Publications
Net Zero – Technical Report
May 2019
Publication
This technical report accompanies the ‘Net Zero’ advice report which is the Committee’s recommendation to the UK Government and Devolved Administrations on the date for a net-zero emissions target in the UK and revised long-term targets in Scotland and Wales.<br/>The conclusions in our advice report are supported by detailed analysis that has been carried out for each sector of the economy plus consideration of F-gas emissions and greenhouse gas removals. The purpose of this technical report is to lay out that analysis.
The New Facility for Hydrogen and Fuel Cell Vehicle Safety Evaluation
Sep 2005
Publication
For the evaluation of hydrogen and fuel cell vehicle safety a new comprehensive facility was constructed in our institute. The new facility includes an explosion resistant indoor vehicle fire test building and high pressure hydrogen tank safety evaluation equipment. The indoor vehicle fire test building has sufficient strength to withstand even an explosion of a high pressure hydrogen tank of 260 liter capacity and 70 MPa pressure. It also has enough space to observe vehicle fire flames of not only hydrogen but also other conventional fuels such as gasoline or compressed natural gas. The inside dimensions of the building are a 16 meter height and 18 meter diameter. The walls are made of 1.2 meter thick reinforced concrete covered at the insides with steel plate. This paper shows examples of hydrogen vehicle fires compared with other fuel fires and hydrogen high pressure tank fire tests utilizing several kinds of fire sources. Another facility for evaluation of high pressure hydrogen tank safety includes a 110 MPa hydrogen compressor with a capacity of 200 Nm3/h a 300 MPa hydraulic compressor for burst tests of 70 MPa and higher pressure tanks and so on. This facility will be used for not only the safety evaluation of hydrogen and fuel cell vehicles but also the establishment of domestic/international regulations codes and standards.
Next Steps for UK Heat Policy
Oct 2016
Publication
Heating and hot water for UK buildings make up 40% of our energy consumption and 20% of our greenhouse gas emissions. It will be necessary to largely eliminate these emissions by around 2050 to meet the targets in the Climate Change Act and to maintain the UK contribution to international action under the Paris Agreement.<br/>Progress to date has stalled. The Government needs a credible new strategy and a much stronger policy framework for buildings decarbonisation over the next three decades. Many of the changes that will reduce emissions will also contribute toward modern affordable comfortable homes and workplaces and can be delivered alongside a major expansion in the number of homes. This report considers that challenge and sets out possible steps to meet it.
The Compatibility of Onshore Petroleum with Meeting the UK’s Carbon Budgets
Jul 2016
Publication
The Committee’s report ‘The compatibility of UK onshore petroleum with meeting the UK’s carbon budgets’ is the result of a new duty under the Infrastructure Act 2015. This duty requires the CCC to advise the Secretary of State for Energy and Climate Change about the implications of exploitation of onshore petroleum including shale gas for meeting UK carbon budgets.<br/>The CCC’s report finds that the implications of UK shale gas exploitation for greenhouse gas emissions are subject to considerable uncertainty – from the size of any future industry to the potential emissions footprint of shale gas production. It also finds that exploitation of shale gas on a significant scale is not compatible with UK carbon budgets or the 2050 commitment to reduce emissions by at least 80% unless three tests are satisfied.
UK Business Opportunities of Moving to a Low-carbon Economy
Mar 2017
Publication
The following report accompanies the Committee on Climate Change’s 2017 report on energy prices and bills. It was written by Ricardo Energy and Environment.
The report provides an analysis of the opportunities to UK businesses to supply global markets with low carbon materials and goods and services. The report considers: the position of the current UK low carbon economy the size of the market opportunity for UK businesses in 2030 and 2050 the barriers to UK business capturing a larger share of the global market the opportunity to increase the UK’s share of future global markets
Link to Document
The report provides an analysis of the opportunities to UK businesses to supply global markets with low carbon materials and goods and services. The report considers: the position of the current UK low carbon economy the size of the market opportunity for UK businesses in 2030 and 2050 the barriers to UK business capturing a larger share of the global market the opportunity to increase the UK’s share of future global markets
Link to Document
Reducing UK Emissions Progress Report to Parliament
Jun 2020
Publication
This is the Committee’s 2020 report to Parliament assessing progress in reducing UK emissions over the past year. This year the report includes new advice to the UK Government on securing a green and resilient recovery following the COVID-19 pandemic. The Committee’s new analysis expands on its May 2020 advice to the UK Prime Minister in which it set out the principles for building a resilient recovery. In its new report the Committee has assessed a wide set of measures and gathered the latest evidence on the role of climate policies in the economic recovery. Its report highlights five clear investment priorities in the months ahead:
- Low-carbon retrofits and buildings that are fit for the future
- Tree planting peatland restoration and green infrastructure
- Energy networks must be strengthened
- Infrastructure to make it easy for people to walk cycle and work remotely
- Moving towards a circular economy.
- Reskilling and retraining programmes
- Leading a move towards positive behaviours
- Targeted science and innovation funding
Batteries and Hydrogen Technology: Keys for a Clean Energy Future
May 2020
Publication
As governments focus on dealing with the Covid-19 health emergency they are increasingly turning their attention to the impact of shutting down their economies and how to revive them quickly through stimulus measures. Economic recovery packages offer a unique opportunity to create jobs while supporting clean energy transitions around the world.
Energy efficiency and renewable energy like wind and solar PV – the cornerstones of any clean energy transition – are good places to start. Those industries employ millions of people across their value chains and offer environmentally sustainable ways to create jobs and help revitalise the global economy.
But more than just renewables and efficiency will be required to put the world on track to meet climate goals and other sustainability objectives. IEA analysis has repeatedly shown that a broad portfolio of clean energy technologies will be needed to decarbonise all parts of the economy. Batteries and hydrogen-producing electrolysers stand out as two important technologies thanks to their ability to convert electricity into chemical energy and vice versa. This is why they also deserve a place in any economic stimulus packages being discussed today.
Link to Document on IEA Website
Energy efficiency and renewable energy like wind and solar PV – the cornerstones of any clean energy transition – are good places to start. Those industries employ millions of people across their value chains and offer environmentally sustainable ways to create jobs and help revitalise the global economy.
But more than just renewables and efficiency will be required to put the world on track to meet climate goals and other sustainability objectives. IEA analysis has repeatedly shown that a broad portfolio of clean energy technologies will be needed to decarbonise all parts of the economy. Batteries and hydrogen-producing electrolysers stand out as two important technologies thanks to their ability to convert electricity into chemical energy and vice versa. This is why they also deserve a place in any economic stimulus packages being discussed today.
Link to Document on IEA Website
Integral Models for High Pressure Hydrogen - Methane Releases
Sep 2009
Publication
The development of hydrogen as energy carrier is promoted by the increasing in energy demand depletion of fossil resources and the global warming. However this issue relies primarily on the safety aspect which requires the knowledge in the case of gas release of the quantities such as the flammable cloud size release path and the location of the lower flammability limit of the mixture. The integral models for predicting the atmospheric dispersion were extensively used in previous works for low pressure releases such as pollutant and flammable gas transport. In the present investigation this approach is extended to the high pressure gas releases. The model is developed in the non-Boussinesq approximation and is based on Gaussian profiles for buoyant variable density jet or plume in stratified atmosphere with a crossflow. Validations have been performed on a broad range of hydrogen methane and air dispersion cases including vertical or horizontal jets or plumes into a quiescent atmosphere or with crosswind.
UK Climate Action Following the Paris Agreement
Oct 2016
Publication
The Paris Agreement marks a significant positive step in global action to tackle climate change. This report considers the domestic actions the UK Government should take as part of a fair contribution to the aims of the Agreement.<br/>The report concludes that the Paris Agreement is a significant step forward in global efforts to tackle climate change. It is more ambitious in its aims to limit climate change than the basis of the UK’s existing climate targets. However it is not yet appropriate to set new UK targets. Existing targets are already stretching and the priority is to take action to meet them.
Explosion Characteristics of Hydrogen-air and Hydrogen-Oxygen Mixtures at Elevated Pressures
Sep 2005
Publication
An essential problem for the operation of high pressure water electrolyzers and fuel cells is the permissible contamination of hydrogen and oxygen. This contamination can create malfunction and in the worst case explosions in the apparatus and gas cylinders. In order to avoid dangerous conditions the exact knowledge of the explosion characteristics of hydrogen/air and hydrogen/oxygen mixtures is necessary. The common databases e.g. the CHEMSAFE® database published by DECHEMA BAM and PTB contains even a large number of evaluated safety related properties among other things explosion limits which however are mainly measured according to standard procedures under atmospheric conditions.<br/>Within the framework of the European research project “SAFEKINEX” and other research projects the explosion limits explosion pressures and rates of pressure rise (KG values) of H2/air and H2/O2 mixtures were measured at elevated conditions of initial pressures and temperatures by the Federal Institute of Materials Research and Testing (BAM). Empirical equations of the temperature influence could be deduced from the experimental values. An anomaly was found at the pressure influence on the upper explosion limits of H2/O2 and H2/air mixtures in the range of 20 bars. In addition explosion pressures and also rates of pressure rises have been measured for different hydrogen concentrations inside the explosion range. Such data are important for constructive explosion protection measures. Furthermore the mainly used standards for the determination of explosion limits have been compared. Therefore it was interesting to have a look at the systematic differences between the new EN 1839 tube and bomb method ASTM E 681-01 and German DIN 51649-1.
Scenarios for Deployment of Hydrogen in Meeting Carbon Budgets (E4tech)
Nov 2015
Publication
This research considers the potential role of hydrogen in meeting the UK’s carbon budgets. It was written by consultancy E4tech.<br/>The CCC develops scenarios for the UK’s future energy system to assess routes to decarbonisation and to advise UK Government on policy options. Uncertainty to 2050 is considerable and so different scenarios are needed to assess different trajectories targets and technology combinations. Some of these scenarios assess specific technologies or fuels which have the potential to make a significant contribution to future decarbonisation.<br/>Hydrogen is one such fuel. It has been included in limited quantities in some CCC scenarios but not extensively examined in part due to perceived or anticipated higher costs than some other options. But as hydrogen technology is developed and deployed the cost projections and other performance indicators have become more favourable.
The Future of Hydrogen
Jun 2019
Publication
At the request of the government of Japan under its G20 presidency the International Energy Agency produced this landmark report to analyse the current state of play for hydrogen and to offer guidance on its future development.
The report finds that clean hydrogen is currently enjoying unprecedented political and business momentum with the number of policies and projects around the world expanding rapidly. It concludes that now is the time to scale up technologies and bring down costs to allow hydrogen to become widely used. The pragmatic and actionable recommendations to governments and industry that are provided will make it possible to take full advantage of this increasing momentum.
Hydrogen and energy have a long shared history – powering the first internal combustion engines over 200 years ago to becoming an integral part of the modern refining industry. It is light storable energy-dense and produces no direct emissions of pollutants or greenhouse gases. But for hydrogen to make a significant contribution to clean energy transitions it needs to be adopted in sectors where it is almost completely absent such as transport buildings and power generation.
The Future of Hydrogen provides an extensive and independent survey of hydrogen that lays out where things stand now; the ways in which hydrogen can help to achieve a clean secure and affordable energy future; and how we can go about realising its potential.
Link to Document on IEA Website
The report finds that clean hydrogen is currently enjoying unprecedented political and business momentum with the number of policies and projects around the world expanding rapidly. It concludes that now is the time to scale up technologies and bring down costs to allow hydrogen to become widely used. The pragmatic and actionable recommendations to governments and industry that are provided will make it possible to take full advantage of this increasing momentum.
Hydrogen and energy have a long shared history – powering the first internal combustion engines over 200 years ago to becoming an integral part of the modern refining industry. It is light storable energy-dense and produces no direct emissions of pollutants or greenhouse gases. But for hydrogen to make a significant contribution to clean energy transitions it needs to be adopted in sectors where it is almost completely absent such as transport buildings and power generation.
The Future of Hydrogen provides an extensive and independent survey of hydrogen that lays out where things stand now; the ways in which hydrogen can help to achieve a clean secure and affordable energy future; and how we can go about realising its potential.
Link to Document on IEA Website
Measuring and Modelling Unsteady Radiation of Hydrogen Combustion
Sep 2005
Publication
Burning hydrogen emits thermal radiation in UV NIR and IR spectral range. Especially in the case of large cloud explosion the risk of heat radiation is commonly underestimated due to the non-visible flame of hydrogen-air combustion. In the case of a real explosion accident organic substances or inert dust might be entrained from outer sources to produce soot or heated solids to substantially increase the heat release by continuum radiation. To investigate the corresponding combustion phenomena different hydrogen-air mixtures were ignited in a closed vessel and the combustion was observed with fast scanning spectrometers using a sampling rate up to 1000 spectra/s. In some experiments to take into account the influence of organic co-combustion a spray of a liquid glycol-ester and milk powder was added to the mixture. The spectra evaluation uses the BAM code of ICT to model bands of reaction products and thus to get the temperatures. The code calculates NIR/IR-spectra (1 - 10 μm) of non-homogenous gas mixtures of H2O CO2 CO NO and HCl taking into consideration also emission of soot particles. It is based on a single line group model and makes also use of tabulated data of H2O and CO2 and a Least Squares Fit of calculated spectra to experimental ones enables the estimation of flame temperatures. During hydrogen combustion OH emits an intense spectrum at 306 nm. This intermediary radical allows monitoring the reaction progress. Intense water band systems between 1.2 and 3 μm emit remarkable amounts of heat radiation according to a measured flame temperature of 2000 K. At this temperature broad optically-thick water bands between 4.5 μm and 10 μm contribute only scarcely to the total heat output. In case of co-combustion of organic materials additional emission bands of CO and CO2 as well as a continuum radiation of soot and other particles occur and particularly increase the total thermal output drastically.
Zero Emission HGV Infrastructure Requirements
May 2019
Publication
The Committee on Climate Change commissioned Ricardo Energy and Environment to carry out research to assess the infrastructure requirements and costs for the deployment of different zero emission heavy goods vehicle (HGV) technology options. The infrastructure considered includes hydrogen refuelling stations ultra-rapid charge points at strategic locations electric overhead recharging infrastructure on the roads and hybrid solutions combining these options.
