Poland
Total Cost of Ownership and Its Potential Consequences for the Development of the Hydrogen Fuel Cell Powered Vehicle Market in Poland
Apr 2021
Publication
Electromobility is a growing technology for land transport constituting an important element of the concept of sustainable economic development. The article presents selected research results concerning one of the segments of this market-vehicles powered by hydrogen fuel cells. The subject of the research was to gain extensive knowledge on the economic factors influencing the future purchasing decisions of the demand side in relation to this category of vehicles. The research was based on a numerical experiment. For this purpose a comparative analysis of purchase prices in relation to the TCO of the vehicle after 3–5 years of use was performed. The research included selected models that are powered by both conventional and alternative fuels. The use of this method will allow to assess the real costs associated with the hydrogen vehicle. The authors emphasize the important role of economic factors in the form of the TCO index for the development of this market. The experimental approach may be helpful in understanding the essence of economic relations that affect the development of the electro-mobility market and the market demand for hydrogen fuel cell-powered vehicles in Poland.
Multi-Criteria Comparative Analysis of Clean Hydrogen Production Scenarios
Aug 2020
Publication
Different hydrogen production scenarios need to be compared in regard to multiple and often distinct aspects. It is well known that hydrogen production technologies based on environmentally-friendly renewable energy sources have higher values of the economic indicators than methods based on fossil fuels. Therefore how should this decision criterion (environmental) prevail over the other types of decision criteria (technical and economic) to make a scenario where hydrogen production only uses renewable energy sources the most attractive option for a decision-maker? This article presents the results of a multi-variant comparative analysis of scenarios to annually produce one million tons of pure hydrogen (99.999%) via electrolysis in Poland. The compared variants were found to differ in terms of electricity sources feeding the electrolyzers. The research demonstrated that the scenario where hydrogen production uses energy from photovoltaics only becomes the best option for the environmental criterion weighting value at 61%. Taking the aging effect of photovoltaic installation (PV) panels and electrolyzers after 10 years of operation into account the limit value of the environmental criterion rises to 63%. The carried out analyses may serve as the basis for the creation of systems supporting the development of clean and green hydrogen production technologies.
Varying Load Distribution Impacts on the Operation of a Hydrogen Generator Plant
Oct 2021
Publication
This study advances several methods to evaluate the operation of a hydrogen generator plant. The model developed helps customize plants that contain multiple generators of varying powers using a decision module which determines the most efficient plant load distribution. Evaluation indices to assess individual devices within the plant are proposed and system flexibility maximizes the amount of renewable energy stored. Three case studies examined the variable load distribution of an electrolysis system connected to a 40 MW wind farm for energy storage purposes and incorporated a “night-valley” operational strategy. These methods facilitate the selection of the proper plant configuration and provide estimates for individual device effectiveness within the system.
Assessment of the Economic Efficiency of the Operation of Low-Emission and Zero-Emission Vehicles in Public Transport in the Countries of the Visegrad Group
Nov 2021
Publication
Transport is one of the key sectors of the European economy. However the intensive development of transport caused negative effects in the form of an increase in the emission of harmful substances. The particularly dramatic situation took place in the V4 countries. This made it necessary to implement solutions reducing emissions in transport including passenger transport. Such activities can be implemented in the field of implementation of low-emission and zero-emission vehicles for use. That is why the European Union and the governments of the Visegrad Group countries have developed numerous recommendations communications laws and strategies that order carriers to implement low- and zero-emission mobility. Therefore transport organizers and communication operators faced the choice of the type of buses. From an economic point of view each entrepreneur is guided by the economic efficiency of the vehicles used. Hence the main aim of the article was to conduct an economic evaluation of the operational efficiency of ecological vehicles. As more than 70% of vehicles in use in the European Union are still diesel driven the economic efficiency assessment was also made for vehicles with traditional diesel drive. To conduct the research the method of calculating the total cost of ownership of vehicles in operation was used. As a result of the research it was found that electric buses are the cheapest in the entire period of use (15 years) and then those powered by CNG. On the other hand the cost of using hydrogen buses is the highest. This is due to the high purchase prices of these vehicles. However the EU as well as the governments of individual countries support enterprises and communication operators by offering them financing for investments. The impact of the forecasted fuel and energy prices and the planned inflation on operating costs was also examined. In this case the analyses showed that the forecasted changes in fuel and energy prices as well as the expected inflation will significantly affect the costs of vehicle operation and the economic efficiency of using various types of drives. These changes will have a positive impact on the implementation of zero-emission vehicles into exploitation. Based on the analyses it was found that in 2035 hydrogen buses will have the lowest operating costs.
Renewable Hydrogen Implementations for Combined Energy Storage, Transportation and Stationary Applications
Dec 2019
Publication
The purpose of this paper is to discuss the potential of hydrogen obtained from renewable sources for energy generation and storage systems. The first part of analysis will address such issues as various methods of green hydrogen production storage and transportation. The review of hydrogen generation methods will be followed by the critical analysis and the selection of production method. This selection is justified by the results of the comparative research on alternative green hydrogen generation technologies with focus on their environmental impacts and costs. The comparative analysis includes the biomass-based methods as well as water splitting and photo-catalysis methods while water electrolysis is taken as a benchmark. Hydrogen storage and transportation issues will be further discussed in purpose to form the list of recommended solutions. In the second part of the paper the technology readiness and technical feasibility for joint hydrogen applications will be analysed. This will include the energy storage and production systems based on renewable hydrogen in combination with hydrogen usage in mobility systems as well as the stationary applications in buildings such as combined heat and power (CHP) plants or fuel cell electric generators. Based on the analysis of the selected case studies the author will discuss the role of hydrogen for the carbon emission reduction with the stress on the real value of carbon footprint of hydrogen depending on the gas source storage transportation and applications.
Microalgal Hydrogen Production in Relation to Other Biomass‐Based Technologies—A Review
Sep 2021
Publication
Hydrogen is an environmentally friendly biofuel which if widely used could reduce atmospheric carbon dioxide emissions. The main barrier to the widespread use of hydrogen for power generation is the lack of technologically feasible and—more importantly—cost‐effective methods of production and storage. So far hydrogen has been produced using thermochemical methods (such as gasification pyrolysis or water electrolysis) and biological methods (most of which involve anaerobic digestion and photofermentation) with conventional fuels waste or dedicated crop biomass used as a feedstock. Microalgae possess very high photosynthetic efficiency can rapidly build biomass and possess other beneficial properties which is why they are considered to be one of the strongest contenders among biohydrogen production technologies. This review gives an account of present knowledge on microalgal hydrogen production and compares it with the other available biofuel production technologies.
