Publications
Integration of Battery and Hydrogen Energy Storage Systems with Small-scale Hydropower Plants in Off-grid Local Energy Communities
Apr 2024
Publication
The energy transition is pushing towards a considerable diffusion of local energy communities based on renewable energy systems and coupled with energy storage systems or energy vectors to provide independence from fossil fuels and limit carbon emissions. Indeed the variable and intermittent nature of renewables make them inadequate to satisfy the end-users’ electricity demand throughout the whole day; thus the study of energy storage systems considering their seasonal storage behaviour (e.g. energy-power coupling selfdischarge loss and minimum state of charge) is fundamental to guarantee the proper energy coverage. This work aims at identifying the off-grid operation of a local energy community powered by a 220 kW small-scale hydropower plant in the center of Italy using either a battery energy storage system or a hydrogen one with the Calliope framework. Results show that whereas the hydrogen storage system is composed of a 137 kW electrolyser a 41 kW fuel cell and a storage of 5247 kgH2 a battery system storage system would have a capacity of 280 MWh. Even though the battery storage has a better round-trip efficiency its self-discharge loss and minimum state of charge limitation involve a discharging phase with a steeper slope thus requiring considerable economic investments because of the high energy-to-power ratio.
System Dynamic Model for the Accumulation of Renewable Electricity using Power-to-Gas and Power-to-Liquid Concepts
Feb 2016
Publication
When the renewable energy is used the challenge is match the supply of intermittent energy with the demand for energy therefore the energy storage solutions should be used. This paper is dedicated to hydrogen accumulation from wind sources. The case study investigates the conceptual system that uses intermitted renewable energy resources to produce hydrogen (power-to-gas concept) and fuel (power-to-liquid concept). For this specific case study hydrogen is produced from surplus electricity generated by wind power plant trough electrolysis process and fuel is obtained by upgrading biogas to biomethane using hydrogen. System dynamic model is created for this conceptual system. The developed system dynamics model has been used to simulate 2 different scenarios. The results show that in both scenarios the point at which the all electricity needs of Latvia are covered is obtained. Moreover the methodology of system dynamics used in this paper is white-box model that allows to apply the developed model to other case studies and/or to modify model based on the newest data. The developed model can be used for both scientific research and policy makers to better understand the dynamic relation within the system and the response of system to changes in both internal and external factors.
Advances in Hydrogen Storage Materials: Harnessing Innovative Technology, from Machine Learning to Computational Chemistry, for Energy Storage Solutions
Mar 2024
Publication
The demand for clean and sustainable energy solutions is escalating as the global population grows and economies develop. Fossil fuels which currently dominate the energy sector contribute to greenhouse gas emissions and environmental degradation. In response to these challenges hydrogen storage technologies have emerged as a promising avenue for achieving energy sustainability. This review provides an overview of recent advancements in hydrogen storage materials and technologies emphasizing the importance of efficient storage for maximizing hydrogen’s potential. The review highlights physical storage methods such as compressed hydrogen (reaching pressures of up to 70 MPa) and material-based approaches utilizing metal hydrides and carboncontaining substances. It also explores design considerations computational chemistry high-throughput screening and machine-learning techniques employed in developing efficient hydrogen storage materials. This comprehensive analysis showcases the potential of hydrogen storage in addressing energy demands reducing greenhouse gas emissions and driving clean energy innovation.