The research concluded:
It is feasible to build refuelling infrastructure to support the deployment of zero emission HGVs so that they constitute the vast majority of vehicles on the roads by 2050.
Looking at infrastructure alone deploying hydrogen refuelling stations is the cheapest of the options costing a total of £1.7bn in capital expenditure in the time period from now until 2060. The strategic deployment of ultra-rapid charge points is the most expensive at £10.7bn. In all scenarios a significant number of smaller electric HGVs are deployed as these options are available and operating on the streets today. The cost of installing chargers at depots for these vehicles is included.
When the costs of the fuel as well as the infrastructure are included the costs of deploying electricity or hydrogen HGVs are cheaper compared to the continued use of diesel.
Moving to zero-carbon infrastructure for HDVs is a significant challenge and requires planning co-ordination supply chains resource and materials and a skilled workforce as well as strong government policy to enable the market to deliver.
The Report can be found here
The research concluded:
It is feasible to build refuelling infrastructure to support the deployment of zero emission HGVs so that they constitute the vast majority of vehicles on the roads by 2050.
Looking at infrastructure alone deploying hydrogen refuelling stations is the cheapest of the options costing a total of £1.7bn in capital expenditure in the time period from now until 2060. The strategic deployment of ultra-rapid charge points is the most expensive at £10.7bn. In all scenarios a significant number of smaller electric HGVs are deployed as these options are available and operating on the streets today. The cost of installing chargers at depots for these vehicles is included.
When the costs of the fuel as well as the infrastructure are included the costs of deploying electricity or hydrogen HGVs are cheaper compared to the continued use of diesel.
Moving to zero-carbon infrastructure for HDVs is a significant challenge and requires planning co-ordination supply chains resource and materials and a skilled workforce as well as strong government policy to enable the market to deliver.
The Report can be found here
Effect of Hydrogen–diesel Dual-fuel Usage on Performance, Emissions and Diesel Combustion in Diesel Engines
Jul 2016
Publication
Diesel engines are inevitable parts of our daily life and will be in the future. Expensive after-treatment technologies to fulfil normative legislations about the harmful tail-pipe emissions and fuel price increase in recent years created expectations from researchers for alternative fuel applications on diesel engines. This study investigates hydrogen as additive fuel in diesel engines. Hydrogen was introduced into intake manifold using gas injectors as additive fuel in gaseous form and also diesel fuel was injected into cylinder by diesel injector and used as igniter. Energy content of introduced hydrogen was set to 0% 25% and 50% of total fuel energy where the 0% references neat diesel operation without hydrogen injection. Test conditions were set to full load at 750 900 1100 1400 1750 and finally 2100 r/min engine speed. Variation in engine performance emissions and combustion characteristics with hydrogen addition was investigated. Hydrogen introduction into the engine by 25% and 50% of total charge energy reveals significant decrease in smoke emissions while dramatic increase in nitrogen oxides. With increasing hydrogen content a slight rise is observed in total unburned hydrocarbons although CO2 and CO gaseous emissions reduced considerably. Maximum in-cylinder gas pressure and rate of heat release peak values raised with hydrogen fraction.
The Techno-economics Potential of Hydrogen Interconnectors for Electrical Energy Transmission and Storage
Dec 2021
Publication
This research introduces a ‘Hydrogen Interconnector System’ (HIS) as a novel method 7 for transporting electrical energy over long distances. The system takes electricity from 8 stranded renewable energy assets converts it to hydrogen in an electrolyser plant transports 9 hydrogen to the demand centre via pipeline where it is reconverted to electricity in either a 10 gas turbine or fuel cell plant. This paper evaluates the competitiveness of the technology with 11 High Voltage Direct Current (HVDC) systems calculating the following techno-economic 12 indicators; Levelised Cost Of Electricity (LCOE) and Levelised Cost Of Storage (LCOS). The 13 results suggest that the LCOE of the HIS is competitive with HVDC for construction in 2050 14 with distance beyond 350km in case of all scenarios for a 1GW system. The LCOS is lower 15 than an HVDC system using large scale hydrogen storage in 6 out of 12 scenarios analysed 16 including for construction from 2025. The HIS was also applied to three case studies with 17 the results showing that the system outperforms HVDC from LCOS perspectives in all cases 18 and has 15-20% lower investment costs in 2 studies analysed.
Experimental Study of Hot Inert Gas Jet Ignition of Hydrogen-Oxygen Mixture
Sep 2005
Publication
Experiments were performed to investigate the diffusion ignition process that occurs when hot inert gas (argon or nitrogen) is injected into the stoichiometric hydrogen-oxygen mixture at the test section. Detonation wave initiated by spark plug in the driver section in stoichiometric acetylene-oxygen mixture At P=0.5 MPa and room temperature propagates as incident shockwave in the driven section through inert gas after bursting the diaphragm separating the sections. At the end wall of driver section the inert gas is heated behind the reflected shock wave and then injected in to the test section with the stoichiometric hydrogen-oxygen mixture through the hole 8mm in diameter. An increase of the initial pressure of the combustible mixture in the test section from 0.2 to 0.6MPa resulted in decrease of the minimum temperature of injected gas causing ignition from 1650K to 850K. At the same time the induction time for ignition process has increased from 190 to 320μs when hot argon was injected. For the injection of hot nitrogen an increase of the initial pressure of the combustible mixture from 0.2 to 0.4 MPa resulted in decrease of the minimum temperature of injected inert gas giving ignition from 1150K to 850Kand an increase of the induction time from 170 to 240μs.The results of experiments indicate that ignition occurs when the static enthalpy of injected mass of inert gas exceeds some critical value. The mechanism of ignition process was also studied by schlieren photography.
Flexible Electricity Dispatch of an Integrated Solar Combined Cycle through Thermal Energy Storage and Hydrogen Production
Jun 2021
Publication
In this work the flexible operation of an Integrated Solar Combined Cycle (ISCC) power plant has been optimized considering two different energy storage approaches. The objective of this proposal is to meet variable users’ grid demand for an extended period at the lowest cost of electricity. Medium temperature thermal energy storage (TES) and hydrogen generation configurations have been analyzed from a techno-economic point of view. Results found from annual solar plant performance indicate that molten salts storage solution is preferable based on the lower levelized cost of electricity (0.122 USD/kWh compared to 0.158 USD/kWh from the hydrogen generation case) due to the lower conversion efficiencies of hydrogen plant components. However the hydrogen plant configuration exceeded in terms of plant availability and grid demand coverage as fewer design constraints resulted in a total demand coverage of 2155 h per year. It was also found that grid demand curves from industrial countries limit the deployment of medium-temperature TES systems coupled to ISCC power plants since their typical demand curves are characterized by lower power demand around solar noon when solar radiation is higher. In such scenarios the Brayton turbine design is constrained by noon grid demand which limits the solar field and receiver thermal power design. View Full-Text
2050 Energy Scenarios: The UK Gas Networks Role in a 2050 Whole Energy System
Jul 2016
Publication
Energy used for heat accounts (in terms of final consumption) for approximately 45% of our total energy needs and is critical for families to heat their homes on winter days. Decarbonising heat while still meeting peak winter heating demands is recognised as a big perhaps the biggest challenge for the industry. The way heat has been delivered in the UK has not fundamentally changed for decades and huge investments have been made in gas infrastructure assets ranging from import terminals to networks through to the appliances in our homes. Changing how heat is delivered whichever way is chosen will be a major economic and practical challenge affecting families and businesses everywhere. Any plan to decarbonise will need to address power and transport alongside heat. Our report has also looked at potential decarbonisation of power and transport as part of a whole energy system approach.
In this report we explore ways that the heat sector can be decarbonised by looking at four possible future scenarios set in 2050. These stylised scenarios present illustrative snapshots of alternative energy solutions. The scenarios do not present a detailed roadmap – indeed the future may include some elements from each. We have analysed the advantages disadvantages and costs of each scenario. All our scenarios meet the 2050 Carbon emissions targets. In this report we have concentrated on reductions to CO2 emissions and we have not considered other greenhouse gases.
In this report we explore ways that the heat sector can be decarbonised by looking at four possible future scenarios set in 2050. These stylised scenarios present illustrative snapshots of alternative energy solutions. The scenarios do not present a detailed roadmap – indeed the future may include some elements from each. We have analysed the advantages disadvantages and costs of each scenario. All our scenarios meet the 2050 Carbon emissions targets. In this report we have concentrated on reductions to CO2 emissions and we have not considered other greenhouse gases.
A Hydrogen-Air Explosion in a Process Plant: A Case History
Sep 2005
Publication
In the summer of 1985 a severe hydrogen-air explosion occurred in an ammonia plant in Norway. The accident resulted in two fatalities and the destruction of the building where the explosion took place. This paper presents the main findings from an investigation in 1985 and 1986 of the gas explosion and its consequences. The event started when a gasket in a water pump was blown out. The water pump was situated inside a 100 m long 10 m wide and 7 m high building. The pump was feeding water to a vessel containing hydrogen gas at pressure of 30 bars. This pressure caused a back flow of water flow through the pump and out through the failed gasket. The hydrogen reached the leakage point after about 3 minutes. The discharge of gas lasted some 20 to 30 seconds before the explosion occurred. The total mass of the hydrogen discharge was estimated at 10 to 20 kg hydrogen. The main explosion was very violent and it is likely that the gas cloud detonated. The ignition source was almost certainly a hot bearing. Several damage indicators were used to estimate the amount of hydrogen that exploded. The indicators include deflection of pipes and panels distances traveled by fragments and the distribution of glass breakage. We found that 3.5 to 7 kg of hydrogen must have been burning violently in the explosion. Window glass was broken up to 700 m from the centre of the explosion. Concrete blocks originally part of the north wall of the building and weighing 1.2 metric tons were thrown up to 16 meters. The roof of the building was lifted by an estimated 1.5 meters before resettling. The displacement of the roof caused a guillotine break of a 350 mm diameter pipe connected to the vessel that was the source of the original gas discharge. The gas composition in the vessel was 65 - 95 % hydrogen. This resulted in a large horizontal jet fire lasting about 30 seconds. Minor explosions occurred in the plant culvert system.<br/><br/>To our knowledge this gas explosion is one of the largest industrial hydrogen explosions reported. We believe this case history is a valuable reference for those who are investigating the nature of accidental<br/>hydrogen explosions.
Role of Chemical Kinetics on the Detonation Properties of Hydrogen, Natural Gas & Air Mixtures
Sep 2005
Publication
The first part of the present work is to validate a detailed kinetic mechanism for the oxidation of hydrogen – methane – air mixtures in a detonation waves. A series of experiments on auto-ignition delay times have been performed by shock tube technique coupled with emission spectrometry for H2 / CH4 / O2 mixtures highly diluted in argon. The CH4/H2 ratio was varied from 0 to 4 and the equivalence ratio from 0.4 up to 1. The temperature range was from 1250 K to 2000 K and the pressure behind reflected shock waves was between 0.15 and 1.6 MPa. A correlation was proposed between temperature (K) concentration of chemical species (mol m-3) and ignition delay times. The experimental auto-ignition delay times were compared to the modelled ones using four different mechanisms from the literature: GRI [22] Marinov et al. [23] Hughes et al. [24] Konnov [25]. A large discrepancy was generally found between the different models. The Konnov’s model that predicted auto-ignition delay times close to the measured ones has been selected to calculate the ignition delay time in the detonation waves. The second part of the study concerned the experimental determination of the detonation properties namely the detonation velocity and the cell size. The effect of the initial composition hydrogen to methane ratio and the amount of oxygen in the mixture as well as the initial pressure on the detonation velocity and on the cell size were investigated. The ratio of methane / (methane + hydrogen) varied between 0 and 0.6 for 2 different equivalence ratio (0.75 and 1) while the initial pressure was fixed to 10 kPa. A correlation was established between the characteristic cell size and the ignition delay time behind the leading shock of the detonation. It was clearly showed that methane has an important inhibitor effect on the detonation of these combustible mixtures.
Gas Goes Green: Delivering the Pathway to Net Zero
May 2020
Publication
Gas Goes Green brings together the engineering expertise from the UK’s five gas network operators building on the foundations of our existing grid infrastructure innovation projects and the wider scientific community. This is a blueprint to meet the challenges and opportunities of climate change delivering net zero in the most cost effective and least disruptive way possible.<br/>Delivering our vision is not just an engineering challenge but will involve active participation from policy makers regulators the energy industry and consumers. Gas Goes Green will undertake extensive engagement to deliver our programme and collaborate with existing projects already being delivered across the country.<br/>Britain’s extensive gas network infrastructure provides businesses and the public with the energy they need at the times when they need it the most. The gas we deliver plays a critical role in our everyday lives generating electricity fuelling vehicles heating our homes and providing the significant amounts of energy UK heavy industry needs. The Gas Goes Green programme aims to ensure that consumers continue to realise these benefits by transitioning our infrastructure into a net zero energy system.
Gas Future Scenarios Project- Final Report: A Report on a Study for the Energy Networks Association Gas Futures Group
Nov 2010
Publication
When looking out to 2050 there is huge uncertainty surrounding how gas will be consumed transported and sourced in Great Britain (GB). The extent of the climate change challenge is now widely accepted and the UK Government has introduced a legislative requirement for aggressive reductions in carbon dioxide (CO2) emissions out to 2050. In addition at European Union (EU) level a package of measures has been implemented to reduce greenhouse gas emissions improve energy efficiency and significantly increase the share of energy produced from renewable sources by 2020. These policy developments naturally raise the question of what role gas has to play in the future energy mix.
To help inform this debate the Energy Networks Association Gas Futures Group (ENA GFG) commissioned Redpoint and Trilemma to undertake a long-range scenario-based modelling study of the future utilisation of gas out to 2050 and the consequential impacts of this for gas networks. Our modelling assumptions draw heavily on the Department of Energy and Climate Change (DECC) 2050 Pathways analysis and we consider that our conclusions are fully compatible with both DECC‟s work and current EU policy objectives.
Link to document
To help inform this debate the Energy Networks Association Gas Futures Group (ENA GFG) commissioned Redpoint and Trilemma to undertake a long-range scenario-based modelling study of the future utilisation of gas out to 2050 and the consequential impacts of this for gas networks. Our modelling assumptions draw heavily on the Department of Energy and Climate Change (DECC) 2050 Pathways analysis and we consider that our conclusions are fully compatible with both DECC‟s work and current EU policy objectives.