Analysis of the Polish Hydrogen Strategy in the Context of the EU’s Strategic Documents on Hydrogen
Oct 2021
Publication
In December 2019 the European Commission unveiled an ambitious project the European Green Deal which aims to lead the European Union to climate neutrality by 2050. This is a significant challenge for all EU countries and especially for Poland. The role of hydrogen in the processes of decarbonization of the economy and transport is being discussed in many countries around the world to find rational solutions to this difficult and complex problem. There is an ongoing discussion about the hydrogen economy which covers the production of hydrogen its storage transport and conversion to the desired forms of energy primarily electricity mechanical energy and new fuels. The development of the hydrogen economy can significantly support the achievement of climate neutrality. The belief that hydrogen plays an important role in the transformation of the energy sector is widespread. There are many technical and economic challenges as well as legal and logistical barriers to deal with in the transition process. The development of hydrogen technologies and a global sustainable energy system that uses hydrogen offers a real opportunity to solve the challenges facing the global energy industry: meeting the need for clean fuels increasing the efficiency of fuel and energy production and significantly reducing greenhouse gas emissions. The paper provides an in-depth analysis of the Polish Hydrogen Strategy a document that sets out the directions for the development of hydrogen use (competences and technologies) in the energy transport and industrial sectors. This analysis is presented against the background of the European Commission’s document ‘A Hydrogen Strategy for a Climate-Neutral Europe’. The draft project presented is a good basis for further discussion on the directions of development of the Polish economy. The Polish Hydrogen Strategy although it was created later than the EU document does not fully follow its guidelines. The directions for further work on the hydrogen strategy are indicated so that its final version can become a driving force for the development of the country’s economy.
Problems of Hydrogen Doping in the Methane Fermentation Process and of Energetic Use of the Gas Mixture
Jul 2021
Publication
This article discusses the technology for doping hydrogen into the fermenter to increase methane production and the amount of energy in the mixture. Hydrogen doping is anticipated to enable more carbon to be applied to produce methane. Hydrogen is proposed to be produced by using excess electricity from for example off-peak electricity hours at night. The possibilities of using a mixture of hydrogen and biogas for combustion in boilers and internal combustion engines have been determined. It has been proven that the volumetric addition of hydrogen reduces the heat of combustion of the mixture. Problems arising from hydrogen doping during the methane fermentation process have been identified.
Magnesium-Based Materials for Hydrogen Storage—A Scope Review
Sep 2020
Publication
Magnesium hydride and selected magnesium-based ternary hydride (Mg2FeH6 Mg2NiH4 and Mg2CoH5) syntheses and modification methods as well as the properties of the obtained materials which are modified mostly by mechanical synthesis or milling are reviewed in this work. The roles of selected additives (oxides halides and intermetallics) nanostructurization polymorphic transformations and cyclic stability are described. Despite the many years of investigations related to these hydrides and the significant number of different additives used there are still many unknown factors that affect their hydrogen storage properties reaction yield and stability. The described compounds seem to be extremely interesting from a theoretical point of view. However their practical application still remains debatable.
The Significance of Formal & Legal Factors in Selecting a Location for a Hydrogen Buffer to Stabilize the Operation of Power Distribution Networks
Oct 2022
Publication
This article presents the conceptual assumptions for the process of identifying and evaluating the formal & legal factors that impact the choice of a hydrogen buffer location to stabilize the operation of power distribution networks. The assumption for the research process was establishing a methodological framework for an in-depth analysis of legislative acts (the EU legislation and the national law) to enable identification of synthetic groups of formal & legal factors to be further analyzed using the DEMATEL method. As a result the cause-and-effect relations between the variables were examined and an in-depth analysis was carried out to investigate the level of impact of the formal & legal factors on the functioning and location of a hydrogen energy buffer.
Evaluation of the Potential for Distributed Generation of Green Hydrogen Using Metal-hydride Storage Methods
May 2023
Publication
This study presents methodology for the evaluation of appropriateness of a hydrogen generator for gas production in multiple distributed plants based on renewable energy sources. The general idea is to form hydrogen clusters integrated with storage and transportation. The paper focuses on the financial viability of the plants presenting the results of economic evaluation together with sensitivity analysis for various economic factors. The analyzed case study proves that over a wide range of parameters alkaline electrolyzers show favorable economic characteristics however a PEM-based plant is more resilient to changes in the price of electricity which is the main cost component in hydrogen generation. The study is enriched with an experimental investigation of low-pressure storage methods based on porous metal hydride tanks. The effectiveness of the tanks (β) compared to pressurized hydrogen tanks in the same volume and pressure is equal to β = 10.2. A solution is proposed whereby these can be used in a distributed hydrogen generation concept due to their safe and simple operation without additional costly equipment e.g. compressors. A method for evaluation of the avoided energy consumption as a function of the effectiveness of the tanks is developed. Avoided energy consumption resulting from implementing MH tanks equals 1.33 – 1.37 kWh per kilogram of hydrogen depending on the number of stages of a compressor. The methods proposed in this paper are universal and can be used for various green hydrogen facilities.
Hydrogen or Electric Drive—Inconvenient (Omitted) Aspects
May 2023
Publication
Currently hydrogen and electric drives used in various means of transport is a leading topic in many respects. This article discusses the most important aspects of the operation of vehicles with electric drives (passenger cars) and hydrogen drives. In both cases the official reason for using both drives is the possibility of independence from fossil fuel supplies especially oil. The desire for independence is mainly dictated by political considerations. This article discusses the acquisition of basic raw materials for the construction of lithium-ion batteries in electric cars as well as methods for obtaining hydrogen as a fuel. The widespread use of electric passenger cars requires the construction of a network of charging stations. This article shows that taking into account the entire production process of electric cars including lithium-ion batteries the argument that they are ecological cannot be used. Additionally it was indicated that there is no concept for the use of used accumulator batteries. If hydrogen drives are used in trains there is no need to build the traction network infrastructure and then continuously monitor its technical condition and perform the necessary repairs. Of course the necessary hydrogen tanks must be built but there must be similar tanks to store oil for diesel locomotives. This paper also deals with other possibilities of hydrogen application for transformational usage e.g. the use of combustion engines driven with liquid hydrogen. Unfortunately an optimistic approach to this issue does not allow for a critical view of the whole matter. In public discussion there is no room for scientific arguments and emotions to dominate.
Laboratory Determination of Hydrogen/methane Dispersion in Rock Cores for Underground Hydrogen Storage
Apr 2024
Publication
Underground hydrogen storage in saline aquifers is a promising way to store large amounts of energy. Utilization of gas cushion enhances the deliverability of the storage and increases the volume of recovery gas. The key factor for the cushion characterization is cushion gas and storage gas mixing which can be used for simulation of mixing zone evolution. In this work coreflooding setup utilizing Raman spectroscopy is built and used for dispersion coefficient determination. Berea sandstone rock core is used as a test sample for setup validation and core entry/exit effects estimation. Dispersion for hydrogen and methane as displacing fluids is determined for 4 locations perspective for hydrogen storage in Poland is found. Reservoir structures most suitable for pure hydrogen or hydrogen/methane blend storage are selected.
