Italy
Finding Synergy Between Renewables and Coal: Flexible Power and Hydrogen Production from Advanced IGCC Plants with Integrated CO2 Capture
Feb 2021
Publication
Variable renewable energy (VRE) has seen rapid growth in recent years. However VRE deployment requires a fleet of dispatchable power plants to supply electricity during periods with limited wind and sunlight. These plants will operate at reduced utilization rates that pose serious economic challenges. To address this challenge this paper presents the techno-economic assessment of flexible power and hydrogen production from integrated gasification combined cycles (IGCC) employing the gas switching combustion (GSC) technology for CO2 capture and membrane assisted water gas shift (MAWGS) reactors for hydrogen production. Three GSC-MAWGS-IGCC plants are evaluated based on different gasification technologies: Shell High Temperature Winkler and GE. These advanced plants are compared to two benchmark IGCC plants one without and one with CO2 capture. All plants utilize state-of-the-art H-class gas turbines and hot gas clean-up for maximum efficiency. Under baseload operation the GSC plants returned CO2 avoidance costs in the range of 24.9–36.9 €/ton compared to 44.3 €/ton for the benchmark. However the major advantage of these plants is evident in the more realistic mid-load scenario. Due to the ability to keep operating and sell hydrogen to the market during times of abundant wind and sun the best GSC plants offer a 6–11%-point higher annual rate of return than the benchmark plant with CO2 capture. This large economic advantage shows that the flexible GSC plants are a promising option for balancing VRE provided a market for the generated clean hydrogen exists.
Dynamic Emulation of a PEM Electrolyzer by Time Constant Based Exponential Model
Feb 2019
Publication
The main objective of this paper is to develop a dynamic emulator of a proton exchange membrane (PEM) electrolyzer (EL) through an equivalent electrical model. Experimental investigations have highlighted the capacitive effect of EL when subjecting to dynamic current profiles which so far has not been reported in the literature. Thanks to a thorough experimental study the electrical domain of a PEM EL composed of 3 cells has been modeled under dynamic operating conditions. The dynamic emulator is based on an equivalent electrical scheme that takes into consideration the dynamic behavior of the EL in cases of sudden variation in the supply current. The model parameters were identified for a suitable current interval to consider them as constant and then tested with experimental data. The obtained results through the developed dynamic emulator have demonstrated its ability to accurately replicate the dynamic behavior of a PEM EL.
Hydrogen Safety Challenges: A Comprehensive Review on Production, Storage, Transport, Utilization, and CFD-Based Consequence and Risk Assessment
Mar 2024
Publication
This review examines the central role of hydrogen particularly green hydrogen from renewable sources in the global search for energy solutions that are sustainable and safe by design. Using the hydrogen square safety measures across the hydrogen value chain—production storage transport and utilisation—are discussed thereby highlighting the need for a balanced approach to ensure a sustainable and efficient hydrogen economy. The review also underlines the challenges in safety assessments points to past incidents and argues for a comprehensive risk assessment that uses empirical modelling simulation-based computational fluid dynamics (CFDs) for hydrogen dispersion and quantitative risk assessments. It also highlights the activities carried out by our research group SaRAH (Safety Risk Analysis and Hydrogen) relative to a more rigorous risk assessment of hydrogenrelated systems through the use of a combined approach of CFD simulations and the appropriate risk assessment tools. Our research activities are currently focused on underground hydrogen storage and hydrogen transport as hythane.
Hydrogen Refueling Process: Theory, Modeling, and In-Force Applications
Mar 2023
Publication
Among the alternative fuels enabling the energy transition hydrogen-based transportation is a sustainable and efficient choice. It finds application both in light-duty and heavy-duty mobility. However hydrogen gas has unique qualities that must be taken into account when employed in such vehicles: high-pressure levels up to 900 bar storage in composite tanks with a temperature limit of 85 ◦C and a negative Joule–Thomson coefficient throughout a wide range of operational parameters. Moreover to perform a refueling procedure that is closer to the driver’s expectations a fast process that requires pre-cooling the gas to −40 ◦C is necessary. The purpose of this work is to examine the major phenomena that occur during the hydrogen refueling process by analyzing the relevant theory and existing modeling methodologies.
Modeling and Simulation of an Isolated Hybrid Micro-grid with Hydrogen Production and Storage
Jan 2014
Publication
This work relates the study of system performance in operational conditions for an isolated micro-grid powered by a photovoltaic system and a wind turbine. The electricity produced and not used by the user will be accumulated in two different storage systems: a battery bank and a hydrogen storage system composed of two PEM electrolyzers four pressurized tanks and a PEM fuel cell. One of the main problems to be solved in the development of isolated micro-grids is the management of the various devices and energy flows to optimize their functioning in particular in relation to the load profile and power produced by renewable energy systems depending on weather conditions. For this reason through the development and implementation of a specific simulation program three different energy management systems were studied to evaluate the best strategy for effectively satisfying user requirements and optimizing overall system efficiency.
Renewable Hydrogen Supply Chains: A Planning Matrix and an Agenda for Future Research
Oct 2022
Publication
Worldwide energy systems are experiencing a transition to more sustainable systems. According to the Hydrogen Roadmap Europe (FCH EU 2019) hydrogen will play an important role in future energy systems due to its ability to support sustainability goals and will account for approximately 13% of the total energy mix in the coming future. Correct hydrogen supply chain (HSC) planning is therefore vital to enable a sustainable transition. However due to the operational characteristics of the HSC its planning is complicated. Renewable hydrogen supply can be diverse: Hydrogen can be produced de-centrally with renewables such as wind and solar energy or centrally by using electricity generated from a hydro power plant with a large volume. Similarly demand for hydrogen can also be diverse with many new applications such as fuels for fuel cell electrical vehicles and electricity generation feedstocks in industrial processes and heating for buildings. The HSC consists of various stages (production storage distribution and applications) in different forms with strong interdependencies which further increase HSC complexity. Finally planning of an HSC depends on the status of hydrogen adoption and market development and on how mature technologies are and both factors are characterised by high uncertainties. Directly adapting the traditional approaches of supply chain planning for HSCs is insufficient. Therefore in this study we develop a planning matrix with related planning tasks leveraging a systematic literature review to cope with the characteristics of HSCs. We focus only on renewable hydrogen due to its relevance to the future low-carbon economy. Furthermore we outline an agenda for future research from the supply chain management perspective in order to support HSC development considering the different phases of HSCs adoption and market development.
Redrawing the EU’s Energy Relations: Getting it Right with African Renewable Hydrogen
Oct 2022
Publication
In this paper we will explore the state of play with renewable hydrogen development in Africa through some case studies from AGHA members and the scope for growth moving forward. In so doing we will address some of the prevailing challenges to build out of a clean hydrogen economy that could be foreseen already at this early stage and look for potential solutions building on what is already in place in other sectors. We make the case that there should be four key areas of focus moving forward on African-EU hydrogen collaboration. Firstly (i) foreign direct investment (FDI) should be de-risked through offtake mechanisms and public-private partnerships (ii) flagship projects should lead the way (iii) large parts of the value chain should remain in Africa (iv) wider ‘democratisation’ and accessibility of the sector should be encouraged
Preliminary Design and Simulation of a Thermal Management System with Integrated Secondary Power Generation Capability for a Mach 8 Aircraft Concept Exploiting Liquid Hydrogen
Feb 2023
Publication
This paper introduces the concept of a thermal management system (TMS) with integrated on-board power generation capabilities for a Mach 8 hypersonic aircraft powered by liquid hydrogen (LH2). This work developed within the EU-funded STRATOFLY Project aims to demonstrate an opportunity for facing the challenges of hypersonic flight for civil applications mainly dealing with thermal and environmental control as well as propellant distribution and on-board power generation adopting a highly integrated plant characterized by a multi-functional architecture. The TMS concept described in this paper makes benefit of the connection between the propellant storage and distribution subsystems of the aircraft to exploit hydrogen vapors and liquid flow as the means to drive a thermodynamic cycle able on one hand to ensure engine feed and thermal control of the cabin environment while providing on the other hand the necessary power for other on-board systems and utilities especially during the operation of high-speed propulsion plants which cannot host traditional generators. The system layout inspired by concepts studied within precursor EU-funded projects is detailed and modified in order to suggest an operable solution that can be installed on-board the reference aircraft with focus on those interfaces impacting its performance requirements and integration features as part of the overall systems architecture of the plane. Analysis and modeling of the system is performed and the main results in terms of performance along the reference mission profile are discussed.
Assessment of Hydrogen Based Long Term Electrical Storage in Residential Energy Systems
Oct 2022
Publication
Among the numerous envisioned applications for hydrogen in the decarbonization of the energy system seasonal energy storage is usually regarded as one of the most likely options. Although long-term energy storage is usually considered at grid-scale level given the increasing diffusion of distributed energy systems and the expected cost reduction in hydrogen related components some companies are starting to offer residential systems with PV modules and batteries that rely on hydrogen for seasonal storage of electrical energy. Such hydrogen storage systems are generally composed by water electrolysers hydrogen storage vessels and fuel cells.<br/>The aim of this work is to investigate such systems and their possible applications for different geographical conditions in Italy. On-grid and off-grid systems are considered and compared to systems without hydrogen in terms of self-consumption ratio size of components and economic investment. Each different option has been assessed from a techno-economic point of view via MESS (Multi Energy Systems Simulator) an analytical programming tool for the analysis of local energy systems.<br/>Results have identified the optimal sizing of the system's components and have shown how such systems are not in general economically competitive for a single dwelling although they can in some cases ensure energy independence.
Energy and Environmental Assessment of Hydrogen from Biomass Sources: Challenges and Perspectives
Aug 2022
Publication
Hydrogen is considered as one of the pillars of the European decarbonisation strategy boosting a novel concept of the energy system in line with the EU’s commitment to achieve clean energy transition and reach the European Green Deal carbon neutrality goals by 2050. Hydrogen from biomass sources can significantly contribute to integrate the renewable hydrogen supply through electrolysis at large-scale production. Specifically it can cover the non-continuous production of green hydrogen coming from solar and wind energy to offer an alternative solution to such industrial sectors necessitating of stable supply. Biomass-derived hydrogen can be produced either from thermochemical pathways (i.e. pyrolysis liquefaction and gasification) or from biological routes (i.e. direct or indirect-biophotolysis biological water–gas shift reaction photo- and dark-fermentation). The paper reviews several production pathways to produce hydrogen from biomass or biomass-derived sources (biogas liquid bio-intermediates sugars) and provides an exhaustive review of the most promising technologies towards commercialisation. While some pathways are still at low technology readiness level others such as the steam bio-methane reforming and biomass gasification are ready for an immediate market uptake. The various production pathways are evaluated in terms of energy and environmental performances highlighting the limits and barriers of the available LCA studies. The paper shows that hydrogen production technologies from biomass appears today to be an interesting option almost ready to constitute a complementing option to electrolysis.
An Overview on Safety Issues Related to Hydrogen and Methane Blend Applications in Domestic and Industrial Use
Sep 2017
Publication
The share of electrical energy hailing from renewable sources in the European electricity mix is increasing. The match between renewable power supply and demand has become the greatest challenge to cope with. Gas infrastructure can accommodate large volumes of electricity converted into gas whenever this supply of renewable power is larger than the grid capacity or than the electricity demand. The Power-to-Gas (P2G) process chain could play a significant role in the future energy system. Renewable electric energy can be transformed into storable hydrogen via electrolysis and subsequent methanation. The aim of this paper is to provide an overview of the required technical adaptations of the most common devices for end users such as heating plants CHP systems home gas furnaces and cooking surfaces wherever these are fuelled with methane and hydrogen blends in variable percentages by volume. Special attention will be given to issues related to essential safety standards firstly comparing existing Italian and European regulations in this regard and secondly highlighting the potential need for legislation to regulate the suitability of hydrogen methane blends. Finally a list of foreseeable technical solutions will be provided and discussed thoroughly
A Multi-Criteria Decision-Making Framework for Zero Emission Vehicle Fleet Renewal Considering Lifecycle and Scenario Uncertainty
Mar 2024
Publication
: In the last decade with the increased concerns about the global environment attempts have been made to promote the replacement of fossil fuels with sustainable sources. For transport which accounts for around a quarter of total greenhouse gas emissions meeting climate neutrality goals will require replacing existing fleets with electric or hydrogen-propelled vehicles. However the lack of adequate decision support approach makes the introduction of new propulsion technologies in the transportation sector a complex strategic decision problem where distorted non-optimal decisions may easily result in long-term negative effects on the performance of logistic operators. This research addresses the problem of transport fleet renewal by proposing a multi-criteria decision-making approach and takes into account the multiple propulsion technologies currently available and the objectives of the EU Green Deal as well as the inherent scenario uncertainty. The proposed approach based on the TOPSIS model involves a novel decision framework referred to as a generalized life cycle evaluation of the environmental and cost objectives which is necessary when comparing green and traditional propulsion systems in a long-term perspective to avoid distorted decisions. Since the objective of the study is to provide a practical methodology to support strategic decisions the framework proposed has been validated against a practical case referred to the strategic fleet renewal decision process. The results obtained demonstrate how the decision maker’s perception of the technological evolution of the propulsion technologies influences the decision process thus leading to different optimal choices.
Two-stage Model Predictive Control for a Hydrogen-based Storage System Paired to a Wind Farm Towards Green Hydrogen Production for Fuel Cell Electric Vehicles
Jul 2022
Publication
This study proposes a multi-level model predictive control (MPC) for a grid-connected wind farm paired to a hydrogen-based storage system (HESS) to produce hydrogen as a fuel for commercial road vehicles while meeting electric and contractual loads at the same time. In particular the integrated system (wind farm + HESS) should comply with the “fuel production” use case as per the IEA-HIA report where the hydrogen production for fuel cell electric vehicles (FCEVs) has the highest unconditional priority among all the objectives. Based on models adopting mixed-integer constraints and dynamics the problem of external hydrogen consumer requests optimal load demand tracking and electricity market participation is solved at different timescales to achieve a long-term plan based on forecasts that then are adjusted at real-time. The developed controller will be deployed onto the management platform of the HESS which is paired to a wind farm established in North Norway within the EU funded project HAEOLUS. Numerical analysis shows that the proposed controller efficiently manages the integrated system and commits the equipment so as to comply with the requirements of the addressed scenario. The operating costs of the devices are reduced by 5% which corresponds to roughly 300 commutations saved per year for devices.
Pressure Management in Smart Gas Networks for Increasing Hydrogen Blending
Jan 2022
Publication
The injection of hydrogen into existing gas grids is acknowledged as a promising option for decarbonizing gas systems and enhancing the integration among energy sectors. Nevertheless it affects the hydraulics and the quality management of networks. When the network is fed by multiple infeed sites and hydrogen is fed from a single injection point non-homogeneous hydrogen distribution throughout the grid happens to lead to a reduction of the possible amount of hydrogen to be safely injected within the grid. To mitigate these impacts novel operational schemes should therefore be implemented. In the present work the modulation of the outlet pressures of gas infeed sites is proposed as an effective strategy to accommodate larger hydrogen volumes into gas grids extending the area of the network reached by hydrogen while keeping compliance with quality and hydraulic restrictions. A distribution network operated at two cascading pressure tiers interfaced by pressure regulators constitutes the case study which is simulated by a fluid-dynamic and multi-component model for gas networks. Results suggest that higher shares of hydrogen and other green gases can be introduced into existing distribution systems by implementing novel asset management schemes with negligible impact on grid operations.
