Publications
Demonstration of a kW-scale Solid Oxide Fuel Cell-calciner for Power Generation and Production of Calcined Materials
Aug 2019
Publication
Carbonate looping (CaL) has been shown to be less energy-intensive when compared to mature carbon capture technologies. Further reduction in the efficiency penalties can be achieved by employing a more efficient source of heat for the calcination process instead of oxy-fuel combustion. In this study a kW-scale solid oxide fuel cell (SOFC)-integrated calciner was designed and developed to evaluate the technical feasibility of simultaneously generating power and driving the calcination process using the high-grade heat of the anode off-gas. Such a system can be integrated with CaL systems or employed as a negative-emission technology where the calcines are used to capture CO2 from the atmosphere. The demonstration unit consisted of a planar SOFC stack operating at 750 °C and a combined afterburner/calciner to combust hydrogen slip from the anode off-gas and thermally decompose magnesite dolomite and limestone. The demonstrator generated up to 2 kWelDC power achieved a temperature in the range of 530–550 °C at the inlet of the afterburner and up to 678 °C in the calciner which was sufficient to demonstrate full calcination of magnesite and partial calcination of dolomite. However in order to achieve the temperature required for calcination of limestone further scale-up and heat integration are needed. These results confirmed technical feasibility of the SOFC-calciner concept for production of calcined materials either for the market or for direct air capture (DAC).
Feasibility of Hydrogen Production from Steam Reforming of Biodiesel (FAME) Feedstock on Ni-supported Catalysts
Jan 2015
Publication
The catalytic steam reforming of biodiesel was examined over Ni-alumina and Ni–ceria–zirconia catalysts at atmospheric pressure. Effects of temperatures of biodiesel preheating/vaporising (190–365 ◦C) and reforming (600–800 ◦C) molar steam to carbon ratio (S/C = 2–3) and residence time in the reformer represented by the weight hourly space velocity ‘WHSV’ of around 3 were examined for 2 h. Ni supported on calcium aluminate and on ceria–zirconia supports achieved steady state hydrogen product stream within 90% of the equilibrium yields although 4% and 1% of the carbon feed had deposited on the catalysts respectively during the combined conditions of start-up and steady state. Addition of dopants to ceria–zirconia supported catalyst decreased the performance of the catalyst. Increase in S/C ratio had the expected positive effects of higher H2 yield and lower carbon deposition.
Hydrogen Storage for Mobility: A Review
Jun 2019
Publication
Numerous reviews on hydrogen storage have previously been published. However most of these reviews deal either exclusively with storage materials or the global hydrogen economy. This paper presents a review of hydrogen storage systems that are relevant for mobility applications. The ideal storage medium should allow high volumetric and gravimetric energy densities quick uptake and release of fuel operation at room temperatures and atmospheric pressure safe use and balanced cost-effectiveness. All current hydrogen storage technologies have significant drawbacks including complex thermal management systems boil-off poor efficiency expensive catalysts stability issues slow response rates high operating pressures low energy densities and risks of violent and uncontrolled spontaneous reactions. While not perfect the current leading industry standard of compressed hydrogen offers a functional solution and demonstrates a storage option for mobility compared to other technologies.
Stress Corrosion Cracking of Gas Pipeline Steels of Different Strength
Jul 2016
Publication
With the development of the natural gas industry gas transmission pipelines have been developed rapidly in terms of safety economy and efficiency. Our recent studies have shown that an important factor of main pipelines serviceability loss under their long-term service is the in-bulk metal degradation of the pipe wall. This leads to the loss of the initial mechanical properties primarily resistance to brittle fracture which were set in engineering calculations at the pipeline design stage. At the same time stress corrosion cracking has been identified as one of the predominant failures in pipeline steels in humid environments which causes rupture of high-pressure gas transmission pipes as well as serious economic losses and disasters.
In the present work the low-carbon pipeline steels with different strength levels from the point of view of their susceptibility to stress corrosion cracking in the as-received state and after in-laboratory accelerated degradation under environmental conditions similar to those of an acidic soil were investigated. The main objectives of this study were to determine whether the development of higher strength materials led to greater susceptibility to stress corrosion cracking and whether degraded pipeline steels became more susceptible to stress corrosion cracking than in the as-received state. The procedure of accelerated degradation of pipeline steels was developed and introduced in laboratory under the combined action of axial loading and hydrogen charging. It proved to be reliable and useful to performed laboratory simulation of in-service degradation of pipeline steels with different strength. The in-laboratory degraded 17H1S and X60 pipeline steels tested in the NS4 solution saturated with CO2 under open circuit potential revealed the susceptibility to stress corrosion cracking reflected in the degradation of mechanical properties and at the same time the degraded X60 steel showed higher resistance to stress corrosion cracking than the degraded 17H1S steel. Fractographic observation confirmed the pipeline steels hydrogen embrittlement caused by the permeated hydrogen.
In the present work the low-carbon pipeline steels with different strength levels from the point of view of their susceptibility to stress corrosion cracking in the as-received state and after in-laboratory accelerated degradation under environmental conditions similar to those of an acidic soil were investigated. The main objectives of this study were to determine whether the development of higher strength materials led to greater susceptibility to stress corrosion cracking and whether degraded pipeline steels became more susceptible to stress corrosion cracking than in the as-received state. The procedure of accelerated degradation of pipeline steels was developed and introduced in laboratory under the combined action of axial loading and hydrogen charging. It proved to be reliable and useful to performed laboratory simulation of in-service degradation of pipeline steels with different strength. The in-laboratory degraded 17H1S and X60 pipeline steels tested in the NS4 solution saturated with CO2 under open circuit potential revealed the susceptibility to stress corrosion cracking reflected in the degradation of mechanical properties and at the same time the degraded X60 steel showed higher resistance to stress corrosion cracking than the degraded 17H1S steel. Fractographic observation confirmed the pipeline steels hydrogen embrittlement caused by the permeated hydrogen.
Technology Roadmaps for Transition Management: The Case of Hydrogen Energy
Oct 2011
Publication
Technology roadmaps are increasingly used by governments to inform and promote technological transitions such as a transition to a hydrogen energy system. This paper develops a framework for understanding how current roadmapping practice relates to emerging theories of the governance of systems innovation. In applying this framework to a case study of hydrogen roadmaps the paper finds that roadmapping for transitions needs to place greater emphasis on ensuring good quality and transparent analytic and participatory procedures. To be most useful roadmaps should be embedded within institutional structures that enable the incorporation of learning and re-evaluation but in practice most transition roadmaps are one-off exercises
Sector Coupling via Hydrogen to Lower the Cost of Energy System Decarbonization
Aug 2021
Publication
There is growing interest in using hydrogen (H2) as a long-duration energy storage resource in a future electric grid dominated by variable renewable energy (VRE) generation. Modeling H2 use exclusively for grid-scale energy storage often referred to as ‘‘power-to-gas-to-power (P2G2P)’’ overlooks the cost-sharing and CO2 emission benefits from using the deployed H2 assets to decarbonize other end-use sectors where direct electrification is challenging. Here we develop a generalized framework for co-optimizing infrastructure investments across the electricity and H2 supply chains accounting for the spatio-temporal variations in energy demand and supply. We apply this sector-coupling framework to the U.S. Northeast under a range of technology cost and carbon price scenarios and find greater value of power-to-H2 (P2G) vs. P2G2P routes. Specifically P2G provides grid flexibility to support VRE integration without the round-trip efficiency penalty and additional cost incurred by P2G2P routes. This form of sector coupling leads to: (a) VRE generation increase by 13–56% and (b) total system cost (and levelized costs of energy) reduction by 7–16% under deep decarbonization scenarios. Both effects increase as H2 demand for other end-uses increases more than doubling for a 97% decarbonization scenario as H2 demand quadruples. We also find that the grid flexibility enabled by sector coupling makes deployment of carbon capture and storage (CCS) for power generation less cost-effective than its use for low-carbon H2 production. These findings highlight the importance of using an integrated energy system framework with multiple energy vectors in planning cost-effective energy system decarbonization
Hydrogen Production in the Light of Sustainability: A Comparative Study on the Hydrogen Production Technologies Using the Sustainability Index Assessment Method
Sep 2021
Publication
Hydrogen as an environmentally friendly energy carrier has received special attention to solving uncertainty about the presence of renewable energy and its dependence on time and weather conditions. This material can be prepared from different sources and in various ways. In previous studies fossil fuels have been used in hydrogen production but due to several limitations especially the limitation of the access to this material in the not-too-distant future and the great problem of greenhouse gas emissions during hydrogen production methods. New methods based on renewable and green energy sources as energy drivers of hydrogen production have been considered. In these methods water or biomass materials are used as the raw material for hydrogen production. In this article after a brief review of different hydrogen production methods concerning the required raw material these methods are examined and ranked from different aspects of economic social environmental and energy and exergy analysis sustainability. In the following the current position of hydrogen production is discussed. Finally according to the introduced methods their advantages and disadvantages solar electrolysis as a method of hydrogen production on a small scale and hydrogen production by thermochemical method on a large scale are introduced as the preferred methods.
Main Hydrogen Production Processes: An Overview
May 2021
Publication
Due to its characteristics hydrogen is considered the energy carrier of the future. Its use as a fuel generates reduced pollution as if burned it almost exclusively produces water vapor. Hydrogen can be produced from numerous sources both of fossil and renewable origin and with as many production processes which can use renewable or non-renewable energy sources. To achieve carbon neutrality the sources must necessarily be renewable and the production processes themselves must use renewable energy sources. In this review article the main characteristics of the most used hydrogen production methods are summarized mainly focusing on renewable feedstocks furthermore a series of relevant articles published in the last year are reviewed. The production methods are grouped according to the type of energy they use; and at the end of each section the strengths and limitations of the processes are highlighted. The conclusions compare the main characteristics of the production processes studied and contextualize their possible use.
Power-to-hydrogen Storage Integrated with Rooftop Photovoltaic Systems and Combined Heat and Power Plants
Jul 2020
Publication
The growing share of intermittent renewable energy sources for power generation indicates an increasing demand for flexibility in the energy system. Energy storage technologies ensure a balance between demand and supply and increase the system flexibility. This study investigates increased application of renewable energy resources at a regional scale. Power-to-gas storage that interacts with a large-scale rooftop photovoltaic system is added to a regional energy system dominated by combined heat and power plants. The study addresses the influence of the storage system on the production planning of the combined heat and power plants and the system flexibility. The system is modeled and the product costs are optimized using the Mixed Integer Linear Programming method as well as considering the effects on CO2 emissions and power import into the regional system. The optimization model is investigated by developing different scenarios for the capacity and cost of the storage system. The results indicate that the proposed storage system increases the system flexibility and can reduce power imports and the marginal emissions by around 53% compared with the current energy system. There is a potential to convert a large amount of excess power to hydrogen and store it in the system. However because of low efficiency a fuel cell cannot significantly contribute to power regeneration from the stored hydrogen. Therefore for about 70% of the year the power is imported to the optimized system to compensate the power shortfalls rather than to use the fuel cell.
Combined Soft Templating with Thermal Exfoliation Toward Synthesis of Porous g-C3N4 Nanosheets for Improved Photocatalytic Hydrogen Evolution
Apr 2021
Publication
Insufficient active sites and fast charge carrier recombination are detrimental to photocatalytic activity of graphitic carbon nitride (g-C3N4). In this work a combination of pore creating with thermal exfoliation was employed to prepare porous g-C3N4 nanosheets for photocatalytic water splitting into hydrogen. Hexadecyl trimethyl ammonium chloride (CTAC) as the soft template promoted the formation of porous g-C3N4 during the thermal condensation of melamine. On further post-synthesis calcination the porous g-C3N4 aggregates were exfoliated into discrete nanosheets accompanied by an increase in specific surface area and defects. Optimal porous g-C3N4 nanosheets achieved 3.6 times the photocatalytic hydrogen evolution rate for bulk counterpart. The enhanced photocatalytic activity may be ascribed to TCN-1%CTAC has larger specific surface area stronger optical absorption intensity and higher photogenerated electron–hole separation efficiency. The external quantum efficiency of TCN-1%CTAC was measured to be 3.4% at 420 nm. This work provides a simple combinatorial strategy for the preparation of porous g-C3N4 nanosheets with low cost environmental friendliness and enhanced photocatalytic activity.
Metal Hydrides for Hydrogen Storage - Identification and Evaluation of Stationary and Transportation Applications
Dec 2023
Publication
Hydrogen is becoming increasingly important to achieve the valid defossilization goals. However due to its physical properties especially the storage of hydrogen is challenging. One option in this regard are metal hy drides which are able to store hydrogen in chemically material-bound form. Against this background the goal of this paper is an analysis of possible technical application areas of such metal hydrides – both regarding transport and stationary application. These various options are assessed for metal hydrides as well as selected competing hydrogen storage options. The investigation shows that metal hydrides with a temperature range below 100 ◦C (e.g. TiFe) are of interest particularly for transportation applications; possible areas of application include rail and marine transportation as well as selected non-road vehicles. For stationary applications metal hydrides can be used on low and high temperature levels. Here metal hydrides with operating temperatures below 100 ◦C are particularly useful for selected small-scale applications (e.g. home storage systems). For applications with me dium storage capacities (100 kWh to 100 MWh) metal hydrides with higher temperature levels are also conceivable (e.g. NaAlH4). For even higher storage demands metal hydrides are less promising.
Techno-economic Analysis of Freight Railway Electrification by Overhead Line, Hydrogen and Batteries: Case Studies in Norway and USA
Aug 2019
Publication
Two non-electrified railway lines one in Norway and the other in the USA are analysed for their potential to be electrified with overhead line equipment batteries hydrogen or hydrogen-battery hybrid powertrains. The energy requirements are established with single-train simulations including the altitude profiles of the lines air and rolling resistances and locomotive tractive-effort curves. The composition of the freight trains in terms of the number of locomotives battery wagons hydrogen wagons etc. is also calculated by the same model. The different technologies are compared by the criteria of equivalent annual costs benefit–cost ratio payback period and up-front investment based on the estimated techno-economic parameters for years 2020 2030 and 2050. The results indicate the potential of batteries and fuel cells to replace diesel on rail lines with low traffic volumes.
The Green Hydrogen Puzzle: Towards a German Policy Framework for Industry
Nov 2021
Publication
Green hydrogen will play a key role in building a climate-neutral energy-intensive industry as key technologies for defossilising the production of steel and basic chemicals depend on it. Thus policy-making needs to support the creation of a market for green hydrogen and its use in industry. However it is unclear how appropriate policies should be designed and a number of challenges need to be addressed. Based on an analysis of the ongoing German debate on hydrogen policies this paper analyses how policy-making for green hydrogen development may support industry defossilisation. For the assessment of policy instruments a simplified multi-criteria analysis (MCA) is used with an innovative approach that derives criteria from specific challenges. Four challenges and seven relevant policy instruments are identified. The results of the MCA reveal the potential of each of the selected instruments to address the challenges. The paper furthermore outlines how instruments might be combined in a policy package that supports industry defossilisation creates synergies and avoids trade-offs. The paper’s impact may reach beyond the German case as the challenges are not specific to the country. The results are relevant for policy-makers in other countries with energy-intensive industries aiming to set the course towards a hydrogen future.
