United Kingdom
Hydrogen Effects in Non-ferrous Alloys: Discussion
Jun 2017
Publication
This is a transcript of the discussion session on the effects of hydrogen in the non-ferrous alloys of zirconium and titanium which are anisotropic hydride-forming metals. The four talks focus on the hydrogen embrittlement mechanisms that affect zirconium and titanium components which are respectively used in the nuclear and aerospace industries. Two specific mechanisms are delayed hydride cracking and stress corrosion cracking.
This article is a transcription of the recorded discussion of the session ‘Hydrogen in non-ferrous alloys’ at the Royal Society Discussion Meeting Challenges of Hydrogen in Metals 16–18 January 2017. The text is approved by the contributors. M.P. transcribed the session. M.A.S. assisted in the preparation of the manuscript.
Link to document download on Royal Society Website
This article is a transcription of the recorded discussion of the session ‘Hydrogen in non-ferrous alloys’ at the Royal Society Discussion Meeting Challenges of Hydrogen in Metals 16–18 January 2017. The text is approved by the contributors. M.P. transcribed the session. M.A.S. assisted in the preparation of the manuscript.
Link to document download on Royal Society Website
HyNet North West: Delivering Clean Growth
Jan 2018
Publication
HyNet North West is a significant clean growth opportunity for the UK. It is a low cost deliverable project which meets the major challenges of reducing carbon emissions from industry domestic heat and transport.<br/>HyNet North West is based on the production of hydrogen from natural gas. It includes the development of a new hydrogen pipeline; and the creation of the UK’s first carbon capture and storage (CCS) infrastructure. CCS is a vital technology to achieve the widespread emissions savings needed to meet the 2050 carbon reduction targets.<br/>Accelerating the development and deployment of hydrogen technologies and CCS through HyNet North West positions the UK strongly for skills export in a global low carbon economy.<br/>The North West is ideally placed to lead HyNet. The region has a history of bold innovation and today clean energy initiatives are thriving. On a practical level the concentration of industry existing technical skill base and unique geology means the region offers an unparalleled opportunity for a project of this kind.<br/>The new infrastructure built by HyNet is readily extendable beyond the initial project and provides a replicable model for similar programmes across the UK<br/>Contains Vision statement 2 leaflets a presentation and a summary report which are all stored as supplements.
The Influence of Refractory Metals on the Hydrogen Storage Characteristics of FeTi-based Alloys Prepared by Suspended Droplet Alloying
Jun 2020
Publication
The influence of the addition of refractory metals (molybdenum and tantalum) on the hydrogenation properties of FeTi intermetallic phase-based alloys was investigated. The suspended droplet alloying technique was applied to fabricate FeTiTa-based and FeTiMo-based alloys. The phase composition and hydrogen storage properties of the samples were investigated. The samples modified with the refractory metals exhibited lower plateau pressures and lower hydrogen storage capacities than those of the FeTi reference sample due to solid solution formation. It was observed that the equilibrium pressures decreased with the amount of molybdenum which is in good agreement with the increase in the cell parameters of the TiFe phase. Suspended droplet alloying was found to be a practical method to fabricate alloys with refractory metal additions; however it is appropriate for screening samples with desired chemical and phase compositions rather than for manufacturing purposes.
Hydrogen Taskforce: The Role of Hydrogen in Delivering Net Zero
Feb 2020
Publication
Hydrogen is essential to the UK meeting its net zero emissions target. We must act now to scale hydrogen solutions and achieve cost effective deep decarbonisation. With the support of Government UK industry is ready to deliver.
The potential to deploy hydrogen at scale as an energy vector has risen rapidly in the political and industrial consciousness in recent years as the benefits and opportunities have become better understood. Early stage projects across the globe have demonstrated the potential of hydrogen to deliver deep decarbonisation reduce the cost of renewable power and balance energy supply and demand. Governments and major industrial and commercial organisations across the world have set out their ambition to deploy hydrogen technologies at scale. This has created a growing confidence that hydrogen will present both a viable decarbonisation pathway and a global market opportunity. Hydrogen will have an important role to play in meeting the global climate goals set out in the Paris Climate Agreement and due to be discussed later this year at COP26.
The UK’s commitment to a net zero greenhouse gas emissions target has sharpened the conversation around hydrogen. Most experts agree that net zero by 2050 cannot be achieved through electrification alone and as such there is a need for a clean molecule to complement the electron. Hydrogen has properties which lend themselves to the decarbonisation of parts of the energy system which are less well suited to electrification such as industrial processes heating and heavy and highly utilised vehicles. Hydrogen solutions can be scaled meaning that the contribution of hydrogen to meeting net zero could be substantial.
A steady start has been made to exploring the hydrogen opportunity. Partnerships between policymakers and industry exist on several projects which are spread out right across the country from London to many industrial areas in the north east and north west. Existing projects include the early stage roll out of transport infrastructure and vehicles feasibility studies focused on large scale hydrogen production technologies projects exploring the decarbonisation of the gas grid and the development of hydrogen appliances.
The Government recently announced new funding for hydrogen through the Hydrogen Supply Programme and Industrial Fuel Switching Competition. These programmes are excellent examples of collaboration between Government and industry in driving UK leadership in hydrogen and developing solutions that will be critical for meeting net zero.
If the UK is going to meet net zero and capitalise on the economic growth opportunities presented by domestic and global markets for hydrogen solutions and expertise it is critical that the 2020s deliver a step change in hydrogen activity building on the unique strengths and expertise developed during early stage technology development.
The Hydrogen Taskforce brings together leading companies pushing hydrogen into the mainstream in the UK to offer a shared view of the opportunity and a collective position on the next steps that must be taken to ensure that the UK capitalises on this opportunity. There are questions to be answered and challenges that must be overcome as hydrogen technologies develop yet by focusing on what can be done today the benefits of hydrogen can be immediately realised whilst industry expertise and knowledge is built.
You can download the whole document from the Hydrogen Taskforce website here
The potential to deploy hydrogen at scale as an energy vector has risen rapidly in the political and industrial consciousness in recent years as the benefits and opportunities have become better understood. Early stage projects across the globe have demonstrated the potential of hydrogen to deliver deep decarbonisation reduce the cost of renewable power and balance energy supply and demand. Governments and major industrial and commercial organisations across the world have set out their ambition to deploy hydrogen technologies at scale. This has created a growing confidence that hydrogen will present both a viable decarbonisation pathway and a global market opportunity. Hydrogen will have an important role to play in meeting the global climate goals set out in the Paris Climate Agreement and due to be discussed later this year at COP26.
The UK’s commitment to a net zero greenhouse gas emissions target has sharpened the conversation around hydrogen. Most experts agree that net zero by 2050 cannot be achieved through electrification alone and as such there is a need for a clean molecule to complement the electron. Hydrogen has properties which lend themselves to the decarbonisation of parts of the energy system which are less well suited to electrification such as industrial processes heating and heavy and highly utilised vehicles. Hydrogen solutions can be scaled meaning that the contribution of hydrogen to meeting net zero could be substantial.
A steady start has been made to exploring the hydrogen opportunity. Partnerships between policymakers and industry exist on several projects which are spread out right across the country from London to many industrial areas in the north east and north west. Existing projects include the early stage roll out of transport infrastructure and vehicles feasibility studies focused on large scale hydrogen production technologies projects exploring the decarbonisation of the gas grid and the development of hydrogen appliances.
The Government recently announced new funding for hydrogen through the Hydrogen Supply Programme and Industrial Fuel Switching Competition. These programmes are excellent examples of collaboration between Government and industry in driving UK leadership in hydrogen and developing solutions that will be critical for meeting net zero.
If the UK is going to meet net zero and capitalise on the economic growth opportunities presented by domestic and global markets for hydrogen solutions and expertise it is critical that the 2020s deliver a step change in hydrogen activity building on the unique strengths and expertise developed during early stage technology development.
The Hydrogen Taskforce brings together leading companies pushing hydrogen into the mainstream in the UK to offer a shared view of the opportunity and a collective position on the next steps that must be taken to ensure that the UK capitalises on this opportunity. There are questions to be answered and challenges that must be overcome as hydrogen technologies develop yet by focusing on what can be done today the benefits of hydrogen can be immediately realised whilst industry expertise and knowledge is built.
You can download the whole document from the Hydrogen Taskforce website here
Ammonia for Power
Sep 2018
Publication
A potential enabler of a low carbon economy is the energy vector hydrogen. However issues associated with hydrogen storage and distribution are currently a barrier for its implementation. Hence other indirect storage media such as ammonia and methanol are currently being considered. Of these ammonia is a carbon free carrier which offers high energy density; higher than compressed air. Hence it is proposed that ammonia with its established transportation network and high flexibility could provide a practical next generation system for energy transportation storage and use for power generation. Therefore this review highlights previous influential studies and ongoing research to use this chemical as a viable energy vector for power applications emphasizing the challenges that each of the reviewed technologies faces before implementation and commercial deployment is achieved at a larger scale. The review covers technologies such as ammonia in cycles either for power or CO2 removal fuel cells reciprocating engines gas turbines and propulsion technologies with emphasis on the challenges of using the molecule and current understanding of the fundamental combustion patterns of ammonia blends.
Potential Economic Impacts of the HyNet North West Project
Jan 2018
Publication
The objective of the analysis is to provide a robust assessment of the economic impact of HyNet NW over the period to 2050 across both the North West of England and the UK as a whole. Impact is assessed through modelling of direct indirect and induced effect frameworks:
Consideration is also given to the potential impacts of inward investment attracted to the North West/UK in the wake of the Project.
- Direct effects – activities that directly accrue due to the construction and operation of the facilities;
- Indirect effects – the purchase of goods and services to facilitate construction/operation; and
- Induced effects – spending of wages and salaries generated directly and indirectly through construction and operation.
Consideration is also given to the potential impacts of inward investment attracted to the North West/UK in the wake of the Project.
Just Transition Commission
Mar 2021
Publication
The Just Transition Commission started work in early 2019 with a remit to provide practical and affordable recommendations to Scottish Ministers. This report sets out their view of the key opportunities and challenges for Scotland and recommends practical steps to achieving a just transition<br/><br/>Climate action fairness and opportunity must go together. Taking action to tackle climate change must make Scotland a healthier more prosperous and more equal society whilst restoring its natural environment. We want a Scotland where wellbeing is at the heart of how we measure ourselves and our prosperity. We know that the scars from previous industrial transitions have remained raw for generations. We know that some more recent aspirations for green jobs have not delivered on all the benefits promised for Scottish workers and communities. We need rapid interventions to fully realise the potential (and mitigate the potential injustice) associated with the net-zero transition.
The Clean Growth Strategy: Leading the Way to a Low Carbon Future
Oct 2017
Publication
Seizing the clean growth opportunity. The move to cleaner economic growth is one of the greatest industrial opportunities of our time. This Strategy will ensure Britain is ready to seize that opportunity. Our modern Industrial Strategy is about increasing the earning power of people in every part of the country. We need to do that while not just protecting but improving the environment on which our economic success depends. In short we need higher growth with lower carbon emissions. This approach is at the heart of our Strategy for clean growth. The opportunity for people and business across the country is huge. The low carbon economy could grow 11 per cent per year between 2015 and 2030 four times faster than the projected growth of the economy as a whole. This is spread across a large number of sectors: from low cost low carbon power generators to more efficient farms; from innovators creating better batteries to the factories putting them in less polluting cars; from builders improving our homes so they are cheaper to run to helping businesses become more productive. This growth will not just be seen in the UK. Following the success of the Paris Agreement where Britain played such an important role in securing the landmark deal the transition to a global low carbon economy is gathering momentum. We want the UK to capture every economic opportunity it can from this global shift in technologies and services.<br/>Our approach to clean growth is an important element of our modern Industrial Strategy: building on the UK’s strengths; improving productivity across the country; and ensuring we are the best place for innovators and new businesses to start up and grow. A good example of this is offshore wind where costs have halved in just a few years. A combination of sustained commitment – across different Governments – and targeted public sector innovation support harnessing the expertise of UK engineers working in offshore conditions and private sector ingenuity has created the conditions for a new industry to flourish while cutting emissions. We need to replicate this success in sectors across our economy. This Strategy delivers on the challenge that Britain embraced when Parliament passed the Climate Change Act. If we get it right we will not just deliver reduced emissions but also cleaner air lower energy bills for households and businesses an enhanced natural environment good jobs and industrial opportunity. It is an opportunity we will seize.
Net Zero Public Dialogue
Mar 2021
Publication
This research project brought together members of the public from across the UK to participate in online workshops to explore:
- public understanding and perceptions of what reaching climate targets in the UK will mean for them individually and for society as a whole
- public attitudes and preferences towards the role that individual behaviour change should have in reaching net zero
- public perceptions of the easiest and toughest areas of change to help reach net zero
- public views on how they would prefer to engage with net zero policies and relevant initiatives that they feel could support the delivery of net zero
Mobile Phone Infrastructure Development: Lessons for the Development of a Hydrogen Infrastructure
Apr 2014
Publication
The development of new infrastructure is often a consideration in the introduction of new innovations. Currently there is some confusion around how to develop a hydrogen infrastructure to support the introduction of FCVs. Lessons can be learned from similar technology introduction in the past and therefore this paper investigates how mobile phone infrastructure was developed allowing the mass-market penetration of mobile phones. Based on this successful infrastructural development suggestions can be made on the development of a hydrogen infrastructure. It is suggested that a hydrogen infrastructure needs to be pre-developed 3–5 years before the market introduction of FCVs can successfully occur. A lack of infrastructural pre-development will cause to the market introduction of FCVs to fail.
Shielded Hydrogen Passivation – A Novel Method for Introducing Hydrogen into Silicon
Sep 2017
Publication
This paper reports a new approach for exposing materials including solar cell structures to atomic hydrogen. This method is dubbed Shielded Hydrogen Passivation (SHP) and has a number of unique features offering high levels of atomic hydrogen at low temperature whilst inducing no damage. SHP uses a thin metallic layer in this work palladium between a hydrogen generating plasma and the sample which shields the silicon sample from damaging UV and energetic ions while releasing low energy neutral atomic hydrogen onto the sample. In this paper the importance of the preparation of the metallic shield either to remove a native oxide or to contaminate intentionally the surface are shown to be potential methods for increasing the amount of atomic hydrogen released. Excellent damage free surface passivation of thin oxides is observed by combining SHP and corona discharge obtaining minority carrier lifetimes of 2.2 ms and J0 values below 5.47 fA/cm2. This opens up a number of exciting opportunities for the passivation of advanced cell architectures such as passivated contacts and heterojunctions.
The Road to Zero: Next Steps Towards Cleaner Road Transport and Delivering our Industrial Strategy
Jul 2018
Publication
Our mission is to put the UK at the forefront of the design and manufacturing of zero emission vehicles and for all new cars and vans to be effectively zero emission by 2040. As set out in the NO2 plan we will end the sale of new conventional petrol and diesel cars and vans by 2040. By then we expect the majority of new cars and vans sold to be 100% zero emission and all new cars and vans to have significant zero emission capability. By 2050 we want almost every car and van to be zero emission. We want to see at least 50% and as many as 70% of new car sales and up to 40% of new van sales being ultra low emission by 2030.<br/>We expect this transition to be industry and consumer led supported in the coming years by the measures set out in this strategy. We will review progress towards our ambitions by 2025. Against a rapidly evolving international context we will seek to maintain the UK’s leadership position and meet our ambitions and will consider what interventions are required if not enough progress is being made.
Energy White Paper: Powering our Net Zero Future
Dec 2020
Publication
The Prime Minister’s Ten Point Plan has set out the measures that will help ensure the UK is at the forefront of this revolution just as we led the first over two centuries ago. As nations move out of the shadow of coronavirus and confront the challenge of climate change with renewed vigour markets for new green products and services will spring up round the world. Taking action now will help ensure not just that we end our contribution to climate change by achieving our target of net zero emissions. It will help position UK companies and our world class research base to seize the business opportunities which flow from it creating jobs and wealth for our country.
Following on from the Ten Point Plan and the National Infrastructure Strategy the Energy White Paper provides further clarity on the Prime Minister’s measures and puts in place a strategy for the wider energy system that:
Following on from the Ten Point Plan and the National Infrastructure Strategy the Energy White Paper provides further clarity on the Prime Minister’s measures and puts in place a strategy for the wider energy system that:
- Transforms energy building a cleaner greener future for our country our people and our planet
- Supports a green recovery growing our economy supporting thousands of green jobs across the country in new green industries and leveraging new green export opportunities
- Creates a fair deal for consumers protecting the fuel poor providing opportunities to save money on bills giving us warmer more comfortable homes and balancing investment against bill impacts.
