly over-stoichiometric conditions. A new multi-stage concept of methanol reactor was designed commissioned and extensively tested at pilot-scale; it shows very effective conversion rates near to 100% for CO and slightly lower for CO2 at one-through operation for the methanol synthesis. Online tests proved that developed dispatch controller implements a smooth control strategy in real time with a temporal resolution of 1 min and a forecasting horizon of 2 h. Furthermore both offline simulations and cost analyses highlighted the fundamental role of hydrogen availability and costs for the feasibility of i 3 upgrade solutions and showed that the industrial implementation of the i 3 upgrade solutions can lead to significant environmental and economic benefits for steelworks especially in case green electricity is available at an affordable price.
Heat Transfer Models for Refueling Safety of Hydrogen Vehicle
Sep 2021
Publication
Due to the simple structure and quick refueling process of the compressed hydrogen storage tank it is widely used in fuel cell vehicles at present. However temperature rise may lead to a safety problem during charging of a compressed hydrogen storage tank. To ensure the refueling safety the thermal effects need to be studied carefully during hydrogen refueling process. In this paper based on the mass and energy balance equations a general heat transfer model for refueling process of compressed hydrogen storage tank is established. According to the geometric model of the tank wall structure we have built three lumped parameter models: single-zone (hydrogen) dual-zone (hydrogen and tank wall) and triple-zone (hydrogen tank wall liner and shell) model. These three lumped parameter models are compared with U.S. Naval gas charging model and SAE MC method based refueling model. Under adiabatic and diathermic conditions four models are built in Matlab/Simulink software to simulate the hydrogen refueling process under corresponding conditions. These four models are: single-zone singletemperature (hydrogen) dual-zone single-temperature (hydrogen) dual-zone dual-temperature (hydrogen and tank wall temperatures) and triple-zone triple-temperature (hydrogen tank wall liner and tank wall shell temperatures). By comparing the analytical solution and numerical solution the temperature rise of the compressed hydrogen storage tank can be described. The analytical and numerical solutions on the heat transfer during hydrogen refueling process will provide theoretical guidance at actual refueling station so as to improve the refueling efficiency and to enhance the refueling safety.
A Policy Review of Green Hydrogen Economy in Southern Africa
Nov 2021
Publication
Renewable energy and clean energy have been on the global agenda for energy transition for quite a long time but recently gained strong momentum especially with the anticipated depletion of fossil fuels alongside increasing environmental degradation from their exploitation and the changing climate caused by their excessive carbon emissions. Despite this Africa’s pursuit to transition to a green economy using renewable energy resources still faces constraints that hamper further development and commercialization. These may include socio-economic technical political financial and institutional policy framework barriers. Although hydrogen demand is still low in Southern Africa the region can meet the global demands for green hydrogen as a major supplier because of its enormous renewable energy resource-base. This article reviews existing renewable energy resources and hydrogen energy policies in the Southern African Development Community (SADC). The significance of this review is that it explores how clean energy technologies that utilize renewable energy resources address the United Nations sustainable development goals (UN SDGs) and identifies the hydrogen energy policy gaps. This review further presents policy options and recommends approaches to enhance hydrogen energy production and ramp the energy transition from a fossil fuel-based economy to a hydrogen energy-based economy in Southern Africa. Concisely the transition can be achieved if the existing hydrogen energy policy framework gap is narrowed by formulating policies that are specific to hydrogen development in each country with the associated economic benefits of hydrogen energy clearly outlined.
What is the Energy Balance of Electrofuels Produced Through Power-to-fuel Integration with Biogas Facilities?
Nov 2021
Publication
The need to reduce the climate impact of the transport sector has led to an increasing interest in the utilisation of alternative fuels. Producing advanced fuels through the integration of anaerobic digestion and power-to-fuel technologies may offer a solution to reduce greenhouse gas emissions from difficult to decarbonise modes of transport such as heavy goods vehicles shipping and commercial aviation while also offering wider system benefits. This paper investigates the energy balance of power-to-fuel (power-to-methane power-to-methanol power-to-Fischer-Tropsch fuels) production integrated with a biogas facility co-digesting grass silage and dairy slurry. Through the integration of power-to-methane with anaerobic digestion an increase in system gross energy of 62.6% was found. Power-to-methanol integration with the biogas system increased the gross energy by 50% while power-to-Fischer-Tropsch fuels increased the gross energy yield by 32%. The parasitic energy demand for hydrogen production was highlighted as the most significant factor for integrated biogas and power-to-fuel facilities. Consuming electricity that would otherwise have been curtailed and optimising the anaerobic digestion process were identified as key to improving the energetic efficiency of all system configurations. However the broad cross-sectoral benefits of the overarching cascading circular economy system such as providing electrical grid stability and utilising waste resources must also be considered for a comprehensive perspective on the integration of anaerobic digestion and power-to-fuel.
Modeling of Fixed Bed Reactor for Coal Tar Hydrogenation via the Kinetic Lumping Approach
Nov 2018
Publication
Hydrogenation technology is an indispensable chemical upgrading process for converting the heavy feedstock into favorable lighter products. In this work a new kinetic model containing four hydrocarbon lumps (feedstock diesel gasoline cracking gas) was developed to describe the coal tar hydrogenation process the Levenberg–Marquardt’s optimization algorithm was used to determine the kinetic parameters by minimizing the sum of square errors between experimental and calculated data the predictions from model validation showed a good agreement with experimental values. Subsequently an adiabatic reactor model based on proposed lumped kinetic model was constructed to further investigate the performance of hydrogenation fixed-bed units the mass balance and energy balance within the phases in the reactor were taken into accounts in the form of ordinary differential equation. An application of the reactor model was performed for simulating the actual bench-scale plant of coal tar hydrogenation the simulated results on the products yields and temperatures distribution along with the reactor are shown to be good consistent with the experimental data.
Hydrogen Storage in Geological Formations—The Potential of Salt Caverns
Jul 2022
Publication
Hydrogen-based technologies are among the most promising solutions to fulfill the zero-emission scenario and ensure the energy independence of many countries. Hydrogen is considered a green energy carrier which can be utilized in the energy transport and chemical sectors. However efficient and safe large-scale hydrogen storage is still challenging. The most frequently used hydrogen storage solutions in industry i.e. compression and liquefaction are highly energy-consuming. Underground hydrogen storage is considered the most economical and safe option for large-scale utilization at various time scales. Among underground geological formations salt caverns are the most promising for hydrogen storage due to their suitable physicochemical and mechanical properties that ensure safe and efficient storage even at high pressures. In this paper recent advances in underground storage with a particular emphasis on salt cavern utilization in Europe are presented. The initial experience in hydrogen storage in underground reservoirs was discussed and the potential for worldwide commercialization of this technology was analyzed. In Poland salt deposits from the north-west and central regions (e.g. Rogóźno Damasławek Łeba) are considered possible formations for hydrogen storage. The Gubin area is also promising where 25 salt caverns with a total capacity of 1600 million Nm3 can be constructed.