Link to document
Flame Characteristics of High-Pressure Hydrogen Gas Jet
Sep 2005
Publication
It is expected that hydrogen will serve as a nonpolluting carrier of energy for the next generation of vehicles and guidelines for its safe use are required. Hydrogen-gas service stations for supplying fuel cell vehicles will have to handle high-pressure hydrogen gas but safety regulations for such installations have not received much investigation. In this study we experimentally investigated the flame characteristics of a rapid leakage of high-pressure hydrogen gas. A hydrogen jet diffusion flame was injected horizontally from convergent nozzles of various diameters between 0.1 and 4 mm at reservoir over pressures of between 0.01 and 40 MPa. The sizes of the flame were measured and experimental equations were obtained for the length and the width of the flame. Flame sizes depend not only on the nozzle diameter but also on the spouting pressure. Blow-off limits exists and are determined by the nozzle diameter and the spouting pressure. Furthermore the radiation from a hydrogen flame can be predicted from the flow rate of the gas and the distance from the flame.
Energy Essentials: A Guide to Hydrogen
Jan 2020
Publication
Climate change and air quality concerns have pushed clean energy up the global agenda. As we switch over to new cleaner technologies and fuels our experience of using power heat and transport are going to change transforming the way we live work and get from A to B. Explore this guide to find out what hydrogen is how it is made transported and used what the experience would be like in the home for transport and for businesses and discover what the future of hydrogen might be.
Visit the Energy Institute website for more information
Visit the Energy Institute website for more information
Compact Heat Exchangers for Hydrogen-fueled Aero Engine Intercooling and Recuperation
Jan 2024
Publication
This study investigates the application of compact heat exchangers for the purpose of intercooling and recuperation systems for short-to-medium range aircraft equipped with hydrogen-fueled turbofan engines. The primary objective is to assess the potential effects of engine-integrated compact heat exchangers on fuel consumption and emissions. The paper encompasses the conceptual design of integrated heat exchangers and associated ducts followed by aerodynamic optimization studies to identify suitable designs that minimize air-side pressure losses and ensure flow uniformity at the inlet of the high-pressure compressor. Pressure drop correlations are then established for selected duct designs and incorporated into a system-level performance model allowing for a comparison of their impact on specific fuel consumption NOx emissions and fuel burn against an uncooled baseline engine. The intercooled-recuperated engine resulted in the most significant improvement in take-off specific fuel consumption with a reduction of up to 7.7% compared to the baseline uncooled engine whereas the best intercooled engine resulted in an improvement of about 4%. Furthermore the best configuration demonstrated a decrease in NOx emissions by up to 37% at take-off and a reduction in mission fuel burn by 5.5%. These enhancements were attributed to reduced compression work pre-heating of the hydrogen fuel and lower high-pressure compressor outlet temperatures.
A field explosion test of hydrogen-air mixtures
Sep 2005
Publication
This paper shows the experimental results and findings of field explosion tests conducted to obtain fundamental data concerning the explosion of hydrogen-air mixtures. A tent covered with thin plastic sheets was filled with hydrogen/air mixed gas and subsequently ignited by an electric-spark or explosives to induce deflagration and/or detonation. Several experiments with different concentrations and/or volumes of mixture were carried out. The static overpressure of blast waves was measured using piezoelectric pressure sensors. The recorded data show that the shape of the pressure-time histories of the resulting blast waves depends on the difference in the ignition method used. The pictures of the explosion phenomenon (deflagration and/or detonation) were taken by high-speed cameras.
National Training Facility for Hydrogen Safety. Five year plan for HAMMER
Sep 2005
Publication
A suitably trained emergency response force is an essential component for safe implementation of any type of fuel infrastructure. Because of the relative newness of hydrogen as a fuel however appropriate emergency response procedures are not yet well understood by responder workforces across the United States and around the world. A significant near-term training effort is needed to ensure that the future hydrogen infrastructure can be developed and operated with acceptable incident risk. Efforts are presently underway at the HAMMER site in Washington State to develop curricula related to hydrogen properties and behavior identification of problems (e.g. incorrect equipment installation) and appropriate response and other relevant information intended for classroom instruction. In addition a number of hands-on training props are planned for realistic simulation of hydrogen incidents in order to convey proper response procedures in high-pressure cryogenic high leakage or other high-risk accident situations. Surveys of emergency responders fire marshals regulatory authorities manufacturers and others are being undertaken to ensure that the capabilities developed and offered at HAMMER will meet the acknowledged need. This paper describes the training curricula and props anticipated at HAMMER and is intended to provide useful information to others planning similar training programs.
Analysis Methodology for Hydrogen Behaviour in Accident Scenarios
Sep 2005
Publication
Hydrogen is not more dangerous than current fossil energy carriers but it behaves differently. Therefore hydrogen specific analyses and countermeasures will be needed to support the development of safe hydrogen technologies. A systematic step-by-step procedure for the mechanistic analysis of hydrogen behaviour and mitigation in accidents is presented. The procedure can be subdivided into four main parts:<br/>1) 3D modelling of the H2-air mixture generation<br/>2) hazard evaluation for this mixture based on specifically developed criteria for flammability flame acceleration and detonation on-set<br/>3) numerical simulation of the appropriate combustion regime using verified 3D-CFD codes and<br/>4) consequence analysis based on the calculated pressure and temperature loads.
Progressing the Gas Goes Green Roadmap to Net Zero Webinar
Dec 2021
Publication
The Gas Goes Green Programme developed by the gas networks and the Energy Networks Association (ENA) describes a viable pathway to the injection of hydrogen and biomethane as a practical step towards the decarbonisation of the UK gas sector and will play a key role in the UK’s Net Zero energy strategy. It therefore follows that technical and management teams in the supply chain and related industries will need a sound understanding of the issues surrounding this deployment. This video shares the industry’s progress towards implementing the Gas Goes Green programme. Presenters including Oliver Lancaster CEO IGEM Dr Thomas Koller Programme Lead Gas Goes Green at the Energy Network Association (ENA) and Ian McCluskey CEng FIMechE FIGEM Head of Technical and Policy IGEM share their views on what has already been achieved and explain what they feel still needs to be done to develop the decarbonised gas network of tomorrow.
1D Phenomenological Model Estimating the Overpressure which could be Generated by Gas Explosion in a Congested Space
Sep 2005
Publication
A phenomenological approach is developed to calculate the velocity of flame propagation and to estimate the value of pressure peak when igniting gaseous combustible mixtures in a congested space. The basic idea of this model is afterburning of the remanent fuel in pockets of congested space behind the flame front. The estimation of probable overpressure peak is based on solution of one-dimensional problem of the piston (having corresponding symmetry) moving with given velocity in polytropic gas. Submitted work is the first representation of such phenomenological approach and is realized for the simplest situation close to one-dimensional.
Fundamental Study on Hydrogen Low-NOx Combustion Using Exhaust Gas Self-Recirculation
Jan 2022
Publication
Hydrogen is expected to be a next-generation energy source that does not emit carbon dioxide but when used as a fuel the issue is the increase in the amount of NOx that is caused by the increase in flame temperature. In this study we experimentally investigated NOx emissions rate when hydrogen was burned in a hydrocarbon gas burner which is used in a wide temperature range. As a result of the experiments the amount of NOx when burning hydrogen in a nozzle mixed burner was twice as high as when burning city gas. However by increasing the flow velocity of the combustion air the amount of NOx could be reduced. In addition by reducing the number of combustion air nozzles rather than decreasing the diameter of the air nozzles a larger recirculation flow could be formed into the furnace and the amount of NOx could be reduced by up to 51%. Furthermore the amount of exhaust gas recirculation was estimated from the reduction rate of NOx and the validity was confirmed by the relationship between adiabatic flame temperature and NOx calculated from the equilibrium calculation by chemical kinetics simulator software.
Large-Scale Hydrogen Deflagrations and Detonations
Sep 2005
Publication
Large-scale deflagration and detonation experiments of hydrogen and air mixtures provide fundamental data needed to address accident scenarios and to help in the evaluation and validation of numerical models. Several different experiments of this type were performed. Measurements included flame front time of arrival (TOA) using ionization probes blast pressure heat flux high-speed video standard video and infrared video. The large-scale open-space tests used a hemispherical 300-m3 facility that confined the mixture within a thin plastic tent that was cut prior to initiating a deflagration. Initial homogeneous hydrogen concentrations varied from 15% to 30%. An array of large cylindrical obstacles was placed within the mixture for some experiments to explore turbulent enhancement of the combustion. All tests were ignited at the bottom center of the facility using either a spark or in one case a small quantity of high explosive to generate a detonation. Spark-initiated deflagration tests were performed within the tunnel using homogeneous hydrogen mixtures. Several experiments were performed in which 0.1 kg and 2.2 kg of hydrogen were released into the tunnel with and without ventilation. For some tunnel tests obstacles representing vehicles were used to investigate turbulent enhancement. A test was performed to investigate any enhancement of the deflagration due to partial confinement produced by a narrow gap between aluminium plates. The attenuation of a blast wave was investigated using a 4-m-tall protective blast wall. Finally a large-scale hydrogen jet experiment was performed in which 27 kg of hydrogen was released vertically into the open atmosphere in a period of about 30 seconds. The hydrogen plume spontaneously ignited early in the release.
Spontaneous Ignition of Hydrogen Leaks, a Review of Postulated Mechanisms
Sep 2005
Publication
Over the last century there have been reports of high pressure hydrogen leaks igniting for no apparent reason and several ignition mechanisms have been proposed. Although many leaks have ignited there are also reported leaks where no ignition has occurred. Investigations of ignitions where no apparent ignition source was present have often been superficial with a mechanism postulated which whilst appearing to satisfy the conditions prevailing at the time of the release simply does not stand up to rigorous scientific analysis. Some of these proposed mechanisms have been simulated in a laboratory under superficially identical conditions and appear to be rigorous and scientific but the simulated conditions often do not have the same large release rates or quantities mainly because of physical constraints of a laboratory. Also some of the release scenarios carried out or simulated in laboratories are totally divorced from the realistic situation of most actual leaks. Clearly there are gaps in the knowledge of the exact ignition mechanism for releases of hydrogen particularly at the high pressures likely to be involved in future storage and use. Mechanisms which have been proposed in the past are the reverse Joule-Thomson effect; electrostatic charge generation; diffusion ignition; sudden adiabatic compression; and hot surface ignition. Of these some have been characterized by means of computer simulation rather than by actual experiment and hence are not validated. Consequently there are discrepancies between the theories releases known to have ignited and releases which are known to have not ignited. From this postulated ignition mechanisms which are worthy of further study have been identified and the gaps in information have been highlighted. As a result the direction for future research into the potential for ignition of hydrogen escapes has been identified.
Hydrogen Embrittlement at Cleavage Planes and Grain Boundaries in Bcc Iron—Revisiting the First-Principles Cohesive Zone Model
Dec 2020
Publication
Hydrogen embrittlement which severely affects structural materials such as steel comprises several mechanisms at the atomic level. One of them is hydrogen enhanced decohesion (HEDE) the phenomenon of H accumulation between cleavage planes where it reduces the interplanar cohesion. Grain boundaries are expected to play a significant role for HEDE since they act as trapping sites for hydrogen. To elucidate this mechanism we present the results of first-principles studies of the H effect on the cohesive strength of α-Fe single crystal (001) and (111) cleavage planes as well as on the Σ5(310)[001] and Σ3(112)[11¯0] symmetrical tilt grain boundaries. The calculated results show that within the studied range of concentrations the single crystal cleavage planes are much more sensitive to a change in H concentration than the grain boundaries. Since there are two main types of procedures to perform ab initio tensile tests different in whether or not to allow the relaxation of atomic positions which can affect the quantitative and qualitative results these methods are revisited to determine their effect on the predicted cohesive strength of segregated interfaces
Heat Network Detailed Project Development Resource: Guidance on Strategic and Commercial Case
Jul 2016
Publication
This document provides guidance on the commercial and strategic elements of a heat network project to support completion of a project business case.
The guidance is intended for local authorities and heat network developers to support their investigations and enable progression from feasibility stage through to business case delivery. The guidance has been drafted with reference to policy legislation and regulation in England and Wales; however much of the guidance is likely also to be relevant to projects in Scotland and Northern Ireland.
The guidance specifically supports the HMT Green Book Five Cases Business Model (the Five Cases Model) and the derived DBEIS Business Case Template (DBEIS BCT) that follows this structure but will also be applicable in other instances. The Five Cases Model (and similarly the DBEIS BCT) considers the viability of the project from five perspectives:
Although all five elements are relevant this guide particularly focuses on the Strategic and Commercial cases.
Related Document Heat Networks 2020
The guidance is intended for local authorities and heat network developers to support their investigations and enable progression from feasibility stage through to business case delivery. The guidance has been drafted with reference to policy legislation and regulation in England and Wales; however much of the guidance is likely also to be relevant to projects in Scotland and Northern Ireland.
The guidance specifically supports the HMT Green Book Five Cases Business Model (the Five Cases Model) and the derived DBEIS Business Case Template (DBEIS BCT) that follows this structure but will also be applicable in other instances. The Five Cases Model (and similarly the DBEIS BCT) considers the viability of the project from five perspectives:
- Strategic
- Economic
- Commercial
- Financial
- Management
Although all five elements are relevant this guide particularly focuses on the Strategic and Commercial cases.
Related Document Heat Networks 2020
Large Scale Experiments- Deflagration and Deflagration to Detonation within a Partial Confinement Similar to a Lane
Sep 2005
Publication
About 20 years ago Fraunhofer ICT has performed large scale experiments with premixed hydrogen air mixtures [1]. A special feature has been the investigation of the combustion of the mixture within a partial confinement simulating some sort of a “lane” which may exist in reality within a hydrogen production or storage plant for example. Essentially three different types of tests have been performed: combustion of quiescent mixtures combustion of mixtures with artificially generated turbulence by means of a fan and combustion of mixtures with high speed flame jet ignition. The observed phenomena will be discussed on the basis of measured turbulence levels flame speeds and overpressures. Conditions for DDT concerning critical turbulence levels and flame speeds as well as a scaling rule for DDT related to the detonation cell size of the mixture can be derived from the experiments for this special test setup. The relevance of the results with respect to safety aspects of future hydrogen technology is assessed. Combustion phenomena will be highlighted by the presentation of impressive high speed film videos.