Hydrogen Production by Steam Reforming of DME in a Large Scale CFB Reactor. Part I: Computational Model and Predictions
Oct 2015
Publication
This study presents a computational fluid dynamic (CFD) study of Dimethyl Ether steam reforming (DME-SR) in a large scale Circulating Fluidized Bed (CFB) reactor. The CFD model is based on Eulerian–Eulerian dispersed flow and solved using commercial software (ANSYS FLUENT). The DME-SR reactions scheme and kinetics in the presence of a bifunctional catalyst of CuO/ZnO/Al2O3+ZSM-5 were incorporated in the model using in-house developed user-defined function. The model was validated by comparing the predictions with experimental data from the literature. The results revealed for the first time detailed CFB reactor hydrodynamics gas residence time temperature distribution and product gas composition at a selected operating condition of 300 °C and steam to DME mass ratio of 3 (molar ratio of 7.62). The spatial variation in the gas species concentrations suggests the existence of three distinct reaction zones but limited temperature variations. The DME conversion and hydrogen yield were found to be 87% and 59% respectively resulting in a product gas consisting of 72 mol% hydrogen. In part II of this study the model presented here will be used to optimize the reactor design and study the effect of operating conditions on the reactor performance and products.
Mechanisms of Hydrogen Embrittlement in Steels: Discussion
Jun 2017
Publication
This discussion session interrogated the current understanding of hydrogen embrittlement mechanisms in steels. This article is a transcription of the recorded discussion of ‘Hydrogen in steels’ at the Royal Society Scientific Discussion Meeting ‘The challenges of hydrogen and metals’ 16–18 January 2017.
The text is approved by the contributors. E.L.S. transcribed the session. M.P. assisted in the preparation of the manuscript
Link to document download on Royal Society Website
The text is approved by the contributors. E.L.S. transcribed the session. M.P. assisted in the preparation of the manuscript
Link to document download on Royal Society Website
Performance Evaluation of Empirical Models for Vented Lean Hydrogen Explosions
Sep 2017
Publication
Explosion venting is a method commonly used to prevent or minimize damage to an enclosure caused by an accidental explosion. An estimate of the maximum overpressure generated though explosion is an important parameter in the design of the vents. Various engineering models (Bauwens et al. 2012 Molkov and Bragin 2015) and European (EN 14994 ) and USA standards (NFPA 68) are available to predict such overpressure. In this study their performance is evaluated using a number of published experiments. Comparison of pressure predictions from various models have also been carried out for the recent experiments conducted by GexCon using a 20 feet ISO container. The results show that the model of Bauwens et al. (2012) predicts well for hydrogen concentration between 16% and 21% and in the presence of obstacles. The model of Molkov et al. (2015) is found to work well for hydrogen concentrations between 10% and 30% without obstacles. In the presence of obstacles as no guidelines are given to set the coefficient for obstacles in the model it was necessary to tune the coefficient to match the experimental data. The predictions of the formulas in NFPA 68 show a large scatter across different tests. The current version of both EN 14994 and NFPA 68 are found to have very limited range of applicability and can hardly be used for vent sizing of hydrogen-air deflagrations. Overall the accuracy of all the engineering models was found to be limited. Some recommendations concerning their applicability will be given for vented lean-hydrogen explosion concentrations of interest to practical applications.
Hydrogen Wide Area Monitoring of LH2 Releases at HSE for the PRESLHY Project
Sep 2021
Publication
The characterization of liquid hydrogen (LH2) releases has been identified as an international research priority to facilitate the safe use of hydrogen as an energy carrier. Empirical field measurements such as those afforded by Hydrogen Wide Area Monitoring can elucidate the behavior of LH2 releases which can then be used to support and validate dispersion models. Hydrogen Wide Area Monitoring can be defined as the quantitative three-dimensional spatial and temporal profiling of planned or unintentional hydrogen releases. The NREL Sensor Laboratory developed a Hydrogen Wide Area Monitor (HyWAM) based upon a distributed array of hydrogen sensors. The NREL Sensor Laboratory and the Health and Safety Executive (HSE) formally committed to collaborate on profiling GH2 and LH2 releases which allowed for the integration of the NREL HyWAM into the HSE LH2 release behavior investigation supported by the FCH JU Prenormative Research for the Safe Use of Liquid Hydrogen (PRESLHY) program. A HyWAM system was deployed consisting of 32 hydrogen measurement points and co-located temperature sensors distributed downstream of the LH2 release apparatus developed by HSE. In addition the HyWAM deployment was supported by proximal wind and weather monitors. In a separate presentation at this conference “HSE Experimental Summary for the Characterisation Dispersion and Electrostatic Hazards of LH2 for the PRESLHY Project” HSE researchers summarize the experimental apparatus and protocols utilized in the HSE LH2 releases that were performed under the auspices of PRESLHY. As a supplement to the HSE presentation this presentation will focus on the spatial and temporal behavior LH2 releases as measured by the NREL HyWAM. Correlations to ambient conditions such as wind speed and direction plume temperature and hydrogen concentrations will be discussed in addition to the design and performance of the NREL HyWAM and its potential for improving hydrogen facility safety.
HyDeploy2: Network Information and Maps
Jun 2021
Publication
Winlaton site was chosen as the site for the HyDeploy 2 North East trial as it was seen as the site that offered a high degree of variability with regards materials on the network size of network and statistical representation of housing. The Winlaton trial network is an estate of the wider Winlaton gas network situated in Blaydon near Gateshead. The Winlaton trial network has been isolated from the wider Winlaton gas network where it was previously supplied from and will be supplied with the blended gas from NGN’s Low Thornley gas depot with the installation of a brand-new pressure regulating district governor.<br/>The data contained within this report outlines the expected seasonal gas demand on the Winlaton trial network and the associated leakage and repair history for the network. No unusual repairs or leakage behaviour has been observed on this network. A DSEAR assessment has been conducted on the governor station ensuring ATEX compliance. The network isolation and reinforcement requirements are also given in this report highlighting the necessary actions to isolate the trial network from the wider Winlaton gas network. The NGN Safety Case outlines the risks associated with the operation of a gas grid and the ALARP mitigations developed to minimise them and what response is necessary in case such risks are realised. The existing safety case will be amended to account for the infrastructural operational and commercial changes associated with the HyDeploy 2 project. The report also contains a detailed register of all the assets on the Winlaton trial network this data set was used to inform the scientific research programme and specifically to allow an assessment to be carried out with regards to the operability of the existing and newly installed assets on the Winlaton trial network with respect to the blended gas.<br/>Click on supplement tab to view the other documents from this report
Parametric Study of Pt/C-Catalysed Hydrothermal Decarboxylation of Butyric Acid as a Potential Route for Biopropane Production
Jun 2021
Publication
Sustainable fuel-range hydrocarbons can be produced via the catalytic decarboxylation of biomass-derived carboxylic acids without the need for hydrogen addition. In this present study 5 wt% platinum on carbon (Pt/C) has been found to be an effective catalyst for hydrothermally decarboxylating butyric acid in order to produce mainly propane and carbon dioxide. However optimisation of the reaction conditions is required to minimise secondary reactions and increase hydrocarbon selectivity towards propane. To do this reactions using the catalyst with varying parameters such as reaction temperatures residence times feedstock loading and bulk catalyst loading were carried out in a batch reactor. The highest yield of propane obtained was 47 wt% (close to the theoretical decarboxylation yield of 50 wt% on butyric acid basis) corresponding to a 96% hydrocarbon selectivity towards propane. The results showed that the optimum parameters to produce the highest yield of propane from the range investigated were 0.5 g butyric acid (0.57 M aqueous solution) 1.0 g Pt/C (50 mg Pt content) at 300 °C for 1 h. The reusability of the catalyst was also investigated which showed little or no loss of catalytic activity after four cycles. This work has shown that Pt/C is a suitable and potentially hydrothermally stable heterogeneous catalyst for making biopropane a major component of bioLPG from aqueous butyric acid solutions which can be sourced from bio-derived feedstocks via acetone-butanol-ethanol (ABE) fermentation.
Testing Programme for Hydrogen Tolerance Tests of Domestic and Commercial Natural Gas Appliances
Jan 2021
Publication
The THyGA project (‘Testing Hydrogen admixture for Gas Applications’) focusses on technical aspects and the regulatory framework concerning the potential operation of domestic and commercial end-user appliances with hydrogen / natural gas blends.<br/>The core of the project is a broad experimental campaign with the aim to conduct up to 100 hydrogen tolerance tests. In addition the technical status quo and present knowledge about hydrogen impact on domestic and commercial appliances are assessed and potential future developments of rules and standards are discussed. Also mitigation strategies for coping with high levels of hydrogen admixture will be developed. By this broad approach the project aims at investigating which levels of hydrogen blending impact the various appliance technologies and to which extent in order to identify the regime in which a safe efficient and low-polluting operation is possible.<br/>The series of public reports by the THyGA project starts with several publications from work package 2 which sets the basis for the upcoming results and discussion of the experimental campaign as well as mitigation and standardisation topics.<br/>This report D2.5 completes the series of public reports from work package 2. It explains the steps of development of the test programme for gas-fired appliance tests with hydrogen admixture and especially describes the exchange between the THyGA partners and the external stakeholders.<br/>The report also explains the process of acquisition of appliances to test and method of selecting appliances.
HyDeploy2: Summary of Procedures for the Trial Network
Jun 2021
Publication
The assessment of appropriate operational procedures to govern the injection of a hydrogen/natural gas blend into Northern Gas Networks’ (NGN) Winlaton gas distribution network was a key requirement of the HyDeploy2 project. To perform this assessment the review was broken down into two areas procedures upstream of the emergency control valve (owned by NGN) and procedures downstream of the Emergency Control Valve (procedures which would be performed by Gas Safe registered individuals). Assessment of the upstream procedures was led by NGN (own and carry out all upstream procedures on NGN’s gas network) and assessment of the downstream procedures was led by Blue Flame Associates (an industry expert on downstream gas procedures).<br/>Methodologies were adopted to be able to highlight procedures that could potentially be used on the Winlaton trial network during the hydrogen blended gas injection period and if they were impacted by the changing of the gas within the network from natural gas to hydrogen blended gas. This method determined that for downstream gas procedures a total of 56 gas procedures required expert review resulting in 80 technical questions to be assessed and for the upstream gas procedures a total of 80 gas procedures required expert review resulting in 266 technical questions to be assessed.<br/>The operational procedures assessment has led to a determination as to whether a change is or is not required for relevant operational procedures where a basis of concern existed with respect to the injection of hydrogen blended gas. Any requirements to modify an existing procedure has been given in this report referencing the source as to where the detailed analysis for the change/no change recommendation has been given.<br/>The assessment took into account the associated experimental and research carried out as part of the HyDeploy and HyDeploy2 projects such as the assessment of gas characteristics materials impact appliance survey of assets on the Winlaton network and impact of hydrogen blended gas on gas detection equipment references to these studies have been given accordingly to associated impacted operational procedures.<br/>The conclusion of the assessment is that for upstream gas procedures there are some operational procedures that are unchanged some that require an increase in the frequency as to how often they are performed and some procedures which require a technical modification. For downstream domestic gas procedures all procedures applicable to a domestic gas installation were deemed to not be detrimentally affected by the introduction of a 20 mol% hydrogen blend.<br/>For upstream gas procedures an appropriate training package will be built off the back of the results presented in this report and disseminated accordingly to all relevant Operatives that will be responsible for the safety operation and maintenance of the Winlaton network during the hydrogen blend injection period. For downstream gas procedures the Gas Safe community have been fully engaged and informed about the trial.<br/>Click on the supplements tab to view the other documents from this report
HyDeploy2 : Trial Management
May 2021
Publication
The trial management philosophy of the Winlaton trial within HyDeploy2 has been developed to enable the overall objectives of the project to be achieved; the safe demonstration of operating a Gas Distribution Network (GDN) on a blend of natural gas and hydrogen. The approach taken to develop the management philosophy of the Winlaton trial has been to continue the trial management strategies deployed for the Keele trial under HyDeploy albeit with site specific modifications where necessary. This document provides an overview of the management and governance processes associated with the trial itself.<br/>Click on the supplement tab to view the other documents from this report
Model of 3D Conjugate Heat Transfer and Mechanism of Compressed Gas Storage Failure in a Fire
Sep 2017
Publication
The 3D model of conjugate heat transfer from a fire to compressed gas storage cylinder is described. The model predictions of temperature outside and inside the cylinder as well as pressure increase during a fire are compared against a fire test experiment. The simulation reproduced measured in test temperatures and pressures. The original failure criterion of the cylinder in a fire has been applied in the model. This allowed for the prediction of the cylinder catastrophic rupture time with acceptable engineering accuracy. The significance of 3D modelling is demonstrated and recommendations to improve safety of high-pressure composite tanks are given.
Fire Tests Carried Out in FCH JU FIRECOMP Project, Recommendations and Application to Safety of Gas Storage Systems
Sep 2017
Publication
In the event of a fire composite pressure vessels behave very differently from metallic ones: the material is degraded potentially leading to a burst without significant pressure increase. Hence such objects are when necessary protected from fire by using thermally-activated devices (TPRD) and standards require testing cylinder and TPRD together. The pre-normative research project FireComp aimed at understanding better the conditions which may lead to burst through testing and simulation and proposed an alternative way of assessing the fire performance of composite cylinders. This approach is currently used by Air Liquide for the safety of composite bundles carrying large amounts of hydrogen gas.
A Comparison Study into Low Leak Rate Buoyant Gas Dispersion in a Small Fuel Cell Enclosure Using Plain and Louvre Vent Passive Ventilation Schemes
Sep 2017
Publication
The development of a ‘Hydrogen Economy’ will see hydrogen fuel cells used in transportation and the generation of power for buildings as part of a decentralised grid with low power units used in domestic and commercial environmental situations. Low power fuel cells will be housed in small protective enclosures which must be ventilated to prevent a build-up of hydrogen gas produced during normal fuel cell operation or a supply pipework leak. Hydrogen’s flammable range (4-75%) is a significant safety concern. With poor enclosure ventilation a low-level leak (below 10 lpm) could quickly create a flammable mixture with potential for an explosion. Mechanical ventilation is effective at managing enclosure hydrogen concentrations but drains fuel cell power and is vulnerable to failure. In many applications (e.g. low power and remote installation) this is undesirable and reliable passive ventilation systems are preferred. Passive ventilation depends upon buoyancy driven flow with the size and shape of ventilation openings critical for producing predictable flows and maintaining low buoyant gas concentrations. Environmentally installed units use louvre vents to protect the fuel cell but the performance of these vents compared to plain vertical vents is not clear. Comparison small enclosure tests of ‘same opening area’ louvre and plain vents with leak rates from 1 to 10 lpm were conducted. A displacement ventilation arrangement was installed on the test enclosure with upper and lower opposing openings. Helium gas was released from a 4mm nozzle at the base of the enclosure to simulate a hydrogen leak. The tests determined that louvre vents increased average enclosure hydrogen concentrations by approximately 10% across the leak range tested but regulated the flow. The test data was used in a SolidWorks CFD simulation model validation exercise. The model provided a good qualitative representation of the flow behaviour but under predicted average concentrations.
