Publications
Development of a Model Evaluation Protocol for CFD Analysis of Hydrogen Safety Issues – The SUSANA Project
Oct 2015
Publication
The “SUpport to SAfety aNAlysis of Hydrogen and Fuel Cell Technologies (SUSANA)” project aims to support stakeholders using Computational Fluid Dynamics (CFD) for safety engineering design and assessment of FCH systems and infrastructure through the development of a model evaluation protocol. The protocol covers all aspects of safety assessment modelling using CFD from release through dispersion to combustion (self-ignition fires deflagrations detonations and Deflagration to Detonation Transition - DDT) and not only aims to enable users to evaluate models but to inform them of the state of the art and best practices in numerical modelling. The paper gives an overview of the SUSANA project including the main stages of the model evaluation protocol and some results from the on-going benchmarking activities.
Hydrogen Storage: Recent Improvements and Industrial Perspectives
Sep 2017
Publication
Efficient storage of hydrogen is crucial for the success of hydrogen energy markets (early markets as well as transportation market). Hydrogen can be stored either as a compressed gas a refrigerated liquefied gas a cryo-compressed gas or in hydrides. This paper gives an overview of hydrogen storage technologies and details the specific issues and constraints related to the materials behaviour in hydrogen and conditions representative of hydrogen energy uses. It is indeed essential for the development of applications requiring long-term performance to have good understanding of long-term behaviour of the materials of the storage device and its components under operational loads.
Numerical Study of the Detonation Benchmark using GASFLOW-MPI
Sep 2019
Publication
Hydrogen has been widely used as an energy carrier in recent years. It should a better understand of the potential hydrogen risk under the unintended release of hydrogen scenario since the hydrogen could be ignited in a wide range of hydrogen concentrations in the air and generate a fast flame speed. During the accidental situation the hydrogen-air detonation may happen in the large-scale space which is viewed as the worst case state of affairs. GASFLOW-MPI is a powerful CFD-based numerical tool to predict the complicated hydrogen turbulent transport and combustion dynamics behaviours in the three-dimensional large-scale industrial facility. There is a serious of well-developed physical models in GASFLOW-MPI to simulate a wide spectrum of combustion behaviours ranging from slow flames to deflagration-to-detonation transition and even to detonation. The hydrogen–air detonation experiment which was carried out at the RUT tunnel facility is a well-known benchmark to validate the combustion model. In this work a numerical study of the detonation benchmark at RUT tunnel facility is performed using the CFD code GASFLOW-MPI. The complex shock wave structures in the detonation are captured accurately. The experimental pressure records and the simulated pressure dynamics are compared and discussed.
Assessing the Viability of the ACT Natural Gas Distribution Network for Reuse as a Hydrogen Distribution Network
Sep 2019
Publication
The Australian Capital Territory (ACT) has legislated and aims to be net zero emissions by 2045. Such ambitious targets have implications for the contribution of hydrogen and its storage in gas distribution networks Therefore we need to understand now the impacts on the gas distribution network of the transition to 100% hydrogen. Assessment of the viability of decarbonising the ACT gas network will be partly based on the cost of reusing the gas network for the safe and reliable distribution of hydrogen. That task requires each element of the natural gas safety management system to be evaluated.
This article describes the construction of a test facility in Canberra Australia used to identify issues raised by 100% hydrogen use in the medium pressure distribution network consisting of nylon and polyethylene (PE) as a means of identifying measures necessary to ensure ongoing validity of the network's regulatory safety case.
Evoenergy (the ACT's gas distribution company) have constructed a Test Facility incorporating an electrolyser a gas supply pressure reduction and mixing skid a replica gas network and a domestic installation with gas appliances. Jointly with Australian National University (ANU) and Canberra Institute of Technology (CIT) the Company has commenced a program of “bench testing” initially with 100% hydrogen to identify gaps in the safety case specifically focusing on the materials work practices and safety systems in the ACT.
The facility is designed to assess:
The paper addresses major safety issues relating to the production/storage distribution and consumer end use of hydrogen injected into existing gas distribution networks. The analysis is guided by the Safety Management System. The Hydrogen Testing Facility described in the paper provide tools for evaluation of hydrogen safety matters in the ACT and Australia-wide.
Testing to date has confirmed that polyethylene and nylon pipe and their respective jointing techniques can contain 100% hydrogen at pressures used for the distribution of natural gas. Testing has also confirmed that current installation work practices on polyethylene and nylon pipe and joints are suitable for hydrogen service. This finding is subject to variation attributable to staff training and skill levels and further testing has been programmed as outlined in this paper.
Testing of gas isolation by clamping and simulated repair on the hydrogen network has established that standard natural gas isolation techniques work with 100% hydrogen at natural gas pressures.
This article describes the construction of a test facility in Canberra Australia used to identify issues raised by 100% hydrogen use in the medium pressure distribution network consisting of nylon and polyethylene (PE) as a means of identifying measures necessary to ensure ongoing validity of the network's regulatory safety case.
Evoenergy (the ACT's gas distribution company) have constructed a Test Facility incorporating an electrolyser a gas supply pressure reduction and mixing skid a replica gas network and a domestic installation with gas appliances. Jointly with Australian National University (ANU) and Canberra Institute of Technology (CIT) the Company has commenced a program of “bench testing” initially with 100% hydrogen to identify gaps in the safety case specifically focusing on the materials work practices and safety systems in the ACT.
The facility is designed to assess:
- Materials in use including aged network materials and components
- Construction and installation techniques both greenfield and live gas work
- Purging and filling techniques
- Leak detection both underground and above ground
- Emergency response and make safe techniques
- Issues associated with use of hydrogen in light commercial and domestic appliances.
- Technicians and gas fitters on infrastructure installation and management
- Emergency response services on responding to hydrogen related emergencies in a network environment; and
- Manage public perceptions of hydrogen in a network environment.
The paper addresses major safety issues relating to the production/storage distribution and consumer end use of hydrogen injected into existing gas distribution networks. The analysis is guided by the Safety Management System. The Hydrogen Testing Facility described in the paper provide tools for evaluation of hydrogen safety matters in the ACT and Australia-wide.
Testing to date has confirmed that polyethylene and nylon pipe and their respective jointing techniques can contain 100% hydrogen at pressures used for the distribution of natural gas. Testing has also confirmed that current installation work practices on polyethylene and nylon pipe and joints are suitable for hydrogen service. This finding is subject to variation attributable to staff training and skill levels and further testing has been programmed as outlined in this paper.
Testing of gas isolation by clamping and simulated repair on the hydrogen network has established that standard natural gas isolation techniques work with 100% hydrogen at natural gas pressures.
The CALIF3S-P2remics Software – An Application to Underexpanded Hydrogen Jet Deflagration
Sep 2019
Publication
To assess explosion hazard the French Institut de Radioprotection et de Sûreté Nucléaire (IRSN) is developing the P2REMICS software (for Partially PREMIxed Combustion Solver) on the basis of the generic CFD solver library CALIF3S (for Components Adaptive Library for Fluid Flow Simulation). Both P2REMICS and CALIF3S are in-house IRSN softwares released under an open-source license. CALIF3S-P2REMICS is dedicated to the simulation of explosion scenarii (explosive atmosphere formation deflagration or detonation and blast waves propagation) for hydrogen as more generally for any explosive gas or gas/dust mixture. It is based on staggered space discretizations and implements fractional-steps time algorithms well suited for massively parallel computations. A wide range of experiments is used for the software validation. Among them we focus here on a free underexpanded hydrogen jet deflagration performed in two steps: first the hydrogen is released in air up to obtain a steady jet (dispersion phase) then the deflagration is triggered. For the dispersion phase simulation a notional nozzle approach is used to get rid of the description of the shocked zone located near the nozzle. Then a so-called turbulent flame velocity approach is chosen for the deflagration simulation. The computations allow to highlight the complex flow structures induced by the inhomogeneity fuel concentration in the jet. A large dispersion of results is observed depending on the chosen correlation for the turbulent flame speed.
Inhomogeneous Hydrogen Deflagrations in the Presence of Obstacles in 25 m3 Enclosure. Experimental Results
Sep 2019
Publication
Explosion venting is a frequently used measure to mitigate the consequence of gas deflagrations in closed environments. Despite the effort to predict the vent area needed to achieved the protection through engineering formulas and CFD tools work has still to be done to reliably predict the outcome of a vented gas explosion. Blind-prediction exercises recently published show a large spread in the prediction of both engineering formula than CFD tools. University of Pisa performed experimental tests in a 25 m3 facility in inhomogeneous conditions and with the presence of simple obstacles constituted by plates bolted to HEB beams. The present paper is aimed to share the results of hydrogen dispersion and deflagration tests and discuss the comparison of maximum peak overpressure generated with different blockage ratio and repeated obstacles sets. Description of the experimental set-up includes all the details deemed necessary to reproduce the phenomenon with a CFD tool.
Laboratory Method for Simulating Hydrogen Assisted Degradation of Gas Pipeline Steels
Aug 2019
Publication
Integrity of natural gas transmission systems is of great importance for energy and environmental security. Deterioration occurs in gas transit pipelines due to operational conditions and action of corrosion and hydrogenating media and leads to changes in microstructure and mechanical properties of pipeline steels which influences on pipeline performance. Hydrogenation of metal during corrosion process together with working stresses facilitates a development of in-bulk damaging at nano- and microscales. Reducing brittle fracture resistance of pipeline steels under operation increases significantly a failure risk of gas pipelines associated with in-bulk material degradation. Therefore hydrogen assisted degradation of pipelines steels under operation calls for effective methods for in-laboratory accelerated degradation. The present study is devoted to the development of the procedure of laboratory simulation of in-service degradation of pipeline steels. The role of hydrogen in degradation of pipeline steels was analysed. The procedure of accelerated degradation of pipeline steels under the combined action of axial loading and hydrogen charging was developed and induced in the laboratory. The procedure was consisted in consistently subjecting of specimens to electrolytic hydrogen charging to an axial loading up and to an artificial aging. Pipeline steels in the different states (as-received post-operated aged and after in-laboratory degradation) were investigated. The tensile mechanical behaviour of steels and impact toughness were experimentally studied. It was definitely concluded that the applied procedure caused the changes in the metal mechanical properties at the same level compared to the properties degradation due to operation. The developed procedure enables on a laboratory scale simulating of pipeline steel degradation during long-term operation under simultaneous action of hydrogenation and working loading and it makes possible to predict the mechanical behaviour of pipeline steels during service.
Investigating the Hydrogen Storage Capacity of Surfactant Modified Graphene
Mar 2019
Publication
As the depletion of traditional fossil fuels and environmental pollution become a serious problem of human society researchers are actively finding renewable green energy sources. Considered as a clean efficient and renewable alternative Hydrogen energy is considered the most promising energy source. However the safe and efficient storage of hydrogen has become the major problem that hinders its application. To solve this gap this paper proposes to utilize surfactant modified graphene for hydrogen storage. With Hummers method and ultrasonic stripping method this study prepared graphene from graphene oxide with NaBH4. Surfactant sodium dodecylbenzene sulfonate (SDBS) was used as a dispersant during the reduction process to produce the dispersion-stabilized graphene suspensions. The characteristics of the graphene suspensions then were examined by XRD SEM TEM FT-IR Raman XPS TG and N2 adsorption-desorption tests. The hydrogen adsorption properties of the samples were investigated with Langmuir and Freundlich fitting. The results show that the adsorption behavior is consistent with the Freundlich adsorption model and the process is a physical adsorption.
Hydrogen Systems Component Safety
Sep 2013
Publication
The deployment of hydrogen technologies particularly the deployment of hydrogen dispensing systems for passenger vehicles requires that hydrogen components perform reliably in environments where they have to meet the following performance parameters:
The paper will use incident frequency data from NREL’s Technology Validation project to more quantitatively identify safety concerns in hydrogen dispensing and storage systems.
- Perform safely where the consumer will be operating the dispensing equipment
- Dispense hydrogen at volumes comparable to gasoline dispensing stations in timeframes comparable to gasoline stations
- Deliver a fueling performance that is within the boundaries of consumer tolerance
- Perform with maintenance/incident frequencies comparable to gasoline dispensing systems
The paper will use incident frequency data from NREL’s Technology Validation project to more quantitatively identify safety concerns in hydrogen dispensing and storage systems.
