Applications & Pathways
Earth Abundant Spinel for Hydrogen Production in a Chemical Looping Scheme at 550°C
Jun 2020
Publication
Operating chemical looping process at mid-temperatures (550-750 oC) presents exciting potential for the stable production of hydrogen. However the reactivity of oxygen carriers is compromised by the detrimental effect of the relatively low temperatures on the redox kinetics. Although the reactivity at mid-temperature can be improved by the addition of noble metals the high cost of these noble metal containing materials significantly hindered their scalable application. In the current work we propose to incorporate earth-abundant metals into the iron-based spinel for hydrogen production in a chemical looping scheme at mid-temperatures. Mn0.2Co0.4Fe2.4O4 shows a high hydrogen production rate at the average rate of ∼0.62 mmol.g-1.min-1 and a hydrogen yield of ∼9.29 mmol.g-1 with satisfactory stability over 20 cycles at 550 oC. The mechanism studies manifest that the enhanced hydrogen production performance is a result of the improved oxygen-ion conductivity to enhance reduction reaction and high reactivity of reduced samples with steam. The performance of the oxygen carriers in this work is comparable to those noble-metal containing materials enabling their potential for industrial applications.
Modelling and Cost Estimation for Conversion of Green Methanol to Renewable Liquid Transport Fuels via Olefin Oligomerisation
Jun 2021
Publication
The ambitious CO2 emission reduction targets for the transport sector set in the Paris Climate Agreement require low-carbon energy solutions that can be commissioned rapidly. The production of gasoline kerosene and diesel from renewable methanol using methanol-to-olefins (MTO) and Mobil’s Olefins to Gasoline and Distillate (MOGD) syntheses was investigated in this study via process simulation and economic analysis. The current work presents a process simulation model comprising liquid fuel production and heat integration. According to the economic analysis the total cost of production was found to be 3409 €/tfuels (273 €/MWhLHV) corresponding to a renewable methanol price of 963 €/t (174 €/MWhLHV). The calculated fuel price is considerably higher than the current cost of fossil fuels and biofuel blending components. The price of renewable methanol which is largely dictated by the cost of electrolytic hydrogen and renewable electricity was found to be the most significant factor affecting the profitability of the MTO-MOGD plant. To reduce the price of renewable fuels and make them economically viable it is recommended that the EU’s sustainable transport policies are enacted to allow flexible and practical solutions to reduce transport-related emissions within the member states.
Techno-economic calculations of small-scale hydrogen supply systems for zero emission transport in Norway
Jun 2019
Publication
In Norway where nearly 100% of the power is hydroelectric it is natural to consider water electrolysis as the main production method of hydrogen for zero-emission transport. In a start-up market with low demand for hydrogen one may find that small-scale WE-based hydrogen production is more cost-efficient than large-scale production because of the potential to reach a high number of operating hours at rated capacity and high overall system utilization rate. Two case studies addressing the levelized costs of hydrogen in local supply systems have been evaluated in the present work: (1) Hydrogen production at a small-scale hydroelectric power plant (with and without on-site refuelling) and (2) Small hydrogen refuelling station for trucks (with and without on-site hydrogen production). The techno-economic calculations of the two case studies show that the levelized hydrogen refuelling cost at the small-scale hydroelectric power plant (with a local station) will be 141 NOK/kg while a fleet of 5 fuel cell trucks will be able to refuel hydrogen at a cost of 58 NOK/kg at a station with on-site production or 71 NOK/kg at a station based on delivered hydrogen. The study shows that there is a relatively good business case for local water electrolysis and supply of hydrogen to captive fleets of trucks in Norway particularly if the size of the fleet is sufficiently large to justify the installation of a relatively large water electrolyzer system (economies of scale). The ideal concept would be a large fleet of heavy-duty vehicles (with a high total hydrogen demand) and a refuelling station with nearly 100% utilization of the installed hydrogen production capacity.
Industrial Robots Fuel Cell Based Hybrid Power-Trains: A Comparison between Different Configurations
Jun 2021
Publication
Electric vehicles are becoming more and more popular. One of the most promising possible solutions is one where a hybrid powertrain made up of a FC (Fuel Cell) and a battery is used. This type of vehicle offers great autonomy and high recharging speed which makes them ideal for many industrial applications. In this work three ways to build a hybrid power-train are presented and compared. To illustrate this the case of an industrial robot designed to move loads within a fully automated factory is used. The analysis and comparison are carried out through different objective criteria that indicate the power-train performance in different battery charge levels. The hybrid configurations are tested using real power profiles of the industrial robot. Finally simulation results show the performance of each hybrid configuration in terms of hydrogen consumption battery and FC degradation and dc bus voltage and current regulation.
Impact of Hydrogen Fuel for CO2 Emission Reduction in Power Generation Sector in Japan
Jun 2017
Publication
Japan’s energy consumption derives mostly from fossil fuels which are un-secure and release a much greenhouse gas emissions. To meet goals of reducing GHG hydrogen gas can be utilized in power generation in hydrogen fired and firing / co-combustion power plants. This paper analyses the impact of hydrogen in the power generation sector using the MARKAL-TIMES Japan optimization model framework. Two models are used: a base scenario without hydrogen and hydrogen scenario in which hydrogen is supplied from 2020 onwards. In the hydrogen scenario other processes which are normally supplied by natural gas are reduced because the gas is instead used to generate power. Adding hydrogen to the energy supply leads to a decrease in projected use of fossil fuels. The hydrogen scenario produces fewer emissions than the base scenario; by 2050 the hydrogen scenario’s estimated 388 metric tons of CO2 emissions is over 250 tons less than the base scenario’s emissions of 588 metric tons.
Sustainability Assessment of Fuel Cell Buses in Public Transport
May 2018
Publication
Hydrogen fuel cell (H2FC) buses operating in every day public transport services around Europe are assessed for their sustainability against environmental economic and social criteria. As part of this assessment the buses are evaluated against diesel buses both in terms of sustainability and in terms of meeting real world requirements with respect to operational performance. The study concludes that H2FC buses meet operability and performance criteria and are sustainable environmentally when ‘green’ hydrogen is used. The economic sustainability of the buses in terms of affordability achieves parity with their fossil fuel equivalent by 2030 when the indirect costs to human health and climate change are included. Societal acceptance by those who worked with and used the buses supports the positive findings of earlier studies although satisfactory operability and performance are shown to be essential to positive attitudes. Influential policy makers expressed positive sentiments only if ‘green’ hydrogen is used and the affordability issues can be addressed. No “show-stopper” is identified that would prevent future generations from using H2FC buses in public transport on a broad scale due to damage to the environment or to other factors that impinge on quality of life.
Why Can’t We Just Burn Hydrogen? Challenges When Changing Fuels in an Existing Infrastructure
Feb 2021
Publication
The current global consumption of natural gas as a fuel is roughly 4 trillion cubic meters per year. In terms of energy the demand for natural gas exceeds the global demand for fossil fuels for transportation. Despite this observation the challenges to natural gas end use that arise when changing the composition of the fuel are largely absent from public policy and research agendas whereas for transportation fuels the issues are more appreciated. Natural gas is delivered via complex networks of interconnected pipelines to end users for direct and indirect heating in household and industrial sectors and for power generation. This interconnectedness is a crucial aspect of the challenge for introducing new fuels.<br/>In this paper we discuss the issues that arise from changing fuel properties for an existing population of end-use equipment. To illustrate the issues we will consider the changes in (combustion) performance of domestic combustion equipment and gas engines for power generation in response to substituting natural gas by hydrogen or hydrogen/natural gas blends. During the discussion we shall also indicate methods for characterizing the properties of the fuel and identify the combustion challenges that must be addressed for a successful transition from the current fuel mix to whatever the future mix may be.
Recent Progress on the Key Materials and Components for Proton Exchange Membrane Fuel Cells in Vehicle Applications
Jul 2016
Publication
Fuel cells are the most clean and efficient power source for vehicles. In particular proton exchange membrane fuel cells (PEMFCs) are the most promising candidate for automobile applications due to their rapid start-up and low-temperature operation. Through extensive global research efforts in the latest decade the performance of PEMFCs including energy efficiency volumetric and mass power density and low temperature startup ability have achieved significant breakthroughs. In 2014 fuel cell powered vehicles were introduced into the market by several prominent vehicle companies. However the low durability and high cost of PEMFC systems are still the main obstacles for large-scale industrialization of this technology. The key materials and components used in PEMFCs greatly affect their durability and cost. In this review the technical progress of key materials and components for PEMFCs has been summarized and critically discussed including topics such as the membrane catalyst layer gas diffusion layer and bipolar plate. The development of high-durability processing technologies is also introduced. Finally this review is concluded with personal perspectives on the future research directions of this area.
Thermal Management System Architecture for Hydrogen-Powered Propulsion Technologies: Practices, Thematic Clusters, System Architectures, Future Challenges, and Opportunities
Jan 2022
Publication
The thermal management system architectures proposed for hydrogen-powered propulsion technologies are critically reviewed and assessed. The objectives of this paper are to determine the system-level shortcomings and to recognise the remaining challenges and research questions that need to be sorted out in order to enable this disruptive technology to be utilised by propulsion system manufacturers. Initially a scientometrics based co-word analysis is conducted to identify the milestones for the literature review as well as to illustrate the connections between relevant ideas by considering the patterns of co-occurrence of words. Then a historical review of the proposed embodiments and concepts dating back to 1995 is followed. Next feasible thermal management system architectures are classified into three distinct classes and its components are discussed. These architectures are further extended and adapted for the application of hydrogen-powered fuel cells in aviation. This climaxes with the assessment of the available evidence to verify the reasons why no hydrogen-powered propulsion thermal management system architecture has yet been approved for commercial production. Finally the remaining research challenges are identified through a systematic examination of the critical areas in thermal management systems for application to hydrogen-powered air vehicles’ engine cooling. The proposed solutions are discussed from weight cost complexity and impact points of view by a system-level assessment of the critical areas in the field.
Facile Synthesis of Palladium Phosphide Electrocatalysts and their Activity for the Hydrogen Oxidation, Hydrogen Evolutions, Oxygen Reduction and Formic Acid Oxidation Reactions
Nov 2015
Publication
We demonstrate a new approach for producing highly dispersed supported metal phosphide powders with small particle size improved stability and increased electrocatalytic activity towards some useful reactions. The approach involves a one-step conversion of metal supported on high surface area carbon to the metal phosphide utilising a very simple and scalable synthetic process. We use this approach to produce PdP2 and Pd5P2 particles dispersed on carbon with a particle size of 4.5–5.5 nm by converting a commercially available Pd/C powder. The metal phosphide catalysts were tested for the oxygen reduction hydrogen oxidation and evolution and formic acid oxidation reactions. Compared to the unconverted Pd/C material we find that alloying the P at different levels shifts oxide formation on the Pd to higher potentials leading to greater stability during cycling studies (20% more ECSA retained 5k cycles) and in thermal treatment under air. Hydrogen absorption within the PdP2 and Pd5P2 particles is enhanced. The phosphides compare favourably to the most active catalysts reported to date for formic acid oxidation especially PdP2 and there is a significant decrease in poisoning of the surface compared to Pd alone. The mechanistic changes in the reactions studied are rationalised in terms of increased water activation on the surface phosphorus atoms of the catalyst. One of the catalysts PdP2/C is tested in a fuel cell as anode and cathode catalyst and shows good performance.
Hydrogen Station Location Planning via Geodesign in Connecticut: Comparing Optimization Models and Structured Stakeholder Collaboration
Nov 2021
Publication
Geodesign is a participatory planning approach in which stakeholders use geographic information systems to develop and vet alternative design scenarios in a collaborative and iterative process. This study is based on a 2019 geodesign workshop in which 17 participants from industry government university and non-profit sectors worked together to design an initial network of hydrogen refueling stations in the Hartford Connecticut metropolitan area. The workshop involved identifying relevant location factors rapid prototyping of station network designs and developing consensus on a final design. The geodesign platform which was designed specifically for facility location problems enables breakout groups to add or delete stations with a simple point-and-click operation view and overlay different map layers compute performance metrics and compare their designs to those of other groups. By using these sources of information and their own expert local knowledge participants recommended six locations for hydrogen refueling stations over two distinct phases of station installation. We quantitatively and qualitatively compared workshop recommendations to solutions of three optimal station location models that have been used to recommend station locations which minimize travel times from stations to population and traffic or maximize trips that can be refueled on origin–destination routes. In a post-workshop survey participants rated the workshop highly for facilitating mutual understanding and information sharing among stakeholders. To our knowledge this workshop represents the first application of geodesign for hydrogen refueling station infrastructure planning.
Preparation, Performance and Challenges of Catalyst Layer for Proton Exchange Membrane Fuel Cell
Nov 2021
Publication
In this paper the composition function and structure of the catalyst layer (CL) of a proton exchange membrane fuel cell (PEMFC) are summarized. The hydrogen reduction reaction (HOR) and oxygen reduction reaction (ORR) processes and their mechanisms and the main interfaces of CL (PEM|CL and CL|MPL) are described briefly. The process of mass transfer (hydrogen oxygen and water) proton and electron transfer in MEA are described in detail including their influencing factors. The failure mechanism of CL (Pt particles CL crack CL flooding etc.) and the degradation mechanism of the main components in CL are studied. On the basis of the existing problems a structure optimization strategy for a high‐performance CL is proposed. The commonly used preparation processes of CL are introduced. Based on the classical drying theory the drying process of a wet CL is explained. Finally the research direction and future challenges of CL are pointed out hoping to provide a new perspective for the design and selection of CL materials and preparation equipment.
Ammonia Production from Clean Hydrogen and the Implications for Global Natural Gas Demand
Jan 2023
Publication
Non-energy use of natural gas is gaining importance. Gas used for 183 million tons annual ammonia production represents 4% of total global gas supply. 1.5-degree pathways estimate an ammonia demand growth of 3–4-fold until 2050 as new markets in hydrogen transport shipping and power generation emerge. Ammonia production from hydrogen produced via water electrolysis with renewable power (green ammonia) and from natural gas with CO2 storage (blue ammonia) is gaining attention due to the potential role of ammonia in decarbonizing energy value chains and aiding nations in achieving their net-zero targets. This study assesses the technical and economic viability of different routes of ammonia production with an emphasis on a systems level perspective and related process integration. Additional cost reductions may be driven by optimum sizing of renewable power capacity reducing losses in the value chain technology learning and scale-up reducing risk and a lower cost of capital. Developing certification and standards will be necessary to ascertain the extent of greenhouse gas emissions throughout the supply chain as well as improving the enabling conditions including innovative finance and de-risking for facilitating international trade market creation and large-scale project development.