Application of Hydrides in Hydrogen Storage and Compression: Achievements, Outlook and Perspectives
Feb 2019
Publication
José Bellosta von Colbe,
Jose-Ramón Ares,
Jussara Barale,
Marcello Baricco,
Craig Buckley,
Giovanni Capurso,
Noris Gallandat,
David M. Grant,
Matylda N. Guzik,
Isaac Jacob,
Emil H. Jensen,
Julian Jepsen,
Thomas Klassen,
Mykhaylo V. Lototskyy,
Kandavel Manickam,
Amelia Montone,
Julian Puszkiel,
Martin Dornheim,
Sabrina Sartori,
Drew Sheppard,
Alastair D. Stuart,
Gavin Walker,
Colin Webb,
Heena Yang,
Volodymyr A. Yartys,
Andreas Züttel and
Torben R. Jensen
Metal hydrides are known as a potential efficient low-risk option for high-density hydrogen storage since the late 1970s. In this paper the present status and the future perspectives of the use of metal hydrides for hydrogen storage are discussed. Since the early 1990s interstitial metal hydrides are known as base materials for Ni – metal hydride rechargeable batteries. For hydrogen storage metal hydride systems have been developed in the 2010s [1] for use in emergency or backup power units i. e. for stationary applications.<br/>With the development and completion of the first submarines of the U212 A series by HDW (now Thyssen Krupp Marine Systems) in 2003 and its export class U214 in 2004 the use of metal hydrides for hydrogen storage in mobile applications has been established with new application fields coming into focus.<br/>In the last decades a huge number of new intermetallic and partially covalent hydrogen absorbing compounds has been identified and partly more partly less extensively characterized.<br/>In addition based on the thermodynamic properties of metal hydrides this class of materials gives the opportunity to develop a new hydrogen compression technology. They allow the direct conversion from thermal energy into the compression of hydrogen gas without the need of any moving parts. Such compressors have been developed and are nowadays commercially available for pressures up to 200 bar. Metal hydride based compressors for higher pressures are under development. Moreover storage systems consisting of the combination of metal hydrides and high-pressure vessels have been proposed as a realistic solution for on-board hydrogen storage on fuel cell vehicles.<br/>In the frame of the “Hydrogen Storage Systems for Mobile and Stationary Applications” Group in the International Energy Agency (IEA) Hydrogen Task 32 “Hydrogen-based energy storage” different compounds have been and will be scaled-up in the near future and tested in the range of 500 g to several hundred kg for use in hydrogen storage applications.
Health and safety in the new energy economy
Dec 2010
Publication
Over the next decade and beyond the UK is set to take significant steps towards a new energy economy. This will be an economy where the technologies meeting<br/>our electricity heat and fuel needs have to deliver against three key criteria: sustainability security and affordability.<br/><br/>In this context a wide range of emerging energy technologies are expected to play an important role in reshaping the way we satisfy our energy requirements. The extent to which they do so however will depend fundamentally on their ability to be harnessed safely.<br/><br/>Compiled by HSE’s Emerging Energy Technologies Programme this report provides a current assessment of the health and safety hazards that key emerging energy technologies could pose both to workers and to the public at large. (Nuclear energy technologies fall outside the scope of this report.) But it also highlights how an appropriate framework can be and is being put in place to help ensure that these hazards are managed and controlled effectively – an essential<br/>element in enabling the technologies to make a major contribution to the UK’s energy future.
Hydrogen - A Pipeline to the Future
Sep 2020
Publication
Scotland’s Achievements and Ambitions for Clean Hydrogen - a joint webinar between the Scottish Hydrogen and Fuel Cell Association and the Pipeline Industries Guild (Scottish branch).
Nigel Holmes. CEO Scottish Hydrogen & Fuel Cell Association provides an update on Scotland’s ambitions backed up by progress in key areas. This will show the potential for hydrogen at scale to support the delivery of policy targets highlighting areas of key strengths for Scotland.
You will also hear about the need to build up scale for hydrogen production and supply in tandem with hydrogen pipeline and distribution networks in order to meet demand for low carbon energy and achieve key milestones on the pathway to Net Zero by 2045.
Nigel Holmes. CEO Scottish Hydrogen & Fuel Cell Association provides an update on Scotland’s ambitions backed up by progress in key areas. This will show the potential for hydrogen at scale to support the delivery of policy targets highlighting areas of key strengths for Scotland.
You will also hear about the need to build up scale for hydrogen production and supply in tandem with hydrogen pipeline and distribution networks in order to meet demand for low carbon energy and achieve key milestones on the pathway to Net Zero by 2045.
What Role for Hydrogen in Turkey’s Energy Future?
Nov 2021
Publication
Since early 2020 Turkey has been considering the role of hydrogen in its energy future with a view to producing a hydrogen strategy in the next few months. Unlike many other countries considering the role of hydrogen Turkey has only recently (October 2021) ratified the Paris Agreement addressing climate change and its interest is driven more by geopolitical strategic and energy security concerns. Specifically with concerns about the high share of imported energy particularly gas from Russia it sees hydrogen as part of a policy to increase indigenous energy production. Turkey already has a relatively high share of renewable power generation particularly hydro and recent solar auctions have resulted in low prices leading to a focus on potential green hydrogen production. However it still generates over half of its electricity from fossil fuel including over 25% from coal and lignite. Against that background it provides an interesting case study on some of the key aspects that a country needs to consider when looking to incorporate low-carbon hydrogen into the development of their energy economy.
The research paper can be found on their website
The research paper can be found on their website
Concepts for Improving Hydrogen Storage in Nanoporous Materials
Feb 2019
Publication
Hydrogen storage in nanoporous materials has been attracting a great deal of attention in recent years as high gravimetric H2 capacities exceeding 10 wt% in some cases can be achieved at 77 K using materials with particularly high surface areas. However volumetric capacities at low temperatures and both gravimetric and volumetric capacities at ambient temperature need to be improved before such adsorbents become practically viable. This article therefore discusses approaches to increasing the gravimetric and volumetric hydrogen storage capacities of nanoporous materials and maximizing the usable capacity of a material between the upper storage and delivery pressures. In addition recent advances in machine learning and data science provide an opportunity to apply this technology to the search for new materials for hydrogen storage. The large number of possible component combinations and substitutions in various porous materials including Metal-Organic Frameworks (MOFs) is ideally suited to a machine learning approach; so this is also discussed together with some new material types that could prove useful in the future for hydrogen storage applications.
Promotion Effect of Proton-conducting Oxide BaZr0.1Ce0.7Y0.2O3−δ on the Catalytic Activity of Ni Towards Ammonia Synthesis from Hydrogen and Nitrogen
Aug 2018
Publication
In this report for the first time it has been observed that proton-conducting oxide BaZr0.1Ce0.7Y0.2O3−δ (BZCY) has significant promotion effect on the catalytic activity of Ni towards ammonia synthesis from hydrogen and nitrogen. Renewable hydrogen can be used for ammonia synthesis to save CO2 emission. By investigating the operating parameters of the reaction the optimal conditions for this catalyst were identified. It was found that at 620 °C with a total flow rate of 200 mL min−1 and a H2/N2 mol ratio of 3 an activity of approximately 250 μmol g−1 h−1 can be achieved. This is ten times larger than that for the unpromoted Ni catalyst under the same conditions although the stability of both catalysts in the presence of steam was not good. The specific activity of Ni supported on proton-conducting oxide BZCY is approximately 72 times higher than that of Ni supported on non-proton conductor MgO-CeO2. These promotion effects were suspected to be due to the proton conducting nature of the support. Therefore it is proposed that the use of proton conducting support materials with highly active ammonia synthesis catalysts such as Ru and Fe will provide improved activity of at lower temperatures.
Spontaneous Ignition of Hydrogen- Literature Review
Jan 2008
Publication
Objectives
The aim of this review is to establish which available literature may be of use as part of the HSE funded project which will investigate spontaneous ignition of accidental hydrogen releases (JR02071). It will identify phenomena that have the potential to cause spontaneous ignition of releases of pressured hydrogen and identify literature that may be of use when formulating the experimental program.
Main Findings
The identification of important work that shows conclusive evidence of spontaneous ignition of hydrogen due to the failure of a boundary layer.
The aim of this review is to establish which available literature may be of use as part of the HSE funded project which will investigate spontaneous ignition of accidental hydrogen releases (JR02071). It will identify phenomena that have the potential to cause spontaneous ignition of releases of pressured hydrogen and identify literature that may be of use when formulating the experimental program.
Main Findings
The identification of important work that shows conclusive evidence of spontaneous ignition of hydrogen due to the failure of a boundary layer.
H2FC SUPERGEN- Opportunities for Hydrogen and Fuel Cell Technologies to Contribute to Clean Growth in the UK
May 2020
Publication
Hydrogen is expected to have an important role in decarbonising several parts of the UK energy system. This white paper examines the opportunities for hydrogen and fuel cell technologies (H2FC) to contribute to clean growth in the UK.
We assess the strength of the sector by surveying 196 companies working in the area and using other key metrics (for example publication citations and patents). There is already a nascent fuel cell industry working at the cutting edge of global innovation. The UK has an opportunity to grow this industry and to develop an export-focused hydrogen industry over the next few decades. However this will require public nurturing and support. We make a series of recommendations that include:
We assess the strength of the sector by surveying 196 companies working in the area and using other key metrics (for example publication citations and patents). There is already a nascent fuel cell industry working at the cutting edge of global innovation. The UK has an opportunity to grow this industry and to develop an export-focused hydrogen industry over the next few decades. However this will require public nurturing and support. We make a series of recommendations that include:
- Creating separate national fuel cell and hydrogen strategies. These should take UK energy needs capabilities and export opportunities into account. There is a need to coordinate public R&D support and to manage the consequences if European funding and collaboration opportunities become unavailable due to Brexit.
- Creating a public–private “Hydrogen Partnership” to accelerate a shift to hydrogen energy systems in the UK and to stimulate opportunities for businesses.
- Putting in place infrastructure to underpin nascent fuel cell and hydrogen markets including a national refuelling station network and a green hydrogen standard scheme.
- Study what would constitute critical mass in the hydrogen and fuel cell sectors in terms of industry and academic capacity and the skills and knowledge base and consider how critical mass could be achieved most efficiently.
- Consider creating a “Hydrogen Institute” and an “Electrochemical Centre” to coordinate and underpin national innovation over the next decade.
Installation Permitting Guidance for Hydrogen and Fuel Cell Stationary Applications: UK Version
Jan 2009
Publication
The HYPER project a specific targeted research project (STREP) funded by the European Commission under the Sixth Framework Programme developed an Installation Permitting Guide (IPG) for hydrogen and fuel cell stationary applications. The IPG was developed in response to the growing need for guidance to foster the use and facilitate installation of these systems in Europe. This document presents a modified version of the IPG specifically intended for the UK market. For example reference is made to UK national regulations standards and practices when appropriate as opposed to European ones.<br/>The IPG applies to stationary systems fuelled by hydrogen incorporating fuel cell devices with net electrical output of up to 10 kWel and with total power outputs of the order of 50 kW (combined heat + electrical) suitable for small back up power supplies residential heating combined heat-power (CHP) and small storage systems. Many of the guidelines appropriate for these small systems will also apply to systems up to 100 kWel which will serve small communities or groups of households. The document is not a standard but is a compendium of useful information for a variety of users with a role in installing these systems including design engineers manufacturers architects installers operators/maintenance workers and regulators.<br/>This report and the work it describes were funded by the Health and Safety Executive (HSE). Its contents including any opinions and/or conclusions expressed are those of the authors alone and do not necessarily reflect HSE policy.
Oxford Energy Podcast – The Role of Ammonia and Hydrogen in Meeting International Maritime Organisation Targets for Decarbonising Shipping
Jul 2021
Publication
The world’s shipping fleet is responsible for approximately 0.9 Gt of CO2 emissions annually around 2.9 per cent of the world’s man-made emissions. Under an IEA ‘business as usual’ scenario this is forecast to rise to almost 1.7 Gt per year by 2050. The industry’s principal regulatory body the International Maritime Organization (IMO) aims to reduce world shipping’s greenhouse gas emissions in line with the 2015 Paris Agreement targeting a 50 per cent reduction compared with 2008 levels by 2050. The cost of achieving these emission targets however is about $1 trillion and will require focus from regulators operators and end consumers who in the end will have to pay. In this podcast David Ledesma talks to Bruce Moore Howe Robinson Partners to discuss these issues and ask in such a fragmented industry what the immediate priorities for the marine sector must be and how can it bring about a mix of commercial incentives and regulatory change that result in tangible emissions reductions.
The podcast can be found on their website
The podcast can be found on their website
Annual Science Review 2018
Mar 2018
Publication
THIS ANNUAL SCIENCE Review showcases the high quality of science evidence and analysis that underpins HSE’s risk-based regulatory regime. To be an effective regulator HSE has to balance its approaches to informing directing advising and enforcing through a variety of activities. For this we need capacity to advance knowledge; to develop and use robust evidence and analysis; to challenge thinking; and to review effectiveness.<br/>In simple terms policy provides the route map to tackling issues. HSE is particularly well placed in terms of the three components of effective policy - “politics” “evidence” and “delivery”. Unlike most regulators and arms-length bodies HSE leads on policy development which draws directly on front line delivery expertise and intelligence; and we are also unusual in having our own world class science and insight capabilities.<br/>The challenge is to ensure we bring these components together to best effect to respond to new risk management and regulatory issues with effective innovative and proportionate approaches.<br/>Many of the articles in this Review relate to new and emerging technologies and the changing world of work and it is important to understand the risks these may pose and how they can be effectively controlled or how they themselves can contribute to improved health and safety in the workplace. Good policy development can support approaches to change that are proportionate relevant persuasive and effective. For example work described in these pages is: to help understand changing workplace exposures; to provide robust evidence to those negotiating alternatives to unduly prescriptive standards; to understand how best to influence duty<br/>holder behaviors in the changing world of work; to inform possible legislative changes to allow different modes of safe gas transmission; to change administrative processes for Appointed Doctors; and to support our position as a model modern regulator by further focusing our inspection activity where it matters most.<br/>The vital interface between HSE science and policy understand how best to influence duty holder behaviors in the changing world of work; to inform possible legislative changes to allow different modes of safe gas transmission; to change administrative processes for Appointed Doctors; and to support our position as a model modern regulator by further focusing our inspection activity where it matters most.<br/>We work well together and it is important we maintain this engagement as a conscious collaboration.
Annual Science Review 2020
Mar 2020
Publication
HSE maintains a national network of doctors appointed doctors and approved medical examiners of divers who are appointed to deliver certain vital functions under our regulatory framework.1 Over the last year or so we have been reaching out to them and offering training and networking opportunities so that we can learn from each other. Their intelligence from real workplaces helps ensure that our medical approach is grounded by what actually happens and this helped us ensure that our health and work strategy took account of their views. I think that it is increasingly important to share our approaches and our research outcomes on the global stage in an attempt to learn from other researchers around the world. A good example is the work described in this report on the artificial stone issue. I have been lucky enough to work with the Australian research group who identified an epidemic of silicosis from this exposure in their country and helped to facilitate some cross-comparison of materials with our hygienists and measurement scientists. The dialogue continues and I hope that by doing so we can help to prevent such an epidemic from occurring in the UK.<br/>All HSE research findings are published as soon as we are able to do this and this demonstrates both my and Andrew Curran’s commitment to ensure that we publish the evidence we generate to make workplaces healthier for all.
Hazards of Liquid Hydrogen: Position paper
Jan 2010
Publication
In the long term the key to the development of a hydrogen economy is a full infrastructure to support it which include means for the delivery and storage of hydrogen at the point of use eg at hydrogen refuelling stations for vehicles. As an interim measure to allow the development of refuelling stations and rapid implementation of hydrogen distribution to them liquid hydrogen is considered the most efficient and cost effective means for transport and storage.
The Health and Safety Executive have commissioned the Health and Safety Laboratory to identify and address issues relating to bulk liquid hydrogen transport and storage and update/develop guidance for such facilities. This position paper the first part of the project assesses the features of the transport and storage aspects of the refuelling stations that are now being constructed in the UK compares them to existing guidance highlights gaps in the regulatory regime and identifies outstanding safety issues. The findings together with the results of experiments to improve our understanding of the behaviour of liquid hydrogen will inform the development of the guidance for refuelling facilities
link to Report
The Health and Safety Executive have commissioned the Health and Safety Laboratory to identify and address issues relating to bulk liquid hydrogen transport and storage and update/develop guidance for such facilities. This position paper the first part of the project assesses the features of the transport and storage aspects of the refuelling stations that are now being constructed in the UK compares them to existing guidance highlights gaps in the regulatory regime and identifies outstanding safety issues. The findings together with the results of experiments to improve our understanding of the behaviour of liquid hydrogen will inform the development of the guidance for refuelling facilities
link to Report
Energy Innovation Needs Assessment: Carbon Capture Usage & Storage
Nov 2019
Publication
The Energy Innovation Needs Assessment (EINA) aims to identify the key innovation needs across the UK’s energy system to inform the prioritisation of public sector investment in low-carbon innovation. Using an analytical methodology developed by the Department for Business Energy & Industrial Strategy (BEIS) the EINA takes a system level approach and values innovations in a technology in terms of the system-level benefits a technology innovation provides. This whole system modelling in line with BEIS’s EINA methodology was delivered by the Energy Systems Catapult (ESC) using the Energy System Modelling Environment (ESMETM) as the primary modelling tool.