Performance Analysis of a Stand-alone Integrated Solar Hydrogen Energy System for Zero Energy Buildings
Oct 2022
Publication
This study analyzes the optimal sizing design of a stand-alone solar hydrogen hybrid energy system for a house in Afyon Turkey. The house is not connected to the grid and the proposed hybrid system meets all its energy demands; therefore it is considered a zero-energy building. The designed system guarantees uninterrupted and reliable power throughout the year. Since the reliability of the power supply is crucial for the house optimal sizing of the components photovoltaic (PV) panels electrolyzer storage tank and fuel cell stack is critical. Determining the sufficient number of PV panels suitable electrolyzer model and size number of fuel cell stacks and the minimum storage tank volume to use in the proposed system can guarantee an uninterrupted energy supply to the house. In this study a stand-alone hybrid energy system is proposed. The system consists of PV panels a proton exchange membrane (PEM) electrolyzer a storage tank and a PEM fuel cell stack. It can meet the continuous energy demand of the house is sized by using 10 min of averaged solar irradiation and temperature data of the site and consumption data of the house. Present results show that the size of each component in a solar hydrogen hybrid energy system in terms of power depends on the size of each other components to meet the efficiency requirement of the whole system. Choosing the nominal electrolyzer power is critical in such energy systems
The Cost Dynamics of Hydrogen Supply in Future Energy systems - A Techno-economic Study
Nov 2022
Publication
This work aims to investigate the time-resolved cost of electrolytic hydrogen in a future climate-neutral electricity system with high shares of variable renewable electricity generation in which hydrogen is used in the industry and transport sectors as well as for time-shifting electricity generation. The work applies a techno-economic optimization model which incorporates both exogenous (industry and transport) and endogenous (time-shifting of electricity generation) hydrogen demands to elucidate the parameters that affect the cost of hydrogen. The results highlight that several parameters influence the cost of hydrogen. The strongest influential parameter is the cost of electricity. Also important are cost-optimal dimensioning of the electrolyzer and hydrogen storage capacities as these capacities during certain periods limit hydrogen production thereby setting the marginal cost of hydrogen. Another decisive factor is the nature of the hydrogen demand whereby flexibility in the hydrogen demand can reduce the cost of supplying hydrogen given that the demand can be shifted in time. In addition the modeling shows that time-shifting electricity generation via hydrogen production with subsequent reconversion back to electricity plays an important in the climate-neutral electricity system investigated decreasing the average electricity cost by 2%–16%. Furthermore as expected the results show that the cost of hydrogen from an off-grid island-mode-operated industry is more expensive than the cost of hydrogen from all scenarios with a fully interconnected electricity system.
A Review on Hydrogen-Based Hybrid Microgrid System: Topologies for Hydrogen Energy Storage, Integration, and Energy Management with Solar and Wind Energy
Oct 2022
Publication
Hydrogen is acknowledged as a potential and appealing energy carrier for decarbonizing the sectors that contribute to global warming such as power generation industries and transportation. Many people are interested in employing low-carbon sources of energy to produce hydrogen by using water electrolysis. Additionally the intermittency of renewable energy supplies such as wind and solar makes electricity generation less predictable potentially leading to power network incompatibilities. Hence hydrogen generation and storage can offer a solution by enhancing system flexibility. Hydrogen saved as compressed gas could be turned back into energy or utilized as a feedstock for manufacturing building heating and automobile fuel. This work identified many hydrogen production strategies storage methods and energy management strategies in the hybrid microgrid (HMG). This paper discusses a case study of a HMG system that uses hydrogen as one of the main energy sources together with a solar panel and wind turbine (WT). The bidirectional AC-DC converter (BAC) is designed for HMGs to maintain power and voltage balance between the DC and AC grids. This study offers a control approach based on an analysis of the BAC’s main circuit that not only accomplishes the function of bidirectional power conversion but also facilitates smooth renewable energy integration. While implementing the hydrogen-based HMG the developed control technique reduces the reactive power in linear and non-linear (NL) loads by 90.3% and 89.4%.
The Use of Hydrogen for Traction in Freight Transport: Estimating the Reduction in Fuel Consumption and Emissions in a Regional Context
Jan 2023
Publication
The Italian National Recovery and Resilience Plan (NRRP) includes among other measures investments in hydrogen vehicle refuelling stations intending to promote the use of fuel cell electric vehicles (FCEVs) for long-haul freight transport. This paper evaluates the impact that this action could have on CO2 emissions and fuel consumption focusing on a case study of the Campania region. The proposed approach which can also be transferred to other geographical contexts requires the implementation of a freight road transport simulation model; this model is based on the construction of a supply model the estimation of road freight demand and an assignment procedure for computing traffic flows. This study covers the period from 2025 to 2040 according to the forecasts of the NRRP and some assumptions on the action effects; moreover it is assumed that hydrogen is entirely produced from renewable sources (green hydrogen). The key findings from three different scenarios show that savings between 423832 and 778538 tonnes of CO2 and between 144 and 264 million litres of diesel could be obtained.
