Publications
Notes on the Development of the Hydrogen Supplement to IGEM/TD13 > 7 bar
Nov 2021
Publication
IGEM/TD/13 Standard applies to the safe design construction inspection testing operation and maintenance of pressure regulating installations (PRIs) in accordance with current knowledge and operational experience.
This Supplement provides additional requirements for new PRIs to be used for the transmission of Hydrogen including Natural Gas/Hydrogen blended mixtures (subsequently referred to as NG/H blends) and for the repurposing of Natural Gas (NG) PRIs for Hydrogen service.
NG/H blends are considered to be equivalent to 100 mol % Hydrogen with respect to limits on design stresses the potential effect on the material properties and damage and defect categories and acceptance levels unless an additional technical evaluation is carried out to qualify the materials.
NG/H blends containing in excess of 10 mol % Hydrogen are considered to be equivalent to 100 mol.% Hydrogen with respect to all other requirements except for hazardous areas.
This Supplement gives additional recommendations for PRIs and installations:
This Supplement provides additional requirements for new PRIs to be used for the transmission of Hydrogen including Natural Gas/Hydrogen blended mixtures (subsequently referred to as NG/H blends) and for the repurposing of Natural Gas (NG) PRIs for Hydrogen service.
NG/H blends are considered to be equivalent to 100 mol % Hydrogen with respect to limits on design stresses the potential effect on the material properties and damage and defect categories and acceptance levels unless an additional technical evaluation is carried out to qualify the materials.
NG/H blends containing in excess of 10 mol % Hydrogen are considered to be equivalent to 100 mol.% Hydrogen with respect to all other requirements except for hazardous areas.
This Supplement gives additional recommendations for PRIs and installations:
- with an upstream maximum operating pressure (MOP) not greater than 100 bar
- with an outlet pressure greater than or equal to 7 bar
- for use with Hydrogen or NG/H blends with a Hydrogen content greater than 10 %
- operating with a temperature range between -20°C and 120°C.
Is Blue Hydrogen a Bridging Technology? - The Limits of a CO2 Price and the Role of State-induced Price Components for Green Hydrogen Production in Germany
Jun 2022
Publication
The European Commission aims to establish green hydrogen produced through electrolysis using renewable electricity and in a transition phase hydrogen produced in a low-carbon process or blue hydrogen. In an extensive cost analysis for Germany up to 2050 based on scenario data and a component-based learning rate approach we find that blue hydrogen is likely to establish itself as the most cost-effective option and not only as a medium-term low-carbon alternative. We find that expected CO2 prices below €480/tCO2 have a limited impact on the economic feasibility of electrolysis and show that substantial increases in excise tax on natural gas could lead blue hydrogen to reach a sufficient cost level for electrolysed hydrogen. Unless alternatives for green hydrogen supply through infrastructure and imports become available at lower cost electrolysed hydrogen may require long-term subsidies. As blue hydrogen comprises fugitive methane emissions and financing needs for green hydrogen support have implications for society and competition in the internal market we suggest that policymakers rely on hydrogen for decarbonising only essential energy applications. We recommend further investigations into the cost of hydrogen infrastructure and import options as well as efficient subsidy frameworks.
Effect of Carbon Concentration and Carbon Bonding Type on the Melting Characteristics of Hydrogen-reduced Iron Ore Pellets
Oct 2022
Publication
Decarbonization of the steel industry is one of the pathways towards a fossil-fuel-free environment. The steel industry is one of the top contributors to greenhouse gas emissions. Most of these emissions are directly linked to the use of a fossil-fuelbased reductant. Replacing the fossil-based reductant with green H2 enables the transition towards a fossil-free steel industry. The carbon-free iron produced will cause the refining and steelmaking operations to have a starting point far from today’s operations. In addition to carbon being an alloying element in steel production carbon addition controls the melting characteristics of the reduced iron. In the present study the effect of carbon content and form (cementite/graphite) in hydrogen-reduced iron ore pellets on their melting characteristics was examined by means of a differential thermal analyser and optical dilatometer. Carburized samples with a carbon content < 2 wt % did not show any initial melting at the eutectic temperature. At and above 2 wt % the carburized samples showed an initial melting at the eutectic temperature irrespective of the carbon content. However the absorbed heat varies with varied carbon content. The carbon form does not affect the initial melting temperature but it affects the melting progression. Carburized samples melt homogenously while melting of iron-graphite mixtures occurs locally at the interface between iron and carbon particles and when the time is not long enough melting might not occur to any significant extent. Therefore at any given carbon content > 2 wt % the molten fraction is higher in the case of carburized samples which is indicated by the amount of absorbed melting heat.
The Role of Hydrogen in a Greenhouse Gas-neutral Energy Supply System in Germany
Sep 2022
Publication
Hydrogen is widely considered to play a pivotal role in successfully transforming the German energy system but the German government’s current “National Hydrogen Strategy” does not specify how hydrogen utilization production storage or distribution will be implemented. Addressing key uncertainties for the German energy system’s path to greenhouse gas-neutrality this paper examines hydrogen in different scenarios. This analysis aims to support the concretization of the German hydrogen strategy. Applying a European energy supply model with strong interactions between the conversion sector and the hydrogen system the analysis focuses on the requirements for geological hydrogen storages and their utilization over the course of a year the positioning of electrolyzers within Germany and the contributions of hydrogen transport networks to balancing supply and demand. Regarding seasonal hydrogen storages the results show that hydrogen storage facilities in the range of 42 TWhH2 to 104 TWhH2 are beneficial to shift high electricity generation volumes from onshore wind in spring and fall to winter periods with lower renewable supply and increased electricity and heat demands. In 2050 the scenario results show electrolyzer capacities between 41 GWel and 75 GWel in Germany. Electrolyzer sites were found to follow the low-cost renewable energy potential and are concentrated on the North Sea and Baltic Sea coasts with their high wind yields. With respect to a hydrogen transport infrastructure there were two robust findings: One a domestic German hydrogen transport network connecting electrolytic hydrogen production sites in northern Germany with hydrogen demand hubs in western and southern Germany is economically efficient. Two connecting Germany to a European hydrogen transport network with interconnection capacities between 18 GWH2 and 58 GWH2 is cost-efficient to meet Germany’s substantial hydrogen demand.
Design of Fuel Cell Systems for Aviation: Representative Mission Profiles and Sensitivity Analyses
Apr 2019
Publication
The global transition to a clean and sustainable energy infrastructure does not stop at aviation. The European Commission defined a set of environmental goals for the “Flight Path 2050”: 75% CO2 reduction 90% NOx reduction and 65% perceived noise reduction. Hydrogen as an energy carrier fulfills these needs while it would also offer a tenable and flexible solution for intermittent large-scale energy storage for renewable energy networks. If hydrogen is used as an energy carrier there is no better device than a fuel cell to convert its stored chemical energy. In order to design fuel cell systems for passenger aircraft it is necessary to specify the requirements that the system has to fulfill. In this paper a statistical approach to analyze these requirements is presented which accounts for variations in the flight mission profile. Starting from a subset of flight data within the desired class (e.g. mid-range inter-European flights) a stochastic model of the random mission profile is inferred. This model allows for subsequent predictions under uncertainty as part of the aircraft design process. By using Monte Carlo-based sampling of flight mission profiles the range of necessary component sizes as well as optimal degrees of hybridization with a battery is explored and design options are evaluated. Furthermore Monte Carlo-based sensitivity analysis of performance parameters explores the potential of future technological developments. Results suggest that the improvement of the specific power of the fuel cell is the deciding factor for lowering the energy system mass. The specific energy of the battery has a low influence but acts in conjunction with the specific power of the fuel cell.
Operating Hydrogen-Based Energy Storage Systems in Wind Farms for Smooth Power Injection: A Penalty Fees Aware Model Predictive Control
Aug 2022
Publication
Smooth power injection is one of the possible services that modern wind farms could provide in the not-so-far future for which energy storage is required. Indeed this is one among the three possible operations identified by the International Energy Agency (IEA)-Hydrogen Implementing Agreement (HIA) within the Task 24 final report that may promote their integration into the main grid in particular when paired to hydrogen-based energy storages. In general energy storage can mitigate the inherent unpredictability of wind generation providing that they are deployed with appropriate control algorithms. On the contrary in the case of no storage wind farm operations would be strongly affected as well as their economic performances since the penalty fees wind farm owners/operators incur in case of mismatches between the contracted power and that actually delivered. This paper proposes a Model Predictive Control (MPC) algorithm that operates a Hydrogen-based Energy Storage System (HESS) consisting of one electrolyzer one fuel cell and one tank paired to a wind farm committed to smooth power injection into the grid. The MPC relies on Mixed-Logic Dynamic (MLD) models of the electrolyzer and the fuel cell in order to leverage their advanced features and handles appropriate cost functions in order to account for the operating costs the potential value of hydrogen as a fuel and the penalty fee mechanism that may negatively affect the expected profits generated by the injection of smooth power. Numerical simulations are conducted by considering wind generation profiles from a real wind farm in the center-south of Italy and spot prices according to the corresponding market zone. The results show the impact of each cost term on the performances of the controller and how they can be effectively combined in order to achieve some reasonable trade-off. In particular it is highlighted that a static choice of the corresponding weights can lead to not very effective handling of the effects given by the combination of the system conditions with the various exogenous’ while a dynamic choice may suit the purpose instead. Moreover the simulations show that the developed models and the set-up mathematical program can be fruitfully leveraged for inferring indications on the devices’ sizing.
Opportunities for Low-carbon Generation and Storage Technologies to Decarbonise the Future Power System
Feb 2023
Publication
Alternatives to cope with the challenges of high shares of renewable electricity in power systems have been addressed from different approaches such as energy storage and low-carbon technologies. However no model has previously considered integrating these technologies under stability requirements and different climate conditions. In this study we include this approach to analyse the role of new technologies to decarbonise the power system. The Spanish power system is modelled to provide insights for future applications in other regions. After including storage and low-carbon technologies (currently available and under development) batteries and hydrogen fuel cells have low penetration and the derived emission reduction is negligible in all scenarios. Compressed air storage would have a limited role in the short term but its performance improves in the long term. Flexible generation technologies based on hydrogen turbines and long-duration storage would allow the greatest decarbonisation providing stability and covering up to 11–14 % of demand in the short and long term. The hydrogen storage requirement is equivalent to 18 days of average demand (well below the theoretical storage potential in the region). When these solutions are considered decarbonising the electricity system (achieving Paris targets) is possible without a significant increase in system costs (< € 114/MWh).
Dynamic Electric Simulation Model of a Proton Exchange Membrane Electrolyzer System for Hydrogen Production
Sep 2022
Publication
An energy storage system based on a Proton Exchange Membrane (PEM) electrolyzer system which could be managed by a nanoGrid for Home Applications (nGfHA) is able to convert the surplus of electric energy produced by renewable sources into hydrogen which can be stored in pressurized tanks. The PEM electrolyzer system must be able to operate at variable feeding power for converting all the surplus of renewable electric energy into hydrogen in reasonable time. In this article the dynamic electric simulation model of a PEM electrolyzer system with its pressurized hydrogen tanks is developed in a proper calculation environment. Through the calculation code the stack voltage and current peaks to a supply power variation from the minimum value (about 56 W) to the maximum value (about 440 W) are controlled and zeroed to preserve the stack the best range of the operating stack current is evaluated and hydrogen production is monitored.
Cost, Footprint, and Reliability Implications of Deploying Hydrogen in Off-grid Electric Vehicle Charging Stations: A GIS-assisted Study for Riyadh, Saudi Arabia
Jul 2022
Publication
For the first time we quantify cost footprint and reliability implications of deploying hydrogen-based generation in off-grid electric vehicle charging stations (CS) using an optimization model coupled with a geographic information system (GIS) analysis for the city of Riyadh Saudi Arabia. We also account for the challenges associated with wind energy deployment as a candidate generation technology within city centers. The analysis was restricted to carbon-free technologies: photovoltaics (PV) wind battery and hydrogen fuel-cells. At current prevailing technology costs hydrogen can reduce the required footprint of off-grid CSs by 25% at a small incremental cost increase without impacting the charging reliability. By 2030 however hydrogen will simultaneously provide the footprint and cost advantages. If we allow as little as 5% of the annual load to be unmet the required footprint of the CS decreases by 60%. The levelized cost of energy values for the CS by 2030 can range between 0.13 and 0.20 $/kWh depending on learning-curve assumptions. The footprints calculated are then mapped to five land parcel categories in Riyadh: gas station hospital mall school and university. Incorporating hydrogen in CS design increases the number of parcels that could accommodate CSs by 15e45% via reducing the required PV array (i.e. footprint).
A Comprehensive Review on Recent Advancements in Thermochemical Processes for Clean Hydrogen Production to Decarbonize the Energy Sector
Sep 2022
Publication
Hydrogen is a source of clean energy as it can produce electricity and heat with water as a by-product and no carbon content is emitted when hydrogen is used as burning fuel in a fuel cell. Hydrogen is a potential energy carrier and powerful fuel as it has high flammability fast flame speed no carbon content and no emission of pollutants. Hydrogen production is possible through different technologies by utilizing several feedstock materials but the main concern in recent years is to reduce the emission of carbon dioxide and other greenhouse gases from energy sectors. Hydrogen production by thermochemical conversion of biomass and greenhouse gases has achieved much attention as researchers have developed several novel thermochemical methods which can be operated with low cost and high efficiency in an environmentally friendly way. This review explained the novel technologies which are being developed for thermochemical hydrogen production with minimum or zero carbon emission. The main concern of this paper was to review the advancements in hydrogen production technologies and to discuss different novel catalysts and novel CO2 -absorbent materials which can enhance the hydrogen production rate with zero carbon emission. Recent developments in thermochemical hydrogen production technologies were discussed in this paper. Biomass gasification and pyrolysis steam methane reforming and thermal plasma are promising thermochemical processes which can be further enhanced by using catalysts and sorbents. This paper also reviewed the developments and influences of different catalysts and sorbents to understand their suitability for continuous clean industrial hydrogen production.
A Justice and Responsible Research and Innovation Exploration of Marine Renewables and Green Hydrogen in Island Communities
Oct 2022
Publication
Both marine renewables and hydrogen are being tested by the European Marine Energy Centre in the Orkney Islands Scotland. Given their emerging nature there is opportunity and risk pertaining to their development and deployment. This research will contribute conceptually and methodologically through the integration of energy justice and RRI conceptual frameworks strengthening justice analyses in relation to emerging energy technologies. This integrated model will be mobilized to critically scrutinize marine energy and green hydrogen as two future energy sources within the energy system. Following a technology-centered exploration of these technologies this work will then contextualise them into place-based considerations of Orkney’s just energy futures. Placing the technologies at the centre of the justice analysis insights will have the potential to inform their development and deployment in other locations. Exploring them within the local Orkney context will initiate an essential and important discussion of energy futures in this specific location. This presentation sets out the empirical and conceptual context for this work and presents a novel conceptual and methodological model combining energy justice and RRI frameworks. Moreover preliminary methods are discussed including methods and outcomes from co-creation workshops held at research design phase.