To support the overall prioritisation of innovation activity the EINA process analyses key technologies in more detail. These technologies are grouped together into sub-themes according to the primary role they fulfil in the energy system. For key technologies within a sub-theme innovations and business opportunities are identified. The main findings at the technology level are summarised in sub-theme reports. An overview report will combine the findings from each sub-theme to provide a broad system-level perspective and prioritisation.
This EINA analysis is based on a combination of desk research by a consortium of economic and engineering consultants and stakeholder engagement. The prioritisation of innovation and business opportunities presented is informed by a workshop organised for each sub-theme assembling key stakeholders from the academic community industry and government.
This report was commissioned prior to advice being received from the CCC on meeting a net zero target and reflects priorities to meet the previous 80% target in 2050. The newly legislated net zero target is not expected to change the set of innovation priorities rather it will make them all more valuable overall. Further work is required to assess detailed implications.
To support the overall prioritisation of innovation activity the EINA process analyses key technologies in more detail. These technologies are grouped together into sub-themes according to the primary role they fulfil in the energy system. For key technologies within a sub-theme innovations and business opportunities are identified. The main findings at the technology level are summarised in sub-theme reports. An overview report will combine the findings from each sub-theme to provide a broad system-level perspective and prioritisation.
This EINA analysis is based on a combination of desk research by a consortium of economic and engineering consultants and stakeholder engagement. The prioritisation of innovation and business opportunities presented is informed by a workshop organised for each sub-theme assembling key stakeholders from the academic community industry and government.
This report was commissioned prior to advice being received from the CCC on meeting a net zero target and reflects priorities to meet the previous 80% target in 2050. The newly legislated net zero target is not expected to change the set of innovation priorities rather it will make them all more valuable overall. Further work is required to assess detailed implications.
Economic Impact Assessment: Hydrogen is Ready to Power the UK’s Green Recovery
Aug 2020
Publication
Hydrogen solutions have a critical role to play in the UK not only in helping the nation meet its net-zero target but in creating the economic growth and jobs that will kickstart the green recovery.
The Government must act now to ensure that the UK capitalises on the opportunity presented by hydrogen and builds a world-leading industry.
COVID-19 has caused significant economic upheaval across the country with unemployment expected to reach up to 14.8 per cent by the end of 20201. The UK must identify those areas of the economy which have significant economic growth potential and can deliver long-term and sustainable increases in GVA and jobs. It will be important to consider regional factors and ensure that investment is targeted in those areas that have been hardest hit by the crisis.
Many major economies have identified hydrogen as a key part of both decarbonisation and economic recovery. As part of its stimulus package Germany announced a €9billion investment in green hydrogen solutions aiming to deploy 5GW by 2030. The Hydrogen Council estimates a future hydrogen and equipment market worth $2.5 trillion globally by 2050 supporting 30 million new jobs.
Hydrogen offers the UK a pathway to deep cost-effective decarbonisation while delivering economic growth and job creation. It should therefore be at the heart of the Government’s green recovery programme ensuring that the UK builds back better and greener.
The Government must act now to ensure that the UK capitalises on the opportunity presented by hydrogen and builds a world-leading industry.
COVID-19 has caused significant economic upheaval across the country with unemployment expected to reach up to 14.8 per cent by the end of 20201. The UK must identify those areas of the economy which have significant economic growth potential and can deliver long-term and sustainable increases in GVA and jobs. It will be important to consider regional factors and ensure that investment is targeted in those areas that have been hardest hit by the crisis.
Many major economies have identified hydrogen as a key part of both decarbonisation and economic recovery. As part of its stimulus package Germany announced a €9billion investment in green hydrogen solutions aiming to deploy 5GW by 2030. The Hydrogen Council estimates a future hydrogen and equipment market worth $2.5 trillion globally by 2050 supporting 30 million new jobs.
Hydrogen offers the UK a pathway to deep cost-effective decarbonisation while delivering economic growth and job creation. It should therefore be at the heart of the Government’s green recovery programme ensuring that the UK builds back better and greener.
You can download the whole document from the Hydrogen Taskforce website at the following links
- Economic Impact Assessment Summary
- Economic impact Assessment Methodology
- Economic impact Assessment of the Hydrogen Value Chain of the UK infographic
- Imperial College Consultants Review of the EIA.
Net Zero Review: Interim Report
Dec 2020
Publication
Climate change is an existential threat to humanity. Without global action to limit greenhouse gas emissions the climate will change catastrophically with almost unimaginable consequences for societies across the world. In recognition of the risks to the UK and other countries the UK became in 2019 the first major economy to implement a legally binding net zero target.<br/>The UK has made significant progress in decarbonising its economy but needs to go much further to achieve net zero. This will be a collective effort requiring changes from households businesses and government. It will require substantial investment and significant changes to how people live their lives.<br/>This transformation will also create opportunities for the UK economy. New industries and jobs will emerge as existing sectors decarbonise or give way to lowcarbon equivalents. The Ten Point Plan for a Green Industrial Revolution and Energy White Paper start to set out how the UK can make the most of these opportunities with new investment in sectors like offshore wind and hydrogen.1 The transition will also have distributional and competitiveness impacts that the government will need to consider as it designs policy.<br/>This interim report sets out the analysis so far from the Treasury’s Net Zero Review and seeks feedback on the approach ahead of the final report due to be published next year.
Welsh Government’s Department for Economy, Skills & Natural Resources Briefing: Cardiff University’s Expertise to Help Address the Challenges to Creating a CO2 Circular Economy for Wales
Oct 2021
Publication
Through its “Reducing Carbon whilst Creating Social Value: How to get Started’ initiative Welsh Government is keen to explore whether a ‘circular economy’ (and industry) could be developed for Wales for CO2.<br/>Although most companies have targets to reduce their CO2 by 2030 Wales does not have the space to store or bury any excess with the current choice to ship or ‘move the problem’ elsewhere. Meanwhile other industry sectors in Wales are experiencing shortages of CO2 e.g. food production.<br/>Net Zero commitments will require dealing with CO2 emissions from agricultural and industrial sectors and from the production of blue and grey hydrogen during the transition time of switching to green hydrogen. Sequestration and shipping off of CO2 could be costly are not currently possible at large scale and are not sustainable. The use of CO2 by industry e.g. in construction materials and in food production processes can play a major role in addressing CO2 waste production from grey and blue hydrogen.<br/>In a Cradle-to-Cradle approach everything has a use. Is Wales missing out on creating and developing a new innovative industry around a CO2 circular economy?
Hy4Heat Final Progress Report
Apr 2022
Publication
A final report covering covering activity in 2021 and early 2022 including: standards and certification safety assessment and appliance and meter development. It has a foreword from Mark Taylor BEIS Deputy Director for Energy Innovation and an introduction letter from Arup Hy4Heat Director Mark Neller.
Assessment of Hydrogen Quality Dispensed for Hydrogen Refuelling Stations in Europe
Dec 2020
Publication
The fuel quality of hydrogen dispensed from 10 refuelling stations in Europe was assessed. Representative sampling was conducted from the nozzle by use of a sampling adapter allowing to bleed sample gas in parallel while refuelling an FCEV. Samples were split off and distributed to four laboratories for analysis in accordance with ISO 14687 and SAE J2719. The results indicated some inconsistencies between the laboratories but were still conclusive. The fuel quality was generally good. Elevated nitrogen concentrations were detected in two samples but not in violation with the new 300 μmol/mol tolerance limit. Four samples showed water concentrations higher than the 5 μmol/mol tolerance limit estimated by at least one laboratory. The results were ambiguous: none of the four samples showed all laboratories in agreement with the violation. One laboratory reported an elevated oxygen concentration that was not corroborated by the other two laboratories and thus considered an outlier.
Decarbonising City Bus Networks in Ireland with Renewable Hydrogen
Dec 2020
Publication
This paper presents techno-economic modelling results of a nationwide hydrogen fuel supply chain (HFSC) that includes renewable hydrogen production transportation and dispensing systems for fuel cell electric buses (FCEBs) in Ireland. Hydrogen is generated by electrolysers located at each existing Irish wind farm using curtailed or available wind electricity. Additional electricity is supplied by on-site photovoltaic (PV) arrays and stored using lithium-ion batteries. At each wind farm sizing of the electrolyser PV array and battery is optimised system design to obtain the minimum levelised cost of hydrogen (LCOH). Results show the average electrolyser capacity factor is 64% after the integration of wind farm-based electrolysers with PV arrays and batteries. A location-allocation algorithm in a geographic information system (GIS) environment optimises the distributed hydrogen supply chain from each wind farm to a hypothetical hydrogen refuelling station in the nearest city. Results show that hydrogen produced transported and dispensed using this system can meet the entire current bus fuel demand for all the studied cities at a potential LCOH of 5–10 €/kg by using available wind electricity. At this LCOH the future operational cost of FCEBs in Belfast Cork and Dublin can be competitive with public buses fuelled by diesel especially under carbon taxes more reflective of the environmental impact of fossil fuels.
Understanding Composition–property Relationships in Ti–Cr–V–Mo Alloys for Optimisation of Hydrogen Storage in Pressurised Tanks
Jun 2014
Publication
The location of hydrogen within Ti–Cr–V–Mo alloys has been investigated during hydrogen absorption and desorption using in situ neutron powder diffraction and inelastic neutron scattering. Neutron powder diffraction identifies a low hydrogen equilibration pressure body-centred tetragonal phase that undergoes a martensitic phase transition to a face-centred cubic phase at high hydrogen equilibration pressures. The average location of the hydrogen in each phase has been identified from the neutron powder diffraction data although inelastic neutron scattering combined with density functional theory calculations show that the local structure is more complex than it appears from the average structure. Furthermore the origin of the change in dissociation pressure and hydrogen trapping on cycling in Ti–Cr–V–Mo alloys is discussed.
Spatially Resolved Optimization for Studying the Role of Hydrogen for Heat Decarbonization Pathways
Apr 2018
Publication
This paper studies the economic feasibility of installing hydrogen networks for decarbonizing heat in urban areas. The study uses the Heat Infrastructure and Technology (HIT) spatially resolved optimization model to trade-off energy supply infrastructure and end-use technology costs for the most important heat-related energy vectors: gas heat electricity and hydrogen. Two model formulations are applied to a UK urban area: one with an independent hydrogen network and one that allows for retrofitting the gas network into hydrogen. Results show that for average hydrogen price projections cost-effective pathways for heat decarbonization toward 2050 include heat networks supplied by a combination of district-level heat pumps and gas boilers in the domestic and commercial sectors and hydrogen boilers in the domestic sector. For a low hydrogen price scenario when retrofitting the gas network into hydrogen a cost-effective pathway is replacing gas by hydrogen boilers in the commercial sector and a mixture of hydrogen boilers and heat networks supplied by district-level heat pumps gas and hydrogen boilers for the domestic sector. Compared to the first modelled year CO2 emission reductions of 88% are achieved by 2050. These results build on previous research on the role of hydrogen in cost-effective heat decarbonization pathways.
A Dynamic Performance Diagnostic Method Applied to Hydrogen Powered Aero Engines Operating under Transient Conditions
Apr 2022
Publication
At present aero engine fault diagnosis is mainly based on the steady-state condition at the cruise phase and the gas path parameters in the entire flight process are not effectively used. At the same time high quality steady-state monitoring measurements are not always available and as a result the accuracy of diagnosis might be affected. There is a recognized need for real-time performance diagnosis of aero engines operating under transient conditions which can improve their condition-based maintenance. Recent studies have demonstrated the capability of the sequential model-based diagnostic method to predict accurately and efficiently the degradation of industrial gas turbines under steady-state conditions. Nevertheless incorporating real-time data for fault detection of aero engines that operate in dynamic conditions is a more challenging task. The primary objective of this study is to investigate the performance of the sequential diagnostic method when it is applied to aero engines that operate under transient conditions while there is a variation in the bypass ratio and the heat soakage effects are taken into consideration. This study provides a novel approach for quantifying component degradation such as fouling and erosion by using an adapted version of the sequential diagnostic method. The research presented here confirms that the proposed method could be applied to aero engine fault diagnosis under both steady-state and dynamic conditions in real-time. In addition the economic impact of engine degradation on fuel cost and payload revenue is evaluated when the engine under investigation is using hydrogen. The proposed method demonstrated promising diagnostic results where the maximum prediction errors for steady state and transient conditions are less than 0.006% and 0.016% respectively. The comparison of the proposed method to a benchmark diagnostic method revealed a 15% improvement in accuracy which can have great benefit when considering that the cost attributed to degradation can reach up to $702585 for 6000 flight cycles of a hydrogen powered aircraft fleet. This study provides an opportunity to improve our understanding of aero engine fault diagnosis in order to improve engine reliability availability and efficiency by online health monitoring.
A Review on Recent Progress in the Integrated Green Hydrogen Production Processes
Feb 2022
Publication
The thermochemical water‐splitting method is a promising technology for efficiently con verting renewable thermal energy sources into green hydrogen. This technique is primarily based on recirculating an active material capable of experiencing multiple reduction‐oxidation (redox) steps through an integrated cycle to convert water into separate streams of hydrogen and oxygen. The thermochemical cycles are divided into two main categories according to their operating temperatures namely low‐temperature cycles (<1100 °C) and high‐temperature cycles (<1100 °C). The copper chlorine cycle offers relatively higher efficiency and lower costs for hydrogen production among the low‐temperature processes. In contrast the zinc oxide and ferrite cycles show great potential for developing large‐scale high‐temperature cycles. Although several challenges such as energy storage capacity durability cost‐effectiveness etc. should be addressed before scaling up these technologies into commercial plants for hydrogen production. This review critically examines various aspects of the most promising thermochemical water‐splitting cycles with a particular focus on their capabilities to produce green hydrogen with high performance redox pairs stability and the technology maturity and readiness for commercial use.
Oxford Energy Podcast – Energy Transition Post-Pandemic in the Gulf: Clean Energy, Sustainability and Hydrogen
Jun 2021
Publication
The COVID-19 pandemic has exacerbated challenges faced by hydrocarbon exporters in the Gulf owing to the global push to transition to cleaner energy sources. In this podcast Manal Shehabi (OIES) discusses with David Ledesma a recent OIES-KFAS workshop held in April 2021 titled “Energy Transition Post-Pandemic in the Gulf States” held with support from the Kuwait Foundation for the Advancement of Sciences (KFAS). They discuss separate but interrelated issues on clean energy economic and climate sustainability and hydrogen. Specially they examine how the global energy transition outlook has changed post-pandemic along with its impacts on Gulf States’ economies and energy transition projects. They explain implications to Gulf states’ sustainability evaluating whether these countries are fiscally sustainable post-pandemic and their urgent need for energy and economic diversification. They focus in on the possibility of the Gulf States’ using hydrogen to diversify both in domestic and export markets evaluating opportunities and challenges for both blue and green hydrogen. A preliminary case study on the economics of hydrogen in Kuwait is highlighted as indication of whether Gulf states can produce green hydrogen competitively. They conclude with policy recommendations to increase economic sustainability and resilience post-pandemic both through the energy transition and responses to it.
The podcast can be found on their website
The podcast can be found on their website
Shining the Light on Clean Hydrogen
Jun 2021
Publication
Clean hydrogen:
- What's driving the excitement?
- Will hydrogen stay on the main stage of the energy transition?
- What is the market for clean hydrogen today?
Net Zero in the Heating Sector: Technological Options and Environmental Sustainability from Now to 2050
Jan 2021
Publication
Heating and hot water within buildings account for almost a quarter of global energy consumption. Approximately 90% of this heat is derived directly from the combustion of fossil fuels primarily natural gas leading to the unabated emission of carbon dioxide. This paper assesses the environmental sustainability of a range of heating technologies and scenarios on a life cycle basis. The major technologies considered are natural gas boilers air source heat pumps hydrogen boilers and direct electric heaters. The scenarios use the UK as an example due to its status as a major economy with a legally-binding net-zero carbon target for 2050; they consider plausible future electricity and natural gas mixes including the potential growth of domestic shale gas. The environmental impacts are estimated using ReCiPe 2016. Current gas boilers have a climate change impact of 220 g CO2 eq./kWh of heat which could fall to 64 g CO2 eq./kWh for boilers fuelled by hydrogen derived from natural gas with carbon capture. Heat from electric air source heat pumps or hydrogen from electrolysis can achieve net zero with a decarbonised electricity mix but electrolysis has the highest energy demand of all options which leads to the highest impacts across 17 of the 19 categories. Despite their high carbon emissions gas boilers remain the lowest impact option across 12 categories as they avoid the impacts related to electricity generation including metal depletion toxicities and eutrophication. By 2050 the best performing scenario sees the climate change impact of the heating mix fall by 95%; this is achieved by prioritising electric air source heat pumps without hydrofluorocarbon refrigerants alongside demand reduction. The results show that if infrastructure and financial challenges can be overcome there are several viable decarbonisation strategies for heating with heat pumps offering the most environmentally sustainable option of those considered here. However increased renewable electricity demand may worsen some environmental impacts compared to natural gas boilers.