Catalysing Hydrogen Investment: What the Market Needs to Deliver Investment in Hydrogen Infrastructure
Oct 2021
Publication
Written by Arup in collaboration with the GIIA this report is centred on the opinions of investors from around the world gathered through a survey of GIIA members and in-depth interviews. It therefore presents the sentiments of the world’s leading fund managers insurance investors pension funds and a sovereign wealth fund. Their opinions matter because these are the decision makers that hold the purse strings when it comes to private sector investment in hydrogen infrastructure. Many of the facts about hydrogen are well-known to many readers and these are presented in this report drawing on Arup’s research and experience as a global infrastructure advisory firm. However the novelty of this report is that it looks at hydrogen through the uncompromising eyes of investors with analysis of feedback which identifies barriers to investment in the infrastructure required to enable the hydrogen economy. Perhaps most importantly it also proposes interventions that policymakers and regulators could take to overcome the barriers currently faced.<br/>Introduction The sentiments of investors are at the heart of this study with results from the survey presented at the beginning of each section to serve as a launch pad for Arup’s analysis. But we want it to be more than an interesting read; it is a call to action for policy makers to create the right environment to catalyse private sector investment and kickstart the hydrogen economy.
Technical Potential of On-site Wind Powered Hydrogen Producing Refuelling Stations in the Netherlands
Aug 2020
Publication
This study assesses the technical potential of wind turbines to be installed next to existing fuelling stations in order to produce hydrogen. Hydrogen will be used for Fuel Cell Vehicle refuelling and feed-in existing local gas grids. The suitable fuelling stations are selected through a GIS assessment applying buffer zones and taking into account risks associated with wind turbine installation next to built-up areas critical infrastructures and ecological networks. It was found that 4.6% of existing fuelling stations are suitable. Further a hydrogen production potential assessment was made using weather station datasets land cover data and was expressed as potential future Fuel Cell Electric Vehicle demand coverage. It was found that for a 30% FCEV drivetrain scenario these stations can produce 2.3% of this demand. Finally a case study was made for the proximity of those stations in existing gas distribution grids.
Experimental Study and Thermodynamic Analysis of Hydrogen Production through a Two-Step Chemical Regenerative Coal Gasification
Jul 2019
Publication
Hydrogen as a strategy clean fuel is receiving more and more attention recently in China in addition to the policy emphasis on H2. In this work we conceive of a hydrogen production process based on a chemical regenerative coal gasification. Instead of using a lumped coal gasification as is traditional in the H2 production process herein we used a two-step gasification process that included coking and char-steam gasification. The sensible heat of syngas accounted for 15–20% of the total energy of coal and was recovered and converted into chemical energy of syngas through thermochemical reactions. Moreover the air separation unit was eliminated due to the adoption of steam as oxidant. As a result the efficiency of coal to H2 was enhanced from 58.9% in traditional plant to 71.6% in the novel process. Further the energy consumption decreased from 183.8 MJ/kg in the traditional plant to 151.2 MJ/kg in the novel process. The components of syngas H2 and efficiency of gasification are herein investigated through experiments in fixed bed reactors. Thermodynamic performance is presented for both traditional and novel coal to hydrogen plants.
Conversion of the UK Gas System to Transport Hydrogen
May 2013
Publication
One option to decarbonise residential heat in the UK is to convert the existing natural gas networks to deliver hydrogen. We review the technical feasibility of this option using semistructured interviews underpinned by a literature review and we assess the potential economic benefits using the UK MARKAL energy systems model. We conclude that hydrogen can be transported safely in the low-pressure pipes but we identify concerns over the reduced capacity of the system and the much lower linepack storage compared to natural gas. New hydrogen meters and sensors would have to be fitted to every building in a hydrogen conversion program and appliances would have to be converted unless the government was to legislate to make them hydrogen-ready in advance. Converting the gas networks to hydrogen is a lower-cost residential decarbonisation pathway for the UK than those identified previously. The cost-optimal share of hydrogen is sensitive to the conversion cost and to variations in the capital costs of heat pumps and micro-CHP fuel cells. With such small cost differentials between technologies the decision to convert the networks will also depend on non-economic factors including the relative performance of technologies and the willingness of the government to organise a conversion program.
Hydrogen Recovery from Waste Gas Streams to Feed (High-Temperature PEM) Fuel Cells: Environmental Performance under a Life-Cycle Thinking Approach
Oct 2020
Publication
Fossil fuels are being progressively substituted by a cleaner and more environmentally friendly form of energy where hydrogen fuel cells stand out. However the implementation of a competitive hydrogen economy still presents several challenges related to economic costs required infrastructures and environmental performance. In this context the objective of this work is to determine the environmental performance of the recovery of hydrogen from industrial waste gas streams to feed high-temperature proton exchange membrane fuel cells for stationary applications. The life-cycle assessment (LCA) analyzed alternative scenarios with different process configurations considering as functional unit 1 kg of hydrogen produced 1 kWh of energy obtained and 1 kg of inlet flow. The results make the recovery of hydrogen from waste streams environmentally preferable over alternative processes like methane reforming or coal gasification. The production of the fuel cell device resulted in high contributions in the abiotic depletion potential and acidification potential mainly due to the presence of platinum metal in the anode and cathode. The design and operation conditions that defined a more favorable scenario are the availability of a pressurized waste gas stream the use of photovoltaic electricity and the implementation of an energy recovery system for the residual methane stream.
Optimal Design of Stand-alone Solutions Based on RES + Hydrogen Storage Feeding Off-grid Communities
Apr 2021
Publication
Concerning off-grid areas diesel engines still dominate the scene of local electricity generation despite the related pollution concerns and high operating costs. There is thus a huge global potential in remote areas for exploiting local renewable energy sources (RES) in place of fossil generation. Energy storage systems become hence essential for off-grid communities to cope with the issue of RES intermittency allowing them to rely on locally harvested RES. In this work we analysed different typologies of off-grid renewable power systems involving batteries and hydrogen as means to store energy to find out which is the most cost-effective configuration in remote areas. Both Li-ion and lead-acid batteries were included in the analysis and both alkaline and PEM electrolysis technologies were considered for the production of hydrogen. Starting from single cell electrochemical models the performance curves of the electrolyser and fuel cell devices were derived for a more detailed techno-economic assessment. Lifetimes of batteries and H2-based components were also computed based on how the power-to-power (P2P) system operates along the reference year. The particle swarm optimization (PSO) algorithm was employed to find the component sizes that allow minimizing the levelized cost of energy (LCOE) while keeping the off-grid area energy autonomous. As a case study the Ginostra village on the island of Stromboli (North of Sicily Southern Italy) was analysed since it is well representative of small insular locations in the Mediterranean area. The renewable P2P solution (0.51 €/kWh for the cheapest configuration) was found to be economically preferable than the current existing power system relying on diesel generators (0.86 €/kWh). Hydrogen in particular can prevent the oversizing of both battery and PV systems thus reducing the final cost of electricity delivered by the P2P system. Moreover unlike diesel generators the RES-based configuration allows avoiding the production of local air pollutants and GHG emissions during its operation.
Numerical Simulation of Hydrogen Leakage and Diffusion Process of Fuel Cell Vehicle
Oct 2021
Publication
Regarding the problem of hydrogen diffusion of the fuel cell vehicle (HFCV) when its hydrogen supply system leaks this research uses the FLUENT software to simulate numerical values in the process of hydrogen leakage diffusion in both open space and closed space. This paper analyzed the distribution range and concentration distribution characteristics of hydrogen in these two different spaces. Besides this paper also took a survey about the effects of leakage rate wind speed wind direction in open space and the role the air vents play on hydrogen safety in closed space which provides a reference for the hydrogen safety of HFCV. In conclusion the experiment result showed that: In open space hydrogen leakage rate has a great influence on its diffusion. When the leakage rate doubles the hydrogen leakage range will expand about 1.5 times simultaneously. The hydrogen diffusion range is the smallest when the wind blows at 90 degrees which is more conducive to hydrogen diffusion. However when the wind direction is against the direction of the leakage of hydrogen the range of hydrogen distribution is maximal. Under this condition the risk of hydrogen leakage is highest. In an enclosed space when the vent is set closest to the leakage position the volume fraction of hydrogen at each time is smaller than that at other positions so it is more beneficial to safety.
Alternative Energy Technologies as a Cultural Endeavor: A Case Study of Hydrogen and Fuel Cell Development in Germany
Feb 2012
Publication
Background: The wider background to this article is the shift in the energy paradigm from fossil energy sources to renewable sources which should occur in the twenty-first century. This transformation requires the development of alternative energy technologies that enable the deployment of renewable energy sources in transportation heating and electricity. Among others hydrogen and fuel cell technologies have the potential to fulfill this requirement and to contribute to a sustainable and emission-free transport and energy system. However whether they will ever reach broad societal acceptance will not only depend on technical issues alone. The aim of our study is to reveal the importance of nontechnical issues. Therefore the article at hand presents a case study of hydrogen and fuel cells in Germany and aims at highlighting the cultural context that affects their development.<br/>Methods: Our results were obtained from a rich pool of data generated in various research projects through more than 30 in-depth interviews direct observations and document analyses.<br/>Results: We found that individual and collective actors developed five specific supportive practices which they deploy in five diverse arenas of meaning in order to attach certain values to hydrogen and fuel cell technologies.<br/>Conclusions: Based on the results we drew more general conclusions and deducted an overall model for the analysis of culture in technological innovations that is outlined at the end of the article. It constitutes our contribution to the interdisciplinary collaboration required for tackling the shift in this energy paradigm.
A Flammability Limit Model for Hydrogen-air-diluent Mixtures Based on Heat Transfer Characteristics in Flame Propagation
May 2019
Publication
Predicting lower flammability limits (LFL) of hydrogen has become an ever-important task for safety of nuclear industry. While numerous experimental studies have been conducted LFL results applicable for the harsh environment are still lack of information. Our aim is to develop a calculated non-adiabatic flame temperature (CNAFT) model to better predict LFL of hydrogen mixtures in nuclear power plant. The developed model is unique for incorporating radiative heat loss during flame propagation using the CNAFT coefficient derived through previous studies of flame propagation. Our new model is more consistent with the experimental results for various mixtures compared to the previous model which relied on calculated adiabatic flame temperature (CAFT) to predict the LFL without any consideration of heat loss. Limitation of the previous model could be explained clearly based on the CNAFT coefficient magnitude. The prediction accuracy for hydrogen mixtures at elevated initial temperatures and high helium content was improved substantially. The model reliability was confirmed for H2-air mixtures up to 300 C and H2-air-He mixtures up to 50 vol % helium concentration. Therefore the CNAFT model developed based on radiation heat loss is expected as the practical method for predicting LFL in hydrogen risk analysis.
Hydrogen Fuel and Electricity Generation from a New Hybrid Energy System Based on Wind and Solar Energies and Alkaline Fuel Cell
Apr 2021
Publication
Excessive consumption of fossil fuels has led to depletion of reserves and environmental crises. Therefore turning to clean energy sources is essential. However these energy sources are intermittent in nature and have problems meeting long-term energy demand. The option suggested by the researchers is to use hybrid energy systems. The aim of this paper is provide the conceptual configuration of a novel energy cycle based on clean energy resources. The novel energy cycle is composed of a wind turbine solar photovoltaic field (PV) an alkaline fuel cell (AFC) a Stirling engine and an electrolyzer. Solar PV and wind turbine convert solar light energy and wind kinetic energy into electricity respectively. Then the generated electricity is fed to water electrolyzer. The electrolyzer decomposes water into oxygen and hydrogen gases by receiving electrical power. So the fuel cell inlets are provided. Next the AFC converts the chemical energy contained in hydrogen into electricity during electrochemical reactions with by-product (heat). The purpose of the introduced cycle is to generate electricity and hydrogen fuel. The relationships defined for the components of the proposed cycle are novel and is examined for the first time. Results showed that the output of the introduced cycle is 10.5 kW of electricity and its electrical efficiency is 56.9%. In addition the electrolyzer uses 9.9 kW of electricity to produce 221.3 grams per hour of hydrogen fuel. The share of the Stirling engine in the output power of the cycle is 9.85% (1033.7 W) which is obtained from the dissipated heat of the fuel cell. In addition wind turbine is capable of generating an average of 4.1 kW of electricity. However 238.6 kW of cycle exergy is destroyed. Two different scenarios are presented for solar field design.
How to Give a renewed Chance to Natural Gas as Feed for the Production of Hydrogen: Electric MSR Coupled with CO2 Mineralization
Sep 2021
Publication
Recent years have seen a growing interest in water electrolysis as a way to store renewable electric energy into chemical energy through hydrogen production. However today the share of renewable energy is still limited and there is the need to have a continuous use of H2 for industrial chemicals applications. Firstly the paper discusses the use of electrolysis - connected to a conventional grid - for a continuous H2 production in terms of associated CO2 emissions and compares such emissions with conventional methane steam reforming (MSR). Therefore it explores the possibility to use electrical methane steam reforming (eMSR) as a way to reduce the CO2 emissions. As a way to have zero emissions carbon mineralization of CO2 is coupled - instead of in-situ carbon capture and storage technology (CCS) - to eMSR; associated relevant cost of production is evaluated for different scenarios. It appears that to minimize such production cost carbonate minerals must be reused in the making of other industrial products since the amount of carbonates generated by the process is quite significant.
The Membrane-assisted Chemical Looping Reforming Concept for Efficient H2 Production with Inherent CO2 Capture: Experimental Demonstration and Model Validation
Feb 2018
Publication
In this work a novel reactor concept referred to as Membrane-Assisted Chemical Looping Reforming (MA-CLR) has been demonstrated at lab scale under different operating conditions for a total working time of about 100 h. This reactor combines the advantages of Chemical Looping such as CO2 capture and good thermal integration with membrane technology for a better process integration and direct product separation in a single unit which in its turn leads to increased efficiencies and important benefits compared to conventional technologies for H2 production. The effect of different operating conditions (i.e. temperature steam-to-carbon ratio or oxygen feed in the reactor) has been evaluated in a continuous chemical looping reactor and methane conversions above 90% have been measured with (ultra-pure) hydrogen recovery from the membranes. For all the cases a maximum recovery factor of around 30% has been measured which could be increased by operating the concept at higher pressures and with more membranes. The optimum conditions have been found at temperatures around 600°C for a steam-to-carbon ratio of 3 and diluted air in the air reactor (5% O2). The complete demonstration has been carried out feeding up to 1 L/min of CH4 (corresponding to 0.6 kW of thermal input) while up to 1.15 L/min of H2 was recovered. Simultaneously a phenomenological model has been developed and validated with the experimental results. In general good agreement is observed with overall deviations below 10% in terms of methane conversion H2 recovery and separation factor. The model allows better understanding of the behavior of the MA-CLR concept and the optimization and design of scaled-up versions of the concept.