Model Predictive Control of an Off-sire Green Hydrogen Production and Refuelling Station
Jan 2023
Publication
The expected increase of hydrogen fuel cell vehicles has motivated the emergence of a significant number of studies on Hydrogen Refuelling Stations (HRS). Some of the main HRS topics are sizing location design optimization and optimal operation. On-site green HRS where hydrogen is produced locally from green renewable energy sources have received special attention due to their contribution to decarbonization. This kind of HRS are complex systems whose hydraulic and electric linked topologies include renewable energy sources electrolyzers buffer hydrogen tanks compressors and batteries among other components. This paper develops a linear model of a real on-site green HRS that is set to be built in Zaragoza Spain. This plant can produce hydrogen either from solar energy or from the utility grid and is designed for three different types of services: light-duty and heavy-duty fuel cell vehicles and gas containers. In the literature there is a lack of online control solutions developed for HRS even more in the form of optimal online control. Hence for the HRS operation a Model Predictive Controller (MPC) is designed to solve a weighted multi-objective online optimization problem taking into account the plant dynamics and constraints as well as the disturbances prediction. Performance is analysed throughout 210 individual month-long simulations and the effect of the multi-objective weighting prediction horizon and hydrogen selling price is discussed. With the simulation results this work shows the suitability of MPC for HRS control and its significant economic advantage compared to the rule-based control solution. In all simulations the MPC operation fulfils all required services. Moreover results show that a seven-day prediction horizon can improve profits by 57% relative to a one-day prediction horizon; that the battery is under-sized; or that the MPC operation strategy is more resolutive for low hydrogen selling prices.
Batteries, Fuel Cells, or Engines? A Probabilistic Economic and Environmental Assessment of Electricity and Electrofuels for Heavy Goods Vehicles
Oct 2022
Publication
Uncertainty surrounding the total cost of ownership system costs and life cycle environmental impacts means that stakeholders may lack the required information to evaluate the risks of transitioning to low-carbon fuels and powertrains. This paper assesses the life cycle costs and well-to-wheel environmental impacts of using electricity and electrofuels in Heavy Good Vehicles (HGVs) whilst considering input parameter uncertainty. The complex relationship between electricity cost electrolyser capacity factor CO2 capture cost and electricity emissions intensity is assessed within a Monte Carlo based framework to identify scenarios where use of electricity or electrofuels in heavy goods vehicles makes economic and environmental sense. For vehicles with a range of less than 450 km battery electric vehicles achieve the lowest total cost of ownership for an electricity cost less than 100 €/MWh. For vehicles that require a range of up to 900 km hydrogen fuel cell vehicles represent the lowest long-term cost of abatement. Power-to-methane and power-to-liquid scenarios become economically competitive when low-cost electricity is available at high-capacity factors and CO2 capture costs for fuel synthesis are below 100 €/tCO2; these fuels may be more applicable to decarbonise shipping and aviation. Battery electric HGVs reduce greenhouse gas emissions by 50% compared to the diesel baseline with electricity emissions of 350 gCO2e/kWh. Electricity emissions less than 35 gCO2e/kWh are required for the power-to-methane and power-to-liquid scenarios to meet EU emissions savings criteria. High vehicle capital costs and a lack of widespread refuelling infrastructure may hinder initial uptake of low-carbon fuels and powertrains for HGVs.
A Comparative Study of CFD-Modelling for Lean Premixed Hydrogen Deflagrations in Large-scale Vented Vessels
Sep 2021
Publication
Hydrogen combustion inside a post-accident nuclear reactor containment may pose a challenge to the containment integrity which could alter the fission-product release source term to the public. Combustion-generated overpressures may be relieved by venting to adjacent compartments through relief panels or existing openings. Thus an improved understanding of the propagation of lean hydrogen deflagrations in inter-connected compartments is essential for the development of appropriate management strategies. GOTHIC is a general purpose lumped parameter thermal-hydraulic code for solving multi-phase compressible flows which is accepted as an industry-standard code for containment safety analyses. Following the Fukushima accident the application of three-dimensional computational fluid dynamics methods to high-fidelity detailed analysis of hydrogen combustion processes has become more widespread. In this study a recently developed large-eddy-simulation (LES) capability is applied to the prediction of lean premixed hydrogen deflagrations in large-scale vented vessels of various configurations. The LES predictions are compared with GOTHIC predictions and experimental data obtained from the large-scale vented combustion test facility at the Canadian Nuclear Laboratories. The LES methodology makes use of a flamelet- or a progress-variable-based combustion model. An empirical burning velocity model is combined with an advanced finite-volume framework and a mesh-independent subfilter-scale model. Descriptions of the LES and GOTHIC modelling approaches used to simulate the hydrogen reactive flows in the vented vessels along with the experimental data sets are given. The potential and limitations of the lumped parameter and LES approaches for accurately describing lean premixed hydrogen deflagrations in vented vessels are discussed.
Research on Hydrogen Consumption and Driving Range of Hydrogen Fuel Cell Vehicle under the CLTC-P Condition
Dec 2021
Publication
Hydrogen consumption and mileage are important economic indicators of fuel cell vehicles. Hydrogen consumption is the fundamental reason that restricts mileage. Since there are few quantitative studies on hydrogen consumption during actual vehicle operation the high cost of hydrogen consumption in outdoor testing makes it impossible to guarantee the accuracy of the test. Therefore this study puts forward a test method based on the hydrogen consumption of fuel cell vehicles under CLTC-P operating conditions to test the hydrogen consumption of fuel cell vehicles per 100 km. Finally the experiment shows that the mileage calculated by hydrogen consumption has a higher consistency with the actual mileage. Based on this hydrogen consumption test method the hydrogen consumption can be accurately measured and the test time and cost can be effectively reduced.
Aluminum-Based Fuels as Energy Carriers for Controllable Power and Hydrogen Generation—A Review
Dec 2022
Publication
Metallic aluminum is widely used in propellants energy-containing materials and batteries due to its high energy density. In addition to burning in the air aluminum can react with water to generate hydrogen. Aluminum is carbon-free and the solid-phase products can be recycled easily after the reaction. Micron aluminum powder is stable in the air and enables global trade. Aluminum metal is considered to be a viable recyclable carrier for clean energy. Based on the reaction characteristics of aluminum fuel in air and water this work summarizes the energy conversion system of aluminum fuel the combustion characteristics of aluminum and the recycling of aluminum. The conversion path and application direction of electric energy and chemistry in the aluminum energy conversion system are described. The reaction properties of aluminum in the air are described as well as the mode of activation and the effects of the aluminum-water reaction. In situ hydrogen production is achievable through the aluminum-water reaction. The development of low-carbon and energy-saving electrolytic aluminum technology is introduced. The work also analyzes the current difficulties and development directions for the large-scale application of aluminum fuel energy storage technology. The development of energy storage technology based on aluminum is conducive to transforming the energy structure.
Electrofuels from Excess Renewable Electricity at High Variable Renewable Shares: Cost, Greenhouse Gas Abatement, Carbon Use and Competition
Nov 2020
Publication
Increasing shares of variable renewable electricity (VRE) generation are necessary for achieving high renewable shares in all energy sectors. This results in increased excess renewable electricity (ERE) at times when supply exceeds demand. ERE can be utilized as a low-emission energy source for sector coupling through hydrogen production via electrolysis which can be used directly or combined with a carbon source to produce electrofuels. Such fuels are crucial for the transport sector where renewable alternatives are scarce. However while ERE increases with raising VRE shares carbon emissions decrease and may become a limited resource with several usage options including carbon storage (CCS). Here we perform a model based analysis for the German case until 2050 with a general analysis for regions with a high VRE reliance. Results indicate that ERE-based electrofuels could achieve a greenhouse gas (GHG) abatement of 74 MtCO2eq yearly (46% of current German transport emissions) by displacing fossil fuels at high fuel-cell electric vehicle (FCEV) shares at a cost of 250–320 V per tCO2eq. The capital expenditure of electrolysers was found not to be crucial for the cost despite low capacity factors due to variable ERE patterns. Carbon will likely become a limiting factor when aiming for stringent climate targets and renewable electricity-based hydrocarbon electrofuels replacing fossil fuels achieve up to 70% more GHG abatement than CCS. Given (1) an unsaturated demand for renewable hydrocarbon fuels (2) a saturated renewable hydrogen demand and (3) unused ERE capacities which would otherwise be curtailed we find that carbon is better used for renewable fuel production than being stored in terms of overall GHG abatement.
Strategies for Life Cycle Impact Reduction of Green Hydrogen Production - Influence of Electrolyser Value Chain Design
Mar 2024
Publication
Green Hydrogen (H2 via renewable-driven electrolysis) is emerging as a vector to meet net-zero emission targets provided it is produced with a low life cycle impact. While certification schemes for green H2 have been introduced they mainly focus on the embodied emissions from energy supply during electrolyser operation. This narrow focus on just operation is an oversight considering that a complete green H2 value chain also includes the electrolyser’s manufacturing transport/installation and end-of-life. Each step of this chain involves materials and energy flows that impart impacts that undermine the clean and sustainable status of H2. Therefore holistic and harmonised assessments of the green H2 production chain are required to ensure both economic and environmental deployment of H2. Herein we conduct an overarching environmental assessment encompassing the production chain described above using Australia as a case study. Our results indicate that while the energy source has the most impact material and manufacturing inputs associated with electrolyser production are increasingly significant as the scale of H2 output expands. Moreover wind power electrolysis has a greater chance of achieving green H2 certification compared to solar powered while increasing the amount of localised manufactured content and investment in end-of-life recycling of electrolyser components can reduce the overall life cycle impact of green H2 production by 20%.
Global Trade of Hydrogen: What is the Best Way to Transfer Hydrogen Over Long Distances?
Aug 2022
Publication
As a manufactured fuel hydrogen can be produced in a decentralized way in most countries around the world. This means even in a net zero economy the global trade of hydrogen could look quite different to the current international trade in fossil fuels including natural gas. With further declines in the costs of renewable electricity and electrolyzers regions which have lower cost renewable electricity may develop an economic advantage in the production of low-cost hydrogen but for hydrogen to become a globally traded commodity the cost of imports needs to be lower than the cost of domestic production. Unlike oil or natural gas transporting hydrogen over long distances is not an easy task. Hydrogen liquefaction is an extremely energy-intensive process while maintaining the low temperature required for long-distance transportation and storage purposes results in additional energy losses and accompanying costs. The upside is that hydrogen can be converted into multiple carriers that have a higher energy density and higher transport capacity and can potentially be cheaper to transport over long distances. Among the substances currently identified as potential hydrogen carriers suitable for marine shipping liquid ammonia the so-called ‘liquid organic hydrogen carriers’ in general (toluene-methylcyclohexane (MCH) in particular) and methanol have received the most attention in recent years. This paper compares the key techno-economic characteristics of these potential carriers with that of liquified hydrogen in order to develop a better understanding of the ways in which hydrogen could be transported overseas in an efficient manner. The paper also discusses other factors beyond techno-economic features that may affect the choice of optimum hydrogen carrier for long distance transport as well as the global trade of hydrogen.
Optimization of Small-Scale Hydrogen Production with Membrane Reactors
Mar 2023
Publication
In the pathway towards decarbonization hydrogen can provide valid support in different sectors such as transportation iron and steel industries and domestic heating concurrently reducing air pollution. Thanks to its versatility hydrogen can be produced in different ways among which steam reforming of natural gas is still the most commonly used method. Today less than 0.7% of global hydrogen production can be considered low-carbon-emission. Among the various solutions under investigation for low-carbon hydrogen production membrane reactor technology has the potential especially at a small scale to efficiently convert biogas into green hydrogen leading to a substantial process intensification. Fluidized bed membrane reactors for autothermal reforming of biogas have reached industrial maturity. Reliable modelling support is thus necessary to develop their full potential. In this work a mathematical model of the reactor is used to provide guidelines for their design and operations in off-design conditions. The analysis shows the influence of temperature pressures catalyst and steam amounts and inlet temperature. Moreover the influence of different membrane lengths numbers and pitches is investigated. From the results guidelines are provided to properly design the geometry to obtain a set recovery factor value and hydrogen production. For a given reactor geometry and fluidization velocity operating the reactor at 12 bar and the permeate-side pressure of 0.1 bar while increasing reactor temperature from 450 to 500 °C leads to an increase of 33% in hydrogen production and about 40% in HRF. At a reactor temperature of 500 °C going from 8 to 20 bar inside the reactor doubled hydrogen production with a loss in recovery factor of about 16%. With the reactor at 12 bar a vacuum pressure of 0.5 bar reduces hydrogen production by 43% and HRF by 45%. With the given catalyst it is sufficient to have only 20% of solids filled into the reactor being catalytic particles. With the fixed operating conditions it is worth mentioning that by adding membranes and maintaining the same spacing it is possible to increase hydrogen production proportionally to the membrane area maintaining the same HRF.
Prospects for the Implementation of Underground Hydrogen Storage in the EU
Dec 2022
Publication
The hydrogen economy is one of the possible directions of development for the European Union economy which in the perspective of 2050 can ensure climate neutrality for the member states. The use of hydrogen in the economy on a larger scale requires the creation of a storage system. Due to the necessary volumes the best sites for storage are geological structures (salt caverns oil and gas deposits or aquifers). This article presents an analysis of prospects for large-scale underground hydrogen storage in geological structures. The political conditions for the implementation of the hydrogen economy in the EU Member States were analysed. The European Commission in its documents (e.g. Green Deal) indicates hydrogen as one of the important elements enabling the implementation of a climate-neutral economy. From the perspective of 2050 the analysis of changes and the forecast of energy consumption in the EU indicate an increase in electricity consumption. The expected increase in the production of energy from renewable sources may contribute to an increase in the production of hydrogen and its role in the economy. From the perspective of 2050 discussed gas should replace natural gas in the chemical metallurgical and transport industries. In the longer term the same process will also be observed in the aviation and maritime sectors. Growing charges for CO2 emissions will also contribute to the development of underground hydrogen storage technology. Geological conditions especially wide-spread aquifers and salt deposits allow the development of underground hydrogen storage in Europe.
A Roadmap with Strategic Policy toward Green Hydrogen Production: The Case of Iraq
Mar 2023
Publication
The study proposes a comprehensive framework to support the development of green hydrogen production including the establishment of legal and regulatory frameworks investment incentives and public-private partnerships. Using official and public data from government agencies the potential of renewable energy sources is studied and some reasonable assumptions are made so that a full study and evaluation of hydrogen production in the country can be done. The information here proves beyond a doubt that renewable energy makes a big difference in making green hydrogen. This makes the country a leader in the field of making green hydrogen. Based on what it found this research suggests a way for the country to have a green hydrogen economy by 2050. It is done in three steps: using green hydrogen as a fuel for industry using green hydrogen in fuel cells and selling hydrogen. On the other hand the research found that making green hydrogen that can be used in Iraq and other developing countries is hard. There are technological economic and social problems as well as policy consequences that need to be solved.