Full-scale Tunnel Experiments for Fuel Cell Hydrogen Vehicles: Jat Fire and Explosions
Sep 2021
Publication
In the framework of the HYTUNNEL-CS European project sponsored by FCH-JU a set of preliminary tests were conducted in a real tunnel in France. These tests are devoted to safety of hydrogen-fueled vehicles having a compressed gas storage and Temperature Pressure Release Device (TPRD). The goal of the study is to develop recommendations for Regulations Codes and Standards (RCS) for inherently safer use of hydrogen vehicles in enclosed transportation systems. Two scenarios were investigated (a) jet fire evolution following the activation of TPRD due to conventional fuel car fire and (b) explosion of compressed hydrogen tank. The obtained experimental data are systematically compared to existing engineering correlations. The results will be used for benchmarking studies using CFD codes. The hydrogen pressure range in these preliminary tests has been lowered down to 20MPa in order to verify the capability of various large-scale measurement techniques before scaling up to 70 MPa the subject of the second experimental campaign.
On Board 70 MPA Hydrogen Composite Pressure Vessel Safety Factor
Sep 2021
Publication
The safety factor of a composite structure in relation to its mechanical rupture is an important criterion for the safety of a 70 MPa composite pressure vessel for hydrogen storage particularly for on-board applications (car bus truck train…). After an introduction of Type IV technology the contribution of carbon fibre composite material structure manufacturing process of pressure vessels and environmental effects on the safety factor are commented. Thanks to an experimental-based evaluation on composite material and H2 composite pressure vessel the safety margins are addressed.
Homogeneous Hydrogen Deflagrations in Small Scale Enclosure. Experimental Results
Sep 2017
Publication
University of Pisa performed experimental tests in a 1m3 facility which shape and dimensions resemble a gas cabinet for the HySEA project founded by the Fuel Cells and Hydrogen 2 Joint Undertaking with the aim to conduct pre-normative research on vented deflagrations in real-life enclosures and containers used for hydrogen energy applications in order to generate experimental data of high quality. The test facility named Small Scale Enclosure (SSE) had a vent area of 042m2 which location could be varied namely on the top or in front of the facility while different types of vent were investigated. Three different ignition location were investigated as well and the range of Hydrogen concentration ranged between 10 and 18% vol. This paper is aimed to summarize the main characteristics of the experimental campaign as well as to present its results.
2x40GW Green Hydrogen Initiative
Mar 2020
Publication
Hydrogen will play a pivotal role in achieving an affordable clean and prosperous economy. Hydrogen allows for cost-efficient bulk transport and storage of renewable energy and can decarbonise energy use in all sectors.
The European Union together with North Africa Ukraine and other neighbouring countries have a unique opportunity to realise a green hydrogen system. Europe including Ukraine has good renewable energy resources while North Africa has outstanding and abundant resources. Europe can re-use its gas infrastructure with interconnections to North-Africa and other countries to transport and store hydrogen. And Europe has a globally leading industry for clean hydrogen production especially in electrolyser manufacturing.
If the European Union in close cooperation with its neighbouring countries wants to build on these unique assets and create a world leading industry for renewable hydrogen production the time to act is now. Dedicated and integrated multi GW green hydrogen production plants will thereby unlock the vast renewable energy potential.
We the European hydrogen industry are committed to maintaining a strong and world-leading electrolyser industry and market and to producing renewable hydrogen at equal and eventually lower cost than low-carbon (blue) hydrogen. A prerequisite is that a 2x40 GW electrolyser market in the European Union and its neighbouring countries (e.g. North Africa and Ukraine) will develop as soon as possible.
A roadmap for 40 GW electrolyser capacity in the EU by 2030 shows a 6 GW captive market (hydrogen production at the demand location) and 34 GW hydrogen market (hydrogen production near the resource). A roadmap for 40 GW electrolyser capacity in North Africa and Ukraine by 2030 includes 7.5 GW hydrogen production for the domestic market and a 32.5 GW hydrogen production capacity for export.
If a 2x40 GW electrolyser market in 2030 is realised alongside the required additional renewable energy capacity renewable hydrogen will become cost competitive with fossil (grey) hydrogen. GW-scale electrolysers at wind and solar hydrogen production sites will produce renewable hydrogen cost competitively with low-carbon hydrogen production (1.5-2.0 €/kg) in 2025 and with grey hydrogen (1.0-1.5 €/kg) in 2030.
By realizing 2x40 GW electrolyser capacity producing green hydrogen about 82 million ton CO2 emissions per year could be avoided in the EU. The total investments in electrolyser capacity will be 25-30 billion Euro creating 140000- 170000 jobs in manufacturing and maintenance of 2x40 GW electrolysers.
The industry needs the European Union and its member states to design create and facilitate a hydrogen market infrastructure and economy. Crucial is the design and realisation of new unique and long-lasting mutual co-operation mechanisms on political societal and economic levels between the EU and North Africa Ukraine and other neighbouring countries.
The unique opportunity for the EU and its neighbouring countries to develop a green hydrogen economy will contribute to economic growth the creation of jobs and a sustainable affordable and fair energy system. Building on this position Europe and its neighbours can become world market leaders for green hydrogen production technologies.
The European Union together with North Africa Ukraine and other neighbouring countries have a unique opportunity to realise a green hydrogen system. Europe including Ukraine has good renewable energy resources while North Africa has outstanding and abundant resources. Europe can re-use its gas infrastructure with interconnections to North-Africa and other countries to transport and store hydrogen. And Europe has a globally leading industry for clean hydrogen production especially in electrolyser manufacturing.
If the European Union in close cooperation with its neighbouring countries wants to build on these unique assets and create a world leading industry for renewable hydrogen production the time to act is now. Dedicated and integrated multi GW green hydrogen production plants will thereby unlock the vast renewable energy potential.
We the European hydrogen industry are committed to maintaining a strong and world-leading electrolyser industry and market and to producing renewable hydrogen at equal and eventually lower cost than low-carbon (blue) hydrogen. A prerequisite is that a 2x40 GW electrolyser market in the European Union and its neighbouring countries (e.g. North Africa and Ukraine) will develop as soon as possible.
A roadmap for 40 GW electrolyser capacity in the EU by 2030 shows a 6 GW captive market (hydrogen production at the demand location) and 34 GW hydrogen market (hydrogen production near the resource). A roadmap for 40 GW electrolyser capacity in North Africa and Ukraine by 2030 includes 7.5 GW hydrogen production for the domestic market and a 32.5 GW hydrogen production capacity for export.
If a 2x40 GW electrolyser market in 2030 is realised alongside the required additional renewable energy capacity renewable hydrogen will become cost competitive with fossil (grey) hydrogen. GW-scale electrolysers at wind and solar hydrogen production sites will produce renewable hydrogen cost competitively with low-carbon hydrogen production (1.5-2.0 €/kg) in 2025 and with grey hydrogen (1.0-1.5 €/kg) in 2030.
By realizing 2x40 GW electrolyser capacity producing green hydrogen about 82 million ton CO2 emissions per year could be avoided in the EU. The total investments in electrolyser capacity will be 25-30 billion Euro creating 140000- 170000 jobs in manufacturing and maintenance of 2x40 GW electrolysers.