Numerical Investigation of Detonation in Stratified Combustible Mixture and Oxidizer with Concentration Gradients
Sep 2019
Publication
Hydrogen leakage in a closed space is one of the causes of serious accidents because of its high detonability. Assuming the situation that hydrogen is accumulated in a closed space two-dimensional numerical simulation for hydrogen oxygen detonation which propagates in stratified fuel and oxidizer with concentration gradient is conducted by using detailed chemical reaction model. The concentration gradient between fuel and oxidizer is expressed by changing the number of hydrogen moles by using sigmoid function. Strength of discontinuity at the boundary is controlled by changing the gain of the function. The maximum pressure history shows that the behaviour of triple points is different depending on the strength of discontinuity between the two kind of gas. In without concentration gradient case the transverse waves are reflected at the boundary because of the sudden change of acoustic impedance ratio between two kind of gas. In contrast in with concentration gradient case the transverse wavs are not reflected in the buffer zone and they are flowed into the oxidizer as its structures are kept. As a result the confined effect declines as the strength of discontinuity between the two kind of gas is weakened and the propagating distance of detonation changes
Effects of Steam Injection on the Permissible Hydrogen Content and Gaseous Emissions in a Micro Gas Turbine Supplied by a Mixture of CH4 and H2: A CFD Analysis
Apr 2022
Publication
The use of hydrogen in small scale gas turbines is currently limited by several issues. Blending hydrogen with methane or other gaseous fuels can be considered a low medium-term viable solution with the goal of reducing greenhouse gas emissions. In fact only small amounts can be mixed with methane in premixed combustors due to the risk of flashback. The aim of this article is to investigate the injection of small quantities of steam as a method of increasing the maximum permissible hydrogen content in a mixture with methane. The proposed approach involves introducing the steam directly into the combustion chamber into the main fuel feeding system of a Turbec T100. The study is carried out by means of CFD analysis of the combustion process. A thermodynamic analysis of the energy system is used to determine boundary conditions. The combustion chamber is discretized using a three-dimensional mesh consisting of 4.7 million nodes and the RANS RSM model is used to simulate the effects of turbulence. The results show that the addition of steam may triple the permissible percentage of hydrogen in the mixture for the considered MGT passing from 10% to over 30% by volume also leading to a reduction in NOx emissions without a significant variation in CO emissions.
Hydrogen Deflagrations in Stratified Flat Layers in the Large-scale Vented Combustion Test Facility
Sep 2019
Publication
This paper examines the flame dynamics of vented deflagration in stratified hydrogen layers. It also compares the measured combustion pressure transients with 3D GOTHIC simulations to assess GOTHIC’s capability in simulating the associated phenomena. The experiments were performed in the Large-Scale Vented Combustion Test Facility at the Canadian Nuclear Laboratories. The stratified layer was formed by injecting hydrogen at a high elevation at a constant flow rate. The dominant parameters for vented deflagrations in stratified layers were investigated. The experimental results show that significant overpressures are generated in stratified hydrogen–air mixtures with local high concentration although the volume-averaged hydrogen concentration is non-flammable. The GOTHIC predictions capture the overall pressure dynamics of combustion very well but the peak overpressures are consistently over-predicted particularly with higher maximum hydrogen concentrations. The measured combustion overpressures are also compared with Molkov’s model prediction based on a layer-averaged hydrogen concentration.
Implementation of hydrogen plasma activation of Mg powder in two steps hydrogenation
Oct 2017
Publication
Development of technologically and economically feasible solutions for hydrogen storage stimulates progress in hydrogen economy. High gravimetric and volumetric capacities of magnesium hydride makes it promising material capable to accelerate implementation of hydrogen-based technologies in our daily life. However widely discussed limitations of sorption kinetics and thermodynamic properties must be managed in MgH2. This work investigates two steps hydrogenation when process of hydrogen absorption is followed after hydrogen plasma activation. Such technique initiates creation of new channels for enhanced hydrogen sorption. Moreover synthesis of negligible amount of hydride acts as positive factor for further hydrogenation.
Numerical Investigation of Hydrogen-air Deflagrations in a Repeated Pipe Congestion
Sep 2019
Publication
Emerging hydrogen energy technologies are creating new avenues for bring hydrogen fuel usage into larger public domain. Identification of possible accidental scenarios and measures to mitigate associated hazards should be well understood for establishing best practice guidelines. Accidentally released hydrogen forms flammable mixtures in a very short time. Ignition of such a mixture in congestion and confinements can lead to greater magnitudes of overpressure catastrophic for both structure and people around. Hence understanding of the permissible level of confinements and congestion around the hydrogen fuel handling and storage unit is essential for process safety. In the present study numerical simulations have been performed for the hydrogen-air turbulent deflagration in a well-defined congestion of repeated pipe rig experimentally studied by [1]. Large Eddy Simulations (LES) have been performed using the in-house modified version of the OpenFOAM code. The Flame Surface Wrinkling Model in the LES context is used for modelling deflagrations. Numerical predictions concerning the effects of hydrogen concentration and congestion on turbulent deflagration overpressure are compared with the measurements [1] to provide validation of the code. Further insight about the flame propagation and trends of the generated overpressures over the range of concentrations are discussed.
Localized Plasticity and Associated Cracking in Stable and Metastable High-Entropy Alloys Pre-Charged with Hydrogen
Dec 2018
Publication
We investigated hydrogen embrittlement in Fe20Mn20Ni20Cr20Co and Fe30Mn10Cr10Co (at.%) alloys pre-charged with 100 MPa hydrogen gas by tensile testing at three initial strain rates of 10−4 10−3 and 10−2 s−1 at ambient temperature. The alloys are classified as stable and metastable austenite-based high-entropy alloys (HEAs) respectively. Both HEAs showed the characteristic hydrogen-induced degradation of tensile ductility. Electron backscatter diffraction analysis indicated that the reduction in ductility by hydrogen pre-charging was associated with localized plasticity-assisted intergranular crack initiation. It should be noted as an important finding that hydrogen-assisted cracking of the metastable HEA occurred not through a brittle mechanism but through localized plastic deformation in both the austenite and ε-martensite phases.
A Study on the Influential Factors of Stress Corrosion Cracking in C110 Casing Pipe
Jan 2022
Publication
In this paper we analyze the potential factors affecting the hydrogen sulfide type of stress corrosion cracking in C110 casing pipes. In order to further study these cracking factors the methods of material property testing scanning electron microscopy XRD TEM and 3D ultra-depth-of-field were applied in the experiments. Besides that an HTHP autoclave was independently designed by the laboratory to simulate the actual corrosion environment and the potential factors affecting the stress corrosion cracking of C110 casing pipes were determined. The test results showed that the chemical composition metallographic structure hardness and non-metallic inclusions of the two types of C110 casing pipes were all qualified. In fact there remains a risk of stress corrosion cracking when the two kinds of C110 casing pipes serve under long-term field-working conditions. It is considered in this paper that the precipitates on the material surface stress damage and pitting corrosion are all critical factors affecting the stress corrosion cracking of casing pipes.
Effect of Microstructural and Environmental Variables on Ductility of Austenitic Stainless Steels
Sep 2019
Publication
Austenitic stainless steels are used extensively in harsh environments including for high-pressure gaseous hydrogen service. However the tensile ductility of this class of materials is very sensitive to materials and environmental variables. While tensile ductility is generally insufficient to qualify a material for hydrogen service ductility is an effective tool to explore microstructural and environmental variables and their effects on hydrogen susceptibility to inform understanding of the mechanisms of hydrogen effects in metals and to provide insight to microstructural variables that may improve relative performance. In this study hydrogen precharging was used to simulate high-pressure hydrogen environments to evaluate hydrogen effects on tensile properties. Several austenitic stainless steels were considered including both metastable and stable alloys. Room temperature and subambient temperature tensile properties were evaluated with three different internal hydrogen contents for type 304L and 316L austenitic stainless steels and one hydrogen content for XM-11. Significant ductility loss was observed for both metastable and stable alloys suggesting the stability of the austenitic phase is not sufficient to characterize the effects of hydrogen. Internal hydrogen does influence the character of deformation which drives local damage accumulation and ultimately fracture for both metastable and stable alloys. While a quantitative description of hydrogen-assisted fracture in austenitic stainless steels remains elusive these observations underscore the importance of the hydrogen-defect interactions and the accumulation of damage at deformation length scales.
H2FC SUPERGEN: An Overview of the Hydrogen and Fuel Cell Research Across the UK
Mar 2015
Publication
The United Kingdom has a vast scientific base across the entire Hydrogen and Fuel Cell research landscape with a world class academic community coupled with significant industrial activity from both UK-based Hydrogen and Fuel Cell companies and global companies with a strong presence within the country. The Hydrogen and Fuel Cell (H2FC) SUPERGEN Hub funded by the Engineering and Physical Sciences Research Council (EPSRC) was established in 2012 as a five-year programme to bring the UK's H2FC research community together. Here we present the UK's current Hydrogen and Fuel Cell activities along with the role of the H2FC SUPERGEN Hub.
Hydrogen Effect on Fatigue and Fracture of Pipe Steels
Sep 2009
Publication
Transport by pipe is one the most usual way to carry liquid or gaseous energies from their extraction point until their final field sites. To limit explosion risk or escape to avoid pollution problems and human risks it is necessary to assess nocivity of defect promoting fracture. This need to know the mechanical properties of the pipes steels. Hydrogen is considered to day as a new energy vector and its transport in one of the key problems to extension of its use. Within the European project NATURALHY it has been proposed to transport a mixture of natural gas and hydrogen. 39 European partners have combined their efforts to assess the effects of hydrogen presence on the existing gas network. Key issues are durability of pipeline material integrity management safety aspects life cycle and socio-economic assessment and end-use. The work described in this paper was performed within the NATURALHY work package on ’Durability of pipeline material’. This study makes it possible to emphasize the hydrogen effect on mechanical properties of several pipe steels as X52 X70 or X100 in fatigue and fracture and in two different environments: air and hydrogen electrolytic.
Simulating Vented Hydrogen Deflagrations: Improved Modelling in the CFD Tool Flacs-Hydrogen
Sep 2019
Publication
This paper describes validation of the computational fluid dynamics tool FLACS-Hydrogen. The validation study focuses on concentration and pressure data from vented deflagration experiments performed in 20-foot shipping containers as part of the project Improving hydrogen safety for energy applications through pre-normative research on vented deflagrations (HySEA) funded by the Fuel Cells and Hydrogen 2 Joint Undertaking (FCH 2 JU). The paper presents results for tests involving inhomogeneous hydrogen-air clouds generated from realistic releases performed during the HySEA project. For both experiments and simulations the peak overpressures obtained for the stratified mixtures are higher than those measured for lean homogeneous mixtures with the same amount of hydrogen. Using an in-house version of FLACS-Hydrogen with the numerical solver Flacs3 and improved physics models results in significantly improved predictions of the peak overpressures compared to the predictions by the standard Flacs2 solver. The paper includes suggestions for further improvements to the model system.
Temperature Change of a Type IV Cylinder During Hydrogen Fuelling Process
Sep 2009
Publication
The temperature of the hydrogen cylinder needs to be carefully controlled during fuelling process. The maximum temperature should be less than 85℃ according to the ISO draft code. If the fuelling period is reduced the maximum temperature should increase. In this study temperature change of a Type IV cylinder was measured during the hydrogen fuelling process up to 35 MPa. Fuelling period was 3 to 5 minutes. Twelve thermocouples were installed to measure inside gas temperature and seven were attached on the outside of the cylinder. An infrared camera was also used for measuring temperature distribution of outside of cylinder. The maximum gas temperature was higher than 85℃ inside of the cylinder. Significant temperature difference between the upper and lower part of the vessel was observed. Temperature near the plug and the valve was quickly increased and maintained higher than that of the other region. Temperature increases for the partial refuelling process were also discussed.
Wide Area and Distributed Hydrogen Sensors
Sep 2009
Publication
Recent advances in optical sensors show promise for the development of new wide area monitoring and distributed optical network hydrogen detection systems. Optical hydrogen sensing technologies reviewed here are: 1) open path Raman scattering systems 2) back scattering from chemically treated solid polymer matrix optical fiber sensor cladding; and 3) schlieren and shearing interferometry imaging. Ultrasonic sensors for hydrogen release detection are also reviewed. The development status of these technologies and their demonstrated results in sensor path length low hydrogen concentration detection ability and response times are described and compared to the corresponding status of hydrogen spot sensor network technologies.
Hydrogen Production from Biomass and Organic Waste Using Dark Fermentation: An Analysis of Literature Data on the Effect of Operating Parameters on Process Performance
Jan 2022
Publication
In the context of hydrogen production from biomass or organic waste with dark fermentation this study analysed 55 studies (339 experiments) in the literature looking for the effect of operating parameters on the process performance of dark fermentation. The effect of substrate concentration pH temperature and residence time on hydrogen yield productivity and content in the biogas was analysed. In addition a linear regression model was developed to also account for the effect of nature and pretreatment of the substrate inhibition of methanogenesis and continuous or batch operating mode. The analysis showed that the hydrogen yield was mainly affected by pH and residence time with the highest yields obtained for low pH and short residence time. High hydrogen productivity was favoured by high feed concentration short residence time and low pH. More modest was the effect on the hydrogen content. The mean values of hydrogen yield productivity and content were respectively 6.49% COD COD−1 135 mg L−1 d −1 51% v/v while 10% of the considered experiments obtained yield productivity and content of or higher than 15.55% COD COD−1 305.16 mg L−1 d −1 64% v/v. Overall this study provides insight into how to select the optimum operating conditions to obtain the desired hydrogen production.