A Flexible Analytical Model for Operational Investigation of Solar Hydrogen Plants
Nov 2021
Publication
Hydrogen will become a dominant energy carrier in the future and the efficiency and lifetime cost of its production through water electrolysis is a major research focus. Alongside efforts to offer optimum solutions through plant design and sizing it is also necessary to develop a flexible virtualised replica of renewable hydrogen plants that not only models compatibility with the “plug-and-play” nature of many facilities but that also identifies key elements for optimisation of system operation. This study presents a model for a renewable hydrogen production plant based on real-time historical and present-day datasets of PV connected to a virtualised grid-connected AC microgrid comprising different technologies of batteries electrolysers and fuel cells. Mathematical models for each technology were developed from chemical and physical metrics of the plant. The virtualised replica is the first step toward the implementation of a digital twin of the system and accurate validation of the system behaviour when updated with real-time data. As a case study a solar hydrogen pilot plant consisting of a 60 kW Solar PV a 40 kW PEM electrolyser a 15 kW LIB battery and a 5 kW PEM fuel cell were simulated and analysed. Two effective operational factors on the plant's performance are defined: (i) electrolyser power settings to determine appropriate hydrogen production over twilight periods and/or overnight and (ii) a user-defined minimum threshold for battery state of charge to prevent charge depletion overnight if the electrolyser load is higher than its capacity. The objective of this modelling is to maximise hydrogen yield while both loss of power supply probability (LPSP) and microgrid excess power are minimised. This analysis determined: (i) a hydrogen yield of 38e39% from solar DC energy to hydrogen energy produced (ii) an LPSP <2.6 104 and (iii) < 2% renewable energy lost to the grid as excess electricity for the case study.
A Chicken and Egg Situation: Enhancing Emergency Service Workers' Knowledge of Hydrogen
Sep 2021
Publication
This paper reports on the results of interviews conducted with 21 representatives from emergency services organisations within Australia and New Zealand. With a relative emergent industry such as future fuels a chicken and egg situation does emerge with regards to how much training needs to be in place in advance of large-scale industry development or not. These respondents were employed in a variety of roles being directly involved in research and training of emerging technologies frontline operational managers and other senior roles across the emergency services sector. Participants' responses to a series of questions were able to provide insights into the state of knowledge and training requirements within their organisations in relation to hydrogen and other future fuels. The findings suggest that formal and informal processes currently exist to support the knowledge development and transferal around the adoption of hydrogen and other future fuels. From the interviews it became clear that there are a number of processes that have emerged from the experiences gained through the implementation of rooftop solar PV and battery storage that provide some background context for advancing future fuels information across the sector. Because safety is a critical component for securing a social licence to operate engagement and knowledge sharing with any representatives from across this sector will only help to build confidence in the industry. Similarly because interviewees were very keen to access information they expressed a clear willingness to learn more through more formalised relationships rather than an ad hoc information seeking that has been employed to date. The presentation will identify key recommendations and also highlight the importance of QR Codes in the emergency responder landscape. Implications for industry and policy makers are discussed.
Production Costs for Synthetic Methane in 2030 and 2050 of an Optimized Power-to-Gas Plant with Intermediate Hydrogen Storage
Aug 2019
Publication
The publication gives an overview of the production costs of synthetic methane in a Power-to-Gas process. The production costs depend in particularly on the electricity price and the full load hours of the plant sub-systems electrolysis and methanation. The full-load hours of electrolysis are given by the electricity supply concept. In order to increase the full-load hours of methanation the size of the intermediate hydrogen storage tank and the size of the methanation are optimised on the basis of the availability of hydrogen. The calculation of the production costs for synthetic methane are done with economics for 2030 and 2050 and the expenditures are calculated for one year of operation. The sources of volume of purchased electricity are the short-term market long-term contracts direct-coupled renewable energy sources or seasonal use of surpluses. Gas sales are either traded on the short-term market or guaranteed by long-term contracts. The calculations show that an intermediate storage tank for hydrogen adjustment of the methanation size and operating electrolysis and methanation separately increase the workload of the sub-system methanation. The gas production costs can be significantly reduced. With the future expected development of capital expenditures operational expenditure electricity prices gas costs and efficiencies an economic production of synthetic natural gas for the years 2030 especially for 2050 is feasible. The results show that Power-to-Gas is an option for long-term large-scale seasonal storage of renewable energy. Especially the cases with high operating hours for the sub-system methanation and low electricity prices show gas production costs below the expected market prices for synthetic gas and biogas.
Few-atom Cluster Model Systems for a Hydrogen Economy
Apr 2020
Publication
To increase the share of renewable zero-emission energy sources such as wind and solar power in our energy supply the problem of their intermittency needs to be addressed. One way to do so is by buffering excess renewable energy via the production of hydrogen which can be stored for later use after re-electrification. Such a clean renewable energy cycle based on hydrogen is commonly referred to as the hydrogen economy. This review deals with cluster model systems of the three main components of the hydrogen economy i.e. hydrogen generation hydrogen storage and hydrogen re-electrification and their basic physical principles. We then present examples of contemporary research on few atom clusters both in the gas phase and deposited to show that by studying these clusters as simplified models a mechanistic understanding of the underlying physical and chemical processes can be obtained. Such an understanding will inspire and enable the design of novel materials needed for advancing the hydrogen economy.
The Use of Strontium Ferrite in Chemical Looping Systems
May 2020
Publication
This work reports a detailed chemical looping investigation of strontium ferrite (SrFeO3−δ) a material with the perovskite structure type able to donate oxygen and stay in a nonstoichiometric form over a broad range of oxygen partial pressures starting at temperatures as low as 250°C (reduction in CO measured in TGA). SrFeO3−δ is an economically attractive simple but remarkably stable material that can withstand repeated phase transitions during redox cycling. Mechanical mixing and calcination of iron oxide and strontium carbonate was evaluated as an effective way to obtain pure SrFeO3−δ. In–situ XRD was performed to analyse structure transformations during reduction and reoxidation. Our work reports that much deeper reduction from SrFeO3−δ to SrO and Fe is reversible and results in oxygen release at a chemical potential suitable for hydrogen production. Thermogravimetric experiments with different gas compositions were applied to characterize the material and evaluate its available oxygen capacity. In both TGA and in-situ XRD experiments the material was reduced below δ=0.5 followed by reoxidation either with CO2 or air to study phase segregation and reversibility of crystal structure transitions. As revealed by in-situ XRD even deeply reduced material regenerates at 900°C to SrFeO3−δ with a cubic structure. To investigate the catalytic behaviour of SrFeO3−δ in methane combustion experiments were performed in a fluidized bed rig. These showed SrFeO3−δ donates O2 into the gas phase but also assists with CH4 combustion by supplying lattice oxygen. To test the material for combustion and hydrogen production long cycling experiments in a fluidized bed rig were also performed. SrFeO3−δ showed stability over 30 redox cycles both in experiments with a 2-step oxidation performed in CO2 followed by air as well as a single step oxidation in CO2 alone. Finally the influence of CO/CO2 mixtures on material performance was tested; a fast and deep reduction in elevated pCO2 makes the material susceptible to carbonation but the process can be reversed by increasing the temperature or lowering pCO2.
Alkaline Water Electrolysis Powered by Renewable Energy: A Review
Feb 2020
Publication
Alkaline water electrolysis is a key technology for large-scale hydrogen production powered by renewable energy. As conventional electrolyzers are designed for operation at fixed process conditions the implementation of fluctuating and highly intermittent renewable energy is challenging. This contribution shows the recent state of system descriptions for alkaline water electrolysis and renewable energies such as solar and wind power. Each component of a hydrogen energy system needs to be optimized to increase the operation time and system efficiency. Only in this way can hydrogen produced by electrolysis processes be competitive with the conventional path based on fossil energy sources. Conventional alkaline water electrolyzers show a limited part-load range due to an increased gas impurity at low power availability. As explosive mixtures of hydrogen and oxygen must be prevented a safety shutdown is performed when reaching specific gas contamination. Furthermore the cell voltage should be optimized to maintain a high efficiency. While photovoltaic panels can be directly coupled to alkaline water electrolyzers wind turbines require suitable converters with additional losses. By combining alkaline water electrolysis with hydrogen storage tanks and fuel cells power grid stabilization can be performed. As a consequence the conventional spinning reserve can be reduced which additionally lowers the carbon dioxide emissions.
Power-to-gas in Electricity Markets Dominated by Renewables
Oct 2018
Publication
This paper analyses the feasibility of power-to-gas in electricity markets dominated by renewables. The business case of a power-to-gas plant that is producing hydrogen is evaluated by determining the willingness to pay for electricity and by comparing this to the level and volatility of electricity prices in a number of European day-ahead markets. The short-term willingness to pay for electricity depends on the marginal costs and revenues of the plant while the long-term willingness to pay for electricity also takes into account investment and yearly fixed operational costs and therefore depends on the expected number of operating hours. The latter ultimately determines whether or not large-scale investments in the power-to-gas technology will take place.<br/>We find that power-to-gas plants are not profitable under current market conditions: even under the most optimistic assumptions for the cost and revenue parameters power-to-gas plants need to run for many hours during the year at very low prices (i.e. the long-term willingness to pay for electricity is very low) that do not currently exist in Europe. In an optimistic future scenario regarding investment costs efficiency and revenues of power-to-gas however the long-term willingness to pay for electricity is higher than the lowest recently observed day-ahead electricity prices. When prices remain at this low level investments in power-to-gas can thus become profitable.
Hydrogen Production in Methane Decomposition Reactor Using Solar Thermal Energy
Nov 2021
Publication
This study investigates the decomposition of methane using solar thermal energy as a heat source. Instead of the direct thermal decomposition of the methane at a temperature of 1200 ◦C or higher a catalyst coated with carbon black on a metal foam was used to lower the temperature and activation energy required for the reaction and to increase the yield. To supply solar heat during the reaction a reactor suitable for a solar concentrating system was developed. In this process a direct heating type reactor with quartz was initially applied and a number of problems were identified. An indirect heating type reactor with an insulated cavity and a rotating part was subsequently developed followed by a thermal barrier coating application. Methane decomposition experiments were conducted in a 40 kW solar furnace at the Korea Institute of Energy Research. Conversion rates of 96.7% and 82.6% were achieved when the methane flow rate was 20 L/min and 40 L/min respectively.
Safety Planning and Management in EU Hydrogen and Fuel Cells Projects - Guidance Document
Sep 2021
Publication
The document provides information on safety planning implementation and reporting for projects involving hydrogen and/or fuel cell technologies. It does not intend to replace or contradict existing regulations which prevail under all circumstances. Neither is it meant to conflict with relevant international or national standards or to replace existing company safety policies codes and procedures. Instead this guidance document aims to assist projects and project partners in identifying hazards and associated risks in prevention and/or mitigation of them through a proper safety plan in implementing the safety plan and reporting safety related events. This shall help in safely delivering the project and ultimately producing inherently safer systems processes and infrastructure.
Improving Carbon Efficiency and Profitability of the Biomass to Liquid Process with Hydrogen from Renewable Power
Aug 2018
Publication
A process where power and biomass are converted to Fischer-Tropsch liquid fuels (PBtL) is compared to a conventional Biomass-to-Liquid (BtL) process concept. Based on detailed process models it is demonstrated that the carbon efficiency of a conventional Biomass to Liquid process can be increased from 38 to more than 90% by adding hydrogen from renewable energy sources. This means that the amount of fuel can be increased by a factor of 2.4 with the same amount of biomass. Electrical power is applied to split water/steam at high temperature over solid oxide electrolysis cells (SOEC). This technology is selected because part of the required energy can be replaced by available heat. The required electrical power for the extra production is estimated to be 11.6 kWh per liter syncrude (C ) 5+ . By operating the SOEC iso-thermally close to 850 °C the electric energy may be reduced to 9.5 kWh per liter which is close to the energy density of jet fuel. A techno-economic analysis is performed where the total investments and operating costs are compared for the BtL and PBtL. With an electrical power price of 0.05 $/kWh and with SOEC investment cost of the 1000 $/kW(el) the levelized cost of producing advanced biofuel with the PBtL concept is 1.7 $/liter which is approximately 30% lower than for the conventional BtL. Converting excess renewable electric power to advanced biofuel in a PBtL plant is a sensible way of storing energy as a fuel with a relatively high energy density.
Seasonal Storage and Alternative Carriers: A Flexible Hydrogen Supply Chain Model
May 2017
Publication
A viable hydrogen infrastructure is one of the main challenges for fuel cells in mobile applications. Several studies have investigated the most cost-efficient hydrogen supply chain structure with a focus on hydrogen transportation. However supply chain models based on hydrogen produced by electrolysis require additional seasonal hydrogen storage capacity to close the gap between fluctuation in renewable generation from surplus electricity and fuelling station demand. To address this issue we developed a model that draws on and extends approaches in the literature with respect to long-term storage. Thus we analyse Liquid Organic Hydrogen Carriers (LOHC) and show their potential impact on future hydrogen mobility. We demonstrate that LOHC-based pathways are highly promising especially for smaller-scale hydrogen demand and if storage in salt caverns remains uncompetitive but emit more greenhouse gases (GHG) than other gaseous or hydrogen ones. Liquid hydrogen as a seasonal storage medium offers no advantage compared to LOHC or cavern storage since lower electricity prices for flexible operation cannot balance the investment costs of liquefaction plants. A well-to-wheel analysis indicates that all investigated pathways have less than 30% GHG-emissions compared to conventional fossil fuel pathways within a European framework.
The Role of Hydrogen in Achieving Long Term Japanese Energy System Goals
Sep 2020
Publication
This research qualitatively reviews literature regarding energy system modeling in Japan specific to the future hydrogen economy leveraging quantitative model outcomes to establish the potential future deployment of hydrogen in Japan. The analysis focuses on the four key sectors of storage supplementing the gas grid power generation and transportation detailing the potential range of hydrogen technologies which are expected to penetrate Japanese energy markets up to 2050 and beyond. Alongside key model outcomes the appropriate policy settings governance and market mechanisms are described which underpin the potential hydrogen economy future for Japan. We find that transportation gas grid supplementation and storage end-uses may emerge in significant quantities due to policies which encourage ambitious implementation targets investment in technologies and research and development and the emergence of a future carbon pricing regime. On the other hand for Japan which will initially be dependent on imported hydrogen the cost of imports appears critical to the emergence of broad hydrogen usage particularly in the power generation sector. Further the consideration of demographics in Japan recognizing the aging shrinking population and peoples’ energy use preferences will likely be instrumental in realizing a smooth transition toward a hydrogen economy.
Demand Side Management Based Power-to-Heat and Power-to-Gas Optimization Strategies for PV and Wind Self-Consumption in a Residential Building Cluster
Oct 2021
Publication
The volatility of renewable energy sources (RES) poses a growing problem for operation of electricity grids. In contrary the necessary decarbonisation of sectors such as heat supply and transport requires a rapid expansion of RES. Load management in the context of power-to-heat systems can help to simultaneously couple the electricity and heat sectors and stabilise the electricity grid thus enabling a higher share of RES. In addition power-to-hydrogen offers the possibility of long-term energy storage options. Within this work we present a novel optimization approach for heat pump operation with the aim to counteract the volatility and enable a higher usage of RES. For this purpose a detailed simulation model of buildings and their energy supply systems is created calibrated and validated based on a plus energy settlement. Subsequently the potential of optimized operation is determined with regard to PV and small wind turbine self-consumption. In addition the potential of seasonal hydrogen storage is examined. The results show that on a daily basis a 33% reduction of electricity demand from grid is possible. However the average optimization potential is reduced significantly by prediction inaccuracy. The addition of a hydrogen system for seasonal energy storage basically eliminates the carbon dioxide emissions of the cluster. However this comes at high carbon dioxide prevention costs of 1.76 e kg−1 .