The industry needs the European Union and its member states to design create and facilitate a hydrogen market infrastructure and economy. Crucial is the design and realisation of new unique and long-lasting mutual co-operation mechanisms on political societal and economic levels between the EU and North Africa Ukraine and other neighbouring countries.
The unique opportunity for the EU and its neighbouring countries to develop a green hydrogen economy will contribute to economic growth the creation of jobs and a sustainable affordable and fair energy system. Building on this position Europe and its neighbours can become world market leaders for green hydrogen production technologies.
The Case for High-pressure PEM Water Electrolysis
Apr 2022
Publication
Hydrogen compression is a key part of the green hydrogen supply chain but mechanical compressors are prone to failure and add system complexity and cost. High-pressure water electrolysis can alleviate this problem through electrochemical compression of the gas internally in the electrolyzer and thereby eliminating the need for an external hydrogen compressor. In this work a detailed techno-economic assessment of high-pressure proton exchange membrane-based water electrolysis (PEMEL) systems was carried out. Electrolyzers operating at 80 200 350 and 700 bar were compared to state-of-the-art systems operating at 30 bar in combination with a mechanical compressor. The results show that it is possible to achieve economically viable solutions with high-pressure PEMEL-systems operating up to 200 bar. These pressure levels fit well with the requirements in existing and future industrial applications such as e-fuel production (30–120 bar) injection of hydrogen into natural gas grids (70 bar) hydrogen gas storage (≥200 bar) and ammonia production (200–300 bar). A sensitivity analysis also showed that if the cost of electricity is sufficiently low (
Transitioning to Hydrogen
Jan 2020
Publication
The UK is investigating supplying hydrogen to homes and businesses instead of natural gas by “repurposing” the gas network. It presents a major engineering challenge which has never been done anywhere else in the world.
In a new report titled ‘Transitioning to hydrogen’ experts from a cross-professional engineering institution (PEI) working group including the IET have assessed the engineering risks and uncertainties and concluded there is no reason why repurposing the gas network to hydrogen cannot be achieved. But there are several engineering risks and uncertainties which need to be addressed.
In a new report titled ‘Transitioning to hydrogen’ experts from a cross-professional engineering institution (PEI) working group including the IET have assessed the engineering risks and uncertainties and concluded there is no reason why repurposing the gas network to hydrogen cannot be achieved. But there are several engineering risks and uncertainties which need to be addressed.
Vented Explosion of Hydrogen/Air Mixtures: Influence of Vent Cover and Stratification
Sep 2017
Publication
Explosion venting is a prevention/mitigation solution widely used in the process industry to protect indoor equipment or buildings from excessive internal pressure caused by an accidental explosion. Vented explosions are widely investigated in the literature for various geometries hydrogen/air concentrations ignition positions initial turbulence etc. In real situations the vents are normally covered by a vent panel. In the case of an indoor leakage the hydrogen/air cloud will be stratified rather than homogeneous. Nowadays there is a lack in understanding about the vented explosion of stratified clouds and about the influence of vent cover inertia on the internal overpressure. This paper aims at shedding light on these aspects by means of experimental investigation of vented hydrogen/air deflagration using an experimental facility of 1m3 and via numerical simulations using the computational fluid dynamics (CFD) code FLACS
Hydrogen Transport - Fuelling The Future
Dec 2020
Publication
Through the combustion of fossil fuels the transport sector is responsible for 20-30% of global CO2 emissions. We can support the net-zero one ambition by decarbonising transport modes using green hydrogen fuelled options – hydrogen generated from renewable energy sources such as offshore wind.<br/><br/>We have been working with clients across the hydrogen industry for several years specifically around the generation dispatch and use of hydrogen within energy systems. However interest is swiftly moving to wider hydrogen based solutions including within the fleet rail aviation and maritime sectors.<br/><br/>Our latest ‘Future of Energy’ series explores the opportunity for green fuelled hydrogen transport. We look at each industry in detail the barriers to uptake market conditions and look at how the transport industry could adapt and develop to embrace a net-zero future.
Hydrogen - Decarbonising Heat
Feb 2020
Publication
<br/>Our industry is beginning its journey on the transition to providing the world with sufficient sustainable affordable and low emission energy.<br/><br/>Decarbonisation is now a key priority. Steps range from reducing emissions from traditional oil and gas operations to investing in renewable energy and supplementing natural gas supplies with greener gasses such as hydrogen.<br/><br/>This paper looks at the role hydrogen could play in decarbonisation.
Review of Renewable Energy-based Hydrogen Production Processes for Sustainable Energy Innovation
Dec 2019
Publication
In this review we primarily analyze the hydrogen production technologies based on water and biomass including the economic technological and environmental impacts of different types of hydrogen production technologies based on these materials and comprehensively compare them. Our analyses indicate that all renewable energy-based approaches for hydrogen production are more environmentally friendly than fossil-based hydrogen generation approaches. However the technical ease and economic efficiency of hydrogen production from renewable sources of energy needs to be further improved in order to be applied on a large scale. Compared with other renewable energy-based methods hydrogen production via biomass electrolysis has several advantages including the ease of directly using raw biomass. Furthermore its environmental impact is smaller than other approaches. Moreover using a noble metal catalyst-free anode for this approach can ensure a considerably low power consumption which makes it a promising candidate for clean and efficient hydrogen production in the future.
A New Approach to Vented Deflagration Modeling
Sep 2017
Publication
In the present work CFD simulations of a hydrogen deflagration experiment are performed. The experiment carried out by KIT was conducted in a 1 m3 enclosure with a square vent of 0.5 m2 located in the center of one of its walls. The enclosure was filled with homogeneous hydrogen-air mixture of 18% v/v before ignition at its back-wall. As the flame propagates away from the ignition point unburned mixture is forced out through the vent. This mixture is ignited when the flame passes through the vent initiating a violent external explosion which leads to a rapid increase in pressure. The work focuses on the modeling of the external explosion phenomenon. A new approach is proposed in order to predict with accuracy the strength of external explosions using Large Eddy Simulation. The new approach introduces new relations to account for the interaction between the turbulence and the flame front. CFD predictions of the pressure inside and outside the enclosure and of the flame front shape are compared against experimental measurements. The comparison indicates a much better performance of the new approach compared to the initial model.
Performing While Transforming: The Role of Transmission Companies in the Energy Transition
Jun 2020
Publication
As the world prepares to exit from the COVID-19 crisis the pace of the global power revolution is expected to accelerate. A new publication from the World Energy Council in collaboration with PwC underscores the imperative for electricity grid owners and operators to fundamentally transform themselves to secure a role in a more integrated flexible and smarter electricity system in the energy transition to a low carbon future.
“Performing While Transforming: The Role of Transmission Companies in the Energy Transition” is based on in-depth interviews with CEOs and senior leaders from 37 transmission companies representing 35 countries and over 4 million kilometres – near global coverage - of the transmission network. While their roles will evolve transmission companies will remain at the heart of the electricity grid and need to balance the challenges of keeping the lights on while transforming themselves for the future.