Color-Coded Hydrogen: Production and Storage in Maritime Sector
Dec 2022
Publication
To reduce pollution from ships in coastal and international navigation shipping companies are turning to various technological solutions mostly based on electrification and the use of alternative fuels with a lower carbon footprint. One of the alternatives to traditional diesel fuel is the use of hydrogen as a fuel or hydrogen fuel cells as a power source. Their application on ships is still in the experimental phase and is limited to smaller ships which serve as a kind of platform for evaluating the applicability of different technological solutions. However the use of hydrogen on a large scale as a primary energy source on coastal and ocean-going vessels also requires an infrastructure for the production and safe storage of hydrogen. This paper provides an overview of color-based hydrogen classification as one of the main methods for describing hydrogen types based on currently available production technologies as well as the principles and safety aspects of hydrogen storage. The advantages and disadvantages of the production technologies with respect to their application in the maritime sector are discussed. Problems and obstacles that must be overcome for the successful use of hydrogen as a fuel on ships are also identified. The issues presented can be used to determine long-term indicators of the global warming potential of using hydrogen as a fuel in the shipping industry and to select an appropriate cost-effective and environmentally sustainable production and storage method in light of the technological capabilities and resources of a particular area.
Impacts of Wind Conditions on Hydrogen Leakage During Refilling Hydrogen-powered Vehicles
Mar 2023
Publication
Although hydrogen leakage at hydrogen refueling stations has been a concern less effort has been devoted to hydrogen leakage during the refueling of hydrogen-powered vehicles. In this study hydrogen leakage and dilution from the hydrogen dispenser during the refueling of hydrogen-powered vehicles were numerically investigated under different wind configurations. The shape size and distribution of flammable gas clouds (FGC) during the leakage and dilution processes were analyzed. The results showed that the presence of hydrogen-powered vehicles resulted in irregular FGC shapes. Greater wind speeds (vwv) were associated with longer FGC propagation distances. At vwv =2 m/s and 10 m/s the FGC lengths at the end of the leakage were 7.9 m and 20.4 m respectively. Under downwind conditions higher wind speeds corresponded to lower FGC heights. The FGC height was larger under upwind conditions and was slightly affected by the magnitude of the wind speed. In the dilution process the existence of a region with a high hydrogen concentration led to the FGC volume first increasing and then gradually decreasing. Wind promoted the mixing of hydrogen and air accelerated FGC dilution inhibited hydrogen uplifting and augmented the horizontal movement of the FGC. At higher wind speeds the low-altitude FGC movements could induce potential safety hazards.
Aboveground Hydrogen Storage - Assessment of the Potential Market Releveance in a Carbon-Neutral European Energy System
Mar 2024
Publication
Hydrogen storage is expected to play a crucial role in the comprehensive defossilization of energy systems. In this context the focus is typically on underground hydrogen storage (e.g. in salt caverns). However aboveground storage which is independent of geological conditions and might offer other technical advantages could provide systemic benefits and thereby gain shares in the hydrogen storage market. Against this background this paper examines the market relevance of aboveground compared to underground hydrogen storage. Using the opensource energy system model and optimization framework of Europe PyPSA-Eur the influence of geological independence storage cost relations and technical storage characteristics (i.e. efficiencies) on mentioned market relevance of aboveground hydrogen storage are investigated. Further the expectable market relevance based on current cost projections for the future is assessed. The studies show that in terms of hydrogen capacities aboveground hydrogen storage plays a considerably smaller role compared to underground hydrogen storage. Even when assuming comparatively low aboveground storage cost it will not exceed 1.7% (1.9 TWhH2LHV) of total hydrogen storage capacities in a cost-optimal European energy system. Regarding the amounts of annually stored hydrogen aboveground storage could play a larger role reaching a maximum share of 32.5% (168 TWhH2 LHV a-1) of total stored hydrogen throughout Europe. However these shares are only achievable for low cost storage in particularly suited energy system supply configurations. For higher aboveground storage costs or lower efficiencies shares drop below 10% sharply. The analysis identifies some especially influential factors for achieving higher market relevance. Besides storage costs the demand-orientation of a particular aboveground storage system (e.g. hydrogen storage at demand pressure levels) plays an essential role in market relevance. Further overall efficiency can be a beneficial factor. Still current projections of future techno-economic characteristics show that aboveground hydrogen storage is too expensive or too inefficient compared to underground storage. Therefore to achieve notable market relevance rather drastic cost reductions beyond current expectations would be needed for all assessed aboveground hydrogen storage technologies.
Techno-economic Feasibility of Hybrid PV/wind/battery/thermal Storage Trigeneration System: Toward 100% Energy Independency and Green Hydrogen Production
Dec 2022
Publication
With the clear adverse impacts of fossil fuel-based energy systems on the climate and environment ever-growing interest and rapid developments are taking place toward full or nearly full dependence on renewable energies in the next few decades. Estonia is a European country with large demands for electricity and thermal energy for district heating. Considering it as the case study this work explores the feasibility and full potential of optimally sized photovoltaic (PV) wind and PV/wind systems equipped with electric and thermal storage to fulfill those demands. Given the large excess energy from 100% renewable energy systems for an entire country this excess is utilized to first meet the district heating demand and then to produce hydrogen fuel. Using simplified models for PV and wind systems and considering polymer electrolyte membrane (PEM) electrolysis a genetic optimizer is employed for scanning Estonia for optimal installation sites of the three systems that maximize the fulfillment of the demand and the supply–demand matching while minimizing the cost of energy. The results demonstrate the feasibility of all systems fully covering the two demands while making a profit compared to selling the excess produced electricity directly. However the PV-driven system showed enormous required system capacity and amounts of excess energy with the limited solar resources in Estonia. The wind system showed relatively closer characteristics to the hybrid system but required a higher storage capacity by 75.77%. The hybrid PV/wind-driven system required a total capacity of 194 GW most of which belong to the wind system. It was also superior concerning the amount (15.05 × 109 tons) and cost (1.42 USD/kg) of the produced green hydrogen. With such full mapping of the installation capacities and techno-economic parameters of the three systems across the country this study can assist policymakers when planning different country-scale cogeneration systems.
Artificial Intelligence/Machine Learning in Energy Management Systems, Control, and Optimization of Hydrogen Fuel Cell Vehicles
Mar 2023
Publication
Environmental emissions global warming and energy-related concerns have accelerated the advancements in conventional vehicles that primarily use internal combustion engines. Among the existing technologies hydrogen fuel cell electric vehicles and fuel cell hybrid electric vehicles may have minimal contributions to greenhouse gas emissions and thus are the prime choices for environmental concerns. However energy management in fuel cell electric vehicles and fuel cell hybrid electric vehicles is a major challenge. Appropriate control strategies should be used for effective energy management in these vehicles. On the other hand there has been significant progress in artificial intelligence machine learning and designing data-driven intelligent controllers. These techniques have found much attention within the community and state-of-the-art energy management technologies have been developed based on them. This manuscript reviews the application of machine learning and intelligent controllers for prediction control energy management and vehicle to everything (V2X) in hydrogen fuel cell vehicles. The effectiveness of data-driven control and optimization systems are investigated to evolve classify and compare and future trends and directions for sustainability are discussed.
A Theoretical Study Using the Multiphase Numerical Simulation Technique for Effective Use of H2 as Blast Furnaces Fuel
Jun 2017
Publication
We present a numerical simulation procedure for analyzing hydrogen oxygen and carbon dioxide gases injections mixed with pulverized coals within the tuyeres of blast furnaces. Effective use of H2 rich gas is highly attractive into the steelmaking blastfurnace considering the possibility of increasing the productivity and decreasing the specific emissions of carbon dioxide becoming the process less intensive in carbon utilization. However the mixed gas and coal injection is a complex technology since significant changes on the inner temperature and gas flow patterns are expected beyond to their effects on the chemical reactions and heat exchanges. Focusing on the evaluation of inner furnace status under such complex operation a comprehensive mathematical model has been developed using the multi interaction multiple phase theory. The BF considered as a multiphase reactor treats the lump solids (sinter small coke pellets granular coke and iron ores) gas liquids metal and slag and pulverized coal phases. The governing conservation equations are formulated for momentum mass chemical species and energy and simultaneously discretized using the numerical method of finite volumes. We verified the model with a reference operational condition using pulverized coal of 215 kg per ton of hot metal (kg thm−1). Thus combined injections of varying concentrations of gaseous fuels with H2 O2 and CO2 are simulated with 220 kg thm−1 and 250 kg thm−1 coals injection. Theoretical analysis showed that stable operations conditions could be achieved with productivity increase of 60%. Finally we demonstrated that the net carbon utilization per ton of hot metal decreased 12%.
A Detailed Parametric Analysis of a Solar-Powered Cogeneration System for Electricity and Hydrogen Production
Dec 2022
Publication
Hydrogen has received increased attention in the last decades as a green energy carrier and a promising future fuel. The integration of hydrogen as well as the development of cogeneration plants makes the energy sector more eco-friendly and sustainable. The aim of this paper is the investigation of a solar-fed cogeneration system that can produce power and compressed green hydrogen. The examined unit contains a parabolic trough collector solar field a thermal energy storage tank an organic Rankine cycle and a proton exchange membrane water electrolyzer. The installation also includes a hydrogen storage tank and a hydrogen compressor. The unit is analyzed parametrically in terms of thermodynamic performance and economic viability in steady-state conditions with a developed and accurate model. Taking into account the final results the overall energy efficiency is calculated at 14.03% the exergy efficiency at 14.94% and the hydrogen production rate at 0.205 kg/h. Finally the payback period and the net present value are determined at 9 years and 122 k€ respectively.
Hydrogen Storage Vessel for a Proton-Exchange Membrane (PEM) Fuel Cell Auxiliary Power Unit for Commercial Aircraft
Jul 2025
Publication
Approximately 20% of emissions from air travel are attributed to the auxiliary power units (APUs) carried in commercial aircraft. This paper proposes to reduce greenhouse gas emissions in international air transport by adopting proton-exchange membrane (PEM) fuel cells to replace APUs in commercial aircraft: we consider the design of three compressed hydrogen storage vessels made of 304 stainless steel 6061-T6 aluminium and Grade 5 (Ti-6Al-4V) titanium and capable of delivering 440 kW—enough for a PEM fuel cell for a Boeing 777. Complete structural analyses for pressures from 35 MPa to 70 MPa and wall thicknesses of 25 50 100 and 150 mm are used to determine the optimal material for aviation applications. Key factors such as deformation safety factors and Von Mises equivalent stress are evaluated to ensure structural integrity under a range of operating conditions. In addition CO2 emissions from a conventional 440 kW gas turbine APU and an equivalent PEM fuel cell are compared. This study provides insights into optimal material selection for compressed hydrogen storage vessels emphasising safety reliability cost and weight reduction. Ultimately this research aims to facilitate the adoption of fuel cell technology in aviation contributing to greenhouse emissions reduction and hence sustainable air transport.
An Insight into Carbon Nanomaterial-Based Photocatalytic Water Splitting for Green Hydrogen Production
Dec 2022
Publication
At present the energy shortage and environmental pollution are the burning global issues. For centuries fossil fuels have been used to meet worldwide energy demand. However thousands of tons of greenhouse gases are released into the atmosphere when fossil fuels are burned contributing to global warming. Therefore green energy must replace fossil fuels and hydrogen is a prime choice. Photocatalytic water splitting (PWS) under solar irradiation could address energy and environmental problems. In the past decade solar photocatalysts have been used to manufacture sustainable fuels. Scientists are working to synthesize a reliable affordable and light-efficient photocatalyst. Developing efficient photocatalysts for water redox reactions in suspension is a key to solar energy conversion. Semiconductor nanoparticles can be used as photocatalysts to accelerate redox reactions to generate chemical fuel or electricity. Carbon materials are substantial photocatalysts for total WS under solar irradiation due to their high activity high stability low cost easy production and structural diversity. Carbon-based materials such as graphene graphene oxide graphitic carbon nitride fullerenes carbon nanotubes and carbon quantum dots can be used as semiconductors photosensitizers cocatalysts and support materials. This review comprehensively explains how carbon-based composite materials function as photocatalytic semiconductors for hydrogen production the water-splitting mechanism and the chemistry of redox reactions. Also how heteroatom doping defects and surface functionalities etc. can influence the efficiency of carbon photocatalysts in H2 production. The challenges faced in the PWS process and future prospects are briefly discussed.
Carbon Footprint Assessment of Hydrogen and Steel
Dec 2022
Publication
Hydrogen has the potential to decarbonize a variety of energy-intensive sectors including steel production. Using the life cycle assessment (LCA) methodology the state of the art is given for current hydrogen production with a focus on the hydrogen carbon footprint. Beside the state of the art the outlook on different European scenarios up to the year 2040 is presented. A case study of the transformation of steel production from coal-based towards hydrogen- and electricity-based metallurgy is presented. Direct reduction plants with integrated electric arc furnaces enable steel production which is almost exclusively based on hydrogen and electricity or rather on electricity alone if hydrogen stems from electrolysis. Thus an integrated steel site has a demand of 4.9 kWh of electric energy per kilogram of steel. The carbon footprint of steel considering a European sustainable development scenario concerning the electricity mix is 0.75 kg CO2eq/kg steel in 2040. From a novel perspective a break-even analysis is given comparing the use of natural gas and hydrogen using different electricity mixes. The results concerning hydrogen production presented in this paper can also be transferred to application fields other than steel.
Hydrogen Technology for Supply Chain Sustainability: The Mexican Transportation Impacts on Society
Mar 2022
Publication
This study sheds light on the Hydrogen technology in transportation for reaching the sustainability goals of societies illustrated by the case of Mexico. In terms of the affected supply chains the study explores how the packaging and distribution of a fuel-saving tool that allows the adoption of hydrogen as complementary energy for maritime transportation to improve economic and environmental performance in Mexico. This exploratory study performs interviews observations simulations and tests involving producers suppliers and users at 26 ports in Mexico. The study shows that environmental and economic performance are related to key processes in Supply Chain Management (SCM) in which packaging and distribution are critical for achieving logistics and transportation sustainability goals. Reusable packaging and the distribution of a fuel-saving tool can help decrease costs - of transport and downstream/upstream processes in SCM while at the same time increasing the environmental performance.
Recent Advances in Alkaline Exchange Membrane Water Electrolysis and Electrode Manufacturing
Oct 2021
Publication
Water electrolysis to obtain hydrogen in combination with intermittent renewable energy resources is an emerging sustainable alternative to fossil fuels. Among the available electrolyzer technologies anion exchange membrane water electrolysis (AEMWE) has been paid much attention because of its advantageous behavior compared to other more traditional approaches such as solid oxide electrolyzer cells and alkaline or proton exchange membrane water electrolyzers. Recently very promising results have been obtained in the AEMWE technology. This review paper is focused on recent advances in membrane electrode assembly components paying particular attention to the preparation methods for catalyst coated on gas diffusion layers which has not been previously reported in the literature for this type of electrolyzers. The most successful methodologies utilized for the preparation of catalysts including co-precipitation electrodeposition sol–gel hydrothermal chemical vapor deposition atomic layer deposition ion beam sputtering and magnetron sputtering deposition techniques have been detailed. Besides a description of these procedures in this review we also present a critical appraisal of the efficiency of the water electrolysis carried out with cells fitted with electrodes prepared with these procedures. Based on this analysis a critical comparison of cell performance is carried out and future prospects and expected developments of the AEMWE are discussed.