Selected Materials and Technologies for Electrical Energy Sector
Jun 2023
Publication
Ensuring the energy transition in order to decrease CO2 and volatile organic compounds emissions and improve the efficiency of energy processes requires the development of advanced materials and technologies for the electrical energy sector. The article reviews superconducting materials functional nanomaterials used in the power industry mainly due to their magnetic electrical optical and dielectric properties and the thin layers of amorphous carbon nitride which properties make them an important material from the point of view of environmental protection optoelectronic photovoltaic and energy storage. The superconductivity-based technologies material processing and thermal and nonthermal plasma generation have been reviewed as technologies that can be a solution to chosen problems in the electrical energy sector and environment. The study explains directly both—the basics and application potential of low and high-temperature superconductors as well as peculiarities of the related manufacturing technologies for Roebel cables 1G and 2G HTS tapes and superconductor coil systems. Among the superconducting materials particular attention was paid to the magnesium di-boride MgB2 and its potential applications in the power industry. The benefits of the use of carbon films with amorphous structures in electronics sensing technologies solar cells FETs and memory devices were discussed. The article provides the information about most interesting from the R&D point of view groups of materials for PV applications. It summarises the advantages and disadvantages of their use regarding commercial requirements such as efficiency lifetime light absorption impact on the environment costs of production and weather dependency. Silicon processing inkjet printing vacuum deposition and evaporation technologies that allow obtaining improved and strengthened materials for solar cell manufacturing are also described. In the case of the widely developed plasma generation field waste-to-hydrogen technology including both thermal and non-thermal plasma techniques has been discussed. The review aims to draw attention to the problems faced by the modern power industry and to encourage research in this area because many of these problems can only be solved within the framework of interdisciplinary and international cooperation.
The Perspectives for the Use of Hydrogen for Electricity Storage Considering the Foreign Experience
Mar 2017
Publication
Over the last years the European Union has seen a rapid increase in installed capacity of generating units based on renewable energy sources (RES). The most significant increase in installed capacity was recorded in 2015 in wind farms and solar PV installations. One of the most serious is the volatile character of RES on a time basis. Therefore for a further expected increase in the use of RES and their effectiveness improvements investments are needed allowing for electricity to be stored. One of the electricity storage options is to use excess electricity in order to produce hydrogen by electrolysis of water. Although this process plays a marginal role in obtaining hydrogen on a worldwide basis due to high costs experience in recent years has shown that periodically low (negative) electricity prices developing on the power exchanges in the situation where there is surplus electricity available affect economic requirements for hydrogen production technologies. The paper shows activities undertaken by European countries (mainly Germany) aiming at making it possible for hydrogen to be stored in the natural gas grids. A particular attention is given to material resource issues and possible operational problems that might arise while blending natural gas with hydrogen into the grid. The experiences of selected European countries are of particular interest from the Polish perspective having regard to significant increase of RES in electricity generation during the last few years and adopted objectives for the growing importance of RES in the Poland’s energy balance.
The Cost Reduction Analysis of Green Hydrogen Production from Coal Mine Underground Water for Circular Economy
May 2024
Publication
The novelty of the paper is the analysis of the possibilities of reducing the operating costs of a mine water pumping station in an abandoned coal mine. To meet the energy needs of the pumping station and reduce the carbon footprint “green” energy from a photovoltaic farm was used. Surplus green energy generated during peak production is stored in the form of green hydrogen from the water electrolysis process. Rainwater and process water are still underutilized sources for increasing water resources and reducing water stress in the European Union. The article presents the possibilities of using these waters after purification in the production of green hydrogen by electrolysis. The article also presents three variants that ensure the energy self-sufficiency of the proposed concepts of operation of the pumping station.
Hydrogen Internal Combustion Engine Vehicles: A Review
Nov 2022
Publication
Motor vehicles are the backbone of global transport. In recent years due to the rising costs of fossil fuels and increasing concerns about their negative impact on the natural environment the development of low-emission power supply systems for vehicles has been observed. In order to create a stable and safe global transport system an important issue seems to be the diversification of propulsion systems for vehicles which can be achieved through the simultaneous development of conventional internal combustion vehicles electric vehicles (both battery and fuel cell powered) as well as combustion hydrogen-powered vehicles. This publication presents an overview of commercial vehicles (available on the market) powered by internal combustion hydrogen engines. The work focuses on presenting the development of technology from the point of view of introducing ready-made hydrogen-powered vehicles to the market or technical solutions enabling the use of hydrogen mixtures in internal combustion engines. The study covers the history of the technology dedicated hydrogen and bi-fuel vehicles and vehicles with an engine powered by a mixture of conventional fuels and hydrogen. It presents basic technology parameters and solutions introduced by leading vehicle manufacturers in the vehicle market.
The Energy Approach to the Evaluation of Hydrogen Effect on the Damage Accumulation
Aug 2019
Publication
The energy approach for determining the durability of structural elements at high temperature creep and hydrogen activity was proposed. It has been shown that the approach significantly simplifies research compared with the known ones. Approbation of the approach was carried out on the example of determining the indicators of durability of the Bridgman sample under conditions of creep and different levels of hydrogenation of the metal. It was shown that with an increase of hydrogen concentration in the metal from 2 to 10 ppm the durability of the test sample decreased from 22 to 58%.
Structural Model of Power Grid Stabilization in the Green Hydrogen Supply Chain System—Conceptual Assumptions
Jan 2022
Publication
The paper presents the conceptual assumptions of research concerning the design of a theoretical multi-criteria model of a system architecture to stabilize the operation of power distribution networks based on a hydrogen energy buffer taking into account the utility application of hydrogen. The basis of the research process was a systematic literature review using the technique of in-depth analysis of full-text articles and expert consultations. The structural model concept was described in two dimensions in which the identified variables were embedded. The first dimension includes the supply chain phases: procurement and production with warehousing and distribution. The second dimension takes into account a comprehensive and interdisciplinary approach and includes the following factors: technical economic–logistical locational and formal–legal.
A Review of Recent Advances on the Effects of Microstructural Refinement and Nano-Catalytic Additives on the Hydrogen Storage Properties of Metal and Complex Hydrides
Dec 2010
Publication
The recent advances on the effects of microstructural refinement and various nano-catalytic additives on the hydrogen storage properties of metal and complex hydrides obtained in the last few years in the allied laboratories at the University of Waterloo (Canada) and Military University of Technology (Warsaw Poland) are critically reviewed in this paper. The research results indicate that microstructural refinement (particle and grain size) induced by ball milling influences quite modestly the hydrogen storage properties of simple metal and complex metal hydrides. On the other hand the addition of nanometric elemental metals acting as potent catalysts and/or metal halide catalytic precursors brings about profound improvements in the hydrogen absorption/desorption kinetics for simple metal and complex metal hydrides alike. In general catalytic precursors react with the hydride matrix forming a metal salt and free nanometric or amorphous elemental metals/intermetallics which in turn act catalytically. However these catalysts change only kinetic properties i.e. the hydrogen absorption/desorption rate but they do not change thermodynamics (e.g. enthalpy change of hydrogen sorption reactions). It is shown that a complex metal hydride LiAlH4 after high energy ball milling with a nanometric Ni metal catalyst and/or MnCl2 catalytic precursor is able to desorb relatively large quantities of hydrogen at RT 40 and 80 °C. This kind of behavior is very encouraging for the future development of solid state hydrogen systems.