The Fifth Carbon Budget: The Next Step Towards a Low-carbon Economy
Nov 2015
Publication
This report sets out our advice on the fifth carbon budget covering the period 2028-2032 as required under Section 4 of the Climate Change Act; the Government will propose draft legislation for the fifth budget in summer 2016.
Future Regulation of the Gas Grid
Jun 2016
Publication
The CCC has established a variety of viable scenarios in which UK decarbonisation targets can be met. Each has consequences for the way in which the UK’s gas network infrastructure is utilised. This report considers the implications of decarbonisation for the future regulation of the gas grid.<br/>The CCC’s 5th Carbon Budget envisaged different scenarios that would enable the UK to meet its emissions targets for 2050. These scenarios represent holistic analyses based on internally consistent combinations of different technologies which could deliver carbon reductions across different sectors of the economy.<br/>The CCC’s scenarios incorporate projections of the demand for natural gas to 2050. The scenarios imply that the volume of throughput on the gas networks1 and the nature and location of network usage is likely to change significantly to meet emissions targets. They are also characterised by significant uncertainty.<br/>Under some decarbonisation scenarios gas networks could be re-purposed to supply hydrogen instead of natural gas meaning there would be ongoing need for network infrastructure.<br/>In other scenarios gas demand in buildings is largely replaced by electric alternatives meaning portions of the low pressure gas distribution networks could be decommissioned.<br/>Patchwork scenarios are also possible in which there is a mixture of these outcomes across the country.<br/>In this project the CCC wished to assess the potential implications for gas networks under these different demand scenarios; and evaluate the associated challenges for Government and regulatory policy. The challenge for BEIS and Ofgem is how to regulate in a way that keeps options open while uncertainty persists about the best solution for the UK; and at the same time how best to make policy and regulatory decisions which would serve to reduce this uncertainty. Both Government and Ofgem have policy and regulatory levers that they can use – and we identify and evaluate such levers in this report.
Meeting Carbon Budgets – Ensuring a Low-carbon Recovery
Jun 2010
Publication
As part of its statutory role the Committee provides annual reports to Parliament on the progress that Government is making in meeting carbon budgets and in reducing emissions of greenhouse gases.<br/>Meeting Carbon Budgets – ensuring a low-carbon recovery is the Committee’s 2nd progress report. Within this report we assess the latest emissions data and determine whether emissions reductions have occurred as a result of the recession or as a result of other external factors. We assess Government’s progress towards achieving emissions reductions in 4 key areas of: Power Buildings and Industry Transport and Agriculture.
Hydrogen as a Clean and Sustainable Energy Vector for Global Transition from Fossil-Based to Zero-Carbon
Dec 2021
Publication
Hydrogen is recognized as a promising and attractive energy carrier to decarbonize the sectors responsible for global warming such as electricity production industry and transportation. However although hydrogen releases only water as a result of its reaction with oxygen through a fuel cell the hydrogen production pathway is currently a challenging issue since hydrogen is produced mainly from thermochemical processes (natural gas reforming coal gasification). On the other hand hydrogen production through water electrolysis has attracted a lot of attention as a means to reduce greenhouse gas emissions by using low-carbon sources such as renewable energy (solar wind hydro) and nuclear energy. In this context by providing an environmentally-friendly fuel instead of the currently-used fuels (unleaded petrol gasoline kerosene) hydrogen can be used in various applications such as transportation (aircraft boat vehicle and train) energy storage industry medicine and power-to-gas. This article aims to provide an overview of the main hydrogen applications (including present and future) while examining funding and barriers to building a prosperous future for the nation by addressing all the critical challenges met in all energy sectors.
The Role of Charging and Refuelling Infrastructure in Supporting Zero-emission Vehicle Sales
Mar 2020
Publication
Widespread uptake of battery electric plug-in hybrid and hydrogen fuel-cell vehicles (collectively zero-emissions vehicles or ZEVs) could help many regions achieve deep greenhouse gas mitigation goals. Using the case of Canada this study investigates the extent to which increasing ZEV charging and refuelling availability may boost ZEV sales relative to other ZEV-supportive policies. We adapt a version of the Respondent-based Preferences and Constraints (REPAC) model using 2017 survey data from 1884 Canadian new vehicle-buyers to simulate the sales impacts of increasing electric vehicle charging access at home work public destinations and on highways as well as increasing hydrogen refuelling station access. REPAC is built from a stated preference choice model and represents constraints in supply and consumer awareness as well as dynamics in ZEV policy out to 2030. Results suggest that new ZEV market share from 2020 to 2030 does not substantially benefit from increased infrastructure. Even when electric charging and hydrogen refuelling access are simulated to reach “universally” available levels by 2030 ZEV sales do not rise by more than 1.5 percentage points above the baseline trajectory. On the other hand REPAC simulates ZEV market share rising as high as 30% by 2030 with strong ZEV-supportive policies even without the addition of charging or refuelling infrastructure. These findings stem from low consumer valuation of infrastructure found in the stated preference model. Results suggest that achieving ambitious ZEV sale targets requires a comprehensive suite of policies beyond a focus on charging and refuelling infrastructure.
Meeting Carbon Budgets – 2014 Progress Report to Parliament
Jul 2014
Publication
This is our sixth statutory report to Parliament on progress towards meeting carbon budgets. In it we consider the latest data on emissions and their drivers. This year the report also includes a full assessment of how the first carbon budget (2008-2012) was met drawing out policy lessons and setting out what is required for the future to stay on track for the legislated carbon budgets and the 2050 target. The report includes assessment at the level of the economy the non-traded and traded sectors the key emitting sectors and the devolved administrations. Whilst the first carbon budget has been met and progress made on development and implementation of some policies the main conclusion is that strengthening of policies will be needed to meet future budgets.
Dynamic Crush Test on Hydrogen Pressurized Cylinder
Sep 2005
Publication
It is necessary to investigate cylinder crush behavior for improvement of fuel cell vehicle crash safety. However there have been few crushing behaviour investigations of high pressurized cylinders subjected to external force. We conducted a compression test of pressurized cylinders impacted by external force. We also investigated the cylinder strength and crushing behaviour of the cylinder. The following results were obtained.
- The crush force of high pressurized cylinders is different from the direction of external force. The lateral crush force of high pressurized cylinders is larger than the external axial crush force.
- Tensile stress occurs in the boundary area between the cylinder dome and central portion when the pressurized cylinder is subjected to axial compression force and the cylinder is destroyed.
- However the high pressurized cylinders tested had a high crush force which exceeded the assumed range of vehicle crash test procedures
Requirements for the Safety Assessment for the Approval of a Hydrogen Refueling Station
Sep 2007
Publication
The EC 6th framework research project HyApproval will draft a Handbook which will describe all relevant issues to get approval to construct and operate a Hydrogen Refuelling Station (HRS) for hydrogen vehicles. In WP3 of the HyApproval project it is under investigation which safety information competent authorities require to give a licence to construct an operate an HRS. The paper describes the applied methodology to collect the information from the authorities in 5 EC countries and the USA. The results of the interviews and recommendations for the information to include in the Handbook are presented.
Development of High-pressure Hydrogen Gas Barrier Materials
Oct 2015
Publication
We prepared several gas barrier resins based on amorphous PVA derivative that has the T1C (13C spin-lattice relaxation time) of a long time component in amorphous phase. We confirmed it was important to control state in amorphous phase of gas barrier resin in order to achieve both moldability and good gas barrier property. Polymer alloy was designed to improve flexibility. Polymer alloy made of amorphous PVA and elastomer resin showed good hydrogen resistance. Even after its polymer alloy were repeatedly exposed to 70MPa hydrogen gas the influence on higher-order structure in amorphous phase was in negligible level.
Public Acceptability of the Use of Hydrogen for Heating and Cooking in the Home: Results from Qualitative and Quantitative Research in UK<br/>Executive Summary
Nov 2018
Publication
This report for the CCC by Madano and Element Energy assesses the public acceptability of two alternative low-carbon technologies for heating the home: hydrogen heating and heat pumps.
These technologies could potentially replace natural gas in many UK households as part of the government’s efforts to decrease carbon emissions in the UK.
The report’s key findings are:
These technologies could potentially replace natural gas in many UK households as part of the government’s efforts to decrease carbon emissions in the UK.
The report’s key findings are:
- carbon emissions reduction is viewed as an important issue but there is limited awareness of the need to decarbonise household heating or the implications of switching over to low-carbon heating technologies
- acceptability of both heating technologies is limited by a lack of perceived tangible consumer benefit which has the potential to drive scepticism towards the switch over more generally
- heating technology preferences are not fixed at this stage although heat pumps appear to be the favoured option in this research studythree overarching factors were identified as influencing preferences for heating technologies.
- perceptions of the negative installation burden
- familiarity with the lived experience of using the technologies for heating
- perceptions of how well the technologies would meet modern heating needs both hydrogen heating and heat pumps face significant challenges to secure public acceptability
Hydrogen Onboard Storage: An Insertion of the Probabilistic Approach Into Standards & Regulations?
Sep 2005
Publication
The growing attention being paid by car manufacturers and the general public to hydrogen as a middle and long term energy carrier for automotive purpose is giving rise to lively discussions on the advantages and disadvantages of this technology – also with respect to safety. In this connection the focus is increasingly and justifiably so on the possibilities offered by a probabilistic approach to loads and component characteristics: a lower weight obliged with a higher safety level basics for an open minded risk communication the possibility of a provident risk management the conservation of resources and a better and not misleading understanding of deterministic results. But in the case of adequate measures of standards or regulations completion there is a high potential of additional degrees of freedom for the designers obliged with a further increasing safety level. For this purpose what follows deals briefly with the terminological basis and the aspects of acceptance control conservation of resources misinterpretation of deterministic results and the application of regulations/standards.<br/>This leads into the initial steps of standards improvement which can be taken with relatively simple means in the direction of comprehensively risk-oriented protection goal specifications. By this it’s not focused on to provide to much technical details. It’s focused on the context of different views on probabilistic risk assessment. As main result some aspects of the motivation and necessity for the currently running pre-normative research studies within the 6th frame-work program of the EU will be shown.
The Sixth Carbon Budget & Welsh Emissions Targets Summary of Responses to Call for Evidence Summary
Jul 2020
Publication
In late 2019 the Committee launched a Call for Evidence to inform its advice to the UK Government on the Sixth Carbon Budget due to be published in December 2020. In addition the Committee sought input on Wales’ third carbon budget and interim emissions targets. These summary documents – one for the Sixth Carbon Budget and a second covering Wales’ carbon budget and emissions targets – provide an overview of the 170+ responses received along with the original submissions which are also published below.<br/>As background in 2019 the UK Government and Parliament adopted the Committee on Climate Change’s (CCC) recommendation to reduce UK emissions of greenhouse gases (GHGs) to Net Zero by 2050 (at least a 100% reduction in emissions compared to 1990 levels). The Climate Change Act 2008 requires the Committee to provide advice to the Government about the appropriate level for each carbon budget (sequential five-year caps on GHGs) on the path to the long-term target. To date in line with advice from the Committee five carbon budgets have been legislated covering the period to 2032. The Sixth Carbon Budget covers the period from 2033-37.
Progress Report 2016: Meeting Carbon Budgets
Jun 2016
Publication
This is the CCC’s eighth annual report on the UK’s progress in meeting carbon budgets.
The report shows that greenhouse gas emissions have fallen rapidly in the UK power sector but that progress has stalled in other sectors such as:
The report also outlines the Committee’s view of key criteria for the government’s ’emissions reduction plan’ published later in 2017
The report shows that greenhouse gas emissions have fallen rapidly in the UK power sector but that progress has stalled in other sectors such as:
- heating in buildings
- transport
- industry
- agriculture
The report also outlines the Committee’s view of key criteria for the government’s ’emissions reduction plan’ published later in 2017
The Role of Hydrogen on the Behavior of Intergranular Cracks in Bicrystalline α-Fe Nanowires
Jan 2021
Publication
Hydrogen embrittlement (HE) has been extensively studied in bulk materials. However little is known about the role of H on the plastic deformation and fracture mechanisms of nanoscale materials such as nanowires. In this study molecular dynamics simulations are employed to study the influence of H segregation on the behavior of intergranular cracks in bicrystalline α-Fe nanowires. The results demonstrate that segregated H atoms have weak embrittling effects on the predicted ductile cracks along the GBs but favor the cleavage process of intergranular cracks in the theoretically brittle directions. Furthermore it is revealed that cyclic loading can promote the H accumulation into the GB region ahead of the crack tip and overcome crack trapping thus inducing a ductile-to-brittle transformation. This information will deepen our understanding on the experimentally-observed H-assisted brittle cleavage failure and have implications for designing new nanocrystalline materials with high resistance to HE.
H2 High Pressure On-board Storage Considering Safety Issues
Sep 2007
Publication
The present paper reviews the state-of-the-art of integrated structural integrity monitoring systems applicable to hydrogen on-board applications. Storage safety and costs are key issues for the success of the hydrogen technology considered for replacing the conventional fuel systems in transport applications. An in-service health monitoring procedure for high pressure vessels would contribute to minimize the risks associated to high pressure hydrogen storage and to improve the public acceptance. Such monitoring system would also enable a reduction on design burst criteria enabling savings in material costs and weight. This paper reviews safety and maintenance requirements based on present standards for high pressure vessels. A state-of-the-art of storage media and materials for onboard storage tank is presented as well as of current European programmes on hydrogen storage technologies for transport applications including design safety and system reliability. A technological road map is proposed for the development and validation of a prototype within the framework of the Portuguese EDEN project. To ensure safety an exhaustive test procedure is proposed. Furthermore requirements of a safety on-board monitoring system is defined for filament wound hydrogen tanks.