The publication explores the various challenges affecting how transmission companies prepare and re-think their operations and business models and leverages the insights from interviewees to highlight four recommendations for transmission companies to consider in their journey:
“Performing While Transforming: The Role of Transmission Companies in the Energy Transition” is based on in-depth interviews with CEOs and senior leaders from 37 transmission companies representing 35 countries and over 4 million kilometres – near global coverage - of the transmission network. While their roles will evolve transmission companies will remain at the heart of the electricity grid and need to balance the challenges of keeping the lights on while transforming themselves for the future.
The publication explores the various challenges affecting how transmission companies prepare and re-think their operations and business models and leverages the insights from interviewees to highlight four recommendations for transmission companies to consider in their journey:
- Focus on the future through enhanced forecasting and scenario planning
- Shape the ecosystem by collaborating with new actors and enhancing interconnectivity
- Embrace automation and technology to optimise processes and ensure digital delivery
- Transform organisation to attract new talent and maintain social licence with consumers
Numerical Assessment of Hydrogen Explosion Consequences in Mine Tunnel
Sep 2019
Publication
The aim of the work is a numerical estimation of the conditional probability of damage to the mine personnel during an accidental explosion of a hydrogen-air mixture. The methodology for determining the parameters of the gas-dynamic process of the explosion of a hydrogen-air cloud in an open and closed space taking into account chemical interaction and space clutter is presented. A computational method based on a probit analysis for determining the damage probability fields of a person exposed to the explosion shock wave has been developed. To automate the computational process the tabular dependence “probit-function-damage probability” is replaced by a piecewise cubic spline. Numerical studies of the influence of the drift working space clutter by an electric locomotive on the distribution of the overpressure of the gaseous medium and the conditional probability of the eardrums rupture and lethal damage to personnel in the accidental zone of the coal mine have been carried out. It was obtained that the closed nature of the working space and its blockage significantly changes the shape and size of the danger zone and requires consideration by an expert at the stage of deciding on the safety level at the mine. The scientific novelty of the method proposed in the work is in taking into account in the mathematical model of the movement of a multi-component chemically reacting gas mixture the effect of compressibility of flow complex terrain (space clutter with equipment) three-dimensional nature of the gas-air mixture dispersion process. The model allows obtaining the space-time distributions of the shock-impulse load of the blast wave that is necessary for determining the non-stationary three-dimensional fields of the conditional probability of damage to the staff on the basis of probit analysis. The developed computational method allows analyzing and forecasting in time and space the conditional probability of damage of varying degrees of severity of personnel who are exposed to an explosive shock wave as an indicator of the safety level of a coal mine.
Study of the Co-production of Butanol and Hydrogen by Immobilizing Clostridium Acetobutylicum CICC8012
Mar 2019
Publication
Three kinds of carrier materials activated carbon bagasse and brick were used as immobilizing carriers during fermentation by Clostridium acetobutylicum CICC8012. Compared with cell suspended fermentation enhanced fermentation performance was achieved during immobilizing cell fermentation with shorter fermentation time required. During the experiments hydrogen and butanol appear to be competitive events. The best fermentation performance of butanol was obtained in the case of bagasse as immobilizing carrier (5.804g/L of butanol production 0.22g/g of yield and 0.44g/L/h of productivity) while the hydrogen yield was just 1.41 mol/mol. The highest hydrogen productivity (402mL/L/h) and yield (1.808mol/mol glucose) could be obtained in the case of brick as immobilizing carrier while the butanol yield was 0.18 g/g. The highest hydrogen concentration of 66.76 % was obtained in the case of activated carbon as immobilizing carrier.
Hydrogen-related Challenges for the Steelmaker: The Search for Proper Testing
Jun 2017
Publication
The modern steelmaker of advanced high-strength steels has always been challenged with the conflicting targets of increased strength while maintaining or improving ductility. These new steels help the transportation sector including the automotive sector to achieve the goals of increased passenger safety and reduced emissions. With increasing tensile strengths certain steels exhibit an increased sensitivity towards hydrogen embrittlement (HE). The ability to characterize the material's sensitivity in an as-delivered condition has been developed and accepted (SEP1970) but the complexity of the stress states that can induce an embrittlement together with the wide range of applications for high-strength steels make the development of a standardized test for HE under in-service conditions extremely challenging. Some proposals for evaluating the material's sensitivity give an advantage to materials with a low starting ductility. Despite this newly developed materials can have a higher original elongation with only a moderate reduction in elongation due to hydrogen. This work presents a characterization of new materials and their sensitivity towards HE.
This article is part of the themed issue ‘The challenges of hydrogen and metals’.
Link to document download on Royal Society Website
This article is part of the themed issue ‘The challenges of hydrogen and metals’.
Link to document download on Royal Society Website
Hydrogen Technologies Safety Guide
Jan 2015
Publication
The purpose of this guide is to provide basic background information on hydrogen technologies. It is not intended to be a comprehensive collection of hydrogen technologies safety information. It is intended to provide project developers code officials and other interested parties the background information to be able to put hydrogen safety in context. For example code officials reviewing permit applications for hydrogen projects will get an understanding of the industrial history of hydrogen basic safety concerns and safety requirements.
Specific Effects of Hydrogen Concentration on Resistance to Fracture of Ferrite-pearlitic Pipeline Steels
Aug 2019
Publication
The presented work is dedicated to evaluation of strain and fatigue behaviour of the ferrite-pearlite low-alloyed pipeline steels under known hydrogen concentration in a bulk of metal. Tensile test results have shown on the existence of some characteristic value of the hydrogen concentration CH at which the mechanism of hydrogen influence changes namely: below this value the enhanced plasticity (decreasing of the yield stress value) takes place and above – the hydrogen embrittlement occurs. The ambiguous relationship between fatigue crack growth rate and hydrogen concentration CH in the bulk of steels under their cyclic loading in hydrogen-contained environments has been found. There is a certain CH value at which the crack growth resistance of steel increases and the diagram of fatigue crack growth rate shifts to higher values of stress intensity factor. The generalised diagram of hydrogen concentration effect on strength behaviour of low-alloyed ferrite-pearlite pipeline steels is presented and discussed with the aim of evaluation of different mechanisms of hydrogen effect conditions of their realization and possible co-existence.
Technology Assessment of Hydrogen Firing of Process Heaters
Apr 2011
Publication
In conjunction with John Zink Co. LLC the Chevron Energy Technology Company conducted a three part study evaluating potential issues with switching refinery process heaters from fuel gas to hydrogen fuel for the purpose of greenhouse gas emissions reduction via CO2 capture and storage.