Effect of Precooled Inlet Gas Temperature and Mass flow Rate on Final State of Charge During Hydrogen Vehicle Refueling
Mar 2015
Publication
Short refuelling time and high final state of charge are among the main hydrogen car user's requirements. To meet these requirements without exceeding the tank materials safety limits hydrogen precooling is needed. Filling experiments with different inlet gas temperatures and mass flow rates have been executed using two different types of on-board tanks (type 3 and 4). State of charge has a strong dependency on the inlet gas temperature. This dependency is more visible for type 4 tanks. Lowest precooling temperature (−40 °C) is not always required in order to meet user's requirements so energy savings can be achieved if the initial conditions of the tank are correctly identified. The results of the experiments performed have been compared with the SAE J2601 look-up tables for non-communication fillings. A big safety margin has been observed in these tables. Refuelling could be performed faster and with less demanding precooling requirements if the initial conditions and the configuration of the hydrogen storage system are well known.
Safe Testing of Catalytic Devices in Hydrogen-Air Flow
Sep 2009
Publication
Any experimental study of catalysts and catalytic recombining devices for removal of hydrogen gas from industrial environments is known to carry a risk of ignition of hydrogen. Experiments conducted in an atmosphere with a high concentration of hydrogen present a particular danger. Here a technique is reported that allows conducting such experiments with relative safety. This technique has been developed and applied by the company ‘Russian Energy Technologies’ for the last five years without any significant incident.<br/>A “Gas stream method” for testing and analysis of the characteristics of a catalyst for hydrogen/oxygen recombination is proposed. Tests with a variety of catalysts in a passive recombining device were carried out in a climatic chamber (86 l in volume) with a hydrogen/air mixture containing up to 20% (v/v) hydrogen flowing through it. The balance equation for hydrogen and oxygen flows entering reacting and exiting the chamber led to a formula for calculating the efficiency of a catalyst or a catalytic device under stationary conditions.<br/>Fluctuations in local temperatures of the catalyst and other parts of the chamber along with variation in the concentration of hydrogen gave the authors an insight into the thermal regime of an active catalyst. This enabled them to develop new catalysts for removal of hydrogen from the environment using industrial recombining devices.
Statistical Analysis of Electrostatic Spark Ignition of Lean H2-O2-Ar Mixtures
Sep 2009
Publication
Determining the risk of accidental ignition of flammable mixtures is a topic of tremendous importance in industry and aviation safety. The concept of minimum ignition energy (MIE) has traditionally formed the basis for studying ignition hazards of fuels. In recent years however the viewpoint of ignition as a statistical phenomenon has formed the basis for studying ignition as this approach appears to be more consistent with the inherent variability in engineering test data. We have developed a very low energy capacitive spark ignition system to produce short sparks with fixed lengths of 1 to 2 mm. The ignition system is used to perform spark ignition tests in lean hydrogen oxygen-argon test mixtures over a range of spark energies. The test results are analyzed using statistical tools to obtain probability distributions for ignition versus spark energy demonstrating the statistical nature of ignition. The results also show that small changes in the hydrogen concentration lead to large changes in the ignition energy and dramatically different flame characteristics. A second low-energy spark ignition system is also developed to generate longer sparks with varying lengths up to 10 mm. A second set of ignition tests is performed in one of the test mixtures using a large range of park energies and lengths. The results are analyzed to obtain a probability distribution for ignition versus the spark energy per unit spark length. Preliminary results show that a single threshold MIE value does not exist and that the energy per unit length may be a more appropriate parameter for quantifying the risk of ignition.
CFD Benchmark Based on Experiments of Helium Dispersion in a 1m3 Enclosure–intercomparisons for Plumes
Sep 2013
Publication
In the context of the French DIMITRHY project ANR-08-PANH006 experiments have been carried out to measure helium injections in a cubic 1 m3 box - GAMELAN in a reproducible and quantitative manner. For the present work we limit ourselves to the unique configuration of a closed box with a small hole at its base to prevent overpressure. This case leads to enough difficulties of modelisations to deserve our attention. The box is initially filled with air and injections of helium through a tube of diameter 20 mm is operated. The box is instrumented with catharometres to measure the helium volume concentration within an accuracy better than 0.1%. We present the CFD (Fluent and CASTEM ANSYS-CFX and ADREA-HF) calculations results obtained by 5 different teams participating to the benchmark in the following situation: the case of a plume release of helium in a closed box (4NL/min). Parts of the CFD simulations were performed in the European co-funded project HyIndoor others were performed in the French ANR-08-PANH006 DimitrHy project.
CFD design of protective walls against the effects of vapor cloud fast deflagration of hydrogen
Oct 2015
Publication
Protective walls are a well-known and efficient way to mitigate overpressure effects of accidental explosions (detonation or deflagration). For detonation there are multiple published studies whereas for deflagration no well-adapted and rigorous method has been reported in the literature. This article describes the validation of a new modelling approach for fast deflagrations of H2. This approach includes two steps. At the first step the combustion phase of vapor cloud explosion (VCE) involving a fast deflagration is substituted by equivalent vessel burst problem. The purpose of this step is to avoid the reactive flow computations. At the second step CFD is used for computations of pressure propagation from the equivalent (non reactive) vessel burst problem. After verifying the equivalence of the fast deflagration and the vessel burst problem at the first step the capability of two CFD codes such as FLACS and Europlexus are examined for modelling of the vessel burst problem (with and without barriers). Finally the efficiency of finite and infinite barriers used for mitigation of the shock is investigated
Feasibility of Hydrogen Detection by the Use of Uncoated Silicon Microcantilever-based Sensors
Sep 2013
Publication
Hydrogen is a key parameter to monitor radioactive disposal facility such as the envisioned French geological repository for nuclear wastes. The use of microcantilevers as chemical sensors usually involves a sensitive layer whose purpose is to selectively sorb the analyte of interest. The sorbed substance can then be detected by monitoring either the resonant frequency shift (dynamic mode) or the quasi-static deflection (static mode). The objective of this paper is to demonstrate the feasibility of eliminating the need for the sensitive layer in the dynamic mode thereby increasing the long-term reliability. The microcantilever resonant frequency allows probing the mechanical properties (mass density and viscosity) of the surrounding fluid and thus to determine the concentration of a species in a binary gaseous. Promising preliminary work has allowed detecting concentration of 200 ppm of hydrogen in air with non-optimized geometry of silicon microcantilever with integrated actuation and read-out.
Effects of Surface on the Flammable Extent of Hydrogen Jets
Sep 2009
Publication
The effect of surfaces on the extent of high pressure horizontal unignited jets of hydrogen and methane is studied using CFD numerical simulations performed with FLACS Hydrogen. Results for constant flow rate through a 6.35 mm PRD from 100 barg and 700 barg storage units are presented for horizontal hydrogen and methane jets. To quantify the effect of a horizontal surface on the jet the jet exit is positioned at various heights above the ground ranging from 0.1 m to 10 m. Free jet simulations are performed for comparison purposes.
Polymer Behaviour in High Pressure Hydrogen, Helium and Argon Environments as Applicable to the Hydrogen Infrastructure
Sep 2017
Publication
Polymers for O-rings valve seats gaskets and other sealing applications in the hydrogen infrastructure face extreme conditions of high-pressure H2 (0.1 to 100 MPa) during normal operation. To fill current knowledge gaps and to establish standard test methods for polymers in H2 environments these materials can be tested in laboratory scale H2 manifolds mimicking end use pressure and temperature conditions. Beyond the influence of high pressure H2 the selection of gases used for leak detection in the H2 test manifold their pressures and times of exposure gas types relative diffusion and permeation rates are all important influences on the polymers being tested. These effects can be studied ex-situ with post-exposure characterization. In a previous study four polymers (Viton A Buna N High Density Polyethylene (HDPE) and Polytetrafluoroethylene (PTFE)) commonly used in the H2 infrastructure were exposed to high-pressure H2 (100 MPa). The observed effects of H2 were consistent with typical polymer property-structure relationships; in particular H2 affected elastomers more than thermoplastics. However since high pressure He was used for purging and leak detection prior to filling with H2 a study of the influence of the purge gas on these polymers was considered necessary to isolate the effects of H2 from those of the purge gas. Therefore in this study Viton A Buna N and PTFE were exposed to the He purge procedure without the subsequent H2 exposure. Additionally six polymers Viton A Buna N PTFE Polyoxymethylene (POM) Polyamide 11 (Nylon) and Ethylenepropylenediene monomer rubber (EPDM) were subjected to high pressure Ar (100 MPa) followed by high pressure H2 (100 MPa) under the same static isothermal conditions to identify the effect of a purge gas with a significantly larger molecular size than He. Viton A and Buna N elastomers are more prone to irreversible changes as a result of H2 exposure from both Ar and He leak tests as indicated by influences on storage modulus extent of swelling and increased compression set. EPDM even though it is an elastomer is not as prone to high-pressure gas influences. The thermoplastics are generally less influenced by high pressure regardless of the gas type. Conclusions from these experiments will provide insight into the influence of purging processes and purge gases on the subsequent testing in high pressure gaseous H2. Control for the influence of purging on testing results is essential for the development of robust test methods for evaluating the effects of H2 and other high-pressure gases on the properties of polymers.
Advancing the Hydrogen Safety Knowledge Base
Sep 2013
Publication
The International Energy Agency's Hydrogen Implementing Agreement (IEA HIA) was established in 1977 to pursue collaborative hydrogen research and development and information exchange among its member countries. Information and knowledge dissemination is a key aspect of the work within IEA HIA tasks and case studies technical reports and presentations/publications often result from the collaborative efforts. The work conducted in hydrogen safety under Task 31 and its predecessor Task 19 can positively impact the objectives of national programs even in cases for which a specific task report is not published. The interactions within Task 31 illustrate how technology information and knowledge exchange among participating hydrogen safety experts serve the objectives intended by the IEA HIA.
Application of Risk Assessment Approach on a Hydrogen Station
Sep 2013
Publication
An accident modelling approach is used to assess the safety of a hydrogen station as part of a ground transportation network. The method incorporates prevention barriers associated to human factors management and organizational failures in a risk assessment framework. Failure probabilities of these barriers and end-states events are predicted using Fault Tree Analysis and Event Tree Analysis respectively. Results from the case study considered revealed the capability of the proposed method in estimating the likelihood of various outcomes as well as predicting the future probability. In addition the scheme offers opportunity to provide dynamic adjustment by updating the failure probability with actual plant data. Results from the analysis can be used to plan maintenance and management of change as required by the plant condition.
Hydrogen Bubble Dispersion and Surface Bursting Behaviour
Sep 2013
Publication
In many processes where hydrogen may be released from below a liquid surface there has been concern regarding how such releases might ultimately disperse in an ullage space. Knowledge of the extent and persistence of any flammable volume formed is needed for hazardous area classification as well as for validation of explosion modelling or experiments. Following an initial release of hydrogen the overall process can be subdivided into three stages (i) rise and possible break-up of a bubble in the liquid (ii) formation and bursting of a thin gas-liquid-gas interface at the liquid surface and (iii) dispersion of the released gas. An apparatus based on a large glass sided water tank has been constructed which employs two synchronised high-speed imaging systems to record the behaviour of hydrogen bubble release and dispersion. A high-speed digital video system records the rising of the bubbles and the formation and bursting of the gas-liquid-gas interface at the liquid surface. An additional schlieren system is used to visualise the hydrogen release as bubbles burst at the liquid surface. The bubble burst mechanism can clearly be described from the results obtained. Following the nucleation of a hole surface tension causes the liquid film to peel back rapidly forming a ring/torus of liquid around the enlarging hole. This process lasts only a few milliseconds. Although some hydrogen can be seen to be expelled from the bubble much seems to remain in place as the film peels away. To assess the extent of the flammable plume following a bubble burst the apparatus was modified to include an electric-arc igniter. In order to identify plumes coincident in space with the igniter a schlieren system was built capable of recording simultaneously in two orthogonal directions. This confirmed that clouds undetected by the schlerien imaging could not be ignited with the electric arc igniter.
CO2-Free Hydrogen Supply Chain Project and Risk Assessment for the Safety Design
Sep 2013
Publication
We at Kawasaki Heavy Industries have proposed a "CO2-Free H2 supply chain" using abundant brown coal of Australian origin as the energy source. This chain will store CO2 generated during the process for producing hydrogen from brown coal in a project (Carbon Net) that the Australia Government is promoting. Thus Japan can import CO2-free hydrogen. The supply chain consists of the hydrogen production system the hydrogen transport/storage system and the hydrogen use system. Related to their designs we have to consider their hazards polluted scenarios and safety measures via a safety assessment process that is compliant with international risk assessment standards. To verify safety designs related experiments and analyses will be conducted. This paper describes the approach to safety design for especially the related liquid hydrogen facilities.