Facilitating the Safest Possible Transition from Fossil to Hydrogen Fuels- Hydrogen Executive Leadership Panel
Sep 2005
Publication
In recent years federal and state safety authorities have worked to bring emergency planners and responders together with industry the scientific community and consumers to ensure high levels of safety with gas and liquid pipelines and more recently with liquefied natural gas terminals. The U.S. Department of Transportation (DOT) is the federal authority on the safe transportation of energy and the National Association of State Fire Marshals (NASFM) represents state-level safety authorities. Together they have produced firefighter safety training materials technical guidance and information for use in communities considering new energy infrastructure and conducted research to support these activities. In 2004 the DOT-NASFM partnership established the Hydrogen Executive Leadership Panel (HELP) to ensure a safe transition from fossil fuels to hydrogen fuel cells. HELP brings together senior policy-level experts from all sectors to understand and recommend mitigation strategies for the risks associated with the transportation and use of hydrogen in motor vehicles. The initial group includes experts from the United States Canada and Europe. HELP will be supported by an advisory committee of emergency planners and responders—individuals well-equipped to describe real-world scenarios of greatest concern—and by a second advisory committee of engineers and scientists who will help translate the real-world scenarios into useful technical solutions. By September 2005 HELP expects to define the initial real-world scenarios of greatest concern and bring together teams of experts to collaborate with automakers energy producers government authorities consumers and public safety officials. Much work lies ahead including creating guidance for hydrogen powered automobiles emergency response safety training establishing test methods to reflect real-world incident scenarios and modifying state and local building and fire codes. The HELP leadership will present its strategic plan and first report at the International Conference on Hydrogen Safety in September 2005.
Evaluation of Safety Distances Related to Unconfined Hydrogen Explosions
Sep 2005
Publication
A simple approximate method for evaluation of blast effects and safety distances for unconfined hydrogen explosions is presented. The method includes models for flame speeds hydrogen distribution blast parameters and blast damage criteria. An example of the application of this methodology for hydrogen releases in three hypothetical obstructed areas with different levels of congestion is presented. The severity of the blast effect of unconfined hydrogen explosions is shown to depend strongly on the level of congestion for relatively small releases. Extremely large releases of hydrogen are predicted to be less sensitive to the congestion level.
Hydrogen Flames in Tubes- Critical Run-up Distances
Sep 2007
Publication
The hazard associated with flame acceleration to supersonic speeds in hydrogen mixtures is discussed. A set of approximate models for evaluation of the run-up distances to supersonic flames in relatively smooth tubes and tubes with obstacles is presented. The model for smooth tubes is based on general relationships between the flame area turbulent burning velocity and the flame speed combined with an approximate description for the boundary layer thickness ahead of an accelerated flame. The unknown constants of the model are evaluated using experimental data. This model is then supplemented with the model for the minimum run-up distance for FA in tubes with obstacles developed earlier. On the basis of these two models solutions for the determination of the critical runup distances for FA and deflagration to detonation transition in tubes and channels for various hydrogen mixtures initial temperature and pressure tube size and tube roughness are presented.
Dispersion Tests on Concentration and its Fluctuations for 40MPa Pressurized Hydrogen
Sep 2007
Publication
Hydrogen is one of the important alternative fuels for future transportation. At the present stage research into hydrogen safety and designing risk mitigation measures are significant task. For compact storage of hydrogen in fuel cell vehicles storage of hydrogen under high pressure up to 40 MPa at refuelling stations is planned and safety in handling such high-pressure hydrogen is essential. This paper describes our experimental investigation into dispersion of high-pressure hydrogen gas which leaks through pinholes in the piping to the atmosphere. First in order to comprehend the basic behaviour of the steady dispersion of high-pressure hydrogen gas from the pinholes the time-averaged concentrations were measured. In our experiments initial release pressures of hydrogen gas were set at 20 MPa or 40 MPa and release diameters were in the range from 0.25 mm to 2 mm. The experimental results show that the hydrogen concentration along the axis of the dispersion plume can be expressed as a simple formula which is a function of the downwind distance X and the equivalent release diameter. This formula enables us to easily estimate the axial concentration (maximum concentration) at each downstream distance. However in order for the safety of flammable gas dispersion to be analyzed comparisons between time-averaged concentrations evaluated as above and lower flammable limit are insufficient. This is because even if time-averaged concentration is lower than the flammability limit instantaneous concentrations fluctuate and a higher instantaneous concentration occasionally appears due to turbulence. Therefore the time-averaged concentration value which can be used as a threshold for assessing safety must be determined considering concentration fluctuations. Once the threshold value is determined the safe distance from the leakage point can be evaluated by the above-mentioned simple formula. To clarify the phenomenon of concentration fluctuations instantaneous concentrations were measured with the fast-response flame ionization detector. A small amount of methane gas was mixed into the hydrogen as a tracer gas for this measurement. The relationship between the time-mean concentration and the occurrence probability of flammable concentration was analyzed. Under the same conditions spark-ignition experiments were also conducted and the relationship between the occurrence probability of flammable concentration and actual ignition probabilities were also investigated. The experimental results show that there is a clear correlation between the time-mean concentration the occurrence probability of flammable concentration flame length and occurrence probability of hydrogen flame.
Using Solar Power Regulation to Electrochemically Capture Carbon Dioxide: Process Integration and Case Studies
Mar 2022
Publication
This work focuses on the use of solar photovoltaic energy to capture carbon dioxide by means of a combined electrolyzer–absorption system and compares operating results obtained in two cases studies (operation during one clear and one cloudy day in March) in which real integration of solar photovoltaics electrolyzer and absorption technologies is made at the bench-scale. The system is a part of a larger process (so-called EDEN⃝R Electrochemically-based Decarbonizing ENergy) which aims to regulate solar photovoltaic energy using a reversible chloralkaline electrochemical cell. Results demonstrate the feasibility of the sequestering technology which can produce chlorine and hydrogen but also the sequestration of CO2 and its transformation into a mixture of sodium chloride bicarbonate and carbonate useful as raw matter. Efficiencies over 70% for chlorine 60% for hydrogen and 90% for sodium hydroxide were obtained. The sequestration of carbon dioxide reached 24.4 mmol CO2/Ah with an average use of 1.6 mmol NaOH/mmol CO2. Important differences are found between the performance of the system in a clear and a cloudy day which point out the necessity of regulating the dosing of the electrochemically produced sodium hydroxide to optimize the sequestration of CO2.
Physics of Spontaneous Ignition of High-Pressure Hydrogen Release and Transition to Jet Fire
Sep 2009
Publication
The main objective of this study is an insight into physical phenomena underlying spontaneous ignition of hydrogen at sudden release from high pressure storage and its transition into the sustained jet fire. This paper describes modelling and large eddy simulation (LES) of spontaneous ignition dynamics in a tube with a rupture disk separating high pressure hydrogen storage and the atmosphere. Numerical experiments carried out by a LES model have provided an insight into the physics of the spontaneous ignition phenomenon. It is demonstrated that a chemical reaction commences in a boundary layer within the tube and propagates throughout the tube cross-section after that. Simulated by the LES model dynamics of flame formation outside the tube has reproduced experimental observation of combustion by high-speed photography including vortex induced “flame separation". It is concluded that the model developed can be applied for hydrogen safety engineering in particular for development of innovative pressure relief devices.
Methanol Reforming Processes for Fuel Cell Applications
Dec 2021
Publication
Hydrogen production through methanol reforming processes has been stimulated over the years due to increasing interest in fuel cell technology and clean energy production. Among different types of methanol reforming the steam reforming of methanol has attracted great interest as reformate gas stream where high concentration of hydrogen is produced with a negligible amount of carbon monoxide. In this review recent progress of the main reforming processes of methanol towards hydrogen production is summarized. Different catalytic systems are reviewed for the steam reforming of methanol: mainly copper- and group 8–10-based catalysts highlighting the catalytic key properties while the promoting effect of the latter group in copper activity and selectivity is also discussed. The effect of different preparation methods different promoters/stabilizers and the formation mechanism is analyzed. Moreover the integration of methanol steam reforming process and the high temperature–polymer electrolyte membrane fuel cells (HT-PEMFCs) for the development of clean energy production is discussed.
Risk Analysis of the Storage Unit in Hydrogen Refuelling Station
Sep 2007
Publication
Nowadays consumer demand for local and global environmental quality in terms of air pollution and in particular greenhouse gas emissions reduction may help to drive to the introduction of zero emission vehicles. At this regard the hydrogen technology appears to have future market valuablepotential. On the other hand the use of hydrogen vehicles which requires appropriate infrastructures for production storage and refuelling stages presents a lot of safety problems due to the peculiar chemicophysical hydrogen characteristics. Therefore safe at the most practices are essential for the successful proliferation of hydrogen vehicles. Indeed to avoid limit hazards it is necessary to implement practices that if early adopted in the development of a fuelling station project can allow very low environmental impact safety being incorporated in the project itself. Such practices generally consist in the integrated use of Failure Mode and Effect Analysis (FMEA) HAZard OPerability (HAZOP) and Fault Tree Analysis (FTA) which constitute well established standards in reliability engineering. At this regard however a drawback is the lack of experience and the scarcity of the relevant data collection. In this work we present the results obtained by the integrated use of FMEA HAZOP and FTA analyses relevant for the moment the high-pressure storage equipment in a hydrogen gas refuelling station. The study that is intended to obtain elements for improving safety of the system can constitute a basis for further more refined works.
The Structure and Flame Propagation Regimes in Turbulent Hydrogen Jets
Sep 2009
Publication
Experiments on flame propagation regimes in a turbulent hydrogen jet with velocity and hydrogen concentration gradients have been performed at the FZK hydrogen test site HYKA. Horizontal stationary hydrogen jets released at normal and cryogenic temperatures of 290K and 80 and 35K with different nozzle diameters and mass flow rates in the range from 0.3 to 6.5 g/s have been investigated. Sampling probe method and laser PIV technique have been used to evaluate distribution of hydrogen concentration and flow velocity along and across the jet axis. High-speed photography (1000 fps) combined with a Background Oriented Schlieren (BOS) system was used for the visual observation of the turbulent flame propagation. In order to investigate different flame propagation regimes the ignition position was changed along the jet axis. It was found that the maximum flame velocity and pressure loads can only occur if the hydrogen concentration at the ignition point exceeds 11% of hydrogen in air. In this case the flame propagates in both directions up- and downstream the jet flow whereas in the opposite case the flame propagates only downstream. Such a behavior is consistent with previous experiments according to that the flame is able to accelerate effectively only if the expansion rate σ of the H2-air mixture is higher than a critical value σ* = 3.75 (like for the 11% hydrogen-air mixture). The measured data allow conservative estimates of the safety distance and risk assessment for realistic hydrogen leaks.
Complex Hydrides as Solid Storage Materials- First Safety Tests
Sep 2007
Publication
Hydrogen technology requires efficient and safe hydrogen storage systems. For this purpose storage in solid materials such as high capacity complex hydrides is studied intensely. Independent from the actual material to be used eventually any tank design will combine nanoscale powders of highly reactive material with pressurized hydrogen gas and so far little is known about the behaviour of these mixtures in case of incidents. For a first evaluation of a complex hydride in case of a tank failure NaAlH4 (doped with Ti) was investigated in a small scale tank failure tests. 80-100 ml of the material were filled into a heat exchanger tube and sealed under argon atmosphere with a burst disk. Subsequently the NaAlH4 was partially desorbed by heating. When the powder temperature reached 130 °C and the burst disk ruptured at 9 bar hydrogen overpressure the behaviour of the expelled powder was monitored using a high speed camera an IR camera as well as sound level meters. Expulsion of the hydrogen storage material into (dry) ambient atmosphere yields a dust cloud of finely dispersed powder which does not ignite spontaneously. Similar experiments including an external source of ignition (spark / water reacting with NaAlH4) yield a flame of reacting powder. The intensity will be compared to the reaction of an equivalent amount of pure hydrogen.
Sustainable Power Supply Solutions for Off-Grid Base Stations
Sep 2015
Publication
The telecommunication sector plays a significant role in shaping the global economy and the way people share information and knowledge. At present the telecommunication sector is liable for its energy consumption and the amount of emissions it emits in the environment. In the context of off-grid telecommunication applications off-grid base stations (BSs) are commonly used due to their ability to provide radio coverage over a wide geographic area. However in the past the off-grid BSs usually relied on emission-intensive power supply solutions such as diesel generators. In this review paper various types of solutions (including in particular the sustainable solutions) for powering BSs are discussed. The key aspects in designing an ideal power supply solution are reviewed and these mainly include the pre-feasibility study and the thermal management of BSs which comprise heating and cooling of the BS shelter/cabinets and BS electronic equipment and power supply components. The sizing and optimization approaches used to design the BSs’ power supply systems as well as the operational and control strategies adopted to manage the power supply systems are also reviewed in this paper.
Polymer Composites for Tribological Applications in Hydrogen Environment
Sep 2007
Publication
In the development of hydrogen technology special attention is paid to the technical problems of hydrogen storage. One possible way is cryogenic storage in liquid form. Generally cryo-technical machines need components with interacting surfaces in relative motion such as bearings seals or valves which are subjected to extreme conditions. Materials of such systems have to be resistant to friction-caused mechanical deformation at the surface low temperatures and hydrogen environment. Since materials failure can cause uncontrolled escape of hydrogen new material requirements are involved for these tribo-systems in particular regarding operability and reliability. In the past few years several projects dealing with the influence of hydrogen on the tribological properties of friction couples were conducted at the Federal Institute for Materials Research and Testing (BAM) Berlin. This paper reports some investigations carried out with polymer composites. Friction and wear were measured for continuous sliding and analyses of the worn surfaces were performed after the experiments. Tests were performed at room temperature in hydrogen as well as in liquid hydrogen.
Flow Loop Test for Hydrogen
Jul 2020
Publication
National Grid (NG) needs to understand the implications that a hydrogen rich gas mix may have on the existing pipeline network. The primary network consists extensively of X52 steel pipe sections welded together using girth welds. Different welding specifications that have been used in the past 40 years and girth welds with different specifications may behave differently when coming into contact with hydrogen gas.
The aim of the flow loop test programme is to begin to evaluate the durability of pipeline materials in the context of future proofing of gas grid service where the gas mix may include a significant proportion of hydrogen. One specific objective is to investigate the resistance to hydrogen embrittlement of a conventional steel (X52) with commonly used girth welds. The primary concern is that the phenomenon of hydrogen embrittlement may cause unexpected or early failure mechanisms especially in older pipe sections with less stringent girth weld specifications.
