Policy & Socio-Economics
Cost of Long-Distance Energy Transmission by Different Carriers
Nov 2021
Publication
This paper compares the relative cost of long-distance large-scale energy transmission by electricity and by gaseous and liquid carriers (e-fuels). The results indicate that the cost of electrical transmission per delivered MWh can be up to eight times higher than for hydrogen pipelines about eleven times higher than for natural gas pipelines and twenty to fifty times higher than for liquid fuels pipelines. These differences generally hold for shorter distances as well. The higher cost of electrical transmission is primarily due to lower carrying capacity (MW per line) of electrical transmission lines compared to the energy carrying capacity of the pipelines for gaseous and liquid fuels. The differences in the cost of transmission are important but often unrecognized and should be considered as a significant cost component in the analysis of various renewable energy production distribution and utilization scenarios.
Everything About Hydrogen Podcast: Masters of Scale: How to Build the Hydrogen Infrastructure of the Future
Oct 2020
Publication
On this week's episode the EAH team speaks with Prof. Armin Schnettler CEO of New Energy Business at Siemens Energy to talk about where green hydrogen solutions fit into the path to decarbonisation how companies like Siemens are looking at those solutions and working to scale them to meet future demand timelines for deployment in different markets how governments can help the private sector and much much more.
The podcast can be found on their website
The podcast can be found on their website
Everything About Hydrogen Podcast: Decarbonising the Gas Grid with Cadent
Mar 2020
Publication
On this weeks episode the team are talking all things hydrogen with Lorna Millington Future Networks Manager in the Safety and Network Strategy team at Cadent. On the show we discuss the role that Cadent and other gas distribution network operators (GDNOs) are playing in supporting the transition towards a low (and eventually zero) carbon gas grid through the use of hydrogen. The potential for hydrogen to support decarbonisation of heat through the gas network is one of the most exciting emerging themes for countries that have large existing gas networks and who are looking to repurpose those assets towards national net zero objectives. As a leader on hydrogen into the gas grid projects Cadent offer a wealth of knowledge around the potential opportunities and considerations for displacing natural gas with hydrogen over time. And given the chance to reduce up to 6 million tonnes of CO2 a year through using more hydrogen in the gas grid this is a show you won’t want to miss! All this and more on the show!
The podcast can be found on their website
The podcast can be found on their website
Everything About Hydrogen Podcast: Supplying the Building Blocks of an Energy Revolution
Apr 2021
Publication
On this episode of Everything About Hydrogen the team is joined by Sam French Business Development Director at JM who spent some time speaking with us about the transition from grey hydrogen to low-carbon generation technologies and what steps the UK - and countries all over the world - to use hydrogen as part of the pathway to a sustainable energy future.
The podcast can be found on their website
The podcast can be found on their website
Significance of Hydrogen as Economic and Environmentally Friendly Fuel
Nov 2021
Publication
The major demand of energy in today’s world is fulfilled by the fossil fuels which are not renewable in nature and can no longer be used once exhausted. In the beginning of the 21st century the limitation of the fossil fuels continually growing energy demand and growing impact of greenhouse gas emissions on the environment were identified as the major challenges with current energy infrastructure all over the world. The energy obtained from fossil fuel is cheap due to its established infrastructure; however these possess serious issues as mentioned above and cause bad environmental impact. Therefore renewable energy resources are looked to as contenders which may fulfil most energy requirements. Among them hydrogen is considered as the most environmentally friendly fuel. Hydrogen is clean sustainable fuel and it has promise as a future energy carrier. It also has the ability to substitute the present energy infrastructure which is based on fossil fuel. This is seen and projected as a solution for the above-mentioned problems including rise in global temperature and environmental degradation. Environmental and economic aspects are the important factors to be considered to establish hydrogen infrastructure. This article describes the various aspects of hydrogen including production storage and applications with a focus on fuel cell based electric vehicles. Their environmental as well as economic aspects are also discussed herein.
Global Hydrogen Review 2021
Oct 2021
Publication
The Global Hydrogen Review is a new annual publication by the International Energy Agency to track progress in hydrogen production and demand as well as in other critical areas such as policy regulation investments innovation and infrastructure development.
The report is an output of the Clean Energy Ministerial Hydrogen Initiative (CEM H2I) and is intended to inform energy sector stakeholders on the status and future prospects of hydrogen while serving as an input to the discussions at the Hydrogen Energy Ministerial Meeting (HEM) organised by Japan. It examines what international progress on hydrogen is needed to help address climate change – and compares real-world developments with the stated ambitions of government and industry and with key actions under the Global Action Agenda launched at the HEM in 2019.
Focusing on hydrogen’s usefulness for meeting climate goals this Review aims to help decision makers fine-tune strategies to attract investment and facilitate deployment of hydrogen technologies while also creating demand for hydrogen and hydrogen-based fuels.
Link to International Energy Agency website
The report is an output of the Clean Energy Ministerial Hydrogen Initiative (CEM H2I) and is intended to inform energy sector stakeholders on the status and future prospects of hydrogen while serving as an input to the discussions at the Hydrogen Energy Ministerial Meeting (HEM) organised by Japan. It examines what international progress on hydrogen is needed to help address climate change – and compares real-world developments with the stated ambitions of government and industry and with key actions under the Global Action Agenda launched at the HEM in 2019.
Focusing on hydrogen’s usefulness for meeting climate goals this Review aims to help decision makers fine-tune strategies to attract investment and facilitate deployment of hydrogen technologies while also creating demand for hydrogen and hydrogen-based fuels.
Link to International Energy Agency website
Decarbonizing China’s Energy System – Modeling the Transformation of the Electricity, Transportation, Heat, and Industrial Sectors
Nov 2019
Publication
Growing prosperity among its population and an inherent increasing demand for energy complicate China’s target of combating climate change while maintaining its economic growth. This paper therefore describes three potential decarbonization pathways to analyze different effects for the electricity transport heating and industrial sectors until 2050. Using an enhanced version of the multi-sectoral open-source Global Energy System Model enables us to assess the impact of different CO2 budgets on the upcoming energy system transformation. A detailed provincial resolution allows for the implementation of regional characteristics and disparities within China. Conclusively we complement the model-based analysis with a quantitative assessment of current barriers for the needed transformation. Results indicate that overall energy system CO2 emissions and in particular coal usage have to be reduced drastically to meet (inter-) national climate targets. Specifically coal consumption has to decrease by around 60% in 2050 compared to 2015. The current Nationally Determined Contributions proposed by the Chinese government of peaking emissions in 2030 are therefore not sufficient to comply with a global CO2 budget in line with the Paris Agreement. Renewable energies in particular photovoltaics and onshore wind profit from decreasing costs and can provide a more sustainable and cheaper energy source. Furthermore increased stakeholder interactions and incentives are needed to mitigate the resistance of local actors against a low-carbon transformation.
The Future of Clean Hydrogen in the United States: Views from Industry, Market Innovators, and Investors
Sep 2021
Publication
This report The Future of Clean Hydrogen in the United States: Views from Industry Market Innovators and Investors sheds light on the rapidly evolving hydrogen market based on 72 exploratory interviews with organizations across the current and emerging hydrogen value chain. This report is part of a series From Kilograms to Gigatons: Pathways for Hydrogen Market Formation in the United States which will build on this study to evaluate policy opportunities for further hydrogen development in the United States. The goal of the interviews was to provide a snapshot of the clean hydrogen investment environment and better understand organizations’ market outlook investment rationale and areas of interest. This interview approach was supported by traditional research methods to contextualize and enrich the qualitative findings. This report should be understood as input to a more extensive EFI analysis of hydrogen market formation in the United States; the directions that companies are pursuing in hydrogen production transport and storage and end use at this early stage of value chain development will inform subsequent analysis in important ways.
Sector Coupling via Hydrogen to Lower the Cost of Energy System Decarbonization
Aug 2021
Publication
There is growing interest in using hydrogen (H2) as a long-duration energy storage resource in a future electric grid dominated by variable renewable energy (VRE) generation. Modeling H2 use exclusively for grid-scale energy storage often referred to as ‘‘power-to-gas-to-power (P2G2P)’’ overlooks the cost-sharing and CO2 emission benefits from using the deployed H2 assets to decarbonize other end-use sectors where direct electrification is challenging. Here we develop a generalized framework for co-optimizing infrastructure investments across the electricity and H2 supply chains accounting for the spatio-temporal variations in energy demand and supply. We apply this sector-coupling framework to the U.S. Northeast under a range of technology cost and carbon price scenarios and find greater value of power-to-H2 (P2G) vs. P2G2P routes. Specifically P2G provides grid flexibility to support VRE integration without the round-trip efficiency penalty and additional cost incurred by P2G2P routes. This form of sector coupling leads to: (a) VRE generation increase by 13–56% and (b) total system cost (and levelized costs of energy) reduction by 7–16% under deep decarbonization scenarios. Both effects increase as H2 demand for other end-uses increases more than doubling for a 97% decarbonization scenario as H2 demand quadruples. We also find that the grid flexibility enabled by sector coupling makes deployment of carbon capture and storage (CCS) for power generation less cost-effective than its use for low-carbon H2 production. These findings highlight the importance of using an integrated energy system framework with multiple energy vectors in planning cost-effective energy system decarbonization
Scenario Modeling of Sustainable Development of Energy Supply in the Arctic
Dec 2021
Publication
The 21st century is characterized not only by large-scale transformations but also by the speed with which they occur. Transformations—political economic social technological environmental and legal-in synergy have always been a catalyst for reactions in society. The field of energy supply like many others is extremely susceptible to the external influence of such factors. To a large extent this applies to remote (especially from the position of energy supply) regions. The authors outline an approach to justifying the development of the Arctic energy infrastructure through an analysis of the demand for the amount of energy consumed and energy sources taking into account global trends. The methodology is based on scenario modeling of technological demand. It is based on a study of the specific needs of consumers available technologies and identified risks. The paper proposes development scenarios and presents a model that takes them into account. Modeling results show that in all scenarios up to 50% of the energy balance in 2035 will take gas but the role of carbon-free energy sources will increase. The mathematical model allowed forecasting the demand for energy types by certain types of consumers which makes it possible to determine the vector of development and stimulation of certain types of resources for energy production in the Arctic. The model enables considering not only the growth but also the decline in demand for certain types of consumers under different scenarios. In addition authors’ forecasts through further modernization of the energy sector in the Arctic region can contribute to the creation of prerequisites that will be stimulating and profitable for the growth of investment in sustainable energy sources to supply consumers. The scientific significance of the work lies in the application of a consistent hybrid modeling approach to forecasting demand for energy resources in the Arctic region. The results of the study are useful in drafting a scenario of regional development taking into account the Sustainable Development Goals as well as identifying areas of technology and energy infrastructure stimulation.
Pathway to Net Zero Emissions
Oct 2021
Publication
A feasible path to limit planetary warming to 1.5°C requires certain countries and sectors to go below net zero and to do so well before the middle of the century according to new analysis from the authors of the Energy Transition Outlook. DNV’s pathway to net zero says North America and Europe must be carbon neutral by 2042 whereas Indian Subcontinent is set to be a net emitter by 2050 Net zero report says carbon capture storage and use is required as energy production will not be carbon neutral by 2050 Aim to halve emissions by 2030 is out of reach but massive early action is needed if we are to have any chance of reaching a 1.5°C future DNV’s new report “Pathway to Net Zero Emissions” describes a feasible way to limit global warming to 1.5°C Policy makers are set to meet in Glasgow for the COP 26 summit with an eye on achieving zero emissions by 2050. For this to happen North America and Europe must be carbon neutral by 2042 and then carbon negative thereafter according to DNV’s pathway to net zero. The pathway also finds that Greater China must reduce emissions by 98% from 2019 levels by 2050. There are regions that cannot realistically transition completely away from fossil fuels in the same timeframe such as the Indian Subcontinent which will reduce emissions by 64%. Pathway to Net Zero Emissions also lays out the pace at which different industry sectors need to decarbonize. The so-called hard-to-abate sectors will take longer to decarbonize and even if sectors like maritime (-90% CO2 emissions in 2050) and iron and steel production (-82%) scale up the introduction of greener technologies they will still be net emitters by 2050.
Technologies and Policies to Decarbonize Global Industry: Review and Assessment of Mitigation Drivers Through 2070
Mar 2020
Publication
Jeffrey Rissman,
Chris Bataille,
Eric Masanet,
Nate Aden,
William R. Morrow III,
Nan Zhou,
Neal Elliott,
Rebecca Dell,
Niko Heeren,
Brigitta Huckestein,
Joe Cresko,
Sabbie A. Miller,
Joyashree Roy,
Paul Fennell,
Betty Cremmins,
Thomas Koch Blank,
David Hone,
Ellen D. Williams,
Stephane de la Rue du Can,
Bill Sisson,
Mike Williams,
John Katzenberger,
Dallas Burtraw,
Girish Sethi,
He Ping,
David Danielson,
Hongyou Lu,
Tom Lorber,
Jens Dinkel and
Jonas Helseth
Fully decarbonizing global industry is essential to achieving climate stabilization and reaching net zero greenhouse gas emissions by 2050–2070 is necessary to limit global warming to 2 °C. This paper assembles and evaluates technical and policy interventions both on the supply side and on the demand side. It identifies measures that employed together can achieve net zero industrial emissions in the required timeframe. Key supply-side technologies include energy efficiency (especially at the system level) carbon capture electrification and zero-carbon hydrogen as a heat source and chemical feedstock. There are also promising technologies specific to each of the three top-emitting industries: cement iron & steel and chemicals & plastics. These include cement admixtures and alternative chemistries several technological routes for zero-carbon steelmaking and novel chemical catalysts and separation technologies. Crucial demand-side approaches include material-efficient design reductions in material waste substituting low-carbon for high-carbon materials and circular economy interventions (such as improving product longevity reusability ease of refurbishment and recyclability). Strategic well-designed policy can accelerate innovation and provide incentives for technology deployment. High-value policies include carbon pricing with border adjustments or other price signals; robust government support for research development and deployment; and energy efficiency or emissions standards. These core policies should be supported by labeling and government procurement of low-carbon products data collection and disclosure requirements and recycling incentives. In implementing these policies care must be taken to ensure a just transition for displaced workers and affected communities. Similarly decarbonization must complement the human and economic development of low- and middle-income countries.
Everything About Hydrogen Podcast: Venturing into Hydrogen
Apr 2021
Publication
Since 2014 when the firm was founded within Anglo-American AP Ventures has been at the forefront of investment in hydrogen sector technologies. At the time the firm started the concerns around climate change and investment in renewable energy tech was gearing up but interest in hydrogen as part of the path to a decarbonized future was limited. The founders of AP Ventures felt differently and saw significant potential for hydrogen to offer a means for cleaning up highly carbon intensive sectors such as heavy transport industrial manufacturing and mining operations. Today that vision for hydrogen appears rather prescient. We are delighted to have two members from the team at AP Ventures with us on the show today. The team is joined by Kevin Eggers - a founding partner at AP - and Michell Robson - associate on the firm's investment team.
The podcast can be found on their website
The podcast can be found on their website
The Role of Hydrogen in Achieving Long Term Japanese Energy System Goals
Sep 2020
Publication
This research qualitatively reviews literature regarding energy system modeling in Japan specific to the future hydrogen economy leveraging quantitative model outcomes to establish the potential future deployment of hydrogen in Japan. The analysis focuses on the four key sectors of storage supplementing the gas grid power generation and transportation detailing the potential range of hydrogen technologies which are expected to penetrate Japanese energy markets up to 2050 and beyond. Alongside key model outcomes the appropriate policy settings governance and market mechanisms are described which underpin the potential hydrogen economy future for Japan. We find that transportation gas grid supplementation and storage end-uses may emerge in significant quantities due to policies which encourage ambitious implementation targets investment in technologies and research and development and the emergence of a future carbon pricing regime. On the other hand for Japan which will initially be dependent on imported hydrogen the cost of imports appears critical to the emergence of broad hydrogen usage particularly in the power generation sector. Further the consideration of demographics in Japan recognizing the aging shrinking population and peoples’ energy use preferences will likely be instrumental in realizing a smooth transition toward a hydrogen economy.