People’s Attitude to Energy from Hydrogen—From the Point of View of Modern Energy Technologies and Social Responsibility
Dec 2020
Publication
Energy from hydrogen is an appropriate technological choice in the context of sustainable development. The opportunities offered by the use of energy from hydrogen also represent a significant challenge for mobile technologies and daily life. Nevertheless despite a significant amount of research and information regarding the benefits of hydrogen energy it creates considerable controversy in many countries. Globally there is a lack of understanding about the production process of hydrogen energy and the benefits it provides which leads to concerns regarding the consistency of its use. In this study an original questionnaire was used as a research tool to determine the opinions of inhabitants of countries in which hydrogen energy is underutilized and where the infrastructure for hydrogen energy is underdeveloped. Respondents presented their attitude to ecology and indicated their knowledge regarding the operation of hydrogen energy and the use of hydrogen fuel. The results indicate that society is not convinced that the safety levels for energy derived from hydrogen are adequate. It can be concluded that knowledge about hydrogen as an energy source and the production safety and storage methods of hydrogen is very low. Negative attitudes to hydrogen energy can be an important barrier in the development of this energy in many countries.
The Influence of Refractory Metals on the Hydrogen Storage Characteristics of FeTi-based Alloys Prepared by Suspended Droplet Alloying
Jun 2020
Publication
The influence of the addition of refractory metals (molybdenum and tantalum) on the hydrogenation properties of FeTi intermetallic phase-based alloys was investigated. The suspended droplet alloying technique was applied to fabricate FeTiTa-based and FeTiMo-based alloys. The phase composition and hydrogen storage properties of the samples were investigated. The samples modified with the refractory metals exhibited lower plateau pressures and lower hydrogen storage capacities than those of the FeTi reference sample due to solid solution formation. It was observed that the equilibrium pressures decreased with the amount of molybdenum which is in good agreement with the increase in the cell parameters of the TiFe phase. Suspended droplet alloying was found to be a practical method to fabricate alloys with refractory metal additions; however it is appropriate for screening samples with desired chemical and phase compositions rather than for manufacturing purposes.
Response Time Measurement of Hydrogen Sensors
Sep 2017
Publication
The efficiency of gas sensor application for facilitating the safe use of hydrogen depends considerably on the sensor response to a change in hydrogen concentration. Therefore the response time has been measured for five different-type commercially available hydrogen sensors. Experiments showed that all these sensors surpass the ISO 26142 standard; for the response times t90 values of 2 s to 16 s were estimated. Results can be fitted with an exponential or sigmoidal function. It can be demonstrated that the results on transient behaviour depend on both the operating parameters of sensors and investigation methods as well as on the experimental conditions: gas change rate and concentration jump.
From Coal Ashes to Solid Sorbents for Hydrogen Storage
Jun 2020
Publication
The purpose of this work is the literature review in the field of hydrogen storage in solid sorbents. The best solid sorbents for hydrogen storage were selected with the possibility of synthesis them from coal fly ash. In addition the on-board hydrogen storage analysis was carried out. The review method consists of two parts. The first part based on research questions included types of the best sorbents for hydrogen storage the possibility to obtain them from coal fly ash and practical use in hydrogen storage system on-board. The second part was the selection of publications from The Web of Science and Elsevier Scopus databases and the analysis as well as available reports on the websites at this scope. After searching the relevant articles in the databases abstracts were analysed in terms of the questions asked. The links between references and research were checked. The search procedure was repeated several times. Finally articles with high Impact Factor index published by authors recognized on a global scale were selected for the presented review. The collected information proved that carbon materials are suited to hydrogen storage because of their high porosity large specific surface area and thermal stability. Besides solid sorbents such as zeolites metal-organic frameworks activated carbons or zeolite template carbons can be obtained from coal fly ash. Thanks to silicon aluminium and unburned carbon content fly ash is a good material for the synthesis of hydrogen sorbents. Under cryogenic conditions and high pressure it is possible to adsorb as much as 8.5 wt% of hydrogen. Although the Department of Energy (DOE) requirements for the hydrogen storage system on-board vehicles are not met the review of scientific publications shows that research in this area is developing and better parameters are being obtained.
Mechanical Properties of Gas Main Steels after Long-Term Operation and Peculiarities of Their Fracture Surface Morphology
Feb 2019
Publication
Regularities of steel structure degradation of the “Novopskov-Aksay-Mozdok” gas main pipelines (Nevinnomysskaya CS) as well as the “Gorky-Center” pipelines (Gavrilovskaya CS) were studied. The revealed peculiarities of their degradation after long-term operation are suggested to be treated as a particular case of the damage accumulation classification (scheme) proposed by prof. H.M. Nykyforchyn. It is shown that the fracture surface consists of sections of ductile separation and localized zones of micro-spalling. The presence of the latter testifies to the hydrogen-induced embrittlement effect. However the steels under investigation possess sufficiently high levels of the mechanical properties required for their further safe exploitation both in terms of durability and cracking resistance.
The Influence of the First Filling Period Length and Reservoir Level Depth on the Operation of Underground Hydrogen Storage in a Deep Aquifer
Sep 2022
Publication
Underground storage is a method of storing large amounts of renewable energy that can be converted into hydrogen. One of the fundamental problems associated with this process concerns determining the timing and amount of injected gas in the first filling period for the operation of an underground storage facility. Ascertaining the hydrogen flow rate is essential to ensure that the capillary and fracturing pressures are not exceeded. The value of the flow rate was assessed by modelling the injection of hydrogen into a deep aquifer. The best initial H2 injection period was found to be five months. The volume of the cushion gas and the total storage capacity expanded with the extension of the first filling period length. The working capacity grew as the depth increased reaching maximum values at depths of approximately 1200e1400 m. This depth was considered optimal for storing hydrogen in the analysed structure.
Process of Transformation to Net Zero Steelmaking: Decarbonisation Scenarios Based on the Analysis of the Polish Steel Industry
Apr 2023
Publication
The European steel industry is experiencing new challenges related to the market situation and climate policy. Experience from the period of pandemic restrictions and the effects of Russia’s armed invasion of Ukraine has given many countries a basis for including steel along with raw materials (coke iron ore electricity) in economic security products (CRMA). Steel is needed for economic infrastructure and construction development as well as a material for other industries (without steel factories will not produce cars machinery ships washing machines etc.). In 2022 steelmakers faced a deepening energy crisis and economic slowdown. The market situation prompted steelmakers to impose restrictions on production volumes (worldwide production fell by 4% compared to the previous year). Despite the difficult economic situation of the steel industry (production in EU countries fell by 11% in 2022 compared to the previous year) the EU is strengthening its industrial decarbonisation policy (“Fit for 55”). The decarbonisation of steel production is set to accelerate by 2050. To sharply reduce carbon emissions steel mills need new steelmaking technologies. The largest global steelmakers are already investing in new technologies that will use green hydrogen (produced from renewable energy sources). Reducing iron ore with hydrogen plasma will drastically reduce CO2 emissions (steel production using hydrogen could emit up to 95% less CO2 than the current BF + BOF blast furnace + basic oxygen furnace integrated method). Investments in new technologies must be tailored to the steel industry. A net zero strategy (deep decarbonisation goal) may have different scenarios in different EU countries. The purpose of this paper was to introduce the conditions for investing in low-carbon steelmaking technologies in the Polish steel market and to develop (based on expert opinion) scenarios for the decarbonisation of the Polish steel industry.