Innovative Combustion Analysis of a Micro-gas Turbine Burner Supplied with Hydrogen-natural Gas Mixtures
Sep 2017
Publication
The author discusses in this paper the potential of a micro gas turbine (MGT) combustor when operated under unconventional fuel supplied. The combustor of C30 gas turbine is a reverse flow annular combustor. The CFD analysis of the reacting flow is performed with the 3D ANSYS-FLUENT solver. Specific computational experiments refer to the use of hydrogen – natural gas mixtures in order to define the optimal conditions for pilot and main injections in terms of combustion stability and NOx production. The author's methodology relies on an advanced CFD approach that compares different schemes like eddy dissipation concept together with the flamelet- PDF based approach coupled with an accurate study of the turbulent chemistry interaction. Extended kinetic mechanisms are also included in the combustion model. Some test cases are examined to make a comparison of combustion stability and efficiency and pollutant production with high hydrogen / natural gas ratios.
Renewable-based Zero-carbon Fuels for the Use of Power Generation: A Case Study in Malaysia Supported by Updated Developments Worldwide
Apr 2021
Publication
The existing combustion-centered energy mix in Malaysia has shown that replacing fossil fuels with zero-carbon alternative fuels could be a better approach to achieve the reduction of the carbon footprint of the power generation industry. In this study the potential of zero-carbon alternative fuels generated from renewable sources such as green hydrogen and green ammonia was addressed in terms of the production transport storage and utilization in Malaysia’s thermal power plants. The updated developments associated to green hydrogen and green ammonia across the globe have also been reviewed to support the existing potential in Malaysia. Though green hydrogen and green ammonia are hardly commercialized in Malaysia for the time being numerous potentialities have been identified in utilizing these fuels to achieve the zero-carbon power generation market in Malaysia. The vast and strategic location of natural gas network in Malaysia has the potential to deliver green hydrogen with minimal retrofitting required. Moreover there are active participation of Malaysia’s academic institutions in the development of water electrolysis that is the core process to convert the electricity from renewables plant into hydrogen. Malaysia also has the capacity to use its abundance of depleted gas reservoirs for the storage of green hydrogen. A large number of GT plants in Malaysia would definitely have the potential to utilize hydrogen co-firing with natural gas to minimize the amount of carbon dioxide (CO2) released. The significant number of ammonia production plants in Malaysia could provide a surplus of ammonia to be used as an alternative fuel for power plants. With regard to the energy policy in Malaysia positive acceptance of the implementation of renewable energy has been shown with the introduction of various energy policies aimed at promoting the incorporation of renewables into the energy mix. However there is still inadequate support for the implementation of alternative zero-carbon fuels in Malaysia.
A Prompt Decarbonization Pathway for Shipping: Green Hydrogen, Ammonia, and Methanol Production and Utilization in Marine Engines
Mar 2023
Publication
The shipping industry has reached a higher level of maturity in terms of its knowledge and awareness of decarbonization challenges. Carbon-free or carbon-neutralized green fuel such as green hydrogen green ammonia and green methanol are being widely discussed. However little attention has paid to the green fuel pathway from renewable energy to shipping. This paper therefore provides a review of the production methods for green power (green hydrogen green ammonia and green methanol) and analyzes the potential of green fuel for application to shipping. The review shows that the potential production methods for green hydrogen green ammonia and green methanol for the shipping industry are (1) hydrogen production from seawater electrolysis using green power; (2) ammonia production from green hydrogen + Haber–Bosch process; and (3) methanol production from CO2 using green power. While the future of green fuel is bright in the short term the costs are expected to be higher than conventional fuel. Our recommendations are therefore as follows: improve green power production technology to reduce the production cost; develop electrochemical fuel production technology to increase the efficiency of green fuel production; and explore new technology. Strengthening the research and development of renewable energy and green fuel production technology and expanding fuel production capacity to ensure an adequate supply of low- and zero-emission marine fuel are important factors to achieve carbon reduction in shipping.