Hydrogen Technology on the Polish Electromobility Market. Legal, Economic, and Social Aspects
Apr 2021
Publication
The aim of this study was to evaluate the motorization market of electric vehicles powered by hydrogen cells in Poland. European conditions of such technology were indicated as well as original proposals on amendments to the law to increase the development pace of electromobility based on hydrogen cells. There were also presented economic aspects of this economic phenomenon. Moreover survey research was conducted to examine the preferences of hydrogen and electric vehicle users in 5 primary Polish cities. In this way the level of social acceptance for the technological revolution based on hydrogen cells and taking place in the motorization sector was determined.
Everything About Hydrogen Podcast: Geopolitical Factors in Hydrogen Markets
Mar 2022
Publication
The EAH Team takes a break from standard format on this special episode of Everything About Hydrogen to discuss some of the geopolitical factors and considerations driving the evolution of global hydrogen markets.
The podcast can be found on their website
The podcast can be found on their website
Design and Simulation Studies of Hybrid Power Systems Based on Photovoltaic, Wind, Electrolyzer, and PEM Fuel Cells
May 2021
Publication
In recent years the need to reduce environmental impacts and increase flexibility in the energy sector has led to increased penetration of renewable energy sources and the shift from concentrated to decentralized generation. A fuel cell is an instrument that produces electricity by chemical reaction. Fuel cells are a promising technology for ultimate energy conversion and energy generation. We see that this system is integrated where we find that the wind and photovoltaic energy system is complementary between them because not all days are sunny windy or night so we see that this system has higher reliability to provide continuous generation. At low load hours PV and electrolysis units produce extra power. After being compressed hydrogen is stored in tanks. The purpose of this study is to separate the Bahr AL-Najaf Area from the main power grid and make it an independent network by itself. The PEM fuel cells were analyzed and designed and it were found that one layer is equal to 570.96 Watt at 0.61 volts and 1.04 A/Cm2 . The number of layers in one stack is designed to be equal to 13 layers so that the total power of one stack is equal to 7422.48 Watt. That is the number of stacks required to generate the required energy from the fuel cells is equal to 203 stk. This study provided an analysis of the hybrid system to cover the electricity demand in the Bahr AL-Najaf region of 1.5 MW the attained hybrid power system TNPC cost was about 9573208 USD whereas the capital cost and energy cost (COE) were about 7750000 USD and 0.169 USD/kWh respectively for one year.
Everything About Hydrogen Podcast: Taking the Lead in the Hydrogen Economy
Sep 2021
Publication
On the season premier episode the EAH hosts are joined by the Governor of New Mexico Michelle Lujan Grisham. The State of New Mexico has the opportunity to lead the United States into the hydrogen era and the Governor and her team are poised to take the opportunity to make New Mexico the strategic center of the US hydrogen economy. The Governor is joined by New Mexico Environment Department Secretary James Kenney on the show to announce the forthcoming New Mexico Hydrogen Hub Act which her administration expects to drive investment in the state job growth in the energy sector and catapult New Mexico to top of the list of states driving the hydrogen revolution.
The podcast can be found on their website.
The podcast can be found on their website.
Development of Renewable Energy Multi-energy Complementary Hydrogen Energy System (A Case Study in China): A Review
Aug 2020
Publication
The hydrogen energy system based on the multi-energy complementary of renewable energy can improve the consumption of renewable energy reduce the adverse impact on the power grid system and has the characteristics of green low carbon sustainable etc. which is currently a global research hotspot. Based on the basic principles of hydrogen production technology this paper introduces the current hydrogen energy system topology and summarizes the technical advantages of renewable energy complementary hydrogen production and the complementary system energy coordination forms. The problems that have been solved or reached consensus are summarized and the current status of hydrogen energy system research at home and abroad is introduced in detail. On this basis the key technologies of multi-energy complementation of hydrogen energy system are elaborated especially in-depth research and discussion on coordinated control strategies energy storage and capacity allocation energy management and electrolysis water hydrogen production technology. The development trend of the multi-energy complementary system and the hydrogen energy industry chain is also presented which provides a reference for the development of hydrogen production technology and hydrogen energy utilization of the renewable energy complementary system.
Are Green and Blue Hydrogen Competitive or Complementary? Insights from a Decarbonised European Power System Analysis
Jun 2023
Publication
Hydrogen will be important in decarbonized energy systems. The primary ways to produce low emission hydrogen are from renewable electricity using electrolyzers called green hydrogen and by reforming natural gas and capturing and storing the CO2 known as blue hydrogen. In this study the degrees to which blue and green hydrogen are complementary or competitive are analyzed through a sensitivity analysis on the electrolyzer costs and natural gas price. This analysis is performed on four bases: what is the cost-effective relative share between blue and green hydrogen deployment how their deployment influences the price of hydrogen how the price of CO2 changes with the deployment of these two technologies and whether infrastructure can economically be shared between these two technologies. The results show that the choice of green and blue hydrogen has a tremendous impact where an early deployment of green leads to higher hydrogen costs and CO2 prices in 2030. Allowing for blue hydrogen thus has notable benefits in 2030 giving cheaper hydrogen with smaller wider socioeconomic impacts. In the long term these competitive aspects disappear and green and blue hydrogen can coexist in the European market without negatively influencing one another.
How "Clean" is the Hydrogen Economy? Tracing the Connections Between Hydrogen and Fossil Fuels
Feb 2024
Publication
Hydrogen is experiencing a resurgence in energy transition debates. Before representing a solution however the existing hydrogen economy is still a climate change headache: over 99 % of production depends on fossil fuels oil refining accounts for 42 % of demand and its transportation is intertwined with fossil infrastructure like natural gas pipelines. This article investigates the path-dependent dynamics shaping the hydrogen economy and its interconnections with the oil and gas industry. It draws on the global production networks (GPN) approach and political economy research to provide a comprehensive review of current and prospective enduses of hydrogen modes of transport networks of industrial actors and state strategies along the major production facilities and holders of intellectual property rights. The results presented in this article suggest that the superimposition of private agendas may jeopardise the viability of future energy systems and requires counterbalancing forces to override the negative consequences of path-dependent energy transitions.
Near-term Infrastructure Rollout and Investment Strategies for Net-zero Hydrogen Supply Chains
Feb 2024
Publication
Low-carbon hydrogen plays a key role in European industrial decarbonization strategies. This work investigates the cost-optimal planning of European low-carbon hydrogen supply chains in the near term (2025–2035) comparing several hydrogen production technologies and considering multiple spatial scales. We focus on mature hydrogen production technologies: steam methane reforming of natural gas biomethane reforming biomass gasification and water electrolysis. The analysis includes carbon capture and storage for natural gas and biomass-derived hydrogen. We formulate and solve a linear optimization model that determines the costoptimal type size and location of hydrogen production and transport technologies in compliance with selected carbon emission targets including the EU fit for 55 target and an ambitious net-zero emissions target for 2035. Existing steam methane reforming capacities are considered and optimal carbon and biomass networks are designed. Findings identify biomass-based hydrogen production as the most cost-efficient hydrogen technology. Carbon capture and storage is installed to achieve net-zero carbon emissions while electrolysis remains costdisadvantageous and is deployed on a limited scale across all considered sensitivity scenarios. Our analysis highlights the importance of spatial resolution revealing that national perspectives underestimate costs by neglecting domestic transport needs and regional resource constraints emphasizing the necessity for highly decarbonized infrastructure designs aligned with renewable resource availabilities.
Economic Analysis of Hydrogen Energy Systems: A Global Perspective
Aug 2024
Publication
In the realm of renewable energy the integration of wind power and hydrogen energy systems represents a promising avenue towards environmental sustainability. However the development of cost-effective hydrogen energy storage solutions is crucial to fully realize the potential of hydrogen as a renewable energy source. By combining wind power generation with hydrogen storage a comprehensive hydrogen energy system can be established. This study aims to devise a physiologically inspired optimization approach for designing a standalone wind power producer that incorporates a hydrogen energy system on a global scale. The optimization process considers both total cost and capacity loss to determine the optimal configuration for the system. The optimal setup for an off-grid solution involves the utilization of eight distinct types of compact horizontal-axis wind turbines. Additionally a sensitivity analysis is conducted by varying component capital costs to assess their impact on overall cost and load loss. Simulation results indicate that at a 15% loss the cost of energy (COE) is $1.3772 while at 0% loss it stands at $1.6908. Capital expenses associated with wind turbines and hydrogen storage systems significantly contribute to the overall cost. Consequently the wind turbine-hydrogen storage system emerges as the most cost-effective and reliable option due to its low cost of energy.
Green Hydrogen and its Unspoken Challenges for Energy Justice
Oct 2024
Publication
Green hydrogen is often promoted as a key facilitator for the clean energy transition but its implementation raises concerns around energy justice. This paper examines the socio-political and techno-economic challenges that green hydrogen projects may pose to the three tenets of energy justice: distributive procedural and recognition justice. From a socio-political perspective the risk of neocolonial resource extraction uneven distribution of benefits exclusion of local communities from decision-making and disregard for indigenous rights and cultures threaten all three justice tenets. Techno-economic factors such as water scarcity land disputes and resource-related conflicts in potential production hotspots further jeopardise distributive and recognition justice. The analysis framed by an adapted PEST model reveals that while green hydrogen holds promise for sustainable development its implementation must proactively address these justice challenges. Failure to do so could perpetuate injustices exploitation and marginalisation of vulnerable communities undermining the sustainability goals it aims to achieve. The paper highlights the need for inclusive and equitable approaches that respect local sovereignty integrate diverse stakeholders and ensure fair access and benefit-sharing. Only by centring justice considerations can the transition to green hydrogen catalyse positive social change and realise its full potential as a driver of sustainable energy systems.
Modelling Flexibility Requirements in Deep Decarbonisation Scenarios: The Role of Conventional Flexibility and Sector Coupling Options in the European 2050 Energy System
Feb 2024
Publication
Russia’s invasion of Ukraine has reaffirmed the importance of scaling up renewable energy to decarbonise Europe’s economy while rapidly reducing its exposure to foreign fossil fuel suppliers. Therefore the question of sources of flexibility to support a fully decarbonised European energy system is becoming even more critical in light of a renewable-dominated energy system. We developed and used a Pan-European energy system model to systematically assess and quantify sources of flexibility to meet deep decarbonisation targets. The electricity supply sector and electricity-based end-use technologies are crucial in achieving deep decarbonisation. Other low-carbon energy sources like biomethane hydrogen synthetic e-fuels and bioenergy with carbon capture and storage will also play a role. To support a fully decarbonised European energy system by 2050 both temporal and spatial flexibility will be needed. Spatial flexibility achieved through investments in national electricity networks and cross-border interconnections is crucial to support the aggressive roll-out of variable renewable energy sources. Cross-border trade in electricity is expected to increase and in deep decarbonisation scenarios the electricity transmission capacity will be larger than that of natural gas. Hydrogen storage and green hydrogen production will play a key role in providing traditional inter-seasonal flexibility and intraday flexibility will be provided by a combination of electrical energy storage hydrogen-based storage solutions (e.g. liquid H2 and pressurised storage) and hybrid heat pumps. Hydrogen networks and storage will become more critical as we move towards the highest decarbonisation scenario. Still the need for natural gas networks and storage will decrease substantially.
Life Cycle Assessments Use in Hydrogen-related Policies: The Case for a Harmonized Methodology Addressing Multifunctionality
May 2024
Publication
Legislation regulating the sustainability requirements for hydrogen technologies relies more and more on life cycle assessments (LCAs). Due to different scopes and development processes different pieces of EU legislation refer to different LCA methodologies with differences in the way multifunctional processes (i.e. co-productions recycling and energy recovery) are treated. These inconsistencies arise because incentive mechanisms are not standardized across sectors even though the end product hydrogen remains the same. The goal of this paper is to compare the life-cycle greenhouse gas (GHG) emissions of hydrogen from four production pathways depending on the multifunctional approach prescribed by the different EU policies (e.g. using substitution or allocation). The study reveals a large variation in the LCA results. For instance the life-cycle GHG emissions of hydrogen co-produced with methanol is found to vary from 1 kg CO2-equivalent/kg H2 (when mass allocation is considered) to 11 kg CO2-equivalent/kg H2 (when economic allocation is used). These inconsistencies could affect the market (e.g. hydrogen from a certain pathway could be considered sustainable or unsustainable depending on the approach) and the environment (e.g. pathways that do not lead to a global emission reduction could be promoted). To mitigate these potential negative effects we urge for harmonized and strict guidelines to assess the life-cycle GHG emissions of hydrogen technologies in an EU policy context. Harmonization should cover international policies too to avoid the same risks when hydrogen will be traded based on its GHG emissions. The appropriate methodological approach for each production pathway should be chosen by policymakers in collaboration with the LCA community and stakeholders from the industry based on the potential market and environmental consequences of such choice.
Risky Business? Evaluating Hydrogen Partnerships Established by Germany, The Netherlands, and Belgium
Dec 2023
Publication
Following the introduction of the EU’s Hydrogen Strategy in 2020 as part of the European Green Deal some EU member states have deployed a very active hydrogen diplomacy. Germany The Netherlands and Belgium have been the most active ones establishing no less than 40 bilateral hydrogen trade partnerships with 30 potential export countries in the last three years. However concerns have been voiced about whether such hydrogen trade relationships can be economically feasible geopolitically wise environmentally sustainable and socially just. This article therefore evaluates these partnerships considering three risk dimensions: economic political and sustainability (covering both environmental and justice) risks. The analysis reveals that the selection of partner countries entails significant trade-offs. Four groups of partner countries can be identified based on their respective risk profile: “Last Resorts” “Volatile Ventures” “Strategic Gambits” and “Trusted Friends”. Strikingly less than one-third of the agreements are concluded with countries that fall within the “Trusted Friends” category which have the lowest overall risk profile. These findings show the need for policy makers to think much more strategically about which partnerships to pursue and to confront tough choices about which risks and trade-offs they are willing to accept.
Stakeholder Perspectives on the Scale-up of Green Hydrogen and Electrolyzers
Nov 2023
Publication
Green hydrogen is a promising alternative to fossil fuels. However current production capacities for electrolyzers and green hydrogen are not in line with national political goals and projected demand. Considering these issues we conducted semi-structured interviews to determine the narratives of different stakeholders during this transformation as well as challenges and opportunities for the green hydrogen value chain. We interviewed eight experts with different roles along the green hydrogen value chain ranging from producers and consumers of green hydrogen to electrolyzer manufacturers and consultants as well as experts from the political sphere. Most experts see the government as necessary for scale-up by setting national capacity targets policy support and providing subsidies. However the experts also accuse the governments of delaying development through overregulation and long implementation times for regulations. The main challenges that were identified are the current lack of renewable electricity and demand for green hydrogen. Demand for green hydrogen is influenced by supply costs which partly depend on prices for electrolyzers. However one key takeaway of the interviews is the skeptical assessments by the experts on the currently discussed estimates for price reduction potential of electrolyzers. While demand supply and prices are all factors that influence each other they result in feedback loops in investment decisions for the energy and manufacturing industries. A second key takeaway is that according to the experts current investment decisions in new production capacities are not solely dependent on short-term financial gains but also based on expected first mover advantages. These include experience and market share which are seen as factors for opportunities for future financial gains. Summarized the results present several challenges and opportunities for green hydrogen and electrolyzers and how to address them effectively. These insights contribute to a deeper understanding of the dynamics of the emerging green hydrogen value chain.