Assessment of a CFD Model for Simulations of Fast Filling of Hydrogen Tanks with Pre-cooling
Sep 2013
Publication
High gas temperatures can be reached inside a hydrogen tank during the filling process because of the large pressure increase (up to 70-80 MPa) and because of the short time (~3 minutes) of the process. High temperatures can potentially jeopardize the structural integrity of the storage system and one of the strategies to reduce the temperature increase is to pre-cool the hydrogen before injecting it into the tank. Computational Fluid Dynamics (CFD) tools have the capabilities of capturing the flow field and the temperature rise in the tank. The results of CFD simulations of fast filling with pre-cooling are shown and compared with experimental data to assess the accuracy of the CFD model
High Pressure Hydrogen Tank Rupture: Blast Wave and Fireball
Oct 2015
Publication
In the present study the phenomena of blast wave and fireball generated by high pressure (35 MPa) hydrogen tank (72 l) rupture have been investigated numerically. The realizable k-ε turbulence model was applied. The simulation of the combustion process is based on the eddy dissipation model coupled with the one step chemical reaction mechanism. Simulation results are compared with experimental data from a stand-alone hydrogen fuel tank rapture following a bonfire test. The model allows the study of the interaction between combustion process and blast wave propagation. Simulation results (blast wave overpressure fireball shape and size) follow the trends observed in the experiment.
A Comparison of Alternative Fuels for Shipping in Terms of Lifecycle Energy and Cost
Dec 2021
Publication
Decarbonization of the shipping sector is inevitable and can be made by transitioning into low‐ or zero‐carbon marine fuels. This paper reviews 22 potential pathways including conventional Heavy Fuel Oil (HFO) marine fuel as a reference case “blue” alternative fuel produced from natural gas and “green” fuels produced from biomass and solar energy. Carbon capture technology (CCS) is installed for fossil fuels (HFO and liquefied natural gas (LNG)). The pathways are compared in terms of quantifiable parameters including (i) fuel mass (ii) fuel volume (iii) life cycle (Well‐To‐ Wake—WTW) energy intensity (iv) WTW cost (v) WTW greenhouse gas (GHG) emission and (vi) non‐GHG emissions estimated from the literature and ASPEN HYSYS modelling. From an energy perspective renewable electricity with battery technology is the most efficient route albeit still impractical for long‐distance shipping due to the low energy density of today’s batteries. The next best is fossil fuels with CCS (assuming 90% removal efficiency) which also happens to be the lowest cost solution although the long‐term storage and utilization of CO2 are still unresolved. Biofuels offer a good compromise in terms of cost availability and technology readiness level (TRL); however the non‐GHG emissions are not eliminated. Hydrogen and ammonia are among the worst in terms of overall energy and cost needed and may also need NOx clean‐up measures. Methanol from LNG needs CCS for decarbonization while methanol from biomass does not and also seems to be a good candidate in terms of energy financial cost and TRL. The present analysis consistently compares the various options and is useful for stakeholders involved in shipping decarbonization.
Effect of Initial Turbulence on Vented Explosion Over Pressures from Lean Hydrogen-air Deflagrations
Sep 2013
Publication
To examine the effect of initial turbulence on vented explosions experiments were performed for lean hydrogen–air mixtures with hydrogen concentrations ranging from 12 to 15% vol. at elevated initial turbulence. As expected it was found that an increase in initial turbulence increased the overall flame propagation speed and this increased flame propagation speed translated into higher peak overpressures during the external explosion. The peak pressures generated by flame–acoustic interactions however did not vary significantly with initial turbulence. When flame speeds measurements were examined it was found that the burning velocity increased with flame radius as a power function of radius with a relatively constant exponent over the range of weak initial turbulence studied and did not vary systematically with initial turbulence. Instead the elevated initial turbulence increased the initial flame propagation velocities of the various mixtures. The initial turbulence thus appears to act primarily by generating higher initial flame wrinkling while having a minimal effect on the growth rate of the wrinkles. For practical purposes of modelling flame propagation and pressure generation in vented explosions the increase in burning velocity due to turbulence is suggested to be approximated by a single constant factor that increases the effective burning velocity of the mixture. When this approach is applied to a previously developed vent sizing correlation the correlation performs well for almost all of the peaks. It was found however that in certain situations this approach significantly under predicts the flame–acoustic peak. This suggests that further research may be necessary to better understand the influence of initial turbulence on the development of flame–acoustic peaks in vented explosions.
Review of Methods For Estimating the Overpressure and Impulse Resulting From a Hydrogen Explosion in a Confined/Obstructed Volume
Sep 2009
Publication
This study deals with the TNO Multi-Energy and Baker-Strehlow-Tang (BST) methods for estimating the positive overpressures and positive impulses resulting from hydrogen-air explosions. With these two methods positive overpressure and positive impulse results depend greatly on the choice of the class number for the TNO Multi-Energy method or the Mach number for the BST methods. These two factors permit the user to read the reduced parameters of the blast wave from the appropriate monographs for each of these methods i.e. positive overpressure and positive duration phase for the TNO Multi-Energy method and positive overpressure and positive impulse for the BST methods. However for the TNO Multi-Energy method the determination of the class number is not objective because it is the user who makes the final decision in choosing the class number whereas with the BST methods the user is strongly guided in their choice of an appropriate Mach number. These differences in the choice of these factors can lead to very different results in terms of positive overpressure and positive impulse. Therefore the objective of this work was to compare the positive overpressures and positive impulses predicted with the TNO Multi-Energy and BST methods with data available from large-scale experiments.
Numerical investigation of hydrogen leakage from a high pressure tank and pipeline
Sep 2017
Publication
We numerically investigated high-pressure hydrogen leakage from facilities in storage and transportation phases. In storage phase assuming a tank placed in a hydrogen station we examined unsteady diffusion distance up to 100 ms after leakage. A series of simulations led us to develop an equation of unsteady hydrogen diffusion distance as a function of mass flow rate leakage opening diameter and tank pressure. These results helped us develop a safety standard for unsteady hydrogen diffusion. In transportation phase we simulated (in three dimensions) the dominant factor of steady mass flow rate from a square opening of a rectangular pipeline and the pressure distribution in the pipeline after leakage. The mass flow rate was smaller than the maximum mass flow rate and the pressure distribution converged to a steady state that was 16% higher than the pressure after the passage of expansion waves in a shock tube model. We introduced a theoretical model by dividing the flow with the leakage opening into two phases of the unsteady expansion waves’ propagation and acceleration. The simulation results showed good agreement with the modeling equation when the shrink coefficient was set to 0.8. When the leakage opening was rectangular the simulation results again showed good agreement with the modelling equation suggesting that our simulated results are independent of the leakage opening shape.
Comparisons of Helium and Hydrogen Releases in 1 M3 and 2 M3 Two Vents Enclosures: Concentration Measurements at Different Flow Rates and for Two Diameters of Injection Nozzle
Oct 2015
Publication
This work presents a parametric study on the similitude between hydrogen and helium distribution when released in the air by a source located inside of a naturally ventilated enclosure with two vents. Several configurations were experimentally addressed in order to improve knowledge on dispersion. Parameters were chosen to mimic operating conditions of hydrogen energy systems. Thus the varying parameters of the study were mainly the source diameter the releasing flow rate the volume and the geometry of the enclosure. Two different experimental set-ups were used in order to vary the enclosure's height between 1 and 2 m. Experimental results obtained with helium and hydrogen were compared at equivalent flow rates determined with existing similitude laws. It appears for the plume release case that helium can suitably be used for predicting hydrogen dispersion in these operating designs. On the other hand – when the flow turns into a jet – non negligible differences between hydrogen and helium dispersion appear. In this case helium – used as a direct substitute to hydrogen – will over predict concentrations we would get with hydrogen. Therefore helium concentration read-outs should be converted to obtain correct predictions for hydrogen. However such a converting law is not available yet.
In Situ X-ray Absorption Spectroscopy Study on Water Formation Reaction of Palladium Metal Nanoparticle Catalysts
Oct 2015
Publication
Proper management of hydrogen gas is very important for safety security of nuclear power plants. Hydrogen removal by water formation reaction on a catalyst is one of the candidates for creating hydrogen free system. We observed in situ and time-resolved structure change of palladium metal nanoparticle catalyst during the water formation reaction by using X-ray absorption spectroscopy technique. A poisoning effect by carbon monoxide on catalytic activity was also studied. We have found that the creation of oxidized surface layer on palladium metal nanoparticles plays an important role for the water formation reaction process.
Compatibility and Suitability of Existing Steel Pipelines for Transport of Hydrogen and Hydrogen-natural Gas Blends
Sep 2017
Publication
Hydrogen is being considered as a pathway to decarbonize large energy systems and for utility-scale energy storage. As these applications grow transportation infrastructure that can accommodate large quantities of hydrogen will be needed. Many millions of tons of hydrogen are already consumed annually some of which is transported in dedicated hydrogen pipelines. The materials and operation of these hydrogen pipeline systems however are managed with more constraints than a conventional natural gas pipeline. Transitional strategies for deep decarbonization of energy systems include blending hydrogen into existing natural gas systems where the materials and operations may not have the same controls. This study explores the hydrogen compatibility of existing pipeline steels and the suitability of these steels in hydrogen pipeline systems. Representative fracture and fatigue properties of pipeline grade steels in gaseous hydrogen are summarized from the literature. These properties are then considered in idealized design life calculations to inform materials performance for a typical gas pipeline.
Numerical Simulations of a Large Hydrogen Release in a Process Plant
Sep 2009
Publication
This paper describes a series of numerical simulations with release and ignition of hydrogen. The objective of this work was to re-investigate the accidental explosion in an ammonia plant which happened in Norway in 1985 with modern CFD tools. The severe hydrogen-air explosion led to two fatalities and complete destruction of the factory building where the explosion occurred. A case history of the accident was presented at the 1.st ICHS in Pisa 2005.<br/>The numerical simulations have been performed with FLACS a commercial CFD simulation tool for gas dispersion and gas explosions. The code has in the recent years been validated in the area of hydrogen dispersion and explosions.<br/>The factory building was 100 m long 10 m wide and 7 m high. A blown-out gasket in a water pump led to release of hydrogen from a large reservoir storing gaseous hydrogen at 3.0 MPa. The accident report estimated a total mass of released hydrogen between 10 and 20 kg. The location of the faulty gasket is known but the direction of the accidental release is not well known and has been one of the topics of our investigations. Several simulations have been performed to investigate the mixing process of hydrogen-air clouds and the development of a flammable gas cloud inside the factory building resulting in a simulation matrix with dispersions in all axis directions. Simulations of ignition of the different gas clouds were carried out and resulting pressure examined. These results have been compared with the damages observed during the accident investigation.<br/>We have also performed FLACS simulations to study the effect of natural venting and level of congestion. The height of the longitudinal walls has been varied leading to different vent openings at floor level at the ceiling and a combination of the two. This was done to investigate the effects of congestion with regards to gas cloud formation.<br/>The base case simulation appears to be in good accordance to the observed damages from the accident. The simulations also show that the build up of the gas cloud strongly depends on the direction of the jet and degree of ventilation. The CFD study has given new insights to the accident and the results are a clear reminder of the importance of natural venting in hydrogen safety.
Safety and Regulatory Challenges of Using Hydrogen/Natural Gas Blends in the UK
Sep 2019
Publication
The addition of hydrogen to natural gas for heating and cooking is being considered as a route to reducing carbon emissions in the United Kingdom (UK). The HyDeploy programme (hereafter referred to as HyDeploy) aims to demonstrate that hydrogen can be added to the natural gas supply without compromising public safety or appliance performance. This paper relates to the preparatory work for hydrogen injection on a live site at Keele University closed network comprising domestic premises multi-occupancy buildings and light commercial premises. The project is based around the injection of up to 20 %mol/mol hydrogen into mains natural gas at pressures below 2 barg. Work streams addressed during the pre-trial preparation included; assessment of material interaction with hydrogen blends for all distribution system components and appliances; understanding of gas appliance behaviour; review of: gas detection systems fire and explosion considerations routine and emergency procedural considerations; and the design of a new hydrogen injection grid entry unit. This paper describes the safety and regulatory challenges that were encountered during preparation of the project including obtaining the necessary regulatory permissions to blend hydrogen gas.
Numerical Investigation of Hydrogen Dispersion into Air
Sep 2009
Publication
Computational fluid dynamics (CFD) is used to numerically solve the sudden release of hydrogen from a high pressure tank (up to 70MPa) into air. High pressure tanks increase the risk of failure of the joints and pipes connected to the tank which results in release of Hydrogen. The supersonic flow caused by high pressure ratio of reservoir to ambient generates a strong Mach disk. A three dimensional in-house code is developed to simulate the flow. High pressure Hydrogen requires a real gas law because it deviates from ideal gas law. Firstly Beattie-Bridgeman and Abel-Noble real gas equation of states are applied to simulate the release of hydrogen in hydrogen. Then Abel-Noble is implied to simulate the release of hydrogen in air. Beattie-Bridgeman has stability problems in the case of hydrogen in air. A transport equation is used to solve the concentration of Hydrogen-air mixture. The code is second order accurate in space and first order in time and uses a modified Van Leer limiter. The fast release of Hydrogen from a small rupture needs a very small mesh therefore parallel computation is applied to overcome memory problems and to decrease the solution time. The high pressure ratio of the reservoir to ambient causes a very fast release which is accurately modelled by the code and all the shocks and Mach disk happening are observed in the results. The results show that the difference between real gas and ideal gas models cannot be ignored.