Hydrogen Energy: a New Dimension for the Energy Cooperation in the Northeast Asian Region
Nov 2020
Publication
The Northeast Asian Region is a home for the major world’s energy importers and Russia – the top energy exporter. Due to the depletion of national fossil energy resources the industrialised East Asian economies are facing serious energy security issues. The snapshot of the intraregional energy trade in 2019 was analysed in terms of development potential. Japan Korea and China are at the frontline of hydrogen energy technologies commercialisation and hydrogen energy infrastructure development. The drivers for such endeavours are listed and national institutions for hydrogen energy development are characterised. The priorities related to regional cooperation on hydrogen energy in Northeast Asia were derived on the basis of hydrogen production cost estimations. These priorities include steady development of international natural gas and power infrastructure. The shared process will lead to the synergy of regional fossil and renewable resources within combined power and hydrogen infrastructure.
Electrification and Sustainable Fuels: Competing for Wind and Sun (complement to the Policy brief)
May 2021
Publication
This study seeks to answer a simple question: will we have enough renewable electricity to meet all of the EU's decarbonisation objectives and if not what should be the priorities and how to address the remaining needs for energy towards carbon neutrality? Indeed if not the policy push for green hydrogen would not be covered by enough green electricity to match the “energy efficiency and electrification first” approach outlined in the system integration communication and a prioritization of green electricity uses complemented by other solutions (import of green electricity or sustainable fuels CCS...) would be advisable [1]. On one hand we show that the principle “Energy efficiency and electrification first” results in an electricity demand which will be very difficult to satisfy domestically with renewable energy. On the other hand green hydrogen and other sustainable fuels will be needed for a carbon neutral industry for the replacement of the fuel for aviation and navigation and as strategic green energy reserves. The detailed modelling of these interactions is challenging given the large uncertainties on technology and infrastructure development. Therefore we offer a “15 minutes” decarbonization scenario based on general and transparent technical considerations and very straightforward “back-of-envelope” calculations. This working paper contains the calculations and assumptions in support of the accompanying policy brief with the same title which focuses instead on the main take-aways.
Comparative Analysis of Energy and Exergy Performance of Hydrogen Production Methods
Nov 2020
Publication
The study of the viability of hydrogen production as a sustainable energy source is a current challenge to satisfy the great world energy demand. There are several techniques to produce hydrogen either mature or under development. The election of the hydrogen production method will have a high impact on practical sustainability of the hydrogen economy. An important profile for the viability of a process is the calculation of energy and exergy efficiencies as well as their overall integration into the circular economy. To carry out theoretical energy and exergy analyses we have estimated proposed hydrogen production using different software (DWSIM and MATLAB) and reference conditions. The analysis consolidates methane reforming or auto-thermal reforming as the viable technologies at the present state of the art with reasonable energy and exergy efficiencies but pending on the impact of environmental constraints as CO2 emission countermeasures. However natural gas or electrolysis show very promising results and should be advanced in their technological and maturity scaling. Electrolysis shows a very good exergy efficiency due to the fact that electricity itself is a high exergy source. Pyrolysis exergy loses are mostly in the form of solid carbon material which has a very high integration potential into the hydrogen economy.
Multi-Criteria Comparative Analysis of Clean Hydrogen Production Scenarios
Aug 2020
Publication
Different hydrogen production scenarios need to be compared in regard to multiple and often distinct aspects. It is well known that hydrogen production technologies based on environmentally-friendly renewable energy sources have higher values of the economic indicators than methods based on fossil fuels. Therefore how should this decision criterion (environmental) prevail over the other types of decision criteria (technical and economic) to make a scenario where hydrogen production only uses renewable energy sources the most attractive option for a decision-maker? This article presents the results of a multi-variant comparative analysis of scenarios to annually produce one million tons of pure hydrogen (99.999%) via electrolysis in Poland. The compared variants were found to differ in terms of electricity sources feeding the electrolyzers. The research demonstrated that the scenario where hydrogen production uses energy from photovoltaics only becomes the best option for the environmental criterion weighting value at 61%. Taking the aging effect of photovoltaic installation (PV) panels and electrolyzers after 10 years of operation into account the limit value of the environmental criterion rises to 63%. The carried out analyses may serve as the basis for the creation of systems supporting the development of clean and green hydrogen production technologies.
Recent Combustion Strategies in Gas Turbines for Propulsion and Power Generation toward a Zero-Emissions Future: Fuels, Burners, and Combustion Techniques
Oct 2021
Publication
The effects of climate change and global warming are arising a new awareness on the impact of our daily life. Power generation for transportation and mobility as well as in industry is the main responsible for the greenhouse gas emissions. Indeed currently 80% of the energy is still produced by combustion of fossil fuels; thus great efforts need to be spent to make combustion greener and safer than in the past. For this reason a review of the most recent gas turbines combustion strategy with a focus on fuels combustion techniques and burners is presented here. A new generation of fuels for gas turbines are currently under investigation by the academic community with a specific concern about production and storage. Among them biofuels represent a trustworthy and valuable solution in the next decades during the transition to zero carbon fuels (e.g. hydrogen and ammonia). Promising combustion techniques explored in the past and then abandoned due to their technological complexity are now receiving renewed attention (e.g. MILD PVC) thanks to their effectiveness in improving the efficiency and reducing emissions of standard gas turbine cycles. Finally many advances are illustrated in terms of new burners developed for both aviation and power generation. This overview points out promising solutions for the next generation combustion and opens the way to a fast transition toward zero emissions power generation.
Study of the Permeation Flowrate of an Innovative Way to Store Hydrogen in Vehicles
Oct 2021
Publication
With the global warming of the planet new forms of energy are being sought as an alternative to fossil fuels. Currently hydrogen (H2) is seen as a strong alternative for fueling vehicles. However the major challenge in the use of H2 arises from its physical properties. An earlier study was conducted on the storage of H2 used as fuel in road vehicles powered by spark ignition engines or stacks of fuel cells stored under high pressure inside small spheres randomly packed in an envelope tank. Additionally the study evaluated the performance of this new storage system and compared it with other storage systems already applied by automakers in their vehicles. The current study aims to evaluate the H2 leaks from the same storage system when inserted in any road vehicle parked in conventional garages and to show the compliance of these leaks with European Standards provided that an appropriate choice of materials is made. The system’s compliance with safety standards was proved. Regarding the materials of each component of the storage system the best option from the pool of materials chosen consists of aluminum for the liner of the spheres and the envelope tank CFEP for the structural layer of the spheres and Si for the microchip.
Ultra-clean Hydrogen Production by Ammonia Decomposition
Jan 2016
Publication
A rigorous heterogeneous mathematical model is used to simulate a cascade of multi-stage fixed bed membrane reactors (MSFBMR) with inter-stage heating and fresh sweep gas for the decomposition of ammonia to produce high purity hydrogen suitable for the PEM fuel cells. Different reactor configurations are compared. The comparison between a single fixed bed reactor (FBR) and a single fixed bed membrane reactor (FBMR) shows that the FBMR is superior to the FBR and gives 60.48% ammonia conversion higher than the FBR. However 20.91% exit ammonia conversion obtained by the FBMR is considered to be poor. The FBMR is limited by the kinetics at low temperatures. The numerical results show that the MSFBMR of four beds achieve 100.0% ammonia conversion. It was found that the membrane plays the prime role in the displacement of the thermodynamic equilibrium. The results also show that a linear relationship exists between the number of beds and the feed temperature and a correlation has been developed. A critical point for an effective hydrogen permeation zone has been identified. It is observed that the diffusion limitation is confined to a slim region at the entrance of the reactor. It is also observed that the heat load assumes a maximum inflection point and explanations offered. The results show that the multi-stage configuration has a promising potential to be applied successfully on-site for ultra-clean hydrogen production.
Varying Load Distribution Impacts on the Operation of a Hydrogen Generator Plant
Oct 2021
Publication
This study advances several methods to evaluate the operation of a hydrogen generator plant. The model developed helps customize plants that contain multiple generators of varying powers using a decision module which determines the most efficient plant load distribution. Evaluation indices to assess individual devices within the plant are proposed and system flexibility maximizes the amount of renewable energy stored. Three case studies examined the variable load distribution of an electrolysis system connected to a 40 MW wind farm for energy storage purposes and incorporated a “night-valley” operational strategy. These methods facilitate the selection of the proper plant configuration and provide estimates for individual device effectiveness within the system.
Steady State Analysis of Gas Networks with Distributed Injection of Alternative Gas
Jun 2015
Publication
A steady state analysis method was developed for gas networks with distributed injection of alternative gas. A low pressure gas network was used to validate the method. Case studies were carried out with centralized and decentralized injection of hydrogen and upgraded biogas. Results show the impact of utilizing a diversity of gas supply sources on pressure distribution and gas quality in the network. It is shown that appropriate management of using a diversity of gas supply sources can support network management while reducing carbon emissions.
A Mini-review on Recent Trends in Prospective Use of Porous 1D Nanomaterials for Hydrogen Storage
Nov 2021
Publication
The sustainable development of hydrogen energy is a priority task for a possible solution to 26 the global energy crisis. Hydrogen is a clean and renewable energy source that today is used 27 exclusively in the form of compressed gas or in liquefied form which prevents its widespread 28 use. Storing hydrogen in solid-state systems will not only increase the bulk density and 29 gravimetric capacity but will also have a positive impact on safety issues. From this point of 30 view the current review considers the latest research in the field of application of 1D 31 nanomaterials for solid-state hydrogen storage and also discusses the mechanisms of its 32 adsorption and desorption. Despite the high publication activity the use of 1D nanomaterials for 33 hydrogen storage has not been fully studied. In the current review modern developments in the 34 field of hydrogen storage using 1D nanomaterials and composites based on them are investigated 35 in detail and their problems and future prospects are discussed.
Combustion Characteristics of Diesel-hydrogen Dual Fuel Engine at Low Load
May 2013
Publication
In the present study hydrogen utilization as diesel engine fuel at low load operation was investigated. Hydrogen cannot be used directly in a diesel engine due to its auto ignition temperature higher than that of diesel fuel. One alternative method is to use hydrogen in enrichment or induction. To investigate the combustion characteristics of this dual fuel engine a single cylinder diesel research engine was converted to utilize hydrogen as fuel. Hydrogen was introduced to the intake manifold using a mixer before entering the combustion chamber. The engine was run at a constant speed of 2000 rpm and 10 Nm load. Hydrogen was introduced at the flow rate of 21.4 36.2 and 49.6 liter/minute. Specific energy consumption indicated efficiency and cylinder pressure were investigated. At this low load the hydrogen enrichment reduced the cylinder peak pressure and the engine efficiency. The reaction progress variable and combustion rate of reaction were slower as shown by the CFD calculation.
Development of Renewable Energy Multi-energy Complementary Hydrogen Energy System (A Case Study in China): A Review
Aug 2020
Publication
The hydrogen energy system based on the multi-energy complementary of renewable energy can improve the consumption of renewable energy reduce the adverse impact on the power grid system and has the characteristics of green low carbon sustainable etc. which is currently a global research hotspot. Based on the basic principles of hydrogen production technology this paper introduces the current hydrogen energy system topology and summarizes the technical advantages of renewable energy complementary hydrogen production and the complementary system energy coordination forms. The problems that have been solved or reached consensus are summarized and the current status of hydrogen energy system research at home and abroad is introduced in detail. On this basis the key technologies of multi-energy complementation of hydrogen energy system are elaborated especially in-depth research and discussion on coordinated control strategies energy storage and capacity allocation energy management and electrolysis water hydrogen production technology. The development trend of the multi-energy complementary system and the hydrogen energy industry chain is also presented which provides a reference for the development of hydrogen production technology and hydrogen energy utilization of the renewable energy complementary system.
Hydrogen as an Energy Vector to Optimize the Energy Exploitation of a Self-consumption Solar Photovoltaic Facility in a Dwelling House
Nov 2019
Publication
Solar photovoltaic (PV) plants coupled with storage for domestic self-consumption purposes seem to be a promising technology in the next years as PV costs have decreased significantly and national regulations in many countries promote their installation in order to relax the energy requirements of power distribution grids. However electrochemical storage systems are still unaffordable for many domestic users and thus the advantages of self-consumption PV systems are reduced. Thus in this work the adoption of hydrogen systems as energy vectors between a PV plant and the energy user is proposed. As a preliminary study in this work the design of a PV and hydrogen-production self-consumption plant for a single dwelling is described. Then a technical and economic feasibility study conducted by modeling the facility within the Homer Energy Pro energy systems analysis tool is reported. The proposed system will be able to provide back not only electrical energy but also thermal energy through a fuel cell or refined water covering the fundamental needs of the householders (electricity heat or cooling and water). Results show that although the proposed system effectively increases the energy local use of the PV production and reduces significantly the energy injections or demands into/from the power grid avoiding power grid congestions and increasing the nano-grid resilience operation and maintenance costs may reduce its economic attractiveness for a single dwelling.
Development of a Hydrogen Supplement for use with IGEM/SR/25
Jun 2022
Publication
In response to the UK Government’s commitment to achieve net-zero carbon emissions by 2050 a range of research and demonstration projects are underway to investigate the feasibility of using hydrogen in place of natural gas within the national transmission and distribution system. In order for these projects to achieve their full scope of work a mechanism for performing hazardous area classification for hydrogen installations is required. At present IGEM/SR/25 is used to undertake such assessments for natural gas installations but the standard is not currently applicable to hydrogen or hydrogen/natural gas blends.<br/>This report presents updated data and a summary of the recommended methodologies for hazardous area classification of installations using hydrogen or blends of up to 20% hydrogen in natural gas. The contents of this report are intended to provide a technical commentary and the data for a hydrogen-specific supplement to IGEM/SR/25. The supplement will specifically cover 100% hydrogen and a 20/80% by volume blend of hydrogen/natural gas. Reference to intermediate blends is included in this report where appropriate to cover the anticipated step-wise introduction of hydrogen into the natural gas network.<br/>This report is divided into a series of appendices each of which covers a specific area of the IGEM standard. Each appendix includes a summary of specific recommendations made to enable IGEM/SR/25 to be applied to hydrogen and blends of up to 20% hydrogen in natural gas. The reader is encouraged to review the individual appendices for specific conclusions associated with the topic areas addressed in this report.<br/>In general the existing methodologies and approaches used for area classification in IGEM/SR/25 have been deemed appropriate for installations using either hydrogen or blends of up to 20% hydrogen in natural gas. Where necessary revised versions of the equations and zoning distances used in the standard are presented which account for the influence of material property differences between natural gas and the two alternative fuels considered in this work.