Hydrogen as a Transition Tool in a Fossil Fuel Resource Region: Taking China’s Coal Capital Shanxi as an Example
Aug 2023
Publication
Because of the pressure to meet carbon neutrality targets carbon reduction has become a challenge for fossil fuel resource-based regions. Even though China has become the most active country in carbon reduction its extensive energy supply and security demand make it difficult to turn away from its dependence on coal-based fossil energy. This paper analyzes the Chinese coal capital—Shanxi Province—to determine whether the green low-carbon energy transition should be focused on coal resource areas. In these locations the selection and effect of transition tools are key to ensuring that China meets its carbon reduction goal. Due to the time window of clean coal utilization the pressure of local governments and the survival demands of local high energy consuming enterprises Shanxi Province chose hydrogen as its important transition tool. A path for developing hydrogen resources has been established through lobbying and corporative influence on local and provincial governments. Based on such policy guidance Shanxi has realized hydrogen applications in large-scale industrial parks regional public transport and the iron and steel industry. This paper distinguishes between the development strategies of gray and green hydrogen. It shows that hydrogen can be an effective development model for resource-based regions as it balances economic stability and energy transition.
Monitored Data and Social Perceptions Analysis of Battery Electric and Hydrogen Fuelled Buses in Urban and Suburban Areas
Jul 2023
Publication
Electrification of the transportation sector is one of the main drivers in the decarbonization of energy and mobility systems and it is a way to ensure security of energy supply. Public bus fleets can assist in achieving fast reduction of CO2 emissions. This article provides an analysis of a unique real-world dataset to support decision makers in the decarbonization of public fleets and interlink it with the social acceptance of drivers. Data was collected from 21 fuel cell and electric buses. The tank-to-wheel efficiency results of fuel cell electric buses (FCEB) are much lower than that of battery electric buses (BEB) and there is a higher variation in consumption for BEBs compared to FCEBs. Both technologies permit a strong reduction in CO2 emissions compared to conventional buses. There is a high level of acceptance of drivers which are likely to support the transition towards zero-emission buses introduced by the management.
Optimal RES Integration for Matching the Italian Hydrogen Strategy Requirements
Oct 2023
Publication
In light of the Italian Hydrogen Roadmap goals the 2030 national RES installation targets need to be redefined. This work aims to propose a more appropriate RES installation deployment on national scale by matching the electrolysers capacity and the green hydrogen production goals. The adopted approach envisages the power-to-gas value chain priority for the green hydrogen production as a means of balancing system. Thus the 2030 Italian energy system has been modelled and several RES installation scenarios have been simulated via EnergyPLAN software. The simulation outputs have been integrated with a breakdown model for the overgeneration RES share detection in compliance with the PV dispatching priority of the Italian system. Therefore the best installation solutions have been detected via multi-objective optimization model based on the green hydrogen production additional installation cost critical energy excess along with the Levelized Cost of Hydrogen (LCOH). Higher wind technology installations provide more competitive energy and hydrogen costs. The most suitable scenarios show that the optimal LCOH and hydrogen production values respectively equal to 3.6 €/kg and 223 ktonH2 arise from additional PV/wind installations of 35 GW on top of the national targets.
Techno-Economic Analysis of Combined Production of Wind Energy and Green Hydrogen on the Northern Coast of Mauritania
Sep 2024
Publication
Green hydrogen is becoming increasingly popular with academics institutions and governments concentrating on its development efficiency improvement and cost reduction. The objective of the Ministry of Petroleum Mines and Energy is to achieve a 35% proportion of renewable energy in the overall energy composition by the year 2030 followed by a 50% commitment by 2050. This goal will be achieved through the implementation of feed-in tariffs and the integration of independent power generators. The present study focused on the economic feasibility of green hydrogen and its production process utilizing renewable energy resources on the northern coast of Mauritania. The current investigation also explored the wind potential along the northern coast of Mauritania spanning over 600 km between Nouakchott and Nouadhibou. Wind data from masts Lidar stations and satellites at 10 and 80 m heights from 2022 to 2023 were used to assess wind characteristics and evaluate five turbine types for local conditions. A comprehensive techno-economic analysis was carried out at five specific sites encompassing the measures of levelized cost of electricity (LCOE) and levelized cost of green hydrogen (LCOGH) as well as sensitivity analysis and economic performance indicators. The results showed an annual average wind speed of 7.6 m/s in Nouakchott to 9.8 m/s in Nouadhibou at 80 m. The GOLDWIND 3.0 MW model showed the highest capacity factor of 50.81% due to its low cut-in speed of 2.5 m/s and its rated wind speed of 10.5 to 11 m/s. The NORDEX 4 MW model forecasted an annual production of 21.97 GWh in Nouadhibou and 19.23 GWh in Boulanoir with the LCOE ranging from USD 5.69 to 6.51 cents/kWh below the local electricity tariff and an LCOGH of USD 1.85 to 2.11 US/kg H2 . Multiple economic indicators confirmed the feasibility of wind energy and green hydrogen projects in assessed sites. These results boosted the confidence of the techno-economic model highlighting the resilience of future investments in these sustainable energy infrastructures. Mauritania’s north coast has potential for wind energy aiding green hydrogen production for energy goals.
Towards Suitable Practices for the Integration of Social Life Cycle Assessment into the Ecodesign Framework of Hydrogen-related Products
Feb 2024
Publication
The hydrogen sector is envisaged as one of the key enablers of the energy transition that the European Union is facing to accomplish its decarbonization targets. However regarding the technologies that enable the deployment of a hydrogen economy a growing concern exists about potential burden-shifting across sustainability dimensions. In this sense social life cycle assessment arises as a promising methodology to evaluate the social implications of hydrogen technologies along their supply chains. In the context of the European projects eGHOST and SH2E this study seeks to advance on key methodological aspects of social life cycle assessment when it comes to guiding the ecodesign of two relevant hydrogen-related products: a 5 kW solid oxide electrolysis cell stack for hydrogen production and a 48 kW proton-exchange membrane fuel cell stack for mobility applications. Based on the social life cycle assessment results for both case studies under alternative approaches the definition of a product-specific supply chain making use of appropriate cut-off criteria was found to be the preferable choice when addressing system boundaries definition. Moreover performing calculations according to the activity variable approach was found to provide valuable results in terms of social hotspots identification to support subsequent decision-making processes on ecodesign while the direct calculation approach is foreseen as a complement to ease the interpretation of social scores. It is concluded that advancements in the formalization of such suitable practices could foster the integration of social metrics into the sustainable-by-design framework of hydrogen-related products.
How Can Green Hydrogen from North Africa Support EU Decarbonization? Scenario Analyses on Competitive Pathways for Trade
Jul 2024
Publication
The carbon-neutrality target set by the European Union for 2050 drives the increasing relevance of green hydrogen as key player in the energy transition. This work uses the JRC-EU-TIMES energy system model to assess opportunities and challenges for green hydrogen trade from North Africa to Europe analysing to what extent it can support its decarbonization. An important novelty is addressing uncertainty regarding hydrogen economy development. Alternative scenarios are built considering volumes available for import production costs and transport options affecting hydrogen cost-effectiveness. Both pipelines and ships are modelled assuming favourable market conditions and pessimistic ones. From 2040 on all available North African hydrogen is imported regardless of its costs. In Europe this imported hydrogen is mainly converted into synfuels and heat. The study aims to support policymakers to implement effective strategies focusing on the crucial role of green hydrogen in the decarbonization process if new competitive cooperations are developed.
Green Hydrogen Transitions Deepen Socioecological Risks and Extractivist Patterns: Evidence from 28 Perspective Exporting Countries in the Global South
Sep 2024
Publication
The global green hydrogen rush is prone to repeat extractivist patterns at the expense of economies ecologies and communities in the production zones in the Global South. With a socio-ecological risk analysis grounded in energy water and environmental justice scholarship we systematically assess the risks of the ‘green’ hydrogen transition and related injustices arising in 28 countries in the Global South with regard to energy water land and global justice dimensions. Our findings show that risks materialize through the exclusion of affected communities and civil society the enclosure of land and resources for extractivist purposes and through the externalization of socio-ecological costs and conflicts. We further demonstrate that socio-ecological risks are enhanced through country-specific conditions such as water scarcity historical continuities such as post-colonial land tenure systems as well as repercussions of a persistently uneven global politico-economic order. Contributing to debates on power inequality and justice in the global green hydrogen transition we argue that addressing hydrogen risks requires a framework of environmental justice and a transformative perspective that encompasses structural shifts in the global economy including degrowth and a decentering of industrial hegemonies in the Global North.
19 Import Options for Green Hydrogen and Derivatives - An Overview of Efficiencies and Technology Readiness Levels
Oct 2024
Publication
The import of hydrogen and derivatives forms part of many national strategies and is fundamental to achieving climate protection targets. This paper provides an overview and technical comparison of import pathways for hydrogen and derivatives in terms of efficiency technological maturity and development and construction times with a focus on the period up to 2030. The import of hydrogen via pipeline has the highest system efficiency at 57–67 % and the highest technological maturity with a technology readiness level (TRL) of 8–9. The import of ammonia and methanol via ship and of SNG via pipeline shows efficiencies in the range of 39–64 % and a technological maturity of TRL 7 to 9 when using point sources. Liquid hydrogen LOHC and Fischer-Tropsch products have the lowest efficiency and TRL in comparison. The use of direct air capture (DAC) reduces efficiency and TRL considerably. Reconversion of the derivatives to hydrogen is also associated with high losses and is not achievable for all technologies on an industrial scale up to 2030. In the short to medium term import routes for derivatives that can utilise existing infrastructures and mature technologies are the most promising for imports. In the long term the most promising option is hydrogen via pipelines.
Sustainable Green Energy Transition in Saudia Arabia: Characterizing Policy Framework, Interrelations and Future Research Directions
Jun 2024
Publication
By 2060 the Kingdom of Saudi Arabia (KSA) aims to achieve net zero greenhouse gas (GHG) emissions targeting 50% renewable energy and reducing 278 million tonnes of CO2 equivalent annually by 2030 under Vision 2030. This ambitious roadmap focuses on economic diversification global engagement and enhanced quality of life. The electricity sector with a 90 GW installed capacity as of 2020 is central to decarbonization aiming for a 55% reduction in emissions by 2030. Saudi Energy Efficiency Centre’s Energy Efficiency Action Plan aims to reduce power intensity by 30% by 2030 while the NEOM project showcases a 4 GW green hydrogen facility reflecting the country’s commitments to sustainability and technological innovation. Despite being the largest oil producer and user Saudi Arabia must align with international CO2 emission reduction targets. Currently there is no state-of-the-art energy policy framework to guide a sustainable energy transition. In the academic literature there is also lack of effort in developing comprehensive energy policy framework. This study provides a thorough and comprehensive analysis of the entire energy industry spanning from the stage of production to consumption incorporating sustainability factors into the wider discussion on energy policy. It establishes a conceptual framework for the energy policy of Saudi Arabia that corresponds with Vision 2030. A total of hundred documents (e.g. 25 original articles and 75 industry reports) were retrieved from Google Scholar Web of Science Core Collection Database and Google Search and then analyzed. Results showed that for advancing the green energy transition areas such as strategies for regional and cross-sectoral collaboration adoption of international models human capital development and public engagement technological innovation and research; and resource conservation environmental protection and climate change should move forward exclusively from an energy policy perspective. This article's main contribution is developing a comprehensive and conceptual policy framework for Saudi Arabia's sustainable green energy transition aligned with Vision 2030. The framework integrates social economic and environmental criteria and provides critical policy implications and research directions for advancing energy policy and sustainable practices in the country.
The Future European Hydrogen Market: Market Design and Policy Recommendations to Support Market Development and Commodity Trading
May 2024
Publication
A key building block of the European Green Deal is the development of a hydrogen commodity market which requires a suitable hydrogen market design and the timely introduction of related policy measures. Using exploratory interviews with five expert groups we contribute to this novel research field by outlining the core market design criteria and proposing suitable regulations for the future European hydrogen market. We identify detailed recommendations along three core market design focus areas: Market development policy measures infrastructure regulations as well as hydrogen and certificate trading. Our findings provide an across-industry view of current policy-related key challenges in the hydrogen commodity market development and mitigation approaches. We therefore support policymakers within the EU in the ongoing detailing of their regulatory hydrogen and green energy packages. Further we promote hydrogen market development by assisting current and future industry players in finding a common understanding of the future hydrogen market design.
‘Greening’ an Oil Exporting Country: A Hydrogen, Wind and Gas Turbine Case Study
Feb 2024
Publication
In the quest for achieving decarbonisation it is essential for different sectors of the economy to collaborate and invest significantly. This study presents an innovative approach that merges technological insights with philosophical considerations at a national scale with the intention of shaping the national policy and practice. The aim of this research is to assist in formulating decarbonisation strategies for intricate economies. Libya a major oil exporter that can diversify its energy revenue sources is used as the case study. However the principles can be applied to develop decarbonisation strategies across the globe. The decarbonisation framework evaluated in this study encompasses wind-based renewable electricity hydrogen and gas turbine combined cycles. A comprehensive set of both official and unofficial national data was assembled integrated and analysed to conduct this study. The developed analytical model considers a variety of factors including consumption in different sectors geographical data weather patterns wind potential and consumption trends amongst others. When gaps and inconsistencies were encountered reasonable assumptions and projections were used to bridge them. This model is seen as a valuable foundation for developing replacement scenarios that can realistically guide production and user engagement towards decarbonisation. The aim of this model is to maintain the advantages of the current energy consumption level assuming a 2% growth rate and to assess changes in energy consumption in a fully green economy. While some level of speculation is present in the results important qualitative and quantitative insights emerge with the key takeaway being the use of hydrogen and the anticipated considerable increase in electricity demand. Two scenarios were evaluated: achieving energy self-sufficiency and replacing current oil exports with hydrogen exports on an energy content basis. This study offers for the first time a quantitative perspective on the wind-based infrastructure needs resulting from the evaluation of the two scenarios. In the first scenario energy requirements were based on replacing fossil fuels with renewable sources. In contrast the second scenario included maintaining energy exports at levels like the past substituting oil with hydrogen. The findings clearly demonstrate that this transition will demand great changes and substantial investments. The primary requirements identified are 20529 or 34199 km2 of land for wind turbine installations (for self-sufficiency and exports) and 44 single-shaft 600 MW combined-cycle hydrogen-fired gas turbines. This foundational analysis represents the commencement of the research investment and political agenda regarding the journey to achieving decarbonisation for a country.
An Overview of Hydrogen’s Application for Energy Purposes in Lithuania
Nov 2023
Publication
Hydrogen has emerged as a promising climate-neutral energy carrier able to facilitate the processes of the European Union (EU) energy transition. Green hydrogen production through the electrolysis process has gained increasing interest recently for application in various sectors of the economy. As a result of the increasing renewable energy developments in the EU hydrogen is seen as one of the most promising solutions for energy storage challenges; therefore the leading countries in the energy sector are heavily investing in research of the technical obstacles for hydrogen applications and assessment of the current hydrogen market which in turn leads to the acceleration of the upscaling of hydrogen production. The main objective of this article was to provide a comprehensive overview of various green hydrogen production transportation and industrial application technologies and challenges in Europe with a separate analysis of the situation in Lithuania. Various water electrolysis technologies and their production costs are investigated along with recent developments in storage and transportation solutions. In addition the performances and limitations of electrochemical processes are presented and analysed research trends in the field are discussed and possible solutions for performance and cost improvements are overviewed. This paper proposes a discussion of perspectives in terms of future applications and research directions.