This report and any attachment is freely available on the ENA Smarter Networks Portal here. IGEM Members can download the report and any attachment directly by clicking on the pdf icon above.
The aim of the flow loop test programme is to begin to evaluate the durability of pipeline materials in the context of future proofing of gas grid service where the gas mix may include a significant proportion of hydrogen. One specific objective is to investigate the resistance to hydrogen embrittlement of a conventional steel (X52) with commonly used girth welds. The primary concern is that the phenomenon of hydrogen embrittlement may cause unexpected or early failure mechanisms especially in older pipe sections with less stringent girth weld specifications.
This report and any attachment is freely available on the ENA Smarter Networks Portal here. IGEM Members can download the report and any attachment directly by clicking on the pdf icon above.
An Intercomparison Exercise on the Capabilities of CFD Models to Predict Deflagration of a Large-Scale H2-Air Mixture in Open Atmosphere
Sep 2005
Publication
This paper presents a compilation of the results supplied by HySafe partners participating in the Standard Benchmark Exercise Problem (SBEP) V2 which is based on an experiment on hydrogen combustion that is first described. A list of the results requested from participants is also included. The main characteristics of the models used for the calculations are compared in a very succinct way by using tables. The comparison between results together with the experimental data when available is made through a series of graphs. The results show quite good agreement with the experimental data. The calculations have demonstrated to be sensitive to computational domain size and far field boundary condition.
H21- Strategic Modelling Major Urban Centres
Aug 2019
Publication
This report summarises the results of an independent audit carried out by DNV GL on the model conversions from natural gas to hydrogen for the models being used as a benchmark for the wider UK proposed hydrogen conversion of the natural gas network. The detailed model conversion process was derived from the H21 modelling meetings and the detailed notes were put together by NGN as a basic guide which has been included in Appendix A and is summarised as follows:
- Current 5 year planning model is updated and then used to generate a Replacement Expenditure (REPEX) natural gas model which would remove metallic pipes from the networks by insertion where possible
- Merging models together to form larger networks where required
- Preparation for conversion to hydrogen which would include the District Governor (DG) capacity increases to run the additional model flows
- Conversion of the models to hydrogen by changing demands to thermal and the gas characteristics to those of hydrogen
- Applying reinforcement to remove pressure failures.
Thermal Loading Cases of Hydrogen High Pressure Storage Cylinders
Sep 2007
Publication
Composite cylinders with metal liner are used for the storage of compressed hydrogen in automotive application. These hybrid pressure cylinders are designed for a nominal working pressure of up to 70 MPa. They also have to withstand a temperature range between -40°C and +85°C according GRPE draft [1] and for short periods up to a maximum temperature of 140°C during filling (fast filling) [2]. In order to exploit the material properties efficiently with a high degree of lightweight optimization and a high level of safety on the same time a better understanding of the structural behavior of hybrid designs is necessary. Work on this topic has been carried out in the frame of a work package on safety aspects and regulation (Subproject SAR) of the European IP StorHy (www.storhy.net). The temperature influence on the composite layers is distinctive due to there typical polymer material behavior. The stiffness of the composite layer is a function of temperature which influences global strains and stress levels (residual stresses) in operation. In order to do an accurate fatigue assessment of composite hybrid cylinders a realistic modeling of a representative temperature load is needed. For this climate data has been evaluated which were collected in Europe over a period of 30 years [3]. Assuming that the temperature follows a Gaussian (normal) distribution within the assessed period of 30 years it is possible to generate a frequency distribution for different temperature classes for the cold extreme and the hot extreme. Combining these distributions leads to the overall temperature range distribution (frequency over temperature classes). The climatic temperature influence the filling temperature and the pressure load have to be considered in combination with the operation profile of the storage cylinder to derive a complete load vector for an accurate assessment of the lifetime and safety level.
Analysis of Stand-Alone Photovoltaic—Marine Current Hybrid System and the Influence on Daily and Seasonal Energy Storage
Jan 2022
Publication
Stand-alone systems in remote regions require the utilization of renewable resources; however their natural intermittence requires the implementation of energy-storage systems that allow a continuous power supply. More than one renewable source is usually available at the same site. Thus the choice of a hybrid system seems viable. It is relevant to study hybrid systems as they could reduce energy storage; however sizing the hybrid system might have several implications not only for the available daily energy but also for the required daily energy storage and surplus seasonal energy. In this work we present a case study of a stand-alone conventional household powered by photovoltaic and marine-current-energy systems in Cozumel Mexico. The analysis of different hybridization degrees serves as a guidance tool to decide whether hybrid systems are required for a specific situation; in contrast to previous approaches where ideal consumption and generation profiles have been utilized yearlong profiles were utilized here. The renewable potential data were obtained on site at an hourly resolution; requirements such as size of and cycles in the daily and seasonal energy storage were analyzed according to the degree of participation or hybridization of the proposed renewable systems through an algorithm that evaluates power generation and daily consumption throughout the year. A further analysis indicated that marine-current-energy implementation reduces the size of the daily energy-storage system by 79% in comparison to the use of only a photovoltaic system due to the similarity between the energy-demand profile and the marine-current-energy production profile. The results indicate that a greater participation of marine currents can help decrease daily storage while increasing seasonal storage by 16% compared to using only solar energy. On the other hand hybridization enabled a reduction in the number of daily charge and discharge cycles at 0.2 hybridization degrees. It also allowed us to reduce the seasonal energy storage by 38% at 0.6 hybridization degrees with respect to only using energy from marine currents. Afterwards energy-storage technologies were evaluated using the TOPSIS Multi-Criteria Decision Analysis to validate the best-suited technology for the energy-storage system. The evaluation considered the characteristics of the technology and the periods of energy storage. In this work hybrid storage systems were mandatory since for daily storage lithium-ion batteries are better suited while for seasonal storage hydrogen-producing systems are more suitable to manage the amount of energy and the storage duration due to the high seasonal renewable-energy variations.
Impact of Hydrogen Admixture on Combustion Processes – Part I: Theory
Jun 2020
Publication
Climate change is one of today’s most pressing global challenges. Since the emission of greenhouse gases is often closely related to the use and supply of energy the goal to avoid emissions requires a fundamental restructuring of the energy system including all parts of the technology chains from production to end-use. Natural gas is today one of the most important primary energy sources in Europe with utilization ranging from power generation and industry to appliances in the residential and commercial sector as well as mobility. As natural gas is a fossil fuel gas utilization is thus responsible for significant emissions of carbon dioxide (CO2 ) a greenhouse gas. However the transformation of the gas sector with its broad variety of technologies and end-use applications is a challenge as a fuel switch is related to changing physical properties. Today the residential and commercial sector is the biggest end user sector for natural gas in the EU both in terms of consumption and in the number of installed appliances. Natural gas is used to provide space heating as well as hot water and is used in cooking and catering appliances with in total about 200 million gas-fired residential and commercial end user appliances installed. More than 40 % of the EU gas consumption is accounted for by the residential and commercial sector. The most promising substitutes for natural gas are biogases and hydrogen. The carbon-free fuel gas hydrogen may be produced e.g. from water and renewable electricity; therefore it can be produced with a greatly lowered carbon footprint and on a very large scale. As a gaseous fuel it can be transported stored and utilised in all end-use sectors that are served by natural gas today: Power plants industry commercial appliances households and mobility. Technologies and materials however need to be suitable for the new fuel. The injection of hydrogen into existing gas distribution for example will impact all gas-using equipment in the grids since these devices are designed and optimized to operate safely efficiently and with low pollutant emissions with natural gas as fuel. The THyGA project1 focusses on all technical aspects and the regulatory framework concerning the potential operation of domestic and commercial end user appliances with hydrogen / natural gas blends. The THyGA deliverables start with theoretical background from material science (D2.4) and combustion theory (this report) and extend to the project’s experimental campaign on hydrogen tolerance tests as well as reports on the status quo and potential future developments on rules and standards as well as mitigation strategies for coping with high levels of hydrogen admixture. By this approach the project aims at investigating which levels of hydrogen blending impact the various appliance technologies to which extent and to identify the regime in which a safe efficient and low-polluting operation is possible. As this is in many ways a question of combustion this report focuses on theoretical considerations about the impact of hydrogen admixture on combustion processes. The effects of hydrogen admixture on main gas quality properties as well as combustion temperatures laminar combustion velocities pollutant formation (CO NOx) safety-related aspects and the impact of combustion control are discussed. This overview provides a basis for subsequent steps of the project e.g. for establishing the testing program. A profound understanding of the impact on hydrogen on natural gas combustion is also essential for the development of mitigation strategies to reduce potential negative consequences of hydrogen admixture on appliances.
This is part one. Part two of this project can be found at this link
This is part one. Part two of this project can be found at this link
Optimization of a Solar Hydrogen Storage System: Safety Considerations
Sep 2007
Publication
Hydrogen has been extensively used in many industrial applications for more than 100 years including production storage transport delivery and final use. Nevertheless the goal of the hydrogen energy system implies the use of hydrogen as an energy carrier in a more wide scale and for a public not familiarised with hydrogen technologies and properties.<br/>The road to the hydrogen economy passes by the development of safe practices in the production storage distribution and use of hydrogen. These issues are essential for hydrogen insurability. We have to bear in mind that a catastrophic failure in any hydrogen project could damage the insurance public perception of hydrogen technologies at this early step of development of hydrogen infrastructures.<br/>Safety is a key issue for the development of hydrogen economy and a great international effort is being done by different stakeholders for the development of suitable codes and standards concerning safety for hydrogen technologies [1 2]. Additionally to codes and standards different studies have been done regarding safety aspects of particular hydrogen energy projects during the last years [3 4]. Most of such have been focused on hydrogen production and storage in large facilities transport delivery in hydrogen refuelling stations and utilization mainly on fuel cells for mobile and stationary applications. In comparison safety considerations for hydrogen storage in small or medium scale facilities as usual in hydrogen production plants from renewable energies have received relatively less attention.<br/>After a brief introduction to risk assessment for hydrogen facilities this paper reports an example of risk assessment of a small solar hydrogen storage system applied to the INTA Solar Hydrogen Production and Storage facility as particular case and considers a top level Preliminary Failure Modes and Effects Analysis (FMEA) for the identification of hazard associated to the specific characteristics of the facility.
Hy4Heat Understanding Commercial Appliances - Work Package 5
Nov 2020
Publication
The 'Hydrogen for Heat' (Hy4Heat) programme aims to support the UK Government in its ambitions to decarbonise the UK energy sector in line with the targets of the Climate Change Act 2008 by attempting to evaluate and de-risk the natural gas to hydrogen network conversion option. The impact on the commercial sector is an important factor in understanding the feasibility of utilising hydrogen to decarbonise heat in the UK. The overall objective of the market research study Work Package 5 (WP5) was to determine if it is theoretically possible to successfully convert the commercial sector to hydrogen. This work will contribute to the understanding of the scale type and capacity of gas heating appliances within the sector providing a characterisation of the market and determining the requirements and feasibility for successfully transitioning them to hydrogen in the future.
This report and any attachment is freely available on the Hy4Heat website here. The report can also be downloaded directly by clicking on the pdf icon above
This report and any attachment is freely available on the Hy4Heat website here. The report can also be downloaded directly by clicking on the pdf icon above
A Rural Hydrogen Transportation Test Bed
Sep 2007
Publication
The University of Missouri-Rolla (UMR) through a hydrogen internal combustion engine vehicle evaluation participation agreement with the Ford Motor Company will establish a commuter bus service and hydrogen refueling at a station in rural Missouri near Ft. Leonard Wood (FLW). Initiated by a request from the U.S. Army Maneuver Support Center at FLW UMR is leading the effort to launch the commuter service between FLW and the neighboring towns of Rolla and Lebanon Missouri each of which are located approximately 40 km from the military base on Interstate-44 highway. The broad research training and education agenda for the rural hydrogen transportation test bed is to develop demonstrate evaluate and promote safe hydrogen-based technologies in a real world environment. With funds provided by the Defense Logistics Agency through the Air Force Research Laboratory this hydrogen initiative will build and operate a hydrogen fueling facility that includes on-site generation of hydrogen through electrolysis as well as selling a range of other traditional and alternative fuels.
Hydrogen Releases Ignited in a Simulated Vehicle Refuelling Environment
Sep 2007
Publication
If the general public is to use hydrogen as a vehicle fuel customers must be able to handle hydrogen with the same degree of confidence and with comparable risk as conventional liquid and gaseous fuels. The hazards associated with jet releases from leaks in a vehicle-refuelling environment must be considered if hydrogen is stored and used as a high-pressure gas since a jet release in a confined or congested area could result in an explosion. As there was insufficient knowledge of the explosion hazards a study was initiated to gain a better understanding of the potential explosion hazard consequences associated with high-pressure leaks from refuelling systems. This paper describes two experiments with a dummy vehicle and dispenser units to represent refuelling station congestion. The first represents a ‘worst-case’ scenario where the vehicle and dispensers are enveloped by a 5.4 m x 6.0 m x 2.5 m high pre-mixed hydrogen-air cloud. The second is an actual high-pressure leak from storage at 40 MPa (400 bar) representing an uncontrolled full-bore failure of a vehicle refuelling hose. In both cases an electric spark ignited the flammable cloud. Measurements were made of the explosion overpressure generated its evolution with time and its decay with distance. The results reported provide a direct demonstration of the explosion hazard from an uncontrolled leak; they will also be valuable for validating explosion models that will be needed to assess configurations and conditions beyond those studied experimentally.
Validation of CFD Calculations Against Ignited Impinging Jet Experiments
Sep 2007
Publication
Computational Fluid Dynamics (CFD) tools have been increasingly employed for carrying out quantitative risk assessment (QRA) calculations in the process industry. However these tools must be validated against representative experimental data in order to have a real predictive capability. As any typical accident scenario is quite complex it is important that the CFD tool is able to predict combined release and ignition scenarios reasonably well. However this kind of validation is not performed frequently primarily due to absence of good quality data. For that reason the recent experiments performed by FZK under the HySafe internal project InsHyde (http://www.hysafe.org) are important. These involved vertically upwards hydrogen releases with different release rates and velocities impinging on a plate in two different geometrical configurations. The dispersed cloud was subsequently ignited and pressures recorded. These experiments are important not only for corroborating the underlying physics of any large-scale safety study but also for validating the important assumptions used in QRA. Blind CFD simulations of the release and ignition scenarios were carried out prior to the experiments to predict the results (and possibly assist in planning) of the experiments. The simulated dispersion results are found to correlate reasonably well with experimental data in terms of the gas concentrations. The overpressures subsequent to ignition obtained in the blind predictions could not be compared directly with the experiments as the ignition points were somewhat different but the pressure levels were found to be similar. Simulations carried out after the experiments with the same ignition position as those in the experiments compared reasonably well with the measurements in terms of the pressure level. This agreement points to the ability of the CFD tool FLACS to model such complex scenarios well. Nevertheless the experimental set-up can be considered to be small-scale and less severe than many accidents and real-life situations. Future large-scale data of this type will be valuable to confirm ability to predict large-scale accident scenarios.