Hydrogen Fuel for Future Mobility: Challenges and Future Aspects
Jul 2022
Publication
Nowadays the combustion of fossil fuels for transportation has a major negative impact on the environment. All nations are concerned with environmental safety and the regulation of pollution motivating researchers across the world to find an alternate transportation fuel. The transition of the transportation sector towards sustainability for environmental safety can be achieved by the manifestation and commercialization of clean hydrogen fuel. Hydrogen fuel for sustainable mobility has its own effectiveness in terms of its generation and refueling processes. As the fuel requirement of vehicles cannot be anticipated because it depends on its utilization choosing hydrogen refueling and onboard generation can be a point of major concern. This review article describes the present status of hydrogen fuel utilization with a particular focus on the transportation industry. The advantages of onboard hydrogen generation and refueling hydrogen for internal combustion are discussed. In terms of performance affordability and lifetime onboard hydrogen-generating subsystems must compete with what automobile manufacturers and consumers have seen in modern vehicles to date. In internal combustion engines hydrogen has various benefits in terms of combustive properties but it needs a careful engine design to avoid anomalous combustion which is a major difficulty with hydrogen engines. Automobile makers and buyers will not invest in fuel cell technology until the technologies that make up the various components of a fuel cell automobile have advanced to acceptable levels of cost performance reliability durability and safety. Above all a substantial advancement in the fuel cell stack is required.
Hydrogenation Production via Chemical Looping Reforming of Coke Oven Gas
Jun 2020
Publication
Coke oven gas (COG) is one of the most important by-products in the steel industry and the conversion of COG to value-added products has attracted much attention from both economic and environmental views. In this work we apply the chemical looping reforming technology to produce pure H2 from COG. A series of La1-xSrxFeO3 (x = 0 0.2 0.3 0.4 0.5 0.6) perovskite oxides were prepared as oxygen carriers for this purpose. The reduction behaviours of La1-xSrxFeO3 perovskite by different reducing gases (H2 CO CH4 and the mixed gases) are investigated to discuss the competition effect of different components in COG for reacting with the oxygen carriers. The results show that reduction temperatures of H2 and CO are much lower than that of CH4 and high temperatures (>800 °C) are requested for selective oxidation of methane to syngas. The co-existence of CO and H2 shows weak effect on the equilibrium of methane conversion at high temperatures but the oxidation of methane to syngas can inhibit the consumption of CO and H2. The doping of suitable amounts of Sr in LaFeO3 perovskite (e.g. La0.5Sr0.5FeO3) significantly promotes the reactivity for selective oxidation of methane to syngas and inhibits the formation of carbon deposition obtaining both high methane conversion in the COG oxidation step and high hydrogen yield in the water splitting step. The La0.5Sr0.5FeO3 shows the highest methane conversion (67.82%) hydrogen yield (3.34 mmol·g-1) and hydrogen purity (99.85%). The hydrogen yield in water splitting step is treble as high as the hydrogen consumption in reduction step. These results reveal that chemical looping reforming of COG to produce pure H2 is feasible and an O2-assistant chemical looping reforming process can further improve the redox stability of oxygen carrier.
Promotion Effect of Hydrogen Addition in Selective Catalytic Reduction of Nitrogen Oxide Emissions from Diesel Engines Fuelled with Diesel-biodiesel-ethanol Blends
Nov 2021
Publication
Ethanol and palm oil biodiesel blended with diesel fuel have the potential to reduce greenhouse gas emissions such as carbon dioxide (CO2) and can gradually decrease dependence on fossil fuels. However the combustion products from these fuels such as oxides of nitrogen (NOx) total hydrocarbons (THC) and particulate matter (PM) require to be examined and any beneficial or detrimental effect to the environment needs to be assessed. This study investigates the hydrocarbon selective catalyst reduction (HC-SCR) activities by the effect of combustion using renewable fuels (biodiesel-ethanol-diesel) blends and the effect of hydrogen addition to the catalyst with the various diesel engine operating conditions. Lower values rate of heat released were recorded as the ethanol fraction increases resulting in trade-off where lower NOx was produced while greater concentration of carbon monoxide (CO) and THC was measured in the exhaust. Consequently increasing the THC/NOx promoting the NOx reduction activity (up to 43%). Additionally the HC-SCR performance was greatly heightened when hydrogen was added into the catalyst and able to improve the NOx reduction activity up to 73%. The experiment demonstrated plausible alternatives to improve the HC-SCR performance through the aids from fuel blends and hydrogen addition.
Optimal Planning of Hybrid Electric-hydrogen Energy Storage Systems via Multi-objective Particle Swarm Optimization
Jan 2023
Publication
In recent years hydrogen is rapidly developing because it is environmentally friendly and sustainable. In this case hydrogen energy storage systems (HESSs) can be widely used in the distribution network. The application of hybrid electric-hydrogen energy storage systems can solve the adverse effects caused by renewable energy access to the distribution network. In order to ensure the rationality and effectiveness of energy storage systems (ESSs) configuration economic indicators of battery energy storage systems (BESSs) and hydrogen energy storage systems power loss and voltage fluctuation are chosen as the fitness function in this paper. Meanwhile multi-objective particle swarm optimization (MOPSO) is used to solve Pareto non-dominated set of energy storage systems’ optimal configuration scheme in which the technique for order preference by similarity to ideal solution (TOPSIS) based on information entropy weight (IEW) is used select the optimal solution in Pareto non-dominated solution set. Based on the extended IEEE-33 system and IEEE-69 system the rationality of energy storage systems configuration scheme under 20% and 35% renewable energy penetration rate is analyzed. The simulation results show that the power loss can be reduced by 7.9%–22.8% and the voltage fluctuation can be reduced by 40.0%–71% when the renewable energy penetration rate is 20% and 35% respectively in IEEE-33 and 69 nodes systems. Therefore it can be concluded that the locations and capacities of energy storage systems obtained by multi-objective particle swarm optimization can improve the distribution network stability and economy after accessing renewable generation.
China Progress on Renewable Energy Vehicles: Fuel Cells, Hydrogen and Battery Hybrid Vehicles
Dec 2018
Publication
Clean renewable energy for Chinese cities is a priority in air quality improvement. This paper describes the recent Chinese advances in Polymer Electrolyte Membrane (PEM) hydrogen-fuel-cell-battery vehicles including buses and trucks. Following the 2016 Chinese government plan for new energy vehicles bus production in Foshan has now overtaken that in the EU USA and Japan combined. Hydrogen infrastructure requires much advance to catch up but numbers of filling stations are now increasing rapidly in the large cities. A particular benefit in China is the large number of battery manufacturing companies which fit well into the energy storage plan for hybrid fuel cell buses. The first city to manufacture thousands of PEM-battery hybrid buses is Foshan where the Feichi (Allenbus) company has built a new factory next to a novel fuel cell production line capable of producing 500 MW of fuel cell units per year. Hundreds of these buses are running on local Foshan routes this year while production of city delivery trucks has also been substantial. Results for energy consumption of these vehicles are presented and fitted to the Coulomb theory previously delineated.
Systematic Overview of Newly Available Technologies in the Green Maritime Sector
Jan 2023
Publication
The application of newly available technologies in the green maritime sector is difficult due to conflicting requirements and the inter-relation of different ecological technological and economical parameters. The governments incentivize radical reductions in harmful emissions as an overall priority. If the politics do not change the continuous implementation of stricter government regulations for reducing emissions will eventually result in the mandatory use of what we currently consider alternative fuels. Immediate application of radically different strategies would significantly increase the economic costs of maritime transport thus jeopardizing its greatest benefit: the transport of massive quantities of freight at the lowest cost. Increased maritime transport costs would immediately disrupt the global economy as seen recently during the COVID-19 pandemic. For this reason the industry has shifted towards a gradual decrease in emissions through the implementation of “better” transitional solutions until alternative fuels eventually become low-cost fuels. Since this topic is very broad and interdisciplinary our systematic overview gives insight into the state-of-the-art available technologies in green maritime transport with a focus on the following subjects: (i) alternative fuels; (ii) hybrid propulsion systems and hydrogen technologies; (iii) the benefits of digitalization in the maritime sector aimed at increasing vessel efficiency; (iv) hull drag reduction technologies; and (v) carbon capture technologies. This paper outlines the challenges advantages and disadvantages of their implementation. The results of this analysis elucidate the current technologies’ readiness levels and their expected development over the coming years.
Conceptual Design of a Hybrid Hydrogen Fuel Cell/Battery Blended-Wing-Body Unmanned Aerial Vehicle—An Overview
May 2022
Publication
The manuscript presents the conceptual design phase of an unmanned aerial vehicle with the objective of a systems approach towards the integration of a hydrogen fuel-cell system and Li-ion batteries into an aerodynamically efficient platform representative of future aircraft configurations. Using a classical approach to aircraft design and a combination of low- and high-resolution computational simulations a final blended wing body UAV was designed with a maximum take-off weight of 25 kg and 4 m wingspan. Preliminary aerodynamic and propulsion sizing demonstrated that the aircraft is capable of completing a 2 h long mission powered by a 650 W fuel cell hybridized with a 100 Wh battery pack and with a fuel quantity of 80 g of compressed hydrogen.
GIS-Based Method for Future Prospect of Energy Supply in Algerian Road Transport Sector Using Solar Roads Technology
May 2019
Publication
This paper aims to investigate the possibility of integration of Electric Vehicles EVs supply’s with electricity and/or hydrogen in the road transport sector and estimate the energy supply derived from solar irradiation by using solar roads technology. The case study is road Est-Oust (road E-O) of Algeria. A Geographic Information System and spatial analysis tools are combined with spatial data and technical models to carry out these calculations. The results of this study demonstrate that solar road panels which are integrated into the road E-O produce over to 804 GWh/year which equivalents to 13778 tons of hydrogen per year.by using FCEVs will saving over then 41.103 liter of fossil fuels (regular gasoline); and reduce GHG emission (CO2) in the transportation sector by 216 tons per year.
Energy Management Control Strategy for Saving Trip Costs of Fuel Cell/Battery Electric Vehicles
Mar 2022
Publication
Fuel cell vehicles (FCVs) should control the energy management between two energy sources for fuel economy using the stored energy in a battery or generation of energy through a fuel cell system. The fuel economy for an FCV includes trip costs for hydrogen consumption and the lifetime of two energy sources. This paper proposes an implementable energy management control strategy for an FCV to reduce trip costs. The concept of the proposed control strategy is first to analyze the allowable current of a fuel cell system from the optimal strategies for various initial battery state of charge (SOC) conditions using dynamic programming (DP) and second to find a modulation ratio determining the current of a fuel cell system for driving a vehicle using the particle swarm optimization method. The control strategy presents the on/off moment of a fuel cell system and the proper modulation ratio of the turned-on fuel cell system with respect to the battery SOC and the power demand. The proposed strategy reduces trip costs in real-time similar to the DP-based optimal strategy and more than the simple energy control strategy of switching a fuel cell system on/off at the battery SOC boundary conditions even for long-term driving cycles.
Prospects for the Use of Hydrogen in the Armed Forces
Oct 2021
Publication
The energy security landscape that we envisage in 2050 will be different from that of today. Meeting the future energy needs of the armed forces will be a key challenge not least for military security. The World Energy Council’s World Energy Scenarios forecast that the world’s population will rise to 10 billion by 2050 which will also necessitate an increase in the size of the armed forces. In this context energy extraction distribution and storage become essential to stabilizing the imbalance between production and demand. Among the available solutions Power to Hydrogen (P2H) is one of the most appealing options. However despite the potential many obstacles currently hinder the development of the P2H market. This article aims to identify and analyse existing barriers to the introduction of P2H technologies that use hydrogen. The holistic approach used which was based on a literature survey identified obstacles and possible strategies for overcoming them. The research conducted presents an original research contribution at the level of hydrogen strategies considered in leading countries around the world. The research findings identified unresolved regulatory issues and sources of uncertainty in the armed forces. There is a lack of knowledge in the armed forces of some countries about the process of producing hydrogen energy and its benefits which raises concerns about the consistency of its exploitation. Negative attitudes towards hydrogen fuel energy can be a significant barrier to its deployment in the armed forces. Possible approaches and solutions have also been proposed to eliminate obstacles and to support decision makers in defining and implementing a strategy for hydrogen as a clean energy carrier. There are decisive and unresolved obstacles to its deployment not only in the armed forces
Mobility from Renewable Electricity: Infrastructure Comparison for Battery and Hydrogen Fuel Cell Vehicles
May 2018
Publication
This work presents a detailed breakdown of the energy conversion chains from intermittent electricity to a vehicle considering battery electric vehicles (BEVs) and fuel cell electric vehicles (FCEVs). The traditional well-to-wheel analysis is adapted to a grid to mobility approach by introducing the intermediate steps of useful electricity energy carrier and on-board storage. Specific attention is given to an effective coupling with renewable electricity sources and associated storage needs. Actual market data show that compared to FCEVs BEVs and their infrastructure are twice as efficient in the conversion of renewable electricity to a mobility service. A much larger difference between BEVs and FCEVs is usually reported in the literature. Focusing on recharging events this work additionally shows that the infrastructure efficiencies of both electric vehicle (EV) types are very close with 57% from grid to on-board storage for hydrogen refilling stations and 66% for fast chargers coupled with battery storage. The transfer from the energy carrier at the station to on-board storage in the vehicle accounts for 9% and 12% of the total energy losses of these two modes respectively. Slow charging modes can achieve a charging infrastructure efficiency of 78% with residential energy storage systems coupled with AC chargers.