Some Inconvenient Truths about Decarbonization, the Hydrogen Economy, and Power to X Technologies
May 2024
Publication
The decarbonization of the energy sector has been a subject of research and of political discussions for several decades gaining significant attention in the last years. It is commonly acknowledged that the most obvious way to achieve decarbonization is the use of renewable energy sources. Within the context of the energy sector decarbonization many mainly industrialized countries recently started developing national plans to establish a hydrogen-based economy in the very near future. The plans for green hydrogen initially try to (a) target sectors that are difficult to decarbonize and (b) address issues related to the storage and transportation of CO2-free energy. To achieve almost complete decarbonization electric power must be generated exclusively from renewable sources. In so-called Power-to-X (PtX) technologies green hydrogen is generated from electricity and subsequently converted to another energy carrier which can be further stored transported and used. In PtX X stands for example for liquid hydrogen methanol or ammonia. The challenges associated with decarbonization include those associated with (a) the expansion of renewable energies (e.g. high capital demand political and social issues) (b) the production transportation and storage of hydrogen and the energy carriers denoted by X in PtX (e.g. high cost and low overall efficiency) and (c) the expected significant increase in the demand for electrical energy. The paper discusses whether and under which conditions the current national and international hydrogen plans of many industrialized countries could lead to a maximization of decarbonization in the world. It concludes that in general as long as the conditions for generating large excess amounts of green electricity are not met the quick establishment of a hydrogen economy could not only be very expensive but also counterproductive to the worldwide decarbonization efforts.
Which Is Preferred between Electric or Hydrogen Cars for Carbon Neutrality in the Commercial Vehicle Transportation Sector of South Korea? Implications from a Public Opinion Survey
Feb 2024
Publication
South Korea has drawn up plans to reduce greenhouse gases by 29.7 million tons by supplying 4.5 million electric and hydrogen cars by 2030 to implement the “2050 carbon neutrality” goal. This article gathers data on public preferences for electric cars (ECs) over hydrogen cars (HCs) in the commercial vehicle transportation sector through a survey of 1000 people. Moreover the strength of the preference was evaluated on a five-point scale. Of all respondents 60.0 percent preferred ECs and 21.0 percent HCs the former being 2.86 times greater than the latter. On the other hand the strength of the preference for HCs was 1.42 times greater than that for ECs. Factors influencing the preference for ECs over HCs were also explored through adopting the ordered probit model which is useful in examining ordinal preference rather than cardinal preference. The analyzed factors which are related to respondents’ characteristics experiences and perceptions can be usefully employed for developing strategies of promoting carbon neutrality in the commercial vehicle transportation sector and preparing policies to improve public acceptance thereof.
Optimizing Green Hydrogen Strategies in Tunisia: A Combined SWOT-MCDM Approach
Oct 2024
Publication
Tunisia's rapid industrial expansion and population growth have created a pressing energy deficit despite the country's significant yet largely untapped renewable energy potential. This study addressed this challenge by developing a comprehensive framework to identify and evaluate strategies for promoting green hydrogen production from renewable energy sources in Tunisia. A Strength Weakness Opportunity and Threat (SWOT) analysis incorporating social economic and environmental dimensions was conducted to formulate potential solutions. The Step-wise Weight Assessment Ratio Analysis (SWARA) method facilitated the weighting of SWOT factors and subfactors. Subsequently a multi-criteria decision-making approach employing the gray technique for order preference by similarity to ideal solution (TOPSIS-G) method (validated by gray additive ratio assessment (ARAS-G) gray complex proportional assessment (COPRAS-G) and gray multi-objective optimization by ratio analysis (MOORA-G) was used to rank the identified strategies. The SWOT analysis revealed "Strengths" as the most influential factor with a relative weight of 47.3% followed by "Weaknesses" (26.5%) "Threats" (15.6%) and "Opportunities" (10.6%). Specifically experts emphasized Tunisia's renewable energy potential (21.89%) and robust power system (12.11%) as primary strengths. Conversely high investment costs (11.2%) and political instability (7.77%) posed substantial threat. Positive socio-economic impacts represented a key opportunity with a score of 5.2%. As for the strategies prioritizing criteria production cost ranked first with a score of 13.5% followed by environmental impact (12.8%) renewable energy potential (12.0%) and mitigation costs (11.3%). The gray TOPSIS analysis identified two key strategies: leveraging Tunisia's wind and solar resources and fostering regional cooperation for project implementation. The robustness of these strategies is confirmed by the strong correlation between TOPSIS-G ARAS-G COPRAS-G and MOORA-G results. Overall the study provides a comprehensive roadmap and expert-informed decision-support tools offering valuable insights for policymakers investors and stakeholders in Tunisia and other emerging economies facing similar energy challenges.
Tapping the Conversation on the Meaning of Decarbonization: Discourses and Discursive Agency in EU Politics on Low-Carbon Fuels for Maritime Shipping
Jun 2024
Publication
EU politics on decarbonizing shipping is an argumentative endeavor where different policy actors strive try to influence others to see problems and policy solutions according to their perspectives to gain monopoly on the framing and design of policies. This article critically analyzes by means of argumentative discourse analysis the politics and policy process related to the recent adoption of the FuelEU Maritime regulation the world’s first legislation to set requirements for decarbonizing maritime shipping. Complementing previous research focusing on the roles and agency of policy entrepreneurs and beliefs of advocacy coalitions active in the policy process this paper dives deeper into the politics of the new legislation. It aims to explore and explain the discursive framing and politics of meaning-making. By analyzing the political and social meaning-making of the concept “decarbonizing maritime shipping” this paper helps us understand why the legislation was designed in the way it was. Different narratives storylines and discourses defining different meanings of decarbonization are analyzed. So is the agency of policy actors trying to mutate the different meanings into a new meaning. Two discourses developed in dialectic conversation framed the policy proposals and subsequent debates in the policy process focusing on (i) incremental change and technology neutrality to meet moderate emission reductions and maintain competitiveness and (ii) transformative change and technology specificity to meet zero emissions and gain competitiveness and global leadership in the transition towards a hydrogen economy. Policy actors successfully used discursive agency strategies such as multiple functionality and vagueness to navigate between and resolve conflicts between the two discourses. Both discourses are associated with the overarching ecological modernization discourse and failed to include issue of climate justice and a just transition. The heritage of the ecological modernization discourse creates lock-ins for a broader decarbonization discourse thus stalling a just transition.
Hydrogen-Based Energy Systems: Current Technology Development Status, Opportunities and Challenges
Dec 2023
Publication
The use of hydrogen as an energy carrier within the scope of the decarbonisation of the world’s energy production and utilisation is seen by many as an integral part of this endeavour. However the discussion around hydrogen technologies often lacks some perspective on the currently available technologies their Technology Readiness Level (TRL) scope of application and important performance parameters such as energy density or conversion efficiency. This makes it difficult for the policy makers and investors to evaluate the technologies that are most promising. The present study aims to provide help in this respect by assessing the available technologies in which hydrogen is used as an energy carrier including its main challenges needs and opportunities in a scenario in which fossil fuels still dominate global energy sources but in which renewables are expected to assume a progressively vital role in the future. The production of green hydrogen using water electrolysis technologies is described in detail. Various methods of hydrogen storage are referred including underground storage physical storage and material-based storage. Hydrogen transportation technologies are examined taking into account different storage methods volume requirements and transportation distances. Lastly an assessment of well-known technologies for harnessing energy from hydrogen is undertaken including gas turbines reciprocating internal combustion engines and fuel cells. It seems that the many of the technologies assessed have already achieved a satisfactory degree of development such as several solutions for high-pressure hydrogen storage while others still require some maturation such as the still limited life and/or excessive cost of the various fuel cell technologies or the suitable operation of gas turbines and reciprocating internal combustion engines operating with hydrogen. Costs below 200 USD/kWproduced lives above 50 kh and conversion efficiencies approaching 80% are being aimed at green hydrogen production or electricity production from hydrogen fuel cells. Nonetheless notable advances have been achieved in these technologies in recent years. For instance electrolysis with solid oxide cells may now sometimes reach up to 85% efficiency although with a life still in the range of 20 kh. Conversely proton exchange membrane fuel cells (PEMFCs) working as electrolysers are able to sometimes achieve a life in the range of 80 kh with efficiencies up to 68%. Regarding electricity production from hydrogen the maximum efficiencies are slightly lower (72% and 55% respectively). The combination of the energy losses due to hydrogen production compression storage and electricity production yields overall efficiencies that could be as low as 25% although smart applications such as those that can use available process or waste heat could substantially improve the overall energy efficiency figures. Despite the challenges the foreseeable future seems to hold significant potential for hydrogen as a clean energy carrier as the demand for hydrogen continues to grow particularly in transportation building heating and power generation new business prospects emerge. However this should be done with careful regard to the fact that many of these technologies still need to increase their technological readiness level before they become viable options. For this an emphasis needs to be put on research innovation and collaboration among industry academia and policymakers to unlock the full potential of hydrogen as an energy vector in the sustainable economy.
Investigation of a Community-based Clean Energy System Holistically with Renewable and Hydrogen Energy Options for Better Sustainable Development
Jan 2024
Publication
This study develops a novel community-based integrated energy system where hydrogen and a combination of renewable energy sources are considered uniquely for implementation. In this regard three different communities situated in Kenya the United States and Australia are studied for hydrogen production and meeting the energy demands. To provide a variety of energy demands this study combines a multigenerational geothermal plant with a hybrid concentrated solar power and photovoltaic solar plant. Innovations in hydrogen production and renewable energy are essential for reducing carbon emissions. By combining the production of hydrogen with renewable energy sources this system seeks to move away from the reliance on fossil fuels and toward sustainability. The study investigates various research subjects using a variety of methods. The performance of the geothermal source is considered through energetic and exergetic thermodynamic analysis. The software System Advisor Model (SAM) and RETscreen software packages are used to analyze the other sub-systems including Concentrate Solar PV solar and Combined Heat and Power Plant. Australian American and Kenyan communities considered for this study were found to have promising potential for producing hydrogen and electricity from renewable sources. The geothermal output is expected to be 35.83 MW 122.8 MW for space heating 151.9 MW for industrial heating and 64.25 MW for hot water. The overall geothermal energy and exergy efficiencies are reported as 65.15% and 63.54% respectively. The locations considered are expected to have annual solar power generation and hydrogen production capacities of 158MW 237MW 186MW 235 tons 216 tons and 313 tons respectively.
Overview and Prospects of Low-emissions Hydrogen (H2) Energy Systems: Roadmap for a Sustainable H2 Economy
Jul 2024
Publication
Hydrogen (2 ) has a big role to play in energy transition to achieve net-zero carbon emissions by 2050. For 2 to compete with other fuels in the energy market more research is required to mitigate key issues like greenhouse gas (GHG) emissions safety and end-use costs. For these reasons a software-supported technical overview of 2 production storage transportation and utilisation is introduced. Drawbacks and mitigation approaches for 2 technologies were highlighted. The recommended areas include solar thermal or renewable-powered plasma systems for feedstock preheating and oxy-hydrogen combustion to meet operating temperatures and heat duties due to losses; integration of electrolysis of 2 into hydrocarbon reforming methods to replace air separation unit (ASU); use of renewable power sources for electrical units and the introduction of thermoelectric units to maximise the overall efficiency. Furthermore a battolyser system for small-scale energy storage; new synthetic hydrides with lower absorption and desorption energy; controlled parameters and steam addition to the combustor/cylinder and combustors with fitted heat exchangers to reduce emissions and improve the overall efficiency are also required. This work also provided detailed information on any of these systems implementations based on location factors and established a roadmap for 2 production and utilisation. The proposed 2 production technologies are hybrid pyrolysis-electrolysis and integrated AD-MEC and DR systems using renewable bioelectrochemical and low-carbon energy systems. Production and utilisation of synthetic natural gas (NG) using renewablepowered electrolysis of 2 oxy-fuel and direct air capture (DAC) is another proposed 2 energy system for a sustainable 2 economy. By providing these factors and information researchers can work towards pilot development and further efficiency enhancement.
Impact of Green Hydrogen on Climate Change in Peru: An Analysis of Perception, Policies, and Cooperation
Oct 2024
Publication
This research analyzed the impact of green hydrogen (GH) on the dynamics of combating climate change (CC) in Peru for the year 2024 contributing to Sustainable Development Goal 7 focused on affordable and clean energy. The study quantitative and non-experimental in nature used a cross-sectional design and focused on a sample composed of public and private sector officials energy experts and academics evaluating their perception and knowledge about GH and its application in climate policies. The data collection instrument showed good internal consistency with a Cronbach’s alpha value of 0.793. The results revealed that although the adoption of GH is in its early stages it is already considered a vital component in national CC mitigation strategies. A medium positive correlation was identified using the Spearman coefficient (0.418) between GH usage and the effectiveness of mitigation policies as well as its capacity to influence public awareness and promote interinstitutional cooperation. Furthermore it was concluded that the success of GH largely depends on the strengthening of regulatory frameworks investment in infrastructure and the promotion of strategic alliances to facilitate its integration into the national energy matrix. These findings highlight the importance of continuing to develop public policies that promote the use of GH ensuring its sustainability and effectiveness in the fight against climate change in Peru.
Shorter Message, Stronger Framing Increases Societal Acceptance for Hydrogen
Feb 2024
Publication
With the question of ‘can short messages be effective in increasing public support for a complex new technology (hydrogen)?‘ this study uses a representative national survey in Australia to analyze the differences and variations in subjective support for hydrogen in response to four differently framed short messages. The findings of this study show that short messages can increase social acceptance but the effects depend on how strongly the message is framed in terms of its alignment with either an economic or environmental values framework. Furthermore the effects depend on the social and cultural context of the receiver of the message.
The Technical and Economic Aspects of Integrating Energy Sectors for Climate Neutrality
Sep 2024
Publication
With the development of an energy sector based on renewable primary sources structural changes are emerging for the entire national energy system. Initially it was estimated that energy generation based on fossil fuels would decrease until its disappearance. However the evolution of CO2 capture capacity leads to a possible coexistence for a certain period with the renewable energy sector. The paper develops this concept of the coexistence of the two systems with the positioning of green hydrogen not only within the renewable energy sector but also as a transformation vector for carbon dioxide captured in the form of synthetic fuels such as CH4 and CH3OH. The authors conducted pilot-scale research on CO2 capture with green H2 both for pure (captured) CO2 and for CO2 found in combustion gases. The positive results led to the respective recommendation. The research conducted by the authors meets the strict requirements of the current energy phase with the authors considering that wind and solar energy alone are not sufficient to meet current energy demand. The paper also analyzes the economic aspects related to price differences for energy produced in the two sectors as well as their interconnection. The technical aspect as well as the economic aspect of storage through various other solutions besides hydrogen has been highlighted. The development of the renewable energy sector and its demarcation from the fossil fuel energy sector even with the transcendent vector represented by green hydrogen leads to the deepening of dispersion aspects between the electricity sector and the thermal energy sector a less commonly mentioned aspect in current works but of great importance. The purpose of this paper is to highlight energy challenges during the current transition period towards climate neutrality along with solutions proposed by the authors to be implemented in this phase. The current stage of combustion of the CH4 − H2 mixture imposes requirements for the capture of the resulting CO2.
Pathways to the Hydrogen Economy: A Multidimensional Analysis of the Technological Innovation Systems of Germany and South Korea
Aug 2023
Publication
The global trend towards decarbonization and the demand for energy security have put hydrogen energy into the spotlight of industry politics and societies. Numerous governments worldwide are adopting policies and strategies to facilitate the transition towards hydrogen-based economies. To assess the determinants of such transition this study presents a comparative analysis of the technological innovation systems (TISs) for hydrogen technologies in Germany and South Korea both recognized as global front-runners in advancing and implementing hydrogen-based solutions. By providing a multi-dimensional assessment of pathways to the hydrogen economy our analysis introduces two novel and crucial elements to the TIS analysis: (i) We integrate the concept of ‘quality infrastructure’ given the relevance of safety and quality assurance for technology adoption and social acceptance and (ii) we emphasize the social perspective within the hydrogen TIS. To this end we conducted 24 semi-structured expert interviews applying qualitative open coding to analyze the data. Our results indicate that the hydrogen TISs in both countries have undergone significant developments across various dimensions. However several barriers still hinder the further realization of a hydrogen economy. Based on our findings we propose policy implications that can facilitate informed policy decisions for a successful hydrogen transition.