Water Electrolysis and Hydrogen in the European Union
Nov 2022
Publication
Renewable and low carbon hydrogen is both an energy carrier able to produce other fuels and downstream products such as the e-fuels or e-ammonia and a decarbonised gas produced through renewable electricity. It has the potential to decarbonise hard to abate sectors which are difficult to directly electrify and play a crucial role in achieving net zero emissions target in 2050. The European Commission has recently outlined the policy context and necessary actions for the development and deployment of renewable and low carbon hydrogen within the 2030 time horizon with the Hydrogen Strategy for a Climate Neutral Europe Communication (the Hydrogen Strategy). The REPowerEU Communication4 has further addressed the joint EU and Member State actions needed in the context of the crisis triggered by the invasion of Ukraine in February 2022 and the necessity to phase out dependence on Russian supplies. The EC has strengthened the policy narrative around hydrogen and increased objectives for a pan European framework accelerating and upscaling the production of RES and low-carbon hydrogen. The main objectives and actions of the REPowerEU Plan which build on the Hydrogen Strategy are the deployment of several tens of GW of electrolyser capacity and the production and imports of 10 Mt and 10 Mt respectively of renewable hydrogen by 2030. Currently the most mature and promising green hydrogen production technology is water electrolysis. The main technologies5 considered in this report are: Alkaline electrolysis Polymer Exchange Membrane (PEM) electrolysis Solid Oxide electrolysis and Anion Exchange Membrane electrolysers (AEM).
The Direct Reduction of Iron Ore with Hydrogen
Aug 2022
Publication
The steel industry represents about 7% of the world’s anthropogenic CO2 emissions due to the high use of fossil fuels. The CO2 -lean direct reduction of iron ore with hydrogen is considered to offer a high potential to reduce CO2 emissions and this direct reduction of Fe2O3 powder is investigated in this research. The H2 reduction reaction kinetics and fluidization characteristics of fine and cohesive Fe2O3 particles were examined in a vibrated fluidized bed reactor. A smooth bubbling fluidization was achieved. An increase in external force due to vibration slightly increased the pressure drop. The minimum fluidization velocity was nearly independent of the operating temperature. The yield of the direct H2 -driven reduction was examined and found to exceed 90% with a maximum of 98% under the vibration of ~47 Hz with an amplitude of 0.6 mm and operating temperatures close to 500 ◦C. Towards the future of direct steel ore reduction cheap and “green” hydrogen sources need to be developed. H2 can be formed through various techniques with the catalytic decomposition of NH3 (and CH4 ) methanol and ethanol offering an important potential towards production cost yield and environmental CO2 emission reductions.
Sufficiency, Sustainability, and Circularity of Critical Materials for Clean Hydrogen
Jan 2022
Publication
Effective global decarbonization will require an array of solutions across a portfolio of low-carbon resources. One such solution is developing clean hydrogen. This unique fuel has the potential to minimize climate change impacts helping decarbonize hard-to-abate sectors such as heavy industry and global transport while also promoting energy security sustainable growth and job creation. The authors estimate suggest that hydrogen needs to grow seven-fold to support the global energy transition eventually accounting for ten percent of total energy consumption by 2050. A scaleup of this magnitude will increase demand for materials such as aluminum copper iridium nickel platinum vanadium and zinc to support hydrogen technologies - renewable electricity technologies and the electrolyzers for renewable hydrogen carbon storage for low-carbon hydrogen or fuel cells using hydrogen to power transport. This report a joint product of the World Bank and the Hydrogen Council examines these three critical areas. Using new data on the material intensities of key technologies the report estimates the amount of critical minerals needed to scale clean hydrogen. In addition it shows how incorporating sustainable practices and policies for mining and processing materials can help minimize environmental impacts. Key among these approaches is the use of recycled materials innovations in design in order to reduce material intensities and adoption of policies from the Climate Smart Mining (CSM) Framework to reduce impacts to greenhouse gas emissions and water footprint.
Revolutionising Energy Storage: The Latest Breakthrough in Liquid Organic Hydrogen Carriers
Mar 2024
Publication
Liquid organic hydrogen carriers (LOHC) can be used as a lossless form of hydrogen storage at ambient conditions. The storage cycle consists of the exothermic hydrogenation of a hydrogen-lean molecule at the start of the transport usually the hydrogen production site becoming a hydrogen-rich molecule. This loaded molecule can be transported long distances or be used as long-term storage due to its ability to not lose hydrogen over long periods of time. At the site or time of required hydrogen production the hydrogen can be released through an endothermic dehydrogenation reaction. LOHCs show similar properties to crude oils such as petroleum and diesel allowing easy handling and possibilities of integration with current infrastructure. Using this background this paper reviews a variety of aspects of the LOHC life cycle with a focus on currently studied materials. Important factors such as the hydrogenation and dehydrogenation requirements for each material are analysed to determine their ability to be used in current scenarios. Toluene and dibenzyltoluene are attractive options with promising storage attributes however their dehydrogenation enthalpies remain a problem. The economic feasibility of LOHCs being used as a delivery device were briefly analysed. LOHCs have been shown to be the cheapest option for long distance transport (>200 km) and are cheaper than most at shorter distances in terms of specifically transport costs. The major capital cost of an LOHC delivery chain remains the initial investment for the raw materials and the cost of equipment for performing hydrogenation and dehydrogenation. Finally some studies in developing the LOHC field were discussed such as microwave enhancing parts of the process and mixing LOHCs to acquire more advantageous properties.