A Novel Optimal Power Control for a City Transit Hybrid Bus Equipped with a Partitioned Hydrogen Fuel Cell Stack
May 2020
Publication
The development of more sustainable and zero-emissions collective transport solutions could play a very important measure in the near future within smart city policies. This paper tries to give a contribution to this aim proposing a novel approach to fuel cell vehicle design and operation. Traditional difficulties experienced in fuel cell transient operation are in fact normally solved in conventional vehicle prototypes through the hybridization of the propulsion system and with the complete fulfillment of transients in road energy demand through a high-capacity onboard energy storage device. This makes it normally necessary to use Li-ion battery solutions accepting their restrictions in terms of weight costs energy losses limited lifetime and environmental constraints. The proposed solution instead introduces a partitioning of the hydrogen fuel cell (FC) and novel optimal power control strategy with the aim of limiting the capacity of the energy storage still avoiding FC transient operation. The limited capacity of the resulting energy storage systems which instead has to answer higher power requests makes it possible to consider the utilization of a high-speed flywheel energy storage system (FESS) in place of high energy density Li-ion batteries. The proposed control strategy was validated by vehicle simulations based on a modular and parametric model; input data were acquired experimentally on an operating electric bus in real traffic conditions over an urban bus line. Simulation results highlight that the proposed control strategy makes it possible to obtain an overall power output for the FC stacks which better follows road power demands and a relevant downsizing of the FESS device.
Operating Hydrogen-Based Energy Storage Systems in Wind Farms for Smooth Power Injection: A Penalty Fees Aware Model Predictive Control
Aug 2022
Publication
Smooth power injection is one of the possible services that modern wind farms could provide in the not-so-far future for which energy storage is required. Indeed this is one among the three possible operations identified by the International Energy Agency (IEA)-Hydrogen Implementing Agreement (HIA) within the Task 24 final report that may promote their integration into the main grid in particular when paired to hydrogen-based energy storages. In general energy storage can mitigate the inherent unpredictability of wind generation providing that they are deployed with appropriate control algorithms. On the contrary in the case of no storage wind farm operations would be strongly affected as well as their economic performances since the penalty fees wind farm owners/operators incur in case of mismatches between the contracted power and that actually delivered. This paper proposes a Model Predictive Control (MPC) algorithm that operates a Hydrogen-based Energy Storage System (HESS) consisting of one electrolyzer one fuel cell and one tank paired to a wind farm committed to smooth power injection into the grid. The MPC relies on Mixed-Logic Dynamic (MLD) models of the electrolyzer and the fuel cell in order to leverage their advanced features and handles appropriate cost functions in order to account for the operating costs the potential value of hydrogen as a fuel and the penalty fee mechanism that may negatively affect the expected profits generated by the injection of smooth power. Numerical simulations are conducted by considering wind generation profiles from a real wind farm in the center-south of Italy and spot prices according to the corresponding market zone. The results show the impact of each cost term on the performances of the controller and how they can be effectively combined in order to achieve some reasonable trade-off. In particular it is highlighted that a static choice of the corresponding weights can lead to not very effective handling of the effects given by the combination of the system conditions with the various exogenous’ while a dynamic choice may suit the purpose instead. Moreover the simulations show that the developed models and the set-up mathematical program can be fruitfully leveraged for inferring indications on the devices’ sizing.
Dynamic Electric Simulation Model of a Proton Exchange Membrane Electrolyzer System for Hydrogen Production
Sep 2022
Publication
An energy storage system based on a Proton Exchange Membrane (PEM) electrolyzer system which could be managed by a nanoGrid for Home Applications (nGfHA) is able to convert the surplus of electric energy produced by renewable sources into hydrogen which can be stored in pressurized tanks. The PEM electrolyzer system must be able to operate at variable feeding power for converting all the surplus of renewable electric energy into hydrogen in reasonable time. In this article the dynamic electric simulation model of a PEM electrolyzer system with its pressurized hydrogen tanks is developed in a proper calculation environment. Through the calculation code the stack voltage and current peaks to a supply power variation from the minimum value (about 56 W) to the maximum value (about 440 W) are controlled and zeroed to preserve the stack the best range of the operating stack current is evaluated and hydrogen production is monitored.
Optimization of Small-Scale Hydrogen Production with Membrane Reactors
Mar 2023
Publication
In the pathway towards decarbonization hydrogen can provide valid support in different sectors such as transportation iron and steel industries and domestic heating concurrently reducing air pollution. Thanks to its versatility hydrogen can be produced in different ways among which steam reforming of natural gas is still the most commonly used method. Today less than 0.7% of global hydrogen production can be considered low-carbon-emission. Among the various solutions under investigation for low-carbon hydrogen production membrane reactor technology has the potential especially at a small scale to efficiently convert biogas into green hydrogen leading to a substantial process intensification. Fluidized bed membrane reactors for autothermal reforming of biogas have reached industrial maturity. Reliable modelling support is thus necessary to develop their full potential. In this work a mathematical model of the reactor is used to provide guidelines for their design and operations in off-design conditions. The analysis shows the influence of temperature pressures catalyst and steam amounts and inlet temperature. Moreover the influence of different membrane lengths numbers and pitches is investigated. From the results guidelines are provided to properly design the geometry to obtain a set recovery factor value and hydrogen production. For a given reactor geometry and fluidization velocity operating the reactor at 12 bar and the permeate-side pressure of 0.1 bar while increasing reactor temperature from 450 to 500 °C leads to an increase of 33% in hydrogen production and about 40% in HRF. At a reactor temperature of 500 °C going from 8 to 20 bar inside the reactor doubled hydrogen production with a loss in recovery factor of about 16%. With the reactor at 12 bar a vacuum pressure of 0.5 bar reduces hydrogen production by 43% and HRF by 45%. With the given catalyst it is sufficient to have only 20% of solids filled into the reactor being catalytic particles. With the fixed operating conditions it is worth mentioning that by adding membranes and maintaining the same spacing it is possible to increase hydrogen production proportionally to the membrane area maintaining the same HRF.
Analysis of the Combustion Process in a Hydrogen-Fueled CFR Engine
Mar 2023
Publication
Green hydrogen produced using renewable energy is nowadays one of the most promising alternatives to fossil fuels for reducing pollutant emissions and in turn global warming. In particular the use of hydrogen as fuel for internal combustion engines has been widely analyzed over the past few years. In this paper the authors show the results of some experimental tests performed on a hydrogen-fueled CFR (Cooperative Fuel Research) engine with particular reference to the combustion. Both the air/fuel (A/F) ratio and the engine compression ratio (CR) were varied in order to evaluate the influence of the two parameters on the combustion process. The combustion duration was divided in two parts: the flame front development (characterized by laminar flame speed) and the rapid combustion phase (characterized by turbulent flame speed). The results of the hydrogen-fueled engine have been compared with results obtained with gasoline in a reference operating condition. The increase in engine CR reduces the combustion duration whereas the opposite effect is observed with an increase in the A/F ratio. It is interesting to observe how the two parameters CR and A/F ratio have a different influence on the laminar and turbulent combustion phases. The influence of both A/F ratio and engine CR on heat transfer to the combustion chamber wall was also evaluated and compared with the gasoline operation. The heat transfer resulting from hydrogen combustion was found to be higher than the heat transfer resulting from gasoline combustion and this is probably due to the different quenching distance of the two fuels.
Hydrogen Addition to Natural Gas in Cogeneration Engines: Optimization of Performances Through Numerical Modeling
Aug 2021
Publication
A numerical study of the energy conversion process occurring in a lean-charge cogenerative engine designed to be powered by natural gas is here conducted to analyze its performances when fueled with mixtures of natural gas and several percentages of hydrogen. The suitability of these blends to ensure engine operations is proven through a zero–one-dimensional engine schematization where an original combustion model is employed to account for the different laminar propagation speeds deriving from the hydrogen addition. Guidelines for engine recalibration are traced thanks to the achieved numerical results. Increasing hydrogen fractions in the blend speeds up the combustion propagation achieving the highest brake power when a 20% of hydrogen fraction is considered. Further increase of this last would reduce the volumetric efficiency by virtue of the lower mixture density. The formation of the NOx pollutants also grows exponentially with the hydrogen fraction. Oppositely the efficiency related to the exploitation of the exhaust gases’ enthalpy reduces with the hydrogen fraction as shorter combustion durations lead to lower temperatures at the exhaust. If the operative conditions are shifted towards leaner air-to-fuel ratios the in-cylinder flame propagation speed decreases because of the lower amount of fuel trapped in the mixture reducing the conversion efficiencies and the emitted nitrogen oxides at the exhaust. The link between brake power and spark timing is also highlighted: a maximum is reached at an ignition timing of 21° before top dead center for hydrogen fractions between 10 and 20%. However the exhaust gases’ temperature also diminishes for retarded spark timings. Lastly an optimization algorithm is implemented to individuate the optimal condition in which the engine is characterized by the highest power production with the minimum fuel consumption and related environmental impact. As a main result hydrogen addition up to 15% in volume to natural gas in real cogeneration systems is proven as a viable route only if engine operations are shifted towards leaner air-to-fuel ratios to avoid rapid pressure rise and excessive production of pollutant emissions.
Hydrogen Production from Sea Wave for Alternative Energy Vehicles for Public Transport in Trapani (Italy)
Oct 2016
Publication
The coupling of renewable energy and hydrogen technologies represents in the mid-term a very interesting way to match the tasks of increasing the reliable exploitation of wind and sea wave energy and introducing clean technologies in the transportation sector. This paper presents two different feasibility studies: the first proposes two plants based on wind and sea wave resource for the production storage and distribution of hydrogen for public transportation facilities in the West Sicily; the second applies the same approach to Pantelleria (a smaller island) including also some indications about solar resource. In both cases all buses will be equipped with fuel-cells. A first economic analysis is presented together with the assessment of the avoidable greenhouse gas emissions during the operation phase. The scenarios addressed permit to correlate the demand of urban transport to renewable resources present in the territories and to the modern technologies available for the production of hydrogen from renewable energies. The study focuses on the possibility of tapping the renewable energy potential (wind and sea wave) for the hydrogen production by electrolysis. The use of hydrogen would significantly reduce emissions of particulate matter and greenhouse gases in urban districts under analysis. The procedures applied in the present article as well as the main equations used are the result of previous applications made in different technical fields that show a good replicability.
Operation of a Solid Oxide Fuel Cell Based Power System with Ammonia as a Fuel: Experimental Test and System Design
Nov 2020
Publication
Ammonia has strong potentialities as sustainable fuel for energy applications. NH3 is carbon free and can be synthetized from renewable energy sources (RES). In Solid Oxide Fuel Cells NH3 reacts electrochemically thereby avoiding the production of typical combustion pollutants such as NOx. In this study an ammonia-fueled solid oxide fuel cells (SOFC) system design is proposed and a thermodynamic model is developed to evaluate its performance. A SOFC short stack was operated with NH3 in a wide range of conditions. Experimental results are implemented in the thermodynamic model. Electrical efficiency of 52.1% based on ammonia Lower Heating Value is calculated at a net power density of 0.36 W cmFC −2 . The operating conditions of the after burner and of the ammonia decomposition reactor are studied by varying the values of specific parameters. The levelized cost of energy of 0.221 $ kWh−1 was evaluated as introduced by the International Energy Agency for a system that operates at nominal conditions and at a reference power output of 100 kW. This supports the feasibility of ammonia-fueled SOFC systems with reference to the carbon free energy market specifically considering the potential development of green ammonia production.
Techno-Economic Model for Scaling up of Hydrogen Refueling Stations
Oct 2022
Publication
In a recent publication the Hydrogen Council states that scaling up to greater production volumes leads to significant cost savings as a consequence of the industrialization of equipment manufacturing increased utilization standardization and improvements in system efficiency and flexibility. In this study a component-oriented techno-economic model is applied to five different European hydrogen refueling stations within the 3Emotion project which is planned to ensure capacities sufficient for increasing a fleet to 100 fuel cell buses. The investigation of the various cases shows that the levelized cost of hydrogen (LCOH) for large-scale applications will be in the range of about 4 €/kg to 7 €/kg within the boundaries analyzed. On-site production facilities were found to be the lower-cost design benefiting from the high volumes at stake and the economy of scale with respect to decentralized production due to the significant costs associated with retail hydrogen and transport. This study also illustrates the effects on the LCOH of varying the hydrogen delivery and production prices using a sensitivity analysis. The results show that by utilizing high-capacity trailers the costs associated with delivery could be reduced by 30%. Furthermore green hydrogen production could be a competitive solution if coupled with low electricity prices resulting in an LCOH between 4.21 €/kg and 6.80 €/kg.
On the Use of a Hydrogen-Fueled Engine in a Hybrid Electric Vehicle
Dec 2022
Publication
Hybrid electric vehicles are currently one of the most effective ways to increase the efficiency and reduce the pollutant emissions of internal combustion engines. Green hydrogen produced with renewable energies is an excellent alternative to fossil fuels in order to drastically reduce engine pollutant emissions. In this work the author proposes the implementation of a hydrogen-fueled engine in a hybrid vehicle; the investigated hybrid powertrain is the power-split type in which the engine two electric motor/generators and the drive shaft are coupled together by a planetary gear set; this arrangement allows the engine to operate independently from the wheels and thus to exploit the best efficiency operating points. A set of numeric simulations were performed in order to compare the gasoline-fueled engine with the hydrogen-fueled one in terms of the thermal efficiency and total energy consumed during a driving cycle. The simulation results show a mean engine efficiency increase of around 17% when fueled with hydrogen with respect to gasoline and an energy consumption reduction of around 15% in a driving cycle.
Thermoacoustic Combustion Stability Analysis of a Bluff Body-Stabilized Burner Fueled by Methane–Air and Hydrogen–Air Mixtures
Apr 2023
Publication
Hydrogen can play a key role in the gradual transition towards a full decarbonization of the combustion sector e.g. in power generation. Despite the advantages related to the use of this carbon-free fuel there are still several challenging technical issues that must be addressed such as the thermoacoustic instability triggered by hydrogen. Given that burners are usually designed to work with methane or other fossil fuels it is important to investigate their thermoacoustic behavior when fueled by hydrogen. In this framework the present work aims to propose a methodology which combines Computational Fluid Dynamics CFD (3D Reynolds-Averaged Navier-Stokes (RANS)) and Finite Element Method (FEM) approaches in order to investigate the fluid dynamic and the thermoacoustic behavior introduced by hydrogen in a burner (a lab-scale bluff body stabilized burner) designed to work with methane. The case of CH4 -air mixture was used for the validation against experimental results and benchmark CFD data available in the literature. Numerical results obtained from CFD simulations namely thermofluidodynamic properties and flame characteristics (i.e. time delay and heat release rate) are used to evaluate the effects of the fuel change on the Flame Response Function to the acoustic perturbation by means of a FEM approach. As results in the H2 -air mixture case the time delay decreases and heat release rate increases with respect to the CH4 -air mixture. A study on the Rayleigh index was carried out in order to analyze the influence of H2 -air mixture on thermoacoustic instability of the burner. Finally an analysis of both frequency and growth rate (GR) on the first four modes was carried out by comparing the two mixtures. In the H2 -air case the modes are prone to become more unstable with respect to the same modes of the case fueled by CH4 -air due to the change in flame topology and variation of the heat release rate and time delay fields.