Impact of Large-scale Hydrogen Electrification and Retrofitting of Natural Gas Infrastructure on the European Power System
Nov 2023
Publication
In this paper we aim to analyse the impact of hydrogen production decarbonisation and electrification scenarios on the infrastructure development generation mix CO2 emissions and system costs of the European power system considering the retrofit of the natural gas infrastructure. We define a reference scenario for the European power system in 2050 and use scenario variants to obtain additional insights by breaking down the effects of different assumptions. The scenarios were analysed using the European electricity market model COMPETES including a proposed formulation to consider retrofitting existing natural gas networks to transport hydrogen instead of methane. According to the results 60% of the EU’s hydrogen demand is electrified and approximately 30% of the total electricity demand will be to cover that hydrogen demand. The primary source of this electricity would be non-polluting technologies. Moreover hydrogen flexibility significantly increases variable renewable energy investment and production and reduces CO2 emissions. In contrast relying on only electricity transmission increases costs and CO2 emissions emphasising the importance of investing in an H2 network through retrofitting or new pipelines. In conclusion this paper shows that electrifying hydrogen is necessary and cost-effective to achieve the EU’s objective of reducing long-term emissions.
Comparative Life Cycle Greenhouse Gas Analysis of Clean Hydrogen Pathways: Assessing Domestic Production and Overseas Import in South Korea
Sep 2023
Publication
The development of a Clean Hydrogen Standard based on life-cycle greenhouse gas (GHG) emissions is gaining prominence on the international agenda. Thus a framework for assessing life-cycle GHG emissions for clean hydrogen pathways is necessary. In this study the comprehensive datasets and effects of various scenarios encompassing hydrogen production carriers (liquid hydrogen ammonia methylcyclohexane) carbon capture and storage (CCS) target analysis year (2021 2030) to reflect trends of greening grid electricity and potential import countries on aggregated life-cycle GHG emissions were presented. South Korea was chosen as a case study region and the low-carbon alternatives were suggested for reducing aggregated emissions to meet the Korean standard (5 kgCO2e/kgH2). First capturing and storing nearly entire (>90%) CO2 from fossil- and waste-based production pathways is deemed essential. Second when repurposing the use of hydrogen that was otherwise used internally applying a penalty for substitution is appropriate leading to results notably exceeding the standard. Third for electrolysis-based hydrogen using renewable or nuclear electricity is essential. Lastly when hydrogen is imported in a well-to-point-of-delivery (WtP) perspective using renewable electricity during hydrogen conversion into a carrier and reusing the produced hydrogen for endothermic reconversion reaction are recommended. By implementing the developed calculation framework to other countries' cases it was observed that importing hydrogen to regions having scope of WtP or above (e.g. well-to-wheel) might not meet the threshold due to additional emissions from importation processes. Additionally for hydrogen carriers undergoing the endothermic reconversion the approach to reduce WtP emissions (reusing produced hydrogen) may conflict with the approach to reduce well-to-gate (WtG) emission (using external fossilbased fuel). The discrepancy highlights the need to set a broader scope of emissions assessment to effectively promote the life-cycle emission reduction efforts of hydrogen importers. This study contributes to the field of clean hydrogen GHG emission assessment offering a robust database and calculation framework while addressing the effects of greening grid electricity and CCS implementation proposing low-carbon alternatives and GHG assessment scope to achieve global GHG reduction.
Green Hydrogen Credit Subsidized Renewable Energy-hydrogen Business Models for Achieving the Carbon Netural Future
Feb 2024
Publication
The global resurgence of hydrogen as a clean energy source particularly green hydrogen derived from renewable energy is pivotal for achieving a carbon-neutral future. However scalability poses a significant challenge. This research proposes innovative business models leveraging the low-emission property of green hydrogen to reduce its financial costs thereby fostering its widespread adoption. Key components of the business workflow are elaborated mathematical formulations of market parameters are derived and case studies are presented to demonstrate the feasibility and efficiency of these models. Results demonstrate that the substantial costs associated with the current hydrogen industry can be effectively subsidized via the implementation of proposed business models. When the carbon emission price falls within the range of approximately 86–105 USD/ton free access to hydrogen becomes a viable option for end-users. This highlights the significance and promising potential of the proposed business models within the green hydrogen credit framework.
Energy Sustainability: A Pragmatic Approach and Illustrations
Mar 2009
Publication
Many factors to be appropriately addressed in moving towards energy sustainability are examined. These include harnessing sustainable energy sources utilizing sustainable energy carriers increasing efficiency reducing environmental impact and improving socioeconomic acceptability. The latter factor includes community involvement and social acceptability economic affordability and equity lifestyles land use and aesthetics. Numerous illustrations demonstrate measures consistent with the approach put forward and options for energy sustainability and the broader objective of sustainability. Energy sustainability is of great importance to overall sustainability given the pervasiveness of energy use its importance in economic development and living standards and its impact on the environment.
An Overview of Hydrogen Valleys: Current Status, Challenges and their Role in Increased Renewable Energy Penetration
Sep 2024
Publication
Renewable hydrogen is a flexible and versatile energy vector that can facilitate the decarbonization of several sectors and simultaneously ease the stress on the electricity grids that are currently being saturated with intermittent renewable power. But hydrogen technologies are currently facing limitations related to existing infrastructure limitations available markets as well as production storage and distribution costs. These challenges will be gradually addressed through the establishment operation and scaling-up of hydrogen valleys. Hydrogen valleys are an important stepping stone towards the full-scale implementation of the hydrogen economy with the target to foster sustainability lower carbon emissions and derisk the associated hydrogen technologies. These hydrogen ecosystems integrate renewable energy sources efficient hydrogen production storage transportation technologies as well as diverse end-users within a defined geographical region. This study offers an overview of the hydrogen valleys concept analyzing the critical aspects of their design and the key segments that constitute the framework of a hydrogen valley. А holistic overview of the key characteristics of a hydrogen valley is provided whereas an overview of key on-going hydrogen valley projects is presented. This work underscores the importance of addressing challenges related to the integration of renewable energy sources into electricity grids as well as scale-up challenges associated with economic and market conditions society awareness and political decision-making.
Hydrogen Production, Transporting and Storage Processes—A Brief Review
Sep 2024
Publication
This review aims to enhance the understanding of the fundamentals applications and future directions in hydrogen production techniques. It highlights that the hydrogen economy depends on abundant non-dispatchable renewable energy from wind and solar to produce green hydrogen using excess electricity. The approach is not limited solely to existing methodologies but also explores the latest innovations in this dynamic field. It explores parameters that influence hydrogen production highlighting the importance of adequately controlling the temperature and concentration of the electrolytic medium to optimize the chemical reactions involved and ensure more efficient production. Additionally a synthesis of the means of transport and materials used for the efficient storage of hydrogen is conducted. These factors are essential for the practical feasibility and successful deployment of technologies utilizing this energy resource. Finally the technological innovations that are shaping the future of sustainable use of this energy resource are emphasized presenting a more efficient alternative compared to the fossil fuels currently used by society. In this context concrete examples that illustrate the application of hydrogen in emerging technologies are highlighted encompassing sectors such as transportation and the harnessing of renewable energy for green hydrogen production.
Strategic Analysis of Hydrogen Market Dynamics Across Collaboration Models
Oct 2024
Publication
The global energy landscape is experiencing a transformative shift with an increasing emphasis on sustainable and clean energy sources. Hydrogen remains a promising candidate for decarbonization energy storage and as an alternative fuel. This study explores the landscape of hydrogen pricing and demand dynamics by evaluating three collaboration scenarios: market-based pricing cooperative integration and coordinated decision-making. It incorporates price-sensitive demand environmentally friendly production methods and market penetration effects to provide insights into maximizing market share profitability and sustainability within the hydrogen industry. This study contributes to understanding the complexities of collaboration by analyzing those structures and their role in a fast transition to clean hydrogen production by balancing economic viability and environmental goals. The findings reveal that the cooperative integration strategy is the most effective for sustainable growth increasing green hydrogen’s market share to 19.06 % and highlighting the potential for environmentally conscious hydrogen production. They also suggest that the coordinated decision-making approach enhances profitability through collaborative tariff contracts while balancing economic viability and environmental goals. This study also underscores the importance of strategic pricing mechanisms policy alignment and the role of hydrogen hubs in achieving sustainable growth in the hydrogen sector. By highlighting the uncertainties and potential barriers this research offers actionable guidance for policymakers and industry players in shaping a competitive and sustainable energy marketplace.
Hydrogen Revolution in Europe: Bibliometric Review of Industrial Hydrogen Applications for a Sustainable Future
Jul 2024
Publication
Industrial applications of hydrogen are key to the transition towards a sustainable lowcarbon economy. Hydrogen has the potential to decarbonize industrial sectors that currently rely heavily on fossil fuels. Hydrogen with its unique and versatile properties has several in-industrial applications that are fundamental for sustainability and energy efficiency such as the following: (i) chemical industry; (ii) metallurgical sector; (iii) transport; (iv) energy sector; and (v) agrifood sector. The development of a bibliometric analysis of industrial hydrogen applications in Europe is crucial to understand and guide developments in this emerging field. Such an analysis can identify research trends collaborations between institutions and countries and the areas of greatest impact and growth. By examining the scientific literature and comparing it with final hydrogen consumption in different regions of Europe the main actors and technologies that are driving innovation in industrial hydrogen use on the continent can be identified. The results obtained allow for an assessment of the knowledge gaps and technological challenges that need to be addressed to accelerate the uptake of hydrogen in various industrial sectors. This is essential to guide future investments and public policies towards strategic areas that maximize the economic and environmental impact of industrial hydrogen applications in Europe.
Hopes and Fears for a Sustainable Energy Future: Enter the Hydrogen Acceptance Matrix
Feb 2024
Publication
Hydrogen-fuelled technologies for home heating and cooking may provide a low-carbon solution for decarbonising parts of the global housing stock. For the transition to transpire the attitudes and perceptions of consumers must be factored into policy making efforts. However empirical studies are yet to explore potential levels of consumer heterogeneity regarding domestic hydrogen acceptance. In response this study explores a wide spectrum of consumer responses towards the prospect of hydrogen homes. The proposed spectrum is conceptualised in terms of the ‘domestic hydrogen acceptance matrix’ which is examined through a nationally representative online survey conducted in the United Kingdom. The results draw attention to the importance of interest and engagement in environmental issues knowledge and awareness of renewable energy technologies and early adoption potential as key drivers of domestic hydrogen acceptance. Critically strategic measures should be taken to convert hydrogen scepticism and pessimism into hope and optimism by recognising the multidimensional nature of consumer acceptance. To this end resources should be dedicated towards increasing the observability and trialability of hydrogen homes in proximity to industrial clusters and hubs where the stakes for consumer acceptance are highest. Progress towards realising a net-zero society can be supported by early stakeholder engagement with the domestic hydrogen acceptance matrix.
Sustainability Certification for Renewable Hydrogen: An International Survey of Energy Professionals
Jun 2024
Publication
Hydrogen produced from renewable energy is being promoted to decarbonise global energy systems. To support this energy transition standards certification and labelling schemes (SCLs) aim to differentiate hydrogen products based on their system-wide carbon emissions and method of production characteristics. However being certified as low-carbon clean or green hydrogen does not guarantee broader sustainability across economic environmental social or governance dimensions. Through an international survey of energy-sector and sustainability professionals (n = 179) we investigated the desirable sustainability features for renewable hydrogen SCLs and the perceived advantages and disadvantages of sustainability certification. Our mixed-method study revealed general accordance on the feasible inclusion of diverse sustainability criteria in SCLs albeit with varying degrees of perceived essentiality. Within the confines of the data some differences in viewpoints emerged based on respondents’ geographical and supply chain locations which were associated with the sharing of costs and benefits. Qualitatively respondents found the idea of SCL harmonisation attractive but weighed this against the risks of duplication complicated administrative procedures and contradictory regulation. The implications of this research centre on the need for further studies to inform policy recommendations for an overarching SCL sustainability framework that embodies the principles of harmonisation in the context of multistakeholder governance.
The Development of a Green Hydrogen Economy: Review
Jun 2024
Publication
Building a hydrogen economy is perceived as a way to achieve the decarbonization goals set out in the Paris Agreement to limit global warming as well as to meet the goals resulting from the European Green Deal for the decarbonization of Europe. This article presents a literature review of various aspects of this economy. The full added value chain of hydrogen was analyzed from its production through to storage transport distribution and use in various economic sectors. The current state of knowledge about hydrogen is presented with particular emphasis on its features that may determine the positives and negatives of its development. It was noted that although hydrogen has been known for many years its production methods are mainly related to fossil fuels which result in greenhouse gas emissions. The area of interest of modern science is limited to green hydrogen produced as a result of electrolysis from electricity produced from renewable energy sources. The development of a clean hydrogen economy is limited by many factors the most important of which are the excessive costs of producing clean hydrogen. Research and development on all elements of the hydrogen production and use chain is necessary to contribute to increasing the scale of production and use of this raw material and thus reducing costs as a result of the efficiencies of scale and experience gained. The development of the hydrogen economy will be related to the development of the hydrogen trade and the centers of this trade will differ significantly from the current centers of energy carrier trade.
Mid-century Net-zero Emissions Pathways for Japan: Potential Roles of Global Mitigation Scenarios in Informing National Decarbonisation Strategies
Jan 2024
Publication
Japan has formulated a net-zero emissions target by 2050. Existing scenarios consistent with this target generally depend on carbon dioxide removal (CDR). In addition to domestic mitigation actions the import of low-carbon energy carriers such as hydrogen and synfuels and negative emissions credits are alternative options for achieving net-zero emissions in Japan. Although the potential and costs of these actions depend on global energy system transition characteristics which can potentially be informed by the global integrated assessment models they are not considered in current national scenario assessments. This study explores diverse options for achieving Japan's net-zero emissions target by 2050 using a national energy system model informed by international energy trade and emission credits costs estimated with a global energy system model. We found that demand-side electrification and approximately 100 Mt-CO2 per year of CDR implementation equivalent to approximately 10% of the current national CO2 emissions are essential across all net-zero emissions scenarios. Upscaling of domestically generated hydrogen-based alternative fuels and energy demand reduction can avoid further reliance on CDR. While imports of hydrogen-based energy carriers and emission credits are effective options annual import costs exceed the current cost of fossil fuel imports. In addition import dependency reaches approximately 50% in the scenario relying on hydrogen imports. This study highlights the importance of considering global trade when developing national net-zero emissions scenarios and describes potential new roles for global models.
A SWOT Analysis of the Green Hydrogen Market
Jun 2024
Publication
Since the Industrial Revolution humanity has heavily depended on fossil fuels. Recognizing the negative environmental impacts of the unmoderated consumption of fossil fuels including global warming and consequent climate change new plans and initiatives have been established to implement renewable and sustainable energy sources worldwide. This has led to a rapid increase in the installed solar and wind energy capacity. However considering the fluctuating nature of these renewable energy sources green hydrogen has been proposed as a suitable energy carrier to improve the efficiency of energy production and storage. Thus green hydrogen produced by water electrolysis using renewable electricity is a promising solution for the future energy market. Moreover it has the potential to be used for the decarbonization of the heavy industry and transportation sectors. Research and development (R&D) on green hydrogen has grown considerably over the past few decades aiming to maximize production and expand its market share. The present work uses a SWOT (strengths weaknesses opportunities and threats) analysis to evaluate the current status of the green hydrogen market. The external and internal factors that affect its market position are assessed. The results show that green hydrogen is on the right track to becoming a competitive alternative to fossil fuels soon. Supported by environmental benefits government incentives and carbon taxes roadmaps to position green hydrogen on the energy map have been outlined. Nevertheless increased investments are required for further R&D as costs must be reduced and policies enforced. These measures will gradually decrease global dependency on fossil fuels and ensure that roadmaps are followed through.