Safe Design of a Hydrogen-Powered Ship: CFD Simulation on Hydrogen Leakage in the Fuel Cell Room
Mar 2023
Publication
Adopting proton exchange membrane fuel cells fuelled by hydrogen presents a promising solution for the shipping industry’s deep decarbonisation. However the potential safety risks associated with hydrogen leakage pose a significant challenge to the development of hydrogen-powered ships. This study examines the safe design principles and leakage risks of the hydrogen gas supply system of China’s first newbuilt hydrogen-powered ship. This study utilises the computational fluid dynamics tool FLACS to analyse the hydrogen dispersion behaviour and concentration distributions in the hydrogen fuel cell room based on the ship’s parameters. This study predicts the flammable gas cloud and time points when gas monitoring points first reach the hydrogen volume concentrations of 0.8% and 1.6% in various leakage scenarios including four different diameters (1 3 5 and 10 mm) and five different directions. This study’s findings indicate that smaller hydrogen pipeline diameters contribute to increased hydrogen safety. Specifically in the hydrogen fuel cell room a single-point leakage in a hydrogen pipeline with an inner diameter not exceeding 3 mm eliminates the possibility of flammable gas cloud explosions. Following a 10 mm leakage diameter the hydrogen concentration in nearly all room positions reaches 4.0% within 6 s of leakage. While the leakage diameter does not impact the location of the monitoring point that first activates the hydrogen leak alarm and triggers an emergency hydrogen supply shutdown the presence of obstructions near hydrogen detectors and the leakage direction can affect it. These insights provide guidance on the optimal locations for hydrogen detectors in the fuel cell room and the pipeline diameters on hydrogen gas supply systems which can facilitate the safe design of hydrogen-powered ships.
Portable Prototype of Hydrogen Fuel Cells for Educational Training
Jan 2023
Publication
This paper presents an experimental prototype of hydrogen fuel cells suitable for training engineering students. The presented system is designed to teach students the V-I characteristics of the fuel cells and how to record the V-I characteristics curve in the case of a single or multiple fuel cells. The prototype contains a compact electrolyzer to produce hydrogen and oxygen to the fuel cell. The fuel cell generates electricity to supply power to various types of loads. The paper also illustrates how to calculate the efficiency of fuel cells in series and parallel modes of operation. In the series mode of operation it is mathematically proven that the efficiency is higher at lower currents. Still the fuel cell operating area is required where the power is the highest. According to experimental results the efficiency in the case of series connection is approximately 25% while in parallel operation mode the efficiency is about 50%. Thus a parallel connection is recommended in the high current applications because the efficiency is higher than the one resulted from series connection. As explained later in the study plan several other experiments can be performed using this educational kit.
Society, Materials, and the Environment: The Case of Steel
Mar 2020
Publication
This paper reviews the relationship between the production of steel and the environment as it stands today. It deals with raw material issues (availability scarcity) energy resources and generation of by-products i.e. the circular economy the anthropogenic iron mine and the energy transition. The paper also deals with emissions to air (dust Particulate Matter heavy metals Persistant Organics Pollutants) water and soil i.e. with toxicity ecotoxicity epidemiology and health issues but also greenhouse gas emissions i.e. climate change. The loss of biodiversity is also mentioned. All these topics are analyzed with historical hindsight and the present understanding of their physics and chemistry is discussed stressing areas where knowledge is still lacking. In the face of all these issues technological solutions were sought to alleviate their effects: many areas are presently satisfactorily handled (the circular economy—a historical’ practice in the case of steel energy conservation air/water/soil emissions) and in line with present environmental regulations; on the other hand there are important hanging issues such as the generation of mine tailings (and tailings dam failures) the emissions of greenhouse gases (the steel industry plans to become carbon-neutral by 2050 at least in the EU) and the emission of fine PM which WHO correlates with premature deaths. Moreover present regulatory levels of emissions will necessarily become much stricter.
Life Cycle Greenhouse Gas Emissions of Alternative Fuels and Powertrains for Medium-duty Trucks: A Singapore Case Study
Mar 2022
Publication
Alternatives to conventional diesel engines in medium/heavy-duty commercial trucks offer promising solutions to decarbonize road freight. We compare the life cycle greenhouse gas (GHG) emissions from diesel battery electric (BEV) and hydrogen fuel cell (FCV) medium-duty urban delivery trucks (gross vehicle weight 3.5 – 7 metric tonnes) in Singapore including the vehicle and fuel production use phase and end-of-life stages. Use phase energy demand was estimated by simulating energy consumption on local real-world driving cycles. BEVs powered by the 2019 electricity mix had up to 11% lower GHG emissions than conventional diesel but doubling battery capacity to meet travel range requirements resulted in up to 12% higher emissions. FCVs using gaseous hydrogen via steam methane reforming achieved 23 – 30% GHG reductions while satisfying range requirements. Efforts in obtaining updated and reliable data on vehicle production remain critical for assessments of emerging technologies and enacting evidence-based policies to decarbonize road freight.
Predicting Power and Hydrogen Generation of a Renewable Energy Converter Utilizing Data-Driven Methods: A Sustainable Smart Grid Case Study
Jan 2023
Publication
This study proposes a data-driven methodology for modeling power and hydrogen generation of a sustainable energy converter. The wave and hydrogen production at different wave heights and wind speeds are predicted. Furthermore this research emphasizes and encourages the possibility of extracting hydrogen from ocean waves. By using the extracted data from the FLOW-3D software simulation and the experimental data from the special test in the ocean the comparison analysis of two data-driven learning methods is conducted. The results show that the amount of hydrogen production is proportional to the amount of generated electrical power. The reliability of the proposed renewable energy converter is further discussed as a sustainable smart grid application.
Modular Modeling Method and Power Supply Capability Evaluation for Integrated Hydrogen Production Stations of DC Systems
Mar 2022
Publication
Low-voltage DC distribution system has many advantages such as facilitating the access of DC loads and distributed energies and improving the network’s stability. It has become a new idea for integrated hydrogen production stations. Power supply capacity and small-signal stability are important indexes to evaluate a low-voltage DC integrated system. Based on the master–slave control mode this paper selects the typical star structure as the research object constructs the system transfer function through the scalable modular modeling method and further evaluates the impact of the high-order DC hydrogen production station integrated system on the hydrogen production capacity under the changes of the line length and master station position. The results show that the hydrogen production capacity of the system decreases gradually with the main station moving from side to inside. Finally a practical example is analyzed by MATLAB/Simulink simulation to verify the accuracy of the theory. This study can provide an effective theoretical method for the structure optimization and integrated parameter design of low-voltage DC system
Towards the Integration of Flexible Green Hydrogen Demand and Production in Ireland: Opportunities, Barriers, and Recommendations
Dec 2022
Publication
Ireland’s Climate Action Plan 2021 has set out ambitious targets for decarbonization across the energy transport heating and agriculture sectors. The Climate Action Plan followed the Climate Act 2021 which committed Ireland to a legally binding target of net-zero greenhouse gas emissions no later than 2050 and a reduction of 51% by 2030. Green hydrogen is recognized as one of the most promising technologies for enabling the decarbonization targets of economies across the globe but significant challenges remain to its large-scale adoption. This research systematically investigates the barriers and opportunities to establishing a green hydrogen economy by 2050 in Ireland by means of an analysis of the policies supporting the optimal development of an overall green hydrogen eco-system in the context of other decarbonizing technologies including green hydrogen production using renewable generation distribution and delivery and final consumption. The outcome of this analysis is a set of clear recommendations for the policymaker that will appropriately support the development of a green hydrogen market and eco-system in parallel with the development of other more mature low-carbon technologies. The analysis has been supplemented by an open “call for evidence” which gathered relevant information about the future policy and roles of hydrogen involving the most prominent stakeholders of hydrogen in Ireland. Furthermore the recommendations and conclusions from the research have been validated by this mechanism.
Perspectives on Hydrogen
Dec 2022
Publication
Humankind has an urgent need to reduce carbon dioxide emissions. Such a challenge requires deep transformation of the current energy system in our society. Achieving this goal has given an unprecedented role to decarbonized energy vectors. Electricity is the most consolidated of such vectors and a molecular vector is in the agenda to contribute in the future to those end uses that are difficult to electrify. Additionally energy storage is a critical issue for both energy vectors. In this communication discussion on the status hopes and perspectives of the hydrogen contribution to decarbonization are presented emphasizing bottlenecks in key aspects such as education reskilling and storage capacity and some concerns about the development of a flexible portfolio of technologies that could affect the contribution and impact of the whole hydrogen value chain in society. This communication would serve to the debate and boost discussion about the topic.
Solar Hydrogen Fuel Generation from Wastewater—Beyond Photoelectrochemical Water Splitting: A Perspective
Oct 2022
Publication
Green hydrogen—a carbon-free renewable fuel—has the capability to decarbonise a variety of sectors. The generation of green hydrogen is currently restricted to water electrolysers. The use of freshwater resources and critical raw materials however limits their use. Alternative water splitting methods for green hydrogen generation via photocatalysis and photoelectrocatalysis (PEC) have been explored in the past few decades; however their commercial potential still remains unexploited due to the high hydrogen generation costs. Novel PEC-based simultaneous generation of green hydrogen and wastewater treatment/high-value product production is therefore seen as an alternative to conventional water splitting. Interestingly the organic/inorganic pollutants in wastewater and biomass favourably act as electron donors and facilitate the dual-functional process of recovering green hydrogen while oxidising the organic matter. The generation of green hydrogen through the dual-functional PEC process opens up opportunities for a “circular economy”. It further enables the end-of-life commodities to be reused recycled and resourced for a better life-cycle design while being economically viable for commercialisation. This review brings together and critically analyses the recent trends towards simultaneous wastewater treatment/biomass reforming while generating hydrogen gas by employing the PEC technology. We have briefly discussed the technical challenges associated with the tandem PEC process new avenues techno-economic feasibility and future directions towards achieving net neutrality.
Ammonia, Methane and Hydrogen for Gas Turbines
Aug 2015
Publication
Ammonia has been identified as a sustainable fuel for transport and power applications. Similar to hydrogen ammonia is a synthetic product that can be obtained either from fossil fuels biomass or other renewable sources. Since the 1960’s considerable research has taken place to develop systems capable of burning the material in gas turbines. However it is not until recently that interest in ammonia has regained some momentum in the energy agenda as it is a carbon free carrier and offers an energy density higher than compressed hydrogen. . Therefore this work examines combustion stability and emissions from gaseous ammonia blended with methane or hydrogen in gas turbines. Experiments were carried out in a High Pressure Combustion Rig under atmospheric conditions employing a bespoke generic swirl burner. OH* Chemiluminescense was used for all trials to determine reactivity of the radical. Emissions were measured and correlated to equilibrium calculations using GASEQ. Results show that efficient combustion can be achieved with high power but at very narrow equivalence ratios using both hydrogen and methane blends. Moreover low concentrations of OH radicals are observed at high hydrogen content probably as a consequence of the high NH2 production.
Research on the Hydrogen Consumption of Fuel Cell Electric Vehicles Based on the Flowmeter and Short-cut Method
Sep 2022
Publication
Energy consumption is essential for evaluating the competitiveness of fuel cell electric vehicles. A critical step in energy consumption measurement is measuring hydrogen consumption including the mass method the P/T method and the flowmeter method. The flowmeter method has always been a research focus because of its simple operation low cost and solid real-time performance. Current research has shown the accuracy of the flowmeter method under specific conditions. However many factors in the real scenario will influence the test result such as unintended vibration environment temperature and onboard hydrogen capacity calibration. On the other hand the short-cut method is also researched to replace the run-out method to improve test efficiency. To evaluate whether the flowmeter method basing on the short-cut method can genuinely reflect the hydrogen consumption of an actual vehicle we research and test for New European Driving Cycle (NEDC) and China Light-Duty Vehicle Test Cycle (CLTC) using the same vehicle. The results show that the short-cut method can save at least 50% of the test time compared with the run-out method. The error of the short-cut method based on the flowmeter for the NEDC working condition is less than 0.1% and for the CLTC working conditions is 8.12%. After adding a throttle valve and a 4L buffer tank the error is reduced to 4.76% from 8.12%. The test results show that hydrogen consumption measurement based on the flowmeter and short-cut method should adopt corresponding solutions according to the scenarios.
Life Cycle Assessment of Hydrogen Transportation Pathways via Pipelines and Truck Trailers: Implications as a Low Carbon Fuel
Sep 2022
Publication
Hydrogen fuel cells have the potential to play a significant role in the decarbonization of the transportation sector globally and especially in California given the strong regulatory and policy focus. Nevertheless numerous questions arise regarding the environmental impact of the hydrogen supply chain. Hydrogen is usually delivered on trucks in gaseous form but can also be transported via pipelines as gas or via trucks in liquid form. This study is a comparative attributional life cycle analysis of three hydrogen production methods alongside truck and pipeline transportation in gaseous form. Impacts assessed include global warming potential (GWP) nitrogen oxide volatile organic compounds and particulate matter 2.5 (PM2.5). In terms of GWP the truck transportation pathway is more energy and ecologically intensive than pipeline transportation despite gaseous truck transport being more economical. A sensitivity analysis of pipeline transportation and life cycle inventories (LCI) attribution is included. Results are compared across multiple scenarios of the production and transportation pathways to discover the strongest candidates for minimizing the environmental footprint of hydrogen production and transportation. The results indicate the less ecologically intensive pathway is solar electrolysis through pipelines. For 1 percent pipeline attribution the total CO2eq produced per consuming 1 MJ of hydrogen in a fuel cell pickup truck along this pathway is 50.29 g.
Recent Progress in Ammonia Fuel Cells and their Potential Applications
Nov 2020
Publication
Conventional technologies are largely powered by fossil fuel exploitation and have ultimately led to extensive environmental concerns. Hydrogen is an excellent carbon-free energy carrier but its storage and long-distance transportation remain big challenges. Ammonia however is a promising indirect hydrogen storage medium that has well-established storage and transportation links to make it an accessible fuel source. Moreover the notion of ‘green ammonia’ synthesised from renewable energy sources is an emerging topic that may open significant markets and provide a pathway to decarbonise a variety of applications reliant on fossil fuels. Herein a comparative study based on the chosen design working principles advantages and disadvantages of direct ammonia fuel cells is summarised. This work aims to review the most recent advances in ammonia fuel cells and demonstrates how close this technology type is to integration with future applications. At present several challenges such as material selection NOx formation CO2 tolerance limited power densities and long-term stability must still be overcome and are also addressed within the contents of this review
Solar Fuel Processing: Comparative Mini-review on Research, Technology Development, and Scaling
Oct 2022
Publication
Solar energy provides an unprecedented potential as a renewable and sustainable energy resource and will substantially reshape our future energy economy. It is not only useful in producing electricity but also (hightemperature) heat and fuel both required for non-electrifiable energy services. Fuels are particularly valuable as they are energy dense and storable and they can also act as a feedstock for the chemical industry. Technical pathways for the processing of solar fuels include thermal pathways (e.g. solar thermochemistry) photo pathways (e.g. photoelectrochemistry) and combinations thereof. A review of theoretical limits indicates that all technical solar fuel processing pathways have the potential for competitive solar-to-fuel efficiencies (>10 %) but require very different operating conditions (e.g. temperature levels or oxygen partial pressures) making them complementary and highly versatile for process integration. Progress in photoelectrochemical devices and solar thermochemical reactors over the last 50 + years are summarized showing encouraging trends in terms of performance technological viability and scaling.
Decentral Production of Green Hydrogen for Energy Systems: An Economically and Environmentally Viable Solution for Surplus Self-Generated Energy in Manufacturing Companies?