Intelligent Hydrogen Fuel Cell Range Extender for Battery Electric Vehicles
May 2019
Publication
Road transport is recognized as having a negative impact on the environment. Policy has focused on replacement of the internal combustion engine (ICE) with less polluting forms of technology including battery electric and fuel cell electric powertrains. However progress is slow and both battery and fuel cell based vehicles face considerable commercialization challenges. To understand these challenges a review of current electric battery and fuel cell electric technologies is presented. Based on this review this paper proposes a battery electric vehicle (BEV) where components are sized to take into account the majority of user requirements with the remainder catered for by a trailer-based demountable intelligent fuel cell range extender. The proposed design can extend the range by more than 50% for small BEVs and 25% for large BEVs (the extended range of vehicles over 250 miles) reducing cost and increasing efficiency for the BEV. It enables BEV manufacturers to design their vehicle battery for the most common journeys decreases charging time to provide convenience and flexibility to the drivers. Adopting a rent and drop business model reduces the demand on the raw materials bridging the gap in the amount of charging (refueling) stations and extending the lifespan for the battery pack.
Advances in Reforming and Partial Oxidation of Hydrocarbons for Hydrogen Production and Fuel Cell Applications
May 2019
Publication
One of the most attractive routes for the production of hydrogen or syngas for use in fuel cell applications is the reforming and partial oxidation of hydrocarbons. The use of hydrocarbons in high temperature fuel cells is achieved through either external or internal reforming. Reforming and partial oxidation catalysis to convert hydrocarbons to hydrogen rich syngas plays an important role in fuel processing technology. The current research in the area of reforming and partial oxidation of methane methanol and ethanol includes catalysts for reforming and oxidation methods of catalyst synthesis and the effective utilization of fuel for both external and internal reforming processes. In this paper the recent progress in these areas of research is reviewed along with the reforming of liquid hydrocarbons from this an overview of the current best performing catalysts for the reforming and partial oxidizing of hydrocarbons for hydrogen production is summarized.
Flexibility in Great Britain
May 2021
Publication
The Flexibility in Great Britain project analysed the system-level value of deploying flexibility across the heat transport industry and power sectors in Great Britain to provide a robust evidence-base on the role and value of flexibility in a net zero system.
Overview
Findings from this groundbreaking analysis of the future net zero energy system in Great Britain are expected to have profound implications for policymakers households and the wider energy sector across Great Britain.
Key findings include:
Read the Full Report here on the Carbon Trust Website
View the interactive analysis here at the Carbon Trust Website
Watch an accompanying video here at the Carbon Trust Youtube channel
Overview
Findings from this groundbreaking analysis of the future net zero energy system in Great Britain are expected to have profound implications for policymakers households and the wider energy sector across Great Britain.
Key findings include:
- Embedding greater flexibility across the entire energy system will reduce the cost of achieving net zero for all consumers while assuring energy security.
- Investing in flexibility is a no-regrets decision as it has the potential to deliver material net savings of up to £16.7bn per annum across all scenarios analysed in 2050.
- A more flexible system will accelerate the benefits of decarbonisation supported by decentralisation and digitalisation.
- To maximise the benefits of flexibility households and businesses should play an active role in the development and operation of the country’s future energy system as energy use for transport heat and appliances becomes more integrated.
- Policymakers should preserve existing flexibility options and act now to maximise future flexibility such as by building it into ‘smart’ appliances or building standards.
Read the Full Report here on the Carbon Trust Website
View the interactive analysis here at the Carbon Trust Website
Watch an accompanying video here at the Carbon Trust Youtube channel
Closing the Low-carbon Material Loop Using a Dynamic Whole System Approach
Feb 2017
Publication
The transition to low carbon energy and transport systems requires an unprecedented roll-out of new infrastructure technologies containing significant quantities of critical raw materials. Many of these technologies are based on general purpose technologies such as permanent magnets and electric motors that are common across different infrastructure systems. Circular economy initiatives that aim to institute better resource management practices could exploit these technological commonalities through the reuse and remanufacturing of technology components across infrastructure systems. In this paper we analyze the implementation of such processes in the transition to low carbon electricity generation and transport on the Isle of Wight UK. We model two scenarios relying on different renewable energy technologies with the reuse of Lithium-ion batteries from electric vehicles for grid-attached storage. A whole-system analysis that considers both electricity and transport infrastructure demonstrates that the optimal choice of renewable technology can be dependent on opportunities for component reuse and material recycling between the different infrastructure systems. Hydrogen fuel cell based transport makes use of platinum from obsolete catalytic converters whereas lithium-ion batteries can be reused for grid-attached storage when they are no longer useful in vehicles. Trade-offs exist between the efficiency of technology reuse which eliminates the need for new technologies for grid attached storage completely by 2033 and the higher flexibility afforded by recycling at the material level; reducing primary material demand for Lithium by 51% in 2033 compared to 30% achieved by battery reuse. This analysis demonstrates the value of a methodology that combines detailed representations of technologies and components with a systemic approach that includes multiple interconnected infrastructure systems.
UK Hydrogen Economy: Debate Pack
Dec 2020
Publication
A Westminster Hall debate on the UK hydrogen economy has been scheduled for Thursday 17 December 2020 at 3.00pm. The debate will be led by Alexander Stafford MP. This House of Commons Library debate pack provides background information and press and parliamentary coverage of the issues.<br/><br/>The Government has legally binding targets under the Climate Change Act 2008 to reach ‘net zero’ carbon emissions by 2050. Background information is available from the Library webpage on Climate Change: an overview.<br/><br/>In order to meet the net zero target the use of fossil fuels (without abatement such as carbon capture usage and storage) across the economy will need to be almost entirely phased out by 2050. Hydrogen gas is regarded as an energy option to help decarbonisation especially in relation to applications that may be more challenging to decarbonise. These applications include heating transport (including heavy goods shipping and aviation) and some industrial processes.<br/><br/>The Government has legally binding targets under the Climate Change Act 2008 to reach ‘net zero’ carbon emissions by 2050. Background information is available from the Library webpage on Climate Change: an overview.<br/><br/>In order to meet the net zero target the use of fossil fuels (without abatement such as carbon capture usage and storage) across the economy will need to be almost entirely phased out by 2050. Hydrogen gas is regarded as an energy option to help decarbonisation especially in relation to applications that may be more challenging to decarbonise. These applications include heating transport (including heavy goods shipping and aviation) and some industrial processes.
Role of Batteries and Fuel Cells in Achieving Net Zero- Session 1
Mar 2021
Publication
The House of Lords Science and Technology Committee will question experts on the role of batteries and fuel cells for decarbonisation and how much they can contribute to meeting the net-zero target.
Tuesday’s evidence session will be the first of the committee’s new decarbonisation inquiry which was launched on Wednesday 3 March and is currently accepting written evidence submissions.
The session will give an overview of battery and fuel cell technologies and their applications in transport and other sectors. The Committee will ask how battery manufacture can be scaled up to meet wide-scale deployment of electric vehicles and whether technical challenges can be overcome to allow batteries and fuel cells to be used in HGVs and trains. The Committee will also investigate the wider use of batteries and fuel cells in various sectors including integration into power grids and heating systems.
Inquiry Role of batteries and fuel cells in achieving Net Zero
Professor Nigel Brandon Dean of the Faculty of Engineering at Imperial College London
Professor Mauro Pasta Associate Professor of Materials at University of Oxford
Professor Pam Thomas CEO at Faraday Institution and Pro Vice Chancellor for Research at University of Warwick
Mr Amer Gaffar Director of Manchester Fuel Cell Innovation Centre at Manchester Metropolitan University
Possible questions
What contribution are battery and fuel cell technologies currently making towards decarbonization in the UK?
What advances do we expect to see in battery and fuel cell technologies and over what timeframes?
How quickly can UK battery and fuel cell manufacture be scaled up to meet electrification demands?
What are the challenges facing technological innovation and deployment in heavy transport?
Are there any sectors where battery and fuel cell technologies are not currently used but could contribute to decarbonisation?
What are the life cycle environmental impacts of batteries and fuel cells?
Parliament TV video of the meeting
This is part one of a three part enquiry.
Part two can be found here and part three can be found here.
Tuesday’s evidence session will be the first of the committee’s new decarbonisation inquiry which was launched on Wednesday 3 March and is currently accepting written evidence submissions.
The session will give an overview of battery and fuel cell technologies and their applications in transport and other sectors. The Committee will ask how battery manufacture can be scaled up to meet wide-scale deployment of electric vehicles and whether technical challenges can be overcome to allow batteries and fuel cells to be used in HGVs and trains. The Committee will also investigate the wider use of batteries and fuel cells in various sectors including integration into power grids and heating systems.
Inquiry Role of batteries and fuel cells in achieving Net Zero
Professor Nigel Brandon Dean of the Faculty of Engineering at Imperial College London
Professor Mauro Pasta Associate Professor of Materials at University of Oxford
Professor Pam Thomas CEO at Faraday Institution and Pro Vice Chancellor for Research at University of Warwick
Mr Amer Gaffar Director of Manchester Fuel Cell Innovation Centre at Manchester Metropolitan University
Possible questions
What contribution are battery and fuel cell technologies currently making towards decarbonization in the UK?
What advances do we expect to see in battery and fuel cell technologies and over what timeframes?
How quickly can UK battery and fuel cell manufacture be scaled up to meet electrification demands?
What are the challenges facing technological innovation and deployment in heavy transport?
Are there any sectors where battery and fuel cell technologies are not currently used but could contribute to decarbonisation?
What are the life cycle environmental impacts of batteries and fuel cells?
Parliament TV video of the meeting
This is part one of a three part enquiry.
Part two can be found here and part three can be found here.
Hybrid Hydrogen PEM Fuel Cell and Batteries Without DC–DC Converter
Sep 2013
Publication
Concerns about greenhouse gases as well as the price and security of oil supply have acted as a spur to sustainable automobile development. The hydrogen fuel cells electric vehicle (HFCEV) is generally recognised by leading automobile manufacturers and scientists as one of the optimum technologies for long-term future low carbon vehicle. In a typical HFCEV power train a DC–DC converter is required to balance the voltage difference between the fuel cells (FCs) stack and batteries. However research shows that a considerable amount of energy generated by the hydrogen FCs stack is deplete during this conversion process as heat. This experiment aims to improve the power train efficiency by eliminating the DC–DC converter by finding the best combination of FC stack and batteries matching the size and capacity of the electrical components.
Environmental Sustainability of Renewable Hydrogen in Comparison with Conventional Cooking Fuels
Jun 2018
Publication
Hydrogen could be used as a ‘cleaner’ cooking fuel particularly in communities that rely on biomass and fossil fuels to reduce local pollution and related health effects. However hydrogen must be produced using sustainable feedstocks and energy sources to ensure that local impacts are not reduced at the expense of other impacts generated elsewhere in the life cycle. To this end this paper evaluates life cycle environmental impacts of renewable hydrogen produced in a proton-exchange membrane electrolyser using solar energy. The aim of the study is to find out if hydrogen produced in this system and used as a cooking fuel is environmentally sustainable in comparison with conventional cooking fuels typically used in developing countries such as liquefied petroleum gas (LPG) charcoal and firewood. The results suggest that hydrogen would reduce the climate change impact by 2.5–14 times to 0.04 kg CO2 eq./MJ compared to firewood (0.10 kg CO2 eq./MJ) and LPG (0.57 kg CO2 eq./MJ). Some other impacts would also be lower by 6%–35 times including depletion of fossil fuels summer smog and health effects from emissions of particulates both locally and across the rest of the life cycle. However some other impacts would increase by 6%–6.7 times such as depletion of metals and freshwater and marine ecotoxicity. These are mainly due to the solar photovoltaic panels used to generate power for the electrolyser. In terms of the local impacts the study suggests that hydrogen would reduce local pollution and related health impacts by 8%–35 times. However LPG is still environmentally a better option than hydrogen for most of the impacts both at the point of use and on a life cycle basis.
The UK Carbon Capture, Usage and Storage (CCUS) Deployment Pathway: An Action Plan
Nov 2018
Publication
CCUS has economy-wide qualities which could be very valuable to delivering clean industrial growth. It could deliver tangible results in tackling some of the biggest challenges we face in decarbonising our economy contributing to industrial competitiveness and generating new economic opportunities – a key part of our modern Industrial Strategy.
Our vision is to become a global leader in CCUS unlocking the potential of the technology and securing the added value which it can bring to our industrial centres and businesses all across the UK.
Our ambition is that the UK should have the option to deploy CCUS at scale during the 2030s subject to the costs coming down sufficiently.
Our Industrial Strategy set out four Grand Challenges to put the UK at the forefront of the industries of the future. The Clean Growth Grand Challenge seeks to maximise the advantages for UK industry from the global shift to clean growth. CCUS can be an important part of achieving these objectives.
Our vision is to become a global leader in CCUS unlocking the potential of the technology and securing the added value which it can bring to our industrial centres and businesses all across the UK.
Our ambition is that the UK should have the option to deploy CCUS at scale during the 2030s subject to the costs coming down sufficiently.
Our Industrial Strategy set out four Grand Challenges to put the UK at the forefront of the industries of the future. The Clean Growth Grand Challenge seeks to maximise the advantages for UK industry from the global shift to clean growth. CCUS can be an important part of achieving these objectives.
The Role of Hydrogen in Achieving Net Zero: Parliamentary Inquiry
Mar 2021
Publication
A key component of the Government's recently announced ‘Ten Point Plan for a Green Industrial Revolution’ is 'Driving the Growth of Low Carbon Hydrogen'. The plan outlined a range of measures to support the development and adoption of hydrogen including a £240 million 'Net Zero Hydrogen Fund'. Noting this and the further £81 million allocated for hydrogen heating trials in the 2020 Spending Review the House of Commons Science and Technology Committee is today launching a new inquiry into the role of hydrogen in achieving Net Zero.
Following recommendations from the Committee on Climate Change that the Government develop a strategy for hydrogen use and should aim for largescale hydrogen trials to begin in the early 2020s the Committee seeks to ensure that the Government's intended plan will be suitable and effective. The Committee will also assess the infrastructure required for hydrogen as a Net Zero fuel and examine progress made so far internationally to determine the viability of hydrogen as a significant contributor to achieving Net Zero.
All documents are in the Supplements tab above.
Following recommendations from the Committee on Climate Change that the Government develop a strategy for hydrogen use and should aim for largescale hydrogen trials to begin in the early 2020s the Committee seeks to ensure that the Government's intended plan will be suitable and effective. The Committee will also assess the infrastructure required for hydrogen as a Net Zero fuel and examine progress made so far internationally to determine the viability of hydrogen as a significant contributor to achieving Net Zero.
All documents are in the Supplements tab above.
Role of batteries and fuel cells in achieving Net Zero- Session 3
Mar 2021
Publication
The House of Lords Science and Technology Committee will hear from officials research funders and leading research consortia about the UK’s strategy for research and development of batteries and fuel cells to help meet the net-zero target.
The Committee will question officials from government departments and research councils about the UK’s increased support for battery development and how the initiatives and funding will evolve. The Committee will compare the support given to fuel cell research and ask how this technology will be developed for applications such as heavy transport. For both technologies it will ask how training will be delivered to provide a skilled workforce.
The Committee will also hear from leaders of research consortia asking them about support for their research sectors and how this compares with countries leading the development of the technologies. The Committee will explore coordination between research into batteries fuel cells and wider strategies such as for hydrogen and whether research for transport can be transferred to applications in other sectors such as power grids and heating.