Research & Innovation for Climate Neutrality 2050: Challenges, Opportunities & the Path Forward
Jan 2024
Publication
Transforming Europe into a climate neutral economy and society by 2050 requires extraordinary efforts and the mobilisation of all sectors and economic actors coupled with all the creative and brain power one can imagine. Each sector has to fundamentally rethink the way it operates to ensure it can be transformed towards this new net-zero paradigm without jeopardising other environmental and societal objectives both within the EU and globally. Given the scale of the transformation ahead our ability to meet climate neutrality targets directly depends on our ability to innovate. In this context Research & Innovation programmes have a key role to play and it is crucial to ensure they are fit for purpose and well equipped to support the next wave of breakthrough innovations that will be required to achieve climate neutrality in the EU and globally by 2050. The objective of this study is to contribute to these strategic planning discussions by not only identifying high-risk and high-impact climate mitigation solutions but most importantly look beyond individual solutions and consider how systemic interactions of climate change mitigation approaches can be integrated in the development of R&I agendas.
Coupling Green Hydrogen Production to Community Benefits: A Pathway to Social Acceptance?
Feb 2024
Publication
Hydrogen energy technologies are forecasted to play a critical supporting role in global decarbonisation efforts as reflected by the growth of national hydrogen energy strategies in recent years. Notably the UK government published its Hydrogen Strategy in August 2021 to support decarbonisation targets and energy security ambitions. While establishing techno-economic feasibility for hydrogen energy systems is a prerequisite of the prospective transition social acceptability is also needed to support visions for the ‘hydrogen economy’. However to date societal factors are yet to be embedded into policy prescriptions. Securing social acceptance is especially critical in the context of ‘hydrogen homes’ which entails replacing natural gas boilers and hobs with low-carbon hydrogen appliances. Reflecting the nascency of hydrogen heating and cooking technologies the dynamics of social acceptance are yet to be explored in a comprehensive way. Similarly public perceptions of the hydrogen economy and emerging national strategies remain poorly understood. Given the paucity of conceptual and empirical insights this study develops an integrated acceptance framework and tests its predictive power using partial least squares structural equation modelling. Results highlight the importance of risk perceptions trust dynamics and emotions in shaping consumer perceptions. Foremost prospects for deploying hydrogen homes at scale may rest with coupling renewable-based hydrogen production to local environmental and socio-economic benefits. Policy prescriptions should embed societal factors into the technological pursuit of large-scale sustainable energy solutions to support socially acceptable transition pathways.
Evaluating the Economic Viability of Decentralised Solar PV-based Green Hydrogen for Cooking in Ghana
Jul 2024
Publication
Developing countries including Ghana face challenges ensuring access to clean and reliable cooking fuels and technologies. Traditional biomass sources mainly used in most developing countries for cooking contribute to deforestation and indoor air pollution necessitating a shift towards environmentally friendly alternatives. The study’s primary objective is to evaluate the economic viability of using solar PV-based green hydrogen as a sustainable fuel for cooking in Ghana. The study adopted well-established equations to investigate the economic performance of the proposed system. The findings revealed that the levelized cost of hydrogen using the discounted cash flow approach is about 89% 155% and 190% more than electricity liquefied petroleum gas (LPG) and charcoal. This implies that using the hydrogen produced for cooking fuel is not cost-competitive compared to LPG charcoal and electricity. However with sufficient capital subsidies to lower the upfront costs the analysis suggests solar PV-based hydrogen could become an attractive alternative cooking fuel. In addition switching from firewood to solar PVbased hydrogen for cooking yields the highest carbon dioxide (CO2) emissions savings across the cities analysed. Likewise replacing charcoal with hydrogen also offers substantial CO2 emissions savings though lower than switching from firewood. Correspondingly switching from LPG to hydrogen produces lower CO2 emissions savings than firewood and charcoal. The study findings could contribute to the growing body of knowledge on sustainable energy solutions offering practical insights for policymakers researchers and industry stakeholders seeking to promote clean cooking adoption in developing economies.
Multiplier Effect on Reducing Carbon Emissions of Joint Demand and Supply Side Measures in the Hydrogen Market
Jun 2024
Publication
Hydrogen energy is critical in replacing fossil fuels and achieving net zero carbon emissions by 2050. Three measures can be implemented to promote hydrogen energy: reduce the cost of low-carbon hydrogen through technological improvements increase the production capacity of low-carbon hydrogen by stimulating investment and enhance hydrogen use as an energy carrier and in industrial processes by demand-side policies. This article examines how effective these measures are if successfully implemented in boosting the hydrogen market and reducing global economy-wide carbon emissions using a global computable general equilibrium model. The results show that all the measures increase the production and use of low-carbon hydrogen whether implemented alone or jointly. Notably the emissions reduced by joint implementation of all the measures in 2050 become 2.5 times the sum of emissions reduced by individual implementation indicating a considerable multiplier effect. This suggests supply and demand side policies be implemented jointly to maximize their impact on reducing emissions.
Beyond the triangle of renewable Energy Acceptance: The Five Dimensions of Domestic Hydrogen Acceptance
Aug 2022
Publication
The ‘deep’ decarbonization of the residential sector is a priority for meeting national climate change targets especially in countries such as the UK where natural gas has been the dominant fuel source for over half a century. Hydrogen blending and repurposing the national grid to supply low-carbon hydrogen gas may offer respective short- and long-term solutions to achieving emissions reduction across parts of the housing sector. Despite this imperative the social acceptance of domestic hydrogen energy technologies remains underexplored by sustainability scholars with limited insights regarding consumer perceptions and expectations of the transition. A knowledge deficit of this magnitude is likely to hinder effective policymaking and may result in sub-optimal rollout strategies that derail the trajectory of the net zero agenda. Addressing this knowledge gap this study develops a conceptual framework for examining the consumer-facing side of the hydrogen transition. The paper affirms that the spatiotemporal patterns of renewable energy adoption are shaped by a range of interacting scales dimensions and factors. The UK’s emerging hydrogen landscape and its actor-network is characterized as a heterogenous system composed of dynamic relationships and interdependencies. Future studies should engage with domestic hydrogen acceptance as a co-evolving multi-scalar phenomenon rooted in the interplay of five distinct dimensions: attitudinal socio-political community market and behavioral acceptance. If arrived to behavioral acceptance helps realize the domestication of hydrogen heating and cooking established on grounds on cognitive sociopolitical and sociocultural legitimacy. The research community should internalize the complexity and richness of consumer attitudes and responses through a more critical and reflexive approach to the study of social acceptance.
Perspective on the Hydrogen Economy as a Pathway to Reach Net-zero CO2 Emissions in Europe
Jan 2022
Publication
The envisioned role of hydrogen in the energy transition – or the concept of a hydrogen economy – has varied through the years. In the past hydrogen was mainly considered a clean fuel for cars and/or electricity production; but the current renewed interest stems from the versatility of hydrogen in aiding the transition to CO2 neutrality where the capability to tackle emissions from distributed applications and complex industrial processes is of paramount importance. However the hydrogen economy will not materialise without strong political support and robust infrastructure design. Hydrogen deployment needs to address multiple barriers at once including technology development for hydrogen production and conversion infrastructure co-creation policy market design and business model development. In light of these challenges we have brought together a group of hydrogen researchers who study the multiple interconnected disciplines to offer a perspective on what is needed to deploy the hydrogen economy as part of the drive towards net-zero-CO2 societies. We do this by analysing (i) hydrogen end-use technologies and applications (ii) hydrogen production methods (iii) hydrogen transport and storage networks (iv) legal and regulatory aspects and (v) business models. For each of these we provide key take home messages ranging from the current status to the outlook and needs for further research. Overall we provide the reader with a thorough understanding of the elements in the hydrogen economy state of play and gaps to be filled.
The New Model of Energy Cluster Management and Functioning
Sep 2022
Publication
This article was aimed to answer the question of whether local energy communities have a sufficient energy surplus for storage purposes including hydrogen production. The article presents an innovative approach to current research and a discussion of the concepts of the collective prosumer and virtual prosumer that have been implemented in the legal order and further amended in the law. From this perspective it was of utmost importance to analyze the model of functioning of an energy cluster consisting of energy consumers energy producers and hydrogen storage whose goal is to maximize the obtained benefits assuming the co-operative nature of the relationship. The announced and clear perspective of the planned benefits will provide the cluster members a measurable basis for participation in such an energy community. However the catalogue of benefits will be conditioned by the fulfillment of several requirements related to both the scale of covering energy demand from own sources and the need to store surplus energy. As part of the article the results of analyses together with a functional model based on real data of the local energy community are presented.
Resource Assessment for Green Hydrogen Production in Kazakhstan
Jan 2023
Publication
Kazakhstan has long been regarded as a major exporter of fossil fuel energy. As the global energy sector is undergoing an unprecedented transition to low-carbon solutions new emerging energy technologies such as hydrogen production require more different resource bases than present energy technologies. Kazakhstan needs to consider whether it has enough resources to stay competitive in energy markets undergoing an energy transition. Green hydrogen can be made from water electrolysis powered by low-carbon electricity sources such as wind turbines and solar panels. We provided the first resource assessment for green hydrogen production in Kazakhstan by focusing on three essential resources: water renewable electricity and critical raw materials. Our estimations showed that with the current plan of Kazakhstan to keep its water budget constant in the future producing 2–10 Mt green hydrogen would require reducing the water use of industry in Kazakhstan by 0.6–3% or 0.036–0.18 km3/year. This could be implemented by increasing the share of renewables in electricity generation and phasing out some of the water- and carbon-intensive industries. Renewable electricity potential in South and West Kazakhstan is sufficient to run electrolyzers up to 5700 and 1600 h/year for wind turbines and solar panels respectively. In our base case scenario 5 Mt green hydrogen production would require 50 GW solar and 67 GW wind capacity considering Kazakhstan's wind and solar capacity factors. This could convert into 28652 tons of nickel 15832 tons of titanium and many other critical raw materials. Although our estimations for critical raw materials were based on limited geological data Kazakhstan has access to the most critical raw materials to support original equipment manufacturers of low-carbon technologies in Kazakhstan and other countries. As new geologic exploration kicks off in Kazakhstan it is expected that more deposits of critical raw materials will be discovered to respond to their potential future needs for green hydrogen production.
Everything About Hydrogen Podcast: 'Having Hydrogen for Breakfast, Lunch and Dinner'
Apr 2023
Publication
On today’s show Chris Patrick and Alicia speak with Petra Schwager from UNIDO about her work promoting global green hydrogen development with particular emphasis on the Global South.
The podcast can be found on their website.
The podcast can be found on their website.
Low-cost Hydrogen in the Future European Electricity System – Enabled by Flexibility in Time and Space
Nov 2022
Publication
The present study investigates four factors that govern the ability to supply hydrogen at a low cost in Europe: the scale of the hydrogen demand; the possibility to invest in large-scale hydrogen storage; process flexibility in hydrogen-consuming industries; and the geographical areas in which hydrogen demand arises. The influence of the hydrogen demand on the future European zero-emission electricity system is investigated by applying the cost-minimising electricity system investment model eNODE to hydrogen demand levels in the range of 0–2500 TWhH2. It is found that the majority of the future European hydrogen demand can be cost-effectively satisfied with VRE assuming that the expansion of wind and solar power is not hindered by a lack of social acceptance at a cost of around 60–70 EUR/MWhH2 (2.0–2.3 EUR/kgH2). The cost of hydrogen in Europe can be reduced by around 10 EUR/MWhH2 if the hydrogen consumption is positioned strategically in regions with good conditions for wind and solar power and a low electricity demand. The cost savings potential that can be obtained from full temporal flexibility of hydrogen consumption is 3-fold higher than that linked to strategic localisation of the hydrogen consumption. The cost of hydrogen per kg increases and the value of flexibility diminishes as the size of the hydrogen demand increases relative to the traditional demand for electricity and the available VRE resources. Low-cost hydrogen is thus achieved by implementing efficiency and flexibility measures for hydrogen consumers as well as increasing acceptance of VRE.
Willingness of Chinese Households to Pay Extra for Hydrogen-fuelled Buses: A Survey Based on Willingness to Pay
Mar 2023
Publication
Hydrogen-fuelled buses play an important role in the construction of low-carbon cities as a means of green travel. Beijing as a pilot city of hydrogen-fuelled buses in China is very important in the promotion of hydrogen-fuelled buses in China. Unfortunately the public acceptance of hydrogen-fuelledfuelled buses and their environmental positive externality value have not been studied. In this paper we investigated the willingness of Beijing households to pay for the promotion of hydrogen-fuelled buses and its influencing factors by means of a web-based questionnaire. The spike model was also used to estimate the willingness to pay (WTP) for hydrogen buses. The results show that the WTP of Beijing households is CNY 3.19 per trip. The value of a positive environmental externality is approximately CNY 29.15 million per trip. Household income level environmental knowledge individual environmental ethics and perceived behavioural control are the main influencing factors of WTP. Therefore policymakers should strengthen publicity efforts to increase individuals’ environmental awareness and environmental ethics and optimize the layout of hydrogen-fuelled bus schedules and riding experiences to improve individuals’ perceptual and behaviour control. Finally the positive environmental externality value of hydrogen buses should be valued which will help increase investor interest.
Future Energy Scenarios 2021
Jul 2022
Publication
Our Future Energy Scenarios (FES) draw on hundreds of experts’ views to model four credible energy pathways for Britain over coming decades. Matthew Wright our head of strategy and regulation outlines what the 2021 outlook means for consumers society and the energy system itself.<br/>This year’s Future Energy Scenarios insight reveals a glimpse of a Britain that is powered with net zero carbon emissions.<br/>Our analysis shows that our country can achieve its legally-binding carbon reduction targets: in three out of four scenarios in the analysis the country reaches net zero carbon emissions by 2050 with Leading the Way – our most ambitious scenario – achieving it in 2047 and becoming net negative by 2050.
A Recent Review of Primary Hydrogen Carriers, Hydrogen Production Methods, and Applications
Mar 2023
Publication
Hydrogen is a promising energy carrier especially for transportation owing to its unique physical and chemical properties. Moreover the combustion of hydrogen gas generates only pure water; thus its wide utilization can positively affect human society to achieve global net zero CO2 emissions by 2050. This review summarizes the characteristics of the primary hydrogen carriers such as water methane methanol ammonia and formic acid and their corresponding hydrogen production methods. Additionally state-of-the-art studies and hydrogen energy applications in recent years are also included in this review. In addition in the conclusion section we summarize the advantages and disadvantages of hydrogen carriers and hydrogen production techniques and suggest the challenging tasks for future research.