Hydrogen vs. Batteries: Comparative Safety Assessments for a High-Speed Passenger Ferry
Mar 2022
Publication
Batteries and hydrogen constitute two of the most promising solutions for decarbonising international shipping. This paper presents the comparison between a battery and a proton-exchange membrane hydrogen fuel cell version of a high-speed catamaran ferry with a main focus on safety. The systems required for each version are properly sized and fitted according to the applicable rules and their impact on the overall design is discussed. Hazards for both designs were identified; frequency and consequence indexes for them were input qualitatively following Novel Technology Qualification and SOLAS Alternative Designs and Arrangements while certain risk control options were proposed in order to reduce the risks of the most concerned accidental events. The highest ranked risks were analysed by quantitative risk assessments in PyroSim software. The gas dispersion analysis performed for the hydrogen version indicated that it is crucial for the leakage in the fuel cell room to be stopped within 1 s after being detected to prevent the formation of explosive masses under full pipe rupture of 33 mm diameter even with 120 air changes per hour. For the battery version the smoke/fire simulation in the battery room indicated that the firefighting system could achieve a 30% reduction in fire duration with firedoors closed and ventilation shut compared to the scenario without a firefighting system.
Everything About Hydrogen Podcast: What's Brewing in the UK Clean Hydrogen Sector?
Dec 2021
Publication
Chris Jackson is the Founder and CEO of Protium Green Solutions based in London. Protium is a hydrogen energy services company that designs develops finances owns and operates clean hydrogen solutions for clients to achieve net zero energy emissions at their industrial/manufacturing sites. Chris will talk to us about the Protium story and also give us some insight into a major project that Protium recently announced in conjunction Budweiser Brewing Group UK&Ireland to explore the deployment of zero emission green hydrogen at Magor brewery in South Wales one of the largest breweries in the UK. To that end in order to get the full story about this project we are delighted to say that we have yet another great guest on this episode. Tom Brewer who leads Global Environmental Sustainability efforts at AB InBev the parent company of Budweiser Brewing Group will join us for the final segment of the show to talk about how hydrogen fits into AB InBev’s vision of a sustainable future for the company.
The podcast can be found on their website
The podcast can be found on their website
A Novel Integration of a Green Power-to-ammonia to Power System: Reversible Solid Oxide Fuel Cell for Hydrogen and Power Production Coupled with an Ammonia Synthesis Unit
Mar 2021
Publication
Renewable energy is a key solution in maintaining global warming below 2 °C. However its intermittency necessitates the need for energy conversion technologies to meet demand when there are insufficient renewable energy resources. This study aims to tackle these challenges by thermo-electrochemical modelling and simulation of a reversible solid oxide fuel cell (RSOFC) and integration with the Haber Bosch process. The novelty of the proposed system is usage of nitrogen-rich fuel electrode exhaust gas for ammonia synthesis during fuel cell mode which is usually combusted to prevent release of highly flammable hydrogen into the environment. RSOFC round-trip efficiencies of 41–53% have been attained when producing excess ammonia (144 kg NH3/hr) for the market and in-house consumption respectively. The designed system has the lowest reported ammonia electricity consumption of 6.4–8.21 kWh/kg NH3 power-to-hydrogen power-to-ammonia and power-generation efficiencies of 80% 55–71% and 64–66%.
From Microcars to Heavy-Duty Vehicles: Vehicle Performance Comparison of Battery and Fuel Cell Electric Vehicles
Oct 2021
Publication
Low vehicle occupancy rates combined with record conventional vehicle sales justify the requirement to optimize vehicle type based on passengers and a powertrain with zero-emissions. This study compares the performance of different vehicle types based on the number of passengers/payloads powertrain configuration (battery and fuel cell electric configurations) and drive cycles to assess range and energy consumption. An adequate choice of vehicle segment according to the real passenger occupancy enables the least energy consumption. Vehicle performance in terms of range points to remarkable results for the FCEV (fuel cell electric vehicle) compared to BEV (battery electric vehicle) where the former reached an average range of 600 km or more in all different drive cycles while the latter was only cruising nearly 350 km. Decisively the cost analysis indicated that FCEV remains the most expensive option with base cost three-fold that of BEV. The FCEV showed notable results with an average operating cost of less than 7 cents/km where BEV cost more than 10 €/km in addition to the base cost for light-duty vehicles. The cost analysis for a bus and semi-truck showed that with a full payload FCPT (fuel cell powertrain) would be more economical with an average energy cost of ~1.2 €/km while with BPT the energy cost is more than 300 €/km
Numerical Investigation of Dual Fuel Combustion on a Compression Ignition Engine Fueled with Hydrogen/Natural Gas Blends
Mar 2022
Publication
The present work aims to assess the influence of the composition of blends of hydrogen (H2 ) and Natural Gas (NG) on Dual Fuel (DF) combustion characteristics including gaseous emissions. The 3D-CFD study is carried out by means of a customized version of the KIVA-3V code. An automotive 2.8 L 4-cylinder turbocharged diesel engine was previously modified in order to operate in DF NG–diesel mode and tested at the dynamometer bench. After validation against experimental results the numerical model is applied to perform a set of combustion simulations at 3000 rpm–BMEP = 8 bar in DF H2/NG-diesel mode. Different H2–NG blends are considered: as the H2 mole fraction varies from 0 vol% to 50 vol% the fuel energy within the premixed charge is kept constant. The influence of the diesel Start Of Injection (SOI) is also investigated. Simulation results demonstrate that H2 enrichment accelerates the combustion process and promotes its completion strongly decreasing UHC and CO emissions. Evidently CO2 specific emissions are also reduced (up to about 20% at 50 vol% of H2 ). The main drawbacks of the faster combustion include an increase of in-cylinder peak pressure and pressure rate rise and of NOx emissions. However the study demonstrates that the optimization of diesel SOI can eliminate all aforementioned shortcomings.
Thermodynamic Modeling of Hydrogen Refueling for Heavy-duty Fuel Cell Buses and Comparison with Aggregated Real Data
Apr 2021
Publication
The foreseen uptake of hydrogen mobility is a fundamental step towards the decarbonization of the transport sector. Under such premises both refuelling infrastructure and vehicles should be deployed together with improved refuelling protocols. Several studies focus on refuelling the light-duty vehicles with 10 kgH2 up to 700 bar however less known effort is reported for refuelling heavy-duty vehicles with 30–40 kgH2 at 350 bar. The present study illustrates the application of a lumped model to a fuel cell bus tank-to-tank refuelling event tailored upon the real data acquired in the 3Emotion Project. The evolution of the main refuelling quantities such as pressure temperature and mass flow are predicted dynamically throughout the refuelling process as a function of the operating parameters within the safety limits imposed by SAE J2601/2 technical standard. The results show to refuel the vehicle tank from half to full capacity with an Average Pressure Ramp Rate (APRR) equal to 0.03 MPa/s are needed about 10 min. Furthermore it is found that the effect of varying the initial vehicle tank pressure is more significant than changing the ambient temperature on the refuelling performances. In conclusion the analysis of the effect of different APRR from 0.03 to 0.1 MPa/s indicate that is possible to safely reduce the duration of half-to-full refuelling by 62% increasing the APRR value from 0.03 to 0.08 MPa/s.
Constrained Extended Kalman Filter Design and Application for On-line State Estimation of High-order Polymer Electrolyte Membrane Fuel Cell Systems
Jun 2021
Publication
In this paper an alternative approach to extended Kalman filtering (EKF) for polymer electrolyte membrane fuel cell (FC) systems is proposed. The goal is to obtain robust real-time capable state estimations of a high-order FC model for observer applications mixed with control or fault detection. The introduced formulation resolves dependencies on operating conditions by successive linearization and constraints allowing to run the nonlinear FC model at significantly lower sampling rates than with standard approaches. The proposed method provides state estimates for challenging operating conditions such as shut-down and start-up of the fuel cell for which the unconstrained EKF fails. A detailed comparison with the unscented Kalman filter shows that the proposed EKF reconstructs the outputs equally accurate but nine times faster. An application to measured data from an FC powered passenger car is presented yielding state estimates of a real FC system which are validated based on the applied model.
Energy Saving in Public Transport Using Renewable Energy
Jan 2017
Publication
Hydrogen produced by renewable sources represents an interesting way to reduce the energetic dependence on fossil fuels in the transportation sector. This paper shows a feasibility study for the production storage and distribution of hydrogen in the western Sicilian context using three different renewable sources: wind biomass and sea wave. The objective of this study is the evaluation of the hydrogen demand needed to replace all diesel supplied buses with electrical buses equipped with fuel cells. An economic analysis is presented with the evaluation of the avoidable greenhouse gas emissions. Four different scenarios correlate the hydrogen demand for urban transport to the renewable energy resources present in the territories and to the modern technologies available for the production of hydrogen. The study focuses on the possibility of tapping into the potential of renewable energies (wind biomass and sea wave) for the production of hydrogen by electrolysis. The use of hydrogen would reduce significantly the emissions of particulate and greenhouse gases in the urban districts under analysis.
Deployment of Fuel Cell Vehicles and Hydrogen Refueling Station Infrastructure: A Global Overview and Perspectives
Jul 2022
Publication
Hydrogen fuel cell vehicles can complement other electric vehicle technologies as a zeroemission technology and contribute to global efforts to achieve the emission reduction targets. This article spotlights the current deployment status of fuel cells in road transport. For this purpose data collection was performed by the Advanced Fuel Cells Technology Collaboration Programme. Moreover the available incentives for purchasing a fuel cell vehicle in different countries were reviewed and future perspectives summarized. Based on the collected information the development trends in the last five years were analyzed and possible further trends that could see the realization of the defined goals derived. The number of registered vehicles was estimated to be 51437 units with South Korea leading the market with 90% of the vehicles being concentrated in four countries. A total of 729 hydrogen refueling stations were in operation with Japan having the highest number of these. The analysis results clearly indicate a very positive development trend for fuel cell vehicles and hydrogen refueling stations in 2021 with the highest number of new vehicles and stations in a single year paralleling the year’s overall economic recovery. Yet a more ambitious ramp-up in the coming years is required to achieve the set targets.
Review on Blended Hydrogen-fuel Internal Combustion Engines: A Case Study for China
Apr 2022
Publication
Under the dual pressure of energy conservation and environmental protection the internal combustion engine industry is facing huge challenges and it is imperative to find new clean energy. Hydrogen energy is expected to replace traditional fossil fuels as an excellent fuel for internal combustion engines because of its clean continuous regeneration and good combustion performance. This review article focuses on the research and development of blended hydrogen-fuel internal combustion engines in China since the beginning of this century. The main achievements gained by Chinese researchers in performing research on the effects of the addition of hydrogen into engines which predominantly include many types of hydrogen-blended engines such as gasoline diesel natural gas and alcohol engines rotary engines are discussed and analyzed in these areas of the engine’s performance and the combustion and emission characteristics etc. The merits and demerits of blended hydrogen-fuel internal combustion engines could be concluded and summarized after discussion. Finally the development trend and direction of exploration on hydrogen-fuel internal combustion engines could also be forecasted for relevant researchers.
Climate Impact Reduction Potentials of Synthetic Kerosene and Green Hydrogen Powered Mid-Range Aircraft Concepts
Jun 2022
Publication
One of aviation’s major challenges for the upcoming decades is the reduction in its climate impact. As synthetic kerosene and green hydrogen are two promising candidates their potentials in decreasing the climate impact is investigated for the mid-range segment. Evolutionary advancements for 2040 are applied first with an conventional and second with an advanced low-NOx and low-soot combustion chamber. Experts and methods from all relevant disciplines are involved starting from combustion turbofan engine overall aircraft design fleet level and climate impact assessment allowing a sophisticated and holistic evaluation. The main takeaway is that both energy carriers have the potential to strongly reduce the fleet level climate impact by more than 75% compared with the reference. Applying a flight-level constraint of 290 and a cruise Mach number of 0.75 causing 5% higher average Direct Operating Costs (DOC) the reduction is even more than 85%. The main levers to achieve this are the advanced combustion chamber an efficient contrail avoidance strategy in this case a pure flight-level constraint and the use of CO2 neutral energy carrier in a descending priority order. Although vehicle efficiency gains only lead to rather low impact reduction they are very important to compensate the increased costs of synthetic fuels or green hydrogen.
Hydrogen Double Compression-expansion Engine (H2DCEE): A Sustainable Internal Combustion Engine with 60%+ Brake Thermal Efficiency Potential at 45 Bar BMEP
May 2022
Publication
Hydrogen (H2) internal combustion engines may represent cost-effective and quick solution to the issue of the road transport decarbonization. A major factor limiting their competitiveness relative to fuel cells (FC) is the lower efficiency. The present work aims to demonstrate the feasibility of a H2 engine with FC-like 60%+ brake thermal efficiency (BTE) levels using a double compression-expansion engine (DCEE) concept combined with a high pressure direct injection (HPDI) nonpremixed H2 combustion. Experimentally validated 3D CFD simulations are combined with 1D GT-Power simulations to make the predictions. Several modifications to the system design and operating conditions are systematically implemented and their effects are investigated. Addition of a catalytic burner in the combustor exhaust insulation of the expander dehumidification of the EGR and removal of the intercooling yielded 1.5 1.3 0.8 and 0.5%-point BTE improvements respectively. Raising the peak pressure to 300 bar via a larger compressor further improved the BTE by 1.8%-points but should be accompanied with a higher injector-cylinder differential pressure. The λ of ~1.4 gave the optimum tradeoff between the mechanical and combustion efficiencies. A peak BTE of 60.3% is reported with H2DCEE which is ~5%-points higher than the best diesel-fueled DCEE alternative.
How Long Will Combustion Vehicles Be Used? Polish Transport Sector on the Pathway to Climate Neutrality
Nov 2021
Publication
Transformation of road transport sector through replacing of internal combustion vehicles with zero-emission technologies is among key challenges to achievement of climate neutrality by 2050. In a constantly developing economy the demand for transport services increases to ensure continuity in the supply chain and passenger mobility. Deployment of electric technologies in the road transport sector involves both businesses and households its pace depends on the technological development of zero-emission vehicles presence of necessary infrastructure and regulations on emission standards for new vehicles entering the market. Thus this study attempts to estimate how long combustion vehicles will be in use and what the state of the fleet will be in 2050. For obtainment of results the TR3E partial equilibrium model was used. The study simulates the future fleet structure in passenger and freight transport. The results obtained for Poland for the climate neutrality (NEU) scenario show that in 2050 the share of vehicles using fossil fuels will be ca. 30% in both road passenger and freight transport. The consequence of shifts in the structure of the fleet is the reduction of CO2 emissions ca. 80% by 2050 and increase of the transport demand for electricity and hydrogen.