The Implications of Ambitious Decarbonisation of Heat and Road Transport for Britain’s Net Zero Carbon Energy Systems
Oct 2021
Publication
Decarbonisation of heating and road transport are regarded as necessary but very challenging steps on the pathway to net zero carbon emissions. Assessing the most efficient routes to decarbonise these sectors requires an integrated view of energy and road transport systems. Here we describe how a national gas and electricity transmission network model was extended to represent multiple local energy systems and coupled with a national energy demand and road transport model. The integrated models were applied to assess a range of technologies and policies for heating and transport where the UK’s 2050 net zero carbon emissions target is met. Overall annual primary energy use is projected to reduce by between 25% and 50% by 2050 compared to 2015 due to ambitious efficiency improvements within homes and vehicles. However both annual and peak electricity demands in 2050 are more than double compared with 2015. Managed electric vehicle charging could save 14TWh/year in gas-fired power generation at peak times and associated emissions whilst vehicle-to-grid services could provide 10GW of electricity supply during peak hours. Together managed vehicle charging and vehicle-to-grid supplies could result in a 16% reduction in total annual energy costs. The provision of fast public charging facilities could reduce peak electricity demand by 17GW and save an estimated £650 million annually. Although using hydrogen for heating and transport spreads the hydrogen network costs between homeowners and motorists it is still estimated to be more costly overall compared to an all-electric scenario. Bio-energy electricity generation plants with carbon capture and storage are required to drive overall energy system emissions to net zero utilisation of which is lowest when heating is electrified and road transport consists of a mix of electric and hydrogen fuel-cell vehicles. The analysis demonstrates the need for an integrated systems approach to energy and transport policies and for coordination between national and local governments.
Intermetallic Compounds Synthesized by Mechanical Alloying for Solid-State Hydrogen Storage: A Review
Sep 2021
Publication
Hydrogen energy is a very attractive option in dealing with the existing energy crisis. For the development of a hydrogen energy economy hydrogen storage technology must be improved to over the storage limitations. Compared with traditional hydrogen storage technology the prospect of hydrogen storage materials is broader. Among all types of hydrogen storage materials solid hydrogen storage materials are most promising and have the most safety security. Solid hydrogen storage materials include high surface area physical adsorption materials and interstitial and non-interstitial hydrides. Among them interstitial hydrides also called intermetallic hydrides are hydrides formed by transition metals or their alloys. The main alloy types are A2B AB AB2 AB3 A2B7 AB5 and BCC. A is a hydride that easily forms metal (such as Ti V Zr and Y) while B is a non-hydride forming metal (such as Cr Mn and Fe). The development of intermetallic compounds as hydrogen storage materials is very attractive because their volumetric capacity is much higher (80–160 kgH2m−3 ) than the gaseous storage method and the liquid storage method in a cryogenic tank (40 and 71 kgH2m−3 ). Additionally for hydrogen absorption and desorption reactions the environmental requirements are lower than that of physical adsorption materials (ultra-low temperature) and the simplicity of the procedure is higher than that of non-interstitial hydrogen storage materials (multiple steps and a complex catalyst). In addition there are abundant raw materials and diverse ingredients. For the synthesis and optimization of intermetallic compounds in addition to traditional melting methods mechanical alloying is a very important synthesis method which has a unique synthesis mechanism and advantages. This review focuses on the application of mechanical alloying methods in the field of solid hydrogen storage materials.
A Review of Hydrogen Direct Injection for Internal Combustion Engines: Towards Carbon-Free Combustion
Nov 2018
Publication
A paradigm shift towards the utilization of carbon-neutral and low emission fuels is necessary in the internal combustion engine industry to fulfil the carbon emission goals and future legislation requirements in many countries. Hydrogen as an energy carrier and main fuel is a promising option due to its carbon-free content wide flammability limits and fast flame speeds. For spark-ignited internal combustion engines utilizing hydrogen direct injection has been proven to achieve high engine power output and efficiency with low emissions. This review provides an overview of the current development and understanding of hydrogen use in internal combustion engines that are usually spark ignited under various engine operation modes and strategies. This paper then proceeds to outline the gaps in current knowledge along with better potential strategies and technologies that could be adopted for hydrogen direct injection in the context of compression-ignition engine applications—topics that have not yet been extensively explored to date with hydrogen but have shown advantages with compressed natural gas.
Analysis of Standard and Innovative Methods for Allocating Upstream and Refinery GHG Emissions to Oil Products
Sep 2017
Publication
Alternative fuel policies need accurate and transparent methods to find the embedded carbon intensity of individual refinery products. This study investigates different ways of allocating greenhouse gases emissions deriving from refining and upstream crude oil supply. Allocation methods based on mass energy content economic value and innovatively added-value are compared with the marginal refining emissions calculated by CONCAWE’s linear-programming model to the average EU refinery which has been adopted as reference in EU legislation. Beside the most important transportation fuels (gasoline diesel kerosene/jet fuel and heavy fuel oil) the analysis extends to petroleum coke and refinery hydrogen. Moreover novel criteria based on the implications due to hydrogen usage by each fuel pathway have been introduced to test the consistency of the analyzed approaches. It is found that only two economic-based allocation methods are consistent with the introduced criteria. These two methods also give negative refinery emissions for heavy products which is coherent with the marginal emissions calculated through the CONCAWE refinery model. The recommended allocation methods are transparent and use only publicly available statistical data so they may be useful not only for future EU legislation but also in jurisdictions where a representative refinery model is not available.
Experimental Investigation of the Effect of Hydrogen Addition on Combustion Performance and Emissions Characteristics of a Spark Ignition High Speed Gasoline Engine
Sep 2014
Publication
Considering energy crises and pollution problems today much work has been done for alternative fuels for fossil fuels and lowering the toxic components in the combustion products. Expert studies proved that hydrogen one of the prominent alternative energy source which has many excellent combustion properties that can be used for improving combustion and emissions performance of gasoline-fuelled spark ignition (SI) engines. This article experimentally investigated the performance and emission characteristics of a high speed single cylinder SI engine operating with different hydrogen gasoline blends. For this purpose the conventional carburetted high speed SI engine was modified into an electronically controllable engine with help of electronic control unit (ECU) which dedicatedly used to control the injection timings and injection durations of gasoline. Various hydrogen enrichment levels were selected to investigate the effect of hydrogen addition on engine brake mean effective pressure (Bmep) brake thermal efficiency volumetric efficiency and emission characteristics. The test results demonstrated that combustion performances fuel consumption and brake mean effective pressure were eased with hydrogen enrichment. The experimental results also showed that the brake thermal efficiency was higher than that for the pure gasoline operation. Moreover HC and CO emissions were all reduced after hydrogen enrichment.
Power-to-hydrogen as Seasonal Energy Storage: An Uncertainty Analysis for Optimal Design of Low-carbon Multi-energy Systems
Jun 2020
Publication
This study analyzes the factors leading to the deployment of Power-to-Hydrogen (PtH2) within the optimal design of district-scale Multi-Energy Systems (MES). To this end we utilize an optimization framework based on a mixed integer linear program that selects sizes and operates technologies in the MES to satisfy electric and thermal demands while minimizing annual costs and CO2 emissions. We conduct a comprehensive uncertainty analysis that encompasses the entire set of technology (e.g. cost efficiency lifetime) and context (e.g. economic policy grid carbon footprint) input parameters as well as various climate-referenced districts (e.g. environmental data and energy demands) at a European-scope.
Minimum-emissions MES with large amounts of renewable energy generation and high ratios of seasonal thermal-to-electrical demand optimally achieve zero operational CO2 emissions by utilizing PtH2 seasonally to offset the long-term mismatch between renewable generation and energy demand. PtH2 is only used to abate the last 5–10% emissions and it is installed along with a large battery capacity to maximize renewable self-consumption and completely electrify thermal demand with heat pumps and fuel cells. However this incurs additional cost. Additionally we show that ‘traditional’ MES comprised of renewables and short-term energy storage are able to decrease emissions by 90% with manageable cost increases.
The impact of uncertainty on the optimal system design reveals that the most influential parameter for PtH2 implementation is (1) heat pump efficiency as it is the main competitor in providing renewable-powered heat in winter. Further battery (2) capital cost and (3) lifetime prove to be significant as the competing electrical energy storage technology. In the face of policy uncertainties a CO2 tax shows large potential to reduce emissions in district MES without cost implications. The results illustrate the importance of capturing the dynamics and uncertainties of short- and long-term energy storage technologies for assessing cost and CO2 emissions in optimal MES designs over districts with different geographical scopes.
Minimum-emissions MES with large amounts of renewable energy generation and high ratios of seasonal thermal-to-electrical demand optimally achieve zero operational CO2 emissions by utilizing PtH2 seasonally to offset the long-term mismatch between renewable generation and energy demand. PtH2 is only used to abate the last 5–10% emissions and it is installed along with a large battery capacity to maximize renewable self-consumption and completely electrify thermal demand with heat pumps and fuel cells. However this incurs additional cost. Additionally we show that ‘traditional’ MES comprised of renewables and short-term energy storage are able to decrease emissions by 90% with manageable cost increases.
The impact of uncertainty on the optimal system design reveals that the most influential parameter for PtH2 implementation is (1) heat pump efficiency as it is the main competitor in providing renewable-powered heat in winter. Further battery (2) capital cost and (3) lifetime prove to be significant as the competing electrical energy storage technology. In the face of policy uncertainties a CO2 tax shows large potential to reduce emissions in district MES without cost implications. The results illustrate the importance of capturing the dynamics and uncertainties of short- and long-term energy storage technologies for assessing cost and CO2 emissions in optimal MES designs over districts with different geographical scopes.
Assessment of the Economic Efficiency of the Operation of Low-Emission and Zero-Emission Vehicles in Public Transport in the Countries of the Visegrad Group
Nov 2021
Publication
Transport is one of the key sectors of the European economy. However the intensive development of transport caused negative effects in the form of an increase in the emission of harmful substances. The particularly dramatic situation took place in the V4 countries. This made it necessary to implement solutions reducing emissions in transport including passenger transport. Such activities can be implemented in the field of implementation of low-emission and zero-emission vehicles for use. That is why the European Union and the governments of the Visegrad Group countries have developed numerous recommendations communications laws and strategies that order carriers to implement low- and zero-emission mobility. Therefore transport organizers and communication operators faced the choice of the type of buses. From an economic point of view each entrepreneur is guided by the economic efficiency of the vehicles used. Hence the main aim of the article was to conduct an economic evaluation of the operational efficiency of ecological vehicles. As more than 70% of vehicles in use in the European Union are still diesel driven the economic efficiency assessment was also made for vehicles with traditional diesel drive. To conduct the research the method of calculating the total cost of ownership of vehicles in operation was used. As a result of the research it was found that electric buses are the cheapest in the entire period of use (15 years) and then those powered by CNG. On the other hand the cost of using hydrogen buses is the highest. This is due to the high purchase prices of these vehicles. However the EU as well as the governments of individual countries support enterprises and communication operators by offering them financing for investments. The impact of the forecasted fuel and energy prices and the planned inflation on operating costs was also examined. In this case the analyses showed that the forecasted changes in fuel and energy prices as well as the expected inflation will significantly affect the costs of vehicle operation and the economic efficiency of using various types of drives. These changes will have a positive impact on the implementation of zero-emission vehicles into exploitation. Based on the analyses it was found that in 2035 hydrogen buses will have the lowest operating costs.
A Quantitative Assessment of the Hydrogen Storage Capacity of the UK Continental Shelf
Nov 2020
Publication
Increased penetration of renewable energy sources and decarbonisation of the UK's gas supply will require large-scale energy storage. Using hydrogen as an energy storage vector we estimate that 150 TWh of seasonal storage is required to replace seasonal variations in natural gas production. Large-scale storage is best suited to porous rock reservoirs. We present a method to quantify the hydrogen storage capacity of gas fields and saline aquifers using data previously used to assess CO2 storage potential. We calculate a P50 value of 6900 TWh of working gas capacity in gas fields and 2200 TWh in saline aquifers on the UK continental shelf assuming a cushion gas requirement of 50%. Sensitivity analysis reveals low temperature storage sites with sealing rocks that can withstand high pressures are ideal sites. Gas fields in the Southern North Sea could utilise existing infrastructure and large offshore wind developments to develop large-scale offshore hydrogen production.
Electric Load Influence on Performances of a Composite Plant for Hydrogen Production from RES and its Conversion in Electricity
Nov 2019
Publication
The analysis here presented investigates the influence of electrical load on the operational performances of a plant for hydrogen production from solar energy and its conversion in electricity via a fuel cell. The plant is an actual one currently under construction in Reggio Calabria (Italy) at the site of the Mediterranean university campus; it is composed of a Renewable Energy Source (RES) section (photovoltaic panels) a hydrogen production section and a fuel cell power section feeding the electrical energy demand of the load. Two different load configurations have been analysed and simulations have been carried out through HomerTM simulation code. Results allow interesting conclusions regarding the plant operation to be drawn. The study could have a remarkable role in supporting further research activities aimed at the assessment of the optimal configuration of this type of pioneering plants designed for feeding electrical loads possibly in a self-sufficient way.
Water Electrolysis for the Production of Hydrogen to Be Employed in the Ironmaking and Steelmaking Industry
Nov 2021
Publication
The way to decarbonization will be characterized by the huge production of hydrogen through sustainable routes. Thus the basic production way is water electrolysis sustained by renewable energy sources allowing for obtaining “green hydrogen”. The present paper reviews the main available technologies for the water electrolysis finalized to the hydrogen production. We describe the fundamental of water electrolysis and the problems related to purification and/or desalinization of water before electrolysis. As a matter of fact we describe the energy efficiency issues with particular attention to the potential application in the steel industry. The fundamental aspects related to the choice of high-temperature or low-temperature technologies are analyzed.
Preliminary Design of a Self-Sufficient Electrical Storage System Based on Electrolytic Hydrogen for Power Supply in a Residential Application
Oct 2021
Publication
The use of renewable energy and hydrogen technology is a sustainable solution for the intermittent feature of renewable energies. Hence the aim of the present work is to design a self-sufficient system for a one-family house by coupling a solar photovoltaic array and an anion exchange membrane water electrolyzer (AEMWE). The first step is the selection of the photovoltaic panel by using PV-SYST 7.0 software. Then the hydrogen production system is calculated by coupling the electrolyzer and photovoltaic panel current–potential curves. A fuel cell is selected to use the hydrogen produced when solar energy is not available. Finally the hydrogen storage tank is also estimated to store hydrogen for a design basis of four consecutive cloudy days according to the hydrogen consumption of the fuel cell. The whole system is designed by a simple procedure for a specific location in Ciudad Real (Spain) for January which is known as the coldest month of the year. The simple procedure described in this work could be used elsewhere and demonstrated that the hydrogen production at low scale is a suitable technology to use renewable energy for self-energy supporting in a residential application without any connection to the grid.
Achieving Net Zero Electricity Sectors in G7 Members
Oct 2021
Publication
Achieving Net Zero Electricity Sectors in G7 Members is a new report by the International Energy Agency that provides a roadmap to driving down CO2 emissions from electricity generation to net zero by 2035 building on analysis in Net Zero by 2050: A Roadmap for the Global Energy Sector.