Forecasting the Hydrogen Demand in China: A System Dynamics Approach
Jan 2022
Publication
Many countries including China have implemented supporting policies to promote the commercialized application of green hydrogen and hydrogen fuel cells. In this study a system dynamics (SD) model is proposed to study the evolution of hydrogen demand in China from the petroleum refining industry the synthetic ammonia industry and the vehicle market. In the model the impact from the macro-environment hydrogen fuel supply and construction of hydrogen facilities is considered to combine in incentives for supporting policies. To further formulate the competitive relationship in the vehicle market the Lotka–Volterra (LV) approach is adopted. The model is verified using published data from 2003 to 2017. The model is also used to forecast China’s hydrogen demand up to the year of 2030 under three different scenarios. Finally some forward-looking guidance is provided to policy makers according to the forecasting results.
Hy4Heat Conversion of Industrial Heating Equipment to Hydrogen - Work Package 6
Jan 2020
Publication
The study focuses on converting current industrial natural gas heating technologies to use 100% hydrogen considering the evidence which must be available before a decision on the UK’s decarbonisation pathway for heating could be made. The aim of the study is to assess the technical requirements and challenges associated with industrial hydrogen conversion and estimate the associated costs and timeframes.
This report and any attachment is freely available on the Hy4Heat website here. IGEM Members can download the report and any attachment directly by clicking on the pdf icon above.
This report and any attachment is freely available on the Hy4Heat website here. IGEM Members can download the report and any attachment directly by clicking on the pdf icon above.
Hy4Heat Hydrogen Odorant - Work Package 2
Nov 2020
Publication
This work programme was focused on identifying a suitable odorant for use in a 100% hydrogen gas grid (domestic use such as boilers and cookers). The research involved a review of existing odorants (used primarily for natural gas) and the selection of five suitable odorants based on available literature. One odorant was selected based on possible suitability with a Polymer Electrolyte Membrane (PEM) based fuel cell vehicle which could in future be a possible end-user of grid hydrogen. NPL prepared Primary Reference Materials containing the five odorants in hydrogen at the relevant amount fraction levels (as would be found in the grid) including ones provided by Robinson Brothers (the supplier of odorants for natural gas in the UK). These mixtures were used by NPL to perform tests to understand the effects of the mixtures on pipeline (metal and plastic) appliances (a hydrogen boiler provided by Worcester Bosch) and PEM fuel cells. HSE investigated the health and environmental impact of these odorants in hydrogen. Olfactory testing was performed by Air Spectrum to characterise the ‘smell’ of each odorant. Finally an economic analysis was performed by E4tech. The results confirm that Odorant NB would be a suitable odorant for use in a 100% hydrogen gas grid for combustion applications but further research would be required if the intention is to supply grid hydrogen to stationery fuel cells or fuel cell vehicles. In this case further testing would need to be performed to measure the extent of fuel cell degradation caused by the non-sulphur odorant obtained as part of this work programme and also other UK projects such as the Hydrogen Grid to Vehicle (HG2V) project[1] would provide important information about whether a purification step would be required regardless of the odorant before the hydrogen purity would be suitable for a PEM fuel cell vehicle. If purification was required it would be fine to use Odorant NB as this would be removed during the purification step.
This report and any attachment is freely available on the Hy4Heat website here. The report can also be downloaded directly by clicking on the pdf icon above
This report and any attachment is freely available on the Hy4Heat website here. The report can also be downloaded directly by clicking on the pdf icon above
Characterization of Materials in Pressurized Hydrogen Under Cyclic Loading at Service Conditions in Hydrogen Powered Engines
Sep 2005
Publication
A new testing device for cyclic loading of specimens with a novel shape design is presented. The device was applied for investigations of fatigue of metallic specimens under pressurized hydrogen up to 300 bar at temperatures up to 200 °C. Main advantage of the specimen design is the very small amount of medium here hydrogen used for testing. This allows experiments with hazardous substances at lower safety level. Additionally no gasket for the load transmission is required. Woehler curves which show the influence of hydrogen on the fatigue behaviour of austenitic steel specimens at relevant service conditions in hydrogen powered engines are presented. Material and test conditions are in agreement with the cooperating industry.
Fast Turbulent Deflagration and DDT of Hydrogen-Air Mixtures in Small Obstructed Channel
Sep 2007
Publication
An experimental study of flame propagation acceleration and transition to detonation in hydrogen-air mixture in 2 m long rectangular cross section channel filled with obstacles located at the bottom wall was performed. The initial conditions of the hydrogen-air mixture were 0.1 MPa and 293 K. Three different cases of obstacle height (blockage ratio 0.25 0.5 and 0.75) and four cases of obstacle density were studied with the channel height equal to 0.08 m. The channel width was 0.11 m in all experiments. The propagation of flame and pressure waves was monitored by four pressure transducers and four in house ion probes. The pairs of transducers and probes were placed at various locations along the channel in order to get information about the progress of the phenomena along the channel. To examine the influence of mixture composition on flame propagation and DDT the experiments were performed for the compositions of 20% 25% and 29.6% of H2 in air by volume. As a result of the experiments the deflagration and detonation regimes and velocities of flame propagation in the obstructed channel were determined.
Identification and Monitoring of a PEM Electrolyser Based on Dynamical Modelling
Sep 2007
Publication
Hydrogen from water electrolysis associated with renewable energies is one of the most attractive solutions for the green energy storage. To improve the efficiency and the safety of such stations some technological studies are still under investigation both on methods and materials. As methods control monitoring and diagnosis algorithms are relevant tools. These methods are efficient when they use an accurate mathematical model representing the real behaviour of hydrogen production system. This work focuses on the dynamical modelling and the monitoring of Proton Exchange Membrane (PEM) electrolyser. Our contribution consists in three parts: to develop an analytical dynamical PEM electrolyser model dedicated to the control and the monitoring; to identify the model parameters and to propose adequate monitoring tools. The proposed model is deduced from physical laws and electrochemical equations and consists in a steady-state electric model coupled with a dynamical thermal model. The estimation of the model parameters is achieved using identification and data fitting techniques based on experimental measurements. Taking into account the information given by the proposed analytical model and the experimentation data (temperature T voltage U and current I) given by a PEM electrolyser composed of seven cells the model parameters are identified. After estimating the dynamical model model based diagnosis approach is used in order to monitoring the PEM electrolyser and to ensure its safety. We illustrate how our algorithm can detect and isolate faults on actuators on sensors or on electrolyser system.<br/><br/>
Methodology of CFD Safety Analysis for Large-Scale Industrial Structures
Sep 2005
Publication
The current work is devoted to problems connected with application of CFD tools for safety analysis of large-scale industrial structures. With the aim to preserve conservatism of overall process of multistage procedure of such analysis special efforts are required. A strategy which has to lead to obtaining of reliable results in CFD analysis is discussed. Different aspects of proposed strategy including: adequate choice of physical and numerical models procedure of validation simulations and problem of ‘under-resolved’ simulations are considered. For physical phenomena which could cause significant uncertainties in the course of scenario simulation an approach which complements CFD simulations by application of auxiliary criteria is presented. Physical basis and applicability of strong flame acceleration and detonation-to-deflagration transition criteria are discussed. In concluding part two examples of application of presented approach for nuclear power plant and workshop cell for hydrogen driven vehicles are presented.
Hydrogen Safety- From Policies to Plans to Practices
Sep 2005
Publication
Safety is an essential element for realizing the “hydrogen economy” – safe operation in all of its aspects from hydrogen production through storage distribution and use; from research development and demonstration to commercialization. As such safety is given paramount importance in all facets of the research development and demonstration of the U.S Department of Energy’s (DOE) Hydrogen Fuel Cells and Infrastructure Technologies (HFCIT) Program Office. The diversity of the DOE project portfolio is self-evident. Projects are performed by large companies small businesses DOE National Laboratories academic institutions and numerous partnerships involving the same. Projects range from research exploring advances in novel hydrogen storage materials to demonstrations of hydrogen refuelling stations and vehicles. Recognizing the nature of its program and the importance of safety planning DOE has undertaken a number of initiatives to encourage and shape safety awareness. The DOE Hydrogen Safety Review Panel was formed to bring a broad cross-section of expertise from the industrial government and academic sectors to help ensure the success of the program as a whole. The Panel provides guidance on safety-related issues and needs reviews individual DOE-supported projects and their safety plans and explores ways to bring learnings to broadly benefit the DOE program. This paper explores the approaches used for providing safety planning guidance to contractors in the context of their own (and varied) policies procedures and practices. The essential elements that should be included in safety plans are described as well as the process for reviewing project safety plans. Discussion of safety planning during the conduct of safety review site visits is also shared. Safety planning-related learnings gathered from project safety reviews and the Panel’s experience in reviewing safety plans are discussed.
Numerical Simulation of Hydrogen Explosion Tests with a Barrier Wall for Blast Mitigation
Sep 2005
Publication
We have investigated hydrogen explosion risk and its mitigation focusing on compact hydrogen refuelling stations in urban areas. In this study numerical analyses were performed of hydrogen blast propagation and the structural behaviour of barrier walls. Parametric numerical simulations of explosions were carried out to discover effective shapes for blast-mitigating barrier walls. The explosive source was a prismatic 5.27 m3 volume that contained 30% hydrogen and 70% air. A reinforced concrete wall 2 m tall by 10 m wide and 0.15 m thick was set 2 or 4 m away from the front surface of the source. The source was ignited at the bottom centre by a spark for the deflagration case and 10 g of C-4 high explosive for two detonation cases. Each of the tests measured overpressures on the surfaces of the wall and on the ground displacements of the wall and strains of the rebar inside the wall. The blast simulations were carried out with an in-house CFD code based on the compressive Euler equation. The initial energy estimated from the volume of hydrogen was a time-dependent function for the deflagration and was released instantaneously for the detonations. The simulated overpressures were in good agreement with test results for all three test cases. DIANA a finite element analysis code released by TNO was used for the structural simulations of the barrier wall. The overpressures obtained by the blast simulations were used as external forces. The analyses simulated the displacements well but not the rebar strains. The many shrinkage cracks that were observed on the walls some of which penetrated the wall could make it difficult to simulate the local behaviour of a wall with high accuracy and could cause strain gages to provide low-accuracy data. A parametric study of the blast simulation was conducted with several cross-sectional shapes of barrier wall. A T-shape and a Y-shape were found to be more effective in mitigating the blast.
Towards Hydrogen Safety Education and Training
Sep 2005
Publication
The onset and further development of the hydrogen economy are known to be constrained by safety barriers as well as by the level of public acceptance of new applications. Educational and training programmes in hydrogen safety which are currently absent in Europe are considered to be a key instrument in lifting these limitations and to ensure the safe introduction of hydrogen as an energy carrier. Therefore the European Network of Excellence ‘Safety of Hydrogen as an Energy Carrier’ (NoE HySafe) embarked on the establishment of the e-Academy of Hydrogen Safety. This work is led by the University of Ulster and carried out in cooperation with international partners from five other universities (Universidad Politecnica de Madrid Spain; University of Pisa Italy; Warsaw University of Technology Poland; Instituto Superior Technico Portugal; University of Calgary Canada) two research institutions (Forschungszentrum Karlsruhe and Forschungszentrum Juelich Germany) and one enterprise (GexCon Norway). The development of an International Curriculum on Hydrogen Safety Engineering aided by world-class experts from within and outside NoE HySafe is of central importance to the establishment of the e-Academy of Hydrogen Safety. Despite its key role in identifying the knowledge framework of the subject matter and its role in aiding educators with the development of teaching programmes on hydrogen safety no such curriculum appears to have been developed previously. The current structure of the International Curriculum on Hydrogen Safety Engineering and the motivation behind it are described in this paper. Future steps in the development of a system of hydrogen safety education and training in Europe are briefly described.
Canadian Hydrogen Safety Program.
Sep 2005
Publication
This paper discusses the rationale structure and contents of the Canadian Hydrogen Safety Program developed by the Codes & Standards Working Group of the Canadian Transportation Fuel Cell Alliance consisting of representatives from industry academia government and regulators. The overall program objective is to facilitate acceptance of the products services and systems of the Canadian Hydrogen Industry by the Canadian Hydrogen Stakeholder Community to facilitate trade ensure fair insurance policies and rates ensure effective and efficient regulatory approval procedures and to ensure that the interests of the general public are accommodated. The Program consists of four projects including Comparative Quantitative Risk Assessment of Hydrogen and Compressed Natural Gas (CNG) Refuelling Stations; Computational Fluid Dynamics (CFD) Modelling Validation Calibration and Enhancement; Enhancement of Frequency and Probability Analysis and Consequence Analysis of Key Component Failures of Hydrogen Systems; and Fuel Cell Oxidant Outlet Hydrogen Sensor Project. The Program projects are tightly linked with the content of the IEA Task 19 Hydrogen Safety. The Program also includes extensive (destructive and non-destructive) testing of hydrogen components.
Pathways to Net-Zero: Decarbonising the Gas Networks in Great Britain
Oct 2019
Publication
Natural gas plays a central role in the UK energy system today but it is also a significant source of greenhouse gas (GHG) emissions. The UK committed in 2008 to reduce GHG emissions by at least 80% compared to 1990 levels by 2050. In June 2019 a more ambitious target was adopted into law and the UK became the first major economy to commit to “net-zero” emissions by 2050. In this context the Energy Networks Association (ENA) commissioned Navigant to explore the role that the gas sector can play in the decarbonisation of the Great Britain (GB) energy system. In this report we demonstrate that low carbon and renewable gases can make a fundamental contribution to the decarbonisation pathway between now and 2050.