The focus was on the following areas:
The focus was on the following areas:
- Heater performance
- Burner performance and robustness
- Fuel gas system retrofit requirements
The Effects of Electrochemical Hydrogen Charging on Room-Temperature Tensile Properties of T92/TP316H Dissimilar Weldments in Quenched-and-Tempered and Thermally-Aged Conditions
Aug 2019
Publication
The influence of isothermal aging at 620 °C in combination with subsequent electrochemical hydrogen charging at room-temperature was studied on quenched-and-tempered T92/TP316H martensitic/austenitic weldments in terms of their room-temperature tensile properties and fracture behavior. Hydrogen charging of the weldments did not significantly affect their strength properties; however it resulted in considerable deterioration of their plastic properties along with significant impact on their fracture characteristics and failure localization. The hydrogen embrittlement plays a dominant role in degradation of the plastic properties of the weldments already in their initial material state i.e. before thermal aging. After thermal aging and subsequent hydrogen charging mutual superposition of thermal and hydrogen embrittlement phenomena had led to clearly observable effects on the welds deformation and fracture processes. The measure of hydrogen embrittlement was clearly lowered for thermally aged material state since the contribution of thermal embrittlement to overall degradation of the weldments has dominated. The majority of failures of the weldments after hydrogen charging occurred in the vicinity of T92 BM/Ni weld metal (WM) fusion zone; mostly along the Type-II boundary in Ni-based weld metal. Thus regardless of aging exposure the most critical failure regions of the investigated weldments after hydrogen charging and tensile straining at room temperature are the T92 BM/Ni WM fusion boundary and Type-II boundary acting like preferential microstructural sites for hydrogen embrittling effects accumulation
Validation of Two-Layer Model for Underexpanded Hydrogen Jets
Sep 2019
Publication
Previous studies have shown that the two-layer model more accurately predicts hydrogen dispersion than the conventional notional nozzle models without significantly increasing the computational expense. However the model was only validated for predicting the concentration distribution and has not been adequately validated for predicting the velocity distributions. In the present study particle imaging velocimetry (PIV) was used to measure the velocity field of an underexpanded hydrogen jet released at 10 bar from a 1.5 mm diameter orifice. The two-layer model was the used to calculate the inlet conditions for a two-dimensional axisymmetric CFD model to simulate the hydrogen jet downstream of the Mach disk. The predicted velocity spreading and centerline decay rates agreed well with the PIV measurements. The predicted concentration distribution was consistent with data from previous planar Rayleigh scattering measurements used to verify the concentration distribution predictions in an earlier study. The jet spreading was also simulated using several widely used notional nozzle models combined with the integral plume model for comparison. These results show that the velocity and concentration distributions are both better predicted by the two-layer model than the notional nozzle models to complement previous studies verifying only the predicted concentration profiles. Thus this study shows that the two-layer model can accurately predict the jet velocity distributions as well as the concentration distributions as verified earlier. Though more validation studies are needed to improve confidence in the model and increase the range of validity the present work indicates that the two-layer model is a promising tool for fast accurate predictions of the flow fields of underexpanded hydrogen jets.
Characterization of Hydrogen Transport Accidents in Japan Based on Network Theory
Sep 2019
Publication
Realizing the hydrogen economy in Japan entails a risk assessment of its domestic hydrogen supply especially hydrogen transport by road. The first step of the risk assessment is to characterize the hydrogen transport accidents from different energy carriers. However it is difficult to characterize the accidents because hydrogen transport systems have not been fully implemented in Japan. The aim of this study is to characterize the hydrogen transport accidents from different energy carriers in Japan. We studied three major energy carriers namely compressed hydrogen liquefied hydrogen and liquid organic hydride. The accident networks based on network theory were constructed to capture the comprehensive accident processes and quantitatively characterized the hydrogen transport accidents from different energy carriers. The results clarified the differences and similarities in the accident process amongst the energy carriers. Furthermore key accident events were identified. This study contributes to the development of comprehensive hydrogen transport accident scenarios for risk assessment.
Numerical study of the release and dispersion of a light gas using 3D CFD code GASFLOW-MPI
Sep 2017
Publication
With the development of the hydrogen economy it requires a better understanding of the potential for fires and explosions associated with the unintended release of hydrogen within a partially confined space. In order to mitigate the hydrogen fire and explosion risks effectively accurate predictions of the hydrogen transport and mixing processes are crucial. It is well known that turbulence modelling is one of the key elements for a successful simulation of gas mixing and transport. GASFLOW-MPI is a scalable CFD software solution used to predict fluid dynamics conjugate heat and mass transfer chemical kinetics aerosol transportation and other related phenomena. In order to capture more turbulence information the Large Eddy Simulation (LES) model and LES/RANS hybrid model Detached Eddy Simulation (DES) have been implemented and validated in 3-D CFD code GASFLOW-MPI. The standard Smagorisky SGS model is utilized in LES turbulence model. And the k-epsilon based DES model is employed. This paper assesses the capability of algebraic k-epsilon DES and LES turbulence model to simulate the mixing and transport behavior of highly buoyant gases in a partially confined geometry. Simulation results agree well with the overall trend measured in experiments conducted in a reduced scale enclosure with idealized leaks which shows that all these four turbulent models are validated and suitable for the simulation of light gas behavior. Furthermore the numerical results also indicate that the LES and DES model could be used to analysis the turbulence behavior in the hydrogen safety problems.
Decarbonising the UK’s Gas Network - Realising the Green Power-to-hydrogen Opportunity in the East Network
Aug 2020
Publication
Although the UK has done a great job of decarbonising electricity generation to get to net zero we need to tackle harder-to-decarbonise sectors like heat transport and industry. Decarbonised gas – biogases hydrogen and the deployment of carbon capture usage and storage (CCUS) – can make our manufacturing more sustainable minimise disruption to families and deliver negative emissions.
Developing the capability to produce hydrogen at scale is one of the key challenges in the race to meet the UK’s ambitious net zero targets. Using the East Neuk of Fife - with its abundant on- and offshore renewables resource and well-developed electricity and gas networks – as a test bed we investigated the use of surplus electricity generated by renewables to produce green hydrogen which could then be used to heat homes and businesses carbon-free.
Aims
The study focused on answering a number of important questions around bringing power-to-hydrogen to Fife including:
How much low-cost low-carbon electricity would be available to a power-to-hydrogen operator in Fife and how much hydrogen could be produced today and in 2040? How much hydrogen storage would be required to meet demand under three end-use cases: injection into the natural gas grid; use in a dedicated hydrogen grid for heating; and use as transport fuel for a small fleet of vehicles? What if any network upgrades could be avoided by implementing power-to-hydrogen? Which hydrogen end-use markets would be most attractive for a power-to-hydrogen operator? What are the regulatory legislative or market barriers to be overcome to realise large-scale deployment of power-to-hydrogen?
The study
Our expert researchers used a high-level model of the European electricity system and established wholesale prices generation volumes by generation type and constrained generation in Fife. Considering both the present day and a 2040 picture based on National Grid’s Two Degrees Future Energy Scenarios our team explored a number of configurations of power generation and hydrogen end-use to assess the value associated with producing hydrogen.
Alongside this modelling our team conducted a comprehensive review of power-to-hydrogen legislation and regulation and reports and academic papers to identify the current characteristics and direction of the sector observe where most progress had been made and identify lessons learned.
This report and any attachment is freely available on the ENA Smarter Networks Portal here. IGEM Members can download the report and any attachment directly by clicking on the pdf icon above.
Developing the capability to produce hydrogen at scale is one of the key challenges in the race to meet the UK’s ambitious net zero targets. Using the East Neuk of Fife - with its abundant on- and offshore renewables resource and well-developed electricity and gas networks – as a test bed we investigated the use of surplus electricity generated by renewables to produce green hydrogen which could then be used to heat homes and businesses carbon-free.