Increasing Technical Efficiency of Renewable Energy Sources in Power Systems
Mar 2023
Publication
This paper presents a method for refining the forecast schedule of renewable energy sources (RES) generation by its intraday adjustment and investigates the measures for reserving RES with unstable generation in electric power systems (EPSs). Owing to the dependence of electricity generation by solar and wind power plants (PV and WPPs respectively) on natural conditions problems arise with their contribution to the process of balancing the power system. Therefore the EPS is obliged to keep a power reserve to compensate for deviations in RES from the planned generation amount. A system-wide reserve (mainly the shunting capacity of thermal and hydroelectric power plants) is used first followed by other means of power reserve: electrochemical hydrogen or biogas plants. To analyze the technical and economic efficiency of certain backup means mathematical models based on the theory of similarity and the criterion method were developed. This method is preferred because it provides the ability to compare different methods of backing up RES generation with each other assess their proportionality and determine the sensitivity of costs to the capacity of backup methods with minimal available initial information. Criterion models have been formed that allow us to build dependencies of the costs of backup means for unstable RES generation on the capacity of the backup means. It is shown that according to the results of the analysis of various methods and means of RES backup hydrogen technologies are relatively the most effective. The results of the analysis in relative units can be clarified if the current and near-term price indicators are known.
Assessment of the Co-combustion Process of Ammonia with Hydrogen in a Research VCR Piston Engine
Oct 2022
Publication
The presented work concerns experimental research of a spark-ignition engine with variable compression ratio (VCR) adapted to dual-fuel operation in which co-combustion of ammonia with hydrogen was conducted and the energy share of hydrogen varied from 0% to 70%. The research was aimed at assessing the impact of the energy share of hydrogen co-combusted with ammonia on the performance stability and emissions of an engine operating at a compression ratio of 8 (CR 8) and 10 (CR 10). The operation of the engine powered by ammonia alone for both CR 8 and CR 10 is associated with either a complete lack of ignition in a significant number of cycles or with significantly delayed ignition and the related low value of the maximum pressure pmax. Increasing the energy share of hydrogen in the fuel to 12% allows to completely eliminate the instability of the ignition process in the combustible mixture which is confirmed by a decrease in the IMEP uniqueness and a much lower pmax dispersion. For 12% of the energy share of hydrogen co-combusted with ammonia the most favorable course of the combustion process was obtained the highest engine efficiency and the highest IMEP value were recorded. The conducted research shows that increasing the H2 share causes an increase in NO emissions for both analyzed compression ratios
Overview of the Method and State of Hydrogenization of Road Transport in the World and the Resulting Development Prospects in Poland
Jan 2021
Publication
National Implementation Plans (NIP) in regard hydrogenation motor transport are in place in European Union (EU) countries e.g.Germany France or Belgium Denmark Netherlands. Motor transport hydrogenization plans exist in the Japan and USA. In Poland the methodology deployment Hydrogen Refuelling Stations (HRS) developed in Motor Transport Institute is of multi-stage character are as follows: Stage I: Method allowing to identify regions in which HRS should be located. Stage II: Method allowing to identify urban centres in which should be located the said stations. Stage III: Method for determining the area of the station location. The presentation of the aforesaid NIPS and based on that and the mentioned methodology the conditions for hydrogenization of motor transport in Poland is the purpose of this article which constitutes its novelty. The scope of the article concerns the hydrogenization of motor transport in the abovementioned countries. With the above criteria the order the construction in Poland of a HRS in the order of their creation along the TEN-T corridors is as follows: 1 - Poznan 2 - Warsaw 3 - Bialystok 4 - Szczecin 5 - the Lodz region 6 - the Tri-City region 7 - Wrocław 8 - the Katowice region 9 – Krakow. The concluding discussion sets out the status of deployment HRS and FCEVs in the analysed countries.
Permeability Modeling and Estimation of Hydrogen Loss through Polymer Sealing Liners in Underground Hydrogen Storage
Apr 2022
Publication
Fluctuations in renewable energy production especially from solar and wind plants can be solved by large‐scale energy storage. One of the possibilities is storing energy in the form of hydrogen or methane–hydrogen blends. A viable alternative for storing hydrogen in salt caverns is Lined Rock Cavern (LRC) underground energy storage. One of the most significant challenges in LRC for hydrogen storage is sealing liners which need to have satisfactory sealing and mechanical properties. An experimental study of hydrogen permeability of different kinds of polymers was conducted followed by modeling of hydrogen permeability of these materials with different additives (graphite halloysite and fly ash). Fillers in polymers can have an impact on the hydrogen permeability ratio and reduce the amount of polymer required to make a sealing liner in the reservoir. Results of this study show that hydrogen permeability coefficients of polymers and estimated hydrogen leakage through these materials are similar to the results of salt rock after the salt creep process. During 60 days of hydrogen storage in a tank of 1000 m2 inner surface 1 cm thick sealing liner and gas pressure of 1.0 MPa only approx. 1 m3STP of hydrogen will diffuse from the reservoir. The study also carries out the modeling of the hydrogen permeability of materials using the Max‐ well model. The difference between experimental and model results is up to 17% compared to the differences exceeding 30% in some other studies.
Exploring Hydrogen-Enriched Fuels and the Promise of HCNG in Industrial Dual-Fuel Engines
Mar 2024
Publication
This paper presents a theoretical analysis of the selected properties of HCNG fuel calculations and a literature review of the other fuels that allow the storage of ecologically produced hydrogen. Hydrogen has the most significant CO2 reduction potential of all known fuels. However its transmission in pure form is still problematic and its use as a component of fuels modified by it has now become an issue of interest for researchers. Many types of hydrogen-enriched fuels have been invented. However this article will describe the reasons why HCNG may be the hydrogen-enriched fuel of the future and why internal combustion (IC) piston engines working on two types of fuel could be the future method of using it. CO2 emissions are currently a serious problem in protecting the Earth’s natural climate. However secondarily power grid stabilization with a large share of electricity production from renewable energy sources must be stabilized with very flexible sources—as flexible as multi-fuel IC engines. Their use is becoming an essential element of the electricity power systems of Western countries and there is a chance to use fuels with zero or close to zero CO2 emissions like e-fuels and HCNG. Dual-fuel engines have become an effective way of using these types of fuels efficiently; therefore in this article the parameters of hydrogen-enriched fuel selected in terms of relevance to the use of IC engines are considered. Inaccuracies found in the literature analysis are discussed and the essential properties of HCNG and its advantages over other hydrogen-rich fuels are summarized in terms of its use in dual-fuel (DF) IC engines.
Massive Green Hydrogen Production Using Solar and Wind Energy: Comparison between Europe and the Middle East
Jul 2023
Publication
This comparative study examines the potential for green hydrogen production in Europe and the Middle East leveraging 3MWp solar and wind power plants. Experimental weather data from 2022 inform the selection of two representative cities namely Krakow Poland (Europe) and Diyala Iraq (Middle East). These cities are chosen as industrial–residential zones representing the respective regions’ characteristics. The research optimizes an alkaline water electrolyzer capacity in juxtaposition with the aforementioned power plants to maximize the green hydrogen output. Economic and environmental factors integral to green hydrogen production are assessed to identify the region offering the most advantageous conditions. The analysis reveals that the Middle East holds superior potential for green hydrogen production compared to Europe attributed to a higher prevalence of solar and wind resources coupled with reduced land and labor costs. Hydrogen production costs in Europe are found to range between USD 9.88 and USD 14.31 per kilogram in contrast to the Middle East where costs span from USD 6.54 to USD 12.66 per kilogram. Consequently the Middle East emerges as a more feasible region for green hydrogen production with the potential to curtail emissions enhance air quality and bolster energy security. The research findings highlight the advantages of the Middle East industrial–residential zone ‘Diyala’ and Europe industrial–residential zone ‘Krakow’ in terms of their potential for green hydrogen production.