Impact of Hydrogen Injection on Thermophysical Properties and Measurement Reliability in Natural Gas Networks
Oct 2021
Publication
In the context of the European decarbonization strategy hydrogen is a key energy carrier in the medium to long term. The main advantages deriving from a greater penetration of hydrogen into the energy mix consist in its intrinsic characteristics of flexibility and integrability with alternative technologies for the production and consumption of energy. In particular hydrogen allows to: i) decarbonise end uses since it is a zero-emission energy carrier and can be produced with processes characterized by the absence of greenhouse gases emissions (e.g. water electrolysis); ii) help to balancing electricity grid supporting the integration of non-programmable renewable energy sources; iii) exploit the natural gas transmission and distribution networks as storage systems in overproduction periods. However the hydrogen injection into the natural gas infrastructures directly influences thermophysical properties of the gas mixture itself such as density calorific value Wobbe index speed of sound etc [1]. The change of the thermophysical properties of gaseous mixture in turn directly affects the end use service in terms of efficiency and safety as well as the metrological performance and reliability of the volume and gas quality measurement systems. In this paper the authors present the results of a study about the impact of hydrogen injection on the properties of the natural gas mixture. In detail the changes of the thermodynamic properties of the gaseous mixtures with different hydrogen content have been analysed. Moreover the theoretical effects of the aforementioned variations on the accuracy of the compressibility factor measurement have been also assessed.
Development of a Hydrogen Valley for Exploitation of Green Hydrogen in Central Italy
Oct 2022
Publication
Green hydrogen exploitation plays a crucial role in achieving carbon neutrality by 2050. Hydrogen in fact provides a number of key benefits for the energy system due to its integrability with other clean technologies for energy production and consumption. This paper is aimed at presenting the project of recovery of an abandoned industrial area located in central Italy by developing a site for the production of green hydrogen. To this aim the analysis of the territorial and industrial context of the area allowed us to design the project phases and to define the sizing criteria of the hydrogen production plant. The results of a preliminary cost–benefit analysis show that a huge initial investment is required and that in the short term the project is sustainable only with a very large public grant. On the other hand in the long term the project is sustainable and the benefits significantly overcome the costs.
A Rational Approach to the Ecological Transition in the Cruise Market: Technologies and Design Compromises for the Fuel Switch
Jan 2023
Publication
Supporting policies to achieve a green revolution and ecological transition is a global trend. Although the maritime transport of goods and people can rightly be counted among the least polluting sectors much can be done to further reduce its environmental footprint. Moreover to boost the ecological transition of vessels a whole series of international regulations and national laws have been promulgated. Among these the most impactful on both design and operational management of ships concern the containment of air-polluting emissions in terms of GHG NOx SOx and PM. To address this challenge it might seem that many technologies already successfully used in other transport sectors could be applied. However the peculiar characteristics of ships make this statement not entirely true. In fact technological solutions recently adopted for example in the automotive sector must deal with the large size of vessels and the consequent large amount of energy necessary for their operation. In this paper with reference to the case study of a medium/large-sized passenger cruise ship the use of different fuels (LNG ammonia hydrogen) and technologies (internal combustion engines fuel cells) for propulsion and energy generation on board will be compared. By imposing the design constraint of not modifying the payload and the speed of the ship the criticalities linked to the use of one fuel rather than another will be highlighted. The current limits of application of some fuels will be made evident with reference to the state of maturity of the relevant technologies. Furthermore the operational consequences in terms of autonomy reduction will be presented. The obtained results underline the necessity for shipowners and shipbuilders to reflect on the compromises required by the challenges of the ecological transition which will force them to choose between reducing payload or reducing performance.
Dynamic Quality Tracking of Natural Gas and Hydrogen Mixture in a Portion of Natural Gas Grid
Aug 2015
Publication
Direct injection of alternative fuels (biomethane hydrogen) in the natural gas grid appears to be a promising solution to reach environmental objectives of CO2 emission reduction in the current energy scenario. This approach is justified by the large amount of biogas producible which can be upgraded to biomethane; while another proposed solution to increase renewable energy sources exploitation lies in producing hydrogen from excess wind energy followed by injection in the natural gas grid. Nevertheless compliance with composition limits and quality constraints in the resulting natural gas mixture has to be analysed in both stationary and dynamic operations tracking the gas quality downstream the injection point of the alternative fuels. A model was developed to simulate unsteady operation of a portion of gas grid dealing with realistic industrial and residential consumptions concentrated in offtake points. Two case studies were investigated focusing on the comparison between different amounts of hydrogen injection in the pure natural gas flow yielding composition flow rate and pressure profiles. The analysis shows how imposed quality thresholds can be respected although the hydrogen fraction within the natural gas mixture is highly sensitive to the profile and size of the loads connected to the gas pipeline.
Proposed Approach to Calculate Safety Distances for Hydrogen Fuelling Station in Italy
Sep 2021
Publication
In 2021 only 6 hydrogen fuelling station have been built in Italy of which 3 are not operational and only 1 is open to the public while the rest are built in private or industrial areas. While fuelling station which store more than 5000 kg of hydrogen are subjected to the “Seveso Directive” the permitting procedure for refuelling station which store less than the threshold is supervised by the fire brigade command of the province where the station is built. Recently in the effort to easy the permitting procedure to establish new stations a Ministerial Decree was published in the official gazette of the Italian Republic which lists minimum safety features and safety distances that if respected guarantee the approval by the authority. Nevertheless the imposed distances are such that the land required to build the station constitute a barrier rather than a facilitation. Exploiting the possibility introduced by the Decree to calculate safety distances following a Fire Safety Engineering approach a method is proposed for calculation of safety distances. The present paper presents the Italian regulation and describes an approach to calculate the safety distances including an example applied on the dispenser.
Case Studies of Energy Storage with Fuel Cells and Batteries for Stationary and Mobile Applications
Mar 2017
Publication
In this paper hydrogen coupled with fuel cells and lithium-ion batteries are considered as alternative energy storage methods. Their application on a stationary system (i.e. energy storage for a family house) and a mobile system (i.e. an unmanned aerial vehicle) will be investigated. The stationary systems designed for off-grid applications were sized for photovoltaic energy production in the area of Turin Italy to provide daily energy of 10.25 kWh. The mobile systems to be used for high crane inspection were sized to have a flying range of 120 min one being equipped with a Li-ion battery and the other with a proton-exchange membrane fuel cell. The systems were compared from an economical point of view and a life cycle assessment was performed to identify the main contributors to the environmental impact. From a commercial point of view the fuel cell and the electrolyzer being niche products result in being more expensive with respect to the Li-ion batteries. On the other hand the life cycle assessment (LCA) results show the lower burdens of both technologies.
An MILP Approach for the Optimal Design of Renewable Battery-hydrogen Energy Systems for Off-grid Insular Communities
Jul 2021
Publication
The optimal sizing of stand-alone renewable H2-based microgrids requires the load demand to be reliably satisfied by means of local renewable energy supported by a hybrid battery/hydrogen storage unit while minimizing the system costs. However this task is challenging because of the high number of components that have to be installed and operated. In this work an MILP optimization framework has been developed and applied to the off-grid village of Ginostra (on the Stromboli island Italy) which is a good example of several other insular sites throughout the Mediterranean area. A year-long time horizon was considered to model the seasonal storage which is necessary for off-grid areas that wish to achieve energy independence by relying on local renewable sources. The degradation costs of batteries and H2-based devices were included in the objective function of the optimization problem i.e. the annual cost of the system. Efficiency and investment cost curves were considered for the electrolyzer and fuel cell components in order to obtain a more detailed and precise techno-economic estimation. The design optimization was also performed with the inclusion of a general demand response program (DRP) to assess its impact on the sizing results. Moreover the effectiveness of the proposed MILP-based method was tested by comparing it with a more traditional approach based on a metaheuristic algorithm for the optimal sizing complemented with ruled-based strategies for the system operation. Thanks to its longer-term storage capability hydrogen is required for the optimal system configuration in order to reach energy self-sufficiency. Finally considering the possibility of load deferral the electricity generation cost can be reduced to an extent that depends on the amount of load that is allowed to participate in the DRP scheme. This cost reduction is mainly due to the decreased capacity of the battery storage system.
Numerical Redesign of 100kw MGT Combustor for 100% H2 Fueling
Jan 2014
Publication
The use of hydrogen as energy carrier in a low emission microturbine could be an interesting option for renewable energy storage distributed generation and combined heat & power. However the hydrogen using in gas turbine is limited by the NOx emissions and the difficulty to operate safely. CFD simulations represent a powerful and mature tool to perform detailed 3-D investigation for the development of a prototype before carrying out an experimental analysis. This paper describes the CFD supported redesign of the Turbec T100 microturbine combustion chamber natural gas-fired to allow the operation on 100% hydrogen.
The EU Green Deal (2022 ed.)
Jan 2023
Publication
In this report we focus on the fundamentals of energy and climate policy as reformulated in the EU Green Deal. The 2022 edition includes updates following the publication of the Fit for 55 Package and the EU Hydrogen and Decarbonised Gas Markets Package. The reader is guided through the landscape of EU climate and energy policy. Starting with the big picture of the foundations of energy and climate policy we then move to discussing in more detail European climate policy security of supply and energy networks. We continue with energy wholesale and retail markets and finish with a closer look at energy innovation. Each chapter is divided into several sections aiming to give the reader a broad overview of the areas of climate and energy policy that are impacted by the EU Green Deal. The references at the end of each section serve as suggestions for further reading on each topic.
Effect of Hot Mill Scale on Hydrogen Embrittlement of High Strength Steels for Pre-Stressed Concrete Structures
Mar 2018
Publication
The presence of a conductive layers of hot-formed oxide on the surface of bars for pre or post-compressing structures can promote localized attacks as a function of pH. The aggressive local environment in the occluded cells inside localized attacks has as consequence the possibility of initiation of stress corrosion cracking. In this paper the stress corrosion cracking behavior of high strength steels proposed for tendons was studied by means of Constant Load (CL) tests and Slow Strain Rate (SSR) tests. Critical ranges of pH for cracking were verified. The promoting role of localized attack was confirmed. Further electrochemical tests were performed on bars in as received surface conditions in order to evaluate pitting initiation. The adverse effect of mill scale was recognized.
AC-DC Converters for Electrolyzer Applications: State of the Art and Future Challenges
May 2020
Publication
The main objective of the article is to provide a thorough review of currently used AC-DC converters for alkaline and proton exchange membrane (PEM) electrolyzers in power grid or wind energy conversion systems. Based on the current literature this article aims at emphasizing the advantages and drawbacks of AC-DC converters mainly based on thyristor rectifier bridges and chopper-rectifiers. The analysis is mainly focused on the current issues for these converters in terms of specific energy consumption current ripple reliability efficiency and power quality. From this analysis it is shown that thyristors-based rectifiers are particularly fit for high-power applications but require the use of active and passive filters to enhance the power quality. By comparison the association combination of the chopper-rectifier can avoid the use of bulky active and passive filters since it can improve power quality. However the use of a basic chopper (i.e. buck converter) presents several disadvantages from the reliability energy efficiency voltage ratio and current ripple point of view. For this reason new emerging DC-DC converters must be employed to meet these important issues according to the availability of new power switching devices. Finally based on the authors’ experience in power conversion for PEM electrolyzers a discussion is provided regarding the future challenges that must face power electronics for green hydrogen production based on renewable energy sources.
Evaluation of the Impact of Green Hydrogen Blending Scenarios in the Italian Gas Network: Optimal Design and Dynamic Simulation of Operation Strategies
Apr 2022
Publication
Blending hydrogen (H2) produced from PEM electrolysis coupled to Renewable Energy Sources (RES) in the existing Natural Gas (NG) network is a promising option for the deep decarbonization of the gas sector. However blending H2 with NG significantly affects the thermophysical properties of the gas mixture changing the gas supply requirements to meet the demand. In this work different scenarios of green hydrogen blending (Blend Ratio BR equal to 5/10/15/20%vol) are analyzed at the national level with different temporal constraints (hour/day/week/month/year) based on real gas demand data in Italy addressing both design requirements (RES and PEM electrolyzer capacity) via Linear Programming (LP) and carrying out dynamic simulations of different operational strategies (constant or variable blend). Although H2/NG blending provides a huge opportunity in terms of deployed H2 volume higher BRs show rapidly increasing design requirements (1.3-1.5 GWe/%vol and 2.5-3 GWe/%vol for PEM electrolyzers and RES capacity respectively) and a significative increase of the total gas mixture volume (0.83 %/%vol) which hinders the CO2 reduction potential (0.37 %/%vol). A variable blend operation strategy (allowing a variation of BR within the analyzed period) allows to balance a variable H2 production from RES. Wider temporal constraints imply several beneficial effects such as relaxing design constraints and avoiding the implementation of an external storage. The Levelized Cost Of Hydrogen (LCOH) is preliminarily estimated at around 7.3 $/kg for yearly scenarios (best-case) although shorter temporal constraints entail significant excess hydrogen which would increase the LCOH if not deployed for other applications.
Seasonal Energy Storage for Zero-emissions Multi-energy Systems Via Underground Hydrogen Storage
Jan 2020
Publication
The deployment of diverse energy storage technologies with the combination of daily weekly and seasonal storage dynamics allows for the reduction of carbon dioxide (CO2) emissions per unit energy provided. In particular the production storage and re-utilization of hydrogen starting from renewable energy has proven to be one of the most promising solutions for offsetting seasonal mismatch between energy generation and consumption. A realistic possibility for large-scale hydrogen storage suitable for long-term storage dynamics is presented by salt caverns. In this contribution we provide a framework for modelling underground hydrogen storage with a focus on salt caverns and we evaluate its potential for reducing the CO2 emissions within an integrated energy systems context. To this end we develop a first-principle model which accounts for the transport phenomena within the rock and describes the dynamics of the stored energy when injecting and withdrawing hydrogen. Then we derive a linear reduced order model that can be used for mixed-integer linear program optimization while retaining an accurate description of the storage dynamics under a variety of operating conditions. Using this new framework we determine the minimum-emissions design and operation of a multi-energy system with H2 storage. Ultimately we assess the potential of hydrogen storage for reducing CO2 emissions when different capacities for renewable energy production and energy storage are available mapping emissions regions on a plane defined by storage capacity and renewable generation. We extend the analysis for solar- and wind-based energy generation and for different energy demands representing typical profiles of electrical and thermal demands and different CO2 emissions associated with the electric grid.
Soft-linking of a Behavioral Model for Transport with Energy System Cost optimization Applied to Hydrogen in EU
Sep 2019
Publication
Fuel cell electric vehicles (FCEV) currently have the challenge of high CAPEX mainly associated to the fuel cell. This study investigates strategies to promote FCEV deployment and overcome this initial high cost by combining a detailed simulation model of the passenger transport sector with an energy system model. The focus is on an energy system with 95% CO2 reduction by 2050. Soft-linking by taking the powertrain shares by country from the simulation model is preferred because it considers aspects such as car performance reliability and safety while keeping the cost optimization to evaluate the impact on the rest of the system. This caused a 14% increase in total cost of car ownership compared to the cost before soft-linking. Gas reforming combined with CO2 storage can provide a low-cost hydrogen source for FCEV in the first years of deployment. Once a lower CAPEX for FCEV is achieved a higher hydrogen cost from electrolysis can be afforded. The policy with the largest impact on FCEV was a purchase subsidy of 5 k€ per vehicle in the 2030–2034 period resulting in 24.3 million FCEV (on top of 67 million without policy) sold up to 2050 with total subsidies of 84 bln€. 5 bln€ of R&D incentives in the 2020–2024 period increased the cumulative sales up to 2050 by 10.5 million FCEV. Combining these two policies with infrastructure and fuel subsidies for 2030–2034 can result in 76 million FCEV on the road by 2050 representing more than 25% of the total car stock. Country specific incentives split of demand by distance or shift across modes of transport were not included in this study.