The new report was requested by the United Kingdom under its G7 Presidency and followed the G7 leaders’ commitment in June 2021 to reach “an overwhelmingly decarbonised” power system in the 2030s and net zero emissions across their economies no later than 2050. It is designed to inform policy makers industry investors and citizens in advance of the COP26 Climate Change Conference in Glasgow that begins at the end of October 2021.
Starting from recent progress and the current state of play of electricity in the G7 the report analyses the steps needed to achieve net zero emissions from electricity and considers the wider implications for energy security employment and affordability. It identifies key milestones emerging challenges and opportunities for innovation.
The report also underscores how G7 members can foster innovation through international collaboration and as first movers lower the cost of technologies for other countries while maintaining electricity security and placing people at the centre of clean energy transitions.
Link to their website
The new report was requested by the United Kingdom under its G7 Presidency and followed the G7 leaders’ commitment in June 2021 to reach “an overwhelmingly decarbonised” power system in the 2030s and net zero emissions across their economies no later than 2050. It is designed to inform policy makers industry investors and citizens in advance of the COP26 Climate Change Conference in Glasgow that begins at the end of October 2021.
Starting from recent progress and the current state of play of electricity in the G7 the report analyses the steps needed to achieve net zero emissions from electricity and considers the wider implications for energy security employment and affordability. It identifies key milestones emerging challenges and opportunities for innovation.
The report also underscores how G7 members can foster innovation through international collaboration and as first movers lower the cost of technologies for other countries while maintaining electricity security and placing people at the centre of clean energy transitions.
Link to their website
The Role of Advanced Demand-sector Technologies and Energy Demand Reduction in Achieving Ambitious Carbon Budgets
Jan 2019
Publication
Limiting cumulative carbon emissions to keep global temperature increase to well below 2°C (and as low as 1.5°C) is an extremely challenging task requiring rapid reduction in the carbon intensity of all sectors of the economy and with limited leeway for residual emissions. Addressing residual emissions in ‘challenging-to-decarbonise’ sectors such as the industrial and aviation sectors relies on the development and commercialization of innovative advanced technologies currently still in their infancy. The aim of this study was to (a) explore the role of advanced technologies in achieving deep decarbonisation of the energy system and (b) provide technology- specific details of how rapid and deep carbon intensity reductions can be achieved in the energy demand sectors. This was done using TIAM-Grantham – a linear cost optimization model of the global energy system with a detailed representation of demand-side technologies. We find that the inclusion of advanced technologies in the demand sectors together with energy demand reduction through behavioural changes enables the model to achieve the rapid and deep decarbonisation of the energy system associated with limiting global warming to below 2°C whilst at the same time reduces reliance on negative emissions technologies by up to ∼18% compared to the same scenario with a standard set of technologies. Realising such advanced technologies at commercial scales as well as achieving such significant reductions in energy demand represents a major challenge for policy makers businesses and civil society. There is an urgent need for continued R&D efforts in the demand sectors to ensure that advanced technologies become commercially available when we need them and to avoid the gamble of overreliance on negative emissions technologies to offset residual emissions.
Integration Design and Operation Strategy of Multi-Energy Hybrid System Including Renewable Energies, Batteries and Hydrogen
Oct 2020
Publication
In some areas the problem of wind and solar power curtailment is prominent. Hydrogen energy has the advantage of high storage density and a long storage time. Multi-energy hybrid systems including renewable energies batteries and hydrogen are designed to solve this problem. In order to reduce the power loss of the converter an AC-DC hybrid bus is proposed. A multi-energy experiment platform is established including a wind turbine photovoltaic panels a battery an electrolyzer a hydrogen storage tank a fuel cell and a load. The working characteristics of each subsystem are tested and analyzed. The multi-energy operation strategy is based on state monitoring and designed to enhance hydrogen utilization energy efficiency and reliability of the system. The hydrogen production is guaranteed preferentially and the load is reliably supplied. The system states are monitored such as the state of charge (SOC) and the hydrogen storage level. The rated and ramp powers of the battery and fuel cell and the pressure limit of the hydrogen storage tank are set as safety constraints. Eight different operation scenarios comprehensively evaluate the system’s performance and via physical experiments the proposed operation strategy of the multi-energy system is verified as effective and stable.
The Role of Renewable Hydrogen and Inter-seasonal Storage in Decarbonising Heat – Comprehensive Optimisation of Future Renewable Energy Value Chains
Nov 2018
Publication
Demands for space and water heating constitute a significant proportion of the total energy demands in Great Britain and are predominantly satisfied through natural gas which makes the heat sector a large emitter of carbon dioxide. Renewable hydrogen which can be injected into the gas grid or used directly in processes for generating heat and/or electricity is being considered as a low-carbon alternative energy carrier to natural gas because of its suitability for large-scale long- and short-term storage and low transportation losses all of which help to overcome the intermittency and seasonal variations in renewables. This requires new infrastructures for production storage transport and utilisation of renewable hydrogen – a hydrogen value chain – the design of which involves many interdependent decisions such as: where to locate wind turbines; where to locate electrolysers close to wind generation or close to demands; whether to transport energy as electricity or hydrogen and how; where to locate storage facilities; etc. This paper presents the Value Web Model a novel and comprehensive spatio-temporal mixed-integer linear programming model that can simultaneously optimise the design planning and operation of integrated energy value chains accounting for short-term dynamics inter-seasonal storage and investments out to 2050. It was coupled with GIS modelling to identify candidate sites for wind generation and used to optimise a number of scenarios for the production of hydrogen from onshore and offshore wind turbines in order to satisfy heat demands. The results show that over a wide range of scenarios the optimal pathway to heat is roughly 20% hydrogen and 80% electricity. Hydrogen storage both in underground caverns and pressurised tanks is a key enabling technology.
Future Electricity Series Part 1 - Power from Fossil Fuels
Apr 2013
Publication
Power from Fossil Fuels analyses the role of coal and gas power generation in the UK's future power generation mix. It is the first of three reports in Carbon Connect's 2013 research inquiry the Future Electricity Series which examines what role fossil fuels renewables and nuclear can play in providing secure sustainable and affordable electricity in the UK. The report finds that significantly decarbonising the power sector by 2030 will prove the most successful strategy on energy sustainability security and affordability grounds and that switching the UK’s reliance on coal to gas generation - while using fossil fuel power stations increasingly for backup purposes - will be the most viable method of achieving this. The independent report chaired by former energy minister Charles Hendry MP and Opposition Energy and Climate Change Spokesperson in the House of Lords Baroness Worthington was compiled between January and April 2013 and received contributions from over 30 experts in academia industry Parliament and Government and was launched in Parliament on the 22nd April 2013. This independent inquiry was sponsored by the Institution of Gas Engineers and Managers
Hydrogen Production Technologies: Current State and Future Developments
Mar 2013
Publication
Hydrogen (H2) is currently used mainly in the chemical industry for the production of ammonia and methanol. Nevertheless in the near future hydrogen is expected to become a significant fuel that will largely contribute to the quality of atmospheric air. Hydrogen as a chemical element (H) is the most widespread one on the earth and as molecular dihydrogen (H2) can be obtained from a number of sources both renewable and nonrenewable by various processes. Hydrogen global production has so far been dominated by fossil fuels with the most significant contemporary technologies being the steam reforming of hydrocarbons (e.g. natural gas). Pure hydrogen is also produced by electrolysis of water an energy demanding process. This work reviews the current technologies used for hydrogen (H2) production from both fossil and renewable biomass resources including reforming (steam partial oxidation autothermal plasma and aqueous phase) and pyrolysis. In addition other methods for generating hydrogen (e.g. electrolysis of water) and purification methods such as desulfurization and water-gas shift reactions are discussed.
The Role of Electrification and Hydrogen in Breaking the Biomass Bottleneck of the Renewable Energy System – A Study on the Danish Energy System
Jun 2020
Publication
The aim of this study is to identify the technical solution space for future fully renewable energy systems that stays within a sustainable biomass demand. In the transition towards non-fossil energy and material systems biomass is an attractive source of carbon for those demands that also in the non-fossil systems depend on high density carbon containing fuels and feedstocks. However extensive land use is already a sustainability challenge and an increase in future demands threat to exceed global sustainable biomass potentials which according to an international expert consensus is around 10 – 30 GJ/person/year in 2050. Our analytical review of 16 scenarios from 8 independent studies of fully renewable energy system designs and synthesis of 9 generic system designs reveals the significance of the role of electrification and hydrogen integration for building a fully renewable energy system which respects the global biomass limitations. The biomass demand of different fully renewable energy system designs was found to lie in the range of 0 GJ/person/year for highly integrated electrified pure electro-fuel scenarios with up to 25 GJ/person/year of hydrogen to above 200 GJ/person/year for poorly integrated full bioenergy scenarios with no electrification or hydrogen integration. It was found that a high degree of system electrification and hydrogen integration of at least 15 GJ/person/year is required to stay within sustainable biomass limits.
Oxygen Carriers for Chemical-looping Water Splitting to Hydrogen Production: A Critical Review
Oct 2021
Publication
Chemical looping water splitting (CLWS) process using metal oxides or perovskites as oxygen carriers (OCs) is capable of producing pure H2 in an efficient simple and flexible way. The OCs are first reduced by hydrocarbon fuels and then oxidized by steam in a cyclic way. After the condensation of the gaseous mixture of steam and H2 from the oxidation step pure H2 is obtained. In recent years great efforts for CLWS have been made to improve the redox activity and stability of OCs. In this paper the development of the OCs for hydrogen production from CLWS were discussed. Effects of supports and additives on the performances of OCs were compared based on redox reactions in CLWS. Fe-based OCs with CeO2 Al2O3 ZrO2 CuO MoO3 Rh etc. are very attractive for the CLWS process. Issues and challenges for the development of OCs were analyzed.
Techno-economic Assessment of a Hybrid Off-grid DC System for Combined Heat and Power Generation in Remote Islands
Mar 2019
Publication
Hybrid renewable energy systems that combine heat and electricity generation is an achievable option for remote areas where grid is uneconomical to extend. In this study a renewable-based system was designed to satisfy the electrical and thermal demands of a remote household in an off-grid Greek island. A hybrid DC system consisted of a combination of photovoltaic modules wind turbine electrolyzer-hydrogen tank fuel cell and batteries were analysed using HOMER Pro software. Based on the optimal obtained system it is found that such a system can satisfy both electrical and thermal load demand throughout the year in a reliable manner.
Optimization of Hydrogen Cost and Transport Technology in France and Germany for Various Production and Demand Scenarios
Jan 2021
Publication
Green hydrogen for mobility represents an alternative to conventional fuel to decarbonize the transportation sector. Nevertheless the thermodynamic properties make the transport and the storage of this energy carrier at standard conditions inefficient. Therefore this study deploys a georeferenced optimal transport infrastructure for four base case scenarios in France and Germany that differs by production distribution based on wind power potential and demand capacities for the mobility sector at different penetration shares for 2030 and 2050. The restrained transport network to the road infrastructure allows focusing on the optimum combination of trucks operating at different states of aggregations and storage technologies and its impact on the annual cost and hydrogen flow using linear programming. Furthermore four other scenarios with production cost investigate the impact of upstream supply chain cost and eight scenarios with daily transport and storage optimization analyse the modeling method sensitivity. The results show that compressed hydrogen gas at a high presser level around 500 bar was on average a better option. However at an early stage of hydrogen fuel penetration substituting compressed gas at low to medium pressure levels by liquid organic hydrogen carrier minimizes the transport and storage costs. Finally in France hydrogen production matches population distribution in contrast to Germany which suffers from supply and demand disparity.
Biological Hydrogen Methanation Systems – An Overview of Design and Efficiency
Oct 2019
Publication
The rise in intermittent renewable electricity production presents a global requirement for energy storage. Biological hydrogen methanation (BHM) facilitates wind and solar energy through the storage of otherwise curtailed or constrained electricity in the form of the gaseous energy vector biomethane. Biological methanation in the circular economy involves the reaction of hydrogen – produced during electrolysis – with carbon dioxide in biogas to produce methane (4H2 + CO2 = CH4 + 2H2) typically increasing the methane output of the biogas system by 70%. In this paper several BHM systems were researched and a compilation of such systems was synthesized facilitating comparison of key parameters such as methane evolution rate (MER) and retention time. Increased retention times were suggested to be related to less efficient systems with long travel paths for gases through reactors. A significant lack of information on gas-liquid transfer co-efficient was identified
Comprehensive Analysis of the Combustion of Low Carbon Fuels (Hydrogen, Methane and Coke Oven Gas) in a Spark Ignition Engine through CFD Modeling
Nov 2021
Publication
The use of low carbon fuels (LCFs) in internal combustion engines is a promising alternative to reduce pollution while achieving high performance through the conversion of the high energy content of the fuels into mechanical energy. However optimizing the engine design requires deep knowledge of the complex phenomena involved in combustion that depend on the operating conditions and the fuel employed. In this work computational fluid dynamics (CFD) simulation tools have been used to get insight into the performance of a Volkswagen Polo 1.4L port-fuel injection spark ignition engine that has been fueled with three different LCFs coke oven gas (COG) a gaseous by-product of coke manufacture H2 and CH4. The comparison is made in terms of power pressure temperature heat release flame growth speed emissions and volumetric efficiency. Simulations in Ansys® Forte® were validated with experiments at the same operating conditions with optimal spark advance wide open throttle a wide range of engine speed (2000–5000 rpm) and air-fuel ratio (λ) between 1 and 2. A sensitivity analysis of spark timing has been added to assess its impact on combustion variables. COG with intermediate flame growth speed produced the greatest power values but with lower pressure and temperature values at λ = 1.5 reducing the emissions of NO and the wall heat transfer. The useful energy released with COG was up to 16.5% and 5.1% higher than CH4 and H2 respectively. At richer and leaner mixtures (λ = 1 and λ = 2) similar performances were obtained compared to CH4 and H2 combining advantages of both pure fuels and widening the λ operation range without abnormal combustion. Therefore suitable management of the operating conditions maximizes the conversion of the waste stream fuel energy into useful energy while limiting emissions.
Challenges and Prospects of Renewable Hydrogen-based Strategies for Full Decarbonization of Stationary Power Applications
Oct 2021
Publication
The exponentially growing contribution of renewable energy sources in the electricity mix requires large systems for energy storage to tackle resources intermittency. In this context the technologies for hydrogen production offer a clean and versatile alternative to boost renewables penetration and energy security. Hydrogen production as a strategy for the decarbonization of the energy sources mix has been investigated since the beginning of the 1990s. The stationary sector i.e. all parts of the economy excluding the transportation sector accounts for almost three-quarters of greenhouse gases (GHG) emissions (mass of CO2-eq) in the world associated with power generation. While several publications focus on the hybridization of renewables with traditional energy storage systems or in different pathways of hydrogen use (mainly power-to-gas) this study provides an insightful analysis of the state of art and evolution of renewable hydrogen-based systems (RHS) to power the stationary sector. The analysis started with a thorough review of RHS deployments for power-to-power stationary applications such as in power generation industry residence commercial building and critical infrastructure. Then a detailed evaluation of relevant techno-economic parameters such as levelized cost of energy (LCOE) hydrogen roundtrip efficiency (HRE) loss of power supply probability (LPSP) self-sufficiency ratio (SSR) or renewable fraction (fRES) is provided. Subsequently lab-scale plants and pilot projects together with current market trends and commercial uptake of RHS and fuel cell systems are examined. Finally the future techno-economic barriers and challenges for short and medium-term deployment of RHS are identified and discussed.