Aims
The study focused on answering a number of important questions around bringing power-to-hydrogen to Fife including:
How much low-cost low-carbon electricity would be available to a power-to-hydrogen operator in Fife and how much hydrogen could be produced today and in 2040? How much hydrogen storage would be required to meet demand under three end-use cases: injection into the natural gas grid; use in a dedicated hydrogen grid for heating; and use as transport fuel for a small fleet of vehicles? What if any network upgrades could be avoided by implementing power-to-hydrogen? Which hydrogen end-use markets would be most attractive for a power-to-hydrogen operator? What are the regulatory legislative or market barriers to be overcome to realise large-scale deployment of power-to-hydrogen?
The study
Our expert researchers used a high-level model of the European electricity system and established wholesale prices generation volumes by generation type and constrained generation in Fife. Considering both the present day and a 2040 picture based on National Grid’s Two Degrees Future Energy Scenarios our team explored a number of configurations of power generation and hydrogen end-use to assess the value associated with producing hydrogen.
Alongside this modelling our team conducted a comprehensive review of power-to-hydrogen legislation and regulation and reports and academic papers to identify the current characteristics and direction of the sector observe where most progress had been made and identify lessons learned.
This report and any attachment is freely available on the ENA Smarter Networks Portal here. IGEM Members can download the report and any attachment directly by clicking on the pdf icon above.
Simulations of Hydrogen Production by Methanol Steam Reforming
Jan 2019
Publication
Methanol is regarded as an important feedstock for hydrogen production due to its high energy density and superior transportability. A tubular packed-bed reactor performing the methanol steam reforming (MSR) process was modeled by adopting computational fluid dynamics (CFD) software to analyze its performance. Kinetic parameters of the reactions were adjusted according to the literatures and our previous experimental results. The methanol conversion the hydrogen production rate and the CO concentration in the produced mixture were evaluated by considering different levels of the length and temperature of the catalyst bed the steam-to-carbon ratio and the space velocity of the feedstocks. Moreover the correlation between the dimensionless parameter Damköhler number and the methanol conversion was also investigated.
Review of Power-to-Gas Projects in Europe
Nov 2018
Publication
Core of the Power-to-Gas (PtG) concept is the utilization of renewable electricity to produce hydrogen via water electrolysis. This hydrogen can be used directly as final energy carrier or can be converted to e.g. methane synthesis gas liquid fuels electricity or chemicals. To integrate PtG into energy systems technical demonstration and systems integration is of mayor importance. In total 128 PtG research and demonstration projects are realized or already finished in Europe to analyze these issues by May 2018. Key of the review is the identification and assessment of relevant projects regarding their field of application applied processes and technologies for electrolysis type of methanation capacity location and year of commissioning. So far main application for PtX is the injection of hydrogen or methane into the natural gas grid for storing electricity from variable renewable energy sources. Producing fuels for transport is another important application of PtX. In future PtX gets more important for refineries to lower the carbon food print of the products.
Flow of Hydrogen from Buried Leaks
Sep 2019
Publication
The substitution of hydrogen for natural gas within a gas network has implications for the potential rate of leakage from pipes and the distribution of gas flow driven by such leaks. This paper presents theoretical analyses of low-pressure flow through porous ground in a range of circumstances and practical experimental work at a realistic scale using natural gas hydrogen or nitrogen for selected cases. This study considers flow and distribution of 100% hydrogen. A series of eight generic flow regimes have been analysed theoretically e.g. (i) a crack in uncovered ground (ii) a crack under a semi-permeable cover in a high porosity channel (along a service line or road). In all cases the analyses yield both the change in flow rate when hydrogen leaks and the change in distance to which hydrogen gas can travel at a dangerous rate compared to natural gas. In some scenarios a change to hydrogen gas from natural gas makes minimal difference to the range (i.e. distance from the leak) at which significant gas flows will occur. However in cases where the leak is covered by an impermeable membrane a change to hydrogen from natural gas may extend the range of significant gas flow by tens or even hundreds of metres above that of natural gas. Experimental work has been undertaken in specific cases to investigate the following: (i) Flow rate vs pressure curves for leaks into media with different permeability (ii) Effects of the water content of the ground on gas flow (iii) Distribution of surface gas flux near a buried leak
Tracking the Evolution of a Single Composite Particle During Redox Cycling for Application in H2 Production
Mar 2020
Publication
Composite materials consisting of metal and metal oxide phases are being researched intensively for application in various energy conversion and storage technologies. In these applications composites are often expected to operate under redox conditions at elevated temperature. The understanding of the dynamics of composite phase and morphology evolution during redox cycling is still very limited yet critical to maximising performance and increasing durability. Here we track the microstructural evolution of a single composite particle over 200 redox cycles for hydrogen production by chemical looping using multi-length scale X-ray computed tomography. We show that redox cycling triggers a centrifugal redispersion of the metal phase and a centripetal clustering of porosity both seemingly driven by the asymmetric nature of oxygen exchange in composites. We show that initially the particle develops a large amount of internal porosity which boosts activity but on the long term this facilitates structural and compositional reorganisation and eventually degradation. We also correlate the microstructural data with phase and activity analysis to identify structure-property correlations which not only provide valuable insight into the evolution of composite materials under redox conditions but also for the design of new composite materials with enhanced durability.
Comparison of Regulations Codes and Standards for Hydrogen Refueling Stations in Japan and France
Sep 2019
Publication
The states of Regulations Codes and Standards (RCS) of hydrogen refueling stations (HRSs) in Japan and France are compared and specified items to understand correspondence and differences among each RCSs for realizing harmonization in RCS. Japan has been trying to reform its RCSs to reduce HRS installation and operation costs as a governmental target. Specific crucial regulatory items such as safety distances mitigation means materials for hydrogen storage and certification of anti-explosion proof equipments are compared in order to identify the origins of the current obstacles for disseminating HRS.
Experimental Research on Low Calorific Value Gas Blended with Hydrogen Engine
Mar 2019
Publication
Experimental research on performance and emissions of engine fuelled with low calorific value gas blended with hydrogen was carried out and indicated thermal efficiency engine torque indicator diagram pressure rise rate and emissions with different hydrogen ratios were also analyzed. Experimental results show that with the increase of hydrogen fraction and CNG fraction in mixtures the indicated thermal efficiency increased. The engine power output is influenced by both low calorific value and hydrogen fractions. With the increase of hydrogen fraction in mixtures HC emissions decrease CO and NOx emissions increase. An engine operating on lean-burn low calorific value gas blended with hydrogen is favourable for getting lower emissions.
Thermal Radiation from Cryogenic Hydrogen Jet Fires
Sep 2017
Publication
The thermal hazards from ignited under-expanded cryogenic releases are not yet fully understood and reliable predictive tools are missing. This study aims at validation of a CFD model to simulate flame length and radiative heat flux for cryogenic hydrogen jet fires. The simulation results are compared against the experimental data by Sandia National Laboratories on cryogenic hydrogen fires from storage with pressure up to 5 bar abs and temperature in the range 48–82 K. The release source is modelled using the Ulster's notional nozzle theory. The problem is considered as steady-state. Three turbulence models were applied and their performance was compared. The realizable k-ε model showed the best agreement with experimental flame length and radiative heat flux. Therefore it has been employed in the CFD model along with Eddy Dissipation Concept for combustion and Discrete Ordinates (DO) model for radiation. A parametric study has been conducted to assess the effect of selected numerical and physical parameters on the simulations capability to reproduce experimental data. DO model discretisation is shown to strongly affect simulations indicating 10 × 10 as minimum number of angular divisions to provide a convergence. The simulations have shown sensitivity to experimental parameters such as humidity and exhaust system volumetric flow rate highlighting the importance of accurate and extended publication of experimental data to conduct precise numerical studies. The simulations correctly reproduced the radiative heat flux from cryogenic hydrogen jet fire at different locations.