Cylinders and Tubes Used as Buffers in Filling Stations
Oct 2015
Publication
Buffers are key components for hydrogen filling stations that are currently being developed. Type 1 or composite cylinders are used for this application. The type used depends on many parameters including pressure level cost and space available for the filling station. No international standards exist for such high pressure vessels whereas many standards exist covering Types 123 and 4 used for transport of gas or on-board fuel tanks. It is suggested to use the cylinders approved for transport or on-board applications as buffers. This solution appears to be safe if at least one issue is solved. The main difference is that transport or on-board cylinders are cycled from a low pressure to a high pressure during service whereas buffers are cycled from a relatively high pressure (corresponding to the vehicle’s filling pressure) to the MAWP. Another difference is that buffers are cycled many times per day. For standards developers requesting to systematically verify that buffers pass millions of cycles at low pressure amplitude would be impractical. Several standards and codes give formulae to estimate the number of shallow cycles when number of deep cycles are known. In this paper we describe tests performed on all types of composite cylinders to verify or determine the appropriate formulae.
Thermal Efficiency of On-site, Small-scale Hydrogen Production Technologies using Liquid Hydrocarbon Fuels in Comparison to Electrolysis a Case Study in Norway
Oct 2018
Publication
The main goal of this study was to assess the energy efficiency of a small-scale on-site hydrogen production and dispensing plant for transport applications. The selected location was the city of Narvik in northern Norway where the hydrogen demand is expected to be 100 kg/day. The investigated technologies for on-site hydrogen generation starting from common liquid fossil fuels such as heavy naphtha and diesel were based on steam reforming and partial oxidation. Water electrolysis derived by renewable energy was also included in the comparison. The overall thermal efficiency of the hydrogen station was computed including compression and miscellaneous power consumption.
An Innovative and Comprehensive Approach for the Consequence Analysis of Liquid Hydrogen Vessel Explosions
Oct 2020
Publication
Hydrogen is one of the most suitable solutions to replace hydrocarbons in the future. Hydrogen consumption is expected to grow in the next years. Hydrogen liquefaction is one of the processes that allows for increase of hydrogen density and it is suggested when a large amount of substance must be stored or transported. Despite being a clean fuel its chemical and physical properties often arise concerns about the safety of the hydrogen technologies. A potentially critical scenario for the liquid hydrogen (LH2) tanks is the catastrophic rupture causing a consequent boiling liquid expanding vapour explosion (BLEVE) with consequent overpressure fragments projection and eventually a fireball. In this work all the BLEVE consequence typologies are evaluated through theoretical and analytical models. These models are validated with the experimental results provided by the BMW care manufacturer safety tests conducted during the 1990’s. After the validation the most suitable methods are selected to perform a blind prediction study of the forthcoming LH2 BLEVE experiments of the Safe Hydrogen fuel handling and Use for Efficient Implementation (SH2IFT) project. The models drawbacks together with the uncertainties and the knowledge gap in LH2 physical explosions are highlighted. Finally future works on the modelling activity of the LH2 BLEVE are suggested.
Direct Route from Ethanol to Pure Hydrogen through Autothermal Reforming in a Membrane Reactor: Experimental Demonstration, Reactor Modelling and Design
Nov 2020
Publication
This work reports the integration of thin (~3e4 mm thick) Pd-based membranes for H2 separation in a fluidized bed catalytic reactor for ethanol auto-thermal reforming. The performance of a fluidized bed membrane reactor has been investigated from an experimental and numerical point of view. The demonstration of the technology has been carried out over 50 h under reactive conditions using 5 thin Pd-based alumina-supported membranes and a 3 wt%Pt-10 wt%Ni catalyst deposited on a mixed CeO2/SiO2 support. The results have confirmed the feasibility of the concept in particular the capacity to reach a hydrogen recovery factor up to 70% while the operation at different fluidization regimes oxygen-to-ethanol and steam-to-ethanol ratios feed pressures and reactor temperatures have been studied. The most critical part of the system is the sealing of the membranes where most of the gas leakage was detected. A fluidized bed membrane reactor model for ethanol reforming has been developed and validated with the obtained experimental results. The model has been subsequently used to design a small reactor unit for domestic use showing that 0.45 m2 membrane area is needed to produce the amount of H2 required for a 5 kWe PEM fuel-cell based micro-CHP system.
Evaluation of Sorbents for High Temperature Removal of Tars, Hydrogen Sulphide, Hydrogen Chloride and Ammonia from Biomass-derived Syngas by Using Aspen Plus
Jan 2020
Publication
Biomass gasification is a promising technology to produce secondary fuels or heat and power offering considerable advantages over fossil fuels. An important aspect in the usage of producer gas is the removal of harmful contaminants from the raw syngas. Thus the object of this study is the development of a simulation model for a gasifier including gas clean-up for which a fluidized-bed gasifier for biomass-derived syngas production was considered based on a quasi-equilibrium approach through Gibbs free energy minimisation and including an innovative hot gas cleaning constituted by a combination of catalyst sorbents inside the gasification reactor catalysts in the freeboard and subsequent sorbent reactors by using Aspen Plus software. The gas cleaning chain simulates the raw syngas clean-up for several organic and inorganic contaminants i.e. toluene benzene naphthalene hydrogen sulphide hydrogen chloride and ammonia. The tar and inorganic contaminants final values achieved are under 1 g/Nm3 and 1 ppm respectively.
Ammonia as a Carbon-Free Energy Carrier: NH3 Cracking to H2
Jul 2024
Publication
In the energy transition from fossil fuels to renewables hydrogen is a realistic alternative to achieving the decarbonization target. However its chemical and physical properties make its storage and transport expensive. To ensure the cost-effective H2 usage as an energy vector other chemicals are getting attention as H2 carriers. Among them ammonia is the most promising candidate. The value chain of NH3 as a H2 carrier considering the long-distance ship transport includes NH3 synthesis and storage at the loading terminal NH3 storage at the unloading terminal and its cracking to release H2. NH3 synthesis and cracking are the cost drivers of the value chain. Also the NH3 cracking at large scale is not a mature technology and a significant effort has to be made in intensifying the process as much as possible. In this respect this work reviews the available technologies for NH3 cracking critically analyzing them in view of the scale up to the industrial level.
A CFD Analysis of Liquefied Gas Vessel Explosions
Dec 2021
Publication
Hydrogen is one of the most suitable candidates in replacing fossil fuels. However storage issues due to its very low density under ambient conditions are encountered in many applications. The liquefaction process can overcome such issues by increasing hydrogen’s density and thus enhancing its storage capacity. A boiling liquid expanding vapour explosion (BLEVE) is a phenomenon in liquefied gas storage systems. It is a physical explosion that might occur after the catastrophic rupture of a vessel containing a liquid with a temperature above its boiling point at atmospheric pressure. Even though it is an atypical accident scenario (low probability) it should be always considered due to its high yield consequences. For all the above-mentioned reasons the BLEVE phenomenon for liquid hydrogen (LH2) vessels was studied using the CFD methodology. Firstly the CFD model was validated against a well-documented CO2 BLEVE experiment. Secondly hydrogen BLEVE cases were simulated based on tests that were conducted in the 1990s on LH2 tanks designed for automotive purposes. The parametric CFD analysis examined different filling degrees initial pressures and temperatures of the tank content with the aim of comprehending to what extent the initial conditions influence the blast wave. Good agreement was shown between the simulation outcomes and the LH2 bursting scenario tests results.
Life Cycle Assessment and Water Footprint of Hydrogen Production Methods: From Conventional to Emerging Technologies
Oct 2020
Publication
A common sustainability issue arising in production systems is the efficient use of resources for providing goods or services. With the increased interest in a hydrogen (H2) economy the life-cycle environmental performance of H2 production has special significance for assisting in identifying opportunities to improve environmental performance and to guide challenging decisions and select between technology paths. Life cycle impact assessment methods are rapidly evolving to analyze multiple environmental impacts of the production of products or processes. This study marks the first step in developing process-based streamlined life cycle analysis (LCA) of several H2 production pathways combining life cycle impacts at the midpoint (17 problem-oriented) and endpoint (3 damage-oriented) levels using the state-of-the-art impact assessment method ReCiPe 2016. Steam reforming of natural gas coal gasification water electrolysis via proton exchange membrane fuel cell (PEM) solid oxide electrolyzer cell (SOEC) biomass gasification and reforming and dark fermentation of lignocellulosic biomass were analyzed. An innovative aspect is developed in this study is an analysis of water consumption associated with H2 production pathways by life-cycle stage to provide a better understanding of the life cycle water-related impacts on human health and natural environment. For water-related scope Water scarcity footprint (WSF) quantified using Available Water Remaining (AWARE) method was applied as a stand-alone indicator. The paper discusses the strengths and weaknesses of each production pathway identify the drivers of environmental impact quantify midpoint environmental impact and its influence on the endpoint environmental performance. The findings of this study could serve as a useful theoretical reference and practical basis to decision-makers of potential environmental impacts of H2 production systems.
Domestic Gas Meter Durability in Hydrogen and Natural Gas Mixtures
Nov 2021
Publication
Blending hydrogen into the natural gas infrastructure is becoming a very promising practice to increase the exploitation of renewable energy sources which can be used to produce “green” hydrogen. Several research projects and field experiments are currently aimed at evaluating the risks associated with utilization of the gas blend in end-use devices such as the gas meters. In this paper the authors present the results of experiments aimed at assessing the effect of hydrogen injection in terms of the durability of domestic gas meters. To this end 105 gas meters of different measurement capabilities and manufacturers both brand-new and withdrawn from service were investigated in terms of accuracy drift after durability cycles of 5000 and 10000 h with H2NG mixtures and H2 concentrations of 10% and 15%. The obtained results show that there is no metrologically significant or statistically significant influence of hydrogen content on changes in gas meter indication errors after subjecting the meters to durability testing with a maximum of 15% H2 content over 10000 h. A metrologically significant influence of the long-term operation of the gas meters was confirmed but it should not be made dependent on the hydrogen content in the gas. No safety problems related to the loss of external tightness were observed for either the new or 10-year-old gas meters.
Optimal Integration of Hydrogen-Based Energy Storage Systems in Photovoltaic Microgrids: A Techno-Economic Assessment
Aug 2020
Publication
The feasibility and cost-effectiveness of hydrogen-based microgrids in facilities such as public buildings and small- and medium-sized enterprises provided by photovoltaic (PV) plants and characterized by low electric demand during weekends were investigated in this paper. Starting from the experience of the microgrid being built at the Renewable Energy Facility of Sardegna Ricerche (Italy) which among various energy production and storage systems includes a hydrogen storage system a modeling of the hydrogen-based microgrid was developed. The model was used to analyze the expected performance of the microgrid considering different load profiles and equipment sizes. Finally the microgrid cost-effectiveness was evaluated using a preliminary economic analysis. The results demonstrate that an effective design can be achieved with a PV system sized for an annual energy production 20% higher than the annual energy requested by the user and a hydrogen generator size 60% of the PV nominal power size. This configuration leads to a self-sufficiency rate of about 80% and without public grants a levelized cost of energy comparable with the cost of electricity in Italy can be achieved with a reduction of at least 25–40% of the current initial costs charged for the whole plant depending on the load profile shape.
The Role of Research and Innovation in Europe for the Decarbonisation of Waterborne Transport
Sep 2021
Publication
Waterborne transport contributes to around 14% of the overall greenhouse gas emissions of transport in the European Union and it is among the most efficient modes of transport. Nonetheless considering the aim of making the European Union carbon-neutral by 2050 and the fundamental role of waterborne transport within the European economy effort is needed to reduce its environmental impact. This paper provides an assessment of research and innovation measures aiming at decreasing waterborne transport’s CO2 emissions by assessing European projects based on the European Commission’s Transport Research and Innovation Monitoring and Information System (TRIMIS). Additionally it provides an outlook of the evolution of scientific publications and intellectual property activity in the area. The review of project findings suggests that there is no single measure which can be considered as a problem solver in the area of the reduction of waterborne CO2 emissions and only the combination of different innovations should enable reaching this goal. The highlighted potential innovations include further development of lightweight composite materials innovative hull repair methods wind assisted propulsion engine efficiency waste heat electrification hydrogen and alternative fuels. The assessment shows prevalence of funding allocated to technological measures; however non-technological ones like improved vessel navigation and allocation systems also show a great potential for the reduction of CO2 emissions and reduction of negative environmental impacts of waterborne transport.
Life Cycle Assessment of Substitute Natural Gas Production from Biomass and Electrolytic Hydrogen
Feb 2021
Publication
The synthesis of a Substitute Natural Gas (SNG) that is compatible with the gas grid composition requirements by using surplus electricity from renewable energy sources looks a favourable solution to store large quantities of electricity and to decarbonise the gas grid network while maintaining the same infrastructure. The most promising layouts for SNG production and the conditions under which SNG synthesis reduces the environmental impacts if compared to its fossil alternative is still largely untapped. In this work six different layouts for the production of SNG and electricity from biomass and fluctuating electricity are compared from the environmental point of view by means of Life Cycle Assessment (LCA) methodology. Global Warming Potential (GWP) Cumulative Energy Demand (CED) and Acidification Potential (AP) are selected as impact indicators for this analysis. The influence of key LCA methodological aspects on the conclusions is also explored. In particular two different functional units are chosen: 1 kg of SNG produced and 1 MJ of output energy (SNG and electricity). Furthermore different approaches dealing with co-production of electricity are also applied. The results show that the layout based on hydrogasification has the lowest impacts on all the considered cases apart from the GWP and the CED with SNG mass as the functional unit and the avoided burden approach. Finally the selection of the multifunctionality approach is found to have a significant influence on technology ranking.
Hydrogen Embrittlement Behavior of 18Ni 300 Maraging Steel Produced by Selective Laser Melting
Jul 2019
Publication
A study was performed to investigate the hydrogen embrittlement behavior of 18-Ni 300 maraging steel produced by selective laser melting and subjected to different heat treatment strategies. Hydrogen was pre-charged into the tensile samples by an electro-chemical method at the constant current density of 1 A m−2 and 50 A m−2 for 48 h at room temperature. Charged and uncharged specimens were subjected to tensile tests and the hydrogen concentration was eventually analysed using quadrupole mass spectroscopy. After tensile tests uncharged maraging samples showed fracture surfaces with dimples. Conversely in H-charged alloys quasi-cleavage mode fractures occurred. A lower concentration of trapped hydrogen atoms and higher elongation at fracture were measured in the H-charged samples that were subjected to solution treatment prior to hydrogen charging compared to the as-built counterparts. Isothermal aging treatment performed at 460 °C for 8 h before hydrogen charging increased the concentration of trapped hydrogen giving rise to higher hydrogen embrittlement susceptibility.
Micro Gas Turbine Role in Distributed Generation with Renewable Energy Sources
Jan 2023
Publication
To become sustainable the production of electricity has been oriented towards the adoption of local and renewable sources. Distributed electric and thermal energy generation is more suitable to avoid any possible waste and the Micro Gas Turbine (MGT) can play a key role in this scenario. Due to the intrinsic properties and the high flexibility of operation of this energy conversion system the exploitation of alternative fuels and the integration of the MGT itself with other energy conversion systems (solar field ORC fuel cells) represent one of the most effective strategies to achieve higher conversion efficiencies and to reduce emissions from power systems. The present work aims to review the results obtained by the researchers in the last years. The different technologies are analyzed in detail both separately and under a more complete view considering two or more solutions embedded in micro-grid configurations.
Hydrogen Embrittlement in Advanced High Strength Steels and Ultra High Strength Steels: A New Investigation Approach
Dec 2018
Publication
In order to reduce CO2 emissions and fuel consumption and to respect current environmental norms the reduction of vehicles weight is a primary target of the automotive industry. Advanced High Strength Steels (AHSS) and Ultra High Strength Steel (UHSS) which present excellent mechanical properties are consequently increasingly used in vehicle manufacturing. The increased strength to mass ratio compensates the higher cost per kg and AHSS and UHSS are proving to be cost-effective solutions for the body-in-white of mass market products.