At 10.00am: Oral evidence
Mr Tony Harper Industrial Strategy Challenge Director Faraday Battery Challenge at UK Research and Innovation (UKRI) at University of Central Lancashire
Dr Lucy Martin Deputy Director of Cross-Council Programmes and lead for Net Zero at University of Central Lancashire
Dr Bob Moran Deputy Director Head of Environment Strategy at University of Central Lancashire
Professor Paul Monks Chief Scientific Adviser at University of Central Lancashire
At 11.00am: Oral evidence
Professor Philip Taylor Director at EPSRC Supergen Energy Networks Hub and Pro-Vice Chancellor for Research and Enterprise at University of Bristol
Professor David Greenwood CEO High Value Manufacturing Catapult at University of Central Lancashire Director Industrial Engagement at University of Central Lancashire and Professor of Advanced Propulsion Systems at University of Warwick
Professor Paul Dodds Professor of Energy Systems at University of Central Lancashire
Possible questions
Parliament TV video of the meeting
This is part three of a three part enquiry.
Part one can be found here and part two can be found here.
The Committee will question officials from government departments and research councils about the UK’s increased support for battery development and how the initiatives and funding will evolve. The Committee will compare the support given to fuel cell research and ask how this technology will be developed for applications such as heavy transport. For both technologies it will ask how training will be delivered to provide a skilled workforce.
The Committee will also hear from leaders of research consortia asking them about support for their research sectors and how this compares with countries leading the development of the technologies. The Committee will explore coordination between research into batteries fuel cells and wider strategies such as for hydrogen and whether research for transport can be transferred to applications in other sectors such as power grids and heating.
At 10.00am: Oral evidence
Mr Tony Harper Industrial Strategy Challenge Director Faraday Battery Challenge at UK Research and Innovation (UKRI) at University of Central Lancashire
Dr Lucy Martin Deputy Director of Cross-Council Programmes and lead for Net Zero at University of Central Lancashire
Dr Bob Moran Deputy Director Head of Environment Strategy at University of Central Lancashire
Professor Paul Monks Chief Scientific Adviser at University of Central Lancashire
At 11.00am: Oral evidence
Professor Philip Taylor Director at EPSRC Supergen Energy Networks Hub and Pro-Vice Chancellor for Research and Enterprise at University of Bristol
Professor David Greenwood CEO High Value Manufacturing Catapult at University of Central Lancashire Director Industrial Engagement at University of Central Lancashire and Professor of Advanced Propulsion Systems at University of Warwick
Professor Paul Dodds Professor of Energy Systems at University of Central Lancashire
Possible questions
- On which aspects of battery and fuel cell research and development is the UK focusing and why?
- How successful have the UK’s new research initiatives been in advancing battery science and application?
- Does battery research receive greater public funding than fuel cell research? If so why?
- What technologies are seen as the most likely options for heavy transport i.e. HGVs buses and trains?
- What is the Government’s strategy for supporting the growth of skilled workers for battery and fuel cell research and development?
- To what extent is battery and fuel cell research and development coordinated in the UK? If so who is responsible for this coordination?
Parliament TV video of the meeting
This is part three of a three part enquiry.
Part one can be found here and part two can be found here.
Assessment of Full Life-cycle Air Emissions of Alternative Shipping Fuels
Oct 2017
Publication
There is a need for alternative fuels in the shipping sector for two main motivations: to deliver a reduction in local pollutants and comply with existing regulation; and to mitigate climate change and cut greenhouse gas emissions. However any alternative fuel must meet a range of criteria to become a viable option. Key among them is the requirement that it can deliver emissions reductions over its full life-cycle. For a set of fuels comprising both conventional and alternative fuels together with associated production pathways this paper presents a life-cycle assessment with respect to six emissions species: local pollutants sulphur oxides nitrogen oxides and particulate matter; and greenhouse gases carbon dioxide methane and nitrous oxide. While the analysis demonstrates that no widely available fuel exists currently to deliver on both motivations some alternative fuel options have the potential if key barriers can be overcome. Hydrogen or other synthetic fuels rely on decarbonisation of both energy input to production and other feedstock materials to deliver reductions in greenhouse gas emissions. Similarly bio-derived fuels can be an abatement option but only if it can be ensured that land-use change whilst growing biomass does not impact wider potential savings and the sector is able to compete sufficiently for their use. These examples show that crucial barriers are located upstream in the respective fuel life-cycle and that the way to overcome them may reside beyond the scope of the shipping sector alone.
Numerical Analysis of VPSA Technology Retrofitted to Steam Reforming Hydrogen Plants to Capture CO2 and Produce Blue H2
Feb 2022
Publication
The increasing demand for energy and commodities has led to escalating greenhouse gas emissions the chief of which is represented by carbon dioxide (CO2). Blue hydrogen (H2) a lowcarbon hydrogen produced from natural gas with carbon capture technologies applied has been suggested as a possible alternative to fossil fuels in processes with hard-to-abate emission sources including refining chemical petrochemical and transport sectors. Due to the recent international directives aimed to combat climate change even existing hydrogen plants should be retrofitted with carbon capture units. To optimize the process economics of such retrofit it has been proposed to remove CO2 from the pressure swing adsorption (PSA) tail gas to exploit the relatively high CO2 concentration. This study aimed to design and numerically investigate a vacuum pressure swing adsorption (VPSA) process capable of capturing CO2 from the PSA tail gas of an industrial steam methane reforming (SMR)-based hydrogen plant using NaX zeolite adsorbent. The effect of operating conditions such as purge-to-feed ratio and desorption pressure were evaluated in relation to CO2 purity CO2 recovery bed productivity and specific energy consumption. We found that conventional cycle configurations namely a 2-bed 4-step Skarstrom cycle and a 2-bed 6-step modified Skarstrom cycle with pressure equalization were able to concentrate CO2 to a purity greater than 95% with a CO2 recovery of around 77% and 90% respectively. Therefore the latter configuration could serve as an efficient process to decarbonize existing hydrogen plants and produce blue H2.
Role of batteries and fuel cells in achieving Net Zero: Session 2
Mar 2021
Publication
The House of Lords Science and Technology Committee will hear from leading researchers about anticipated developments in batteries and fuel cells over the next ten years that could contribute to meeting the net-zero target.
The Committee continues its inquiry into the Role of batteries and fuel cells in achieving Net Zero. It will ask a panel of experts about batteries hearing about the current state-of-the-art in technologies that are currently in deployment primarily lithium-ion batteries. It will also explore the potential of next generation technologies currently in development and the challenges in scaling them up to manufacture.
The Committee will then question a second panel about fuel cells hearing about the different types available and their applications. It will explore challenges that need to be overcome in the development of the technology and will consider the UK’s international standing in the sector.
Meeting details
At 10.00am: Oral evidence
Professor Serena Corr Chair in Functional Nanomaterials and Director of Research Department of Chemical and Biological Engineering at University of Sheffield
Professor Paul Shearing Professor in Chemical Engineering at University College London
Dr Jerry Barker Founder and Chief Technology Officer at Faradion Limited
Dr Melanie Loveridge Associate Professor Warwick Manufacturing Group at University of Warwick
At 11.00am: Oral evidence
Professor Andrea Russell Professor of Physical Electrochemistry at University of Southampton
Professor Anthony Kucernak Professor of Physical Chemistry Faculty of Natural Sciences at Imperial College London
Professor John Irvine Professor School of Chemistry at University of St Andrews
Possible questions
Parliament TV video of the meeting
This is part two of a three part enquiry.
Part one can be found here and part three can be found here.
The Committee continues its inquiry into the Role of batteries and fuel cells in achieving Net Zero. It will ask a panel of experts about batteries hearing about the current state-of-the-art in technologies that are currently in deployment primarily lithium-ion batteries. It will also explore the potential of next generation technologies currently in development and the challenges in scaling them up to manufacture.
The Committee will then question a second panel about fuel cells hearing about the different types available and their applications. It will explore challenges that need to be overcome in the development of the technology and will consider the UK’s international standing in the sector.
Meeting details
At 10.00am: Oral evidence
Professor Serena Corr Chair in Functional Nanomaterials and Director of Research Department of Chemical and Biological Engineering at University of Sheffield
Professor Paul Shearing Professor in Chemical Engineering at University College London
Dr Jerry Barker Founder and Chief Technology Officer at Faradion Limited
Dr Melanie Loveridge Associate Professor Warwick Manufacturing Group at University of Warwick
At 11.00am: Oral evidence
Professor Andrea Russell Professor of Physical Electrochemistry at University of Southampton
Professor Anthony Kucernak Professor of Physical Chemistry Faculty of Natural Sciences at Imperial College London
Professor John Irvine Professor School of Chemistry at University of St Andrews
Possible questions
- What contribution are battery and fuel cell technologies currently making towards decarbonization in the UK?
- What advances do we expect to see in battery and fuel cell technologies and over what timeframes?
- How quickly can UK battery and fuel cell manufacture be scaled up to meet electrification demands?
- What are the challenges facing technological innovation and deployment in heavy transport?
- Are there any sectors where battery and fuel cell technologies are not currently used but could contribute to decarbonisation?
- What are the life cycle environmental impacts of batteries and fuel cells?
Parliament TV video of the meeting
This is part two of a three part enquiry.
Part one can be found here and part three can be found here.
The Use of Hydrogen to Separate and Recycle Neodymium–iron–boron-type Magnets from Electronic Waste
May 2015
Publication
The rare earth metals have been identified by the European Union and the United States as being at greatest supply risk of all the materials for clean energy technologies. Of particular concern are neodymium and dysprosium both of which are employed in neodymium–iron–boron based magnets. Recycling of magnets based on these materials and contained within obsolete electronic equipment could provide an additional and secure supply. In the present work hydrogen has been employed as a processing agent to decrepitate sintered neodymium–iron–boron based magnets contained within hard disk drives into a demagnetised hydrogenated powder. This powder was then extracted mechanically from the devices with an extraction efficiency of 90 ± 5% and processed further using a combination of sieves and ball bearings to produce a powder containing <330 parts per million of nickel contamination. It is then possible for the extracted powder to be re-processed in a number of ways namely directly by blending and re-sintering to form fully dense magnets by Hydrogenation Disproportionation Desorption Recombination processing to produce an anisotropic coercive powder suitable for bonded magnets by re-melting; or by chemical extraction of the rare earth elements from the alloy. For example it was shown that by the re-sintering route it was possible to recover >90% of the magnetic properties of the starting material with significantly less energy than that employed in primary magnet production. The particular route used will depend upon the magnetic properties required the level of contamination of the extracted material and the compositional variation of the feedstock. The various possibilities have been summarised in a flow diagram.
Hydrogen from Natural Gas – The Key to Deep Decarbonisation
Jul 2019
Publication
This Discussion Paper was commissioned by Zukunft ERDGAS to contribute to the debate concerning the deep decarbonisation of the European energy sector required to meet the Paris Agreement targets. Previous discussion papers have put forward decarbonisation pathways that rely heavily on ‘All-Electric’ solutions. These depend predominantly on renewable electricity to deliver decarbonisation of all sectors. This paper offers an alternative to an ‘All-Electric’ solution by building an alternative pathway that allows the inclusion of gas based technologies alongside the ‘All-Electric’ pathway technologies. The new pathway demonstrates that hydrogen from natural gas can be an essential complement to renewable electricity. The pathway also considers the benefits of utilising methane pyrolysis technology in Europe to produce zero carbon hydrogen.
Read the full report at this link
Read the full report at this link
OIES Podcast – PolyGrid 2050: Integrating Hydrogen into the European Energy Transfer Infrastructure Landscape
Feb 2023
Publication
In this podcast David Ledesma talks with Rahmat Poudineh and Martin Palovic about their paper on integrating hydrogen into the European energy transfer infrastructure landscape. As hydrogen is expected to play an important role in European plans towards climate neutrality adequate hydrogen transport (and storage) infrastructure needs to be established. However hydrogen transport infrastructures are costly and have a long lead time. Furthermore hydrogen can be transported via a variety of means: it can be transported as a gas via pipelines or liquid via road rail and sea or even converted to derivatives such as ammonia or methanol for long distance transportation. It is also possible to transfer electrical energy instead of hydrogen and produce hydrogen in a decentralized way. From a system perspective all these infrastructures represent elements of a grand hydrogen ‘polygrid’ that will be the backbone of the future decarbonized energy system. This raises the fundamental question of how to prevent inefficiency and infrastructure redundancy across different modes of hydrogen transport. The task is made more challenging by technological uncertainty the unpredictability of future supply and demand for hydrogen network externality effects and investment irreversibility of grid-based infrastructures. In this podcast we discuss three possible coordination approaches to optimise future cross-sectoral investment into hydrogen transport infrastructure and highlight their strengths and shortcomings.
The podcast can be found on their website.
The podcast can be found on their website.
An Inter-laboratory Comparison between 13 International Laboratories for Eight Components Relevant for Hydrogen Fuel Quality Assessment
Mar 2024
Publication
The quality of the hydrogen delivered by refuelling stations is critical for end-users and society. The purity of the hydrogen dispensed at hydrogen refuelling points should comply with the technical specifications included in the ISO 14687:2019 and EN 17124:2022 standards. Once laboratories have set up methods they need to verify their performances for example through participation in interlaboratory comparisons. Due to the challenge associated with the production of stable reference materials and transport of these which are produced in hydrogen at high pressure (>10 bar) interlaboratory comparisons have been organized in different steps with increasing extent. This study describes an inter-laboratory comparison exercise for hydrogen fuel involving a large number of participants (13 laboratories) completed in less than a year and included eight key contaminants of hydrogen fuel at level close to the ISO14687 threshold. These compounds were selected based on their high probability of occurrence or because they have been found in hydrogen fuel samples. For the results of the intercomparison it appeared that fully complying with ISO 21087:2019 is still challenging for many participants and highlighted the importance of organising these types of exercises. Many laboratories performed corrective actions based on their results which in turn significantly improved their performances.
Techno-Economic Analysis of Flare Gas to Hydrogen: A Lean and Green Sustainability Approach
Jul 2025
Publication
The increasing demand for hydrogen has made it a promising alternative for decarbonizing industries and reducing CO2 emissions. Although mainly produced through the gray pathway the integration of carbon capture and storage (CCS) reduces the CO2 emissions. This study presents a sustainability method that uses flare gas for hydrogen production through steam methane reforming (SMR) with CCS supported by a techno-economic analysis. Data Envelopment Analysis (DEA) was used to evaluate the oil company’s efficiency and inverse DEA/sensitivity analysis identified maximum flare gas reduction which was modeled in Aspen HYSYS V14. Subsequently an economic evaluation was performed to determine the levelized cost of hydrogen (LCOH) and the cost–benefit ratio (CBR) for Nigeria. The CBR results were 2.15 (payback of 4.11 years with carbon credit) and 1.96 (payback of 4.55 years without carbon credit) indicating strong economic feasibility. These findings promote a practical approach for waste reduction aiding Nigeria’s transition to a circular low-carbon economy and demonstrate a positive relationship between lean and green strategies in the petroleum sector.
Development of a Hydrogen Supplement for use with IGEM/SR/25
Nov 2022
Publication
In response to the UK Government’s commitment to achieve net-zero carbon emissions by 2050 a range of research and demonstration projects are underway to investigate the feasibility of using hydrogen in place of natural gas within the national transmission and distribution system. In order for these projects to achieve their full scope of work a mechanism for performing hazardous area classification for hydrogen installations is required. At present IGEM/SR/25 is used to undertake such assessments for natural gas installations but the standard is not currently applicable to hydrogen or hydrogen/natural gas blends.<br/>This report presents updated data and a summary of the recommended methodologies for hazardous area classification of installations using hydrogen or blends of up to 20% hydrogen in natural gas. The contents of this report are intended to provide a technical commentary and the data for a hydrogen-specific supplement to IGEM/SR/25. The supplement will specifically cover 100% hydrogen and a 20/80% by volume blend of hydrogen/natural gas. Reference to intermediate blends is included in this report where appropriate to cover the anticipated step-wise introduction of hydrogen into the natural gas network.<br/>This report is divided into a series of appendices each of which covers a specific area of the IGEM standard. Each appendix includes a summary of specific recommendations made to enable IGEM/SR/25 to be applied to hydrogen and blends of up to 20% hydrogen in natural gas. The reader is encouraged to review the individual appendices for specific conclusions associated with the topic areas addressed in this report.<br/>In general the existing methodologies and approaches used for area classification in IGEM/SR/25 have been deemed appropriate for installations using either hydrogen or blends of up to 20% hydrogen in natural gas. Where necessary revised versions of the equations and zoning distances used in the standard are presented which account for the influence of material property differences between natural gas and the two alternative fuels considered in this work.