Feb 2023
Publication
Power-to-X processes where renewable energy is converted into storable liquids or gases are considered to be one of the key approaches for decarbonizing energy systems and compensating for the volatility involved in generating electricity from renewable sources. In this context the production of “green” hydrogen and hydrogen-based derivatives is being discussed and tested as a possible solution for the energy-intensive industry sector in particular. Given the sharp ongoing increases in electricity and gas prices and the need for sustainable energy supplies in production systems non-energy-intensive companies should also be taken into account when considering possible utilization paths for hydrogen. This work focuses on the following three utilization paths: “hydrogen as an energy storage system that can be reconverted into electricity” “hydrogen mobility” for company vehicles and “direct hydrogen use”. These three paths are developed modeled simulated and subsequently evaluated in terms of economic and environmental viability. Different photovoltaic system configurations are set up for the tests with nominal power ratings ranging from 300 kWp to 1000 kWp. Each system is assigned an electrolyzer with a power output ranging between 200 kW and 700 kW and a fuel cell with a power output ranging between 5 kW and 75 kW. There are also additional variations in relation to the battery storage systems within these basic configurations. Furthermore a reference variant without battery storage and hydrogen technologies is simulated for each photovoltaic system size. This means that there are ultimately 16 variants to be simulated for each utilization path. The results show that these utilization paths already constitute a reasonable alternative to fossil fuels in terms of costs in variants with a suitable energy system design. For the “hydrogen as an energy storage system” path electricity production costs of between 43 and 79 ct/kWh can be achieved with the 750 kWp photovoltaic system. The “hydrogen mobility” is associated with costs of 12 to 15 ct/km while the “direct hydrogen use” path resulted in costs of 8.2 €/kg. Environmental benefits are achieved in all three paths by replacing the German electricity mix with renewable energy sources produced on site or by substituting hydrogen for fossil fuels. The results confirm that using hydrogen as a storage medium in manufacturing companies could be economically and environmentally viable. These results also form the basis for further studies e.g. on detailed operating strategies for hydrogen technologies in scenarios involving a combination of multiple utilization paths. The work also presents the simulation-based method developed in this project which can be transferred to comparable applications in further studies.
Integration of Water Electrolysis Facilities in Power Grids: A Case Study in Northern Germany
Mar 2022
Publication
This work presents a study of the effects that integration of electrolysis facilities for Power-to-X processes have on the power grid. The novel simulation setup combines a high-resolution grid optimization model and a detailed scheduling model for alkaline water electrolysis. The utilization and congestion of power lines in northern Germany is investigated by setting different installed capacities and production strategies of the electrolysis facility. For electrolysis capacities up to 300 MW (~50 ktH2/a) local impacts on the grid are observed while higher capacities cause supra-regional impacts. Thereby impacts are defined as deviations from the average line utilization greater than 5%. In addition the minimum line congestion is determined to coincide with the dailyconstrained production strategy of the electrolysis facility. Our result show a good compromise for the integrated grid-facility operation with minimum production cost and reduced impact on the grid.
Perspective on the Hydrogen Economy as a Pathway to Reach Net-zero CO2 Emissions in Europe
Jan 2022
Publication
The envisioned role of hydrogen in the energy transition – or the concept of a hydrogen economy – has varied through the years. In the past hydrogen was mainly considered a clean fuel for cars and/or electricity production; but the current renewed interest stems from the versatility of hydrogen in aiding the transition to CO2 neutrality where the capability to tackle emissions from distributed applications and complex industrial processes is of paramount importance. However the hydrogen economy will not materialise without strong political support and robust infrastructure design. Hydrogen deployment needs to address multiple barriers at once including technology development for hydrogen production and conversion infrastructure co-creation policy market design and business model development. In light of these challenges we have brought together a group of hydrogen researchers who study the multiple interconnected disciplines to offer a perspective on what is needed to deploy the hydrogen economy as part of the drive towards net-zero-CO2 societies. We do this by analysing (i) hydrogen end-use technologies and applications (ii) hydrogen production methods (iii) hydrogen transport and storage networks (iv) legal and regulatory aspects and (v) business models. For each of these we provide key take home messages ranging from the current status to the outlook and needs for further research. Overall we provide the reader with a thorough understanding of the elements in the hydrogen economy state of play and gaps to be filled.
Reduction Kinetics of Hematite Powder in Hydrogen Atmosphere at Moderate Temperatures
Sep 2018
Publication
Hydrogen has received much attention in the development of direct reduction of iron ores because hydrogen metallurgy is one of the effective methods to reduce CO2 emission in the iron and steel industry. In this study the kinetic mechanism of reduction of hematite particles was studied in a hydrogen atmosphere. The phases and morphological transformation of hematite during the reduction were characterized using X-ray diffraction and scanning electron microscopy with energy dispersive spectroscopy. It was found that porous magnetite was formed and the particles were degraded during the reduction. Finally sintering of the reduced iron and wüstite retarded the reductive progress. The average activation energy was extracted to be 86.1 kJ/mol and 79.1 kJ/mol according to Flynn-Wall-Ozawa (FWO) and Starink methods respectively. The reaction fraction dependent values of activation energy were suggested to be the result of multi-stage reactions during the reduction process. Furthermore the variation of activation energy value was smoothed after heat treatment of hematite particles.
A Review of the Use of Electrolytic Cells for Energy and Environmental Applications
Feb 2023
Publication
There is a significant push to reduce carbon dioxide (CO2) emissions and develop low-cost fuels from renewable sources to replace fossil fuels in applications such as energy production. As a result CO2 conversion has gained widespread attention as it can reduce the accumulation of CO2 in the atmosphere and produce fuels and valuable industrial chemicals including carbon monoxide alcohols and hydrocarbons. At the same time finding ways to store energy in batteries or energy carriers such as hydrogen (H2) is essential. Water electrolysis is a powerful technology for producing high-purity H2 with negligible emission of greenhouse gases and compatibility with renewable energy sources. Additionally the electrolysis of organic compounds such as lignin is a promising method for localised H2 production as it requires lower cell voltages than conventional water electrolysis. Industrial wastewater can be employed in those organic electrolysis systems due to their high organic content decreasing industrial pollution through wastewater disposal. Electrocoagulation indirect electrochemical oxidation anodic oxidation and electro-Fenton are effective electrochemical methods for treating industrial wastewater. Furthermore bioenergy technology possesses a remarkable potential for producing H2 and other value-added chemicals (e.g. methane formic acid hydrogen peroxide) along with wastewater treatment. This paper comprehensively reviews these approaches by analysing the literature in the period 2012–2022 pointing out the high potential of using electrolytic cells for energy and environmental applications.
Strategic Transport Fleet Analysis of Heavy Goods Vehicle Technology for Net-zero Targets
Jul 2022
Publication
This paper addresses the decarbonisation of the heavy-duty transport sector and develops a strategy towards net-zero greenhouse gas (GHG) emissions in heavy-goods vehicles (HGVs) by 2040. By conducting a literature review and a case study on the vehicle fleet of a large UK food and consumer goods retailer the feasibilities of four alternative vehicle technologies are evaluated from environmental economic and technical perspectives. Socio-political factors and commercial readiness are also examined to capture non-technical criteria that influences decision-makers. Strategic analysis frameworks such as PEST-SWOT models were developed for liquefied natural gas biomethane electricity and hydrogen to allow a holistic comparison and identify their long-term deployment potential. Technology innovation is needed to address range and payload limitations of electric trucks whereas government and industry support are essential for a material deployment of hydrogen in the 2030s. Given the UK government’s plan to phase out new diesel HGVs by 2040 fleet operators should commence new vehicle trials by 2025 and replace a considerable amount of their lighter diesel trucks with zero-emission vehicles by 2030 and the remaining heavier truck fleet by 2035.
System Analysis and Requirements Derivation of a Hydrogen-electric Aircraft Powertrain
Sep 2022
Publication
In contrast to sustainable aviation fuels for use in conventional combustion engines hydrogen-electric powertrains constitute a fundamentally novel approach that requires extensive effort from various engineering disciplines. A transient system analysis has been applied to a 500 kW shaft-power-class powertrain. The model was fed with high-level system requirements to gain a fundamental understanding of the interaction between sub-systems and components. Transient effects such as delays in pressure build up heat transfer and valve operation substantially impact the safe and continuous operation of the propulsion system throughout a typical mission profile which is based on the Daher TBM850. The lumped-parameters network solver provides results quickly which are used to derive requirements for subsystems and components which support their in-depth future development. E.g. heat exchanger transfer rates and pressure drop of the motor's novel hydrogen cooling system are established. Furthermore improvements to the system architecture such as a compartmentalization of the tank are identified.
Energy and Exergy Analysis of a Geothermal Sourced Multigeneration System for Sustainable City
Feb 2023
Publication
The issue of depleting fossil fuels has emphasized the use of renewable energy. Multigeneration systems fueled by renewables such as geothermal biomass solar etc. have proven to be cutting-edge technologies for the production of different valuable by-products. This study proposes a multigeneration system using a geothermal source of energy. The main outputs include power space heating cooling fresh and hot water dry air and hydrogen. The system includes a regenerative Rankine cycle a double effect absorption cycle and a double flash desalination cycle. A significant amount of electrical power hydrogen and fresh water is generated which can be used for commercial or domestic purposes. The power output is 103 MW. The thermal efficiency is 24.42% while energetic and exergetic efficiencies are 54.22% and 38.96% respectively. The COPen is found to be 1.836 and the COPex is found to be 1.678. The hydrogen and fresh water are produced at a rate of 0.1266 kg/s and 37.6 kg/s respectively.
Conditions for Profitable Operation of P2X Energy Hubs to Meet Local Demand Under Energy Market Access
Feb 2023
Publication
This paper analyzes the operation of an energy hub on a community level with an integrated P2X facility and with access to energy markets. In our case P2X allows converting power to hydrogen heat methane or back to power. We consider the energy hub as a large prosumer who can be both a producer and consumer in the markets with the novelty that P2X technology is available. We investigate how such a P2X energy hub trades optimally in the electricity market and satisfies local energy demand under the assumption of a long-term strong climate scenario in year 2050. For numerical analysis a case study of a mountain village in Switzerland is used. One of the main contributions of this paper is to quantify key conditions for profitable operations of such a P2X energy hub. In particular the analysis includes impacts of influencing factors on profits and operational patterns in terms of different degrees of self-sufficiency and different availability of local renewable resources. Moreover the access to real-time wholesale market electricity price signals and a future retail hydrogen market is assessed. The key factors for the successful operation of a P2X energy hub are identified to be sufficient local renewable resources and access to a retail market of hydrogen. The results also show that the P2X operation leads to an increased deployment of local renewables especially in the case of low initial deployment; on the other hand seasonal storage plays a subordinated role. Additionally P2X lowers for the community the wholesale electricity market trading volumes.
The Role of Hydrogen in the Visegrad Group Approach to Energy Transition
Oct 2022
Publication
Hydrogen is an energy carrier in which hopes are placed for an easier achievement of climate neutrality. Together with electrification energy efficiency development and RES hydrogen is expected to enable the ambitious energy goals of the European Green Deal. Hence the aim of the article is to query the development of the hydrogen economy in the Visegrad Group countries (V4). The study considers six diagnostic features: sources of hydrogen production hydrogen legislation financial mechanisms objectives included in the hydrogen strategy environmental impact of H2 and costs of green hydrogen investments. The analysis also allowed to indicate the role that hydrogen will play in the energy transition process of the V4 countries. The analysis shows that the V4 countries have similar approaches to the development of the hydrogen market but the hydrogen strategies published by each of the Visegrad countries are not the same. Each document sets goals based on the hydrogen production to date and the specifics of the domestic energy and transport sectors as there are no solutions that are equally effective for all. Poland’s hydrogen strategy definitely stands out the strongest.
Levelised Cost of Transmission Comparison for Green Hydrogen and Ammonia in New-build Offshore Energy Infrastructure: Pipelines, Tankers, and HVDC
Mar 2024
Publication
As the global market develops for green hydrogen and ammonia derived from renewable electricity the bulk transmission of hydrogen and ammonia from production areas to demand-intensive consumption areas will increase. Repurposing existing infrastructure may be economically and technically feasible but increases in supply and demand will necessitate new developments. Bulk transmission of hydrogen and ammonia may be effected by dedicated pipelines or liquefied fuel tankers. Transmission of electricity using HVDC lines to directly power electrolysers producing hydrogen near the demand markets is another option. This paper presents and validates detailed cost models for newly-built dedicated offshore transmission methods for green hydrogen and ammonia and carries out a techno-economic comparison over a range of transmission distances and production volumes. New pipelines are economical for short distances while new HVDC interconnectors are suited to medium-large transmission capacities over a wide range of distances and liquefied gas tankers are best for long distances.
THyGA - Tightness Testing of Gas Distribution Components in 40%H2+60%CH4
Aug 2022
Publication
The present work is concerned with the evaluation of the tightness of the components located on domestic and commercial gas lines from the gas meter to the end user appliance in presence of a mixture 40%H2+60%CH4 at 35 mbar. The components were taken from installations being used currently in Germany Denmark Belgium and France. The current standard methods to evaluate natural gas distribution tightness propose testing duration of several minutes. In this work the components tightness was first evaluated using such standard methods before carrying out tests on longer period of time and evaluate the potential influence of time and the results were compared to admissible leakage rates for natural gas in distribution network and in appliances.
Fuel-Cell Electric Vehicles: Plotting a Scientific and Technological Knowledge Map
Mar 2020
Publication
The fuel-cell electric vehicle (FCEV) has been defined as a promising way to avoid road transport greenhouse emissions but nowadays they are not commercially available. However few studies have attempted to monitor the global scientific research and technological profile of FCEVs. For this reason scientific research and technological development in the field of FCEV from 1999 to 2019 have been researched using bibliometric and patent data analysis including network analysis. Based on reports the current status indicates that FCEV research topics have reached maturity. In addition the analysis reveals other important findings: (1) The USA is the most productive in science and patent jurisdiction; (2) both Chinese universities and their authors are the most productive in science; however technological development is led by Japanese car manufacturers; (3) in scientific research collaboration is located within the tri-polar world (North America–Europe–Asia-Pacific); nonetheless technological development is isolated to collaborations between companies of the same automotive group; (4) science is currently directing its efforts towards hydrogen production and storage energy management systems related to battery and hydrogen energy Life Cycle Assessment and greenhouse gas (GHG) emissions. The technological development focuses on technologies related to electrically propelled vehicles; (5) the International Journal of Hydrogen Energy and SAE Technical Papers are the two most important sources of knowledge diffusion. This study concludes by outlining the knowledge map and directions for further research.
Cushion Gas in Hydrogen Storage—A Costly CAPEX or a Valuable Resource for Energy Crises?