The Influence of Hydrogen Desorption on Micromechanical Properties and Tribological Behavior of Iron and Carbon Steels
Dec 2018
Publication
The influence of the previous electrolytic hydrogenation on the micromechanical properties and tribological behavior of the surface layers of iron and carbon steels has been studied. The concentrations of diffusion-moving and residual hydrogen in steels are determined depending on the carbon content. It is shown that the amount of sorbed hydrogen is determined by the density of dislocations and the relative volume of cementite. After desorption of diffusion-moving hydrogen the microhardness increases and materials plasticity decreases. The change of these characteristics decreases with the increase of carbon content in the steels. Internal stresses increase and redistribute under hydrogen desorption. Fragmentation of ferrite and perlite occurs as a result of electrolytic hydrogenation. Ferrite is characterized by the structure fragmentation and change of the crystallographic orientation of planes. The perlite structure shows the crushing of cementite plates and their destruction. The influence of hydrogen desorption on the microhardness of structural components of ferrite-perlite steels is shown. Large scattering of microhardness is found in perlite due to different diffusion rates of hydrogen because of the unequally oriented cementite plates. It was found that the tendency of materials to blister formation is reduced with the increase of carbon content. The influence of hydrogen on the tribological behaviour of steels under dry and boundary friction has been studied. It is shown that hydrogen desorption intensifies the materials wear. After hydrogen desorption tribological behaviour is determined by the adhesion interaction between the contacting pairs.
New Paradigms in Hydrogen Explosion Modelling Using an Industrial CFD Code
Sep 2019
Publication
It is well-known that deflagration to detonation transition (DDT) may be a significant threat for hydrogen explosions. This paper presents a summary of the work carried out for the development of models in order to enable the industrial computational fluid dynamic (CFD) tool FLACS to provide indications about the possibility of a deflagration-to-detonation transition (DDT). The likelihood of DDT has been expressed in terms of spatial pressure gradients across the flame front. This parameter is able to visualize when the flame front captures the pressure front which is the case in situations when fast deflagrations transition to detonation. Reasonable agreement was obtained with experimental observations in terms of explosion pressures transition times and flame speeds for several practical geometries. The DDT model has also been extended to develop a more meaningful criterion for estimating the likelihood of DDT by comparison of the geometric dimensions with the detonation cell size. The conclusion from simulating these experiments is that the FLACS DPDX criterion seems robust and will generally predict the onset DDTs with reasonable precision including the exact location where DDT may happen. The standard version of FLACS can however not predict the consequences if there is DDT as only deflagration flames are modelled. Based on the methodology described above an approach for predicting detonation flames and explosion loads has been developed. The second part of the paper covers new paradigms associated with risk assessment of a hydrogen infrastructure such as a refueling station. In particular approaches involving one-to-one coupling between CFD and FEA modelling are summarized. The advantages of using such approaches are illustrated. This can have wide-ranging implications on the design of things like protection walls against hydrogen explosions.
Highly Resolved Large Eddy Simulation of Subsonic Hydrogen Jets – Evaluation of ADREA-HF Code Against Detailed Experiments
Sep 2019
Publication
The main objective of this work is the Large Eddy Simulation (LES) of hydrogen subsonic jets in order to evaluate modelling strategies and to provide guidelines for similar simulations. The ADREAHF code and the experiments conducted by Sandia National Laboratories are used for that purpose. These experiments are particularly ideal for LES studies because turbulent fluctuations have been measured which is something rare in hydrogen experiments. Hydrogen is released vertically from a small orifice of 1.91 mm diameter into an unconfined stagnant environment. Three experimental cases are simulated with different inlet velocity (49.7 76.0 and 133.9 m/s) which corresponds to transitional or turbulent flows. Hydrogen mass fraction and velocity mean values and fluctuations are compared against the experimental data. The Smagorinsky subgrid-scale model is mainly used. In the 49.7 m/s case the RNG LES is also evaluated. Several grid resolutions are used to assess the effect on the results. The amount of the resolved by the LES turbulence and velocity spectra are presented. Finally the effect of the release modelling is discussed.
Detailed Examination of Deformations Induced by Internal Hydrogen Explosions: Part 1 Experiments
Sep 2019
Publication
In industry handling hydrogen explosion presents a potential danger due to its effects on people and property. In the nuclear industry this explosion which is possible during severe accidents can challenge the reactor containment and it may lead to a release of radioactive materials into the environment. The Three Mile Island accident in the United States in 1979 and more recently the Fukushima accident in Japan have highlighted the importance of this phenomenon for a safe operation of nuclear installations as well as for the accident management.<br/>In 2013 the French Research Agency (ANR) launched the MITHYGENE project with the main aim of improving knowledge on hydrogen risk for the benefit of reactor safety. One of the topics in this project is devoted to the effect of hydrogen explosions on solid structures. In this context CEA conducted a test program with its SSEXHY facility to build a database on deformations of simple structures following an internal hydrogen explosion. Different regimes of explosion propagation have been studied ranging from detonation to slow deflagration. Different targets were tested such as cylinders and plates of variable thickness and diameter. Detailed instrumentation was used to obtain data for the validation of coupled CFD models of combustion and structural dynamics.<br/>This article details the experimental set-up and the results obtained. A companion article focuses on the comparison between these experimental results and the prediction of CFD numerical models
Techno-economic Analysis on Renewable Energy Via Hydrogen, Views from Macro and Micro Scopes
Mar 2019
Publication
This paper addresses from both macro- and micro- areal coverage in introducing hydrogen system in terms of cost and performance where the produced hydrogen from surplus photovoltaic (PV) power is stored. Feed-in tariff in Japan had successful achievement for great expansion of renewable energy systems (RES) causing problematic operation due to excess power by overcapacity of RES. One of the candidate approaches to overcome this surplus energy by RES is Power to gas (P2G) system using electrolysis cells (ECs) fuel cells (FCs) or co-firing in gas turbines both for energy conversion as well as power balancing. Numerous studies had been investigated on P2G however within our knowledge no study had been addressed the system from both coverages with different capacity and scales. We investigate micro level (zero emission building in our university) and macro level (Kyushu one of big regions in Japan). We describe for macro side preliminary result on economic analysis of using surplus power of RES via production and storage of hydrogen while for micro side research design.