Refuelling Infrastructure Requirements for Renewable Hydrogen Road Fuel through the Energy Transition
Nov 2022
Publication
Current commercially available options for decarbonisation of road transport are battery electric vehicles or hydrogen fuel cell electric vehicles. BEVs are increasingly deployed while hydrogen is in its infancy. We examine the infrastructure necessary to support hydrogen fuelling to various degrees of market penetration. Scotland makes a good exemplar of transport transition with a world leading Net-Zero ambition and proven pathways for generating ample renewable energy. We identified essential elements of the new transport systems and the associated capital expenditure. We developed nine scenarios based on the pace of change and the ultimate market share of hydrogen and constructed a model to analyse their infrastructure requirements. This is a multi-period model incorporating Monte Carlo and Markov Chain elements. A “no-regrets” initial action is rapid deployment of enough hydrogen infrastructure to facilitate the early years of a scenario where diesel fuel becomes replaced with hydrogen. Even in a lower demand scenario of only large and heavy goods vehicles using hydrogen the same infrastructure would be required within a further two years. Subsequent investment in infrastructure could be considered in the light of this initial development.
The Socio-technical Dynamics of Net-zero Industrial Megaprojects: Outside-in and Inside-out Analyses of the Humber Industrial Cluster
Feb 2023
Publication
Although energy-intensive industries are often seen as ‘hard-to-decarbonise’ net-zero megaprojects for industrial clusters promise to improve the technical and economic feasibility of hydrogen fuel switching and carbon capture and storage (CCS). Mobilising insights from the megaproject literature this paper analyses the dynamics of an ambitious first-of-kind net-zero megaproject in the Humber industrial cluster in the United Kingdom which includes CCS and hydrogen infrastructure systems industrial fuel switching CO2 capture green and blue hydrogen production and hydrogen storage. To analyse the dynamics of this emerging megaproject the article uses a socio-technical system lens to focus on developments in technology actors and institutions. Synthesising multiple megaproject literature insights the paper develops a comprehensive framework that addresses both aggregate (‘outside-in’) developments and the endogenous (‘inside-out’) experiences and activities regarding three specific challenges: technical system integration actor coordination and institutional alignment. Drawing on an original dataset involving expert interviews (N = 46) site visits (N = 7) and document analysis the ‘outside-in’ analysis finds that the Humber megaproject has progressed rapidly from outline visions to specific technical designs enacted by new coalitions and driven by strengthening policy targets and financial support schemes. The complementary ‘inside-out’ analysis however also finds 12 alignment challenges that can delay or derail materialisation of the plans. While policies are essential aggregate drivers institutional misalignments presently also prevent project-actors from finalising design and investment decisions. Our analysis also finds important tensions between the project's high-pace delivery focus (to meet government targets) and allowing sufficient time for pilot projects learning-by-doing and design iterations.
Fuel Cells for Shipping: To Meet On-board Auxiliary Demand and Reduce Emissions
Feb 2021
Publication
The reduction of harmful emissions from the international shipping sector is necessary. On-board energy demand can be categorised as either: propulsion or auxiliary services. Auxiliary services contribute a significant proportion of energy demand with major loads including: compressors pumps and HVAC (heating ventilation and air-conditioning). Typically this demand is met using the same fuel source as the main propulsion (i.e. fossil fuels). This study has analysed whether emissions from large scale ships could feasibly be reduced by meeting auxiliary demand by installing a hydrogen fuel cell using data from an LNG tanker to develop a case study. Simulations have shown that for a capacity of 10 x 40ft containers of compressed hydrogen the optimal fuel cell size would be 3 MW and this could save 10600 MWh of fossil fuel use equivalent to 2343 t of CO2. Hence this could potentially decarbonise a significant proportion of shipping energy demand. Although there are some notable technical and commercial considerations such as fuel cell lifetime and capital expenditure requirements. Results imply that if auxiliary loads could be managed to avoid peaks in demand this could further increase the effectiveness of this concept.
Assessing the Performance of Fuel Cell Electric Vehicles Using Synthetic Hydrogen Fuel
Mar 2024
Publication
The deployment of hydrogen fuel cell electric vehicles (FCEVs) is critical to achieve zero emissions. A key parameter influencing FCEV performance and durability is hydrogen fuel quality. The real impact of contaminants on FCEV performance is not well understood and requires reliable measurements from real-life events (e.g. hydrogen fuel in poor-performing FCEVs) and controlled studies on the impact of synthetic hydrogen fuel on FCEV performance. This paper presents a novel methodology to flow traceable hydrogen synthetic fuel directly into the FCEV tank. Four different synthetic fuels containing N2 (90–200 µmol/mol) CO (0.14–5 µmol/mol) and H2S (4–11 nmol/mol) were supplied to an FCEV and subsequently sampled and analyzed. The synthetic fuels containing known contaminants powered the FCEV and provided real-life performance testing of the fuel cell system. The results showed for the first time that synthetic hydrogen fuel can be used in FCEVs without the requirement of a large infrastructure. In addition this study carried out a traceable H2 contamination impact study with an FCEV. The impact of CO and H2S at ISO 14687:2019 threshold levels on FCEV performance showed that small exceedances of the threshold levels had a significant impact even for short exposures. The methodology proposed can be deployed to evaluate the composition of any hydrogen fuel.
OIES Podcast - Hydrogen Financing
Jan 2023
Publication
In this Podcast David Ledesma discusses with Stephen Craen Visiting Research Fellow OIES the challenges facing the financing of future hydrogen projects as it is expected that a substantial amount of capital will need to be invested in green hydrogen production to meet the 2050 net zero targets. Based around an ‘Archetype’ world scale hydrogen export project where 1 GW solar power is used to make green hydrogen which is converted to 250000 tpa green ammonia for export with a capital cost in the region of USD 2 billion the podcast discusses how ‘efficient financing’ can make an important contribution to minimising cost and making projects cost competitive. Stephen Craen argues that lenders and investors will look to precedents when assessing the nascent green hydrogen sector and the foremost will be LNG and offshore wind which both represent large-scale technically complex projects. Commercial structures of the green hydrogen business are expected to borrow concepts from offshore wind projects particularly in relation to price but also from LNG where this is relevant such as take-or-pay contracts. In this podcast we discuss the key issues that will need to be addressed to make a green hydrogen export project bankable concluding that commercial debt from either commercial banks or project bonds can help create competition.
The podcast can be found on their website.
The podcast can be found on their website.
Precise Dynamic Modelling of Real-World Hybrid Solar-Hydrogen Energy Systems for Grid-Connected Buildings
Jul 2023
Publication
Hybrid renewable hydrogen energy systems could play a key role in delivering sustainable solutions for enabling the Net Zero ambition; however the lack of exact computational modelling tools for sizing the integrated system components and simulating their real-world dynamic behaviour remains a key technical challenge against their widespread adoption. This paper addresses this challenge by developing a precise dynamic model that allows sizing the rated capacity of the hybrid system components and accurately simulating their real-world dynamic behaviour while considering effective energy management between the grid-integrated system components to ensure that the maximum possible proportion of energy demand is supplied from clean sources rather than the grid. The proposed hybrid system components involve a solar PV system electrolyser pressurised hydrogen storage tank and fuel cell. The developed hybrid system model incorporates a set of mathematical models for the individual system components. The developed precise dynamic model allows identifying the electrolyser’s real-world hydrogen production levels in response to the input intermittent solar energy production while also simulating the electrochemical behaviour of the fuel cell and precisely quantifying its real-world output power and hydrogen consumption in response to load demand variations. Using a university campus case study building in Scotland the effectiveness of the developed model has been assessed by benchmarking comparison between its results versus those obtained from a generic model in which the electrochemical characteristics of the electrolyser and fuel cell systems were not taken into consideration. Results from this comparison have demonstrated the potential of the developed model in simulating the real-world dynamic operation of hybrid solar hydrogen energy systems for grid-connected buildings while sizing the exact capacity of system components avoiding oversizing associated with underutilisation costs and inaccurate simulation.
Global Green Hydrogen-based Steel Opportunities Surrounding High Quality Renewable Energy and Iron Ore Deposits
May 2023
Publication
The steel sector currently accounts for 7% of global energy-related CO2 emissions and requires deep reform to disconnect from fossil fuels. Here we investigate the market competitiveness of one of the widely considered decarbonisation routes for primary steel production: green hydrogen-based direct reduction of iron ore followed by electric arc furnace steelmaking. Through analysing over 300 locations by combined use of optimisation and machine learning we show that competitive renewables-based steel production is located nearby the tropic of Capricorn and Cancer characterised by superior solar with supplementary onshore wind in addition to high-quality iron ore and low steelworker wages. If coking coal prices remain high fossil-free steel could attain competitiveness in favourable locations from 2030 further improving towards 2050. Large-scale implementation requires attention to the abundance of suitable iron ore and other resources such as land and water technical challenges associated with direct reduction and future supply chain configuration.
Vision for a European Metrology Network for Energy Gases
Mar 2022
Publication
As Europe moves towards decarbonising its energy infrastructure new measurement needs will arise that require collaborative efforts between European National Metrology Institutes and Designated Institutes to tackle. Such measurement needs include flow metering of hydrogen or hydrogen enriched natural gas in the gas grid for billing quality assurance of hydrogen at refuelling stations and equations of state for carbon dioxide in carbon capture and storage facilities. The European metrology network for energy gases for the first time provides a platform where metrology institutes can work together to develop a harmonised strategy prioritise new challenges and share expertise and capabilities to support the European energy gas industry to meet stringent EU targets for climate change and emissions reductions
Delivering a Reliable Decarbonised Power System
Mar 2023
Publication
This report illustrates what a reliable resilient decarbonised electricity supply system could look like in 2035 and the steps required to achieve it. It provides new insights and new advice on how such a system can be achieved by 2035 using real weather data and hourly analysis of Great Britain’s power system (Northern Ireland is part of the all-Ireland system). It also looks at the implications for hydrogen.
China's Hydrogen Development: A Tale of Three Cities
Mar 2023
Publication
China is the world’s largest producer and consumer of hydrogen. The country has adopted a domestic strategy that targets significant growth in hydrogen consumption and production. Given the importance of hydrogen in the low-carbon energy transition it is critical to understand China’s hydrogen policies and their implementation as well as the extent to which these contribute to the country’s low-carbon goals.<br/>Existing research has focused on understanding policies and regulations in China and their implications for the country’s hydrogen prospects. This study aims to improve our understanding of central-government initiatives and look at how China’s hydrogen policies are implemented at the local level. The paper examines the three cities of Zhangjiakou (in China’s renewable-rich Hebei province) Datong (in the country’s coal-heartland of Shanxi province) and Chengdu which is rich in hydropower and natural gas. To be sure the three cities analysed in this paper do not cover all regional plans and initiatives but they offer a useful window into local hydrogen policy implementation. They also illustrate the major challenges facing green hydrogen as it moves beyond the narrow highly subsidized field of fuel cell vehicles (FCVs). Indeed costs as well as water land availability and technology continue to be constraints.<br/>The hydrogen policies and road maps reviewed in this paper offer numerous targets—often setting quantitative goals for FCVs hydrogen refuelling stations hydrogen supply chain revenue and new hydrogen technology companies—aligning with the view that hydrogen development is currently more of an industrial policy than a decarbonisation strategy. Indeed hydrogen’s potential to decarbonise sectors such as manufacturing and chemicals is of secondary importance if mentioned at all. But as the cities analysed here view hydrogen as part of their industrial programmes economic development and climate strategies support is likely to remain significant even as the specific incentive schemes will likely evolve.<br/>Given this local hydrogen development model rising demand for hydrogen in China could ultimately increase rather than decrease CO₂ emissions from fossil fuels in the short run. At the same time even though the central government’s hydrogen targets (as laid out in its 2022 policy documents) seem relatively conservative Chinese cities’ appetite for new sources of growth and the ability to fund various business models are worth watching.
How Hydrogen (H2) Can Support Food Security: From Farm to Fork
Mar 2024
Publication
Molecular hydrogen (H2 ) is a low-molecular-weight non-polar and electrochemically neutral substance that acts as an effective antioxidant and cytoprotective agent with research into the effects of H2 incorporation into the food chain at various stages rapidly gaining momentum. H2 can be delivered throughout the food growth production delivery and storage systems in numerous ways including as a gas as hydrogen-rich water (HRW) or with hydrogen-donating food supplements such as calcium (Ca) or magnesium (Mg). In plants H2 can be exploited as a seedpriming agent during seed germination and planting during the latter stages of plant development and reproduction as a post-harvest treatment and as a food additive. Adding H2 during plant growth and developmental stages is noted to improve the yield and quality of plant produce through modulating antioxidant pathways and stimulating tolerance to such environmental stress factors as drought stress enhanced tolerance to herbicides (paraquat) and increased salinity and metal toxicity. The benefits of pre- and post-harvest application of H2 include reductions in natural senescence and microbial spoilage which contribute to extending the shelf-life of animal products fruits grains and vegetables. This review collates empirical findings pertaining to the use of H2 in the agri-food industry and evaluates the potential impact of this emerging technology.
Additive Manufacturing for Proton Exchange Membrane (PEM) Hydrogen Technologies: Merits, Challenges, and Prospects
Jul 2023
Publication
With the growing demand for green technologies hydrogen energy devices such as Proton Exchange Membrane (PEM) fuel cells and water electrolysers have received accelerated developments. However the materials and manufacturing cost of these technologies are still relatively expensive which impedes their widespread commercialization. Additive Manufacturing (AM) commonly termed 3D Printing (3DP) with its advanced capabilities could be a potential pathway to solve the fabrication challenges of PEM parts. Herein in this paper the research studies on the novel AM fabrication methods of PEM components are thoroughly reviewed and analysed. The key performance properties such as corrosion and hydrogen embrittlement resistance of the additively manufactured materials in the PEM working environment are discussed to emphasise their reliability for the PEM systems. Additionally the major challenges and required future developments of AM technologies to unlock their full potential for PEM fabrication are identified. This paper provides insights from the latest research developments on the significance of advanced manufacturing technologies in developing sustainable energy systems to address the global energy challenges and climate change effects.
Wind Farm Control for Improved Battery Lifetime in Green Hydrogen Systems without a Grid Connection
Jul 2023
Publication
Green hydrogen is likely to play an important role in meeting the net-zero targets of countries around the globe. One potential option for green hydrogen production is to run electrolysers directly from offshore wind turbines with no grid connection and hence no expensive cabling to shore. In this work an innovative proof of concept of a wind farm control methodology designed to reduce variability in wind farm active power output is presented. Smoothing the power supplied by the wind farm to the battery reduces the size and number of battery charge cycles and helps to increase battery lifetime. This work quantifies the impact of the wind farm control method on battery lifetime for wind farms of 1 4 9 and 16 wind turbines using suitable wind farm battery and electrolyser models. The work presented shows that wind farm control for smoothing wind farm power output could play a critical role in reducing the levelised cost of green hydrogen produced from wind farms with no grid connection by reducing the damaging load cycles on batteries in the system. Hence this work paves the way for the design and testing of a full implementation of the wind farm controller.
OIES Podcast - Hydrogen Storage for a Net-zero Carbon Future
May 2023
Publication
In this podcast David Ledesma engages in a conversation with Alex Patonia and Rahmat Poudineh on their recent paper focusing on hydrogen storage for a net-zero carbon future. The podcast delves into the various types of hydrogen storage options highlighting their relative strengths and drawbacks.
In order for a hydrogen economy to be established several key factors must be addressed including efficient and decarbonized production adequate transportation infrastructure and the deployment of suitable hydrogen storage facilities. However hydrogen presents unique challenges when it comes to storage and handling. Due to its extremely low volumetric energy density under ambient conditions hydrogen cannot be efficiently or economically stored without undergoing compression liquefaction or conversion into other more manageable substances.
At present there exist several hydrogen storage solutions at different levels of technology market and commercial readiness each with varying applications depending on specific circumstances.
Additionally the podcast explores the primary barriers that hinder investment in hydrogen storage and the essential components of a viable business model that can address the primary risks to which potential hydrogen storage investors are exposed.
The podcast can be found on their website.
In order for a hydrogen economy to be established several key factors must be addressed including efficient and decarbonized production adequate transportation infrastructure and the deployment of suitable hydrogen storage facilities. However hydrogen presents unique challenges when it comes to storage and handling. Due to its extremely low volumetric energy density under ambient conditions hydrogen cannot be efficiently or economically stored without undergoing compression liquefaction or conversion into other more manageable substances.
At present there exist several hydrogen storage solutions at different levels of technology market and commercial readiness each with varying applications depending on specific circumstances.