Sensitivity to Detonation and Detonation Cellular Structure of H2-O2-AIr-H2O2 Gas Mixtures
Sep 2005
Publication
Today it is not known – neither qualitatively not quantitatively - how large the impact can be of the promoters on sensitivity to hydrogen-air detonation in hypothetical accidents at hydrogen-containing installations transport or storage facilities. Report goal is to estimate theoretically an effect of hydrogen-peroxide (as representative promoter) on sensitivity to detonation of the stoichiometric hydrogen-oxygen gas mixtures. The classical H2-O2-Ar (2:1:7) gas mixture was chosen as reference system with the well established and unambiguously interpreted experimental data. In kinetic simulations it was found that the ignition delay time is sensitive to H2O2addition for small initial H2O2concentrations and is nearly constant for the large ones. Parametric reactive CFD studies of two dimensional cellular structure of 2H2-O2-7Ar-H2O2 detonations with variable hydrogen peroxide concentration (up to 10 vol.%) were also performed. Two un-expected results were obtained. First result: detonation cell size is practically independent upon variation of initial hydrogen peroxide concentration. For practical applications it means that presence of hydrogen-peroxide did not change drastically sensitivity of the stoichiometric hydrogen-oxygen gas mixtures. These theoretical speculations require an experimental verification. Second result: for large enough initial H2O2concentrations (> 1 vol.% at least) a new element of cellular structure of steady detonation wave was revealed. It is a system of multiple secondary longitudinal shock waves (SLSW) which propagates in the direction opposite to that of the leading shock wave. Detailed mechanism of SLSW formation is proposed.
An Intercomparison Exercise on the Capabilities of CFD Models to Predict Distribution and Mixing of H2 in a Closed Vessel.
Sep 2005
Publication
This paper presents a compilation and discussion of the results supplied by HySafe partners participating in the Standard Benchmark Exercise Problem (SBEP) V1 which is based on an experiment on hydrogen release mixing and distribution inside a vessel. Each partner has his own point of view of the problem and uses a different approach to the solution. The main characteristics of the models employed for the calculations are compared. The comparison between results together with the experimental data when available is made. Relative deviations of each model from the experimental values are also included. Explanations and interpretations of the results are presented together with some useful conclusions for future work.
Numerical Study of a Highly Under-Expanded Hydrogen Jet
Sep 2005
Publication
Numerical simulations are carried out for a highly under-expanded hydrogen jet resulting from an accidental release of high-pressure hydrogen into the atmospheric environment. The predictions are made using two independent CFD codes namely CFX and KIVA. The KIVA code has been substantially modified by the present authors to enable large eddy simulation (LES). It employs a oneequation sub-grid scale (SGS) turbulence model which solves the SGS kinetic energy equation to allow for more relaxed equilibrium requirement and to facilitate high fidelity LES calculations with relatively coarser grids. Instead of using the widely accepted pseudo-source approach the complex shock structures resulting from the high under-expansion is numerically resolved in a small computational domain above the jet exit. The computed results are used as initial conditions for the subsequent hydrogen jet simulation. The predictions provide insight into the shock structure and the subsequent jet development. Such knowledge is valuable for studying the ignition characteristics of high-pressure hydrogen jets in the safety context.
CFD Simulation on Diffusion of Leaked Hydrogen Caused by Vehicle Accident in Tunnels
Sep 2005
Publication
Hydrogen fuel cell vehicles are expected to come into widespread use in the near future. Accordingly many hydrogen carrying vehicles will begin to pass through tunnels. It is therefore important to predict whether risk from leaked hydrogen accidents in tunnels can be avoided. CFD simulation was carried out on diffusion of leaked hydrogen in tunnels. Three areas of tunnels were chosen for study. One is the typical longitudinal and lateral areas of tunnels and the others are underground ventilation facilities and electrostatic dust collectors which were simulated with an actual tunnel. The amount of hydrogen leaked was 60m3 (approximately 5.08 kg) which corresponds to the amount necessary for future fuel cell vehicles to achieve their desired running distance. Analytical periods were the time after leaks began until regions of hydrogen above the low flammability limit had almost disappeared or thirty minutes. We found that leaked hydrogen is immediately carried away from leaking area under existing ventilation conditions. We also obtained basic data on behaviour of leaked hydrogen.
Experimental Study on Hydrogen Explosions in a Full-scale Hydrogen Filling Station Model
Sep 2005
Publication
In order for fuel cell vehicles to develop a widespread role in society it is essential that hydrogen refuelling stations become established. For this to happen there is a need to demonstrate the safety of the refuelling stations. The work described in this paper was carried out to provide experimental information on hydrogen outflow dispersion and explosion behaviour. In the first phase homogeneous hydrogen-air-mixtures of a known concentration were introduced into an explosion chamber and the resulting flame speed and overpressures were measured. Hydrogen concentration was the dominant factor influencing the flame speed and overpressure. Secondly high-pressure hydrogen releases were initiated in a storage room to study the accumulation of hydrogen. For a steady release with a constant driving pressure the hydrogen concentration varied as the inlet airflow changed depending on the ventilation area of the room the external wind conditions and also the buoyancy induced flows generated by the accumulating hydrogen. Having obtained this basic data the realistic dispersion and explosion experiments were executed at full-scale in the hydrogen station model. High-pressure hydrogen was released from 0.8-8.0mm nozzle at the dispenser position and inside the storage room in the full-scale model of the refuelling station. Also the hydrogen releases were ignited to study the overpressures that can be generated by such releases. The results showed that overpressures that were generated following releases at the dispenser location had a clear correlation with the time of ignition distance from ignition point.
Simulation of Flame Acceleration and DDT in H2-air Mixture with a Flux Limiter Centred Method
Sep 2005
Publication
Flame acceleration and deflagration to detonation transition (DDT) is simulated with a numerical code based on a flux limiter centred method for hyperbolic differential equations. The energy source term is calculated by a Riemann solver for the in homogeneous Euler equations for the turbulent combustion and a two-step reaction model for hydrogen-air. The transport equations are filtered for large eddy simulation (LES) and the sub filter turbulence is modelled by a transport equation for the the turbulent kinetic energy. The flame tracking is handled by the G-equation for turbulent flames. Numerical results are compared to pressure histories from physical experiments. These experiments are performed in a closed circular 4m long tube with inner diameter of 0.107m. The tube is filled with hydrogen-air mixture at 1atm which is at rest when ignited. The ignition is located at one end of the tube. The tube is fitted with an obstruction with circular opening 1m down the tube from the ignition point. The obstruction has a blockage ratio of 0.92 and a thickness of 0.01m. The obstruction creates high pressures in the ignition end of the tube and very high gas velocities in and behind the obstruction opening. The flame experiences a detonation to deflagration transition (DDT) in the super sonic jet created by the obstruction. Pressure build-up in the ignition end of the tube is simulated with some discrepancies. The DDT in the supersonic jet is simulated but the position of the DDT is strongly dependent on the simulated pressure in the ignition end.
Modelling of H2 Dispersion and Combustion Phenomena Using CFD Codes
Sep 2005
Publication
Computational Fluid Dynamics codes are increasingly being considered for safety assessment demonstrations in many industrial fields as tools to model accidental phenomena and to design mitigation (risk reducing) systems. Thus they naturally complement experimental programmes which may be expensive to run or difficult to set up. However to trust numerical simulations the validity of the codes must be firmly established and a certain number of error sources (user effect modelling errors discretization errors etc) reduced to the minimum. Code validation and establishment of “best practice guidelines” in the application of simulation tools to hydrogen safety assessment are some of the objectives pursued by the HYSAFE Network of Excellence. This paper will contribute to these goals by describing some of the validation efforts that CEA is making in the areas of release dispersion combustion and mitigation thereby proposing the outline of a validation matrix for hydrogen safety problems.
Numerical Modelling of Hydrogen Release, Mixture and Dispersion in Atmosphere.
Sep 2005
Publication
The method of the numerical solution of a three-dimensional problem of atmospheric release dispersion and explosion of gaseous admixtures is presented. It can be equally applied for gases of different densities including hydrogen. The system of simplified Navie-Stocks equations received by truncation of viscous members (Euler equations with source members) is used to obtain a numerical solution. The algorithm is based on explicit finite-difference Godunov scheme of arbitrary parameters breakup disintegration. To verify the developed model and computer system comparisons of numerical calculations with the published experimental data on the dispersion of methane and hydrocarbons explosions have been carried out. Computational experiments on evaporation and dispersion of spilled liquid hydrogen and released gaseous hydrogen at different wind speeds have been conducted. The largest mass concentrations of hydrogen between the bottom and top limits of flame propagation and cloud borders have been determined. The problem of the explosion of a hydrogen-air cloud of the complex form generated by large-scale spillage of liquid hydrogen and instant release of gaseous hydrogen has been numerically solved at low wind speed. Shock-wave loadings affecting the buildings located on a distance of 52 m from a hydrogen release place have been shown.
Combustion Analysis of Hydrogen-diesel Dual Fuel Engine with Water Injection Technique
Dec 2018
Publication
In this paper the effect of direct diesel injection timing and engine speed on the performance and emissions of CI engine operating on RCCI (H2/diesel mixture) coupled with water injection have been numerically investigated and validated. The simulation have been carried out using GT-Power professional software. A single cylinder dual fuel compression ignition model has been built. The diesel fuel was injected directly to the cylinder. The hydrogen and water were injected to the engine intake manifold and engine port with constant mass flow rate and constant temperature for all engine speed. During the simulation the engine speed was varied from 1000 to 5000 rpm and the diesel injection timing was varied from (−5° to −25° CAD). In addition the optimized diesel injection timing for specific engine operation parameters has also been performed. The results show that for specific injection timing and constant hydrogen and water mass flow rate the increase of engine speed results in an increase in the cylinder temperature engine brake power brake specific fuel consumption and NO emissions; but decreases brake thermal efficiency. Moreover the analysis performed shows that the advanced injection timing decreases the engine power brake thermal efficiency and CO emissions; but increases NO emissions.
A Temperature Controlled Mechanical Test Facility to Ensure Safe Materials Performance in Hydrogen at 1000 Bar
Sep 2007
Publication
Increasingly car manufacturers are turning to high pressure hydrogen storage for on-board power applications. Many prototypes use costly materials and fabrication methods such as Type 316L austenitic stainless steel and processes such as TIG (GTA) welding. There is a need to move to less expensive options without compromising safety to assist in developing economic vehicles. It is important that the behaviour of new/modified materials and joints (including those fabricated by new technologies) is understood at anticipated service temperatures and hydrogen pressure as the consequences of poor material choice could be severe. The greatest detrimental effect of gaseous hydrogen on the mechanical properties of metallic materials is commonly observed under conditions of dynamic plastic strain. Under such conditions an atomically clean surface is produced where hydrogen molecules will dissociate and penetrate the material. Thus static load test methods with hydrogen charging are not reliable for engineering data generation. To meet the need for dynamically straining material in a pressurised hydrogen environment TWI has developed a facility to load specimens in a high pressure environment for tensile toughness and fatigue testing. The design of this has involved a number of innovative steps. This paper outlines the requirements and the design and construction issues that were encountered when installing a facility which can not only perform tests at up to 1000bar (100MPa) but also for temperatures between –150°C to +85°C.
HyDeploy Gas Safe Webinar
Nov 2020
Publication
HyDeploy is a pioneering hydrogen energy project designed to help reduce UK CO2 emissions and reach the Government’s net zero target for 2050.
As the first ever live demonstration of hydrogen in homes HyDeploy aims to prove that blending up to 20% volume of hydrogen with natural gas is a safe and greener alternative to the gas we use now. It is providing evidence on how customers don’t have to change their cooking or heating appliances to take the blend which means less disruption and cost for them.
As the first ever live demonstration of hydrogen in homes HyDeploy aims to prove that blending up to 20% volume of hydrogen with natural gas is a safe and greener alternative to the gas we use now. It is providing evidence on how customers don’t have to change their cooking or heating appliances to take the blend which means less disruption and cost for them.
Safety Distances- Definition and Values
Sep 2005
Publication
In order to facilitate the introduction of a new technology as it is the utilization of hydrogen as an energy carrier development of safety codes and standards besides the conduction of demonstrative projects becomes a very important action to be realized. Useful tools of work could be the existing gaseous fuel codes (natural gas and propane) regulating the stationary and automotive applications. Some safety codes have been updated to include hydrogen but they have been based on criteria and/or data applicable for large industrial facilities making the realization of public hydrogen infrastructures prohibitive in terms of space. In order to solve the above mentioned problems others questions come out: how these safety distances have been defined? Which hazard events have been taken as reference for calculation? Is it possible to reduce the safety distances through an appropriate design of systems and components or through the predisposition of adequate mitigation measures? This paper presents an analysis of the definitions of “safety distances” and “hazardous locations” as well as a synoptic analysis of the different values in force in several States for hydrogen and natural gas. The above mentioned synoptic table will highlight the lacks and so some fields that need to be investigated in order to produce a suitable hydrogen standard.
Pool Spreading and Vaporization of Liquid Hydrogen
Sep 2005
Publication
An essential part of a safety analysis to evaluate the risks of a liquid hydrogen (LH2) containing system is the understanding of cryogenic pool spreading and its vaporization. It represents the initial step in an accident sequence with the inadvertent spillage of LH2 e.g. after failure of a transport container tank or the rupture of a pipeline. This stage of an accident scenario provides pertinent information as a source term for the subsequent analysis steps of atmospheric dispersion and at presence of an ignition source the combustion of the hydrogen-air vapor cloud. A computer model LAUV has been developed at the Research Center Juelich which is able to simulate the spreading and vaporization of a cryogenic liquid under various conditions such as different grounds (solid water). It is based on the so-called shallow-layer differential equations taking into account physical phenomena such as ice formation if the cryogen is spilled on a water surface. The presentation will give a description of the computer model and its validation against existing experimental data. Furthermore calculational results will be analyzed describing the prediction and quantification of the consequences of an LH2 spill for different cases. They also include the comparison of an LH2 spillage versus the corresponding release of other cryogens such as liquid natural gas liquid oxygen and liquid nitrogen.
No more items...