Effect of Hydrogen Concentration on Vented Explosion Overpressures from Lean Hydrogen–air Deflagrations
Sep 2011
Publication
Experimental data from vented explosion tests using lean hydrogen–air mixtures with concentrations from 12 to 19% vol. are presented. A 63.7-m3 chamber was used for the tests with a vent size of either 2.7 or 5.4 m2. The tests were focused on the effect of hydrogen concentration ignition location vent size and obstacles on the pressure development of a propagating flame in a vented enclosure. The dependence of the maximum pressure generated on the experimental parameters was analyzed. It was confirmed that the pressure maxima are caused by pressure transients controlled by the interplay of the maximum flame area the burning velocity and the overpressure generated outside of the chamber by an external explosion. A model proposed earlier to estimate the maximum pressure for each of the main pressure transients was evaluated for the various hydrogen concentrations. The effect of the Lewis number on the vented explosion overpressure is discussed.
High-pressure PEM Water Electrolysis and Corresponding Safety Issues
Sep 2009
Publication
In this paper safety considerations related to the operation of proton-exchange membrane (PEM) water electrolysers (hydrogen production capacity up to 1 Nm3/h and operating pressure up to 130 bars) are presented. These results were obtained in the course of the GenHyPEM project a research program on high-pressure PEM water electrolysis supported by the European Commission. Experiments were made using a high-pressure electrolysis stack designed for operation in the 0–130 bars pressure range at temperatures up to 90 °C. Besides hazards related to the pressure itself hydrogen concentration in the oxygen gas production and vice-versa (resulting from membrane crossover permeation effects) have been identified as the most significant risks. Results show that the oxygen concentration in hydrogen at 130 bars can be as high as 2.66 vol %. This is a value still outside the flammability limit for hydrogen–oxygen mixtures (3.9–95.8 vol %) but safety measures are required to prevent explosion hazards. A simple model based on the diffusion of dissolved gases is proposed to account for gas cross-permeation effects. To reduce contamination levels different solutions are proposed. First thicker membranes can be used. Second modified or composite membranes with lower gas permeabilities can be used. Third as reported earlier external catalytic gas recombiners can be used to promote H2/O2 recombination and reduce contamination levels in the gas production. Finally other considerations related to cell and stack design are also discussed to further reduce operation risks.
Gas Detection of Hydrogen/Natural Gas Blends in the Gas Industry
Sep 2019
Publication
A key element in the safe operation of a modern gas distribution system is gas detection. The addition of hydrogen to natural gas will alter the characteristics of the fuel and therefore its impact on gas detection must be considered. It is important that gas detectors remain sufficiently sensitive to the presence of hydrogen and natural gas mixtures and that they do not lead to false readings. This paper presents analyses of work performed as part of the Office for Gas and Energy Markets (OFGEM) funded HyDeploy project on the response of various natural gas industry detectors to blended mixtures up to 20 volume percent (vol%) of hydrogen in natural gas. The scope of the detectors under test included survey instruments and personal monitors that are used in the gas industry. Four blend ratios were analysed (0 10 15 and 20 vol% hydrogen in natural gas). The laboratory testing undertaken investigated the following:
- Flammable response to blends in the ppm range (0-0.2 vol%);
- Flammable response to blends in the lower explosion limit range (0.2-5 vol%);
- Flammable response to blends in the volume percent range (5-100 vol%);
- Oxygen response to blends in the volume percent range (0-25 vol%); and
- Carbon monoxide response to blends in the ppm range (0-1000 ppm).
Smart Systems and Heat: Decarbonising Heat for UK homes
Nov 2015
Publication
Around 20% of the nation’s carbon emissions are generated by domestic heating. Analysis of the many ways the energy system might be adapted to meet carbon targets shows that the elimination of emissions from buildings is more cost effective than deeper cuts in other energy sectors such as transport. This effectively means that alternatives need to be found for domestic natural gas heating systems. Enhanced construction standards are ensuring that new buildings are increasingly energy efficient but the legacy building stock of around 26 million homes has relatively poor thermal performance and over 90% are expected to still be in use in 2050. Even if building replacement was seen as desirable the cost is unaffordable and the carbon emissions associated with the construction would be considerable.
YouTube link to accompanying video
YouTube link to accompanying video
High Pressure Hydrogen Fires
Sep 2009
Publication
Within the scope of the French national project DRIVE and European project HyPER high pressure jet flames of hydrogen were produced and instrumented.<br/>The experimental technique and measurement strategy are presented. Many aspects are original developments like the direct measurement of the mass flow rate by weighing continuously the hydrogen container the image processing to extract the flame geometry the heat flux measurement device the thermocouples arrangement…<br/>Flames were observed from 900 bar down to 1 bar with orifices ranging from 1 to 3 mm. An original set of data is now available about the main flame characteristics and about some thermodynamic aspects of hydrogen releases under high pressure.<br/>A brief comparison of some available models is presented.
Analysis of Wind to Hydrogen Production and Carbon Capture Utilisation and Storage Systems for Novel Production of Chemical Energy Carriers
Apr 2022
Publication
As the offshore energy landscape transitions to renewable energy useful decommissioned or abandoned oil and gas infrastructure can be repurposed in the context of the circular economy. Oil and gas platforms for example offer opportunity for hydrogen (H2) production by desalination and electrolysis of sea water using offshore wind power. However as H2 storage and transport may prove challenging this study proposes to react this H2 with the carbon dioxide (CO2) stored in depleted reservoirs. Thus producing a more transportable energy carriers like methane or methanol in the reservoir. This paper presents a novel thermodynamic analysis of the Goldeneye reservoir in the North Sea in Aspen Plus. For Goldeneye which can store 30 Mt of CO2 at full capacity if connected to a 4.45 GW wind farm it has the potential to produce 2.10 Mt of methane annually and abate 4.51 Mt of CO2 from wind energy in the grid.
Decarbonization of the Iron and Steel Industry with Direct Reduction of Iron Ore with Green Hydrogen
Feb 2020
Publication
Production of iron and steel releases seven percent of the global greenhouse gas (GHG) emissions. Incremental changes in present primary steel production technologies would not be sufficient to meet the emission reduction targets. Replacing coke used in the blast furnaces as a reducing agent with hydrogen produced from water electrolysis has the potential to reduce emissions from iron and steel production substantially. Mass and energy flow model based on an open-source software (Python) has been developed in this work to explore the feasibility of using hydrogen direct reduction of iron ore (HDRI) coupled with electric arc furnace (EAF) for carbon-free steel production. Modeling results show that HDRI-EAF technology could reduce specific emissions from steel production in the EU by more than 35% at present grid emission levels (295 kgCO2/MWh). The energy consumption for 1 ton of liquid steel (tls) production through the HDRI-EAF route was found to be 3.72 MWh which is slightly more than the 3.48 MWh required for steel production through the blast furnace (BF) basic oxygen furnace route (BOF). Pellet making and steel finishing processes have not been considered. Sensitivity analysis revealed that electrolyzer efficiency is the most important factor affecting the system energy consumption while the grid emission factor is strongly correlated with the overall system emissions.
Numerical Study of the Near-field of Highly Under-expanded Turbulent Gas Jets
Sep 2011
Publication
For safety issues related to the storage of hydrogen under high pressure it is necessary to determine how the gas is released in the case of failure. In particular there exist limited quantitative information on the near-field properties of the gas jets which are important for establishing proper decay laws in the far-field. This paper reports recent CFD results for air and helium obtained in the near-field of the highly under-expanded jets. The gas jets are released from a 30-bar tank with the same opening (orifice). The Reynolds number based on the diameter of the orifice and corresponding gas conditions at the exit was well beyond 106 . The 3D Compressible Multi-Component Navier-Stokes equations were solved directly without relying on the compressibility-corrected turbulence models. The numerical model was initially tested on a one-component (air-air) case where a few aerospace-driven data sets are available for validation. The shock geometry is characterized through the Mach disk position and diameter. These are compared to the results known from the literature and to the scaling laws developed based on the dimensional analysis. In the second two-component (helium-air) jet scenario the density field was validated and examined together with other fields in the attempt to suggest potential initial conditions for the forthcoming far-field simulations.
Hydrogen-Air Explosive Envelope Behaviour in Confined Space at Different Leak Velocities
Sep 2009
Publication
The report summarizes experimental results on the mechanisms and kinetics of hydrogen-air flammable gas cloud formation and evolution due to foreseeable (less than 10-3 kg/sec) hydrogen leaks into confined spaces with different shapes sizes and boundary conditions. The goals were - 1) to obtain qualitative information on the basic gas-dynamic patterns of flammable cloud formation at different leak velocities (between 935 and 905 m/sec) for a fixed leak flowrate and 2) to collect quantitative data on spatial and temporal characteristics of the revealed patterns. Data acquisition was performed using a spatially distributed reconfigurable net of 24 hydrogen gauges with short response time. This experimental innovation permits to study spatial features of flammable cloud evolution in detail which previously was attainable only from CFD computations. Two qualitatively different gas dynamic patterns were documented for the same leak flowrate. In one limiting case (sufficiently low speed of leak) the overall gas-dynamic pattern can be described by the well-known “filling box” model. In another limited case (high velocity of leak) it is proposed to describe the peculiarities of gas-dynamic behavior of flammable cloud by the term of a “fading up box” model. From the safety view point the “fading up box” case is more hazardous than the “filling box” case. Differences in macroscopic and kinetic behavior which are essential for safety provision are presented. Empirical non-dimensional criterion for discrimination of the two revealed basic patterns for hydrogen leaks into confined spaces with comparable length scale is proposed. The importance of the revealed “fading up box” gas-dynamic pattern is discussed for development of an advanced hydrogen gauges system design and safety criteria.
Enhanced Production of Hydrogen from Methanol Using Spark Discharge Generated in a Small Portable Reactor
Nov 2021
Publication
An efficient production of hydrogen from a mixture of methanol and water is possible in a spark discharge. In this discharge there is a synergistic effect of high-energy electrons and high temperature interactions which enables an efficient course of endothermic processes such as the production of hydrogen from methanol. The water to methanol molar ratio of 1:1 was kept constant during the study. While the discharge power and feed flow rate were varied from 15 to 55 W and from 0.25 to 2 mol/h respectively which corresponded to the residence time of the reactants in the plasma zone from 58 to 7 ms. The cooled gas mixture contained 56 to 60% of H2. Other gaseous products of the process were CO CO2 and a small amount of CH4. The maximum energy yield was 16.2 mol(H2)/kWh which represents 20% of the theoretical energy yield when the substrates are in a liquid phase.
Hydrogen Ironmaking: How It Works
Jul 2020
Publication
A new route for making steel from iron ore based on the use of hydrogen to reduce iron oxides is presented detailed and analyzed. The main advantage of this steelmaking route is the dramatic reduction (90% off) in CO2 emissions compared to those of the current standard blast-furnace route. The first process of the route is the production of hydrogen by water electrolysis using CO2-lean electricity. The challenge is to achieve massive production of H2 in acceptable economic conditions. The second process is the direct reduction of iron ore in a shaft furnace operated with hydrogen only. The third process is the melting of the carbon-free direct reduced iron in an electric arc furnace to produce steel. From mathematical modeling of the direct reduction furnace we show that complete metallization can be achieved in a reactor smaller than the current shaft furnaces that use syngas made from natural gas. The reduction processes at the scale of the ore pellets are described and modeled using a specific structural kinetic pellet model. Finally the differences between the reduction by hydrogen and by carbon monoxide are discussed from the grain scale to the reactor scale. Regarding the kinetics reduction with hydrogen is definitely faster. Several research and development and innovation projects have very recently been launched that should confirm the viability and performance of this breakthrough and environmentally friendly ironmaking process.
Assessment of the Effects of Inert Gas and Hydrocarbon Fuel Dilution on Hydrogen Flames
Sep 2009
Publication
To advance hydrogen into the energy market it is necessary to consider risk assessment for scenarios that are complicated by accidental hydrogen release mixing with other combustible hydrocarbon fuels. The paper is aimed at examining the effect of mixing the hydrocarbon and inert gas into the hydrogen flame on the kinetic mechanisms the laminar burning velocity and the flame stability. The influences of hydrogen concentration on the flame burning velocity were determined for the hydrogen/propane (H2-C3H8) hydrogen/ethane (H2-C2H6) hydrogen/methane (H2-CH4) and hydrogen/carbon dioxide (H2-CO2) mixtures. Experimental tests were carried out to determine the lift-off blow-out and blowoff stability limits of H2 H2-C3H8 H2-C2H6 H2-CH4 and H2-CO2 jet flames in a 2 mm diameter burner. The kinetic mechanisms of hydrogen interacting with C3 C2 and C1 fuels is analysed using the kinetic mechanisms for hydrocarbon combustion.