Additionally the podcast explores the primary barriers that hinder investment in hydrogen storage and the essential components of a viable business model that can address the primary risks to which potential hydrogen storage investors are exposed.
The podcast can be found on their website.
A Comprehensive Resilience Assessment Framework for Hydrogen Energy Infrastructure Development
Jun 2023
Publication
In recent years sustainable development has become a challenge for many societies due to natural or other disruptive events which have disrupted economic environmental and energy infrastructure growth. Developing hydrogen energy infrastructure is crucial for sustainable development because of its numerous benefits over conventional energy sources. However the complexity of hydrogen energy infrastructure including production utilization and storage stages requires accounting for potential vulnerabilities. Therefore resilience needs to be considered along with sustainable development. This paper proposes a decision-making framework to evaluate the resilience of hydrogen energy infrastructure by integrating resilience indicators and sustainability contributing factors. A holistic taxonomy of resilience performance is first developed followed by a qualitative resilience assessment framework using a novel Intuitionistic fuzzy Weighted Influence Nonlinear Gauge System (IFWINGS). The results highlighted that Regulation and legislation Government preparation and Crisis response budget are the most critical resilience indicators in the understudy hydrogen energy infrastructure. A comparative case study demonstrates the practicality capability and effectiveness of the proposed approach. The results suggest that the proposed model can be used for resilience assessment in other areas.
The Prospects of Hydrogen in Achieving Net Zero Emissions by 2050: A Critical Review
May 2023
Publication
Hydrogen (H2) usage was 90 metric tonnes (Mt) in 2020 almost entirely for industrial and refining uses and generated almost completely from fossil fuels leading to nearly 900 Mt of carbon dioxide emissions. However there has been significant growth of H2 in recent years. Electrolysers' total capacity which are required to generate H2 from electricity has multiplied in the past years reaching more than 300 MW through 2021. Approximately 350 projects reportedly under construction could push total capacity to 54 GW by the year 2030. Some other 40 projects totalling output of more than 35 GW are in the planning phase. If each of these projects is completed global H2 production from electrolysers could exceed 8 Mt by 2030. It's an opportunity to take advantage of H2S prospects to be a crucial component of a clean safe and cost-effective sustainable future. This paper assesses the situation regarding H2 at the moment and provides recommendations for its potential future advancement. The study reveals that clean H2 is experiencing significant unparalleled commercial and political force with the amount of laws and projects all over the globe growing quickly. The paper concludes that in order to make H2 more widely employed it is crucial to significantly increase innovations and reduce costs. The practical and implementable suggestions provided to industries and governments will allow them to fully capitalise on this growing momentum.
Enhancing Safety of Liquid and Vaporised Hydrogen Transfer Technologies in Public Areas for Mobile Applications
Sep 2023
Publication
Federico Ustolin,
Donatella Cirrone,
Vladimir V. Molkov,
Dmitry Makarov,
Alexandros G. Venetsanos,
Stella G. Giannissi,
Giordano Emrys Scarponi,
Alessandro Tugnoli,
Ernesto Salzano,
Valerio Cozzani,
Daniela Lindner,
Birgit Gobereit,
Bernhard Linseisen,
Stuart J. Hawksworth,
Thomas Jordan,
Mike Kuznetsov,
Simon Jallais and
Olga Aneziris
International standards related to cryogenic hydrogen transferring technologies for mobile applications (filling of trucks ships stationary tanks) are missing and there is lack of experience. The European project ELVHYS (Enhancing safety of liquid and vaporized hydrogen transfer technologies in public areas for mobile applications) aims to provide indications on inherently safer and efficient cryogenic hydrogen technologies and protocols in mobile applications by proposing innovative safety strategies which are the results of a detailed risk analysis. This is carried out by applying an inter-disciplinary approach to study both the cryogenic hydrogen transferring procedures and the phenomena that may arise from the loss of containment of a piece of equipment containing hydrogen. ELVHYS will provide critical inputs for the development of international standards by creating inherently safer and optimized procedures and guidelines for cryogenic hydrogen transferring technologies thus increasing their safety level and efficiency. The aim of this paper is twofold: present the state of the art of liquid hydrogen transfer technologies by focusing on previous research projects such as PRESLHY and introduce the objectives and methods planned in the new EU project ELVHYS.
System-Level Offshore Wind Energy and Hydrogen Generation Availability and Operations and Maintenance Costs
May 2024
Publication
With the current trends of wind energy already playing a major part in the Scottish energy supply the capacity of wind farms is predicted to grow exponentially and reach further depths offshore. However a key challenge that presents itself is the integration of large producing assets into the current UK grid. One potential solution to this is green hydrogen production which is being heavily researched in industry with many concepts being investigated for large-scale purposes. However the operations and maintenance (O&M) costs and availability of green hydrogen systems need to be quantified to ensure economical and technical viability which is sparse in the available literature. The study presented in this paper investigated the availability and O&M costs of coupled wind–hydrogen systems by attempting to quantify the failure rates repair times repair costs and number of technicians required for key green hydrogen components. This study also utilised an O&M model created by the University of Strathclyde which uses Monte Carlo Markov chain simulations to produce the O&M outputs. A number of assumptions were made throughout the study in relation to the O&M model inputs and the baseline availability for the coupled wind–hydrogen system was 85.24%. Whilst the wind turbine still contributed a major part to the downtime seen in the simulations the combined hydrogen system also contributed a significant amount a total of 37% which could have been due to the technology readiness levels of some the components included in the hydrogen system.
OIES Podcast - China and Hydrogen: A Tale of Three Cities
Apr 2023
Publication
China is by far the world’s largest producer and consumer of hydrogen mostly from coal and other fossil fuels and the country has an ambitious hydrogen strategy. In this podcast we dive into the provincial strategies on hydrogen in China and specifically discuss a recent paper published by the Institute entitled China’s hydrogen development: A tale of three cities. The paper looks at the experiences and plans of the pilot hydrogen clusters located in Datong Shanxi province Chengdu in Sichuan province and Zhangjiakou in the northern part of Hebei province which surrounds Beijing. In this podcast we are speaking with the paper’s author Arabella Miller-Wang recently an Aramco fellow at the Institute and also a Research Assistant at the Smith School of Enterprise and the Environment of The University of Oxford as well as with Michal Meidan director of the China Energy Programme at OIES and with Martin Lambert who heads hydrogen research at the OIES.
The podcast can be found on their website.
The podcast can be found on their website.
Underground Hydrogen Storage to Balance Seasonal Variations in Energy Demand: Impact of Well Configuration on Storage Performance in Deep Saline Aquifers
Mar 2023
Publication
Grid-scale underground hydrogen storage (UHS) is essential for the decarbonization of energy supply systems on the path towards a zero-emissions future. This study presents the feasibility of UHS in an actual saline aquifer with a typical dome-shaped anticline structure to balance the potential seasonal mismatches between energy supply and demand in the UK domestic heating sector. As a main requirement for UHS in saline aquifers we investigate the role of well configuration design in enhancing storage performance in the selected site via numerical simulation. The results demonstrate that the efficiency of cyclic hydrogen recovery can reach around 70% in the short term without the need for upfront cushion gas injection. Storage capacity and deliverability increase in successive storage cycles for all scenarios with the co-production of water from the aquifer having a minimal impact on the efficiency of hydrogen recovery. Storage capacity and deliverability also increase when additional wells are added to the storage site; however the distance between wells can strongly influence this effect. For optimum well spacing in a multi-well storage scenario within a dome-shaped anticline structure it is essential to attain an efficient balance between well pressure interference effects at short well distances and the gas uprising phenomenon at large distances. Overall the findings obtained and the approach described can provide effective technical guidelines pertaining to the design and optimization of hydrogen storage operations in deep saline aquifers.
OIES Podcast - The EU Hydrogen and Gas Decarbonisation Package
Mar 2023
Publication
David Ledesma discusses with Alex Barnes the European Commission’s decision to make hydrogen a key part of its decarbonisation strategy. The 2022 REPowerEU Strategy set a target of 20MT consumption of renewable hydrogen by 2030. The Commission is keen to promote a single European market in hydrogen similar to the current one for natural gas. To this end it has published proposals on the regulation of future European hydrogen infrastructure (pipelines storage facilities and import terminals). The EU Council (representing Member States) and the EU Parliament are finalising their amendments to the Commission proposals prior to ‘trilogue’ negotiations and final agreement later this year. The OIES’s paper ‘The EU Hydrogen and Gas Decarbonisation Package: help or hindrance for the development of a European hydrogen market?’ published in March 2023 examines the EU Commission proposals and their suitability for a developing hydrogen market.
The podcast can be found on their website.
The podcast can be found on their website.
The EU Hydrogen and Gas Decarbonisation Package: Help or Hindrance for the Development of a European Hydrogen Market?
Mar 2023
Publication
The European Commission has identified hydrogen as a key part of its decarbonisation strategy. The 2022 REPowerEU Strategy set a target of 20MT consumption of renewable hydrogen by 2030. The Commission is keen to promote a single European market in hydrogen similar to the current one for natural gas. To this end it has published proposals on the regulation of future European hydrogen infrastructure (pipelines storage facilities and import terminals). The European Council (representing Member States) and the European Parliament are finalising their amendments to the Commission proposals prior to ’trilogue’ negotiations and final agreement later this year. The paper ‘The EU Hydrogen and Gas Decarbonisation Package: help or hindrance for the development of a European hydrogen market?’ examines the European Commission proposals and their suitability for a developing hydrogen market.
Hydrogen Storage for a Net-zero Carbon Future
Apr 2023
Publication
If a hydrogen economy is to become a reality along with efficient and decarbonized production and adequate transportation infrastructure deployment of suitable hydrogen storage facilities will be crucial. This is because due to various technical and economic reasons there is a serious possibility of an imbalance between hydrogen supply and demand. Hydrogen storage could also be pivotal in promoting renewable energy sources and facilitating the decarbonization process by providing long duration storage options which other forms of energy storage such as batteries with capacity limitations or pumped hydro with geographical limitations cannot meet. However hydrogen is not the easiest substance to store and handle. Under ambient conditions the extremely low volumetric energy density of hydrogen does not allow for its efficient and economic storage which means it needs to be compressed liquefied or converted into other substances that are easier to handle and store. Currently there are different hydrogen storage solutions at varying levels of technology market and commercial readiness with different applications depending on the circumstances. This paper evaluates the relative merits and techno-economic features of major types of hydrogen storage options: (i) pure hydrogen storage (ii) synthetic hydrocarbons (iii) chemical hydrides (iv) liquid organic hydrogen carriers (v) metal hydrides and (vi) porous materials. The paper also discusses the main barriers to investment in hydrogen storage and highlights key features of a viable business model in particular the policy and regulatory framework needed to address the primary risks to which potential hydrogen storage investors are exposed.
Future of Hydrogen in Industry: Initial Industrial Site Surveys
Jul 2023
Publication
This is a summary report of a study which aimed to understand the safety feasibility cost and impacts for 7 industrial sites to switch from natural gas to 100% hydrogen for heating. The volunteer industrial sites:<br/>♦ are located away from industrial clusters<br/>♦ use natural gas to meet most of their energy demand<br/>♦ will likely be most impacted by decisions on the future of the natural gas grid<br/>We have published the report in order to share its findings with other industrial sites and wider industry in particular those considering hydrogen as an option for decarbonisation.<br/>Note that:<br/>♦ some work was carried out on a non-hydrogen alternative energy source but to a lesser level of detail and not to determine the optimal decarbonisation solution<br/>♦ the findings do not apply to other end user environments because of differences between these environments and the consumption of gas<br/>The study was commissioned in 2022 by the former Department for Business and Energy and undertaken by AECOM and their safety sub-contractor ESR.<br/>The evidence will inform strategic decisions in 2026 on the role of low carbon hydrogen as a replacement for natural gas heating.
A Study on the Viability of Fuel Cells as an Alternative to Diesel Fuel Generators on Ships
Jul 2023
Publication
This study investigates methods for reducing air pollution in the shipping sector particularly in port areas. The study examines the use of fuel cells as an alternative to diesel generators. Environmental pollution at ports remains a critical issue so using fuel cells as an alternative to conventional energy systems warrants further research. This study compares commercial fuel cell types that can be used on a case study very large crude carrier (VLCC) vessel specifically although the technology is applicable to other vessels and requirements. Seven different fuel cell types were ranked based on five criteria to accomplish this. The proton-exchange membrane cell type was found to be the most suitable fuel cell type for the case study vessel. Based on the input fuel ammonia-based hydrogen storage has been identified as the most promising option along with using an ammonia reforming unit to produce pure hydrogen. Furthermore this study provides an integrated fuel cell module and highlights the economic environmental and maintenance aspects of implementing the proton-exchange membrane fuel cell module for this case study. It also calculates the required space as a crucial constraint of implementing fuel cell technology at sea.
OIES Podcast - Renewable Hydrogen Import Routes into the EU
Jun 2023
Publication
In this podcast David Ledesma talks to Martin Lambert and Abdurahman Alsulaiman about the potential hydrogen import market particularly focusing on the EU which currently holds the largest and earliest hydrogen target. The podcast explores the emerging hydrogen trade market and considers numerous possibilities for its open up providing better clarity on policy statements and balance them against project announcements.
Throughout the podcast Martin and Abdulrahman delve into various key points – they shed light on the primary areas of focus for projects set to be completed by or before 2030 as well as the distinction between announcements and tangible progress such as projects currently at the Final Investment Decision stage or under construction.
Additionally they explore the EU’s role as one of the few countries to have publicly announced its requirements for hydrogen imports and its ambitious hydrogen import target. The EU is currently establishing a benchmark for the future hydrogen market. However in order for the EU to succeed in establishing future hydrogen supply lines with future trade partners it will be crucial to engage in open dialogues covering a wide range of topics.
Join us in this podcast as we uncover the potential of the hydrogen import market with a specific focus on the EU and discuss the necessary steps for its success.
The podcast can be found on their website.
Throughout the podcast Martin and Abdulrahman delve into various key points – they shed light on the primary areas of focus for projects set to be completed by or before 2030 as well as the distinction between announcements and tangible progress such as projects currently at the Final Investment Decision stage or under construction.
Additionally they explore the EU’s role as one of the few countries to have publicly announced its requirements for hydrogen imports and its ambitious hydrogen import target. The EU is currently establishing a benchmark for the future hydrogen market. However in order for the EU to succeed in establishing future hydrogen supply lines with future trade partners it will be crucial to engage in open dialogues covering a wide range of topics.
Join us in this podcast as we uncover the potential of the hydrogen import market with a specific focus on the EU and discuss the necessary steps for its success.
The podcast can be found on their website.
Techno-Economic Evaluation of Deploying CCS in SMR Based Merchant H2 Production with NG as Feedstock and Fuel
Aug 2017
Publication
Hydrogen is a crucial raw materials to other industries. Globally nearly 90% of the hydrogen or HyCO gas produced is consumed by the ammonia methanol and oil refining industries. In the future hydrogen could play an important role in the decarbonisation of transport fuel (i.e. use of fuel cell vehicles) and space heating (i.e. industrial commercial building and residential heating). This paper summarizes the results of the feasibility study carried out by Amec Foster Wheeler for the IEA Greenhouse Gas R&D Programme (IEA GHG) with the purpose of evaluating the performance and costs of a modern steam methane reforming without and with CCS producing 100000 Nm3 /h H2 and operating as a merchant plant. This study focuses on the economic evaluation of five different alternatives to capture CO2 from SMR. This paper provides an up-to-date assessment of the performance and cost of producing hydrogen without and with CCS based on technologies that could be erected today. This study demonstrates that CO2 could be captured from an SMR plant with an overall capture rate ranging between 53 to 90%. The integration of CO2 capture plant could increase the NG consumption by -0.03 to 1.41 GJ per Nm3 /h of H2. The amount of electricity exported to the grid by the SMR plant is reduced. The levelised cost of H2 production could increase by 2.1 to 5.1 € cent per Nm3 H2 (depending on capture rate and technology selected). This translates to a CO2 avoidance cost of 47 to 70 €/t.
Next Steps for the Gas Grid- Future Gas Series Part 1
Sep 2014
Publication
Policy Connect Carbon Connect and sector and Parliamentary experts have collaborated to present options for the gas grid to play a useful role in the UK’s transition to a low carbon energy system through the widespread use of low carbon gas. The report calls on Government to support the transition to a more flexible gas grid that uses various forms of gas including low carbon gases such as hydrogen and biomethane.
No more items...