Solar–Hydrogen Storage System: Architecture and Integration Design of University Energy Management Systems
May 2024
Publication
As a case study on sustainable energy use in educational institutions this study examines the design and integration of a solar–hydrogen storage system within the energy management framework of Kangwon National University’s Samcheok Campus. This paper provides an extensive analysis of the architecture and integrated design of such a system which is necessary given the increasing focus on renewable energy sources and the requirement for effective energy management. This study starts with a survey of the literature on hydrogen storage techniques solar energy storage technologies and current university energy management systems. In order to pinpoint areas in need of improvement and chances for progress it also looks at earlier research on solar–hydrogen storage systems. This study’s methodology describes the system architecture which includes fuel cell integration electrolysis for hydrogen production solar energy harvesting hydrogen storage and an energy management system customized for the needs of the university. This research explores the energy consumption characteristics of the Samcheok Campus of Kangwon National University and provides recommendations for the scalability and scale of the suggested system by designing three architecture systems of microgrids with EMS Optimization for solar–hydrogen hybrid solar–hydrogen and energy storage. To guarantee effective and safe functioning control strategies and safety considerations are also covered. Prototype creation testing and validation are all part of the implementation process which ends with a thorough case study of the solar–hydrogen storage system’s integration into the university’s energy grid. The effectiveness of the system its effect on campus energy consumption patterns its financial sustainability and comparisons with conventional energy management systems are all assessed in the findings and discussion section. Problems that arise during implementation are addressed along with suggested fixes and directions for further research—such as scalability issues and technology developments—are indicated. This study sheds important light on the viability and efficiency of solar–hydrogen storage systems in academic environments particularly with regard to accomplishing sustainable energy objectives.
Skilling the Green Hydrogen Economy: A Case Study from Australia
Feb 2023
Publication
This paper explores the skills landscape of the emerging green hydrogen industry in Australia drawing on data collected from a study that gathered insights on training gaps from a range of hydrogen industry participants. A total of 41 industry participants completed a survey and 14 of those survey respondents participated in industry consultations. The findings revealed widespread perceptions of training and skilling as being very important to the industry but under-provisioned across the sector. Data were analysed to consider the problem of skilling the green hydrogen industry and the barriers and enablers as perceived by industry stakeholders. In this paper we argue that urgent cross-sector attention needs to be paid to hydrogen industry training and skill development systems in Australia if the promise of green hydrogen as a clean energy source is to be realised.
Hydrogen-Powered Aviation—Design of a Hybrid-Electric Regional Aircraft for Entry into Service in 2040
Mar 2023
Publication
Over the past few years the rapid growth of air traffic and the associated increase in emissions have created a need for sustainable aviation. Motivated by these challenges this paper explores how a 50-passenger regional aircraft can be hybridized to fly with the lowest possible emissions in 2040. In particular the use of liquid hydrogen in this aircraft is an innovative power source that promises to reduce CO2 and NOx emissions to zero. Combined with a fuel-cell system the energy obtained from the liquid hydrogen can be used efficiently. To realize a feasible concept in the near future considering the aspects of performance and security the system must be hybridized. In terms of maximized aircraft sustainability this paper analyses the flight phases and ground phases resulting in an aircraft design with a significant reduction in operating costs. Promising technologies such as a wingtip propeller and electric green taxiing are discussed in this paper and their potential impacts on the future of aviation are highlighted. In essence the hybridization of regional aircraft is promising and feasible by 2040; however more research is needed in the areas of fuel-cell technology thermal management and hydrogen production and storage.