Hydrogen as a Renewable Energy Carrier in a Hybrid Configuration of Distributed Energy Systems: Bibliometric Mapping of Current Knowledge and Strategies
Jul 2023
Publication
Storing energy in hydrogen deposits balances the operation of energy systems and is an effective tool in the process of energy transformation towards achieving Sustainable Development Goals. To assess the validity of its use as an alternative renewable energy carrier in dispersed energy systems of hybrid configuration a comprehensive review of scientific literature was conducted in this study based on bibliometric analysis. The bibliographic database used in the study was the international Web of Science database. This review contributes to a better understanding of the characteristics of the selected research area. The evolution of research trends implemented in the design of energy systems associated with hydrogen technologies is revealed clearly indicating that it is a developing field. In recent years there has been an increase in the number of publications although the territorial range of research (mainly simulation) conducted in the domain does not include areas with the most favourable infrastructural conditions. The analysis reveals weak cooperation between South American African East Asian and Oceanic countries. In the light of earlier thematically similar literature reviews several research gaps are also identified and proposals for future research are presented. They concern in particular the parallel implementation and optimization of the operation of hydrogen (HRES—Hybrid Renewable Energy System and HESS—Hybrid Energy Storage System) solutions in terms of economics ecology lifespan and work efficiency as well as their feasibility analysis. With the support of other researchers and those involved in the subject matter this review may contribute to the further development of hybrid hydrogen systems in terms of increasing competitiveness and promoting the implementation of these technologies.
Economic Evaluation of Renewable Hydrogen Integration into Steelworks for the Production of Methanol and Methane
Jun 2022
Publication
This work investigates the cost-efficient integration of renewable hydrogen into steelworks for the production of methane and methanol as an efficient way to decarbonize the steel industry. Three case studies that utilize a mixture of steelworks off-gases (blast furnace gas coke oven gas and basic oxygen furnace gas) which differ on the amount of used off-gases as well as on the end product (methane and/or methanol) are analyzed and evaluated in terms of their economic performance. The most influential cost factors are identified and sensitivity analyses are conducted for different operating and economic parameters. Renewable hydrogen produced by PEM electrolysis is the most expensive component in this scheme and responsible for over 80% of the total costs. Progress in the hydrogen economy (lower electrolyzer capital costs improved electrolyzer efficiency and lower electricity prices) is necessary to establish this technology in the future.
Two Generations of Hydrogen Powertrain—An Analysis of the Operational Indicators in Real Driving Conditions (RDC)
Jun 2022
Publication
Hydrogen fuel cells are systems that can be successfully used to partially replace internal combustion propulsion systems. For this reason the article presents an operational analysis of energy flow along with an analysis of individual energy transmission systems. Two generations of the Toyota Mirai vehicle were used for the tests. The operational analyses were carried out on the same route (compliant with RDE test requirements) assessing the system’s operation in three driving sections (urban rural and motorway). Both generations of the drive system with fuel cells are quite different which affects the obtained individual systems operation results as well as the overall energy flow. Research was carried out on the energy flow in the fuel cells FC converter battery and electric motor using a dedicated data acquisition system. The analyses were carried out in relation to the energy of fuel cells battery energy and recovered braking energy. It was found that in the urban drive section of the second-generation system (due to its much larger mass) a slightly higher energy consumption value was obtained (by about 2%). However in the remaining phases of the test consumption was lower (the maximum difference was 18% in the rural phase). Total energy consumption in the research test was 19.64 kWh/100 km for the first-generation system compared to 18.53 kWh/100 km for the second-generation system. Taking into account the increased mass of the second-generation vehicle resulted in significantly greater benefits in the second-generation drive (up to 37% in individual drive sections and about 28% in the entire drive test).
Scaling Factors for Channel Width Variations in Tree-like Flow Field Patterns for Polymer Electrolyte Membrane Fuel Cells - An Experimental Study
Apr 2021
Publication
To have a uniform distribution of reactants is an advantage to a fuel cell. We report results for such a distributor with tree-like flow field plates (FFP). Numerical simulations have shown that the width scaling parameters of tree-like patterns in FFPs used in polymer electrolyte membrane fuel cells (PEMFC) reduces the viscous dissipation in the channels. In this study experimental investigations were conducted on a 2-layer FF plate possessing a tree-like FF pattern which was CNC milled on high-quality graphite. Three FF designs of different width scaling parameters were employed. I–V curves power curves and impedance spectra were generated at 70% 60% and 50% relative humidity (25 cm2 active area) and compared to those obtained from a conventional 1-channel serpentine FF. It was found that the FF design with a width scaling factor of 0.917 in the inlet and 0.925 in the outlet pattern exhibited the best peak power out of the three designs (only 11% - 0.08 W/cm2 lower than reference serpentine FF). Results showed that a reduction of the viscous dissipation in the flow pattern was not directly linked to a PEMFC performance increase. It was found that water accumulation together with a slight increase in single PEMFC resistance were the main reasons for the reduced power density. As further improvements a reduction of the number of branching generation levels and width scaling factor were recommended.
Evaluation of Conceptual Electrolysis-based Energy Storage Systems Using Gas Expanders
Feb 2020
Publication
In this study four energy storage systems (Power-to-Gas-to-Power) were analysed that allow electrolysis products to be fully utilized immediately after they are produced. For each option the electrolysis process was supplied with electricity from a wind farm during the off-peak demand periods. In the first two variants the produced hydrogen was directed to a natural gas pipeline while the third and fourth options assumed the use of hydrogen for synthetic natural gas production. All four variants assumed the use of a gas expander powered by high-temperature exhaust gases generated during gas combustion. In the first two options gas was supplied from a natural gas network while synthetic natural gas produced during methanation was used in the other two options. A characteristic feature of all systems was the combustion of gaseous fuels within a ballast-free oxidant atmosphere without nitrogen which is the fundamental component of air in conventional systems. The fifth variant was a reference for the systems equipped with gas expanders and assumed the use of fuel cells for power generation. To evaluate the individual variants the energy storage efficiency was defined and determined and the calculated overall efficiency ranged from 17.08 to 23.79% which may be comparable to fuel cells.