Experimental Study of the Effects of Vent Geometry on the Dispersion of a Buoyant Gas in a Small Enclosure
Sep 2011
Publication
We present an experimental study on the dispersion of helium in an enclosure of 1 m3 with natural ventilation through one vent. Three vent geometries have been studied. Injection parameters have been varied so that the injection Richardson number ranges from 2·10−6 to 9 and the volume Richardson number which gives the ability of the release to mix the enclosure content ranges from 8·10−4 to 900. It has been found that the vertical distribution of helium volume fraction can exhibit significant gradient. Nevertheless the results are compared to the simple analytical model based on the homogenous mixture hypothesis which gives fairly good estimates of the maximum helium volume fraction.
Lagrangian Reaction-Diffusion Model for Predicting the Ignitability of Pressurized Hydrogen Releases
Sep 2009
Publication
Previous experiments demonstrated that the accidental release of high pressure hydrogen into air can lead to the possibility of spontaneous ignition. It is believed that this ignition is due to the heating of the mixing layer between hydrogen and air that is caused by the shock wave driven by the pressurized hydrogen during the release. Currently this problem is poorly understood and not amenable to direct numerical simulation. This is due to the presence of a wide range of scales between the sizes of the blast wave driven and the very thin mixing layer. The present study addresses this fundamental ignition problem and develops a solution framework in order to predict the ignition event for given hydrogen storage pressures and dimension of the release hole. In this problem only the mixing layer between the hydrogen and air is considered. This permits us to use much higher resolution than previous studies. This mixing layer at the jet head is advected as a Lagrangian fluid particle. The key physical processes in the problem are identified to be the mixing of the two gases at the mixing layer the initial heating by the shock wave and a cooling effect due to the expansion of the mixing layer. The results of the simulations indicate that for every storage pressure there exists a critical hole size below which ignition is prevented during the release process. Close inspection of the results indicate that this limit is due to the competition between the heating provided by the shock wave and the cooling due to expansion. Furthermore the results also indicate that the details of the mixing process do not play a significant role to leading order. The limiting ignition criteria were found to be well approximated by the Homogeneous Ignition Model of Cuenot and Poinsot supplemented by a heat loss term due to expansion. Therefore turbulent mixing occurring in reality is not likely to affect the ignition limits derived in the present study. Comparison with existing experiments showed very good agreement.
Experimental Study of Explosion Wave Propagation in Hydrogen-Air Mixtures of Variable Compositions
Sep 2009
Publication
Results are given of experimental study of propagation of explosion waves in hydrogen-air mixtures of different compositions under conditions of cumulation. The investigations are performed in a setup consisting of two parts namely the upper part in the form of a metal cone and the lower part in the form of a rubber envelope hermetically attached to the cone. The upper and lower parts of the experimental setup are separated by a thin rubber film and may be filled with hydrogen-air mixtures of different compositions.
Risk Assessment of Hydrogen Explosion for Private Car with Hydrogen-driven Engine
Sep 2009
Publication
The aim of the study is to identify and quantify the additional risks related to hydrogen explosions during the operation of a hydrogen-driven car. In a first attempt the accidents or failures of a simple one-tank hydrogen storage system have been studied as a main source of risk. Three types of initiators are taken into account: crash accidents fire accidents without crash (no other cars are involved) and hydrogen leakages in normal situation with following ignition. The consequences of hydrogen ignition and/or explosion depend strongly on environmental conditions (geometry wind etc.) therefore the different configurations of operational and environmental conditions are specified.<br/>Then Event Tree/Fault Tree methods are applied for the risk assessment.<br/>The results of quantification permit to draw conclusions about the overall added risk of hydrogen technology as well as about the main contributors to the risk. Results of this work will eventually contribute to the on-going pre-normative research in the field of hydrogen safety.
Dynamics of Vented Hydrogen-air Deflagrations
Sep 2011
Publication
The use of hydrogen as an energy carrier is a real perspective for Europe since a number of breakthroughs now enable to envision a deployment at the industrial scale. However some safety issues need to be further addressed but experimental data are still lacking especially about the explosion dynamics in realistic dimensions. A set of hydrogen-air vented explosions were thus performed in two medium scale chambers (1 m3 and 10 m3). Homogeneous mixtures were used (10% to 30% vol.). The explosion overpressure was measured inside the chamber and outside on the axis of the discharge from the vent. The incidence of the external explosion is clearly seen. All the results in this paper and the predictions from the standards differ greatly meaning that a significant effort is still required. It is the purpose of the French project DIMITRHY to help progressing.
The Effect of Tube Internal Geometry on the Propensity to Spontaneous Ignition in Pressurized Hydrogen Release
Sep 2013
Publication
Spontaneous ignition of compressed hydrogen release through a length of tube with different internal geometries is numerically investigated using our previously developed model. Four types of internal geometries are considered: local contraction local enlargement abrupt contraction and abrupt enlargement. The presence of internal geometries was found to significantly increase the propensity to spontaneous ignition. Shock reflections from the surfaces of the internal geometries and the subsequent shock interactions further increase the temperature of the combustible mixture at the contact region. The presence of the internal geometry stimulates turbulence enhanced mixing between the shock-heated air and the escaping hydrogen resulting in the formation of more flammable mixture. It was also found that forward-facing vertical planes are more likely to cause spontaneous ignition by producing the highest heating to the flammable mixture than backward-facing vertical planes.
Hydrogen Transport to Fracture Sites in Metals and Alloys Multiphysics Modelling
Sep 2017
Publication
Generalised continuum model of hydrogen transport to fracture loci is developed for the purposes of analysis of the hydrogenous environment assisted fracture (HEAF). The model combines the notions of the theories of gas flow surface science and diffusion and trapping in stressed solids. Derived flux and balance equations describe the species migration across different states (gas adsorbed specie at the gas-metal interface interstitial solute in metal bulk) and a variety of corresponding sites of energy minimums along the potential relief for hydrogen in a system. The model accounts for the local kinetics of hydrogen interchange between the closest dissimilar neighbour sites and for the nonlocal interaction of hydrogen trapping in definite positions with the species wandering in their farer surroundings. In particular situations certain balance equations of the model may degenerate into equilibrium constraints as well as some terms in the generalised equations may be insignificant. A series of known theories of hydrogen transport in material-environment system can be recovered then as particular limit cases of the generalised model. Presented theory can help clarifying the advantages and limitations of particularised models so that appropriate one may be chosen for the analysis of a particular HEAF case.
Simple Hydrogen Gas Production Method Using Waste Silicon
Jan 2022
Publication
We investigated a simple and safe method for producing hydrogen using Si powder which is discarded in the semiconductor industry. Using the reaction of generating hydrogen from Si powder and an aqueous NaOH solution a simple hydrogen generator that imitated Kipp’s apparatus was produced. Then by combining this apparatus with a polymer electrolyte fuel cell an automatic hydrogen generation system based on the amount of electric power required was proposed. Furthermore it was found that hydrogen can also be generated using non-poisonous and deleterious substances Ca(OH)2 and Na2CO3 instead of the deleterious substance NaOH and adding water to the mixture with Si powder. The by-products Na2SiO3 and CaCO3 can be used as raw materials for glass. The simple hydrogen generator produced in this study can be used as a fuel supply source for small-scale power generation systems as an auxiliary power source.
Estimation of Uncertainty in Risk Assessment of Hydrogen Applications
Sep 2011
Publication
Hydrogen technologies such as hydrogen fuelled vehicles and refuelling stations are being tested in practice in a number of projects (e.g. HyFleet-Cute and Whistler project) giving valuable information on the reliability and maintenance requirements. In order to establish refuelling stations the permitting authorities request qualitative and quantitative risk assessments to show the safety and acceptability in terms of failure frequencies and respective consequences. For new technologies not all statistical data can be established or are available in good quality causing assumptions and extrapolations to be made. Therefore the risk assessment results contain varying degrees of uncertainty as some components are well established while others are not. The paper describes a methodology to evaluate the degree of uncertainty in data for hydrogen applications based on the bias concept of the total probability and the NUSAP concept to quantify uncertainties of new not fully qualified hydrogen technologies and implications to risk management.
Experimental Investigation of Spherical-flame Acceleration in Lean Hydrogen-air Mixtures
Oct 2015
Publication
Large-scale experiments examining spherical-flame acceleration in lean hydrogen-air mixtures were performed in a 64 m3 constant-pressure enclosure. Equivalence ratios ranging from 0.33 to 0.57 were examined using detailed front tracking for flame diameters up to 1.2 m through the use of a Background Oriented Schlieren (BOS) technique. From these measurements the critical radii for onset of instability for these mixtures on the order of 2–3 cm were obtained. In addition the laminar burning velocity and rate of flame acceleration as a function of radius were also measured.
Experimental Study of Hydrogen Releases in the Passenger Compartment of a Piaggio Porter
Sep 2011
Publication
There are currently projects and demonstration programs aiming at introducing Hydrogen powered Fuel Cell (HFC) vehicles into the market. Regione Toscana has been cofounder of the project “H2 Filiera Idrogeno” whose goal is to achieve a clean and sustainable mobility through HFC vehicle studies covering their production storage and use. Among the goals of the project was the substitution of the electric propulsion system with a hydrogen fuel cells propulsion system. This work presents a brief overview of the necessary modifications of the electric propulsion version of a Piaggio Porter to host a H2 fuel cell and experimental studies of realistic H2 releases from the vehicle. The scenarios covered H2 unintended releases underneath the vehicle when at rest and focused on three types of releases diffusive major and minor that might reach the interior of the vehicle and potentially pose a direct risk to the passengers.
Hydrogen Energy Demand Growth Prediction and Assessment (2021–2050) Using a System Thinking and System Dynamics Approach
Jan 2022
Publication
Adoption of hydrogen energy as an alternative to fossil fuels could be a major step towards decarbonising and fulfilling the needs of the energy sector. Hydrogen can be an ideal alternative for many fields compared with other alternatives. However there are many potential environmental challenges that are not limited to production and distribution systems but they also focus on how hydrogen is used through fuel cells and combustion pathways. The use of hydrogen has received little attention in research and policy which may explain the widely claimed belief that nothing but water is released as a by-product when hydrogen energy is used. We adopt systems thinking and system dynamics approaches to construct a conceptual model for hydrogen energy with a special focus on the pathways of hydrogen use to assess the potential unintended consequences and possible interventions; to highlight the possible growth of hydrogen energy by 2050. The results indicate that the combustion pathway may increase the risk of the adoption of hydrogen as a combustion fuel as it produces NOx which is a key air pollutant that causes environmental deterioration which may limit the application of a combustion pathway if no intervention is made. The results indicate that the potential range of global hydrogen demand is rising ranging from 73 to 158 Mt in 2030 73 to 300 Mt in 2040 and 73 to 568 Mt in 2050 depending on the scenario presented.
Numerical Study of Hydrogen Explosions in a Vehicle Refill Environment
Sep 2009
Publication
Numerical simulations have been carried out for pressurised hydrogen release through a nozzle in a simulated vehicle refilling environment of an experiment carried out in a joint industry project by Shell bp Exxon and the UK HSE Shirvill[1]. The computational domain mimics the experimental set up for a vertical downwards release in a vehicle refuelling environment. Due to lack of detailed data on pressure decay in the storage cylinder following the release a simple analytical model has also been developed to provide the transient pressure conditions at nozzle exit. The modelling is carried out using the traditional Computational fluid dynamics (CFD) approach based on Reynolds averaged Navier Stokes equations. The Pseudo diameter approach is used to bypass the shock-laden flow structure in the immediate vicinity of the nozzle. For combustion the Turbulent Flame Closure (TFC) model is used while the shear stress transport (SST) model is used for turbulence
Safety Strategy for the First Deployment of a Hydrogen- Based Green Public Building in France
Sep 2011
Publication
HELION a subsidiary of AREVA in charge of the business unit Hydrogen and energy storage is deploying for the first time in a French public building a hydrogen-based energy storage system the Greenergy Box™. The 50 kWe system is coupled with a photovoltaic farm to ensure up to 45% electrical autonomy and power backup to the building. The safety system and siting measures of the complete hydrogen chain are described. The paper also highlights the work accomplished with Fire Authorities and Public to gain the acceptance of the project and allow the deployment of four other hydrogen-based green buildings.