The European Hydrogen Market Landscape
Nov 2023
Publication
This report aims to summarise the status of the European hydrogen market landscape. It is based on the information available at the European Hydrogen Observatory (EHO) platform the leading source of data and information on hydrogen in Europe (EU27 EFTA and the UK) providing a full overview of the hydrogen market and the deployment of clean hydrogen technologies. As of the end of 2022 a total of 476 operational hydrogen production facilities across Europe boasting a cumulative hydrogen production capacity of approximately 11.30 Mt were identified. Notably the largest share of this capacity is contributed by key European countries including Germany the Netherlands Poland Italy and France which collectively account for 56% of the total hydrogen capacity. The hydrogen consumption in Europe has been estimated at approximately 8.23 Mt reflecting an average capacity utilisation rate of 73%. It's worth highlighting that conventional hydrogen production methods encompassing reforming by-product production from ethylene and styrene and by-product electrolysis collectively yield 11.28 Mt of hydrogen capacity. These conventional processes are distributed across 376 production facilities constituting 99.9% of the total production capacity in 2022. Throughout the year 2022 there were no newly commissioned hydrogen production facilities that integrated carbon capture technology into their operations. Additionally a notable presence of water electrolysis-based hydrogen production projects in Europe was identified. There was a total of 97 water electrolysis projects with 67 of them having a minimum capacity of 0.5 MW resulting in a cumulative production capacity of 174.28 MW. Furthermore 46 such projects were found to be under construction and are anticipated to contribute an additional 1199.07 MW of water electrolysis capacity upon becoming operational with the estimated timeframe ranging from January 2023 to 2025. A significant 87% of the total hydrogen production capacity in Europe is dedicated to onsite captive consumption indicating that it is primarily produced and used within the facility. The remaining 13% of capacity is specifically allocated for external distribution and sale characterizing what's known as merchant consumption. Despite the prevailing dominance of captive hydrogen production within Europe it's noteworthy that thousands of metric tonnes of hydrogen are already being traded and distributed across the continent. These transfers often occur through dedicated hydrogen pipelines or transportation via trucks. In 2022 an example of this growing trend was the hydrogen export from Belgium to the Netherlands which emerged as the single most significant hydrogen flow between European countries constituting a substantial 75% of all hydrogen traded in Europe. Belgium earned distinction as Europe's leading hydrogen exporter with 78% of the hydrogen that flowed between European countries originating 6 from its facilities. Conversely the Netherlands played a pivotal role as Europe's primary hydrogen importer accounting for an impressive 76% of the hydrogen imported into the continent. The rise of the clean hydrogen market in Europe coupled with the European Union's ambition to import 10 Mt of renewable hydrogen from non-EU sources by 2030 is expected to drive an increase in hydrogen flows both exports and imports among European countries. In 2022 the total demand for hydrogen in Europe was estimated to be 8.19 Mt. The biggest share of hydrogen demand comes from refineries which were responsible for 57% of total hydrogen use (4.6 Mt) followed by the ammonia industry with 24% (2.0 Mt). Together these two sectors consumed 81% of the total hydrogen consumption in Europe. Clean hydrogen demand while currently making up less than 0.1% of the overall hydrogen demand is notably driven by the mobility sector. Forecasts project an impressive growth trajectory in total hydrogen demand for Europe over the coming decades. Projections show a remarkable 127% surge from 2030 to 2040 followed by a substantial 63% increase from 2040 to 2050. Considering the current hydrogen demand there is a projected 51% increase until 2030. Throughout the three decades under examination the industrial sector is anticipated to maintain its predominant position consistently demonstrating the highest demand for hydrogen. However this conclusion refers to average values and variations that may exist. The total number of Hydrogen Fuel Cell Electric Vehicles (FCEV) registrations in Europe in 2022 was estimated at 1537 units. In comparison to the previous year the number of registrations increased by 31%. This surge in registrations has had a pronounced impact on the overall FCEV fleet's evolution in Europe which increased from 4050 units to 5570 (+38%). Notably passenger cars dominated the landscape constituting 86% of the total FCEV fleet. Exploring the latest advancements in hydrogen infrastructure across Europe in 2022 the hydrogen distribution network comprised spanning a total length of 1569 km. Within Europe the largest networks are situated in Belgium and Germany at 600 km and 400 km respectively. Of particular importance is the cross-border network of France Belgium and the Netherlands spanning a total of 964 km. To keep pace with the rising number of Fuel Cell Electric Vehicles (FCEVs) on European roads and promote their wider integration it is key to ensure sufficient accessibility to refuelling infrastructure. Consequently many countries are endorsing the establishment of hydrogen refuelling stations (HRS) so that they are publicly accessible on a nationwide scale. More recharging and refuelling stations for alternative fuels will be deployed in the coming years across Europe enabling the transport sector to significantly reduce its carbon footprint following the adoption of the alternative fuel infrastructure regulation (AFIR). Part of the regulation's main target is that hydrogen refuelling stations serving both cars and lorries must be deployed from 7 2030 onwards in all urban nodes and every 200 km along the TEN-T core network. Since 2015 the total number of operational and publicly accessible HRS in Europe has grown at an accelerated pace from 38 to 178 by the summer of 2023. Germany takes the lead having the largest share at approximately 54% of the total number of HRS with 96 stations currently operational. The majority of the HRS (89%) are equipped with 700 bar car dispensers. In 2022 the levelized production costs of hydrogen generated through Steam Methane Reforming (SMR) in Europe averaged approximately 6.23 €/kg H2. When incorporating a carbon capture system the average cost of hydrogen production via SMR in Europe increased to 6.38 €/kg H2. Additionally the production costs of hydrogen in Europe for 2022 utilizing grid electricity averaged 9.85 €/kg H2. Hydrogen production costs through electrolysis with a direct connection to a renewable energy source had an average estimated cost of 6.86 €/kg. As of May 2023 Europe's operational water electrolyser manufacturing capacity stands at 3.11 GW/year with an additional 2.64 GW planned by the end of 2023. Alkaline technologies make up 53% of the total capacity. Looking ahead to 2025 ongoing projects are expected to raise the total capacity to 7.65 GW/year. Fuel cell deployment in Europe has showed an increasing trend over the past decade. The total number of shipped fuel cells were forecasted on around 11200 units in 2021 and a total capacity of 190 MW. The most significant increase in capacity occurred between 2018 and the forecast of 2021 (+148.8 MW).
Analysis of the European Strategy for Hydrogen: A Comprehensive Review
May 2023
Publication
This review focuses on analysing the strategy and aspirations of the European Union within the hydrogen sector. This aim is achieved through the examination of the European Parliament’s hydrogen strategy allowing for a study of actions and projects in hydrogen technologies. The Parliament’s hydrogen strategy is the document that provides the guideline of how the EU intends to function in the hydrogen sector and manages to cover a wide range of topics all of them significant to represent the entirety of the hydrogen sector. It touches on subjects such as hydrogen demand infrastructure research and standards among others. The review discusses also the aspect that the EU intends to be a leader in the hydrogen sector including the large-scale industrialization of key elements such as electrolysers and this purpose is corroborated by the large number of associations strategies plans and projects that are being established and developed by the European Union. The most important conclusions to learn from this analysis are that hydrogen has many of the right characteristics to make it the key to decarbonisation especially in hard-to-abate sectors and that it is bound to be one of the main actors in the imminent green transition. Moreover hydrogen seems to be having its breakthrough and this field’s development can have benefits not only from an environmental perspective but also from an economical one enabling the way into the green transition and the fight against climate change.
Identifying Informed Beliefs about Hydrogen Technologies Across the Energy Supply Chain
Apr 2023
Publication
Developing a thriving hydrogen industry will depend on public and community support. Past research mainly focusing on the acceptance of hydrogen fuelling stations and cars suggests that people generally support hydrogen energy technology (HET). Few studies have however considered how people think about other components of the hydrogen supply chain (i.e. technologies required to make store transport and use hydrogen). Moreover there has been limited research investigating how people interpret and develop beliefs about HET after being presented with technical information. This paper attempts to address these research gaps by presenting the findings from four face-to-face focus group discussions conducted in Australia. The findings suggest that people have differing views about HET which depends on the type of technology and these views influence levels of support. The study also revealed concerns about a range of other factors that have yet to be considered in hydrogen acceptance research (e.g. perceived water use efficiency and indirect benefits). The findings highlight the value of qualitative research for identifying salient beliefs that shape attitudes towards HET and provide recommendations for future research and how to effectively communicate with the public and communities about an emerging hydrogen industry.
Transition to a Hydrogen-Based Economy: Possibilities and Challenges
Nov 2022
Publication
Across the globe energy production and usage cause the greatest greenhouse gas (GHG) emissions which are the key driver of climate change. Therefore countries around the world are aggressively striving to convert to a clean energy regime by altering the ways and means of energy production. Hydrogen is a frontrunner in the race to net-zero carbon because it can be produced using a diversity of feedstocks has versatile use cases and can help ensure energy security. While most current hydrogen production is highly carbon-intensive advances in carbon capture renewable energy generation and electrolysis technologies could help drive the production of low-carbon hydrogen. However significant challenges such as the high cost of production a relatively small market size and inadequate infrastructure need to be addressed before the transition to a hydrogen-based economy can be made. This review presents the state of hydrogen demand challenges in scaling up low-carbon hydrogen possible solutions for a speedy transition and a potential course of action for nations.
Decarbonisation of Heat in Great Britain
Oct 2021
Publication
This study was conducted for a group of 15 clients in the public and private sectors interested in potential pathways for decarbonising residential heating and the impact of these pathways on the energy system. The ambition for all new heating installations to be low carbon from 2035 is essential to meeting the net zero target in 2050 and our study found that electricity demand for home heating is set to quadruple by 2050 as part of the shift away from gas-fired boilers.
The key findings from the study include:
The key findings from the study include:
- Phasing out natural gas boiler installations by 2035 is crucial for eliminating CO2 from home heating; delaying to 2040 could leave us with ¼ of today’s home heat emissions in 2050
- Achieving deployment of 600k heat pumps per year by 2028 will require policy intervention both to lower costs and to inform and protect consumers Almost £40bn could be saved in cumulative system costs by 2050 through adoption of more efficient and flexible electric heating technologies like networked heat pumps and storage
- Electricity demand from heating could quadruple by 2050 to over 100TWh per year almost a third of Great Britain’s current total annual electricity demand Using hydrogen for a share of heating could lower peak power demand although producing most of this hydrogen from electrolysis would raise overall power demand.
Hungary's National Hydrogen Strategy
May 2021
Publication
Hungary’s National Hydrogen Strategy (hereinafter referred to as: Strategy) is ambitious but provides a realistic vision of the future as it opens the way for the establishment of a hydrogen economy therefore contributing to the achievement of decarbonisation goals and providing an opportunity for Hungary to become an active participant of the European hydrogen sector. On the long term the Strategy focuses on “green” hydrogen but in addition to hydrogen based on electricity generated using renewable resources primarily solar energy Hungary does not ignore opportunities for hydrogen production based on carbon-free energy accessed either through a nuclear basis or from the network. Additionally in the short and medium term a rapid reduction in emissions and the establishment of a viable hydrogen market will also require low-carbon hydrogen.
An Overview of Economic Analysis and Environmental Impacts of Natural Gas Conversion Technologies
Dec 2020
Publication
This study presents an overview of the economic analysis and environmental impact of natural gas conversion technologies. Published articles related to economic analysis and environmental impact of natural gas conversion technologies were reviewed and discussed. The economic analysis revealed that the capital and the operating expenditure of each of the conversion process is strongly dependent on the sophistication of the technical designs. The emerging technologies are yet to be economically viable compared to the well-established steam reforming process. However appropriate design modifications could significantly reduce the operating expenditure and enhance the economic feasibility of the process. The environmental analysis revealed that emerging technologies such as carbon dioxide (CO2) reforming and the thermal decomposition of natural gas offer advantages of lower CO2 emissions and total environmental impact compared to the well-established steam reforming process. Appropriate design modifications such as steam reforming with carbon capture storage and utilization the use of an optimized catalyst in thermal decomposition and the use of solar concentrators for heating instead of fossil fuel were found to significantly reduced the CO2 emissions of the processes. There was a dearth of literature on the economic analysis and environmental impact of photocatalytic and biochemical conversion processes which calls for increased research attention that could facilitate a comparative analysis with the thermochemical processes.
The Role of Hydrogen in Powering Industry: APPG on Hydrogen report
Jul 2021
Publication
The APPG on Hydrogen has published its report urging the Government to deliver beyond its existing net zero commitments and set ambitious hydrogen targets in forthcoming strategies to reach net zero by 2050.
The All-Party Parliamentary Group (APPG) on Hydrogen’s report on the role of ‘Hydrogen in powering industry’ sets out 10 recommendations to support and accelerate the growth of the UK’s hydrogen sector and enable a sustainable energy transition.
The All-Party Parliamentary Group (APPG) on Hydrogen’s report on the role of ‘Hydrogen in powering industry’ sets out 10 recommendations to support and accelerate the growth of the UK’s hydrogen sector and enable a sustainable energy transition.
- The Government must continue to expand beyond its existing commitments of 5GW production in the forthcoming Hydrogen Strategy.
- Any forthcoming Government and devolved policies must be complementary of the wider UK low-carbon commitments.
- Industrial clusters should be prioritised for hydrogen use and will be the key catalyst for driving forward the UK’s decarbonisation of industry.
- The Government must commit to incentivising hydrogen production within the UK as opposed to importing this.
- The Government must align hydrogen production pathways with nuclear technology to enhance hydrogen production.
- The Government must develop a UK wide hydrogen network to support the transport sector including a larger-scale implementation of hydrogen refuelling stations.
- Regulators must act quickly to update energy regulations and guidance to support hydrogen’s role in powering industry.
- For hydrogen to expand in the UK a technology neutral approach is required for all types of energy systems.
- Significant and long-term financial support is required for the development deployment and operation of hydrogen technologies.
- Ofgem must ensure the hydrogen market is subject to effective competition to drive down prices for consumers.
Few-atom Cluster Model Systems for a Hydrogen Economy
Apr 2020
Publication
To increase the share of renewable zero-emission energy sources such as wind and solar power in our energy supply the problem of their intermittency needs to be addressed. One way to do so is by buffering excess renewable energy via the production of hydrogen which can be stored for later use after re-electrification. Such a clean renewable energy cycle based on hydrogen is commonly referred to as the hydrogen economy. This review deals with cluster model systems of the three main components of the hydrogen economy i.e. hydrogen generation hydrogen storage and hydrogen re-electrification and their basic physical principles. We then present examples of contemporary research on few atom clusters both in the gas phase and deposited to show that by studying these clusters as simplified models a mechanistic understanding of the underlying physical and chemical processes can be obtained. Such an understanding will inspire and enable the design of novel materials needed for advancing the hydrogen economy.
The Czech Republic's Hydrogen Strategy
Jul 2021
Publication
The Czech Republic’s Hydrogen Strategy is being developed in the context of the Hydrogen Strategy for a climate neutral Europe which reflects the European Green Deal objective of climate neutrality by 2050. The objective of the Strategy is thus to reduce greenhouse gas emissions in such a way that the economy shifts smoothly to low-carbon technologies.
This is associated with two strategic goals:
This is associated with two strategic goals:
- Reduce greenhouse gas emissions
- Stimulate the economic growth
- Volume of low-carbon hydrogen production
- Volume of low-carbon hydrogen consumption
- Infrastructure readiness for hydrogen transport and storage
- Progress in R&D and production of hydrogen technologies
- Low-carbon hydrogen production
- Low-carbon hydrogen use
- Hydrogen transport and storage
- Hydrogen technologies
Life Cycle Costing Analysis: Tools and Applications for Determining Hydrogen Production Cost for Fuel Cell Vehicle Technology
Jul 2021
Publication
This work investigates life cycle costing analysis as a tool to estimate the cost of hydrogen to be used as fuel for Hydrogen Fuel Cell vehicles (HFCVs). The method of life cycle costing and economic data are considered to estimate the cost of hydrogen for centralised and decentralised production processes. In the current study two major hydrogen production methods are considered methane reforming and water electrolysis. The costing frameworks are defined for hydrogen production transportation and final application. The results show that hydrogen production via centralised methane reforming is financially viable for future transport applications. The ownership cost of HFCVs shows the highest cost among other costs of life cycle analysis.
Hydrogen Energy Vision 2060: Hydrogen as Energy Carrier in Malaysian Primary Energy Mix – Developing P2G Case
Mar 2021
Publication
The transition of Malaysia from fossil fuels to renewable energy sources provides significant challenges and opportunities for various energy sectors. Incorporation of H2 in the primary energy mix requires a deal of complexity in its relation to production transportation and end-use. The Sarawak State Government in Malaysia implemented a hydrogen energy roadmap for the year 2005–2030 on the state-level but despite the great enthusiasm and full support given by the government the development of hydrogen technology is still far from its goals. This is due to several factors that hinder its progress including (1) inability of hydrogen to be integrated with current primary energy infrastructure (2) limited technology resources to produce sustainable hydrogen and (3) lack of technical expertise in the field of hydrogen. In this paper a potential national roadmap and milestones are presented based on the power-to-gas (P2G) approach combined with its implications on the national natural gas (NG) pipeline network. Besides that the long-term and short-term strategies and implementation mechanisms are discussed in detail. Furthermore complete research schemes are formulated to be inline with the presented vision to further enhance technology development and implementation.