Thermodynamic and Technical Issues of Hydrogen and Methane-Hydrogen Mixtures Pipeline Transmission
Feb 2019
Publication
The use of hydrogen as a non-emission energy carrier is important for the innovative development of the power-generation industry. Transmission pipelines are the most efficient and economic method of transporting large quantities of hydrogen in a number of variants. A comprehensive hydraulic analysis of hydrogen transmission at a mass flow rate of 0.3 to 3.0 kg/s (volume flow rates from 12000 Nm3/h to 120000 Nm3/h) was performed. The methodology was based on flow simulation in a pipeline for assumed boundary conditions as well as modeling of fluid thermodynamic parameters for pure hydrogen and its mixtures with methane. The assumed outlet pressure was 24 bar (g). The pipeline diameter and required inlet pressure were calculated for these parameters. The change in temperature was analyzed as a function of the pipeline length for a given real heat transfer model; the assumed temperatures were 5 and 25 ◦C. The impact of hydrogen on natural gas transmission is another important issue. The performed analysis revealed that the maximum participation of hydrogen in natural gas should not exceed 15%–20% or it has a negative impact on natural gas quality. In the case of a mixture of 85% methane and 15% hydrogen the required outlet pressure is 10% lower than for pure methane. The obtained results present various possibilities of pipeline transmission of hydrogen at large distances. Moreover the changes in basic thermodynamic parameters have been presented as a function of pipeline length for the adopted assumptions.
Why Ultrasonic Gas Leak Detection?
Sep 2021
Publication
Technologies that have traditionally been used in fixed installations to detect hydrogen gas leaks such as Catalytic and Electrochemical Point Sensors have one limitation: in order for a leak to be detected the gas itself must either be in close proximity to the detector or within a pre-defined area. Unfortunately outdoor environmental conditions such as changing wind directions and quick dispersion of the gas cloud from a leaking outdoor installation often cause that traditional gas detection systems may not alert to the presence of gas simply because the gas never reaches the detector. These traditional gas detection systems need to wait for the gas to form a vapor cloud which may or may not ignite and which may or may not allow loss prevention by enabling shutting down the gas facility in time. Ultrasonic Gas Leak Detectors (UGLD) respond at the speed of sound at gas leak initiation unaffected by changing wind directions and dilution of the gas. Ultrasonic Gas Leak Detectors are based on robust microphone technology; they detect outdoor leaks by sensing the distinct high frequency ultrasound emitted by all high pressure gas leaks. With the ultrasonic sensing technology leaking gas itself does not have to reach the sensor – just the sound of the gas leaking. By adding Ultrasonic Gas Leak Detectors for Hydrogen leak detection faster response times and lower operation costs can be obtained.
Sustainable Public Transport Strategies—Decomposition of the Bus Fleet and Its Influence on the Decrease in Greenhouse Gas Emissions
Mar 2022
Publication
The COVID pandemic has caused a major exodus of passengers who chose urban and suburban transport. In many countries especially in the European Union there is a tendency to choose individual means of transport causing damage to the environment and contributing significantly to greenhouse gas emissions. One method to promote urban transport is replacing bus fleets with newer ones thus making public transport more attractive and reducing the emission of harmful exhaust fume components into the atmosphere. The aim of this study was to show a methodology for calculating CO2e for bus fleets. When determining CO2e the principal greenhouse gases such as CO2 CH4 and N2O are usually considered. However CO emissions also have indirect effects on climate through enhanced levels of tropospheric O3 and increased lifetime of CH4; therefore CO2 CH4 N2O and CO emissions were determined for CO2e emission calculations. Two bus fleet variant scenarios were analysed; the first non-investment variant assumed passenger transport using the old fleet without any P&R parking zones. The second scenario was based on the current state which includes the purchase of new low-emission buses and the construction of P&R infrastructure. The calculations were performed using the COPERT emission model with real data from 52 buses running on 13 lines. For the analysed case study of the Rzeszow agglomeration and neighbouring communes implementing the urban and suburban transport modernisation project resulted in a reduction in estimated CO2e emissions of about 450 t. The methodology presented which also considers the impact of CO emissions on the greenhouse effect is a new element of the study that has not been presented in previous works and may serve as a model for other areas in the field of greenhouse gas emission analyses. The future research scope includes investigation of other fuels and powertrain supplies such as hydrogen and hybrid vehicles.
Influence of Carbon Catalysts on the Improvement of Hydrogen Storage Properties in a Body-Centered Cubic Solid Solution Alloy
Jun 2021
Publication
Body-centered cubic (BCC) alloys are considered as promising materials for hydrogen storage with high theoretical storage capacity (H/M ratio of 2). Nonetheless they often suffer from sluggish kinetics of hydrogen absorption and high hydrogen desorption temperature. Carbon materials are efficient hydrogenation catalysts however their influence on the hydrogen storage properties of BCC alloy has not been comprehensively studied. Therefore in this paper composites obtained by milling of carbon catalysts (carbon nanotubes mesoporous carbon carbon nanofibers diamond powder graphite fullerene) and BCC alloy (Ti1.5V0.5) were extensively studied in the non-hydrogenated and hydrogenated state. The structure and microstructure of the obtained materials were studied by scanning and transmission electron microscopes X-ray diffraction (XRD) and Raman spectroscopy. XRD and Raman measurements showed that BCC alloy and carbon structures were in most cases intact after the composite synthesis. The hydrogenation/dehydrogenation studies showed that all of the used carbon catalysts significantly improve the hydrogenation kinetics reduce the activation energy of the dehydrogenation process and decrease the dehydrogenation temperature (by nearly 100 K). The superior kinetic properties were measured for the composite with 5 wt % of fullerene that absorbs 3.3 wt % of hydrogen within 1 min at room temperature.
Techno-Economic Assessment of Green Hydrogen Production by an Off-Grid Photovoltaic Energy System
Jan 2023
Publication
Green hydrogen production is essential to meeting the conference of the parties’ (COP) decarbonization goals; however this method of producing hydrogen is not as cost-effective as hydrogen production from fossil fuels. This study analyses an off-grid photovoltaic energy system designed to feed a proton-exchange membrane water electrolyzer for hydrogen production to evaluate the optimal electrolyzer size. The system has been analyzed in Baghdad the capital of Iraq using experimental meteorological data. The 12 kWp photovoltaic array is positioned at the optimal annual tilt angle for the selected site. The temperature effect on photovoltaic modules is taken into consideration. Several electrolyzers with capacities in the range of 2–14 kW were investigated to assess the efficiency and effectiveness of the system. The simulation process was conducted using MATLAB and considering the project life span from 2021 to 2035. The results indicate that various potentially cost-competitive alternatives exist for systems with market combinations resembling renewable hydrogen wholesale. It has been found that the annual energy generated by the analyzed photovoltaic system is 18892 kWh at 4313 operating hours and the obtained hydrogen production cost ranges from USD 5.39/kg to USD 3.23/kg. The optimal electrolyzer capacity matches a 12 kWp PV system equal to 8 kW producing 37.5 kg/year/kWp of hydrogen for USD 3.23/kg.
Hydrogen Storage in Pure and Boron-Substituted Nanoporous Carbons—Numerical and Experimental Perspective
Aug 2021
Publication
Nanoporous carbons remain the most promising candidates for effective hydrogen storage by physisorption in currently foreseen hydrogen-based scenarios of the world’s energy future. An optimal sorbent meeting the current technological requirement has not been developed yet. Here we first review the storage limitations of currently available nanoporous carbons then we discuss possible ways to improve their storage performance. We focus on two fundamental parameters determining the storage (the surface accessible for adsorption and hydrogen adsorption energy). We define numerically the values nanoporous carbons have to show to satisfy mobile application requirements at pressures lower than 120 bar. Possible necessary modifications of the topology and chemical compositions of carbon nanostructures are proposed and discussed. We indicate that pore wall fragmentation (nano-size graphene scaffolds) is a partial solution only and chemical modifications of the carbon pore walls are required. The positive effects (and their limits) of the carbon substitutions by B and Be atoms are described. The experimental ‘proof of concept’ of the proposed strategies is also presented. We show that boron substituted nanoporous carbons prepared by a simple arc-discharge technique show a hydrogen adsorption energy twice as high as their pure carbon analogs. These preliminary results justify the continuation of the joint experimental and numerical research effort in this field.