Developing New Understanding of Photoelectrochemical Water Splitting Via In-situ Techniques: A Review on Recent Progress
Mar 2014
Publication
Photoelectrochemical (PEC) water splitting is a promising technology for solar hydrogen production to build a sustainable renewable and clean energy economy. Given the complexity of the PEC water splitting processes it is important to note that developing in-situ techniques for studying PEC water splitting presents a formidable challenge. This review is aimed at highlighting advantages and disadvantages of each technique while offering a pathway of potentially combining several techniques to address different aspects of interfacial processes in PEC water splitting. We reviewed recent progress in various techniques and approaches utilized to study PEC water splitting focusing on spectroscopic and scanning-probe methods.
Dynamic Modeling of a PEM Fuel Cell Power Plant for Flexibility Optimization and Grid Support
Jun 2022
Publication
The transition toward high shares of non-programmable renewable energy sources in the power grid requires an increase in the grid flexibility to guarantee grid reliability and stability. This work developed within the EU project Grasshopper identifies hydrogen Fuel Cell (FC) power plants based on low temperature PEM cells as a source of flexibility for the power grid. A dynamic numerical model of the flexible FC system is developed and tested against experimental data from a 100-kW pilot plant built within the Grasshopper project. The model is then applied to assess the flexible performance of a 1 MW system in order to optimize the scale-up of the pilot plant to the MW-size. Simulations of load-following operation show the flexibility of the plant which can ramp up and down with a ramp rate depending only on an externally imposed limit. Warm-up simulations allow proposing solutions to limit the warm-up time. Of main importance are the minimization of the water inventory in the system and the construction of a compact system which minimizes the distance between the components.
Thermochemical Recuperation to Enable Efficient Ammonia-Diesel Dual-Fuel Combustion in a Compression Ignition Engine
Nov 2021
Publication
A thermochemical recuperation (TCR) reactor was developed and experimentally evaluated with the objective to improve dual-fuel diesel–ammonia compression ignition engines. The novel system simultaneously decomposed ammonia into a hydrogen-containing mixture to allow high diesel fuel replacement ratios and oxidized unburned ammonia emissions in the exhaust overcoming two key shortcomings of ammonia combustion in engines from the previous literature. In the experimental work a multi-cylinder compression ignition engine was operated in dual-fuel mode using intake-fumigated ammonia and hydrogen mixtures as the secondary fuel. A full-scale catalytic TCR reactor was constructed and generated the fuel used in the engine experiments. The results show that up to 55% of the total fuel energy was provided by ammonia on a lower heating value basis. Overall engine brake thermal efficiency increased for modes with a high exhaust temperature where ammonia decomposition conversion in the TCR reactor was high but decreased for all other modes due to poor combustion efficiency. Hydrocarbon and soot emissions were shown to increase with the replacement ratio for all modes due to lower combustion temperatures and in-cylinder oxidation processes in the late part of heat release. Engine-out oxides of nitrogen (NOx) emissions decreased with increasing diesel replacement levels for all engine modes. A higher concentration of unburned ammonia was measured in the exhaust with increasing replacement ratios. This unburned ammonia predominantly oxidized to NOx species over the oxidation catalyst used within the TCR reactor. Ammonia substitution thus increased post-TCR reactor ammonia and NOx emissions in this work. The results show however that engine-out NH3 -to-NOx ratios were suitable for passive selective catalytic reduction thus demonstrating that both ammonia and NOx from the engine could be readily converted to N2 if the appropriate catalyst were used in the TCR reactor.
Combustion Characterization in a Diffusive Gas Turbine Burner for Hydrogen-Compliant Applications
Jun 2022
Publication
The target of net-zero emissions set by the 2015 Paris Agreement has strongly commissioned the energy production sector to promote decarbonization renewable sources exploitation and systems efficiency. In this framework the utilization of hydrogen as a long-term energy carrier has great potential. This paper is concerned with the combustion characterization in a non-premixed gas turbine burner originally designed for natural gas when it is fed with NG-H2 blends featuring hydrogen content from 0 to 50% in volume. The final aim is to retrofit a 40 MW gas turbine. Starting from the operational data of the engine a CFD model of the steady-state combustion process has been developed with reference to the base load NG conditions by reducing the fuel mass-flow rate by up to 17% to target the baseline turbine inlet temperature. When the fuel is blended with hydrogen for a given temperature at turbine inlet an increase in the peak temperature up to 800 K is obtained if no countermeasures are taken. Furthermore the flame results are more intense and closer to the injector in the case of hydrogen blending. The results of this work hint at the necessity of carefully analyzing the possible NOx compensation strategies as well as the increased thermal stresses on the injector.
Integrated Energy System Powered a Building in Sharjah Emirates in the United Arab Emirates
Jan 2023
Publication
In this study a green hydrogen system was studied to provide electricity for an office building in the Sharjah emirate in the United Arab Emirates. Using a solar PV a fuel cell a diesel generator and battery energy storage; a hybrid green hydrogen energy system was compared to a standard hybrid system (Solar PV a diesel generator and battery energy storage). The results show that both systems adequately provided the power needed for the load of the office building. The cost of the energy for both the basic and green hydrogen energy systems was 0.305 USD/kWh and 0.313 USD/kWh respectively. The cost of the energy for both systems is very similar even though the capital cost of the green hydrogen energy system was the highest value; however the replacement and operational costs of the basic system were higher in comparison to the green hydrogen energy system. Moreover the impact of the basic system in terms of the carbon footprint was more significant when compared with the green hydrogen system. The reduction in carbon dioxide was a 4.6 ratio when compared with the basic system.
Artificial Intelligence-Based Machine Learning toward the Solution of Climate-Friendly Hydrogen Fuel Cell Electric Vehicles
Jul 2022
Publication
The rapid conversion of conventional powertrain technologies to climate-neutral new energy vehicles requires the ramping of electrification. The popularity of fuel cell electric vehicles with improved fuel economy has raised great attention for many years. Their use of green hydrogen is proposed to be a promising clean way to fill the energy gap and maintain a zero-emission ecosystem. Their complex architecture is influenced by complex multiphysics interactions driving patterns and environmental conditions that put a multitude of power requirements and boundary conditions around the vehicle subsystems including the fuel cell system the electric motor battery and the vehicle itself. Understanding its optimal fuel economy requires a systematic assessment of these interactions. Artificial intelligence-based machine learning methods have been emerging technologies showing great potential for accelerated data analysis and aid in a thorough understanding of complex systems. The present study investigates the fuel economy peaks during an NEDC in fuel cell electric vehicles. An innovative approach combining traditional multiphysics analyses design of experiments and machine learning is an effective blend for accelerated data supply and analysis that accurately predicts the fuel consumption peaks in fuel cell electric vehicles. The trained and validated models show very accurate results with less than 1% error.
Hybrid Power Management Strategy with Fuel Cell, Battery, and Supercapacitor for Fuel Economy in Hybrid Electric Vehicle Application
Jun 2022
Publication
The power management strategy (PMS) is intimately linked to the fuel economy in the hybrid electric vehicle (HEV). In this paper a hybrid power management scheme is proposed; it consists of an adaptive neuro-fuzzy inference method (ANFIS) and the equivalent consumption minimization technique (ECMS). Artificial intelligence (AI) is a key development for managing power among various energy sources. The hybrid power supply is an eco-acceptable system that includes a proton exchange membrane fuel cell (PEMFC) as a primary source and a battery bank and ultracapacitor as electric storage systems. The Haar wavelet transform method is used to calculate the stress (σ) on each energy source. The proposed model is developed in MATLAB/Simulink software. The simulation results show that the proposed scheme meets the power demand of a typical driving cycle i.e. Highway Fuel Economy Test Cycle (HWFET) and Worldwide Harmonized Light Vehicles Test Procedures (WLTP—Class 3) for testing the vehicle performance and assessment has been carried out for various PMS based on the consumption of hydrogen overall efficiency state of charge of ultracapacitors and batteries stress on hybrid sources and stability of the DC bus. By combining ANFIS and ECMS the consumption of hydrogen is minimized by 8.7% compared to the proportional integral (PI) state machine control (SMC) frequency decoupling fuzzy logic control (FDFLC) equivalent consumption minimization strategy (ECMS) and external energy minimization strategy (EEMS).
Evolutions in Hydrogen and Fuel Cell Standardization: The HarmonHy Experience
Dec 2007
Publication
HarmonHy is a European Union-funded Specific Support Action aiming to make an assessment of the activities on hydrogen and fuel cell regulations codes and standards (RCS) on a worldwide level. On this basis gaps have been identified and potential conflicts between regulations codes and standards have been investigated. Types of document to be referred to include international regional and national standards EU directives UNECE regulations… Particular attention will be paid to the identification of the needs for standards as perceived by the industry as well as to actions aiming to ensure concordance between standards codes and regulations. Standards and regulations require harmonization. HarmonHy pursues the elaboration of an action plan and a roadmap for future work on harmonizing regulations codes and standards on hydrogen and fuel cells on an international level.
Everything About Hydrogen Podcast: Why the Fuel Cell World is Different This Time
Aug 2019
Publication
The fuel cell game is not new and for many it is has been a long time coming. Few know this better than Ballard Power Systems the third ever founded Fuel Cell company that has operated since the 1970s. On the show we ask Nicolas Pocard about Ballards history and why this time the market is different for fuel cell companies.
The podcast can be found on their website
The podcast can be found on their website
How to Decarbonise the UKs Freight Sector by 2050
Dec 2020
Publication
To achieve the UK’s net zero target vehicles including heavy-duty vehicles (HDVs) will need to be entirely decarbonised. The UK government has announced that it plans to phase out the sale of all new cars and vans with engines between 2030 and 2035. It has also announced its intention to consult on a similar phase-out for diesel-powered heavy-goods vehicles (HGVs). This study analyses policies and technologies which can contribute to the decarbonisation of the UK's inland freight sector.
It comprises an emissions modelling exercise and a cost analysis for total cost of ownership (TCO) of long-haul trucks. The study shows that for urban and regional deliveries battery electric trucks offer the best option to decarbonise. It also shows that battery electric trucks and those using an overhead catenary infrastructure are likely to be the most cost-effective pathway to decarbonise long-haul trucks by 2050 but that renewable hydrogen could also be an option.
Link to Document Download on Transport & Environment website
It comprises an emissions modelling exercise and a cost analysis for total cost of ownership (TCO) of long-haul trucks. The study shows that for urban and regional deliveries battery electric trucks offer the best option to decarbonise. It also shows that battery electric trucks and those using an overhead catenary infrastructure are likely to be the most cost-effective pathway to decarbonise long-haul trucks by 2050 but that renewable hydrogen could also be an option.
Link to Document Download on Transport & Environment website
Proton Exchange Membrane Hydrogen Fuel Cell as the Grid Connected Power Generator
Dec 2020
Publication
In this paper a proton exchange membrane fuel cell (PEMFC) is implemented as a grid-connected electrical generator that uses hydrogen gas as fuel and air as an oxidant to produce electricity through electrochemical reactions. Analysis demonstrated that the performance of the PEMFC greatly depends on the rate of fuel supply and air supply pressure. Critical fuel and air supply pressures of the PEMFC are analysed to test its feasibility for the grid connection. Air and fuel supply pressures are varied to observe the effects on the PEMFC characteristics efficiency fuel supply and air consumption over time. The PEMFC model is then implemented into an electrical power system with the aid of power electronics applications. Detailed mathematical modelling of the PEMFC is discussed with justification. The PEMFC functions as an electrical generator that is connected to the local grid through a power converter and a transformer. Modulation of the converter is controlled by means of a proportional-integral controller. The two-axis control methodology is applied to the current control of the system. The output voltage waveform and control actions of the controller on the current and frequency of the proposed system are plotted as well. Simulation results show that the PEMFC performs efficiently under certain air and fuel pressures and it can effectively supply electrical power to the grid.
Hydrogen Emissions from the Hydrogen Value Chain-emissions Profile and Impact to Global Warming
Feb 2022
Publication
Future energy systems could rely on hydrogen (H2) to achieve decarbonisation and net-zero goals. In a similar energy landscape to natural gas H2 emissions occur along the supply chain. It has been studied how current gas infrastructure can support H2 but there is little known about how H2 emissions affect global warming as an indirect greenhouse gas. In this work we have estimated for the first time the potential emission profiles (g CO2eq/MJ H2HHV) of H2 supply chains and found that the emission rates of H2 from H2 supply chains and methane from natural gas supply are comparable but the impact on global warming is much lower based on current estimates. This study also demonstrates the critical importance of establishing mobile H2 emission monitoring and reducing the uncertainty of short-lived H2 climate forcing so as to clearly address H2 emissions for net-zero strategies.
Research on Economic and Operating Characteristics of Hydrogen Fuel Cell Cars Based on Real Vehicle Tests
Nov 2021
Publication
With the increase of the requirement for the economy of vehicles and the strengthening of the concept of environmental protection the development of future vehicles will develop in the direction of high efficiency and cleanliness and the current power system of vehicles based on traditional fossil fuels will gradually transition to hybrid power. As an essential technological direction for new energy vehicles the development of fuel cell passenger vehicles is of great significance in reducing transportation carbon emissions stabilizing energy supply and maintaining the sustainable development of the automotive industry. To study the fuel economy of a passenger car with the proton exchange membrane fuel cell (PEMFC) during the operating phase two typical PEMFC passenger cars test vehicles A and B were compared and analyzed. The hydrogen consumption and hydrogen emission under two operating conditions namely the different steady-state power and the Chinese Vehicle Driving Conditions-Passenger Car cycle were tested. The test results show the actual hydrogen consumption rates of vehicle A and vehicle B are 9.77 g/kM and 8.28 g/kM respectively. The average hydrogen emission rates for vehicle A and vehicle B are 1.56 g/(kW·h) and 5.40 g/(kW·h) respectively. By comparing the hydrogen purge valve opening time ratio the differences between test vehicles A and B in control strategy hydrogen consumption and emission rate are analyzed. This study will provide reference data for China to study the economics of the operational phase of PEMFC vehicles.