Dec 2022
Publication
The geological storage of hydrogen is a seasonal energy storage solution and the storage capacity of saline aquifers is most appropriately defined by quantifying the amount of hydrogen that can be injected and reproduced over a relevant time period. Cushion gas stored in the reservoir to support the production of the working gas is a CAPEX which should be reduced to decrease implementation cost for gas storage. The cushion gas to working gas ratio provides a sufficiently accurate reflection of the storage efficiency with higher ratios equating to larger initial investments. This paper investigates how technical measures such as well configurations and adjustments to the operational size and schedule can reduce this ratio and the outcomes can inform optimisation strategies for hydrogen storage operations. Using a simplified open saline aquifer reservoir model hydrogen storage is simulated with a single injection and production well. The results show that the injection process is more sensitive to technical measures than the production process; a shorter perforation and a smaller well diameter increases the required cushion gas for the injection process but has little impact on the production. If the storage operation capacity is expanded and the working gas volume increased the required cushion gas to working gas ratio increases for injection reducing the efficiency of the injection process. When the reservoir pressure has more time to equilibrate less cushion gas is required. It is shown that cushion gas plays an important role in storage operations and that the tested optimisation strategies impart only minor effects on the production process however there is significant need for careful optimisation of the injection process. It is suggested that the recoverable part of the cushion gas could be seen as a strategic gas reserve which can be produced during an energy crisis. In this scenario the recoverable cushion gas could be owned by the state and the upfront costs for gas storage to the operator would be reduced making the implementation of more gas storage and the onset of hydrogen storage more attractive to investors.
On the Way to Utilizing Green Hydrogen as an Energy Carrier—A Case of Northern Sweden
Mar 2024
Publication
Low or even zero carbon dioxide emissions will be an essential requirement for energy supplies in the near future. Besides transport and electricity generation industry is another large carbon emitter. Hydrogen produced by renewable energy provides a flexible way of utilizing that energy. Hydrogen as an energy carrier could be stored in a large capacity compared to electricity. In Sweden hydrogen will be used to replace coal for steel production. This paper discusses how the need for electricity to produce hydrogen will affect the electricity supply and power flow in the Swedish power grid and whether it will result in increased emissions in other regions. Data of the Swedish system will be used to study the feasibility of implementing the hydrogen system from the power system viewpoint and discuss the electricity price and emission issues caused by the hydrogen production in different scenarios. This paper concludes that the Swedish power grid is feasible for accommodating the additional electricity capacity requirement of producing green hydrogen for the steel industry. The obtained results could be references for decision makers investors and power system operators.
Everything About Hydrogen Podcast: Where Does Hydrogen Fit in the Global Energy Transition?
Apr 2022
Publication
On this episode the EAH team discusses the role of hydrogen in the energy transition with Michael Liebreich Chairman and CEO of Liebreich Associates. Michael is an acknowledged thought leader on clean energy mobility technology climate sustainability and finance. He is the founder and senior contributor to Bloomberg New Energy Finance a member of numerous industry governmental and multilateral advisory boards an angel investor a former member of the board of Transport for London and an Advisor to the UK Board of Trade.
The podcast can be found on their website
The podcast can be found on their website
Impact of Grid Gas Requirements on Hydrogen Blending Levels
Oct 2021
Publication
The aim of the article is to determine what amount of hydrogen in %mol can be transferred/stored in the Estonian Latvian and Lithuanian grid gas networks based on the limitations of chemical and physical requirements technical requirements of the gas network and quality requirements. The main characteristics for the analysis of mixtures of hydrogen and natural gas are the Wobbe Index relative density methane number and calorific value. The calculation of the effects of hydrogen blending on the above main characteristics of a real grid gas is based on the principles described in ISO 6976:2016 and the distribution of the grid gas mole fraction components from the grid gas quality reports. The Wärtsila methane number calculator was used to illustrate the effects of hydrogen blending on the methane number of the grid gas. The calculation results show that the maximum hydrogen content in the grid gas (hydrogen and natural gas mix) depending on the grid gas quality parameters (methane number gross heat of combustion specific gravity and the Wobbe Index) is in the range of 5–23 %mol H2. The minimum hydrogen content (5 %mol H2) is limited by specific gravity (>0.55). The next limitation is at 12 %mol H2 and is related to the gross heat of combustion (>9.69 kWh/m3). It is advisable to explore the readiness of gas grids and consumers in Estonia Latvia and Lithuania before switching to higher hydrogen blend levels. If the applicability and safety of hydrogen blends above 5 %mol is approved then it is necessary to analyse the possible reduction of the minimum requirements for the quality of the grid gas and evaluate the associated risks (primarily related to specific gravity).
Maximizing Green Hydrogen Production from Water Electrocatalysis: Modeling and Optimization
Mar 2023
Publication
The use of green hydrogen as a fuel source for marine applications has the potential to significantly reduce the carbon footprint of the industry. The development of a sustainable and cost-effective method for producing green hydrogen has gained a lot of attention. Water electrolysis is the best and most environmentally friendly method for producing green hydrogen-based renewable energy. Therefore identifying the ideal operating parameters of the water electrolysis process is critical to hydrogen production. Three controlling factors must be appropriately identified to boost hydrogen generation namely electrolysis time (min) electric voltage (V) and catalyst amount (µg). The proposed methodology contains the following two phases: modeling and optimization. Initially a robust model of the water electrolysis process in terms of controlling factors was established using an adaptive neuro-fuzzy inference system (ANFIS) based on the experimental dataset. After that a modern pelican optimization algorithm (POA) was employed to identify the ideal parameters of electrolysis duration electric voltage and catalyst amount to enhance hydrogen production. Compared to the measured datasets and response surface methodology (RSM) the integration of ANFIS and POA improved the generated hydrogen by around 1.3% and 1.7% respectively. Overall this study highlights the potential of ANFIS modeling and optimal parameter identification in optimizing the performance of solar-powered water electrocatalysis systems for green hydrogen production in marine applications. This research could pave the way for the more widespread adoption of this technology in the marine industry which would help to reduce the industry’s carbon footprint and promote sustainability.
Efficiency, Economic and Environmental Impact Assessment of a Newly Developed Rail Engine using Hydrogen and Other Sustainable Fuel Blends
Jan 2023
Publication
Locomotives still use antiqued engines such as internal combustion engines operated by fossil fuels which cause global warming due to their significant emissions. This paper continues investigating the newly hybridized locomotive engine containing a gas turbine system solid oxide fuel cell system energy saving system and on-board hydrogen production system. This new engine is operated using five fuel blends composed of five alternative fuels such as hydrogen methane methanol ethanol and dimethyl ether. The current investigation involves exergy analysis exergo-economic analysis and exergo-environmental analysis to assess the engine from three perspectives: efficiency/irreversibility cost and environmental impact. The study results show that the net power of this new engine is 4948.6 kW and it has an exergetic efficiency of 62.7% according to the fuel and product principle. This engine weighs about 9 tons and costs about $10.2M with a levelized cost rate of 147 $/h and 14.06 mPt/h of overall component-related environmental rate. The average overall specific fuel and product exergy costs are about 37 $/GJ and 60 $/GJ and the minimum values are 13.3 $/GJ and 21.8 $/GJ using methane and hydrogen blend respectively. Also the average overall specific fuel and product exergo-environmental impact are about 15 and 23 mPt/MJ respectively. The on-board hydrogen production has an average exergy cost of 274 $/GJ and an environmental impact of 52 mPt/MJ. Hydrogen blended with methane or methanol is found to be more economic and has less environmental impact.
Solid Oxide Fuel Cell-Based Polygeneration Systems in Residential Applications: A Review of Technology, Energy Planning and Guidelines for Optimizing the Design
Oct 2022
Publication
Solid oxide fuel cells are an emerging energy conversion technology suitable for high-temperature power generation with proper auxiliary heat. Combining SOFCs and polygeneration has produced practical applications for modern energy system designs. Even though many researchers have reviewed these systems’ technologies opportunities and challenges reviews regarding the optimal strategy for designing and operating the systems are limited. Polygeneration is more complicated than any other energy generation type due to its ability to generate many types of energy from various prime movers. Moreover integration with other applications such as vehicle charging and fueling stations increases the complication in making the system optimally serve the loads. This study elaborates on the energy planning and guidelines for designing a polygeneration system especially for residential applications. The review of polygeneration technologies also aligns with the current research trend of developing green technology for modern and smart homes in residential areas. The proposed guideline is expected to solve the complication in other applications and technologies and design the polygeneration system optimally.
Cost and Thermodynamic Analysis of Wind-Hydrogen Production via Multi-energy Systems
Mar 2024
Publication
With rising temperatures extreme weather events and environmental challenges there is a strong push towards decarbonization and an emphasis on renewable energy with wind energy emerging as a key player. The concept of multi-energy systems offers an innovative approach to decarbonization with the potential to produce hydrogen as one of the output streams creating another avenue for clean energy production. Hydrogen has significant potential for decarbonizing multiple sectors across buildings transport and industries. This paper explores the integration of wind energy and hydrogen production particularly in areas where clean energy solutions are crucial such as impoverished villages in Africa. It models three systems: distinct configurations of micro-multi-energy systems that generate electricity space cooling hot water and hydrogen using the thermodynamics and cost approach. System 1 combines a wind turbine a hydrogen-producing electrolyzer and a heat pump for cooling and hot water. System 2 integrates this with a biomass-fired reheat-regenerative power cycle to balance out the intermittency of wind power. System 3 incorporates hydrogen production a solid oxide fuel cell for continuous electricity production an absorption cooling system for refrigeration and a heat exchanger for hot water production. These systems are modeled with Engineering Equation Solver and analyzed based on energy and exergy efficiencies and on economic metrics like levelized cost of electricity (LCOE) cooling (LCOC) refrigeration (LCOR) and hydrogen (LCOH) under steady-state conditions. A sensitivity analysis of various parameters is presented to assess the change in performance. Systems were optimized using a multiobjective method with maximizing exergy efficiency and minimizing total product unit cost used as objective functions. The results show that System 1 achieves 79.78 % energy efficiency and 53.94 % exergy efficiency. System 2 achieves efficiencies of 55.26 % and 27.05 % respectively while System 3 attains 78.73 % and 58.51 % respectively. The levelized costs for micro-multi-energy System 1 are LCOE = 0.04993 $/kWh LCOC = 0.004722 $/kWh and LCOH = 0.03328 $/kWh. For System 2 these values are 0.03653 $/kWh 0.003743 $/kWh and 0.03328 $/kWh. In the case of System 3 they are 0.03736 $/kWh 0.004726 $/kWh and 0.03335 $/kWh and LCOR = 0.03309 $/kWh. The results show that the systems modeled here have competitive performance with existing multi-energy systems powered by other renewables. Integrating these systems will further the sustainable and net zero energy system transition especially in rural communities.
Analysis of the Combustion Process in a Hydrogen-Fueled CFR Engine
Mar 2023
Publication
Green hydrogen produced using renewable energy is nowadays one of the most promising alternatives to fossil fuels for reducing pollutant emissions and in turn global warming. In particular the use of hydrogen as fuel for internal combustion engines has been widely analyzed over the past few years. In this paper the authors show the results of some experimental tests performed on a hydrogen-fueled CFR (Cooperative Fuel Research) engine with particular reference to the combustion. Both the air/fuel (A/F) ratio and the engine compression ratio (CR) were varied in order to evaluate the influence of the two parameters on the combustion process. The combustion duration was divided in two parts: the flame front development (characterized by laminar flame speed) and the rapid combustion phase (characterized by turbulent flame speed). The results of the hydrogen-fueled engine have been compared with results obtained with gasoline in a reference operating condition. The increase in engine CR reduces the combustion duration whereas the opposite effect is observed with an increase in the A/F ratio. It is interesting to observe how the two parameters CR and A/F ratio have a different influence on the laminar and turbulent combustion phases. The influence of both A/F ratio and engine CR on heat transfer to the combustion chamber wall was also evaluated and compared with the gasoline operation. The heat transfer resulting from hydrogen combustion was found to be higher than the heat transfer resulting from gasoline combustion and this is probably due to the different quenching distance of the two fuels.
Stoichiometric Equilibrium Model based Assessment of Hydrogen Generation through Biomass Gasification
Sep 2016
Publication
Hydrogen produced from renewable energy sources is clean and sustainable. Biomass gasification has a significant role in the context of hydrogen generation from biomass. Assessment of the performance of biomass gasification process regarding the product gas yield and composition can be performed using mathematical models. Among the different mathematical models thermodynamic equilibrium models are simple and useful tools for the first estimate and preliminary comparison and assessment of gasification process. A stoichiometric thermodynamic equilibrium model is developed here and its performance is validated for steam gasification and air-steam gasification. The model is then used to assess the feasibility of different biomass feedstock for gasification based on hydrogen yield and lower heating value.
Hydrogen Addition to Natural Gas in Cogeneration Engines: Optimization of Performances Through Numerical Modeling
Aug 2021
Publication
A numerical study of the energy conversion process occurring in a lean-charge cogenerative engine designed to be powered by natural gas is here conducted to analyze its performances when fueled with mixtures of natural gas and several percentages of hydrogen. The suitability of these blends to ensure engine operations is proven through a zero–one-dimensional engine schematization where an original combustion model is employed to account for the different laminar propagation speeds deriving from the hydrogen addition. Guidelines for engine recalibration are traced thanks to the achieved numerical results. Increasing hydrogen fractions in the blend speeds up the combustion propagation achieving the highest brake power when a 20% of hydrogen fraction is considered. Further increase of this last would reduce the volumetric efficiency by virtue of the lower mixture density. The formation of the NOx pollutants also grows exponentially with the hydrogen fraction. Oppositely the efficiency related to the exploitation of the exhaust gases’ enthalpy reduces with the hydrogen fraction as shorter combustion durations lead to lower temperatures at the exhaust. If the operative conditions are shifted towards leaner air-to-fuel ratios the in-cylinder flame propagation speed decreases because of the lower amount of fuel trapped in the mixture reducing the conversion efficiencies and the emitted nitrogen oxides at the exhaust. The link between brake power and spark timing is also highlighted: a maximum is reached at an ignition timing of 21° before top dead center for hydrogen fractions between 10 and 20%. However the exhaust gases’ temperature also diminishes for retarded spark timings. Lastly an optimization algorithm is implemented to individuate the optimal condition in which the engine is characterized by the highest power production with the minimum fuel consumption and related environmental impact. As a main result hydrogen addition up to 15% in volume to natural gas in real cogeneration systems is proven as a viable route only if engine operations are shifted towards leaner air-to-fuel ratios to avoid rapid pressure rise and excessive production of pollutant emissions.
Hydrogen Production by Solar Thermochemical Water-Splitting Cycle via a Beam Down Concentrator
May 2021
Publication
About 95% of the hydrogen presently produced is from natural gas and coal and the remaining 5% is generated as a by-product from the production of chlorine through electrolysis1 . In the hydrogen economy (Crabtree et al. 2004; Penner 2006; Marbán and Valdés-Solís 2007) hydrogen is produced entirely from renewable energy. The easiest approach to advance renewable energy production is through solar photovoltaic and electrolysis a pathway of high technology readiness level (TRL) suffering however from two downfalls. First of all electricity is already an energy carrier and transformation with a penalty into another energy carrier hydrogen is in principle flawed. The second problem is that the efficiency of commercial solar panels is relatively low. The cadmium telluride (CdTe) thin-film solar cells have a solar energy conversion efficiency of 17%. Production of hydrogen using the current best processes for water electrolysis has an efficiency of ∼70%. As here explained the concentrated solar energy may be used to produce hydrogen using thermochemical water-splitting cycles at much global higher efficiency (fuel energy to incident sun energy). This research and development (R&D) effort is therefore undertaken to increase the TRL of this approach as a viable and economical option.