The Strategic Road Map for Hydrogen and Fuel Cells: Industry-academia-government Action Plan to Realize a “Hydrogen Society”
Mar 2019
Publication
The fourth Strategic Energy Plan adopted in April 2014 stated ""a road map toward realization of a “hydrogen society” will be formulated and a council which comprises representatives of industry academia and government and which is responsible for its implementation will steadily implement necessary measures while progress is checked". Then the Council for a Strategy for Hydrogen and Fuel Cells which was held in June in the same year as a conference of experts from industry academia and government compiled a Strategic Roadmap for Hydrogen and Fuel Cells (hereinafter referred to as ""the Roadmap"") presenting efforts to be undertaken by concerned parties from the public/private sector aimed at building a hydrogen-based society.<br/>The Roadmap was revised in March 2016 in response to the progress of the efforts to include the schedule and quantitative targets to make the fuel cells for household use (Ene-Farm) fuel cell vehicles (FCVs) and hydrogen stations self-reliant. In April 2017 the first Ministerial Council on Renewable Energy Hydrogen and Related Issues was held. The Council decided to establish--by the end of the year--a basic strategy that would allow the government to press on with the measures in an integrated manner to realize a hydrogen-based society for the first time in the world. The second Ministerial Council on Renewable Energy Hydrogen and Related Issues was then held in December of that year to establish the Basic Hydrogen Strategy. The Strategy was positioned as a policy through which the whole government would promote relevant measures and proposed that hydrogen be another new carbon-free energy option. By setting a target to be achieved by around 2030 the Strategy provides the general direction and vision that the public and private sectors should share with an eye on 2050.<br/>Furthermore the fifth Strategic Energy Plan was adopted in July 2018. In order for hydrogen to be available as another new energy option in addition to renewable energy the Plan showed the correct direction of hydrogen energy in the energy policy specifically reducing the hydrogen procurement/supply cost to a level favorably comparable with that of existing energies while taking the calculated environmental value into account.
LES Modelling Of Hydrogen Release and Accumulation Within a Non-Ventilated Ambient Pressure Garage Using The Adrea-HF CFD Code
Sep 2011
Publication
Computational Fluid Dynamics (CFD) has already proven to be a powerful tool to study the hydrogen dispersion and help in the hydrogen safety assessment. In this work the Large Eddy Simulation (LES) recently incorporated into the ADREA-HF CFD code is evaluated against the INERIS-6C experiment of hydrogen leakage in a supposed garage which provides detailed experimental measurements visualization of the flow and availability of previous CFD results from various institutions (HySafe SBEP-V3). The short-term evolution of the hydrogen concentrations in this confined space is examined and comparison with experimental data is provided along with comments about the ability of LES to capture the transient phenomena occurring during hydrogen dispersion. The influence of the value of the Smagorinsky constant on the resolved and on the unresolved turbulence is also presented. Furthermore the renormalization group (RNG) LES methodology is also tested and its behaviour in both highly-turbulent and less-turbulent parts of the flow is highlighted.
Natural and Forced Ventilation of Buoyant Gas Released In a Full-Scale Garage, Comparison of Model Predictions and Experimental Data
Sep 2011
Publication
An increase in the number of hydrogen-fuelled applications in the marketplace will require a better understanding of the potential for fires and explosion associated with the unintended release of hydrogen within a structure. Predicting the temporally evolving hydrogen concentration in a structure with unknown release rates leak sizes and leak locations is a challenging task. A simple analytical model was developed to predict the natural and forced mixing and dispersion of a buoyant gas released in a partially enclosed compartment with vents at multiple levels. The model is based on determining the instantaneous compartment over-pressure that drives the flow through the vents and assumes that the helium released under the automobile mixes fully with the surrounding air. Model predictions were compared with data from a series of experiments conducted to measure the volume fraction of a buoyant gas (at 8 different locations) released under an automobile placed in the center of a full-scale garage (6.8 m × 5.4 m × 2.4 m). Helium was used as a surrogate gas for safety concerns. The rate of helium released under an automobile was scaled to represent 5 kg of hydrogen released over 4 h. CFD simulations were also performed to confirm the observed physical phenomena. Analytical model predictions for helium volume fraction compared favourably with measured experimental data for natural and forced ventilation. Parametric studies are presented to understand the effect of release rates vent size and location on the predicted volume fraction in the garage. Results demonstrate the applicability of the model to effectively and rapidly reduce the flammable concentration of hydrogen in a compartment through forced ventilation.
Hydrogen Concentration Distribution in 2.25Cr-1Mo-0.25V Steel under the Electrochemical Hydrogen Charging and Its Influence on the Mechanical Properties
May 2020
Publication
The deterioration of the mechanical properties of metal induced by hydrogen absorption threatens the safety of the equipment serviced in hydrogen environments. In this study the hydrogen concentration distribution in 2.25Cr-1Mo-0.25V steel after hydrogen charging was analyzed following the hydrogen permeation and diffusion model. The diffusible hydrogen content in the 1-mm-thick specimen and its influence on the mechanical properties of the material were investigated by glycerol gas collecting test static hydrogen charging tensile test scanning electron microscopy (SEM) test and microhardness test. The results indicate that the content of diffusible hydrogen tends to be the saturation state when the hydrogen charging time reaches 48 h. The simulation results suggest that the hydrogen concentration distribution can be effectively simulated by ABAQUS and the method can be used to analyze the hydrogen concentration in the material with complex structures or containing multiple microstructures. The influence of hydrogen on the mechanical properties is that the elongation of this material is reduced and the diffusible hydrogen will cause a decrease in the fracture toughness of the material and thus hydrogen embrittlement (HE) will occur. Moreover the Young’s modulus E and microhardness are increased due to hydrogen absorption and the variation value is related to the hydrogen concentration introduced into the specimen.
Evaluation of Hydrogen, Propane and Methane-air Detonations Instability and Detonability
Sep 2013
Publication
In this paper the detonation propensity of different compositions of mixtures of hydrogen propane and methane with air has been evaluated over a wide range of compositions. We supplement the conventional calculations of the induction delay with calculations of the characteristic acceleration parameter recently suggested by Radulescu Sharpeand Bradley(RSB) to characterize the instability of detonations. While it is well established that the ignition delay provides a good measure for detonability the RSB acceleration or its non-dimensionalform provides a further discriminant between mixtures with similar ignition delays. The present assessment of detonability reveals that while a stoichiometric mixture of hydrogen-air has an ignition delay one and two orders of magnitude shorter than respectively propane and methane hydrogen also has a parameter smaller by respectively one and two orders of magnitude. Its smaller propensity for instability is reflected by an RSB acceleration parameter similar to the two hydrocarbons. The predictions however indicate that lean hydrogen mixtures are likely to be much more unstable than stoichiometric ones. The relation between the parameter and potential to amplify an unstable transverse wave structure has been further determined through numerical simulation of decaying reactive Taylor-Sedov blast waves. Using a simplified two-step model calibrated for these fuels we show that methane mixtures develop cellular structures more readily than propane and hydrogen when observed on similar induction time scales. Future work should be devoted towards a quantitative inclusion of the RSB parameter in assessing the detonability of a given mixture.
Comparison of Numerical and Algebraic Models of Low and High Pressure Hydrogen Jet Flows with Ideal and Real Gas Models
Sep 2013
Publication
Hydrogen transportation systems require very high pressure hydrogen storage containers to enable sufficient vehicle range for practical use. Current proposed designs have pressures up to 70 MPa with leakage due to damage or deterioration at such high pressures a great safety concern. Accurate models are needed to predict the flammability envelopes around such leaks which rapidly vary with time. This paper compares CFD predictions of jet flows for low pressure jets with predictions using the integral turbulent buoyant jet model. The results show that the CFD model predicts less entrainment and that the turbulent Schmidt number should be smaller with 0.55 giving better results. Then CFD predictions for very high pressure flows are compared with analytical models for choked flows that generate underexpanded jets into the ambient to evaluate the effects of the model assumptions and the effects of real exit geometries. Real gas effects are shown to accelerate the blowdown process and that real flow effects in the CFD model slow the flow rate and increase the exit temperature.
Effect of Plastic Deformation at Room Temperature on Hydrogen Diffusion of Hot-rolled S30408
Sep 2017
Publication
The influence of plastic deformation on hydrogen diffusion is of critical significance for hydrogen embrittlement (HE) studies. In this work thermal desorption spectroscope (TDS) slow strain rate test (SSRT) feritscope transmission electron microscope (TEM) and TDS model are used to establish the relationship between plastic deformation and hydrogen diffusion aiming at unambiguously elucidating the effect of pre-existing traps on hydrogen diffusion of hot-rolled S30408. An effective way is developed to deduce hydrogen apparent diffusivity in this paper. Results indicate apparent diffusivities decrease firstly and then increase with increasing plastic strain at room temperature. Hydrogen diffusion changing with plastic deformation is a complicated process involving multiple factors. It is suggested to be divided into two processes controlled by dislocations and strain-induced martensite respectively and the transformation strain is about 20% demonstrated by experiments.
Australia's National Hydrogen Strategy
Nov 2019
Publication
Australia’s National Hydrogen Strategy sets a vision for a clean innovative safe and competitive hydrogen industry that benefits all Australians. It aims to position our industry as a major player by 2030.<br/>The strategy outlines an adaptive approach that equips Australia to scale up quickly as the hydrogen market grows. It includes a set of nationally coordinated actions involving governments industry and the community.
Modelling and Simulation of Lean Hydrogen-air Deflagrations
Sep 2013
Publication
The paper describes CFD modelling of lean hydrogen mixture deflagrations. Large eddy simulation (LES) premixed combustion model developed at the University of Ulster to account phenomena related to large-scale deflagrations was adjusted specifically for lean hydrogen-air flames. Experiments by Kumar (2006) on lean hydrogen-air mixture deflagrations in a 120 m3 vessel at initially quiescent conditions were simulated. 10% by volume hydrogen-air mixture was chosen for simulation to provide stable downward flame propagation; experiments with the smallest vent area 0.55 m2 were used as having the least apparent flame instabilities affecting the pressure dynamics. Deflagrations with igniter located centrally near vent and at far from the vent wall were simulated. Analysis of simulation results and experimental pressure dynamics demonstrated that flame instabilities developing after vent opening made the significant contribution to maximum overpressure in the considered experiments. Potential causes of flame instabilities are discussed and their comparative role for different igniter locations is demonstrated.
QRA Including Utility for Decision Support of H2 Infrastructure Licensing
Sep 2011
Publication
Rational decision making in land use planning and licensing of H2 infrastructure surrounded by other industrial activities and population should take account of individual and societal risks. QRA produces a risk matrix of potential consequences versus event probabilities that is shrouded in ambiguity and lacking transparency. NIMBY and conflict are lurking. To counter these issues risk analysts should therefore also determine the utilities of decision alternatives which describe desirability of benefits on a single scale. Rationally weighing risks versus benefits results in more transparent and defendable decisions. Example risk analyses of two types of refuelling stations and three hydrogen supply transportation types applying Influence Diagram/BBNs are worked out. Keywords: risk assessment influence diagram decision making land use planning
H2FC European Infrastructure; Research Opportunities to Focus on Scientific and Technical Bottlenecks
Sep 2013
Publication
The European Strategy Forum on Research Infrastructures (ESFRI) recognizes in its roadmap for Research Infrastructures that ?in the near future hydrogen as an energy carrier derived from various other fuels and fuel cells as energy transformers are expected to come into a major role for mobility but also for different other mobile and stationary applications? |1|. This modern hydrogen driven society lags far behind the reality. Because of that it is conform to question the current situation concerning the belief that already most is comprehensively investigated and developed concerning hydrogen technology is correct and already done. From that it appears the hydrogen technology is market ready only partial and not prepared in a sufficient way to get finally included and adopted in modern hydrogen driven society and especially the acceptance of the society is a critical. Beside this critical view through society several scientific and technical bottlenecks still discoverable. Nevertheless it is possible to foster furthermore science and development on hydrogen technology. The ?Integrating European Infrastructure? was created to support science and development of hydrogen and fuel cell technologies towards European strategy for sustainable competitive and secure energy also while identifying scientific and technical bottlenecks to support solutions based on. Its acronym is H2FC European Infrastructure and was formed to integrate the European R&D community around rare and/or unique infrastructural elements that will facilitate and significantly enhance the research and development of hydrogen and fuel cell technology.
Syngas Explosion Reactivity in Steam Methane Reforming Process
Sep 2013
Publication
During the synthesis of hydrogen by methane steam reforming mixtures composed of H2 CH4 CO and CO2 are produced in the process. In this work the explosion reactivity of these mixtures on the basis of detonation cell size and laminar flame speed is calculated using a reactant assimilation simplification and a kinetic approach. The detonation cells width are calculated using the Cell_CH Kurchatov institute method and the laminar flame velocities are calculated with Chemkin Premix using different detailed chemical kinetic mechanisms. These calculations are used to define if these mixtures could be considered having a medium or a high reactivity for risk assessment in case of leak in the hydrogen plants.