Comparative TCO Analysis of Battery Electric and Hydrogen Fuel Cell Buses for Public Transport System in Small to Midsize Cities
Jul 2021
Publication
This paper shows the results of an in-depth techno-economic analysis of the public transport sector in a small to midsize city and its surrounding area. Public battery-electric and hydrogen fuel cell buses are comparatively evaluated by means of a total cost of ownership (TCO) model building on historical data and a projection of market prices. Additionally a structural analysis of the public transport system of a specific city is performed assessing best fitting bus lines for the use of electric or hydrogen busses which is supported by a brief acceptance evaluation of the local citizens. The TCO results for electric buses show a strong cost decrease until the year 2030 reaching 23.5% lower TCOs compared to the conventional diesel bus. The optimal electric bus charging system will be the opportunity (pantograph) charging infrastructure. However the opportunity charging method is applicable under the assumption that several buses share the same station and there is a “hotspot” where as many as possible bus lines converge. In the case of electric buses for the year 2020 the parameter which influenced the most on the TCO was the battery cost opposite to the year 2030 in where the bus body cost and fuel cost parameters are the ones that dominate the TCO due to the learning rate of the batteries. For H2 buses finding a hotspot is not crucial because they have a similar range to the diesel ones as well as a similar refueling time. H2 buses until 2030 still have 15.4% higher TCO than the diesel bus system. Considering the benefits of a hypothetical scaling-up effect of hydrogen infrastructures in the region the hydrogen cost could drop to 5 €/kg. In this case the overall TCO of the hydrogen solution would drop to a slightly lower TCO than the diesel solution in 2030. Therefore hydrogen buses can be competitive in small to midsize cities even with limited routes. For hydrogen buses the bus body and fuel cost make up a large part of the TCO. Reducing the fuel cost will be an important aspect to reduce the total TCO of the hydrogen bus.
Seasonal Hydrogen Storage Decisions Under Constrained Electricity Distribution Capacity
Jun 2022
Publication
We consider a profit-maximizing renewable energy producer operating in a rural area with limited electricity distribution capacity to the grid. While maximizing profits the energy producer is responsible for the electricity supply of a local community that aims to be self-sufficient. Energy storage is required to deal with the energy productions' uncertain and intermittent character. A promising new solution is to use strategic hydrogen reserves. This provides a long-term storage option to deal with seasonal mismatches in energy production and the local community's demand. Using a Markov decision process we provide a model that determines optimal daily decisions on how much energy to store as hydrogen and buy or sell from the power grid. We explicitly consider the seasonality and uncertainty of production demand and electricity prices. We show that ignoring seasonal demand and production patterns is suboptimal and that introducing hydrogen storage transforms loss-making operations into profitable ones. Extensive numerical experiments show that the distribution capacity should not be too small to prevent local grid congestion. A higher storage capacity increases the number of buying actions from the grid thereby causing more congestion which is problematic for the grid operator. We conclude that a profit-maximizing hydrogen storage operation alone is not an alternative to grid expansion to solve congestion which is essential knowledge for policy-makers and grid operators.
Hydrogen Technology Development and Policy Status by Value Chain in South Korea
Nov 2022
Publication
Global transitions from carbon- to hydrogen-based economies are an essential component of curbing greenhouse gas emissions and climate change. This study provides an investigative review of the technological development trends within the overall hydrogen value chain in terms of production storage transportation and application with the aim of identifying patterns in the announcement and execution of hydrogen-based policies both domestically within Korea as well as internationally. The current status of technological trends was analyzed across the three areas of natural hydrogen carbon dioxide capture utilization and storage technology linked to blue hydrogen and green hydrogen production linked to renewable energy (e.g. water electrolysis). In Korea the establishment of underground hydrogen storage facilities is potentially highly advantageous for the storage of domestically produced and imported hydrogen providing the foundations for large-scale application as economic feasibility is the most important national factor for the provision of fuel cells. To realize a hydrogen economy pacing policy and technological development is essential in addition to establishing a roadmap for efficient policy support. In terms of technological development it is important to prioritize that which can connect the value chain all of which will ultimately play a major role in the transformation of human energy consumption.