Synergistic Value in Vertically Integrated Power-to-Gas Energy Systems
Oct 2019
Publication
In vertically integrated energy systems integration frequently entails operational gains that must be traded off against the requisite cost of capacity investments. In the context of the model analyzed in this study the operational gains are subject to inherent volatility in both the price and the output of the intermediate product transferred within the vertically integrated structure. Our model framework provides necessary and sufficient conditions for the value (NPV) of an integrated system to exceed the sum of two optimized subsystems on their own. We then calibrate the model in Germany and Texas for systems that combine wind energy with Power-to-Gas (PtG) facilities that produce hydrogen. Depending on the prices for hydrogen in different market segments we find that a synergistic investment value emerges in some settings. In the context of Texas for instance neither electricity generation from wind power nor hydrogen production from PtG is profitable on its own in the current market environment. Yet provided both subsystems are sized optimally in relative terms the attendant operational gains from vertical integration more than compensate for the stand-alone losses of the two subsystems.
Investigation on the Effects of Blending Hydrogen-rich Gas in the Spark-ignition Engine
May 2022
Publication
In order to improve the energy efficiency of the internal combustion engine and replace fossil fuel with alternative fuels a concept of the methanol-syngas engine was proposed and the prototype was developed. Gasoline and dissociated methanol gas (GDM) were used as dual fuels and the engine performance was investigated by simulation and experiments. Dissociated methanol gas is produced by recycling the exhaust heat. The performance and combustion process was studied and compared with the gasoline engine counterpart. There is 1.9% energy efficiency improvement and 5.5% fuel consumption reduction under 2000r/min 100 N · m working condition with methanol substitution ratio of 10%. In addition the engine efficiency further improves with an increase of dissociated methanol gas substitution ratio because of the increased heating value of the fuel and effects of hydrogen. The peak pressure in the cylinder and the peak heat release rate of the GDM engine are higher than that of the original gasoline engine with a phase closer to the top dead center (TDC). Therefore blending hydrogen-rich gas in the spark-ignition engine can recycle the exhaust heat and improve the thermal efficiency of the engine.
Transient Modeling and Performance Analysis of Hydrogen-Fueled Aero Engines
Jan 2023
Publication
With the combustor burning hydrogen as well as the strongly coupled fuel and cooling system the configuration of a hydrogen-fueled aero engine is more complex than that of a conventional aero engine. The performance and especially the dynamic behavior of a hydrogen-fueled aero engine need to be fully understood for engine system design and optimization. In this paper both the transient modeling and performance analysis of hydrogen-fueled engines are presented. Firstly the models specific to the hydrogen-fueled engine components and systems including the hydrogen-fueled combustor the steam injection system a simplified model for a quick NOx emission assessment and the heat exchangers are developed and then integrated to a conventional engine models. The simulations with both Simulink and Speedgoat-based hardware in the loop system are carried out. Secondly the performance analysis is performed for a typical turbofan engine configuration CF6 and for the two hydrogen-fueled engine configurations ENABLEH2 and HySIITE which are currently under research and development by the European Union and Pratt & Whitney respectively. At last the simulation results demonstrate that the developed transient models can effectively reflect the characteristics of hydrogen burning heat exchanging and NOx emission for hydrogen-fueled engines. In most cases the hydrogen-fueled engines show lower specific fuel consumption lower turbine entry temperature and less NOx emissions compared with conventional engines. For example at max thrust state the advanced hydrogen-fueled engine can reduce the parameters mentioned above by about 68.5% 3.7% and 12.7% respectively (a mean value of two configurations).
Integrated Power and Propulsion System Optimization for a Planetary-Hopping Robot
Aug 2022
Publication
Missions targeting the extreme and rugged environments on the moon and Mars have rich potential for a high science return although several risks exist in performing these exploration missions. The current generation of robots is unable to access these high-priority targets. We propose using teams of small hopping and rolling robots called SphereX that are several kilograms in mass and can be carried by a large rover or lander and tactically deployed for exploring these extreme environments. Considering that the importance of minimizing the mass and volume of these robot platforms translates into significant mission-cost savings we focus on the optimization of an integrated power and propulsion system for SphereX. Hydrogen is used as fuel for its high energy and it is stored in the form of lithium hydride and oxygen in the form of lithium perchlorate. The system design undergoes optimization using Genetic Algorithms integrated with gradient-based search techniques to find optimal solutions for a mission. Our power and propulsion system as we show in this paper is enabling because the robots can travel long distances to perform science exploration by accessing targets not possible with conventional systems. Our work includes finding the optimal mass and volume of SphereX such that it can meet end-to-end mission requirements.
Design and Implementation of an Intelligent Energy Management System for Smart Home Utilizing a Multi-agent System
Jul 2022
Publication
Green Hydrogen Microgrid System has been selected as a source of clean and renewable alternative energy because it is undergoing a global revolution and has been identified as a source of clean energy that may aid the country in achieving net-zero emissions in the coming years. The study proposes an innovative Microgrid Renewable hybrid system to achieve these targets. The proposed hybrid renewable energy system combines a photovoltaic generator (PVG) a fuel cell (FC) a supercapacitor (SC) and a home vehicle power supply (V2H) to provide energy for a predefined demand. The proposed architecture is connected to the grid and is highly dependent on solar energy during peak periods. During the night or shading period it uses FC as a backup power source. The SC assists the FC with high charge power. SC performs this way during load transients or quick load changes. A multi-agent system (MAS) was used to build a real energy management system (RT-HEMS) for intelligent coordination between components (MAS). The scheduling algorithm reduces energy consumption by managing the required automation devices without the need for additional network power. It will meet household energy requirements regardless of weather conditions including bright cloudy or rainy conditions. Implementation and discussion of the RT-HEMS ensures that the GHS is functioning properly and that the charge request is satisfied.
Powertrain Design and Energy Management Strategy Optimization for a Fuel Cell Electric Intercity Coach in an Extremely Cold Mountain Area
Sep 2022
Publication
Facing the challenge that the single-motor electric drive powertrain cannot meet the continuous uphill requirements in the cold mountainous area of the 2022 Beijing Winter Olympics the manuscript adopted a dual-motor coupling technology. Then according to the operating characteristics and performance indicators of the fuel cell (FC)–traction battery hybrid power system the structure design and parameter matching of the vehicle power system architecture were carried out to improve the vehicle’s dynamic performance. Furthermore considering the extremely cold conditions in the Winter Olympics competition area and the poor low-temperature tolerance of core components of fuel cell electric vehicles (FCEV) under extremely cold conditions such as the reduced capacity and service life of traction batteries caused by the rapid deterioration of charging and discharging characteristics the manuscript proposed a fuzzy logic control-based energy management strategy (EMS) optimization method for the proton exchange membrane fuel cell (PEMFC) to reduce the power fluctuation hydrogen consumption and battery charging/discharging times and at the same time to ensure the hybrid power system meets the varying demand under different conditions. In addition the performance of the proposed approach was investigated and validated in an intercity coach in real-world driving conditions. The experimental results show that the proposed powertrain with an optimal control strategy successfully alleviated the fluctuation of vehicle power demand reduced the battery charging/discharging times of traction battery and improved the energy efficiency by 20.7%. The research results of this manuscript are of great significance for the future promotion and application of fuel cell electric coaches in all climate environments especially in an extremely cold mountain area.
Production of High-purity Hydrogen from Paper Recycling Black Liquor via Sorption Enhanced Steam Reforming
Jul 2020
Publication
Environmentally friendly and energy saving treatment of black liquor (BL) a massively produced waste in Kraft papermaking process still remains a big challenge. Here by adopting a Ni-CaO-Ca12Al14O33 bifunctional catalyst derived from hydrotalcite-like materials we demonstrate the feasibility of producing high-purity H2 (∼96%) with 0.9 mol H2 mol-1 C yield via the sorption enhanced steam reforming (SESR) of BL. The SESRBL performance in terms of H2 production maintained stable for 5 cycles but declined from the 6th cycle. XRD Raman spectroscopy elemental analysis and energy dispersive techniques were employed to rationalize the deactivation of the catalyst. It was revealed that gradual sintering and agglomeration of Ni and CaO and associated coking played important roles in catalyst deactivation and performance degradation of SESRBL while deposition of Na and K from the BL might also be responsible for the declined performance. On the other hand it was demonstrated that the SESRBL process could effectively reduce the emission of sulfur species by storing it as CaSO3. Our results highlight a promising alternative for BL treatment and H2 production thereby being beneficial for pollution control and environment governance in the context of mitigation of climate change.
Progress in Electrical Energy Storage System: A Critical Review
Jan 2009
Publication
Electrical energy storage technologies for stationary applications are reviewed. Particular attention is paid to pumped hydroelectric storage compressed air energy storage battery flow battery fuel cell solar fuel superconducting magnetic energy storage flywheel capacitor/supercapacitor and thermal energy storage. Comparison is made among these technologies in terms of technical characteristics applications and deployment status.
A Preliminary Study on an Alternative Ship Propulsion System Fueled by Ammonia: Environmental and Economic Assessments
Mar 2020
Publication
The shipping industry is becoming increasingly aware of its environmental responsibilities in the long-term. In 2018 the International Maritime Organization (IMO) pledged to reduce greenhouse gas (GHG) emissions by at least 50% by the year 2050 as compared with a baseline value from 2008. Ammonia has been regarded as one of the potential carbon-free fuels for ships based on these environmental issues. In this paper we propose four propulsion systems for a 2500 Twenty-foot Equivalent Unit (TEU) container feeder ship. All of the proposed systems are fueled by ammonia; however different power systems are used: main engine generators polymer electrolyte membrane fuel cell (PEMFC) and solid oxide fuel cell (SOFC). Further these systems are compared to the conventional main engine propulsion system that is fueled by heavy fuel oil with a focus on the economic and environmental perspectives. By comparing the conventional and proposed systems it is shown that ammonia can be a carbon-free fuel for ships. Moreover among the proposed systems the SOFC power system is the most eco-friendly alternative (up to 92.1%) even though it requires a high lifecycle cost than the others. Although this study has some limitations and assumptions the results indicate a meaningful approach toward solving GHG problems in the maritime industry.
A Zero Carbon Route to the Supply of High-temperature Heat Through the Integration of Solid Oxide Electrolysis Cells and H2–O2 Combustion
Aug 2022
Publication
Previously suggested options to achieve carbon neutrality involve the use of fossil fuels with carbon capture or exploiting biomass as sources of energy. Industrial high-temperature heating could possibly exploit electrical heating or combustion using hydrogen. However it is difficult to replace all the current coal or natural gas furnaces with these options for chemical industry. In this work a method that integrates solid oxide electrolysis cells (SOEC) and H2–O2 combustion is proposed and the related parameters are modelled to analyze their impacts. There is no waste heat and waste emissions in the proposed option and all substances are recycled. Unlike previous research the heat required for SOEC operation is generated from H2 combustion. The best working condition is under thermoneutral voltage and the highest electricity-to-thermal efficiency that can be achieved is 86.88% under a current density of 12000 A/m2 and operating temperature of 750 ◦C. Ohmic overpotential has the greatest effect on electricity consumption and the anode activation overpotential is the second most important option. Increasing combustion product temperature cannot significantly improve thermal efficiency but can raise the available maximum thermal energy.
Iron as Recyclable Energy Carrier: Feasibility Study and Kinetic Analysis of Iron Oxide Reduction
Oct 2022
Publication
Carbon-free and sustainable energy storage solutions are required to mitigate climate change. One possible solution especially for stationary applications could be the storage of energy in metal fuels. Energy can be stored through reduction of the oxide with green hydrogen and be released by combustion. In this work a feasibility study for iron as possible metal fuel considering the complete energy cycle is conducted. Based on equilibrium calculations it could be shown that the power-to-power efficiency of the iron/iron oxide cycle is 27 %. As technology development requires a more detailed description of both the reduction and the oxidation a first outlook is given on the kinetic analysis of the reduction of iron oxides with hydrogen. Based on thermogravimetric experiments using Fe2O3 Fe3O4 and FeO it could be shown that the reduction is a three-step process. The maximum reduction rate can be achieved with a hydrogen content of 25 %. Based on the experimental results a reaction mechanism and accompanied kinetic data were developed for description of Fe2O3 reduction with H2 under varying experimental conditions.
An Extensive Review of Liquid Hydrogen in Transportation with Focus on the Maritime Sector
Sep 2022
Publication
The European Green Deal aims to transform the EU into a modern resource-efficient and competitive economy. The REPowerEU plan launched in May 2022 as part of the Green Deal reveals the willingness of several countries to become energy independent and tackle the climate crisis. Therefore the decarbonization of different sectors such as maritime shipping is crucial and may be achieved through sustainable energy. Hydrogen is potentially clean and renewable and might be chosen as fuel to power ships and boats. Hydrogen technologies (e.g. fuel cells for propulsion) have already been implemented on board ships in the last 20 years mainly during demonstration projects. Pressurized tanks filled with gaseous hydrogen were installed on most of these vessels. However this type of storage would require enormous volumes for large long-range ships with high energy demands. One of the best options is to store this fuel in the cryogenic liquid phase. This paper initially introduces the hydrogen color codes and the carbon footprints of the different production techniques to effectively estimate the environmental impact when employing hydrogen technologies in any application. Afterward a review of the implementation of liquid hydrogen (LH2 ) in the transportation sector including aerospace and aviation industries automotive and railways is provided. Then the focus is placed on the maritime sector. The aim is to highlight the challenges for the adoption of LH2 technologies on board ships. Different aspects were investigated in this study from LH2 bunkering onboard utilization regulations codes and standards and safety. Finally this study offers a broad overview of the bottlenecks that might hamper the adoption of LH2 technologies in the maritime sector and discusses potential solutions.