The Importance of Economies of Scale, Transport Costs and Demand Patterns in Optimising Hydrogen Fuelling Infrastructure: An Exploration with SHIPMod (Spatial Hydrogen Infrastructure Planning Model)
Jul 2013
Publication
Hydrogen is widely recognised as an important option for future road transportation but a widespread infrastructure must be developed if the potential for hydrogen is to be achieved. This paper and related appendices which can be downloaded as Supplementary material present a mixed-integer linear programming model (called SHIPMod) that optimises a hydrogen supply chains for scenarios of hydrogen fuel demand in the UK including the spatial arrangement of carbon capture and storage infrastructure. In addition to presenting a number of improvements on past practice in the literature the paper focuses attention on the importance of assumptions regarding hydrogen demand. The paper draws on socio-economic data to develop a spatially detailed scenario of possible hydrogen demand. The paper then shows that assumptions about the level and spatial dispersion of hydrogen demand have a significant impact on costs and on the choice of hydrogen production technologies and distribution mechanisms.
Lessons Learned from Safety Events
Sep 2011
Publication
The Hydrogen Incident Reporting and Lessons Learned website (www.h2incidents.org) was launched in 2006 as a database-driven resource for sharing lessons learned from hydrogen-related safety events to raise safety awareness and encourage knowledge-sharing. The development of this database its first uses and subsequent enhancements have been described at the Second and Third International Conferences on Hydrogen Safety [1] [2]. Since 2009 continuing work has not only highlighted the value of safety lessons learned but enhanced how the database provides access to another safety knowledge tool Hydrogen Safety Best Practices (http://h2bestpractices.org). Collaborations with the International Energy Agency (IEA) Hydrogen Implementing Agreement (HIA) Task 19 – Hydrogen Safety and others have enabled the database to capture safety event learning’s from around the world. This paper updates recent progress highlights the new “Lessons Learned Corner” as one means for knowledge-sharing and examines the broader potential for collecting analyzing and using safety event information.
Numerical Simulation of Detonation Failure and Re-initiation in Bifurcated Tubes
Oct 2015
Publication
A numerical approach is developed to simulate detonation propagation attenuation failure and re-initiation in hydrogen–air mixture. The aim is to study the condition under which detonations may fail or re-initiate in bifurcated tubes which is important for risk assessment in industrial accidents. A code is developed to solve compressible multidimensional transient reactive Navier–Stokes equations. An Implicit Large Eddy Simulation approach is used to model the turbulence. The code is developed and tested to ensure both deflagrations (when detonation fails) and detonations are simulated correctly. The code can correctly predict the flame properties as well as detonation dynamic parameters. The detonation propagation predictions in bifurcated tubes are validated against the experimental work of Wang et al. [12] and found to be in good agreement with experimental observations.
Turbulent Flame Propagation in Large Unconfined H2/O2/N2 Clouds
Oct 2015
Publication
Turbulence is a key aspect in hydrogen explosions. Unfortunately only limited experimental data is available and the current understanding of flame turbulence interactions is too limited to permit safe predictions. New experimental data are presented in which the flame trajectory and pressure history are interpreted for unconfined explosions of H2/O2/N2 clouds of 7 m3. The intensity of the turbulence is varied between 0 and 5 m/s and the integral scale of the turbulence is on the order of 10 cm which is at least an order of magnitude larger than lab scale.
Numerical Analysis of Detonation Propensity of Hydrogen-air Mixtures with Addition of Methane, Ethane or Propane
Oct 2015
Publication
The detonation propensity of hydrogen-air mixtures with addition of methane ethane or propane in wide range of compositions is analyzed. The analysis concerned the detonation cell width ignition delay time RSB and parameters. Results are presented as a function of hydrogen molar fraction. Computations were performed with the use of three Cantera 2.1.1. scripts in the Matlab R2010b environment. The validated mechanisms of chemical reactions based on data available in the literature were used. Six mechanisms were assessed: GRI-Mech 3.0 LLNL SanDiego Wang POLIMI and AramcoMech. In conclusion the relation between detonation propensity parameters is discussed.
Modelling Of Hydrogen Explosion on a Pressure Swing Adsorption Facility
Sep 2011
Publication
Computational fluid dynamic simulations have been performed in order to study the consequences of a hydrogen release from a pressure swing adsorption installation operating at 30 barg. The simulations were performed using FLACS-Hydrogen software from GexCon. The impact of obstruction partial confinement leak orientation and wind on the explosive cloud formation (size and explosive mass) and on explosion consequences is investigated. Overpressures resulting from ignition are calculated as a function of the time to ignition.
A Barrier Analysis of a Generic Hydrogen Refuelling Station
Sep 2009
Publication
Any technical installation need appropriate safety barriers installed to prevent or mitigate any adverse effects concerning people property and environment. In this context a safety barrier is a series of elements each consisting of a technical system or human action that implement a planned barrier function to prevent control or mitigate the propagation of a condition or event into an undesired condition or event. This is also important for new technologies as hydrogen refuelling stations being operated at very high pressures up to 900bar. In order to establish the needed barriers a hazard identification of the installation has to be carried out to identify the possible hazardous events. In this study this identification was done using the generic layout of a future large hydrogen refuelling station that has been developed by the EU NoE HySafe. This was based on experiences with smaller scale refuelling stations that has been in operation for several years e.g. being used in the former CUTE and ECTOS projects. Using this approach the object of the study is to support activities to further improve the safety performance of future larger refuelling stations. This will again help to inform the authorities and the public to achieve a proper public awareness and to support building up a realistic risk and safety perception of the safety on such future refuelling stations. In the second step the hazardous events that may take place and the barriers installed to stop hazards and their escalation are analysed also using in-house developed software to model the barriers and to quantify their performance. The paper will present an overview and discuss the state-of-the-art of the barriers established in the generic refuelling station.
Prospective Life Cycle Assessment of Hydrogen Production by Waste Photoreforming
Jan 2022
Publication
Identifying sustainable energy vectors is perhaps one of the most critical issues that needs addressing to achieve a climate-neutral society by 2050. In this context the hydrogen economy has been proposed as a solution to mitigate our current fossil-based energy system while the concept of the circular economy aims to boost the efficient use of resources. Photoreforming offers a promising opportunity for recycling and transforming widely available biomass-derived wastes (e.g. crude glycerol from biodiesel) into clean hydrogen fuel. This processing technology may be a versatile method that can be performed not only under UV light but also under visible light. However this approach is currently at the lab-scale and some inherent challenges must be overcome not least the relatively modest hydrogen production rates for the lamps’ substantial energy consumption. This study aims to assess the main environmental impacts identifying the hotspots and possible trade-off in which this technology could operate feasibly. We introduce an assessment of the windows of opportunity using seven categories of environmental impact with either artificial light or sunlight as the source of photocatalytic conversion. We compared the environmental indicators from this study with those of the benchmark water electrolysis and steam–methane reforming (SMR) technologies which are currently operating at a commercial scale. The results obtained in this study situate biowaste photoreforming within the portfolio of sustainable H2 production technologies of interest for future development in terms of target H2 production rates and lifetimes of sustainable operation.
European Hydrogen Safety Training Platform for First Responders- Hyresponse Project
Sep 2013
Publication
The paper presents HyResponse project i.e. a European Hydrogen Safety Training Platform that targets to train First responders to acquire professional knowledge and skills to contribute to FCH permitting process as approving authority. The threefold training program is described: educational training operational-level training on mock-up real scale transport and hydrogen stationary installations and innovative virtual training exercises reproducing entire accident scenarios. The paper highlights how the three pilot sessions for European First Responders in a face to face mode will be organized to get a feedback on the training program. The expected outputs are also presented i.e. the Emergency Response Guide and a public website including teaching material and online interactive virtual training.
Implementation of Large Scale Shadowgraphy in Hydrogen Safety Phenomena
Sep 2013
Publication
We have implemented a portable large-scale shadowgraph system for use in flow visualization relating to hydrogen safety. Previous large-scale shadowgraph and schlieren implementations have often been limited to background- oriented techniques which are subject to noise. The system built is based on a large-scale shadowgraph technique developed by Settles which allows for high-quality visualization. We have applied the shadowgraph system to complex phenomena and current issues in hydrogen safety including DDT in long channels jet releases and unconfined deflagrations. Shadowgrams taken are compared to a Z-schlieren system. This shadowgraph system allows analysis of these phenomena at longer length scales.
Comparison of Solutions for a Liquid Pool Spreading Model with Continuous and Instantaneous Spills
Sep 2013
Publication
In this study a solution for a liquid pool spreading model with a continuous spill is compared with that for a liquid pool spreading model with an instantaneous spill under the same total release volume. As reducing spill time in completely releasing liquid from a tank it is evaluated whether the solution for a continuous spill approaches to that for an instantaneous spill or not. Also effects of the viscous term in the liquid pool spreading model with continuous and instantaneous spills on the liquid pool spreading behaviour are investigated.
Modeling of Cryogenic Hydrogen jets
Oct 2015
Publication
In the present work the CFD modeling of cryogenic hydrogen releases in quiescent environment is presented. Two tests from the series of experiments performed in the ICESAFE facility at KIT (Karlsruhe Institute for Technology) have been simulated within the SUSANA project. During these tests hydrogen at temperature of 37K and 36K and at pressure of 19 and 29 bars respectively is released horizontally. The release at the nozzle is sonic and the modeling of the under-expanded jet was performed using two different approaches: the Ewan and Moodie approach and a modification of the Ewan and Moodie approach (modified Ewan and Moodie) that is introduced here and employs the momentum balance to calculate the velocity in the under-expanded jet. Using these approaches a pseudo-diameter is calculated and this diameter is set as source boundary in the simulation. Predictions are consistent with measurements for both experiments with both approaches. However the Ewan and Moodie approach seems to perform better.
Recent Developments in Pd-CeO2 Nano-composite Electrocatalysts for Anodic Reactions in Anion Exchange Membrane Fuel Cells
Jan 2022
Publication
In 2016 for the first time a polymer electrolyte fuel cell free of Pt electrocatalysts was shown to deliver more than 0.5 W cm-2 of peak power density from H2 and air (CO2 free). This was achieved with a silver-based oxygen reduction (ORR) cathode and a Pd-CeO2 hydrogen oxidation reaction (HOR) anodic electrocatalyst. The poor kinetics of the HOR under alkaline conditions is a considerable challenge to Anion Exchange Membrane Fuel Cell (AEMFC) development as high Pt loadings are still required to achieve reasonable performance. Previously the ameliorative combination of Pd and CeO2 nanocomposites has been exploited mostly in heterogeneous catalysis where the positive interaction is well documented. Carbon supported PdCeO2 HOR catalysts have now been prepared by different synthetic techniques and employed in AEMFCs as alternative to Pt and PtRu standards. Important research has also been recently reported delving into the origin of the HOR enhancement on Pd-CeO2. Such work has highlighted the importance of the bifunctional mechanism of the HOR at high pHs. Carefully prepared nano-structures of Pd and CeO2 that promote the formation of the Pd-O-Ce interface provide optimal binding of both Had and OHad species aspects which are crucial for enhanced HOR kinetics. This review paper discusses the recent advances in Pd-CeO2 electrocatalysts for AEMFC anodes.
An Experimental Study Dedicated to Wind Influence on Helium Build-up and Concentration Distribution Inside a 1 m 3 Semi-confined Enclosure Considering Hydrogen Energy Applications Conditions of Use
Oct 2015
Publication
Hydrogen energy applications can be used outdoor and thus exposed to environmental varying conditions like wind. In several applications natural ventilation is the first mitigation means studied to limit hydrogen build-up inside a confined area. This study aims at observing and understanding the influence of wind on light gas build-up in addition. Experiments were performed with helium as releasing gas in a 1-m 3 enclosure equipped with ventilation openings varying wind conditions openings location release flow rate; obstructions in front of the openings to limit effects of wind were studied as well. Experimental results were compared together and with the available analytical models.
Cost Effective Inherent Safety Index for Polymer Electrolyte Membrane Fuel Cell Systems
Sep 2013
Publication
There have been many indices available in the process industries to describe rank or quantify hazards to people properties and environments. Most of the developed methods were meant to be applied to large scale and complex systems of process industries. Development of a swift and simple inherent safety index method which is relevant to small scale less complex membrane fuel cell system particularly the one in which to be applied during an early design stage is essential as an alternative to current comprehensive and yet time-consuming indices. In this work a modified version of PIIS modified prototype index for inherent safety (m-PIIS) was developed with the objectives of identifying indicating and estimating inherent safety of fuel cell system at an early design stage. The developed index was tested at four proton exchange membrane (PEM) fuel cell systems namely high pressure PEMFC system low pressure PEMFC system LH2 PEMFC system and on-board Me-OH PEMFC system. The developed index was also benchmarked against the original PIIS and ISI using the published results for the selection of process routes in MMA production. Results have indicated that m-PIIS has strong positive relationship with PIIS and ISI on most of the reaction step in MMA with the most significant are the C4 TBA and C3 reaction steps. Other reaction steps such as C2/MP C2/PA and ACH showed a strong positive relationship as well.
No more items...