Transitioning Remote Arctic Settlements to Renewable Energy Systems – A Modelling Study of Longyearbyen, Svalbard
Nov 2019
Publication
As transitioning away from fossil fuels to renewable energy sources comes on the agenda for a range of energy systems energy modelling tools can provide useful insights. If large parts of the energy system turns out to be based on variable renewables an accurate representation of their short-term variability in such models is crucial. In this paper we have developed a stochastic long-term energy model and applied it to an isolated Arctic settlement as a challenging and realistic test case. Our findings suggest that the stochastic modelling approach is critical in particular for studies of remote Arctic energy systems. Furthermore the results from a case study of the Norwegian settlement of Longyearbyen suggest that transitioning to a system based on renewable energy sources is feasible. We recommend that a solution based mainly on renewable power generation but also including energy storage import of hydrogen and adequate back-up capacity is taken into consideration when planning the future of remote Arctic settlements.
Optimal Day-ahead Dispatch of an Alkaline Electrolyser System Concerning Thermal–electric Properties and State-transitional Dynamics
Oct 2021
Publication
Green hydrogen is viewed as a promising energy carrier for sustainable development goals. However it has suffered from high costs hindering its implementation. For a stakeholder who considers both renewable energy and electrolysis units it is important to exploit the flexibility of such portfolios to maximize system operational revenues. To this end an electrolyser model that can characterize its dynamic behavior is required in both electric and thermal aspects. In this paper we develop a comprehensive alkaline electrolyser model that is capable of describing its hydrogen production properties temperature variations and state transitions (among production stand-by and off states). This model is further used to study the optimal dispatch of an electrolyser based on a real-world hybrid wind/electrolyser system. The results show the model can effectively capture the coupling between thermal–electric dynamics and on–off performance of an electrolyser. The flexible operation strategy based on this model is proven to significantly increase daily revenues under different spot price conditions for electricity. Comparing the model with the ones derived from conventional modeling methods reveals this model offers more operating details and highlights several operational features such as the preference for working at partial load conditions although at the expense of more computing resources. It is suggested to use this model in studies related to energy integration operation planning and control scheme development in which the multi-domain dynamic properties of electrolysers in electricity/gas/heat need to be properly characterized. A sensitivity analysis on key parameters of such electrolyser system is also introduced to connect the daily operation with long-term planning.
Energy Management Strategies for a Zero-emission Hybrid Domestic Ferry
Oct 2021
Publication
The paper presents three approaches for the sizing and control of a maritime hybrid power-plant equipped with proton exchange membrane fuel cells and batteries. The study focuses on three different power-plant configurations including the energy management strategy and the power-plant component sizing. The components sizing is performed following the definition of the energy management strategy using the sequential optimization approach. These configurations are tested using a dynamic model developed in Simulink. The simulations are carried out to validate the technical feasibility of each configuration for maritime use. Each energy management strategy is developed to allow for the optimization of a chosen set of parameters such as hydrogen consumption and fuel cell degradation. It is observed that in the hybrid power-plant optimization there are always trade-offs and the optimization should be carried out by prioritizing primary factors the ship owner considers most important for day-to-day operations.
Performance of Hydrogen Storage Tanks of Type IV in a Fire: Effect of the State of Charge
Sep 2021
Publication
The use of hydrogen storage tanks at 100% of nominal working pressure (NWP) is expected only after refuelling. Driving between refuellings is characterised by the state of charge SoC <100%. There is experimental evidence that Type IV tanks tested in a fire at initial pressures below 1/3 NWP leaked without rupture. This paper aims at understanding this phenomenon. The numerical research has demonstrated that the heat transfer from fire through the composite overwrap at storage pressures below NWP/3 is sufficient to melt the polymer liner. This melting initiates hydrogen microleaks through the composite before it loses the load-bearing ability. The fire-resistance rating (FRR) is defined as the time to rupture in a fire of a tank without or with blocked thermally activated pressure relief device. The dependence of a FRR on the SoC is demonstrated for the tanks with defined material properties and volumes in the range of 36–244 L. A composite wall thickness variation is shown to cause a safety issue by reducing the tank’s FRR and is suggested to be addressed by tank manufacturers and OEMs. The effect of a tank’s burst pressure ratio on the FRR is investigated. Thermal parameters of the composite wall i.e. decomposition heat and temperatures are shown in simulations of a tank failure in a fire to play an important role in its FRR.
Exploring the Australian Public's Response to Hydrogen
Sep 2021
Publication
Over the past three years there has been a rapid increase in discussions across the different levels of Australia's governments about the role that hydrogen might play in helping the world transition to a low carbon future. While those working in the energy industry are aware of the opportunities and challenges that lay ahead the general public is less engaged. However we know from the introduction of previous technologies that public attitudes towards technologies including whether they view them to be safe can severely impact overall acceptance. Understanding how the public perceives hydrogen both for domestic and export use and the potential benefits it brings to Australia is critical for the industry to progress. In this paper we present the initial findings of a national survey of the Australian public conducted in March 2021 which builds on the results of a previous survey conducted in 2018. The 2021 respondents were drawn from all Australian states and territories (n=3020) and quotas were used to ensure adequate representation of age groups and gender. Overall the respondents have favorable views about using hydrogen for energy in Australia with caveats about production-related environmental impacts and issues such as safety. While there has been a slight increase in support for hydrogen as a possible solution for energy and environmental challenges since the 2018 survey the effect size is very small. This suggests that while hydrogen discussions have increased at a policy level little has been done to improve public understanding of hydrogen in communication strategies will be needed as the Australian hydrogen industry continues to develop and gain more widespread media attention.
Renewable Hydrogen Implementations for Combined Energy Storage, Transportation and Stationary Applications
Dec 2019
Publication
The purpose of this paper is to discuss the potential of hydrogen obtained from renewable sources for energy generation and storage systems. The first part of analysis will address such issues as various methods of green hydrogen production storage and transportation. The review of hydrogen generation methods will be followed by the critical analysis and the selection of production method. This selection is justified by the results of the comparative research on alternative green hydrogen generation technologies with focus on their environmental impacts and costs. The comparative analysis includes the biomass-based methods as well as water splitting and photo-catalysis methods while water electrolysis is taken as a benchmark. Hydrogen storage and transportation issues will be further discussed in purpose to form the list of recommended solutions. In the second part of the paper the technology readiness and technical feasibility for joint hydrogen applications will be analysed. This will include the energy storage and production systems based on renewable hydrogen in combination with hydrogen usage in mobility systems as well as the stationary applications in buildings such as combined heat and power (CHP) plants or fuel cell electric generators. Based on the analysis of the selected case studies the author will discuss the role of hydrogen for the carbon emission reduction with the stress on the real value of carbon footprint of hydrogen depending on the gas source storage transportation and applications.
A Hybrid Intelligent Model to Predict the Hydrogen Concentration in the Producer Gas from a Downdraft Gasifier
Apr 2022
Publication
This research work presents an artificial intelligence approach to predicting the hydrogen concentration in the producer gas from biomass gasification. An experimental gasification plant consisting of an air-blown downdraft fixed-bed gasifier fueled with exhausted olive pomace pellets and a producer gas conditioning unit was used to collect the whole dataset. During an extensive experimental campaign the producer gas volumetric composition was measured and recorded with a portable syngas analyzer at a constant time step of 10 seconds. The resulting dataset comprises nearly 75 hours of plant operation in total. A hybrid intelligent model was developed with the aim of performing fault detection in measuring the hydrogen concentration in the producer gas and still provide reliable values in the event of malfunction. The best performing hybrid model comprises six local internal submodels that combine artificial neural networks and support vector machines for regression. The results are remarkably satisfactory with a mean absolute prediction error of only 0.134% by volume. Accordingly the developed model could be used as a virtual sensor to support or even avoid the need for a real sensor that is specific for measuring the hydrogen concentration in the producer gas.
Research Requirements to Move the Bar Forward Using Aqueous Formate Salts as H2 Carriers for Energy Storage Applications
Nov 2020
Publication
In this perspective on hydrogen carriers we focus on the needs for the development of robust active catalysts for the release of H2 from aqueous formate solutions which are non-flammable non-toxic thermally stable and readily available at large scales at reasonable cost. Formate salts can be stockpiled in the solid state or dissolved in water for long term storage and transport using existing infrastructure. Furthermore formate salts are readily regenerated at moderate pressures using the same catalyst as for the H2 release. There have been several studies focused on increasing the activity of catalysts to release H2 at moderate temperatures i.e. < 80 °C below the operating temperature of a proton exchange membrane (PEM) fuel cell. One significant challenge to enable the use of aqueous formate salts as hydrogen carriers is the deactivation of the catalyst under operating conditions. In this work we provide a review of the most efficient heterogeneous catalysts that have been described in the literature their proposed modes of deactivation and the strategies reported to reactivate them. We discuss potential pathways that may lead to deactivation and strategies to mitigate it in a variety of H2 carrier applications. We also provide an example of a potential use case employing formate salts solutions using a fixed bed reactor for seasonal storage of energy for a microgrid application.
Techno-Economic Analysis of Hydrogen and Electricity Production by Biomass Calcium Looping Gasification
Feb 2022
Publication
Combined cycle biomass calcium looping gasification is proposed for a hydrogen and electricity production (CLGCC–H) system. The process simulation Aspen Plus is used to conduct techno-economic analysis of the CLGCC–H system. The appropriate detailed models are set up for the proposed system. Furthermore a dual fluidized bed is optimized for hydrogen production at 700 °C and 12 bar. For comparison calcium looping gasification with the combined cycle for electricity (CLGCC) is selected with the same parameters. The system exergy and energy efficiency of CLGCC–H reached as high as 60.79% and 64.75% while the CLGCC system had 51.22% and 54.19%. The IRR and payback period of the CLGCC–H system based on economic data are calculated as 17.43% and 7.35 years respectively. However the CLGCC system has an IRR of 11.45% and a payback period of 9.99 years respectively. The results show that the calcium looping gasification-based hydrogen and electricity coproduction system has a promising market prospect in the near future.
What Will Fuel Transport Systems of the Future?
Nov 2011
Publication
This paper seeks to decry the notion of a single solution or “silver bullet” to replace petroleum products with renewable transport fuel. At different times different technological developments have been in vogue as the panacea for future transport needs: for quite some time hydrogen has been perceived as a transport fuel that would be all encompassing when the technology was mature. Liquid biofuels have gone from exalted to unsustainable in the last ten years. The present flavor of the month is the electric vehicle. This paper examines renewable transport fuels through a review of the literature and attempts to place an analytical perspective on a number of technologies.
Flare Gas Monetization and Greener Hydrogen Production via Combination with Crypto Currency Mining and Carbon Dioxide Capture
Jan 2022
Publication
In view of the continuous debates on the environmental impact of blockchain technologies in particular crypto currency mining accompanied by severe carbon dioxide emissions a technical solution has been considered assuming direct monetization of associated petroleum gas currently being flared. The proposed approach is based on the technology of low-temperature steam reforming of hydrocarbons which allows flare gas conditioning towards the requirements for fuel for gas piston and gas turbine power plants. The generation of electricity directly at the oil field and its use for on-site crypto currency mining transforms the process of wasteful flaring of valuable hydrocarbons into an economically attractive integrated processing of natural resources. The process is not carbon neutral and is not intended to compete zero-emission technologies but its combination with technologies for carbon dioxide capture and re-injection into the oil reservoir can both enhance the oil recovery and reduce carbon dioxide emissions into the atmosphere. The produced gas can be used for local transport needs while the generated heat and electricity can be utilized for on-site food production and biological carbon dioxide capture in vertical greenhouse farms. The suggested approach allows significant decrease in the carbon dioxide emissions at oil fields and although it may seem paradoxically on-site cryptocurrency mining actually may lead to a decrease in the carbon footprint. The amount of captured CO2 could be transformed into CO2 emission quotas which can be spent for the production of virtually “blue” hydrogen by steam reforming of natural gas in locations where the CO2 capture is technically impossible and/or unprofitable.
Rational Design and Application of Covalent Organic Frameworks for Solar Fuel Production
Jul 2021
Publication
Harnessing solar energy and converting it into renewable fuels by chemical processes such as water splitting and carbon dioxide (CO2 ) reduction is a highly promising yet challenging strategy to mitigate the effects arising from the global energy crisis and serious environmental concerns. In recent years covalent organic framework (COF)-based materials have gained substantial research interest because of their diversified architecture tunable composition large surface area and high thermal and chemical stability. Their tunable band structure and significant light absorption with higher charge separation efficiency of photoinduced carriers make them suitable candidates for photocatalytic applications in hydrogen (H2) generation CO2 conversion and various organic transformation reactions. In this article we describe the recent progress in the topology design and synthesis method of COF-based nanomaterials by elucidating the structure-property correlations for photocatalytic hydrogen generation and CO2 reduction applications. The effect of using various kinds of 2D and 3D COFs and strategies to control the morphology and enhance the photocatalytic activity is also summarized. Finally the key challenges and perspectives in the field are highlighted for the future development of highly efficient COF-based photocatalysts.
Efficient Renewable-to-Hydrogen Conversion via Decoupled Electrochemical Water Splitting
Aug 2020
Publication
Water electrolysis powered by renewables provides a green approach to hydrogen production to support the ‘‘hydrogen economy.’’ However the hydrogen evolution reaction (HER) and the oxygen evolution reaction (OER) are tightly coupled in both time and space in traditional water electrolysis which brings inherent operational challenges such as the mixture of H2/O2 and the limited HER rate caused by the sluggish kinetics of OER. Against this background decoupling H2 and O2 production in water electrolysis by using the auxiliary redox mediator was first proposed in 2013 in which O2 and H2 are produced at different times rates and/or locations. The decoupling strategy offers not only a new way to facilitate renewables to H2 but it can also be applied in other chemical or electrochemical processes. This review describes recent efforts to develop high-performance redox mediators optimized strategies in decoupled water electrolysis the design of electrolyzer configuration the challenges faced and the prospective directions.