Effects of Compression Ratios on Combustion and Emission Characteristics of SI Engine Fueled with Hydrogen-Enriched Biogas Mixture
Aug 2022
Publication
The effects of hydrogen-enriched biogas on combustion and emissions of a dual-fuel sparkignition engine with different hydrogen concentration ratios were studied numerically. A 1-cylinder spark ignition was used to perform a numerical simulation. To reveal the influence of the compression ratios on combustion and emissions of a gaseous engine the crankshaft of the engine was modified to generate different compression ratios of 8.5 9.0 9.4 10.0 and 10.4. The biogas contained 60 and 40% methane (CH4 ) and carbon dioxide (CO2 ) respectively while the hydrogen fractions used to enrich biogas were 10 20 and 30% of the mixture by volume. The ignition timing is fixed at 350 CA◦ . The results indicate that the in-cylinder pressure combustion temperature and combustion burning speed increase gradually with increasing hydrogen concentration due to the combustion characteristics of hydrogen in blends. As increasing the compression ratio NOx emissions increase proportionally while CO2 emissions decrease gradually. Almost no combustion process occurs as operating the compression ratio below 8.5 when using pure biogas. However adding 20% of hydrogen fraction could improve the combustion process significantly even at a low compression ratio.
Sizing and Performance Analysis of Hydrogen- and Battery-Based Powertrains, Integrated into a Passenger Train for a Regional Track, Located in Calabria (Italy)
Aug 2022
Publication
In order to decarbonize the rail industry the development of innovative locomotives with the ability to use multiple energy sources constituting hybrid powertrains plays a central role in transitioning from conventional diesel trains. In this paper four configurations based on suitable combinations of fuel cells and/or batteries are designed to replace or supplement a diesel/overhead line powertrain on a real passenger train (the Hitachi Blues) tested on an existing regional track the Catanzaro Lido–Reggio Calabria line (Italy) managed by Trenitalia SpA. (Italy). The configurations (namely battery–electrified line full-battery fuel cell–battery–electrified line and fuel cell–battery) are first sized with the intention of completing a round trip then integrated on board with diesel engine replacement in mind and finally occupy a portion of the passenger area within two locomotives. The achieved performance is thoroughly examined in terms of fuel cell efficiency (greater than 47%) hydrogen consumption (less than 72 kg) braking energy recovery (approximately 300 kWh) and battery interval SOC.
Detection of Contaminants in Hydrogen Fuel for Fuel Cell Electrical Vehicles with Sensors—Available Technology, Testing Protocols and Implementation Challenges
Dec 2021
Publication
Europe’s low-carbon energy policy favors a greater use of fuel cells and technologies based on hydrogen used as a fuel. Hydrogen delivered at the hydrogen refueling station must be compliant with requirements stated in different standards. Currently the quality control process is performed by offline analysis of the hydrogen fuel. It is however beneficial to continuously monitor at least some of the contaminants onsite using chemical sensors. For hydrogen quality control with regard to contaminants high sensitivity integration parameters and low cost are the most important requirements. In this study we have reviewed the existing sensor technologies to detect contaminants in hydrogen then discussed the implementation of sensors at a hydrogen refueling stations described the state-of-art in protocols to perform assessment of these sensor technologies and finally identified the gaps and needs in these areas. It was clear that sensors are not yet commercially available for all gaseous contaminants mentioned in ISO14687:2019. The development of standardized testing protocols is required to go hand in hand with the development of chemical sensors for this application following a similar approach to the one undertaken for air sensors.
A Novel Remaining Useful Life Prediction Method for Hydrogen Fuel Cells Based on the Gated Recurrent Unit Neural Network
Jan 2022
Publication
The remaining useful life (RUL) prediction for hydrogen fuel cells is an important part of its prognostics and health management (PHM). Artificial neural networks (ANNs) are proven to be very effective in RUL prediction as they do not need to understand the failure mechanisms behind hydrogen fuel cells. A novel RUL prediction method for hydrogen fuel cells based on the gated recurrent unit ANN is proposed in this paper. Firstly the data were preprocessed to remove outliers and noises. Secondly the performance of different neural networks is compared including the back propagation neural network (BPNN) the long short-term memory (LSTM) network and the gated recurrent unit (GRU) network. According to our proposed method based on GRU the root mean square error was 0.0026 the mean absolute percentage error was 0.0038 and the coefficient of determination was 0.9891 for the data from the challenge datasets provided by FCLAB Research Federation when the prediction starting point was 650 h. Compared with the other RUL prediction methods based on the BPNN and the LSTM our prediction method is better in both prediction accuracy and convergence rate.
Solar Power and Energy Storage for Decarbonization of Land Transport in India
Dec 2021
Publication
By considering the weight penalty of batteries on payload and total vehicle weight this paper shows that almost all forms of land-based transport may be served by battery electric vehicles (BEV) with acceptable cost and driving range. Only long-distance road freight is unsuitable for battery electrification. The paper models the future Indian electricity grid supplied entirely by low-carbon forms of generation to quantify the additional solar PV power required to supply energy for transport. Hydrogen produced by water electrolysis for use as a fuel for road freight provides an inter-seasonal energy store that accommodates variations in renewable energy supply. The advantages and disadvantages are considered of midday electric vehicle charging vs. overnight charging considering the temporal variations in supply of renewable energy and demand for transport services. There appears to be little to choose between these two options in terms of total system costs. The result is an energy scenario for decarbonized surface transport in India based on renewable energy that is possible realistically achievable and affordable in a time frame of year 2050.
Technical and Commercial Challenges of Proton-Exchange Membrane (PEM) Fuel Cells
Dec 2020
Publication
This review critically evaluates the latest trends in fuel cell development for portable and stationary fuel cell applications and their integration into the automotive industry. Fast start-up high efficiency no toxic emissions into the atmosphere and good modularity are the key advantages of fuel cell applications. Despite the merits associated with fuel cells the high cost of the technology remains a key factor impeding its widespread commercialization. Therefore this review presents detailed information into the best operating conditions that yield maximum fuel cell performance. The paper recommends future research geared towards robust fuel cell geometry designs as this determines the cell losses and material characterization of the various cell components. When this is done properly it will support a total reduction in the cost of the cell which in effect will reduce the total cost of the system. Despite the strides made by the fuel cell research community there is a need for public sensitization as some people have reservations regarding the safety of the technology. This hurdle can be overcome if there is a well-documented risk assessment which also needs to be considered in future research activities.
Performance Analysis of a Flexi-Fuel Turbine-Combined Free-Piston Engine Generator
Jul 2019
Publication
The turbine-combined free-piston engine generator (TCFPEG) is a hybrid machine generating both mechanical work from the gas turbine and electricity from the linear electric generator for battery charging. In the present study the system performance of the designed TCFPEG system is predicted using a validated numerical model. A parametric analysis is undertaken based on the influence of the engine load valve timing the number of linear generators adopted and different fuels on the system performance. It is found that when linear electric generators are connected with the free-piston gas turbine the bottom dead centre the peak piston velocity and engine operation frequency are all reduced. Very minimal difference on the in-cylinder pressure and the compressor pressure is observed while the peak pressure in the bounce chamber is reduced. When coupled with a linear electric generator the system efficiency can be improved to nearly 50% by optimising engine load and the number of the linear generators adopted in the TCFPEG system. The system is able to be operated with different fuels as the piston is not limited by a mechanical system; the output power and system efficiency are highest when hydrogen is used as the fuel.
Optimization of Energy Management Strategy for Fuel Cell Hybrid Electric Vehicles Based on Dynamic Programming
Jun 2022
Publication
Fuel cell hybrid electric vehicles have attracted a large amount of attention in recent years owing to their advantages of zero emissions high efficiency and low noise. To improve the fuel economy and system durability of vehicles this paper proposes an energy management strategy optimization method for fuel cell hybrid electric vehicles based on dynamic programming. Rule-based and dynamic-programming-based strategies are developed based on building a fuel cell/battery hybrid system model. The rule-based strategy is improved with a power distribution scheme of dynamic programming strategy to improve the fuel economy of the vehicle. Furthermore a limit on the rate of change of the output power of the fuel cell system is added to the rule-based strategy to avoid large load changes to improve the durability of the fuel cell. The simulation results show that the equivalent 100 km hydrogen consumption of the strategy based on the dynamic programming optimization rules is reduced by 6.46% compared with that before the improvement and by limiting the rate of change of the output power of the fuel cell system the times of large load changes are reduced. Therefore the strategy based on the dynamic programming optimization rules effectively improves the fuel economy and system durability of vehicles.
Fuel Cell Solution for Marine Applications
Sep 2021
Publication
With future regulations on the horizon port authorities and ship owners/operators are looking at alternative propulsion solutions to reduce emission. Fuel cell technology provides an attractive zeroemission solution to generate electric power on board using hydrogen as a fuel. Fuel cell systems are scalable from 200kW to multi-MW providing high efficiency dispatchable clean quiet power generation. Several innovative pilot projects are on the way to demonstrate the marine application of this proven technology. Electrification of propulsion systems is advancing and fuel cell technology provides the opportunity to produce on board large quantity of power with zero-emission using hydrogen as a fuel. We will present the value proposition of having a fuel cell power generator on board of an electric vessel while discussing the safety considerations with the fuel cell module and the onboard fuel storage. We will present some of our current fuel cell marine projects and review some of the product development considerations including system architecture and safety as well as hydrogen supply and on-board fuel storage.
Modeling Hydrogen Refueling Infrastructure to Support Passenger Vehicles
May 2018
Publication
The year 2014 marked hydrogen fuel cell electric vehicles (FCEVs) first becoming commercially available in California where significant investments are being made to promote the adoption of alternative transportation fuels. A refueling infrastructure network that guarantees adequate coverage and expands in line with vehicle sales is required for FCEVs to be successfully adopted by private customers. In this paper we provide an overview of modelling methodologies used to project hydrogen refueling infrastructure requirements to support FCEV adoption and we describe in detail the National Renewable Energy Laboratory’s scenario evaluation and regionalization analysis (SERA) model. As an example we use SERA to explore two alternative scenarios of FCEV adoption: one in which FCEV deployment is limited to California and several major cities in the United States; and one in which FCEVs reach widespread adoption becoming a major option as passenger vehicles across the entire country. Such scenarios can provide guidance and insights for efforts required to deploy the infrastructure supporting transition toward different levels of hydrogen use as a transportation fuel for passenger vehicles in the United States.
Sustainable Aviation—Hydrogen Is the Future
Jan 2022
Publication
As the global search for new methods to combat global warming and climate change continues renewable fuels and hydrogen have emerged as saviours for environmentally polluting industries such as aviation. Sustainable aviation is the goal of the aviation industry today. There is increasing interest in achieving carbon-neutral flight to combat global warming. Hydrogen has proven to be a suitable alternative fuel. It is abundant clean and produces no carbon emissions but only water after use which has the potential to cool the environment. This paper traces the historical growth and future of the aviation and aerospace industry. It examines how hydrogen can be used in the air and on the ground to lower the aviation industry’s impact on the environment. In addition while aircraft are an essential part of the aviation industry other support services add to the overall impact on the environment. Hydrogen can be used to fuel the energy needs of these services. However for hydrogen technology to be accepted and implemented other issues such as government policy education and employability must be addressed. Improvement in the performance and emissions of hydrogen as an alternative energy and fuel has grown in the last decade. However other issues such as the storage and cost and the entire value chain require significant work for hydrogen to be implemented. The international community’s alternative renewable energy and hydrogen roadmaps can provide a long-term blueprint for developing the alternative energy industry. This will inform the private and public sectors so that the industry can adjust its plan accordingly.
Numerical Simulation on Pressure Dynamic Response Characteristics of Hydrogen Systems for Fuel Cell Vehicles
Mar 2022
Publication
A proton exchange membrane fuel cell (PEMFC) is known as one of the most promising energy sources for electric vehicles. A hydrogen system is required to provide hydrogen to the stack in time to meet the flow and pressure requirements according to the power requirements. In this study a 1-D model of a hydrogen system including the fuel cell stack was established. Two modes one with and one without a proportion integration differentiation (PID) control strategy were applied to analyze the pressure characteristics and performance of the PEMFC. The results showed that the established model could be well verified with experimental data. The anode pressure fluctuation with a PID control strategy was more stable which reduced the damage to the fuel cell stack caused by sudden changes of anode pressure. In addition the performance of the stack with the PID control mode was slightly improved. There was an inflection point for hydrogen utilization; the hydrogen utilization rate was higher under the mode without PID control when the current density was greater than 0.4 A/cm2 . What is more a hierarchical control strategy was proposed which made the pressure difference between the anode and cathode meet the stack working requirements and more importantly maintained the high hydrogen utilization of the hydrogen system.
Review on the Safe Use of Ammonia Fuel Cells in the Maritime Industry
May 2021
Publication
In April 2018 the International Maritime Organisation adopted an ambitious plan to contribute to the global efforts to reduce the Greenhouse Gas emissions as set by the Paris Agreement by targeting a 50% reduction in shipping’s Green House Gas emissions by 2050 benchmarked to 2008 levels. To meet these challenging goals the maritime industry must introduce environmentally friendly fuels with negligible or low SOX NOX and CO2 emissions. Ammonia use in maritime applications is considered promising due to its high energy density low flammability easy storage and low production cost. Moreover ammonia can be used as fuel in a variety of propulsors such as fuel cells and can be produced from renewable sources. As a result ammonia can be used as a versatile marine fuel exploiting the existing infrastructure and having zero SOX and CO2 emissions. However there are several challenges to overcome for ammonia to become a compelling fuel towards the decarbonisation of shipping. Such factors include the selection of the appropriate ammonia-fuelled power generator the selection of the appropriate system safety assessment tool and mitigating measures to address the hazards of ammonia. This paper discusses the state-of-the-art of ammonia fuelled fuel cells for marine applications and presents their potential and challenges.
Effect of Supercharging on Improving Thermal Efficiency and Modifying Combustion Characteristics in Lean-burn Direct-injection Near-zero-emission Hydrogen Engines
Oct 2021
Publication
The authors have proposed a new combustion process called the Plume Ignition Combustion Concept (PCC) in which with an optimal combination of hydrogen injection timing and controlled jet geometry the plume of the hydrogen jet is spark-ignited to accomplish combustion of a rich mixture. This combustion process markedly improves thermal efficiency by reducing cooling loss which is essential for increasing thermal efficiency in a hydrogen engine while maintaining high power. In order to improve thermal efficiency and reduce NOx formation further PCC was applied to a lean-burn regime to burn a leaner mixture globally. In this study the effect of supercharging which was applied to recover the reduced output power due to the leaner mixture on improving thermal efficiency was confirmed along with clarifying the cause.