In particular aluminized boron steel can be formed in complex shapes with press hardening processes acquiring high strength without distortion and increasing protection from crashes. On the other hand its characteristic martensitic microstructure is sensitive to hydrogen delayed fracture phenomena and at the same time the dew point in the furnace can produce hydrogen consequently to the high temperature reaction between water and aluminum. The high temperature also promotes hydrogen diffusion through the metal lattice under the aluminum-silicon coating thus increasing the diffusible hydrogen content. However after cooling the coating acts as a strong barrier preventing the hydrogen from going out of the microstructure. This increases the probability of delayed fracture. As this failure brings to the rejection of the component during production or even worse to the failure in its operation diffusible hydrogen absorbed in the component needs to be monitored during the production process.
For fast and simple measurements of the response to diffusible hydrogen of aluminized boron steel one of the HELIOS innovative instruments was used HELIOS II. Unlike the Devanathan cell that is based on a double electrochemical cell HELIOS II is based on a single cell coupled with a solid-state sensor. The instrument is able to give an immediate measure of diffusible hydrogen content in sheet steels semi-products or products avoiding time-consuming specimen palladium coating with a guided procedure that requires virtually zero training.
Two examples of diffusible hydrogen analyses are given for Usibor®1500-AS one before hot stamping/ quenching and one after hot stamping suggesting that the increase in the number of dislocations during hot stamping could be the main responsible for the lower apparent diffusivity of hydrogen.
In particular aluminized boron steel can be formed in complex shapes with press hardening processes acquiring high strength without distortion and increasing protection from crashes. On the other hand its characteristic martensitic microstructure is sensitive to hydrogen delayed fracture phenomena and at the same time the dew point in the furnace can produce hydrogen consequently to the high temperature reaction between water and aluminum. The high temperature also promotes hydrogen diffusion through the metal lattice under the aluminum-silicon coating thus increasing the diffusible hydrogen content. However after cooling the coating acts as a strong barrier preventing the hydrogen from going out of the microstructure. This increases the probability of delayed fracture. As this failure brings to the rejection of the component during production or even worse to the failure in its operation diffusible hydrogen absorbed in the component needs to be monitored during the production process.
For fast and simple measurements of the response to diffusible hydrogen of aluminized boron steel one of the HELIOS innovative instruments was used HELIOS II. Unlike the Devanathan cell that is based on a double electrochemical cell HELIOS II is based on a single cell coupled with a solid-state sensor. The instrument is able to give an immediate measure of diffusible hydrogen content in sheet steels semi-products or products avoiding time-consuming specimen palladium coating with a guided procedure that requires virtually zero training.
Two examples of diffusible hydrogen analyses are given for Usibor®1500-AS one before hot stamping/ quenching and one after hot stamping suggesting that the increase in the number of dislocations during hot stamping could be the main responsible for the lower apparent diffusivity of hydrogen.
Detection, Characterization and Sizing of Hydrogen Induced Cracking in Pressure Vessels Using Phased Array Ultrasonic Data Processing
Jul 2016
Publication
Pressure vessels operating in sour service conditions in refinery environments can be subject to the risk of H₂S cracking resulting from the hydrogen entering into the material. This risk which is related to the specific working conditions and to the quality of the steel used shall be properly managed in order to maintain the highest safety at a cost-effective level.<br/>Nowadays the typical management strategy is based on a risk based inspection (RBI) evaluation to define the inspection plan used in conjunction with a fitness for service (FFS) approach in defining if the vessel although presenting dangerous defects such as cracks can still be considered “fit for purpose” for a given time window based on specific fracture mechanics analysis.<br/>These vessels are periodically subject to non-destructive evaluation typically ultrasonic testing. Phased Array (PA) ultrasonic is the latest technology more and more used for this type of application.<br/>This paper presents the design and development of an optimized Phased Array ultrasonic inspection technique for the detection and sizing of hydrogen induced cracking (HIC) type flaws used as reference for comparison. Materials used containing natural operational defects were inspected in “as-service” conditions.<br/>Samples have then been inspected by means of a “full matrix capture” (FMC) acquisition process followed by “total focusing method” (TFM) data post processing. FCM-TFM data have been further post-processed and then used to create a 3D geometrical reconstruction of the volume inspected. Results obtained show the significant improvement that FMC/TFM has over traditional PA inspection techniques both in terms of sensitivity and resolution for this specific type of defect. Moreover since the FMC allows for the complete time domain signal to be captured from every element of a linear array probe the full set of data is available for post-processing.<br/>Finally the possibility to reconstruct the geometry of the component from the scans including the defects present in its volume represents the ideal solution for a reliable data transferring process to the engineering function for the subsequent FFS analysis.
Flammability Reduction in a Pressurised Water Electrolyser Based on a Thin Polymer Electrolyte Membrane through a Pt-alloy Catalytic Approach
Jan 2019
Publication
Various Pt-based materials (unsupported Pt PtRu PtCo) were investigated as catalysts for recombining hydrogen and oxygen back into water. The recombination performance correlated well with the surface Pt metallic state. Alloying cobalt to platinum was observed to produce an electron transfer favouring the occurrence of a large fraction of the Pt metallic state on the catalyst surface. Unsupported PtCo showed both excellent recombination performance and dynamic behaviour. In a packed bed catalytic reactor when hydrogen was fed at 4% vol. in the oxygen stream (flammability limit) 99.5% of the total H2 content was immediately converted to water in the presence of PtCo thus avoiding safety issues. The PtCo catalyst was thus integrated in the anode of the membrane-electrode assembly of a polymer electrolyte membrane electrolysis cell. This catalyst showed good capability to reduce the concentration of hydrogen in the oxygen stream under differential pressure operation (1–20 bar) in the presence of a thin (90 μm) Aquivion® membrane. The modified system showed lower hydrogen concentration in the oxygen flow than electrolysis cells based on state-of-the-art thick polymer electrolyte membranes and allowed to expand the minimum current density load down to 0.15 A cm−2 . This was mainly due to the electrochemical oxidation of permeated H2 to protons that were transported back to the cathode. The electrolysis cell equipped with a dual layer PtCo/IrRuOx oxidation catalyst achieved a high operating current density (3 A cm−2 ) as requested to decrease the system capital costs under high efficiency conditions (about 77% efficiency at 55 °C and 20 bar). Moreover the electrolysis system showed reduced probability to reach the flammability limit under both high differential pressure (20 bar) and partial load operation (5%) as needed to properly address grid-balancing service
Timmermans’ Dream: An Electricity and Hydrogen Partnership Between Europe and North Africa
Oct 2021
Publication
Because of differences in irradiation levels it could be more efficient to produce solar electricity and hydrogen in North Africa and import these energy carriers to Europe rather than generating them at higher costs domestically in Europe. From a global climate change mitigation point of view exploiting such efficiencies can be profitable since they reduce overall renewable electricity capacity requirements. Yet the construction of this capacity in North Africa would imply costs associated with the infrastructure needed to transport electricity and hydrogen. The ensuing geopolitical dependencies may also raise energy security concerns. With the integrated assessment model TIAM-ECN we quantify the trade-off between costs and benefits emanating from establishing import-export links between Europe and North Africa for electricity and hydrogen. We show that for Europe a net price may have to be paid for exploiting such interlinkages even while they reduce the domestic investments for renewable electricity capacity needed to implement the EU’s Green Deal. For North African countries the potential net benefits thanks to trade revenues may build up to 50 billion €/yr in 2050. Despite fears over costs and security Europe should seriously consider an energy partnership with North Africa because trade revenues are likely to lead to positive employment income and stability effects in North Africa. Europe can indirectly benefit from such impacts.
Heat Pumps for Space Heating and Domestic Hot Water Production in Residential Buildings, an Environmental Comparison in a Present and Future Scenario
Nov 2022
Publication
The hydrogen vector stands as a potentially important tool to achieve the decarbonization of the energy sector. It represents an option to store the periodic excesses of energy generation from renewable electrical sources to be used as it is as a substitute for fossil fuels in some applications or reconverted into electricity when needed. In this context hydrogen can significantly decarbonize the building sector as an alternative fuel for gas-driven devices. Along with hydrogen the European strategic vision indicates the electrification of heat among the main energy transition pathways. The potential environmental benefits achievable from renewable hydrogen in thermally-driven appliances and the electrification of residential heat through electric heat pumps were evaluated and compared in this work. The novelty of the research consists of a consequential comparative life cycle assessment (16 impact categories) evaluation for three buildings (old old retrofitted and new) supplied by three different appliances (condensing boiler gas absorption heat pump and electric heat pump) never investigated before. The energy transition was evaluated for 2020 and 2030 scenarios considering the impact of gaseous fuels (natural gas and European green hydrogen) and electricity based on the pathway of the European electricity grid (27 European member states plus the United Kingdom). The results allowed to compare the environmental profile in deterministic and stochastic approaches and confirm if the increase of renewables reduces the impact in the operational phase of the appliances. The results demonstrate that despite the increased renewable share the use phase remains the most significant for both temporal scenarios contributing to 91% of the environmental profile. Despite the higher footprint in 2020 compared to the electric heat pump (198–200 vs. 170–196 gCO2eq/kWhth) the gas absorption heat pump offered a lower environmental profile than the others in all the scenarios analyzed.
A Model-based Parametric and Optimal Sizing of a Battery/Hydrogen Storage of a Real Hybrid Microgrid Supplying a Residential Load: Towards Island Operation
Jun 2021
Publication
In this study the optimal sizing of a hybrid battery/hydrogen Energy Storage System “ESS” is assessed via a model-based parametric analysis in the context of a real hybrid renewable microgrid located in Huelva Spain supplying a real-time monitored residential load (3.5 kW; 5.6 MWh/year) in island mode. Four storage configurations (battery-only H2-only hybrid battery priority and hybrid H2 priority) are assessed under different Energy Management Strategies analysing system performance parameters such as Loss of Load “LL” (kWh;%) Over Production “OP” (kWh;%) round-trip storage efficiency ESS (%) and total storage cost (€) depending on the ESS sizing characteristics. A parallel approach to the storage optimal sizing via both multi-dimensional sensitivity analysis and PSO is carried out in order to address both sub-optimal and optimal regions respectively. Results show that a hybridised ESS capacity is beneficial from an energy security and efficiency point of view but can represent a substantial additional total cost (between 100 and 300 k€) to the hybrid energy system especially for the H2 ESS which presents higher costs. Reaching 100% supply from renewables is challenging and introducing a LL threshold induces a substantial relaxation of the sizing and cost requirements. Increase in battery capacity is more beneficial for the LL abatement while increasing H2 capacity is more useful to absorb large quantities of excess energy. The optimal design via PSO technique is complemented to the parametric study.
Hydrogen Production via Steam Reforming: A Critical Analysis of MR and RMM Technologies
Jan 2020
Publication
Hydrogen as the energy carrier of the future’ has been a topic discussed for decades and is today the subject of a new revival especially driven by the investments in renewable electricity and the technological efforts done by high-developed industrial powers such as Northern Europe and Japan. Although hydrogen production from renewable resources is still limited to small scale local solutions and R&D projects; steam reforming (SR) of natural gas at industrial scale is the cheapest and most used technology and generates around 8 kg CO2 per kg H2. This paper is focused on the process optimization and decarbonization of H2 production from fossil fuels to promote more efficient approaches based on membrane separation. In this work two emerging configurations have been compared from the numerical point of view: the membrane reactor (MR) and the reformer and membrane module (RMM) proposed and tested by this research group. The rate of hydrogen production by SR has been calculated according to other literature works a one-dimensional model has been developed for mass heat and momentum balances. For the membrane modules the rate of hydrogen permeation has been estimated according to mass transfer correlation previously reported by this research group and based on previous experimental tests carried on in the first RMM Pilot Plant. The methane conversion carbon dioxide yield temperature and pressure profile are compared for each configuration: SR MR and RMM. By decoupling the reaction and separation section such as in the RMM the overall methane conversion can be increased of about 30% improving the efficiency of the system.
Renewable Hydrogen Potential for Low-carbon Retrofit of the Building Stocks
Dec 2015
Publication
Energy-related GHG emissions mainly from fossil fuels combustion account for around 70% of total emissions. Those emissions are the target of the recent sustainability policies. Indeed renewables exploitation is considered widely the weapon to deal with this challenge thanks to their carbon neutrality. But the biggest drawback is represented by the mismatching between their production and users consumption. The storage would be a possible solution but its viability consists of economic sustainability and energy process efficiency as well. The cutting edge technologies of batteries have not still solved these issues at the same time. So a paradigm shift towards the identification of an energy carrier as storage option the so called Power-to-Gas could be the viable solution. From viability to feasibility a mandatory step is required: the opportunity to integrate the new solution in the proven infrastructures system. Thus the recent studies on Hydrogen (H2) enrichment in Natural Gas demonstrating a lower environmental impact and an increase in energy performance are the base to build the hydrogen transition in the urban environment. The aim of this paper is to evaluate the environmental benefits at building and district scale.
Analysis of the Existing Barriers for the Market Development of Power to Hydrogen (P2H) in Italy
Sep 2020
Publication
New technological solutions are required to control the impact of the increasing presence of renewable energy sources connected to the electric grid that are characterized by unpredictable production (i.e. wind and solar energy). Energy storage is becoming essential to stabilize the grid when a mismatch between production and demand occurs. Among the available solutions Power to Hydrogen (P2H) is one of the most attractive options. However despite the potential many barriers currently hinder P2H market development. The literature reports general barriers and strategies to overcome them but a specific analysis is fundamental to identifying how these barriers concretely arise in national and regional frameworks since tailored solutions are needed to foster the development of P2H local market. The paper aims to identify and to analyze the existing barriers for P2H market uptake in Italy. The paper shows how several technical regulatory and economic issues are still unsolved resulting in a source of uncertainty for P2H investment. The paper also suggests possible approaches and solutions to address the Italian barriers and to support politics and decision-makers in the definition and implementation of the national hydrogen strategy.
Delivering Net-zero Carbon Heat: Technoeconomic and Whole-system Comparisons of Domestic Electricity- and Hydrogen-driven Technologies in the UK
Apr 2022
Publication
Proposed sustainable transition pathways for moving away from natural gas in domestic heating focus on two main energy vectors: electricity and hydrogen. Electrification would be implemented by using vapourcompression heat pumps which are currently experiencing market growth in many countries. On the other hand hydrogen could substitute natural gas in boilers or be used in thermally–driven absorption heat pumps. In this paper a consistent thermodynamic and economic methodology is developed to assess the competitiveness of these options. The three technologies along with the option of district heating are for the first time compared for different weather/ambient conditions and fuel-price scenarios first from a homeowner’s and then from a wholeenergy system perspective. For the former two-dimensional decision maps are generated to identify the most cost-effective technologies for different combinations of fuel prices. It is shown that in the UK hydrogen technologies are economically favourable if hydrogen is supplied to domestic end-users at a price below half of the electricity price. Otherwise electrification and the use of conventional electric heat pumps will be preferred. From a whole-energy system perspective the total system cost per household (which accounts for upstream generation and storage as well as technology investment installation and maintenance) associated with electric heat pumps varies between 790 and 880 £/year for different scenarios making it the least-cost decarbonisation pathway. If hydrogen is produced by electrolysis the total system cost associated with hydrogen technologies is notably higher varying between 1410 and 1880 £/year. However this total system cost drops to 1150 £/year with hydrogen produced cost-effectively by methane reforming and carbon capture and storage thus reducing the gap between electricity- and hydrogen-driven technologies.