Research Progress of Cryogenic Materials for Storage and Transportation of Liquid Hydrogen
Jul 2021
Publication
Liquid hydrogen is the main fuel of large-scale low-temperature heavy-duty rockets and has become the key direction of energy development in China in recent years. As an important application carrier in the large-scale storage and transportation of liquid hydrogen liquid hydrogen cryogenic storage and transportation containers are the key equipment related to the national defense security of China’s aerospace and energy fields. Due to the low temperature of liquid hydrogen (20 K) special requirements have been put forward for the selection of materials for storage and transportation containers including the adaptability of materials in a liquid hydrogen environment hydrogen embrittlement characteristics mechanical properties and thermophysical properties of liquid hydrogen temperature which can all affect the safe and reliable design of storage and transportation containers. Therefore it is of great practical significance to systematically master the types and properties of cryogenic materials for the development of liquid hydrogen storage and transportation containers. With the wide application of liquid hydrogen in different occasions the requirements for storage and transportation container materials are not the same. In this paper the types and applications of cryogenic materials commonly used in liquid hydrogen storage and transportation containers are reviewed. The effects of low-temperature on the mechanical properties of different materials are introduced. The research progress of cryogenic materials and low-temperature performance data of materials is introduced. The shortcomings in the research and application of cryogenic materials for liquid hydrogen storage and transportation containers are summarized to provide guidance for the future development of container materials. Among them stainless steel is the most widely used cryogenic material for liquid hydrogen storage and transportation vessel but different grades of stainless steel also have different applications which usually need to be comprehensively considered in combination with its low temperature performance corrosion resistance welding performance and other aspects. However with the increasing demand for space liquid hydrogen storage and transportation the research on high specific strength cryogenic materials such as aluminum alloy titanium alloy or composite materials is also developing. Aluminum alloy liquid hydrogen storage and transportation containers are widely used in the space field while composite materials have significant advantages in being lightweight. Hydrogen permeation is the key bottleneck of composite storage and transportation containers. At present there are still many technical problems that have not been solved.
Well to Wheel Analysis of Low Carbon Alternatives for Road Traffic
Sep 2015
Publication
Several alternative fuel–vehicle combinations are being considered for replacement of the internal combustion engine (ICE) vehicles to reduce greenhouse gas (GHG) emissions and the dependence on fossil fuels. The International Energy Agency has proposed the inclusion of low carbon alternatives such as electricity hydrogen and biofuels in the transport sector for reducing the GHG emissions and providing a sustainable future. This paper compares the use of these alternative fuels viz. electricity hydrogen and bio-ethanol in combination with battery electric vehicle (BEV) and fuel cell electric vehicle (FCEV) technologies on the basis of their overall efficiency and GHG emissions involved in the conversion of the primary energy source to the actual energy required at wheels through a well-to-wheel analysis. The source of energy for electricity production plays a major role in determining the overall efficiency and the GHG emissions of a BEV. Hence electricity production mix of Germany (60% fossil fuel energy) France (76% nuclear energy) Sweden and Austria (60 and 76% renewable energy respectively) the European Union mix (48% fossil fuel energy) and the United States of America (68% fossil fuel energy) are considered for the BEV analysis. In addition to the standard hydrogen based FCEVs CNG and bio-ethanol based FCEVs are analysed. The influence of a direct ethanol fuel cell (DEFC) on GHG emissions and overall chain efficiency is discussed. In addition to the standard sources of bio-ethanol (like sugarcane corn etc.) sources like wood waste and wheat straw are included in the analysis. The results of this study suggest that a BEV powered by an electricity production mix dominated by renewable energy and bio-ethanol based DEFC electric vehicles offer the best solution in terms of GHG emissions efficiency and fossil fuel dependency. Bio-ethanol as a fuel has the additional advantage to be implemented readily in ICE vehicles followed by advancements through reformer based FCEVs and DEFC electric vehicles. Although important this analysis does not include the health effects of the alternative vehicles. Bio-ethanol used in an ICE may lead to increased emission of acetaldehydes which however might not be the case if it is used in fuel cells.
The Benefit of Collaboration in the North European Electricity System Transition—System and Sector Perspectives
Dec 2019
Publication
This work investigates the connection between electrification of the industry transport and heat sector and the integration of wind and solar power in the electricity system. The impact of combining electrification of the steel industry passenger vehicles and residential heat supply with flexibility provision is evaluated from a systems and sector perspective. Deploying a parallel computing approach to the capacity expansion problem the impact of flexibility provision throughout the north European electricity system transition is investigated. It is found that a strategic collaboration between the electricity system an electrified steel industry an electrified transport sector in the form of passenger electric vehicles (EVs) and residential heat supply can reduce total system cost by 8% in the north European electricity system compared to if no collaboration is achieved. The flexibility provision by new electricity consumers enables a faster transition from fossil fuels in the European electricity system and reduces thermal generation. From a sector perspective strategic consumption of electricity for hydrogen production and EV charging and discharging to the grid reduces the number of hours with very high electricity prices resulting in a reduction in annual electricity prices by up to 20%.
Energy Transition Outlook 2021: Technology Progress Report
Jun 2021
Publication
This report is part of DNV’s suite of Energy Transition Outlook publications for 2021. It focuses on how key energy transition technologies will develop compete and interact in the coming five years.
Debate and uncertainty about the energy transition tend to focus on what technology can and can’t do. All too often such discussions involve wishful thinking advocacy of a favoured technology or reference to outdated information. Through this report we bring insights derived from our daily work with the world’s leading energy players including producers transporters and end users. Each of the ten chapters that follow are written by our experts in the field – or in the case of maritime technologies on the ocean.
Because the pace of the transition is intensifying describing any given technology is like painting a fast-moving train. We have attempted to strike a balance between technical details and issues of safety efficiency cost and competitiveness. Transition technologies are deeply interlinked and in some cases interdependent; any discussion on green hydrogen for example must account for developments in renewable electricity hydrogen storage and transport systems and end-use technologies such as fuels cells.
Our selection of ten technologies is not exhaustive but each of these technologies is of particular interest for the pace and direction of the energy transition. They range from relatively mature technologies like solar PV to technologies like nuclear fusion which are some distance from commercialization but which have current R&D and prototyping worth watching. Together they cover most but not all key sectors. We describe expected developments for the coming five years which to a large extent will determine how the energy transition unfolds through to mid-century. As such this Technology Progress report is an essential supplement to our main Energy Transition Outlook forecast.
Our aim is to make an objective and realistic assessment of the status of these technologies and evaluate how they contribute to the energy transition ahead. Attention to progress in these technologies will be critical for anyone concerned with energy.
Debate and uncertainty about the energy transition tend to focus on what technology can and can’t do. All too often such discussions involve wishful thinking advocacy of a favoured technology or reference to outdated information. Through this report we bring insights derived from our daily work with the world’s leading energy players including producers transporters and end users. Each of the ten chapters that follow are written by our experts in the field – or in the case of maritime technologies on the ocean.
Because the pace of the transition is intensifying describing any given technology is like painting a fast-moving train. We have attempted to strike a balance between technical details and issues of safety efficiency cost and competitiveness. Transition technologies are deeply interlinked and in some cases interdependent; any discussion on green hydrogen for example must account for developments in renewable electricity hydrogen storage and transport systems and end-use technologies such as fuels cells.
Our selection of ten technologies is not exhaustive but each of these technologies is of particular interest for the pace and direction of the energy transition. They range from relatively mature technologies like solar PV to technologies like nuclear fusion which are some distance from commercialization but which have current R&D and prototyping worth watching. Together they cover most but not all key sectors. We describe expected developments for the coming five years which to a large extent will determine how the energy transition unfolds through to mid-century. As such this Technology Progress report is an essential supplement to our main Energy Transition Outlook forecast.
Our aim is to make an objective and realistic assessment of the status of these technologies and evaluate how they contribute to the energy transition ahead. Attention to progress in these technologies will be critical for anyone concerned with energy.
Hydrogen Fuel Cell Vehicles; Current Status and Future Prospect
Jun 2019
Publication
The hazardous effects of pollutants from conventional fuel vehicles have caused the scientific world to move towards environmentally friendly energy sources. Though we have various renewable energy sources the perfect one to use as an energy source for vehicles is hydrogen. Like electricity hydrogen is an energy carrier that has the ability to deliver incredible amounts of energy. Onboard hydrogen storage in vehicles is an important factor that should be considered when designing fuel cell vehicles. In this study a recent development in hydrogen fuel cell engines is reviewed to scrutinize the feasibility of using hydrogen as a major fuel in transportation systems. A fuel cell is an electrochemical device that can produce electricity by allowing chemical gases and oxidants as reactants. With anodes and electrolytes the fuel cell splits the cation and the anion in the reactant to produce electricity. Fuel cells use reactants which are not harmful to the environment and produce water as a product of the chemical reaction. As hydrogen is one of the most efficient energy carriers the fuel cell can produce direct current (DC) power to run the electric car. By integrating a hydrogen fuel cell with batteries and the control system with strategies one can produce a sustainable hybrid car
Impact Assessment of Hydrogen Transmission on TD1 Parallel Pipeline Separation Distances
Mar 2021
Publication
The recommended minimum separation distances in IGEM/TD/1 were based on a research programme that studied the different ways in which a failure of one buried natural gas transmission pipeline can affect another similar pipeline installed adjacent to the first taking account of the initial pressure wave propagating through the ground the size of the ground crater produced and the threat of escalation from fire if the second pipeline is exposed. The methodology developed from the research was first published in 2010 and is implemented in a software program (“PROPHET”). The distances in IGEM/TD/1 are generally cautious and are essentially determined by the size of the ground crater produced by pipeline ruptures as predicted by the methodology.
To assess the impact of hydrogen transmission on the recommended separation distances the possibility of one pipeline transporting natural gas and the other transporting hydrogen was considered as well as both pipelines transporting hydrogen. The following steps were carried out to assess the impact of hydrogen transmission on parallel pipeline separation distances drawing on existing knowledge only:
To assess the impact of hydrogen transmission on the recommended separation distances the possibility of one pipeline transporting natural gas and the other transporting hydrogen was considered as well as both pipelines transporting hydrogen. The following steps were carried out to assess the impact of hydrogen transmission on parallel pipeline separation distances drawing on existing knowledge only:
- Estimate the ground pressure loading predicted from a hydrogen pipeline rupture.
- Consider the ground pressure effect on a parallel natural gas or hydrogen pipeline.
- Evaluate available ground crater formation models and assess if existing natural gas model is cautious for hydrogen.
- Consider effects of thermal loading due to hydrogen fires where recommended natural gas separation distances are not met.
- Ground pressure loading: The current natural gas methodology is cautious.
- Ground pressure effects: The current natural gas methodology is applicable (no change for hydrogen).
- Ground crater formation: The current natural gas methodology is cautious for ruptures and applicable for punctures (almost no change for hydrogen).
- Thermal loading: The current natural gas methodology is cautious for the thermal loading from ruptures but not necessarily cautious for punctures. Calculations of the minimum flow velocity required to prevent failure of a natural gas pipeline are not cautious for hydrogen.
Prediction of Hydrogen Concentration in Containment During Severe Accidents Using Fuzzy Neural Network
Jan 2015
Publication
Recently severe accidents in nuclear power plants (NPPs) have become a global concern. The aim of this paper is to predict the hydrogen buildup within containment resulting from severe accidents. The prediction was based on NPPs of an optimized power reactor 1000. The increase in the hydrogen concentration in severe accidents is one of the major factors that threaten the integrity of the containment. A method using a fuzzy neural network (FNN) was applied to predict the hydrogen concentration in the containment. The FNN model was developed and verified based on simulation data acquired by simulating MAAP4 code for optimized power reactor 1000. The FNN model is expected to assist operators to prevent a hydrogen explosion in severe accident situations and manage the accident properly because they are able to predict the changes in the trend of hydrogen concentration at the beginning of real accidents by using the developed FNN model.
Comparison of Hydrogen Powertrains with the Battery Powered Electric Vehicle and Investigation of Small-Scale Local Hydrogen Production Using Renewable Energy
Jan 2021
Publication
Climate change is one of the major problems that people face in this century with fossil fuel combustion engines being huge contributors. Currently the battery powered electric vehicle is considered the predecessor while hydrogen vehicles only have an insignificant market share. To evaluate if this is justified different hydrogen power train technologies are analyzed and compared to the battery powered electric vehicle. Even though most research focuses on the hydrogen fuel cells it is shown that despite the lower efficiency the often-neglected hydrogen combustion engine could be the right solution for transitioning away from fossil fuels. This is mainly due to the lower costs and possibility of the use of existing manufacturing infrastructure. To achieve a similar level of refueling comfort as with the battery powered electric vehicle the economic and technological aspects of the local small-scale hydrogen production are being investigated. Due to the low efficiency and high prices for the required components this domestically produced hydrogen cannot compete with hydrogen produced from fossil fuels on a larger scale
Green Synthesis of Olefin-linked Covalent Organic Frameworks for Hydrogen Fuel Cell Applications
Mar 2021
Publication
Green synthesis of crystalline porous materials for energy-related applications is of great significance but very challenging. Here we create a green strategy to fabricate a highly crystalline olefin-linked pyrazine-based covalent organic framework (COF) with high robustness and porosity under solvent-free conditions. The abundant nitrogen sites high hydrophilicity and well-defined one-dimensional nanochannels make the resulting COF an ideal platform to confine and stabilize the H3PO4 network in the pores through hydrogen-bonding interactions. The resulting material exhibits low activation energy (Ea) of 0.06 eV and ultrahigh proton conductivity across a wide relative humidity (10–90 %) and temperature range (25–80 °C). A realistic proton exchange membrane fuel cell using the olefin-linked COF as the solid electrolyte achieve a maximum power of 135 mW cm−2 and a current density of 676 mA cm−2 which exceeds all reported COF materials.
Blue Hydrogen
Apr 2021
Publication
The urgency of reaching net-zero emissions requires a rapid acceleration in the deployment of all emissions reducing technologies. Near-zero emissions hydrogen (clean hydrogen) has the potential to make a significant contribution to emissions reduction in the power generation transportation and industrial sectors.
As part of the Circular Carbon Economy: Keystone to Global Sustainability series with the Center on Global Energy Policy at Columbia University SIPA this report explores the potential contribution of blue hydrogen to climate mitigation.
The report looks at:
As part of the Circular Carbon Economy: Keystone to Global Sustainability series with the Center on Global Energy Policy at Columbia University SIPA this report explores the potential contribution of blue hydrogen to climate mitigation.
The report looks at:
- Cost drivers for renewable hydrogen and hydrogen produced with fossil fuels and CCS;
- Resource requirements and cost reduction opportunities for clean hydrogen; and
- Policy recommendations to drive investment in clean hydrogen production.
- Blue hydrogen is well placed to kickstart the rapid increase in the utilisation of clean hydrogen for climate mitigation purposes but requires strong and sustained policy to incentivise investment at the rate necessary to meet global climate goals.
Synergetic Effect of Multiple Phases on Hydrogen Desorption Kinetics and Cycle Durability in Ball Milled MgH2–PrF3–Al–Ni Composite
Jan 2021
Publication
A new MgH2–PrF3–Al–Ni composite was prepared by ball milling under hydrogen atmosphere. After initial dehydrogenation and rehydrogenation Pr3Al11 MgF2 PrH3 and Mg2NiH4 nanoparticles formed accompanying the main phase MgH2. The hydrogen absorption-desorption properties were measured by using a Sieverts-type apparatus. The results showed that the MgH2–PrF3–Al–Ni composite improved cycle stability and enhanced hydrogen desorption kinetics. The improvement of hydrogen absorption-desorption properties is ascribed to the synergetic effect of the in situ formed Pr3Al11 MgF2 PrH3 and Mg2NiH4 nanoparticles. This work provides an important inspiration for the improvement of hydrogen storage properties in Mg-based materials.
No more items...