Experimental Investigation of Unconfined Spherical and Cylindrical Flame Propagation in Hydrogen-air Mixtures
Sep 2019
Publication
This paper presents results of experimental investigations on spherical and cylindrical flame propagation in pre-mixed H2/air-mixtures in unconfined and semi-confined geometries. The experiments were performed in a facility consisting of two transparent solid walls with 1 m2 area and four weak side walls made from thin plastic film. The gap size between the solid walls was varied stepwise from thin layer geometry (6 mm) to cube geometry (1 m). A wide range of H2/air-mixtures with volumetric hydrogen concentrations from 10% to 45% H2 was ignited between the transparent solid walls. The propagating flame front and its structure was observed with a large scale high speed shadow system. Results of spherical and cylindrical flame propagation up to a radius of 0.5 m were analyzed. The presented spherical burning velocity model is used to discuss the self-acceleration phenomena in unconfined and unobstructed pre-mixed H2/air flames.
A Review for Consistent Analysis of Hydrogen Permeability through Dense Metallic Membranes
Jun 2020
Publication
The hydrogen permeation coefficient (ϕ) is generally used as a measure to show hydrogen permeation ability through dense metallic membranes which is the product of the Fick’s diffusion coefficient (D) and the Sieverts’ solubility constant (K). However the hydrogen permeability of metal membranes cannot be analyzed consistently with this conventional description. In this paper various methods for consistent analysis of hydrogen permeability are reviewed. The derivations of the descriptions are explained in detail and four applications of the consistent descriptions of hydrogen permeability are introduced: (1) prediction of hydrogen flux under given conditions (2) comparability of hydrogen permeability (3) understanding of the anomalous temperature dependence of hydrogen permeability of Pd-Ag alloy membrane and (4) design of alloy composition of non-Pd-based alloy membranes to satisfy both high hydrogen permeability together with strong resistance to hydrogen embrittlement.
Towards Fire Test Protocol for Hydrogen Storage Tanks
Sep 2019
Publication
The reproducibility of fire test protocol in the UN Global Technical Regulation on Hydrogen and Fuel Cell Vehicles (GTR#13) is not satisfactory. Results differ from laboratory to laboratory and even at the same laboratory when fires of different heat release (HRR) rate are applied. This is of special importance for fire test of tank without thermally activated pressure relief devise (TPRD) the test requested by firemen. Previously the authors demonstrated a strong dependence of tank fire resistance rating (FRR) i.e. time from fire test initiation to moment of tank rupture on the HRR in a fire. The HRR for complete combustion at the open is a product of heat of combustion and flow rate of a fuel i.e. easy to control in test parameter. It correlates with heat flux to the tank from a fire – the higher HRR the higher heat flux. The control of only temperature underneath a tank in fire test as per the current fire test protocol of UN GTR#13 without controlling HRR of fire source is a reason of poor fire test reproducibility. Indeed a candle flame can easily provide a required by the protocol temperature in points of control but such test arrangements could never lead to tank rupture due to fast heat dissipation from such tiny fire source i.e. insufficient and very localised heat flux to the tank. Fire science requires knowledge of heat flux along with the temperature to characterise fire dynamics. In our study published in 2018 the HRR is suggested as an easy to control parameter to ensure the fire test reproducibility. This study demonstrates that the use of specific heat release rate HRR/A i.e. HRR in a fire source divided by the area of the burner projection A enables testing laboratories to change freely a burner size depending on a tank size without affecting fire test reproducibility. The invariance of FRR at its minimum level with increase of HRR/A above 1 MW/m2 has been discovered first numerically and then confirmed by experiments with different burners and fuels. The validation of computational fluid dynamics (CFD) model against the fire test data is presented. The numerical experiments with localised fires under a vehicle with different HRR/A are performed to understand the necessity of the localised fire test protocol. The understanding of fire test underlying physics will underpin the development of protocol providing test reproducibility.
A Large-Scale Study on the Effect of Ambient Conditions on Hydrogen Recombiner Induced Ignition
Sep 2019
Publication
Hydrogen recombiners (known in the nuclear industry as passive autocatalytic recombiners-PARs) in general can be utilized for mitigation of hydrogen in controlled areas where there is potential for hydrogen release and ventilation is not practical. Recombiners are widely implemented in the nuclear industry however there are other applications of recombiners outside the nuclear industry that have not yet been explored practically. The most notable benefit of recombiners over conventional hydrogen mitigation measures is their passive capability where power or operator actions are not needed for the equipment to remove hydrogen when it is present.
One of most significant concerns regarding the use of hydrogen recombiners in industry is their potential to ignite hydrogen at elevated concentrations (>6 vol%). The catalyst heated by the exothermal H2–O2 reaction is known to be a potential ignition source to cause hydrogen burns. An experimental program utilizing a full-size PAR at the Large-Scale Vented Combustion Test Facility (LSVCTF) has been carried out by Canadian Nuclear Laboratories (CNL) to investigate and understand the behaviour of hydrogen combustion induced by a PAR on a large-scale basis. A number of parameters external to the PAR have been explored including the effect of ambient humidity (steam) and temperature. The various aspects of this investigation will be discussed in this paper and examples of results are provided.
One of most significant concerns regarding the use of hydrogen recombiners in industry is their potential to ignite hydrogen at elevated concentrations (>6 vol%). The catalyst heated by the exothermal H2–O2 reaction is known to be a potential ignition source to cause hydrogen burns. An experimental program utilizing a full-size PAR at the Large-Scale Vented Combustion Test Facility (LSVCTF) has been carried out by Canadian Nuclear Laboratories (CNL) to investigate and understand the behaviour of hydrogen combustion induced by a PAR on a large-scale basis. A number of parameters external to the PAR have been explored including the effect of ambient humidity (steam) and temperature. The various aspects of this investigation will be discussed in this paper and examples of results are provided.
Micro-grid Design and Life-cycle Assessment of a Mountain Hut's Stand-alone Energy System with Hydrogen Used for Seasonal Storage
Dec 2020
Publication
Mountain huts as special stand-alone micro-grid systems are not connected to a power grid and represent a burden on the environment. The micro-grid has to be flexible to cover daily and seasonal fluctuations. Heat and electricity are usually generated with fossil fuels due to the simple on-off operation. By introducing renewable energy sources (RESs) the generation of energy could be more sustainable but the generation and consumption must be balanced. The paper describes the integration of a hydrogen-storage system (HSS) and a battery-storage system (BattS) in a mountain hut. The HSS involves a proton-exchange-membrane water electrolyser (PEMWE) a hydrogen storage tank (H2 tank) a PEM fuel cell (PEMFC) and a BattS consisting of lead-acid batteries. Eight micro-grid configurations were modelled using HOMER and evaluated from the technical environmental and economic points of view. A life-cycle assessment analysis was made from the cradle to the gate. The micro-grid configurations with the HSS achieve on average a more than 70% decrease in the environmental impacts in comparison to the state of play at the beginning but require a larger investment. Comparing the HSS with the BattS as a seasonal energy storage the hydrogen-based technology had advantages for all of the assessed criteria.
Unattended Hydrogen Vehicle Fueling Challenges and Historical Context
Sep 2019
Publication
Hydrogen fuelling in the US is unattended activity although this precedent is not without several challenges that have been addressed in the past decade. This paper provides the recent history and the generic safety case which has established this precedent for hydrogen. The paper also explores the longer history of unattended gasoline fuelling and attempts to help place hydrogen fuelling into the longer history of fuelling personal vehicles.
No more items...