Minimum Emissions Configuration of a Green Energy–Steel System: An Analytical Model
May 2022
Publication
The need to significantly reduce emissions from the steelmaking sector requires effective and ready-to-use technical solutions. With this aim different decarbonization strategies have been investigated by both researchers and practitioners. To this concern the most promising pathway is represented by the replacement of natural gas with pure hydrogen in the direct reduced iron (DRI) production process to feed an electric arc furnace (EAF). This solution allows to significantly reduce direct emissions of carbon dioxide from the DRI process but requires a significant amount of electricity to power electrolyzers adopted to produce hydrogen. The adoption of renewable electricity sources (green hydrogen) would reduce emissions by 95–100% compared to the blast furnace–basic oxygen furnace (BF–BOF) route. In this work an analytical model for the identification of the minimum emission configuration of a green energy–steel system consisting of a secondary route supported by a DRI production process and a renewable energy conversion system is proposed. In the model both technological features of the hydrogen steel plant and renewable energy production potential of the site where it is to be located are considered. Compared to previous studies the novelty of this work consists of the joint modeling of a renewable energy system and a steel plant. This allows to optimize the overall system from an environmental point of view considering the availability of green hydrogen as an inherent part of the model. Numerical experiments proved the effectiveness of the model proposed in evaluating the suitability of using green hydrogen in the steelmaking process. Depending on the characteristics of the site and the renewable energy conversion system adopted decreases in emissions ranging from 60% to 91% compared to the BF–BOF route were observed for the green energy–steel system considered It was found that the environmental benefit of using hydrogen in the secondary route is strictly related to the national energy mix and to the electrolyzers’ technology. Depending on the reference context it was found that there exists a maximum value of the emission factor from the national electricity grid below which is environmentally convenient to produce DRI by using only hydrogen. It was moreover found that the lower the electricity consumption of the electrolyzer the higher the value assumed by the emission factor from the electricity grid which makes the use of hydrogen convenient.
Willingness to Pay and Public Acceptance for Hydrogen Buses: A Case Study of Perugia
Sep 2015
Publication
Sustainability transportation is characterized by a positive externality on the environment health social security land use and social inclusion. The increasing interest in global warming has caused attention to be paid to the introduction of the hydrogen bus (H2B). When introducing new environmental technologies such as H2B it is often necessary to assess the environmental benefits related to this new technology. However such benefits are typically non-priced due to their public good nature. Therefore we have to address this problem using the contingent valuation (CV) method. This method has been developed within environmental economics as a means to economically assess environmental changes which are typically not traded in the market. So far several big cities have been analyzed to evaluate the perceived benefit related to H2B introduction but to the best of our knowledge no one has performed a CV analysis of a historical city where smog also damages historical buildings. This paper presents the results obtained using a multi-wave survey. We have investigated user preferences to elicit their willingness to pay for H2B introduction in Perugia taking into account all types of negative externalities due to the traffic pollution. The results confirm that residents in Perugia are willing to pay extra to support the introduction of H2B.
Comprehensive Review on Fuel Cell Technology for Stationary Applications as Sustainable and Efficient Poly-Generation Energy Systems
Aug 2021
Publication
Fuel cell technologies have several applications in stationary power production such as units for primary power generation grid stabilization systems adopted to generate backup power and combined-heat-and-power configurations (CHP). The main sectors where stationary fuel cells have been employed are (a) micro-CHP (b) large stationary applications (c) UPS and IPS. The fuel cell size for stationary applications is strongly related to the power needed from the load. Since this sector ranges from simple backup systems to large facilities the stationary fuel cell market includes few kWs and less (micro-generation) to larger sizes of MWs. The design parameters for the stationary fuel cell system differ for fuel cell technology (PEM AFC PAFC MCFC and SOFC) as well as the fuel type and supply. This paper aims to present a comprehensive review of two main trends of research on fuel-cell-based poly-generation systems: tracking the market trends and performance analysis. In deeper detail the present review will list a potential breakdown of the current costs of PEM/SOFC production for building applications over a range of production scales and at representative specifications as well as broken down by component/material. Inherent to the technical performance a concise estimation of FC system durability efficiency production maintenance and capital cost will be presented.
A Battery-Free Sustainable Powertrain Solution for Hydrogen Fuel Cell City Transit Bus Application
Apr 2022
Publication
The paper presents a sustainable electric powertrain for a transit city bus featuring an electrochemical battery-free power unit consisting of a hydrogen fuel cell stack and a kinetic energy storage system based on high-speed flywheels. A rare-earth free high-efficiency motor technology is adopted to pursue a more sustainable vehicle architecture by limiting the use of critical raw materials. A suitable dynamic energetic model of the full vehicle powertrain has been developed to investigate the feasibility of the traction system and the related energy management control strategy. The model includes losses characterisation as a function of the load of the main components of the powertrain by using experimental tests and literature data. The performance of the proposed solution is evaluated by simulating a vehicle mission on an urban path in real traffic conditions. Considerations about the effectiveness of the traction system are discussed.
Graphene Oxide/metal Nanocrystal Multilaminates as the Atomic Limit for Safe and Selective Hydrogen Storage
Mar 2016
Publication
Interest in hydrogen fuel is growing for automotive applications; however safe dense solid-state hydrogen storage remains a formidable scientific challenge. Metal hydrides offer ample storage capacity and do not require cryogens or exceedingly high pressures for operation. However hydrides have largely been abandoned because of oxidative instability and sluggish kinetics. We report a new environmentally stable hydrogen storage material constructed of Mg nanocrystals encapsulated by atomically thin and gas-selective reduced graphene oxide (rGO) sheets. This material protected from oxygen and moisture by the rGO layers exhibits exceptionally dense hydrogen storage (6.5 wt% and 0.105 kg H2 per litre in the total composite). As rGO is atomically thin this approach minimizes inactive mass in the composite while also providing a kinetic enhancement to hydrogen sorption performance. These multilaminates of rGO-Mg are able to deliver exceptionally dense hydrogen storage and provide a material platform for harnessing the attributes of sensitive nanomaterials in demanding environments.
Experimental Study of Hydrogen Embrittlement in Maraging Steels
Feb 2018
Publication
This research activity aims at investigating the hydrogen embrittlement of Maraging steels in connection to real sudden failures of some of the suspension blades of the Virgo Project experimental apparatus. Some of them failed after 15 years of service in working conditions. Typically in the Virgo detector blades are loaded up to 50-60% of the material yield strength. For a deeper understanding of the failure the relationship between hydrogen concentration and mechanical properties of the material have been investigated with specimens prepared in order to simulate blade working conditions. A mechanical characterization of the material has been carried out by standard tensile testing in order to establish the effect of hydrogen content on the material strength. Further experimental activity was executed in order to characterize the fracture surface and to measure the hydrogen content. Finally some of the failed blades have been analyzed in DICI-UNIPI laboratory. The experimental results show that the blades failure can be related with the hydrogen embrittlement phenomenon.
Effects of Renewable Energy Unstable Source to Hydrogen Production: Safety Considerations
Sep 2021
Publication
Hydrogen is considered a promising energy carrier for a sustainable future when it is produced by utilizing renewable energy. Nowadays less than 4% of hydrogen production is based on electrolysis processes. Each component of a hydrogen energy system needs to be optimized to increase the operation time and system efficiency. Only in this way hydrogen produced by electrolysis processes can be competitive with the conventional fossil energy sources. As conventional electrolysers are designed for operation at fixed process conditions the implementation of fluctuating and highly intermittent renewable energy is challenging. Alkaline water electrolysis is a key technology for large-scale hydrogen production powered by renewable energy. At low power availability conventional alkaline water electrolysers show a limited part-load range due to an increased gas impurity. Explosive mixtures of hydrogen and oxygen must be prevented; thus a safety shutdown is performed when reaching specific gas contamination. The University of Pisa is setting up a dedicated laboratory including a 40-kW commercial alkaline electrolyser: the focus of the study is to analyze the safety of the electrolyser together with its performance and the real energy efficiency analyzing its operational data collected under different operating conditions affected by the unstable energy supply.
Power-to-Gas Hydrogen: Techno-economic Assessment of Processes Towards a Multi-purpose Energy Carrier
Dec 2016
Publication
The present work investigates Power-to-Gas (PtG) options for variable Renewable Electricity storage into hydrogen through low temperature (alkaline and PEM) and high-temperature (SOEC) water electrolysis technologies. The study provides the assessment of the cost of the final product when hydrogen is employed for mobility (on-site refueling stations) electricity generation (by fuel cells in Power-to-Power systems) and grid injection in the natural gas network. Costs estimations are performed for 2013-2030 scenarios. A case study on the impact of variable Renewable Electricity storage by hydrogen generation on the Italian electricity and mobility sectors is presented.
Recent Developments of Membranes and Electrocatalysts for the Hydrogen Production by Anion Exchange Membrane Water Electrolysers: A Review
Nov 2022
Publication
Hydrogen production using anion exchange membrane water electrolysis (AEMWE) offers hope to the energy crisis faced by humanity. AEM electrolysis can be coupled with intermittent and renewable energy sources as well as with the use of low-cost electrocatalysts and other low-cost stack components. In AEM water electrolysis one of the biggest advantages is the use of low-cost transition metal catalysts instead of traditional noble metal electrocatalysts. AEMWE is still in its infancy despite irregular research on catalysts and membranes. In order to generate commercially viable hydrogen AEM water electrolysis technology must be further developed including energy efficiency membrane stability stack feasibility robustness ion conductivity and cost reduction. An overview of studies that have been conducted on electrocatalysts membranes and ionomers used in the AEMWEs is here reported with the aim that AEMWE research may be made more practical by this review report by bridging technological gaps and providing practical research recommendations leading to the production of scalable hydrogen.
Modelling and Analyzing the Impact of Hydrogen Enriched Natural Gas on Domestic Gas Boilers in a Decarbonization Perspective
Aug 2020
Publication
Decarbonization of energy economy is nowadays a topical theme and several pathways are under discussion. Gaseous fuels have a fundamental role for this transition and the production of low carbon-impact fuels is necessary to deal with this challenge. The generation of renewable hydrogen is a trusted solution since this energy vector can be promptly produced from electricity and injected into the existing natural gas infrastructure granting storage capacity and easy transportation. This scenario will lead in the near future to hydrogen enrichment of natural gas whose impact on the infrastructures is being actively studied. The effect on end-user devices such as domestic gas boilers instead is still little analyzed and tested but is fundamental to be assessed. The aim of this research is to generate knowledge on the effect of hydrogen enrichment on the widely used premixed boilers: the investigations include pollutant emissions efficiency flashback and explosion hazard control system and materials selection. A model for calculating several parameters related to combustion of hydrogen enriched natural gas is presented. Guidelines for the design of new components are provided and an insight is given on the maximum hydrogen blending bearable by the current boilers.
Renewable Energy, Carbon Capture & Sequestration and Hydrogen Solutions as Enabling Technologies for Reduced CO2 Energy Transition at a National Level: An Application to the 2030 Italian National Energy Scenarios
Dec 2022
Publication
Globally climate change fossil fuel depletion and greenhouse emissions are fundamental problems requiring massive effort from the international scientific community to be addressed and solved. Following the Clean Energy for all Europeans Package (CEP) guidelines the Italian Government has established challenging and tight objectives both on energy and climate matter to be targeted by 2030. Accordingly research activities on different topics are carried out in Italy looking at the installation of intermittent renewable energy systems (IRES) implementation of carbon capture and sequestration (CCS) on existing power plants and hydrogen technology and infrastructure penetration for accomplishing the end-users demands. The optimal integration of the above-mentioned technologies is one of the most effective weapons to address these objectives. The paper investigates different energy scenarios for meeting the Italian National Energy and Climate Plan (NECP) 2030 targets showing how the combined implementation of around +12 GW of IRES and +6 GW of electrolyzers compared to the national estimates simultaneously with the CCS of around 10 Mt of CO2 per year can reduce the CO2 emissions up to about 247 Mt/year. Thanks to the adoption of the well-established software platform EnergyPlan the integration of IRES plants CCS and hydrogen-based technologies have been explored and the most successful results for concurrently reducing the impact of industrial transport residential and energy sectors and mitigating the greenhouse emissions substantially relies on the diversifications. Results show both the technical and economic convenience of a 2030 energy scenario which implements properly hydrogen IRES and CCS penetration in the energy system meeting the NECP 2030 targets and maintaining both the over-generation of the power plants below 5 TWh and the initial capital expenditure to be sustained for this scenario to occur below +80% compared to the 2019 energy scenario.
Overview of First Outcomes of PNR Project HYTUNNEL-CS
Sep 2021
Publication
Dmitry Makarov,
Donatella Cirrone,
Volodymyr V. Shentsov,
Sergii Kashkarov,
Vladimir V. Molkov,
Z. Xu,
Mike Kuznetsov,
Alexandros G. Venetsanos,
Stella G. Giannissi,
Ilias C. Tolias,
Knut Vaagsaether,
André Vagner Gaathaug,
Mark R. Pursell,
Wayne M. Rattigan,
Frank Markert,
Luisa Giuliani,
L.S. Sørensen,
A. Bernad,
Mercedes Sanz Millán,
U. Kummer,
Christian Brauner,
Paola Russo,
J. van den Berg,
F. de Jong,
Tom Van Esbroeck,
M. Van De Veire,
Didier Bouix,
Gilles Bernard-Michel,
Sergey Kudriakov,
Etienne Studer,
Domenico Ferrero,
Joachim Grüne and
G. Stern
The paper presents the first outcomes of the experimental numerical and theoretical studies performed in the funded by Fuel Cell and Hydrogen Joint Undertaking (FCH2 JU) project HyTunnel-CS. The project aims to conduct pre-normative research (PNR) to close relevant knowledge gaps and technological bottlenecks in the provision of safety of hydrogen vehicles in underground transportation systems. Pre normative research performed in the project will ultimately result in three main outputs: harmonised recommendations on response to hydrogen accidents recommendations for inherently safer use of hydrogen vehicles in underground traffic systems and recommendations for RCS. The overall concept behind this project is to use inter-disciplinary and inter-sectoral prenormative research by bringing together theoretical modelling and experimental studies to maximise the impact. The originality of the overall project concept is the consideration of hydrogen vehicle and underground traffic structure as a single system with integrated safety approach. The project strives to develop and offer safety strategies reducing or completely excluding hydrogen-specific risks to drivers passengers public and first responders in case of hydrogen vehicle accidents within the currently available infrastructure.
Optimized Design of a H2-Powered Moped for Urban Mobility
Mar 2024
Publication
Micro-mobility plays an increasingly important role in the current energy transition thanks to its low energy consumption and reduced contribution to urban congestion. In this scenario fuel cell hybrid electric vehicles have several advantages over state-of-the-art battery electric vehicles such as increased driving ranges and reduced recharge times. In this paper we study the conversion of a commercial electric moped (Askoll eS3 ®) into a fuel cell hybrid electric vehicle by finding the optimal design of the components through an optimization methodology based on backward dynamic programming. This optimal design and operation strategy can also be implemented with a rulesbased approach. The results show that a system composed of a 1 kW proton exchange membrane fuel cell a 2000 Sl metal hydride hydrogen tank and a 240 Wh buffer battery can cover the same driving range as the batteries in an electric moped (119 km). Such a hybrid system occupies considerably less volume (almost 40 L) and has a negligibly higher mass. The free volume can be used to extend the driving range up to almost three times the nominal value. Moreover by using a high-pressure composite tank it is possible to increase the mass energy density of the onboard energy storage (although compression can require up to 10% of the hydrogen’s chemical energy). The fuel cell hybrid electric vehicle can be recharged with green hydrogen that is locally produced. In detail we analyze a residential scenario and a shared mobility scenario in the small Italian city of Viterbo.