Recent Developments in High-Performance Nafion Membranes for Hydrogen Fuel Cells Applications
Aug 2021
Publication
As a promising alternative to petroleum fossil energy polymer electrolyte membrane fuel cell has drawn considerable attention due to its low pollution emission high energy density portability and long operation times. Proton exchange membrane (PEM) like Nafion plays an essential role as the core of fuel cell. A good PEM must have satisfactory performance such as high proton conductivity excellent mechanical strength electrochemical stability and suitable for making membrane electrode assemblies (MEA). However performance degradation and high permeability remain the main shortcomings of Nafion. Therefore the development of a new PEM with better performance in some special conditions is greatly desired. In this review we aim to summarize the latest achievements in improving the Nafion performance that works well under elevated temperature or methanol-fueled systems. The methods described in this article can be divided into some categories utilizing hydrophilic inorganic material metal-organic frameworks nanocomposites and ionic liquids. In addition the mechanism of proton conduction in Nafion membranes is discussed. These composite membranes exhibit some desirable characteristics but the development is still at an early stage. In the future revolutionary approaches are needed to accelerate the application of fuel cells and promote the renewal of energy structure.
Numerical Study on Tri-fuel Combustion: Ignition Properties of Hydrogen-enriched Methane-diesel and Methanol-diesel Mixtures
Jan 2020
Publication
Simultaneous and interactive combustion of three fuels with differing reactivities is investigated by numerical simulations. In the present study conventional dual-fuel (DF) ignition phenomena relevant to DF compression ignition (CI) engines are extended and explored in tri-fuel (TF) context. In the present TF setup a low reactivity fuel (LRF) methane or methanol is perfectly mixed with hydrogen and air to form the primary fuel blend at the lean equivalence ratio of 0.5. Further such primary fuel blends are ignited by a high-reactivity fuel (HRF) here n-dodecane under conditions similar to HRF spray assisted ignition. Here ignition is relevant to the HRF containing parts of the tri-fuel mixtures while flame propagation is assumed to occur in the premixed LRF/ containing end gas regions. The role of hydrogen as TF mixture reactivity modulator is explored. Mixing is characterized by n-dodecane mixture fraction ξ and molar ratio . When x < 0.6 minor changes are observed for the first- and second-stage ignition delay time (IDT) of tri-fuel compared to dual-fuel blends (x = 0). For methane when x > 0.6 first- and second-stage IDT increase by factor 1.4–2. For methanol a respective decrease by factor 1.2–2 is reported. Such contrasting trends for the two LRFs are explained by reaction sensitivity analysis indicating the importance of OH radical production/consumption in the ignition process. Observations on LRF/ end gas laminar flame speed () indicate that increases with x due to the highly diffusive features of . For methane increase with x is more significant than for methanol.
Impacts of Load Profiles on the Optimization of Power Management of a Green Building Employing Fuel Cells
Dec 2018
Publication
This paper discusses the performance improvement of a green building by optimization procedures and the influences of load characteristics on optimization. The green building is equipped with a self-sustained hybrid power system consisting of solar cells wind turbines batteries proton exchange membrane fuel cell (PEMFC) electrolyzer and power electronic devices. We develop a simulation model using the Matlab/SimPowerSystemTM and tune the model parameters based on experimental responses so that we can predict and analyze system responses without conducting extensive experiments. Three performance indexes are then defined to optimize the design of the hybrid system for three typical load profiles: the household the laboratory and the office loads. The results indicate that the total system cost was reduced by 38.9% 40% and 28.6% for the household laboratory and office loads respectively while the system reliability was improved by 4.89% 24.42% and 5.08%. That is the component sizes and power management strategies could greatly improve system cost and reliability while the performance improvement can be greatly influenced by the characteristics of the load profiles. A safety index is applied to evaluate the sustainability of the hybrid power system under extreme weather conditions. We further discuss two methods for improving the system safety: the use of sub-optimal settings or the additional chemical hydride. Adding 20 kg of NaBH4 can provide 63 kWh and increase system safety by 3.33 2.10 and 2.90 days for the household laboratory and office loads respectively. In future the proposed method can be applied to explore the potential benefits when constructing customized hybrid power systems.
Bridging the Maritime-Hydrogen Cost-Gap: Real Options Analysis of Policy Alternatives
May 2022
Publication
Alternative and especially renewable marine fuels are needed to reduce the environmental and climate impacts of the shipping sector. This paper investigates the business case for hydrogen as an alternative fuel in a new-built vessel utilizing fuel cells and liquefied hydrogen. A real option approach is used to model the optimal time and costs for investment as well as the value of deferring an investment as a result of uncertainty. This model is then used to assess the impact of a carbon tax on a ship owner’s investment decision. A low carbon tax results in ship owners deferring investments which then slows the uptake of the technology. We recommend that policymakers set a high carbon tax at an early stage in order to help hydrogen compete with fossil fuels. A clear and timely policy design promotes further investments and accelerates the uptake of new technologies that can fulfill decarbonization targets.
PEFC System Reactant Gas Supply Management and Anode Purging Strategy: An Experimental Approach
Jan 2022
Publication
In this report a 5 kW PEFC system running on dry hydrogen with an appropriately sized Balance of Plant (BoP) was used to conduct experimental studies and analyses of gas supply subsystems. The improper rating and use of BoP components has been found to increase parasitic loads which consequently has a direct effect on the polymer electrolyte fuel cell (PEFC) system efficiency. Therefore the minimisation of parasitic loads while maintaining desired performance is crucial. Nevertheless little has been found in the literature regarding experimental work on large stacks and BoP with the majority of papers concentrating on modelling. A particular interest of our study was the anode side of the fuel cell. Additionally the rationale behind the use of hydrogen anode recirculation was scrutinised and a novel anode purging strategy was developed and implemented. Through experimental modelling the use of cathode air blower was minimised since it was found to be the biggest contributor to the parasitic loads.
Combined Ammonia Recovery and Solid Oxide Fuel Cell Use at Wastewater Treatment Plants for Energy and Greenhouse Gas Emission Improvements
Feb 2019
Publication
Current standard practice at wastewater treatment plants (WWTPs) involves the recycling of digestate liquor produced from the anaerobic digestion of sludge back into the treatment process. However a significant amount of energy is required to enable biological breakdown of ammonia present in the liquor. This biological processing also results in the emission of damaging quantities of greenhouse gases making diversion of liquor and recovery of ammonia a noteworthy option for improving the sustainability of wastewater treatment. This study presents a novel process which combines ammonia recovery from diverted digestate liquor for use (alongside biomethane) in a solid oxide fuel cell (SOFC) system for implementation at WWTPs. Aspen Plus V.8.8 and numerical steady state models have been developed using data from a WWTP in West Yorkshire (UK) as a reference facility (750000p.e.). Aspen Plus simulations demonstrate an ability to recover 82% of ammoniacal nitrogen present in digestate liquor produced at the WWTP. The recovery process uses a series of stripping absorption and flash separation units where water is recovered alongside ammonia. This facilitates effective internal steam methane as a case of study has the potential to make significant impacts energetically and environmentally; findings suggest the treatment facility could transform from a net consumer of electricity to a net producer. The SOFC has been demonstrated to run at an electrical efficiency of 48% with NH3 contributing 4.6% of its power output. It has also been demonstrated that 3.5 kg CO2e per person served by the WWTP could be mitigated a year due to a combination of emissions savings by diversion of ammonia from biological processing and lifecycle emissions associated with the lack of reliance on grid electricity.
A Review of Hydrogen as a Fuel in Internal Combustion Engines
Sep 2021
Publication
The demand for fossil fuels is increasing because of globalization and rising energy demands. As a result many nations are exploring alternative energy sources and hydrogen is an efficient and practical alternative fuel. In the transportation industry the development of hydrogen-powered cars aims to maximize fuel efficiency and significantly reduce exhaust gas emission and concentration. The impact of using hydrogen as a supplementary fuel for spark ignition (SI) and compression ignition (CI) engines on engine performance and gas emissions was investigated in this study. By adding hydrogen as a fuel in internal combustion engines the torque power and brake thermal efficiency of the engines decrease while their brake-specific fuel consumption increase. This study suggests that using hydrogen will reduce the emissions of CO UHC CO2 and soot; however NOx emission is expected to increase. Due to the reduction of environmental pollutants for most engines and the related environmental benefits hydrogen fuel is a clean and sustainable energy source and its use should be expanded.
Preference Structure on the Design of Hydrogen Refueling Stations to Activate Energy Transition
Aug 2020
Publication
As a countermeasure to the greenhouse gas problem the world is focusing on alternative fuel vehicles (AFVs). The most prominent alternatives are battery electric vehicles (BEV) and fuel cell electric vehicles (FCEVs). This study examines FCEVs especially considering hydrogen refueling stations to fill the gap in the research. Many studies suggest the important impact that infrastructure has on the diffusion of AFVs but they do not provide quantitative preferences for the design of hydrogen refueling stations. This study analyzes and presents a consumer preference structure for hydrogen refueling stations considering the production method distance probability of failure to refuel number of dispensers and fuel costs as core attributes. For the analysis stated preference data are applied to choice experiments and mixed logit is used for the estimation. Results indicate that the supply stability of hydrogen refueling stations is the second most important attribute following fuel price. Consumers are willing to pay more for green hydrogen compared to gray hydrogen which is hydrogen produced by fossil fuels. Driver fuel type and perception of hydrogen energy influence structure preference. Our results suggest a specific design for hydrogen refueling stations based on the characteristics of user groups.
A Comparison of Steam Reforming Concepts in Solid Oxide Fuel Cell Systems
Mar 2020
Publication
Various concepts have been proposed to use hydrocarbon fuels in solid oxide fuel cell (SOFC) systems. A combination of either allothermal or adiabatic pre-reforming and water recirculation (WR) or anode off-gas recirculation (AOGR) is commonly used to convert the fuel into a hydrogen rich mixture before it is electrochemically oxidised in the SOFC. However it is unclear how these reforming concepts affect the electrochemistry and temperature gradients in the SOFC stack. In this study four reforming concepts based on either allothermal or adiabatic pre-reforming and either WR or AOGR are modelled on both stack and system level. The electrochemistry and temperature gradients in the stack are simulated with a one-dimensional SOFC model and the results are used to calculate the corresponding system efficiencies. The highest system efficiencies are obtained with allothermal pre-reforming and WR. Adiabatic pre-reforming and AOGR result in a higher degree of internal reforming which reduces the cell voltage compared to allothermal pre-reforming and WR. Although this lowers the stack efficiency higher degrees of internal reforming reduce the power consumption by the cathode air blower as well leading to higher system efficiencies in some cases. This illustrates that both stack and system operation need to be considered to design an efficient SOFC system and predict potentially deteriorating temperature gradients in the stack.
An Improved Fuzzy PID Control Method Considering Hydrogen Fuel Cell Voltage-Output Characteristics for a Hydrogen Vehicle Power System
Sep 2021
Publication
The hydrogen fuel cell (HFC) vehicle is an important clean energy vehicle which has prospects for development. The behavior of the hydrogen fuel cell (HFC) vehicle power system and in particular the proton-exchange membrane fuel cell has been extensively studied as of recent. The development of the dynamic system modeling technology is of paramount importance for HFC vehicle studies; however it is hampered by the separation of the electrochemical properties and dynamic properties. In addition the established model matching the follow-up control method lacks applicability. In attempts to counter these obstructions we proposed an improved fuzzy (Proportional Integral Derivative) PID control method considering HFC voltage-output characteristics. By developing both the electrochemical and dynamic model for HFC vehicle we can realize the coordinated control of HFC and power cell. The simulation results are in good agreement with the experimental results in the two models. The proposed control algorithm has a good control effect in all stages of HFC vehicle operation.
Review of IGEM/SR/25 for Use with Hydrogen
Jan 2021
Publication
This report presents the findings of the initial gap analysis and technical review of IGEM/SR/25 undertaken as a collaborative effort between HSE and DNV GL. The review is intended to help understand the steps which would be involved in updating the standard to include data appropriate for installations using H2 or an H2/NG blend. Furthermore the report highlights where additional research and updated data applicable to H2 installations is needed to enable development of an H2-specific supplement to the standard.<br/>A review of alternative approaches for area classification is presented. This review is aimed at determining whether existing standards or guidance provide methodologies which could be used as an alternative to IGEM/SR/25 for area classification of systems using either H2 or H2/NG blends. The review covers IGEM/SR/25 IGE/SR/23 EI15 BCGA guidance BS EN 60079:10:1 (including Quadvent) NFPA 497 API RP 505 and EIGA Doc. 121/14. Some of these are general like the British Standard BS EN 60079-10-1:2015 while others are industry specific like IGEM/SR/25 and EI15.<br/>Consideration is given to the methodology that each area classification approach presents for establishing the zone and zone size with particular focus on how factors such as ventilation and gas buoyancy are accounted for in the methods. The findings of the review indicate that none of the alternative approaches evaluated in the study provide an approach that is suitable for the gas industry for the area classification of gas network installations involving H2 or an H2/NG blend.
Total Cost of Ownership and Its Potential Consequences for the Development of the Hydrogen Fuel Cell Powered Vehicle Market in Poland
Apr 2021
Publication
Electromobility is a growing technology for land transport constituting an important element of the concept of sustainable economic development. The article presents selected research results concerning one of the segments of this market-vehicles powered by hydrogen fuel cells. The subject of the research was to gain extensive knowledge on the economic factors influencing the future purchasing decisions of the demand side in relation to this category of vehicles. The research was based on a numerical experiment. For this purpose a comparative analysis of purchase prices in relation to the TCO of the vehicle after 3–5 years of use was performed. The research included selected models that are powered by both conventional and alternative fuels. The use of this method will allow to assess the real costs associated with the hydrogen vehicle. The authors emphasize the important role of economic factors in the form of the TCO index for the development of this market. The experimental approach may be helpful in understanding the essence of economic relations that affect the development of the electro-mobility market and the market demand for hydrogen fuel cell-powered vehicles in Poland.