Modeling the Effects of Implementation of Alternative Ways of Vehicle Powering
Nov 2021
Publication
The trend to replace traditional fossil fuel vehicles is becoming increasingly apparent. The replacement concerns the use of pure biofuels or in blends with traditional fuels the use of hydrogen as an alternative fuel and above all the introduction of electric propulsion. The introduction of new types of vehicle propulsion affects the demand for specific fuels the needs for new infrastructure or the nature of the emissions to the environment generated by fuel production and vehicle operation. The article presents a mathematical model using the difference of two logistic functions the first of which describes the development of the production of a specific type of vehicle and the second the withdrawal of this type of vehicle from traffic after its use. The model makes it possible to forecast both the number of vehicles of each generation as a function of time as well as changes in energy demand from various sources and changes in exhaust emissions. The results of the numerical simulation show replacing classic vehicles with alternative vehicles increases the total energy demand if the generation of the next generation occurs earlier than the decay of the previous generation of vehicles and may decrease in the case of overlapping or delays in the creation of new vehicles compared to the course of the decay function of the previous generation. For electric vehicles carbon dioxide emissions are largely dependent on the emissions from electricity generation. The proposed model can be used to forecast technology development variants as well as analyze the current situation based on the approximation of real data from Vehicle Registration Offices.
Catalyst Distribution Optimization Scheme for Effective Green Hydrogen Production from Biogas Reforming
Sep 2021
Publication
Green hydrogen technology has recently gained in popularity due to the current economic and ecological trends that aim to remove the fossil fuels share in the energy mix. Among various alternatives biogas reforming is an attractive choice for hydrogen production. To meet the authorities’ requirements reforming biogas-enriched natural gas and sole biogas is tempting. Highly effective process conditions of biogas reforming are yet to be designed. The current state of the art lacks proper optimization of the process conditions. The optimization should aim to allow for maximization of the process effectiveness and limitation of the phenomena having an adverse influence on the process itself. One of the issues that should be addressed in optimization is the uniformity of temperature inside a reactor. Here we show an optimization design study that aims to unify temperature distribution by novel arrangements of catalysts segments in the model biogas reforming reactor. The acquired numerical results confirm the possibility of the enhancement of reaction effectiveness coming from improving the thermal conditions. The used amount of catalytic material is remarkably reduced as a side effect of the presented optimization. To ensure an unhindered perception of the reaction improvement the authors proposed a ratio of the hydrogen output and the amount of used catalyst as a measure.
Hydrogen Technology on the Polish Electromobility Market. Legal, Economic, and Social Aspects
Apr 2021
Publication
The aim of this study was to evaluate the motorization market of electric vehicles powered by hydrogen cells in Poland. European conditions of such technology were indicated as well as original proposals on amendments to the law to increase the development pace of electromobility based on hydrogen cells. There were also presented economic aspects of this economic phenomenon. Moreover survey research was conducted to examine the preferences of hydrogen and electric vehicle users in 5 primary Polish cities. In this way the level of social acceptance for the technological revolution based on hydrogen cells and taking place in the motorization sector was determined.
The New Model of Energy Cluster Management and Functioning
Sep 2022
Publication
This article was aimed to answer the question of whether local energy communities have a sufficient energy surplus for storage purposes including hydrogen production. The article presents an innovative approach to current research and a discussion of the concepts of the collective prosumer and virtual prosumer that have been implemented in the legal order and further amended in the law. From this perspective it was of utmost importance to analyze the model of functioning of an energy cluster consisting of energy consumers energy producers and hydrogen storage whose goal is to maximize the obtained benefits assuming the co-operative nature of the relationship. The announced and clear perspective of the planned benefits will provide the cluster members a measurable basis for participation in such an energy community. However the catalogue of benefits will be conditioned by the fulfillment of several requirements related to both the scale of covering energy demand from own sources and the need to store surplus energy. As part of the article the results of analyses together with a functional model based on real data of the local energy community are presented.
Overview of the Hydrogen Production by Plasma-Driven Solution Electrolysis
Oct 2022
Publication
This paper reviews the progress in applying the plasma-driven solution electrolysis (PDSE) which is also referred to as the contact glow-discharge electrolysis (CGDE) or plasma electrolysis for hydrogen production. The physicochemical processes responsible for the formation of PDSE and effects occurring at the discharge electrode in the cathodic and anodic regimes of the PDSE operation are described. The influence of the PDSE process parameters especially the discharge polarity magnitude of the applied voltage type and concentration of the typical electrolytic solutions (K2CO3 Na2CO3 KOH NaOH H2SO4 ) presence of organic additives (CH3OH C2H5OH CH3COOH) temperature of the electrolytic solution the active length and immersion depth of the discharge electrode into the electrolytic solution on the energy efficiency (%) energy yield (g(H2 )/kWh) and hydrogen production rate (g(H2 )/h) is presented and discussed. This analysis showed that in the cathodic regime of PDSE the hydrogen production rate is 33.3 times higher than that in the anodic regime of PDSE whereas the Faradaic and energy efficiencies are 11 and 12.5 times greater respectively than that in the anodic one. It also revealed the energy yield of hydrogen production in the cathodic regime of PDSE in the methanol–water mixture as the electrolytic solution is 3.9 times greater compared to that of the alkaline electrolysis 4.1 times greater compared to the polymer electrolyte membrane electrolysis 2.8 times greater compared to the solid oxide electrolysis 1.75 times greater than that obtained in the microwave (2.45 GHz) plasma and 5.8% greater compared to natural gas steam reforming.
Prospects for the Implementation of Underground Hydrogen Storage in the EU
Dec 2022
Publication
The hydrogen economy is one of the possible directions of development for the European Union economy which in the perspective of 2050 can ensure climate neutrality for the member states. The use of hydrogen in the economy on a larger scale requires the creation of a storage system. Due to the necessary volumes the best sites for storage are geological structures (salt caverns oil and gas deposits or aquifers). This article presents an analysis of prospects for large-scale underground hydrogen storage in geological structures. The political conditions for the implementation of the hydrogen economy in the EU Member States were analysed. The European Commission in its documents (e.g. Green Deal) indicates hydrogen as one of the important elements enabling the implementation of a climate-neutral economy. From the perspective of 2050 the analysis of changes and the forecast of energy consumption in the EU indicate an increase in electricity consumption. The expected increase in the production of energy from renewable sources may contribute to an increase in the production of hydrogen and its role in the economy. From the perspective of 2050 discussed gas should replace natural gas in the chemical metallurgical and transport industries. In the longer term the same process will also be observed in the aviation and maritime sectors. Growing charges for CO2 emissions will also contribute to the development of underground hydrogen storage technology. Geological conditions especially wide-spread aquifers and salt deposits allow the development of underground hydrogen storage in Europe.
No more items...