Biological CO2-Methanation: An Approach to Standardization
May 2019
Publication
Power-to-Methane as one part of Power-to-Gas has been recognized globally as one of the key elements for the transition towards a sustainable energy system. While plants that produce methane catalytically have been in operation for a long time biological methanation has just reached industrial pilot scale and near-term commercial application. The growing importance of the biological method is reflected by an increasing number of scientific articles describing novel approaches to improve this technology. However these studies are difficult to compare because they lack a coherent nomenclature. In this article we present a comprehensive set of parameters allowing the characterization and comparison of various biological methanation processes. To identify relevant parameters needed for a proper description of this technology we summarized existing literature and defined system boundaries for Power-to-Methane process steps. On this basis we derive system parameters providing information on the methanation system its performance the biology and cost aspects. As a result three different standards are provided as a blueprint matrix for use in academia and industry applicable to both biological and catalytic methanation. Hence this review attempts to set the standards for a comprehensive description of biological and chemical methanation processes.
Aspects of an Experimental Study of Hydrogen Use at Automotive Diesel Engine
Feb 2023
Publication
Hydrogen may represents a good alternative fuel that can be used to fuel internal combustion engines in order to ameliorate energetic and emissions performance. The paper presents some experimental aspects registered at hydrogen use to fuel a diesel engine different substitute ratios being use in the area of 18–34% at 40% engine load and speed of 2000 rev/min. The engine is equipped with an open ECU and the control of the cyclic dosses of diesel fuel and hydrogen are adjusted in order to maintain the engine power performance. The in-cylinder pressure diagrams show the increase of the maximum pressure with 17% from 78.5 bar to 91.8 bar for the maximum substitute ratio. Also values of maximum pressure rise rate start to increase for hydrogen addition in correlation with the increase of fuel amount burned into the premixed stage without exceed the normal values with assure the normal and reliable engine operation. Higher Lower Heating Value and combustion speed of hydrogen assure the increase in thermal efficiency the brake specific energy consumption decreases with 5.4%–7.8% at substitute ratios of 20–27%. The CO2 emission level decreases with 20% for maximum hydrogen cyclic dose. In terms of pollutant emission level at hydrogen use the emission level of the NOx decreases with 50% and the smoke number decreases with 73.8% comparative to classic fuelling at the maximum hydrogen cyclic dose.
Methane Pyrolysis for CO2-Free H2 Production: A Green Process to Overcome Renewable Energies Unsteadiness
Aug 2020
Publication
The Carbon2Chem project aims to convert exhaust gases from the steel industry into chemicals such as methanol to reduce CO2 emissions. Here H2 is required for the conversion of CO2 into methanol. Although much effort is put to produce H2 from renewables the use of fossil fuels especially natural gas seems to be fundamental in the short term. For this reason the development of clean technologies for the processing of natural gas with a low environmental impact has become a topic of utmost importance. In this context methane pyrolysis has received special attention to produce CO2-free H2.
Review of Power-to-X Demonstration Projects in Europe
Sep 2020
Publication
At the heart of most Power-to-X (PtX) concepts is the utilization of renewable electricity to produce hydrogen through the electrolysis of water. This hydrogen can be used directly as a final energy carrier or it can be converted into for example methane synthesis gas liquid fuels electricity or chemicals. Technical demonstration and systems integration are of major importance for integrating PtX into energy systems. As of June 2020 a total of 220 PtX research and demonstration projects in Europe have either been realized completed or are currently being planned. The central aim of this review is to identify and assess relevant projects in terms of their year of commissioning location electricity and carbon dioxide sources applied technologies for electrolysis capacity type of hydrogen post-processing and the targeted field of application. The latter aspect has changed over the years. At first the targeted field of application was fuel production for example for hydrogen buses combined heat and power generation and subsequent injection into the natural gas grid. Today alongside fuel production industrial applications are also important. Synthetic gaseous fuels are the focus of fuel production while liquid fuel production is severely under-represented. Solid oxide electrolyzer cells (SOECs) represent a very small proportion of projects compared to polymer electrolyte membranes (PEMs) and alkaline electrolyzers. This is also reflected by the difference in installed capacities. While alkaline electrolyzers are installed with capacities between 50 and 5000 kW (2019/20) and PEM electrolyzers between 100 and 6000 kW SOECs have a capacity of 150 kW. France and Germany are undertaking the biggest efforts to develop PtX technologies compared to other European countries. On the whole however activities have progressed at a considerably faster rate than had been predicted just a couple of years ago.
On Green Hydrogen Generation Technologies: A Bibliometric Review
Mar 2024
Publication
Green hydrogen produced by water electrolysis with renewable energy plays a crucial role in the revolution towards energy sustainability and it is considered a key source of clean energy and efficient storage. Its ability to address the intermittency of renewable sources and its potential to decarbonize sectors that are difficult to electrify make it a strategic component in climate change mitigation. By using a method based on a bibliometric review of scientific publications this paper represents a significant contribution to the emerging field of research on green hydrogen and provides a detailed review of electrolyzer technologies identifying key areas for future research and technology development. The results reflect the immaturity of a technology which advances with different technical advancements waiting to find the optimal technical solution that allows for its massive implementation as a source of green hydrogen generation. According to the results found in this article alkaline (ALK) and proton exchange membrane (PEM) electrolyzers seem to be the ones that interest the scientific community the most. Similarly in terms of regional analysis Europe is clearly committed to green hydrogen in view of the analysis of its scientific results on materials and electrolyzer capacity forecasts for 2030.
Optimal Capacity Planning of Power to Hydrogen in Integrated Electricity–Hydrogen–Gas Energy Systems Considering Flexibility and Hydrogen Injection
Apr 2022
Publication
With increasing penetration of renewable energy it is important to source adequate system flexibility to maintain security of supply and minimize renewable generation curtailment. Power to hydrogen (P2H) plays an important role in the low-carbon renewable dominated energy systems. By blending green hydrogen produced from renewable power into the natural gas pipelines it is possible to help integrate large-scale intermittent generation and smooth the variability of renewable power output through the interconnection of the natural gas network hydrogen energy network and electric network. A two-stage stochastic mixed-integer nonlinear planning framework for P2H sizing and siting is proposed in this paper considering system flexibility requirements. The problem is then reduced to a mixed-integer second-order cone (MISOC) model through convex transformation techniques in order to reduce the computation burden. Then a distributed algorithm based on Bender’s decomposition is applied to obtain the optimal solution. A modified hybrid IEEE 33-node and Gas 20-node system is then used for simulation tests. The results showed that investment of P2H can significantly reduce the total capital and operational costs with lower renewable generation curtailment and electricity demand shedding. Numerical tests demonstrated to demonstrate the validity of the proposed MISOC model.
Effective Thermal Conductivity of Insulation Materials for Cryogenic LH2 Storage Tanks: A Review
Nov 2022
Publication
An accurate estimation of the effective thermal conductivity of various insulation materials is essential in the evaluation of heat leak and boil-off rate from liquid hydrogen storage tanks. In this work we review the existing experimental data and various proposed correlations for predicting the effective conductivity of insulation systems consisting of powders foams fibrous materials and multilayer systems. We also propose a first principles-based correlation that may be used to estimate the dependence of the effective conductivity as a function of temperature interstitial gas composition pressure and structural properties of the material. We validate the proposed correlation using available experimental data for some common insulation materials. Further improvements and testing of the proposed correlation using laboratory scale data obtained using potential LH2 tank insulation materials are also discussed.
In the Green? Perceptions of Hydrogen Production Methods Among the Norwegian Public
Feb 2023
Publication
This article presents findings from a representative survey fielded through the Norwegian Citizen Panel examining public perceptions of hydrogen fuel and its different production methods. Although several countries including Norway have strategies to increase the production of hydrogen fuel our results indicate that hydrogen as an energy carrier and its different production methods are still unknown to a large part of the public. A common misunderstanding seems to be confusing ‘hydrogen fuel’ in general with environmentally friendly ‘green hydrogen’. Results from a survey experiment (N = 1906) show that production method is important for public acceptance. On a five-point acceptance scale respondents score on average 3.9 for ‘green’ hydrogen which is produced from renewable energy sources. The level of acceptance is significantly lower for ‘blue’ (3.2) and ‘grey’ (2.3) hydrogen when respondents are informed that these are produced from coal oil or natural gas. Public support for hydrogen fuel in general as well as the different production methods is also related to their level of worry about climate change gender and political affiliation. Widespread misunderstandings regarding ‘green’ hydrogen production could potentially fuel public resistance as new ‘blue’ or ‘grey’ projects develop. Our results indicate a need for clearer communication from the government and developers regarding production methods to avoid distrust and potential public backfire.
Solar Water Splitting by Photovoltaic-electrolysis with a Solar-to-hydrogen Efficiency over 30%
Oct 2016
Publication
Hydrogen production via electrochemical water splitting is a promising approach for storing solar energy. For this technology to be economically competitive it is critical to develop water splitting systems with high solar-to-hydrogen (STH) efficiencies. Here we report a photovoltaic-electrolysis system with the highest STH efficiency for any water splitting technology to date to the best of our knowledge. Our system consists of two polymer electrolyte membrane electrolysers in series with one InGaP/GaAs/GaInNAsSb triple-junction solar cell which produces a large-enough voltage to drive both electrolysers with no additional energy input. The solar concentration is adjusted such that the maximum power point of the photovoltaic is well matched to the operating capacity of the electrolysers to optimize the system efficiency. The system achieves a 48-h average STH efficiency of 30%. These results demonstrate the potential of photovoltaic-electrolysis systems for cost-effective solar energy storage.
Hydrogen Energy as Future of Sustainable Mobility
May 2022
Publication
Conventional fuels for vehicular applications generate hazardous pollutants which have an adverse effect on the environment. Therefore there is a high demand to shift towards environment-friendly vehicles for the present mobility sector. This paper highlights sustainable mobility and specifically sustainable transportation as a solution to reduce GHG emissions. Thus hydrogen fuel-based vehicular technologies have started blooming and have gained significance following the zero-emission policy focusing on various types of sustainable motilities and their limitations. Serving an incredible deliverance of energy by hydrogen fuel combustion engines hydrogen can revolution various transportation sectors. In this study the aspects of hydrogen as a fuel for sustainable mobility sectors have been investigated. In order to reduce the GHG (Green House Gas) emission from fossil fuel vehicles researchers have paid their focus for research and development on hydrogen fuel vehicles and proton exchange fuel cells. Also its development and progress in all mobility sectors in various countries have been scrutinized to measure the feasibility of sustainable mobility as a future. This paper is an inclusive review of hydrogen-based mobility in various sectors of transportation in particular fuel cell cars that provides information on various technologies adapted with time to add more towards perfection. When compared to electric vehicles with a 200-mile range fuel cell cars have a lower driving cost in all of the 2035 and 2050 scenarios. To stimulate the use of hydrogen as a passenger automobile fuel the cost of a hydrogen fuel cell vehicle (FCV) must be brought down to at least the same level as an electric vehicle. Compared to gasoline cars fuel cell vehicles use 43% less energy and generate 40% less CO2.
Effect of Relative Permeability Hysteresis on Reservoir Simulation of Underground Hydrogen Storage in an Offshore Aquifer
Mar 2023
Publication
Underground hydrogen storage (UHS) in porous media is proposed to balance seasonal fluctuations between demand and supply in an emerging hydrogen economy. Despite increasing focus on the topic worldwide the understanding of hydrogen flow in porous media is still not adequate. In particular relative permeability hys teresis and its impact on the storage performance require detailed investigations due to the cyclic nature of H2 injection and withdrawal. We focus our analysis on reservoir simulation of an offshore aquifer setting where we use history matched relative permeability to study the effect of hysteresis and gas type on the storage efficiency. We find that omission of relative permeability hysteresis overestimates the annual working gas capacity by 34 % and the recovered hydrogen volume by 85 %. The UHS performance is similar to natural gas storage when using hysteretic hydrogen relative permeability. Nitrogen relative permeability can be used to model the UHS when hysteresis is ignored but at the cost of the accuracy of the bottom-hole pressure predictions. Our results advance the understanding of the UHS reservoir modeling approaches.
Recent Advances of Metal Borohydrides for Hydrogen Storage
Aug 2022
Publication
Hydrogen energy is an excellent carrier for connecting various renewable energy sources and has many advantages. However hydrogen is flammable and explosive and its density is low and easy to escape which brings inconvenience to the storage and transportation of hydrogen. Therefore hydrogen storage technology has become one of the key steps in the application of hydrogen energy. Solid-state hydrogen storage method has a very high volumetric hydrogen density compared to the traditional compressed hydrogen method. The main issue of solid-state hydrogen storage method is the development of advanced hydrogen storage materials. Metal borohydrides have very high hydrogen density and have received much attention over the past two decades. However high hydrogen sorption temperature slow kinetics and poor reversibility still severely restrict its practical applications. This paper mainly discusses the research progress and problems to be solved of metal borohydride hydrogen storage materials for solid-state hydrogen storage.
Coal Decarbonization: A State-of-the-art Review of Enhanced Hydrogen Production in Underground Coal Gasification
Aug 2022
Publication
The world is endowed with a tremendous amount of coal resources which are unevenly distributed in a few nations. While sustainable energy resources are being developed and deployed fossil fuels dominate the current world energy consumption. Thus low-carbon clean technologies like underground coal gasification (UCG) ought to play a vital role in energy supply and ensuring energy security in the foreseeable future. This paper provides a state-of-the-art review of the world's development of UCG for enhanced hydrogen production. It is revealed that the world has an active interest in decarbonizing the coal industry for hydrogen-oriented research in the context of UCG. While research is ongoing in multiple coal-rich nations China dominates the world's efforts in both industrial-scale UCG pilots and laboratory experiments. A variety of coal ranks were tested in UCG for enhanced hydrogen output and the possibilities of linking UCG with other prospective technologies had been proposed and critically scrutinized. Moreover it is found that transborder collaborations are in dire need to propel a faster commercialization of UCG in an ever-more carbon-conscious world. Furthermore governmental and financial support is necessary to incentivize further UCG development for large-scale hydrogen production.
Sustainable Ammonia Production Processes
Mar 2021
Publication
Due to the important role of ammonia as a fertilizer in the agricultural industry and its promising prospects as an energy carrier many studies have recently attempted to find the most environmentally benign energy efficient and economically viable production process for ammonia synthesis. The most commonly utilized ammonia production method is the Haber-Bosch process. The downside to this technology is the high greenhouse gas emissions surpassing 2.16 kgCO2-eq/kg NH3 and high amounts of energy usage of over 30 GJ/tonne NH3 mainly due to the strict operational conditions at high temperature and pressure. The most widely adopted technology for sustainable hydrogen production used for ammonia synthesis is water electrolysis coupled with renewable technologies such as wind and solar. In general a water electrolyzer requires a continuous supply of pretreated water with high purity levels for its operation. Moreover for production of 1 tonne of hydrogen 9 tonnes of water is required. Based on this data for the production of the same amount of ammonia through water electrolysis 233.6 million tonnes/yr of water is required. In this paper a critical review of different sustainable hydrogen production processes and emerging technologies for sustainable ammonia synthesis along with a comparative life cycle assessment of various ammonia production methods has been carried out. We find that through the review of each of the studied technologies either large amounts of GHG emissions are produced or high volumes of pretreated water is required or a combination of both these factors occur.