A Parametric Approach for Conceptual Integration and Performance Studies of Liquid Hydrogen Short–Medium Range Aircraft
Jul 2022
Publication
The present paper deals with the investigation at conceptual level of the performance of short–medium-range aircraft with hydrogen propulsion. The attention is focused on the relationship between figures of merit related to transport capability such as passenger capacity and flight range and the parameters which drive the design of liquid hydrogen tanks and their integration with a given aircraft geometry. The reference aircraft chosen for such purpose is a box-wing short–mediumrange airplane the object of study within a previous European research project called PARSIFAL capable of cutting the fuel consumption per passenger-kilometre up to 22%. By adopting a retrofitting approach non-integral pressure vessels are sized to fit into the fuselage of the reference aircraft under the assumption that the main aerodynamic flight mechanic and structural characteristics are not affected. A parametric model is introduced to generate a wide variety of fuselage-tank cross-section layouts from a single tank with the maximum diameter compatible with a catwalk corridor to multiple tanks located in the cargo deck and an assessment workflow is implemented to perform the structural sizing of the tanks and analyse their thermodynamic behaviour during the mission. This latter is simulated with a time-marching approach that couples the fuel request from engines with the thermodynamics of the hydrogen in the tanks which is constantly subject to evaporation and depending on the internal pressure vented-out in gas form. Each model is presented in detail in the paper and results are provided through sensitivity analyses to both the technologic parameters of the tanks and the geometric parameters influencing their integration. The guidelines resulting from the analyses indicate that light materials such as the aluminium alloy AA2219 for tanks’ structures and polystyrene foam for the insulation should be selected. Preferred values are also indicted for the aspect ratios of the vessel components i.e. central tube and endcaps as well as suggestions for the integration layout to be adopted depending on the desired trade-off between passenger capacity as for the case of multiple tanks in the cargo deck and achievable flight ranges as for the single tank in the section.
Investigating Hydrogen-Based Non-Conventional Storage for PV Power in Eco-Energetic Optimization of a Multi-Energy System
Dec 2021
Publication
Through the integration of multiple energy carriers with related technologies multi-energy systems (MES) can exploit the synergies coming from their interplay for several benefits towards decarbonization. In such a context inclusion of Power-to-X technologies in periods of excess renewable electricity supply removes the need for curtailment of renewable electricity generation. In order to achieve the environmental benefits of MES without neglecting their economic feasibility the optimal design problem is as crucial as challenging and requires the adoption of a multi-objective approach. This paper extends the results of a previous work by investigating hydrogen-based non-conventional storage for PV power in the eco-energetic optimization of an MES. The system under study consists of a reversible fuel cell (r-SOC) photovoltaic (PV) electric heat pump absorption chiller and thermal storage and allows satisfying the multi-energy needs of a residential end-user. A multi-objective linear problem is established to find the optimal MES configuration including the sizes of the involved technologies with the goal of reducing the total annual cost and the fossil primary energy input. Simulation results are compared with those obtained in previous work with a conventional nanogrid where a combined heat and power (CHP) system with gas-fired internal combustion engine and a battery were present instead of an r-SOC. The optimized configuration of the non-conventional nanogrid allows achieving a maximum primary energy reduction amounting to 66.3% compared to the conventional nanogrid. In the face of the environmental benefits the non-conventional nanogrid leads to an increase in total annual costs which compared to the conventional nanogrid is in the range of 41–65%.
Electrified Hydrogen Production from Methane for PEM Fuel Cells Feeding: A Review
May 2022
Publication
The greatest challenge of our times is to identify low cost and environmentally friendly alternative energy sources to fossil fuels. From this point of view the decarbonization of industrial chemical processes is fundamental and the use of hydrogen as an energy vector usable by fuel cells is strategic. It is possible to tackle the decarbonization of industrial chemical processes with the electrification of systems. The purpose of this review is to provide an overview of the latest research on the electrification of endothermic industrial chemical processes aimed at the production of H2 from methane and its use for energy production through proton exchange membrane fuel cells (PEMFC). In particular two main electrification methods are examined microwave heating (MW) and resistive heating (Joule) aimed at transferring heat directly on the surface of the catalyst. For cases the catalyst formulation and reactor configuration were analyzed and compared. The key aspects of the use of H2 through PEM were also analyzed highlighting the most used catalysts and their performance. With the information contained in this review we want to give scientists and researchers the opportunity to compare both in terms of reactor and energy efficiency the different solutions proposed for the electrification of chemical processes available in the recent literature. In particular through this review it is possible to identify the solutions that allow a possible scale-up of the electrified chemical process imagining a distributed production of hydrogen and its consequent use with PEMs. As for PEMs in the review it is possible to find interesting alternative solutions to platinum with the PGM (Platinum Group Metal) free-based catalysts proposing the use of Fe or Co for PEM application.
Macroeconomic Factors Influencing Public Policy Strategies for Blue and Green Hydrogen
Nov 2021
Publication
The aim of this paper is to analyze the factors affecting hydrogen and Carbon Capture and Storage Technologies (“CCS”) policies taking into consideration Fossil Fuel Consumption Oil Reserves the Debt/GDP Ratio the Trilemma Index and other variables with respect to OECD countries. STATA 17 was used for the analysis. The results confirm the hypothesis that countries with high fossil fuel consumption and oil reserves are investing in blue hydrogen and CCS towards a “zero-carbon-emission” perspective. Moreover countries with a good Debt/GDP ratio act most favorably to green policies by raising their Public Debt because Foreign Direct Investments are negatively correlated with those kinds of policies. Future research should exploit Green Finance policy decision criteria on green and blue hydrogen.
Modelling and Experimental Analysis of a Polymer Electrolyte Membrane Water Electrolysis Cell at Different Operating Temperatures
Nov 2018
Publication
In this paper a simplified model of a Polymer Electrolyte Membrane (PEM) water electrolysis cell is presented and compared with experimental data at 60 ◦C and 80 ◦C. The model utilizes the same modelling approach used in previous work where the electrolyzer cell is divided in four subsections: cathode anode membrane and voltage. The model of the electrodes includes key electrochemical reactions and gas transport mechanism (i.e. H2 O2 and H2O) whereas the model of the membrane includes physical mechanisms such as water diffusion electro osmotic drag and hydraulic pressure. Voltage was modelled including main overpotentials (i.e. activation ohmic concentration). First and second law efficiencies were defined. Key empirical parameters depending on temperature were identified in the activation and ohmic overpotentials. The electrodes reference exchange current densities and change transfer coefficients were related to activation overpotentials whereas hydrogen ion diffusion to Ohmic overvoltages. These model parameters were empirically fitted so that polarization curve obtained by the model predicted well the voltage at different current found by the experimental results. Finally from the efficiency calculation it was shown that at low current densities the electrolyzer cell absorbs heat from the surroundings. The model is not able to describe the transients involved during the cell electrochemical reactions however these processes are assumed relatively fast. For this reason the model can be implemented in system dynamic modelling for hydrogen production and storage where components dynamic is generally slower compared to the cell electrochemical reactions dynamics.
Hydrogen Intensified Synthesis Processes to Valorise Process Off-gases in Integrated Steelworks
Jul 2023
Publication
Ismael Matino,
Stefano Dettori,
Amaia Sasiain Conde,
Valentina Colla,
Alice Petrucciani,
Antonella Zaccara,
Vincenzo Iannino,
Claudio Mocci,
Alexander Hauser,
Sebastian Kolb,
Jürgen Karl,
Philipp Wolf-Zoellner,
Stephane Haag,
Michael Bampaou,
Kyriakos Panopoulos,
Eleni Heracleousa,
Nina Kieberger,
Katharina Rechberger,
Leokadia Rog and
Przemyslaw Rompalski
Integrated steelworks off-gases are generally exploited to produce heat and electricity. However further valorization can be achieved by using them as feedstock for the synthesis of valuable products such as methane and methanol with the addition of renewable hydrogen. This was the aim of the recently concluded project entitled “Intelligent and integrated upgrade of carbon sources in steel industries through hydrogen intensified synthesis processes (i3 upgrade)”. Within this project several activities were carried out: from laboratory analyses to simulation investigations from design development and tests of innovative reactor concepts and of advanced process control to detailed economic analyses business models and investigation of implementation cases. The final developed methane production reactors arerespectively an additively manufactured structured fixedbed reactor and a reactor setup using wash-coated honeycomb monoliths as catalyst; both reactors reached almost full COx conversion under slightly over-stoichiometric conditions. A new multi-stage concept of methanol reactor was designed commissioned and extensively tested at pilot-scale; it shows very effective conversion rates near to 100% for CO and slightly lower for CO2 at one-through operation for the methanol synthesis. Online tests proved that developed dispatch controller implements a smooth control strategy in real time with a temporal resolution of 1 min and a forecasting horizon of 2 h. Furthermore both offline simulations and cost analyses highlighted the fundamental role of hydrogen availability and costs for the feasibility of i 3 upgrade solutions and showed that the industrial implementation of the i 3 upgrade solutions can lead to significant environmental and economic benefits for steelworks especially in case green electricity is available at an affordable price.
Homogeneous Hydrogen Deflagrations in Small Scale Enclosure. Experimental Results
Sep 2017
Publication
University of Pisa performed experimental tests in a 1m3 facility which shape and dimensions resemble a gas cabinet for the HySEA project founded by the Fuel Cells and Hydrogen 2 Joint Undertaking with the aim to conduct pre-normative research on vented deflagrations in real-life enclosures and containers used for hydrogen energy applications in order to generate experimental data of high quality. The test facility named Small Scale Enclosure (SSE) had a vent area of 042m2 which location could be varied namely on the top or in front of the facility while different types of vent were investigated. Three different ignition location were investigated as well and the range of Hydrogen concentration ranged between 10 and 18% vol. This paper is aimed to summarize the main characteristics of the experimental campaign as well as to present its results.
Lock-In Effects on the Energy Sector: Evidence from Hydrogen Patenting Activities
Apr 2022
Publication
The aim of the paper is to analyze how regulatory design and its framework’s topics other than macroeconomic factors might impact green innovation by taking into consideration a brand-new renewable source of energy that is becoming more and more important in recent years: hydrogen and fuel cell patenting activities. Such activities have been used as a proxy for green technological change in a panel data of 52 countries over a 6-year period. A series of sectorial energy regulation and macroeconomic variables were tested to assess their impact on that technological frontier of green energy transition policy. As might have been expected the empirical analysis carried out with the model that was prefigured confirms significant evidence of lock-in effects on fossil fuel policies. The model confirms however another evidence: countries already investing in renewables might be willing to invest in hydrogen projects. A sort of reinforcement to the further development of green sustainable strategies seems to derive from having already concretely undertaken this direction. Future research should exploit different approaches to the research question and address the econometric criticalities mentioned in the paper along with exploiting results of the paper with further investigations.
Techno-economic Analysis of In-situ Production by Electrolysis, Biomass Gasification and Delivery Systems for Hydrogen Refuelling Stations: Rome Case Study
Oct 2018
Publication
Starting from the Rome Hydrogen Refuelling Station demand of 65 kg/day techno-economics of production systems and balance of plant for small scale stations have been analysed. A sensitivity analysis has been done on Levelised Cost of Hydrogen (LCOH) in the range of 0 to 400 kg/day varying capacity factor and availability hours or travel distance for alkaline electrolysers biomass gasification and hydrogen delivery. As expected minimum LCOH for electrolyser and gasifier is found at 400 kg/day and 24 h/day equal to 12.71 €/kg and 5.99 €/kg however for operating hours over 12 and 10 h/day the differential cost reaches a plateau (below 5%) for electrolyser and gasifier respectively. For the Rome station design 160 kWe of electrolysers 24 h/day and 100 kWth gasifier at 8 h/day LCOH (11.85 €/kg) was calculated considering the modification of the cost structure due to the existing equipment which is convenient respect the use of a single technology except for 24 h/day gasification.
Impact Assessments on People and Buildings for Hydrogen Pipeline Explosions
Sep 2019
Publication
Hydrogen has the potential to act as the energy carrier of the future. It will be then produced in large amounts and will certainly need to be transported for long distances. The safest way to transport hydrogen is through pipelines. Failure of pipelines carrying gaseous hydrogen can have several effects some of which can pose a significant threat of damage to people and buildings in the immediate proximity of the failure location. This paper presents a probabilistic risk assessment procedure for the estimation of damage to people and buildings endangered by high-pressure hydrogen pipeline explosions. The procedure provides evaluation of annual probability of damage to people and buildings under an extreme event as a combination of the conditional probability of damage triggered by an explosion and the probability of occurrence of the explosion as a consequence of the pipeline failure. Physical features such as the gas jet release process flammable cloud size blast generation and explosion effects on people and buildings are considered and evaluated through the SLAB integral model TNO model Probit equations and Pressure-Impulse diagrams. For people both direct and indirect effects of overpressure events are considered. For buildings a comparison of the damage to different types of buildings (i.e. reinforced concrete buildings and tuff stone masonry buildings) is made. The probabilistic procedure presented may be used for designing a new hydrogen pipeline network and will be an advantageous tool for safety management of hydrogen gas pipelines.
An Energy Autonomous House Equipped with a Solar PV Hydrogen Conversion System
Dec 2015
Publication
The use of RES in buildings is difficult for their random nature; therefore the plants using photovoltaic solar collectors must be connected to a power supply or interconnected with Energy accumulators if the building is isolated. The conversion of electricity into hydrogen technology is best suited to solve the problem and allows you to transfer the solar energy captured from day to night from summer to winter. This paper presents the feasibility study for a house powered by PV cogeneration solar collectors that reverse the electricity on the control unit that you command by a PC to power the household using a heat pump an electrolytic cell for the production of hydrogen to accumulate; control units sorting to the utilities the electricity produced by the fuel cell. The following are presented: The Energy analysis of the building the plant design economic analysis.
Performance and Stability of a Critical Raw Materials-free Anion Exchange Membrane Electrolysis Cell
Feb 2023
Publication
A water electrolysis cell based on anion exchange membrane (AEM) and critical raw materials-free (CRM-free) electrocatalysts was developed. A NiFe-oxide electrocatalyst was used at the anode whereas a series of metallic electrocatalysts were investigated for the cathode such as Ni NiCu NiMo NiMo/KB. These were compared to a benchmark Pt/C cathode. CRMs-free anode and cathode catalysts were synthetized with a crystallite size of about 10 nm. The effect of recirculation through the cell of a diluted KOH solution was investigated. A concentration of 0.5–1 M KOH appeared necessary to achieve suitable performance at high current density. amongst the CRM-free cathodes the NiMo/KB catalyst showed the best performance in the AEM electrolysis cell achieving a current density of 1 A cm− 2 at about 1.7–1.8 V/cell when it was used in combination with a NiFe-oxide anode and a 50 µm thick Fumatech FAA-3–50® hydrocarbon membrane. Durability tests showed an initial decrease of cell voltage with time during 2000 h operation at 1 A cm− 2 until reaching a steady state performance with an energy efficiency close to 80%. An increase of reversible losses during start-up and shutdown cycles was observed. Appropriate stability was observed during cycled operation between 0.2 and 1 A cm− 2 ; however the voltage efficiency was slightly lower than in steady-state operation due to the occurrence of reversible losses during the cycles. Post operation analysis of electrocatalysts allowed getting a better comprehension of the phenomena occurring during the 2000 h durability test.