Cost-optimal Reliable Power Generation in a Deep Decarbonisation Future
Jul 2019
Publication
Considering the targets of the Paris agreement rapid decarbonisation of the power system is needed. In order to study cost-optimal and reliable zero and negative carbon power systems a power system model of Western Europe for 2050 is developed. Realistic future technology costs demand levels and generator flexibility constraints are considered. The optimised portfolios are tested for both favourable and unfavourable future weather conditions using results from a global climate model accounting for the potential impacts of climate change on Europe’s weather. The cost optimal mix for zero or negative carbon power systems consists of firm low-carbon capacity intermittent renewable energy sources and flexibility capacity. In most scenarios the amount of low-carbon firm capacity is around 75% of peak load providing roughly 65% of the electricity demand. Furthermore it is found that with a high penetration of intermittent renewable energy sources a high dependence on cross border transmission batteries and a shift to new types of ancillary services is required to maintain a reliable power system. Despite relatively small changes in the total generation from intermittent renewable energy sources between favourable and unfavourable weather years of 6% emissions differ up to 70 MtCO2 yr−1 and variable systems costs up to 25%. In a highly interconnected power system with significant flexible capacity in the portfolio and minimal curtailment of intermittent renewables the potential role of green hydrogen as a means of electricity storage appears to be limited.
Stationary Hybrid Renewable Energy Systems for Railway Electrification: A Review
Sep 2021
Publication
This article provides an overview of modern technologies and implemented projects in the field of renewable energy systems for the electrification of railway transport. In the first part the relevance of the use of renewable energy on the railways is discussed. Various types of power-generating systems in railway stations and platforms along the track as well as in separate areas are considered. The focus is on wind and solar energy conversion systems. The second part is devoted to the analysis of various types of energy storage devices used in projects for the electrification of railway transport since the energy storage system is one of the key elements in a hybrid renewable energy system. Systems with kinetic storage electrochemical storage batteries supercapacitors hydrogen energy storage are considered. Particular attention is paid to technologies for accumulating and converting hydrogen into electrical energy as well as hybrid systems that combine several types of storage devices with different ranges of charge/discharge rates. A comparative analysis of various hybrid electric power plant configurations depending on the functions they perform in the electrification systems of railway transport has been carried out.
A Comparison between Fuel Cells and Other Alternatives for Marine Electric Power Generation
Mar 2016
Publication
The world is facing a challenge in meeting its needs for energy. Global energy consumption in the last half-century has increased very rapidly and is expected to continue to grow over the next 50 years. However it is expected to see significant differences between the last 50 years and the next. This paper aims at introducing a good solution to replace or work with conventional marine power plants. This includes the use of fuel cell power plant operated with hydrogen produced through water electrolysis or hydrogen produced from natural gas gasoline or diesel fuels through steam reforming processes to mitigate air pollution from ships.
Up-scalable Emerging Energy Conversion Technologies Enabled by 2D Materials: From Miniature Power Harvesters Towards Grid-connected Energy Systems
May 2021
Publication
Breakthrough discoveries in high-throughput formulation of abundant materials and advanced engineering approaches are both in utter need as prerequisites for developing novel large-scale energy conversion technologies required to address our planet's rising energy demands. Nowadays the rapid deployment of Internet of Things (IoT) associated with a distributed network of power-demanding smart devices concurrently urges for miniaturized systems powered by ambient energy harvesting. Graphene and other related two-dimensional materials (GRM) consist a perfect fit to drive this innovation owing to their extraordinary optoelectronic physical and chemical properties that emerge at the limit of two-dimensions. In this review after a critical analysis of GRM's emerging properties that are beneficial for power generation novel approaches are presented for developing ambient energy conversion devices covering a wide range of scales. Notable examples vary from GRM-enabled large-scale photovoltaic panels and fuel cells smart hydrovoltaics and blue energy conversion routes to miniaturized radio frequency piezoelectric triboelectric and thermoelectric energy harvesters. The insights from this review demonstrate that GRM-enabled energy harvesters apart from enabling the self-powered operation of individual IoT devices have also the potential to revolutionize the way that grid-electricity is provided in the cities of the future. This approach is materialized by two complementary paradigms: cross-coupled integration of GRM into firstly a network consisted of a vast number of miniaturized in-series-connected harvesters and secondly into up-scaled multi-energy hybrid harvesters both approaches having the potential for on-grid energy generation under all-ambient-conditions. At the end of the discussion perspectives on the trends limitations and commercialisation potential of these emerging up-scalable energy conversion technologies are provided. This review aims to highlight the importance of building a network of GRM-based cross-scaled energy conversion systems and their potential to become the guideline for the energy sustainable cities of the future.
Spatially Resolved Model for Studying Decarbonisation Pathways for Heat Supply and Infrastructure Trade-offs
Jun 2017
Publication
Heat decarbonisation is one of the main challenges of energy system decarbonisation. However existing energy planning models struggle to compare heat decarbonisation approaches because they rarely capture trade-offs between heat supply end-use technologies and network infrastructure at sufficient spatial resolution. A new optimisation model is presented that addresses this by including trade-offs between gas electricity and heat infrastructure together with related supply and end-use technologies with high spatial granularity. The model is applied in case studies for the UK. For the case modelled it is shown that electrification of heat is most cost-effective via district level heat pumps that supply heat networks instead of individual building heat pumps. This is because the cost of reinforcing the electricity grid for installing individual heat pumps does not sufficiently offset heat infrastructure costs. This demonstrates the importance of considering infrastructure trade-offs. When modelling the utilisation of a decarbonised gas the penetration of heat networks and location of district level heat supply technologies was shown to be dependent on linear heat density and on zone topology. This shows the importance of spatial aspects. Scenario-specific linear heat density thresholds for heat network penetration were identified. For the base case penetration of high temperature heat networks was over 50% and 60% by 2050 for linear heat densities over 1500 and 2500 kWh/m. For the case when medium heat temperature networks were additionally available a mix of both networks was observed. Medium temperature heat network penetration was over 20% 30% and 40% for linear heat densities of over 1500 2500 and 3000 kWh/m while high temperature heat network penetration was over 20% and 30% for linear heat densities of under 2000 and 1500 kWh/m respectively.
Ammonia–methane Combustion in Tangential Swirl Burners for Gas Turbine Power Generation
Feb 2016
Publication
Ammonia has been proposed as a potential energy storage medium in the transition towards a low-carbon economy. This paper details experimental results and numerical calculations obtained to progress towards optimisation of fuel injection and fluidic stabilisation in swirl burners with ammonia as the primary fuel. A generic tangential swirl burner has been employed to determine flame stability and emissions produced at different equivalence ratios using ammonia–methane blends. Experiments were performed under atmospheric and medium pressurised conditions using gas analysis and chemiluminescence to quantify emission concentrations and OH production zones respectively. Numerical calculations using GASEQ and CHEMKIN-PRO were performed to complement compare with and extend experimental findings hence improving understanding concerning the evolution of species when fuelling on ammonia blends. It is concluded that a fully premixed injection strategy is not appropriate for optimised ammonia combustion and that high flame instabilities can be produced at medium swirl numbers hence necessitating lower swirl and a different injection strategy for optimised power generation utilising ammonia fuel blends.
Demonstration of a kW-scale Solid Oxide Fuel Cell-calciner for Power Generation and Production of Calcined Materials
Aug 2019
Publication
Carbonate looping (CaL) has been shown to be less energy-intensive when compared to mature carbon capture technologies. Further reduction in the efficiency penalties can be achieved by employing a more efficient source of heat for the calcination process instead of oxy-fuel combustion. In this study a kW-scale solid oxide fuel cell (SOFC)-integrated calciner was designed and developed to evaluate the technical feasibility of simultaneously generating power and driving the calcination process using the high-grade heat of the anode off-gas. Such a system can be integrated with CaL systems or employed as a negative-emission technology where the calcines are used to capture CO2 from the atmosphere. The demonstration unit consisted of a planar SOFC stack operating at 750 °C and a combined afterburner/calciner to combust hydrogen slip from the anode off-gas and thermally decompose magnesite dolomite and limestone. The demonstrator generated up to 2 kWelDC power achieved a temperature in the range of 530–550 °C at the inlet of the afterburner and up to 678 °C in the calciner which was sufficient to demonstrate full calcination of magnesite and partial calcination of dolomite. However in order to achieve the temperature required for calcination of limestone further scale-up and heat integration are needed. These results confirmed technical feasibility of the SOFC-calciner concept for production of calcined materials either for the market or for direct air capture (DAC).
Techno-economic Analysis of Freight Railway Electrification by Overhead Line, Hydrogen and Batteries: Case Studies in Norway and USA
Aug 2019
Publication
Two non-electrified railway lines one in Norway and the other in the USA are analysed for their potential to be electrified with overhead line equipment batteries hydrogen or hydrogen-battery hybrid powertrains. The energy requirements are established with single-train simulations including the altitude profiles of the lines air and rolling resistances and locomotive tractive-effort curves. The composition of the freight trains in terms of the number of locomotives battery wagons hydrogen wagons etc. is also calculated by the same model. The different technologies are compared by the criteria of equivalent annual costs benefit–cost ratio payback period and up-front investment based on the estimated techno-economic parameters for years 2020 2030 and 2050. The results indicate the potential of batteries and fuel cells to replace diesel on rail lines with low traffic volumes.
Alternative Energy Technologies as a Cultural Endeavor: A Case Study of Hydrogen and Fuel Cell Development in Germany
Feb 2012
Publication
Background: The wider background to this article is the shift in the energy paradigm from fossil energy sources to renewable sources which should occur in the twenty-first century. This transformation requires the development of alternative energy technologies that enable the deployment of renewable energy sources in transportation heating and electricity. Among others hydrogen and fuel cell technologies have the potential to fulfill this requirement and to contribute to a sustainable and emission-free transport and energy system. However whether they will ever reach broad societal acceptance will not only depend on technical issues alone. The aim of our study is to reveal the importance of nontechnical issues. Therefore the article at hand presents a case study of hydrogen and fuel cells in Germany and aims at highlighting the cultural context that affects their development.<br/>Methods: Our results were obtained from a rich pool of data generated in various research projects through more than 30 in-depth interviews direct observations and document analyses.<br/>Results: We found that individual and collective actors developed five specific supportive practices which they deploy in five diverse arenas of meaning in order to attach certain values to hydrogen and fuel cell technologies.<br/>Conclusions: Based on the results we drew more general conclusions and deducted an overall model for the analysis of culture in technological innovations that is outlined at the end of the article. It constitutes our contribution to the interdisciplinary collaboration required for tackling the shift in this energy paradigm.
Improving Carbon Efficiency and Profitability of the Biomass to Liquid Process with Hydrogen from Renewable Power
Aug 2018
Publication
A process where power and biomass are converted to Fischer-Tropsch liquid fuels (PBtL) is compared to a conventional Biomass-to-Liquid (BtL) process concept. Based on detailed process models it is demonstrated that the carbon efficiency of a conventional Biomass to Liquid process can be increased from 38 to more than 90% by adding hydrogen from renewable energy sources. This means that the amount of fuel can be increased by a factor of 2.4 with the same amount of biomass. Electrical power is applied to split water/steam at high temperature over solid oxide electrolysis cells (SOEC). This technology is selected because part of the required energy can be replaced by available heat. The required electrical power for the extra production is estimated to be 11.6 kWh per liter syncrude (C ) 5+ . By operating the SOEC iso-thermally close to 850 °C the electric energy may be reduced to 9.5 kWh per liter which is close to the energy density of jet fuel. A techno-economic analysis is performed where the total investments and operating costs are compared for the BtL and PBtL. With an electrical power price of 0.05 $/kWh and with SOEC investment cost of the 1000 $/kW(el) the levelized cost of producing advanced biofuel with the PBtL concept is 1.7 $/liter which is approximately 30% lower than for the conventional BtL. Converting excess renewable electric power to advanced biofuel in a PBtL plant is a sensible way of storing energy as a fuel with a relatively high energy density.
Demand Side Management Based Power-to-Heat and Power-to-Gas Optimization Strategies for PV and Wind Self-Consumption in a Residential Building Cluster
Oct 2021
Publication
The volatility of renewable energy sources (RES) poses a growing problem for operation of electricity grids. In contrary the necessary decarbonisation of sectors such as heat supply and transport requires a rapid expansion of RES. Load management in the context of power-to-heat systems can help to simultaneously couple the electricity and heat sectors and stabilise the electricity grid thus enabling a higher share of RES. In addition power-to-hydrogen offers the possibility of long-term energy storage options. Within this work we present a novel optimization approach for heat pump operation with the aim to counteract the volatility and enable a higher usage of RES. For this purpose a detailed simulation model of buildings and their energy supply systems is created calibrated and validated based on a plus energy settlement. Subsequently the potential of optimized operation is determined with regard to PV and small wind turbine self-consumption. In addition the potential of seasonal hydrogen storage is examined. The results show that on a daily basis a 33% reduction of electricity demand from grid is possible. However the average optimization potential is reduced significantly by prediction inaccuracy. The addition of a hydrogen system for seasonal energy storage basically eliminates the carbon dioxide emissions of the cluster. However this comes at high carbon dioxide prevention costs of 1.76 e kg−1 .
Recent Combustion Strategies in Gas Turbines for Propulsion and Power Generation toward a Zero-Emissions Future: Fuels, Burners, and Combustion Techniques
Oct 2021
Publication
The effects of climate change and global warming are arising a new awareness on the impact of our daily life. Power generation for transportation and mobility as well as in industry is the main responsible for the greenhouse gas emissions. Indeed currently 80% of the energy is still produced by combustion of fossil fuels; thus great efforts need to be spent to make combustion greener and safer than in the past. For this reason a review of the most recent gas turbines combustion strategy with a focus on fuels combustion techniques and burners is presented here. A new generation of fuels for gas turbines are currently under investigation by the academic community with a specific concern about production and storage. Among them biofuels represent a trustworthy and valuable solution in the next decades during the transition to zero carbon fuels (e.g. hydrogen and ammonia). Promising combustion techniques explored in the past and then abandoned due to their technological complexity are now receiving renewed attention (e.g. MILD PVC) thanks to their effectiveness in improving the efficiency and reducing emissions of standard gas turbine cycles. Finally many advances are illustrated in terms of new burners developed for both aviation and power generation. This overview points out promising solutions for the next generation combustion and opens the way to a fast transition toward zero emissions power generation.
No more items...