Chile and its Potential Role Among the Most Affordable Green Hydrogen Producers in the World
Jul 2022
Publication
As result of the adverse effects caused by climate change the nations have decided to accelerate the transition of the energy matrix through the use of non-conventional sources free of polluting emissions. One of these alternatives is green hydrogen. In this context Chile stands out for the exceptional climate that makes it a country with a lot of renewable resources. Such availability of resources gives the nation clear advantages for hydrogen production strong gusts of wind throughout the country the most increased solar radiation in the world lower cost of production of electrical supplies among others. Due to this the nation would be between the lowest estimated cost for hydrogen production i.e. 1.5 USD/kg H2 approximately scenario that would place it as one of the cheapest green hydrogen producer in the world.
Assessing the Social Acceptance of Key Technologies for the German Energy Transition
Jan 2022
Publication
Background: The widespread use of sustainable energy technologies is a key element in the transformation of the energy system from fossil-based to zero-carbon. In line with this technology acceptance is of great importance as resistance from the public can slow down or hinder the construction of energy technology projects. The current study assesses the social acceptance of three energy technologies relevant for the German energy transition: stationary battery storage biofuel production plants and hydrogen fuel station. Methods: An online survey was conducted to examine the public’s general and local acceptance of energy technologies. Explored factors included general and local acceptance public concerns trust in relevant stakeholders and attitudes towards financial support. Results: The results indicate that general acceptance for all technologies is slightly higher than local acceptance. In addition we discuss which public concerns exist with regard to the respective technologies and how they are more strongly associated with local than general acceptance. Further we show that trust in stakeholders and attitudes towards fnancial support is relatively high across the technologies discussed. Conclusions: Taken together the study provides evidence for the existence of a “general–local” gap despite measuring general and local acceptance at the same level of specifcity using a public sample. In addition the collected data can provide stakeholders with an overview of worries that might need to be addressed when planning to implement a certain energy project.
The Effects of Fuel Type and Cathode Off-gas Recirculation on Combined Heat and Power Generation of Marine SOFC Systems
Dec 2022
Publication
An increasing demand in the marine industry to reduce emissions led to investigations into more efficient power conversion using fuels with sustainable production pathways. Solid Oxide Fuel Cells (SOFCs) are under consideration for long-range shipping because of its high efficiency low pollutant emissions and fuel flexibility. SOFC systems also have great potential to cater for the heat demand in ships but the heat integration is not often considered when assessing its feasibility. This study evaluates the electrical and heat efficiency of a 100 kW SOFC system for marine applications fuelled with methane methanol diesel ammonia or hydrogen. In addition cathode off-gas recirculation (COGR) is investigated to tackle low oxygen utilisation and thus improve heat regeneration. The software Cycle Tempo is used to simulate the power plant which uses a 1D model for the SOFCs. At nominal conditions the highest net electrical efficiency (LHV) was found for methane (58.1%) followed by diesel (57.6%) and ammonia (55.1%). The highest heat efficiency was found for ammonia (27.4%) followed by hydrogen (25.6%). COGR resulted in similar electrical efficiencies but increased the heat efficiency by 11.9% to 105.0% for the different fuels. The model was verified with a sensitivity analysis and validated by comparison with similar studies. It is concluded that COGR is a promising method to increase the heat efficiency of marine SOFC systems.
Thermocatalytic Hydrogen Production Through Decomposition of Methane-A Review
Oct 2021
Publication
Consumption of fossil fuels especially in transport and energy-dependent sectors has led to large greenhouse gas production. Hydrogen is an exciting energy source that can serve our energy purposes and decrease toxic waste production. Decomposition of methane yields hydrogen devoid of COx components thereby aiding as an eco-friendly approach towards large-scale hydrogen production. This review article is focused on hydrogen production through thermocatalytic methane decomposition (TMD) for hydrogen production. The thermodynamics of this approach has been highlighted. Various methods of hydrogen production from fossil fuels and renewable resources were discussed. Methods including steam methane reforming partial oxidation of methane auto thermal reforming direct biomass gasification thermal water splitting methane pyrolysis aqueous reforming and coal gasification have been reported in this article. A detailed overview of the different types of catalysts available the reasons behind their deactivation and their possible regeneration methods were discussed. Finally we presented the challenges and future perspectives for hydrogen production via TMD. This review concluded that among all catalysts nickel ruthenium and platinum-based catalysts show the highest activity and catalytic efficiency and gave carbon-free hydrogen products during the TMD process. However their rapid deactivation at high temperatures still needs the attention of the scientific community.
The Hydrogen Bike: Communicating the Production and Safety of Green Hydrogen
Mar 2021
Publication
As the international community aims to reduce its reliance on fossil fuels green hydrogen has great potential to replace methane as a clean source of fuel. A novel public engagement activity The Hydrogen Bike has been developed to demonstrate the production and use of green hydrogen from water. The aim of the activity is to educate entertain and inform young people and adults so that they have an opportunity to form an opinion about the use of hydrogen as a fuel. Using a novel two-part data collection system participants are briefly surveyed for their opinion on hydrogen before and after participating in The Hydrogen Bike activity. Through this we have found that most participants (73%) are considered to have no opinion or a neutral opinion on hydrogen before participating in The Hydrogen Bike activity. After participation 88% of those who were originally neutral or had no opinion on hydrogen self-reported a positive feeling about hydrogen. The method of data collection was quick intuitive and suitable for an audience attracted from passing footfall.
Risk Perception of an Emergent Technology: The Case of Hydrogen Energy
Jan 2006
Publication
Although hydrogen has been used in industry for many years as a chemical commodity its use as a fuel or energy carrier is relatively new and expert knowledge about its associated risks is neither complete nor consensual. Public awareness of hydrogen energy and attitudes towards a future hydrogen economy are yet to be systematically investigated. This paper opens by discussing alternative conceptualisations of risk then focuses on issues surrounding the use of emerging technologies based on hydrogen energy. It summarises expert assessments of risks associated with hydrogen. It goes on to review debates about public perceptions of risk and in doing so makes comparisons with public perceptions of other emergent technologies—Carbon Capture and Storage (CCS) Genetically Modified Organisms and Food (GM) and Nanotechnology (NT)—for which there is considerable scientific uncertainty and relatively little public awareness. The paper finally examines arguments about public engagement and "upstream" consultation in the development of new technologies. It is argued that scientific and technological uncertainties are perceived in varying ways and different stakeholders and different publics focus on different aspects or types of risk. Attempting to move public consultation further "upstream" may not avoid this because the framing of risks and benefits is necessarily embedded in a cultural and ideological context and is subject to change as experience of the emergent technology unfolds.
Analysis of the Implementation of Functional Hydrogen Assumptions in Poland and Germany
Nov 2022
Publication
The use of hydrogen exists in various sectors in Poland and Germany. Hydrogen can be used in industry transport decarbonisation of the Polish steel industry and as one of the low-emission alternatives to the existing coal applications in this sector. Limiting climate change requires efforts on a global scale from all countries of the world. Significant economic benefits will be realized by stimulating the development of new technologies to deal with climate change. The scenarios show an increasing demand for industrial hydrogen in the future. The key is to replace gray hydrogen with green and to convert industrial processes which will create additional hydrogen demand. The condition for the development of a green hydrogen economy is access to adequate installed capacity in renewable energy. Germany will become the leading market in the era of energy transformation in the coming years. The implementation of the hydrogen assumptions in Poland is possible to a greater extent by the efforts of entrepreneurs
Evidence Base Utilised to Justify a Hydrogen Blend Gas Network Safety Case
Sep 2021
Publication
Blending hydrogen with natural gas up to 20 % mol/mol has been identified as a key enabler of hydrogen deployment within the UK gas network. This work outlines the evidence base generated to form the basis of safety submitted to the Health and Safety Executive (HSE) to justify a demonstration of hydrogen blending on a live public gas network within the UK supplying a hydrogen blend to 668homes over the course of 10 months. An evidence base to demonstrate that gas users are not prejudiced by the addition of hydrogen is required by the Gas Safety (Management) Regulations [1] to allow hydrogen distribution above the 0.1 mol% limit specified within the regulations. The technical evidence generated to support the safety case presented to the HSE concerned the implications of introducing a hydrogen blend on appliance operation materials gas characteristics and operational procedures. The outputs of the technical evidence workstreams provided input data to a Quantitative Risk Assessment (QRA) of the GB gas distribution network. The QRA was developed in support of the safety case to allow a causal understanding of public risk to be understood where harm due to gas usage was defined as risk to life caused either by carbon monoxide poisoning or as a result of fires/explosions. Public records were used to calibrate and validate the base risk model to understand the dynamics of public risk due to natural gas usage. The experimental and analytical results of the technical workstreams were then used to derive risk model inputs relating to a hydrogen blend. This allowed a quantified comparison of risk to be understood to demonstrate parity of safety between natural gas and a hydrogen blend. This demonstration of risk parity is a condition precedent of allowing the distribution and utilisation of hydrogen blends within the GB gas network.
Greenhouse Gas Emission Dynamics of Saudi Arabia: Potential of Hydrogen Fuel for Emission Footprint Reduction
Mar 2023
Publication
The growth of population gross domestic product (GDP) and urbanization have led to an increase in greenhouse gas (GHG) emissions in the Kingdom of Saudi Arabia (KSA). The leading GHG-emitting sectors are electricity generation road transportation cement chemicals refinery iron and steel. However the KSA is working to lead the global energy sustainability campaign to reach net zero GHG emissions by 2060. In addition the country is working to establish a framework for the circular carbon economy (CCE) in which hydrogen acts as a transversal facilitator. To cut down on greenhouse gas emissions the Kingdom is also building several facilities such as the NEOM green hydrogen project. The main objective of the article is to critically review the current GHG emission dynamics of the KSA including major GHG emission driving forces and prominent emission sectors. Then the role of hydrogen in GHG emission reduction will be explored. Finally the researchers and decision makers will find the helpful discussions and recommendations in deciding on appropriate mitigation measures and technologies.
Analysis of Hydrogen Gas Injection at Various Compositions in an Existing Natural Gas Pipeline
Jul 2021
Publication
The lack of hydrogen (H2) transportation infrastructure restricts the development of the H2 industry. Owing to the high investment of building specific facilities using existing natural gas (NG) pipelines to transport a blend of H2 and NG (H2NG) is a viable means of transportation and approach for large-scale long-time storage. However variation in the thermo-physical properties of an H2NG blend will impact the performance of pipeline appliances. To address the gaps in H2 transmission via an NG system in the context of energy consumption in the present paper a one-dimensional pipeline model is proposed to predict the blended flow in a real existing pipeline (Shan–Jing I China). The data of NG components were derived from real gas fields. Furthermore the influence of H2 fractions on pipeline energy coefficient and the layout of pressurization stations are comprehensively analyzed. In addition the case of intermediate gas injection is investigated and the effects of injection positions are studied. This study serves as a useful reference for the design of an H2NG pipeline system. The present study reveals that with the increasing in H2 fraction the distance between pressure stations increases. Furthermore when the arrangement of original pressure stations is maintained overpressure occur. Intermediate gas injection results in the inlet pressure of subsequent pressurization stations reducing. Using existing pipeline network to transport H2NG it is necessary to make appropriate adjustment.
Techno Environmental Assessment of Flettner Rotor as Assistance Propulsion System for LH2 Tanker Ship Fuelled by Hydrogen
Nov 2022
Publication
This study presents a novel design and development of a 280000 m3 liquefied hydrogen tanker ship by implementing a set of 6 Flettner rotors as an assistance propulsion system in conjunction with a combined-cycle gas turbine fuelled by hydrogen as a prime mover. The study includes assessment of the technical and environmental aspects of the developed design. Furthermore an established method was applied to simulate the LH2 tanker in different voyages and conditions to investigate the benefits of harnessing wind energy to assist combined-cycle gas turbine in terms of performance and emission reduction based on engine behaviour for different voyages under loaded and unloaded normal as well as 6 % degraded engine and varying ambient conditions. The results indicate that implementing a set of 6 Flettner rotors for the LH2 tanker ship has the potential to positively impact the performance and lead to environmental benefits. A maximum contribution power of around 1.8 MW was achieved in the winter season owing to high wind speed and favourable wind direction. This power could save approximately 3.6 % of the combined-cycle gas turbine total output power (50 MW) and cause a 3.5 % reduction in NOx emissions.
Hydrogen Compatability of Structural Materials in Natural Gas Networks
Sep 2021
Publication
There is growing interest in utilizing existing infrastructure for storage and distribution of hydrogen. Gaseous hydrogen for example could be added to natural gas in the short-term whereas entire systems can be converted to transmission and distribution networks for hydrogen. Many active programs around the world are exploring the safety and feasibility of adding hydrogen to these networks. Concerns have been raised about the structural integrity of materials in these systems when exposed to hydrogen. In general the effects of hydrogen on these materials are grossly misunderstood. Hydrogen unequivocally degrades fatigue and fracture resistance of structural steels in these systems even for low hydrogen partial pressure (-l bar). In most systems however hydrogen effects will not be apparent because the stresses in these systems remain very low. Another misunderstanding results from the kinetics of the hydrogen effects: hydrogen degrades fatigue and fracture properties immediately upon exposure to gaseous hydrogen and those effects disappear when the hydrogen environment is removed even after prolonged exposure. There is also a misperception that materials selection can mitigate hydrogen effects. While some classes of materials perform better in hydrogen environments than other classes for most practical circumstances the range of response for a given class of material in gaseous hydrogen environments is rather narrow. These observations can be systematically characterized by considering the intersection of materials environmental and mechanical variables associated with the service application. Indeed any safety assessment of a hydrogen pressure system must quantitatively consider these aspects. In this report we quantitatively evaluate the importance of the materials environmental and mechanical variables in the context of hydrogen additions to natural gas piping and pipeline systems with the aim of providing an informed perspective on parameters relevant for assessing structural integrity of natural gas systems in the presence of gaseous hydrogen.
Review and Harmonization of the Life-Cycle Global Warming Impact of PV-Powered Hydrogen Production by Electrolysis
Sep 2021
Publication
This work presents a review of life-cycle assessment (LCA) studies of hydrogen electrolysis using power from photovoltaic (PV) systems. The paper discusses the assumptions strengths and weaknesses of 13 LCA studies and identifies the causes of the environmental impact. Differences in assumptions of system boundaries system sizes evaluation methods and functional units make it challenging to directly compare the Global Warming Potential (GWP) resulting from different studies. To simplify this process 13 selected LCA studies on PV-powered hydrogen production have been harmonized following a consistent framework described by this paper. The harmonized GWP values vary from 0.7 to 6.6 kg CO2-eq/kg H2 which can be considered a wide range. The maximum absolute difference between the original and harmonized GWP results of a study is 1.5 kg CO2-eq/kg H2. Yet even the highest GWP of this study is over four times lower than the GWP of grid-powered electrolysis in Germany. Due to the lack of transparency of most LCAs included in this review full identification of the sources of discrepancies (methods applied assumed production conditions) is not possible. Overall it can be concluded that the environmental impact of the electrolytic hydrogen production process is mainly caused by the GWP of the electricity supply. For future environmental impact studies on hydrogen production systems it is highly recommended to 1) divide the whole system into well-defined subsystems using compression as the final stage of the LCA and 2) to provide energy inputs/GWP results for the different subsystems.
No more items...