The Role of Hydrogen in the Optimal Design of Off-grid Hybrid Renewable Energy Systems
Jan 2022
Publication
The optimal design of off-grid hybrid renewable energy systems (HRESs) is a challenging task which often involves conflicting goals to be faced. In this work levelized cost of energy (LCOE) and CO2 emissions have been addressed simultaneously by using the ε-constraint method together with the particle swarm optimization (PSO) algorithm. Cost-emissions Pareto fronts of different HRES configurations were developed to gain greater awareness about the potential of renewable-based energy systems in off-grid applications. Various combinations of the following components were investigated: photovoltaic panels wind turbines batteries hydrogen and diesel generators. The hydrogen-based system comprises an electrolyzer to convert the excess renewable energy into hydrogen a pressurized tank for H2 storage and a fuel cell for the reconversion of hydrogen into electricity during renewable energy deficits. Electrolyzer and fuel cell devices were modelled by means of part-load performance curves. Size-dependent costs and component lifetimes as a function of the cumulative operational duty were also considered for a more accurate techno-economic assessment. The proposed methodology was applied to the Froan islands (Norway) which were chosen as a reference case study since they are well representative of many other insular microgrid environments in Northern Europe. Results from the sizing simulations revealed that energy storage devices are key components to reduce the dependency on fossil fuels. In particular the hydrogen storage system is crucial in off-grid areas to enhance the RES penetration and avoid a sharp increase in the cost of energy. Hydrogen in fact allows the battery and RES technologies not to be oversized thanks to its cost-effective long-term storage capability. Concerning the extreme case with no diesel the cheapest configuration which includes both batteries and hydrogen has an LCOE of 0.41 €/kWh. This value is around 35% lower than the LCOE of a system with only batteries as energy storage.
How to Power the Energy–Water Nexus: Coupling Desalination and Hydrogen Energy Storage in Mini-Grids with Reversible Solid Oxide Cells
Nov 2020
Publication
Sustainable Development Goals establish the main challenges humankind is called to tackle to assure equal comfort of living worldwide. Among these the access to affordable renewable energy and clean water are overriding especially in the context of developing economies. Reversible Solid Oxide Cells (rSOC) are a pivotal technology for their sector-coupling potential. This paper aims at studying the implementation of such a technology in new concept PV-hybrid energy storage mini-grids with close access to seawater. In such assets rSOCs have a double useful effect: charge/discharge of the bulk energy storage combined with seawater desalination. Based on the outcomes of an experimental proof-of-concept on a single cell operated with salty water the operation of the novel mini-grid is simulated throughout a solar year. Simulation results identify the fittest mini-grid configuration in order to achieve energy and environmental optimization hence scoring a renewable penetration of more than 95% marginal CO2 emissions (13 g/kWh) and almost complete coverage of load demand. Sector-coupling co-production rate (desalinated water versus electricity issued from the rSOC) is 0.29 L/kWh.
Advances in Methanol Production and Utilization, with Particular Emphasis toward Hydrogen Generation via Membrane Reactor Technology
Oct 2018
Publication
Methanol is currently considered one of the most useful chemical products and is a promising building block for obtaining more complex chemical compounds such as acetic acid methyl tertiary butyl ether dimethyl ether methylamine etc. Methanol is the simplest alcohol appearing as a colorless liquid and with a distinctive smell and can be produced by converting CO2 and H2 with the further benefit of significantly reducing CO2 emissions in the atmosphere. Indeed methanol synthesis currently represents the second largest source of hydrogen consumption after ammonia production. Furthermore a wide range of literature is focused on methanol utilization as a convenient energy carrier for hydrogen production via steam and autothermal reforming partial oxidation methanol decomposition or methanol–water electrolysis reactions. Last but not least methanol supply for direct methanol fuel cells is a well-established technology for power production. The aim of this work is to propose an overview on the commonly used feedstocks (natural gas CO2 or char/biomass) and methanol production processes (from BASF—Badische Anilin und Soda Fabrik to ICI—Imperial Chemical Industries process) as well as on membrane reactor technology utilization for generating high grade hydrogen from the catalytic conversion of methanol reviewing the most updated state of the art in this field.
Flexible Power and Biomass-To-Methanol Plants With Different Gasification Technologies
Jan 2022
Publication
The competitiveness of biofuels may be increased by integrating biomass gasification plants with electrolysis units which generate hydrogen to be combined with carbon-rich syngas. This option allows increasing the yield of the final product by retaining a higher amount of biogenic carbon and improving the resilience of the energy sector by favoring electric grid services and sector coupling. This article illustrates a techno-economic comparative analysis of three flexible power and biomass to methanol plants based on different gasification technologies: direct gasification indirect gasification and sorptionenhanced gasification. The design and operational criteria of each plant are conceived to operate both without green hydrogen addition (baseline mode) and with hydrogen addition (enhanced mode) following an intermittent use of the electrolysis system which is turned on when the electricity price allows an economically viable hydrogen production. The methanol production plants include a gasification section syngas cleaning conditioning and compression section methanol synthesis and purification and heat recovery steam cycle to be flexibly operated. Due to the high oxygen demand in the gasifier the direct gasification-based plant obtains a great advantage to be operated between a minimum load to satisfy the oxygen demand at high electricity prices and a maximum load to maximize methanol production at low electricity prices. This allows avoiding large oxygen storages with significant benefits for Capex and safety issues. The analysis reports specific fixed-capital investments between 1823 and 2048 €/kW of methanol output in the enhanced operation and LCOFs between 29.7 and 31.7 €/GJLHV. Economic advantages may be derived from a decrease in the electrolysis capital investment especially for the direct gasification-based plants which employ the greatest sized electrolyzer. Methanol breakeven selling prices range between 545 and 582 €/t with the 2019 reference Denmark electricity price curve and between 484 and 535 €/t with an assumed modified electricity price curve of a future energy mix with increased penetration of intermittent renewables.
Hybrid PEM Fuel Cell Power Plants Fuelled by Hydrogen for Improving Sustainability in Shipping: State of the Art and Review on Active Projects
Feb 2023
Publication
The interest in hybrid polymer electrolyte membrane fuel cells (PEMFC) fuelled by hydrogen in shipping has seen an unprecedented growth in the last years as it could allow zero-emission navigation. However technical safety and regulatory barriers in PEMFC ship design and operation are hampering the use of such systems on a large scale. While several studies analyse these aspects a comprehensive and up-to-date overview on hydrogen PEMFCs for shipping is missing. Starting from the survey of past/ongoing projects on FCs in shipping this paper presents an extensive review on maritime hydrogen PEMFCs outlining the state of the art and future trends for hydrogen storage and bunkering powertrain and regulations. In addition to the need for a clear regulatory framework future studies should investigate the development of an efficient fuel supply chain and bunkering facilities ashore. As for the onboard power system health-conscious energy management low-temperature heat recovery and advancements in fuel processing have emerged as hot research topics.
Modelling and Performance Analysis of an Autonomous Marine Vehicle Powered by a Fuel Cell Hybrid Powertrain
Sep 2022
Publication
This paper describes the implementation of a hydrogen-based system for an autonomous surface vehicle in an effort to reduce environmental impact and increase driving range. In a suitable computational environment the dynamic electrical model of the entire hybrid powertrain consisting of a proton exchange membrane fuel cell a hydrogen metal hydride storage system a lithium battery two brushless DC motors and two control subsystems is implemented. The developed calculation tool is used to perform the dynamic analysis of the hybrid propulsion system during four different operating journeys investigating the performance achieved to examine the obtained performance determine the feasibility of the work runs and highlight the critical points. During the trips the engine shows fluctuating performance trends while the energy consumption reaches 1087 Wh for the fuel cell (corresponding to 71 g of hydrogen) and 370 Wh for the battery consuming almost all the energy stored on board.
CFD Study of Dual Fuel Combustion in a Research Diesel Engine Fueled by Hydrogen
Jul 2022
Publication
Superior fuel economy higher torque and durability have led to the diesel engine being widely used in a variety of fields of application such as road transport agricultural vehicles earth moving machines and marine propulsion as well as fixed installations for electrical power generation. However diesel engines are plagued by high emissions of nitrogen oxides (NOx) particulate matter (PM) and carbon dioxide when conventional fuel is used. One possible solution is to use low-carbon gaseous fuel alongside diesel fuel by operating in a dual-fuel (DF) configuration as this system provides a low implementation cost alternative for the improvement of combustion efficiency in the conventional diesel engine. An initial step in this direction involved the replacement of diesel fuel with natural gas. However the consequent high levels of unburned hydrocarbons produced due to non-optimized engines led to a shift to carbon-free fuels such as hydrogen. Hydrogen can be injected into the intake manifold where it premixes with air then the addition of a small amount of diesel fuel auto-igniting easily provides multiple ignition sources for the gas. To evaluate the efficiency and pollutant emissions in dual-fuel diesel-hydrogen combustion a numerical CFD analysis was conducted and validated with the aid of experimental measurements on a research engine acquired at the test bench. The process of ignition of diesel fuel and flame propagation through a premixed air-hydrogen charge was represented the Autoignition-Induced Flame Propagation model included ANSYS-Forte software. Because of the inefficient operating conditions associated with the combustion the methodology was significantly improved by evaluating the laminar flame speed as a function of pressure temperature and equivalence ratio using Chemkin-Pro software. A numerical comparison was carried out among full hydrogen full methane and different hydrogen-methane mixtures with the same energy input in each case. The use of full hydrogen was characterized by enhanced combustion higher thermal efficiency and lower carbon emissions. However the higher temperatures that occurred for hydrogen combustion led to higher NOx emissions.
The Impact of Fuel Cell Electric Freight Vehicles on Fuel Consumption and CO2 Emissions: The Case of Italy
Oct 2022
Publication
The Italian Recovery and Resilience Plan promotes among its many actions the use of hydrogen by the deployment of refuelling stations for heavy-duty vehicles predicting a 5–7% penetration rate of fuel cell electric vehicles (FCEVs) for long-distance freight transport. In this work the impact of this action on the reduction of greenhouse gas emissions and consumption was estimated assuming the plan’s objectives are met. To achieve this aim a national simulation model of the road freight transport system was implemented consisting of a graph of the national road network and an inter-provincial origin-destination matrix; the graph was based on data available from OpenStreetMap while the interprovincial matrix was estimated from the interregional matrix with the use of two linear regression models one for emitted goods and one for attracted goods. The simulation of the system made it possible to estimate the impact of this action on CO2 emissions and fuel consumption under three different scenarios. From 2025 to 2040 a reduction in CO2 emissions ranging from around 9 to around 16.5 million tonnes was estimated and a reduction in consumption ranging from around 3 billion to around 5.6 billion litres of diesel. These results show how this action can be seen as one of the bricks contributing to the fight against global warming.
Impact of Hydrogen-Enriched Natural Gas on the Accuracy of Odorant Measurements
Jul 2025
Publication
Blending hydrogen with natural gas is emerging as a pivotal strategy in the transition to low-carbon energy systems. However the exploitation of the natural gas infrastructure to distribute natural gas and hydrogen blends (and 100% hydrogen in the long-term) introduces several technical economic and safety issues. These latter are paramount especially in urban distribution networks that supply residential buildings and dwellings since the quality and safety of the living environment can also be significantly affected. In this scenario the reliability of odorant concentration measurements according to the best practices currently in use for natural gas becomes crucial. This study is aimed at assessing the accuracy of odorant measurements at different concentration levels (i.e. low medium and high) in 100% methane methane–hydrogen blend and 100% hydrogen. The obtained results show the tendency to overestimate the odorant concentration up to 2.3% in methane–hydrogen blends at medium and high concentrations of THT as well as the underestimation of −3.4% in 100% hydrogen at low concentration of TBM. These results are consistent with those of natural gas from the city distribution network with hydrogen content of 5% and 20%.
Renewable Methanol Production from Green Hydrogen and Captured CO2: A Techno-economic Assessment
Nov 2022
Publication
This paper aims to present a pre-feasibility study of a power-to-fuel plant configuration designed for the production of 500 kg/h of renewable methanol (e-methanol) from green hydrogen and captured carbon dioxide. Hydrogen is obtained by water electrolysis employing the overproduction of renewable electricity. Carbon dioxide is assumed to be separated from the flue gas of a conventional power station by means of an amine-based CO2 absorption system. A comprehensive process model has been developed with the support of Aspen Plus tool to simulate all the plant sections and the overall system. After the process optimization a detailed economic analysis – based on capital and operating costs derived from commercial-scale experience and assuming a 20- year lifetime – has been performed to calculate a levelized cost of methanol (LCoM) of 960 €/t (about 175 €/MWh). The analysis confirms that today the technology is still not competitive from the economic point of view being LCoM more than double than the current methanol price in the international market (450 €/t). However it indicates that the process is expected to become competitive in a mid-term future as a consequence of the new European policies. The study also reveals that LCoM is mainly affected by the electricity price and the electrolyser capital cost as well as the capacity factor of the plant.
Ammonia as Green Fuel in Internal Combustion Engines: State-of-the-Art and Future Perspectives
Jul 2022
Publication
Ammonia (NH3) is among the largest-volume chemicals produced and distributed in the world and is mainly known for its use as a fertilizer in the agricultural sector. In recent years it has sparked interest in the possibility of working as a high-quality energy carrier and as a carbon-free fuel in internal combustion engines (ICEs). This review aimed to provide an overview of the research on the use of green ammonia as an alternative fuel for ICEs with a look to the future on possible applications and practical solutions to related problems. First of all the ammonia production process is discussed. Present ammonia production is not a “green” process; the synthesis occurs starting from gaseous hydrogen currently produced from hydrocarbons. Some ways to produce green ammonia are reviewed and discussed. Then the chemical and physical properties of ammonia as a fuel are described and explained in order to identify the main pros and cons of its use in combustion systems. Then the most viable solutions for fueling internal combustion engines with ammonia are discussed. When using pure ammonia high boost pressure and compression ratio are required to compensate for the low ammonia flame speed. In spark-ignition engines adding hydrogen to ammonia helps in speeding up the flame front propagation and stabilizing the combustion. In compression-ignition engines ammonia can be successfully used in dual-fuel mode with diesel. On the contrary an increase in NOx and the unburned NH3 at the exhaust require the installation of apposite aftertreatment systems. Therefore the use of ammonia seems to be more practicable for marine or stationary engine application where space constraints are not a problem. In conclusion this review points out that ammonia has excellent potential to play a significant role as a sustainable fuel for the future in both retrofitted and new engines. However significant further research and development activities are required before being able to consider large-scale industrial production of green ammonia. Moreover uncertainties remain about ammonia safe and effective use and some technical issues need to be addressed to overcome poor combustion properties for utilization as a direct substitute for standard fuels.
A Multi-objective Optimization Approach in Defining the Decarbonization Strategy of a Refinery
Mar 2022
Publication
Nowadays nearly one quarter of global carbon dioxide emissions are attributable to energy use in industry making this an important target for emission reductions. The scope of this study is hence that to define a cost-optimized decarbonization strategy for an energy and carbon intensive industry using an Italian refinery as a case study. The methodology involves the coupling of EnergyPLAN with a Multi-Objective Evolutionary Algorithm (MOEA) considering the minimization of annual cost and CO2 emissions as two potentially conflicting objectives and the energy technologies’ capacities as decision variables. For the target year 2025 EnergyPLAN+MOEA has allowed to model a range of 0-100 % decarbonization solutions characterized by optimal penetration mix of 22 technologies in the electrical thermal hydrogen feedstock and transport demand. A set of nine scenarios with different land use availabilities and implementable technologies each consisting of 100 optimal systems out of 10000 simulated ones has been evaluated. The results show on the one hand the possibility of achieving medium-high decarbonization solutions at costs close to current ones on the other how the decarbonization pathways strongly depend on the available land for solar thermal photovoltaic and wind as well as the presence of a biomass supply chain in the region.
No more items...