Net Zero after Covid: Behavioural Principles for Building Back Better
Dec 2020
Publication
Alongside our Sixth Carbon Budget Advice the Climate Change Committee (CCC) are publishing a paper from Professor Nick Chater the Committee’s behavioural science specialist. This paper considers three behavioural principles that explain how people have adapted so rapidly and how we might “build back better” as we emerge from the pandemic with a particular focus on meeting the challenge of dramatically reducing greenhouse gas (GHG) emissions over the coming decades. The principles are:
- The power law of practice: People organizations and whole industries learn to adapt to new ways of working following a surprisingly predictable pattern. This can help predict where adaptation to new ways of living and working is likely to succeed or fail.
- The status quo effect: People and organizations tend to prefer the current status quo but can often adjust rapidly to prefer a new status quo. However we tend to systematically underestimate such effects and therefore can sometimes resist changes that in retrospect we may ultimately prefer.
- Unwritten rules: Our social behaviour is guided by implicit guidelines about what is “appropriate” which can be somewhat independent of our personal values. Changing these implicit rules alongside changes in regulation and the law is crucial to adapting to new circumstances—and the pandemic has shown that rapid change is possible though sometimes resisted (e.g. new norms about mask wearing and social distancing).
Research and Development Investment and Collaboration Framework for the Hydrogen Economy in South Korea
Sep 2021
Publication
South Korea developed its hydrogen strategies to achieve carbon neutrality and dominate the hydrogen economy amidst and with the impetus of the coronavirus disease 2019 (COVID-19) pandemic. The government strives toward the goal via continuous investment in green hydrogen technologies as well as strategic collaborations. To facilitate the transition into the hydrogen economy this study presents a research and development (R&D) investment and collaboration framework as a national strategy. The framework offers abundant information to elucidate the technology R&D spectrum and regional dimensions of the strategy. Furthermore the proposed framework was applied to the Korean hydrogen economy comprising 955 nationally funded projects worth USD 565.7 million. The statuses and trends of the government’s investment in nationally funded research projects are illustrated with regard to the value chains of the hydrogen economies of 16 regions as well as nine technology clusters relating to the hydrogen economy thereby determining the research organizations that played crucial roles in each cluster of the 16 regions between 2015 and 2020. The results indicate that the research organizations in Daejeon acquired the highest government R&D funding in many hydrogen-economy-related research fields and that an R&D spectrum-based research/strategic collaboration is required to accomplish specialized complexes in the regions.
Analysis of Strategic Directions in Sustainable Hydrogen Investment Decisions
Jun 2020
Publication
This study seeks to find the appropriate strategies necessary to make sustainable and effective hydrogen energy investments. Within this scope nine different criteria are defined regarding social managerial and financial factors. A hesitant interval-valued intuitionistic fuzzy (IVIF) decision-making trial and evaluation laboratory (DEMATEL) methodology is considered to calculate the degree of importance of the criteria. Additionally impact relation maps are also generated to visualize the causality relationship between the factors. The findings indicate that the technical dimension has the greatest importance in comparison to managerial and financial factors. Furthermore it is also concluded that storage and logistics research and development and technological infrastructure are the most significant factors to be considered when defining hydrogen energy investment strategies. Hence before investing in hydrogen energy necessary actions should be taken to minimize the storage and logistic costs. Among them building the production site close to the usage area will contribute significantly to this purpose. In this way possible losses during the transportation of hydrogen can be minimized. Moreover it is essential to identify the lowest-cost hydrogen storage method by carrying out the necessary research and development activities thereby increasing the sustainability and effectiveness of hydrogen energy investment projects.
Optimal Operation and Market Integration of a Hybrid Farm with Green Hydrogen and Energy Storage: A Stochastic Approach Considering Wind and Electricity Price Uncertainties
Mar 2024
Publication
In recent years growing interest has emerged in investigating the integration of energy storage and green hydrogen production systems with renewable energy generators. These integrated systems address uncertainties related to renewable resource availability and electricity prices mitigating profit loss caused by forecasting errors. This paper focuses on the operation of a hybrid farm (HF) combining an alkaline electrolyzer (AEL) and a battery energy storage system (BESS) with a wind turbine to form a comprehensive HF. The HF operates in both hydrogen and day-ahead electricity markets. A linear mathematical model is proposed to optimize energy management considering electrolyzer operation at partial loads and accounting for degradation costs while maintaining a straightforward formulation for power system optimization. Day-ahead market scheduling and real-time operation are formulated as a progressive mixed-integer linear program (MILP) extended to address uncertainties in wind speed and electricity prices through a two-stage stochastic optimization model. A bootstrap sampling strategy is introduced to enhance the stochastic model’s performance using the same sampled data. Results demonstrate how the strategies outperform traditional Monte Carlo and deterministic approaches in handling uncertainties increasing profits up to 4% per year. Additionally a simulation framework has been developed for validating this approach and conducting different case studies.
The Role of Hydrogen and Batteries in Delivering Net Zero in the UK by 2050
Apr 2023
Publication
This report presents an analysis of how hydrogen and battery technologies are likely to be utilised in different sectors within the UK including transportation manufacturing the built environment and power. In particular the report compares the use of hydrogen and battery technology across these sectors. In addition it evaluates where these technologies will be in competition where one technology will dominate and where a combination of the two may be used. This sector analysis draws on DNV’s knowledge and experience within both the battery and hydrogen industries along with a review of studies available in the public domain. The analysis has been incorporated into DNV’s Energy Transition Outlook model an integrated system-dynamics simulation model covering the energy system which provides an independent view of the energy outlook from now until 2050. The modelling which includes data on costs demand supply policy population and economic indicators enables the non-linear interdependencies between different parameters to be considered so that decisions made in one sector influence the decision made in another.
Is Greece Ready for a Hydrogen Energy Transition?—Quantifying Relative Costs in Hard to Abate Industries
Apr 2024
Publication
During the past few years hydrogen use has come to be considered as an alternative energy carrier in a future decarbonized world. Many developed nations are undergoing a shift towards low-carbon energy sources driven by the excessive reliance on fossil fuels and the detrimental effects of climate change. This study aims to investigate the potential for hydrogen deployment in the Greek energy market during the next few decades. In this context green hydrogen’s potential application in the Greek market is being assessed employing an integrated techno-economic model grounded in worldwide trends and localized expenses. The forthcoming years will see an analysis of both the challenges and opportunities surrounding the integration and implementation of hydrogen in new and existing processes within Greece. Many alternative ways to produce hydrogen in Greece are investigated contemplating different production paths. We evaluate how fluctuations in hydrogen oil and carbon prices affect the economics of green hydrogen adoption in oil refining as is detailed in the draft of the European Union delegated act published in May 2022. The Levelized Cost of Hydrogen (LCOH) for different scenarios is calculated for the time frame up until 2050. A sensitivity analysis reveals that investment costs electricity prices electrolyzer efficiency and carbon taxes significantly influence the LCOH ultimately impacting the economic competitiveness of hydrogen production. These findings underscore the importance of aligning public–private partnership agendas in hydrogen production to create optimal conditions for investment attraction and development.
Fuel Cells and Hydrogen Observatory Report: Technology and Market
Mar 2022
Publication
The information in this report covers the period January 2021 – December 2021. The technology and market module of the FCHO presents a range of statistical data as an indicator of the health of the sector and the progress in market development over time. This includes statistical information on the size of the global fuel cell market including number and capacity of fuel cell systems shipped in a calendar year. For this edition data to the end of 2021 is presented where possible alongside analysis of key sector developments. Fuel cell system shipments for each calendar year are presented both as numbers of units and total system megawatts. The data are further divided and subdivided by: Application: Total system shipments are divided into Transport Stationary and Portable applications Fuel cell type: Numbers are provided for each of the different fuel cell chemistry types Region of integration: Region where the final manufacturer – usually the system integrator – integrates the fuel cell into the final product Region of deployment: Region where the final product was shipped to for deployment The data is sourced directly from industry players as well as other relevant sources including press releases associations and other industry bodies. This year the report also includes data relating to electrolysers commissioned within Europe. Information is presented on the number of hydrogen refuelling stations (HRS) deployed since 2014 with detailed information on HRS in operation including pressure capacity etc. In parallel the observatory provides data on the registered fuel cell electric vehicles (FCEVs) on European roads providing an indication of the speed of adoption of hydrogen in the transport sector. This annual report is an enrichment analysis of the data available on the FCHO providing global context and insights on trends observed year-over-year. Electrolyser systems commissioned for each calendar year within Europe are presented as both the number of units and the total system power rating in megawatts (MW). The data is further divided by: Number of Electrolyser Units Commissioned: The number of units brought online each year in Europe from 2000 until 2021. Application: Total systems commissioned are divided in Transport Fuel Industry Feedstock Steel Making Industrial Heat Power Generation Export Grid Injection and Sector Coupling. Electrolyser Type: Number for each of the different electrolyser types commissioned are provided. Region of deployment: Region where the electrolyser was commissioned. All sections in the Technology & Market module are updated following an annual data collection and validation cycle and the annual report is published the following Spring.
The European Hydrogen Policy Landscape
Apr 2024
Publication
This report aims to summarise the status of the European hydrogen policies and standards landscape. It is based on the information available at the European Hydrogen Observatory (EHO) platform the leading source of data and information on hydrogen in Europe (EU27 EFTA and the UK) providing an overview of the European and national policies legislations strategies and codes and standards which impact the deployment of hydrogen technologies and infrastructures. The EHO database covers a total of 29 EU policies and legislations that directly or indirectly affect the development and deployment of hydrogen technologies. To achieve its net zero ambitions the EU started with cross-cutting strategies such as the EU Green Deal and the EU Hydrogen Strategy setting forward roadmaps and targets that are to be achieved in the near future. As a next step the EU has developed legislations such as those bundled in the Fit for 55 package to meet the targets they have put forward. The implemented legislations including funding vehicles and initiatives have an impact on the whole value chain of hydrogen including production transport storage and distribution and end-uses. At national level as of July 2023 63% of the European countries have successfully published their national strategies in the hydrogen sector while 6% of the countries are currently in the draft stage. Several European countries have strategically incorporated quantitative indicators within their national strategies outlining their targets and estimates across the hydrogen value chain. This deliberate approach reflects a commitment to providing clear and measurable goals within their hydrogen strategies. A target often used in the national strategies is on electrolyser capacity as an effort to enhance the domestic renewable hydrogen production. Germany took the lead with an ambitious goal of achieving 10 GW by 2030 followed by France (6.5 GW) and Denmark (4 - 6 GW). Other targets that some of the countries use in their strategies are on the number of hydrogen refuelling stations fuel cell electric vehicles and total (renewable) hydrogen demand. A few countries also have targets on renewable hydrogen uptake in industry and hydrogen injection limit in the transmission grid. To monitor the policies and legislation that are adopted on a national level across the hydrogen value chain a survey was launched with national experts which was validated by Hydrogen Europe. In total 28 European countries have participated to the survey. On production the survey revealed that 61% of country specialists report that their country provides support for capital expenditure (CAPEX) in the development of renewable or low-carbon hydrogen production plants. Moreover 7 countries also provide support for operational expenditure (OPEX). Furthermore 8 countries have instituted official 6 permitting guidelines for hydrogen production projects while 5 countries have enacted a legal act or established an agency serving as a single point of contact for hydrogen project developers. For transmission only two countries reported to provide support schemes for hydrogen injection. Several countries have policies in place that clearly define the hydrogen limit in their transmission grid for now and in the future ranging from 0.02% up to 15% while a few countries define within their policies the operation of hydrogen storage facilities. On end-use the majority of countries totalling 71% reported to have implemented support schemes aimed at promoting the adoption of hydrogen in the mobility sector. Purchase subsidies stand out as the predominant form of support for fuel cell electric vehicles (FCEVs) with implementation observed in 17 countries. In the context of support schemes for stationary fuel applications for heating or power generation only two countries have adopted such measures. A slightly larger group of four countries do provide support for the deployment of residential and commercial heating systems utilizing hydrogen. For hydrogen end-use in industry a total of 9 countries reported to provide support schemes with a major focus on ammonia production (8) and the chemicals industry (7). On the topic of technology manufacturing 7 countries have reported to have support schemes of which grants emerge as the mainly used method (4). Exploring the latest advancements into European codes and standards relevant to the deployment of hydrogen technologies and infrastructures a total of 11 standards have been revised and developed between January 2022 and September 2023. This includes standards covering the following areas: 6 for fuel cell technologies 2 for gas cylinders 2 for road vehicles and 1 for hydrogen refuelling. Moreover 5 standards were published since September 2023 which will be added to the EHO database in its next update. This includes ISO/TS 19870:2023 which sets a methodology for determining the greenhouse gas emissions associated with the production conditioning and transport of hydrogen to consumption gate. This landmark standard which was unveiled at COP28 aims to act as a foundation for harmonization safety interoperability and sustainability across the hydrogen value chain.
Spatiotemporal Analysis of Hydrogen Requirement to Minimize Seasonal Variability in Future Solar and Wind Energy in South Korea
Nov 2022
Publication
Renewable energy supply is essential for carbon neutrality; however technologies aiming to optimally utilize renewable energy sources remain insufficient. Seasonal variability in renewable energy is a key issue which many studies have attempted to overcome through operating systems and energy storage. Currently hydrogen is the only technology that can solve this seasonal storage problem. In this study the amount of hydrogen required to circumvent the seasonal variability in renewable energy supply in Korea was quantified. Spatiotemporal analysis was conducted using renewable energy resource maps and power loads. It was predicted that 50% of the total power demand in the future will be met using solar and wind power and a scenario was established based on the solar-to-wind ratio. It was found that the required hydrogen production differed by approximately four-times depending on the scenarios highlighting the importance of supplying renewable energy at an appropriate ratio. Spatially wind power was observed to be unsuitable for the physical transport of hydrogen because it has a high potential at mountain peaks and islands. The results of this study are expected to aid future hydrogen research and solve renewable energy variability problems.
Hydrogen Micro-Systems: Households’ Preferences and Economic Futility
Mar 2024
Publication
This study examines the potential market for residential hydrogen systems in light of the trends towards digitalisation and environmental awareness. Based on a survey of 350 participants the results indicate that although energy experts are sceptical about the benefits of residential hydrogen systems due to their high costs households are highly interested in this technology. The sample shows a willingness to invest in hydrogen applications with some households willing to pay an average of 24% more. An economic assessment compared the cost of a residential hydrogen system with conventional domestic energy systems revealing significant additional costs for potential buyers interested in hydrogen applications.
2021 Hydrogen Supply and Demand
Sep 2021
Publication
Purpose: The purpose of the hydrogen supply and demand data stream is to track changes in the structure of hydrogen supply capacity and demand in Europe. This report is mainly focused on presenting the current landscape that will allow for future year-on-year comparisons to assess the progress Europe is making with regards to deployment of clean hydrogen production capacity as well as development of demand for clean hydrogen from emerging new hydrogen applications in industry or mobility sectors. Scope: The following report contains data about hydrogen production capacity and consumption in EU countries together with Switzerland Norway Iceland and the United Kingdom. Hydrogen production capacity is presented by country and by production technology whereas the hydrogen consumption data is presented by country and by end-use sector. The analysis undertaken for this report was completed using data reflecting end of 2019. Key Findings: The current hydrogen market (on both the demand and supply side) is dominated by ammonia and refining industries with three countries (DE NL PL) responsible for almost half of hydrogen consumption. Hydrogen is overwhelmingly produced by reforming of fossil fuels (mostly natural gas). Clean hydrogen production capacities are currently insignificant with hydrogen produced from natural gas coupled with carbon capture at 0.5% and hydrogen produced from water electrolysis at 0.14% of total production capacity.
No more items...