True Cost of Solar Hydrogen
Sep 2021
Publication
Green hydrogen will be an essential part of the future 100% sustainable energy and industry system. Up to one-third of the required solar and wind electricity would eventually be used for water electrolysis to produce hydrogen increasing the cumulative electrolyzer capacity to about 17 TWel by 2050. The key method applied in this research is a learning curve approach for the key technologies i.e. solar photovoltaics (PV) and water electrolyzers and levelized cost of hydrogen (LCOH). Sensitivities for the hydrogen demand and various input parameters are considered. Electrolyzer capital expenditure (CAPEX) for a large utility-scale system is expected to decrease from the current 400 €/kWel to 240 €/kWel by 2030 and to 80 €/kWel by 2050. With the continuing solar PV cost decrease this will lead to an LCOH decrease from the current 31–81 €/ MWhH2LHV (1.0–2.7 €/kgH2) to 20–54 €/MWhH2LHV (0.7–1.8 €/kgH2) by 2030 and 10–27 €/MWhH2LHV (0.3–0.9 €/kgH2) by 2050 depending on the location. The share of PV electricity cost in the LCOH will increase from the current 63% to 74% by 2050.
Conflicts Between Economic and Low-carbon Reorientation Processes: Insights from a Contextual Analysis of Evolving Company Strategies in the United Kingdrom Petrochemical Industry (1970-2021)
Jul 2022
Publication
To situate its low-carbon transition process in longer-term real-world business contexts this article makes a longitudinal analysis of the UK petrochemical industry focusing on changing economic and socio-political environments and company strategies in the last 50 years. Using the Triple Embeddedness Framework the paper identifies two parallel and conflicting reorientation processes in the UK petrochemical industry. The first one which started in the 1970s and is driven by long-standing competitiveness problems led to retrenchment in the 1980s exit of incumbent companies (BP Shell ICI) and the entry of new firms (INEOS SABIC) in the 1990s and 2000s and diversification into upstream fossil fuel production and ethane imports in the 2010s. The second reorientation process which started in the 2010s is driven by climate change considerations and has led petrochemical firms to reluctantly explore low-carbon alternatives. Despite advancing ambitious visions and plans companies are weakly committed to low-carbon reorientation because this is layered on top of and conflicts with the deeper economically-motivated reorientation process. The paper further concludes that the industry's low-carbon plans and visions are partial because they focus more on some innovations (hydrogen-as-fuel CCS) than on other innovations (recycling bio-feedstocks synthetic feedstocks). Despite exploring alternatives firms also use political resistance strategies to hamper and delay deeper low-carbon reorientation
Energy Sustainability: A Pragmatic Approach and Illustrations
Mar 2009
Publication
Many factors to be appropriately addressed in moving towards energy sustainability are examined. These include harnessing sustainable energy sources utilizing sustainable energy carriers increasing efficiency reducing environmental impact and improving socioeconomic acceptability. The latter factor includes community involvement and social acceptability economic affordability and equity lifestyles land use and aesthetics. Numerous illustrations demonstrate measures consistent with the approach put forward and options for energy sustainability and the broader objective of sustainability. Energy sustainability is of great importance to overall sustainability given the pervasiveness of energy use its importance in economic development and living standards and its impact on the environment.
Hydrogen Europe Podcast: The Commision's Support to the Hydrogen Ecosystem
Jul 2022
Publication
In this episode titled "The Commission's support to the hydrogen ecosystem" our CEO Jorgo Chatzimarkakis discusses with Rosalinde van der Vlies Clean Planet Director DG RTD - European Commission. Starting off on how Rosalinde joined the Commission the two speakers discuss the Commission's support in developing a hydrogen ecosystem also in light of its participation in the Clean Hydrogen Partnership and the implications arising from the REPowerEU.
Economic Evaluation of Low-carbon Steelmaking via Coupling of Electrolysis and Direct Reduction
Oct 2021
Publication
The transition from fossil-based primary steel production to a low-emission alternative has gained increasing attention in recent years. Various schemes including Carbon Capture and Utilization (CCU) and Carbon Direct Avoidance (CDA) via hydrogen-based as well as electrochemical routes have been proposed. With multiple technical analyses being available and technical feasibility being proven by first pilot plants pathways towards commercial market entry are of increasing interest. While multiple publications on the economic feasibility of CCU are available data on CDA approaches is scarce. In this work an economic model for the quantification of production cost as well as CO2 emission mitigation cost is presented. The approach is characterized by a seamless integration with a flowsheet-based process model of a direct reduction-based crude steel production plant detailed in a previous work and allows for the investigation of multiple economic aspects. Firstly the gradual transition from the natural gas-based state-of-the-art direct reduction towards a fossil-free hydrogen-based reduction is analyzed. Furthermore a comparison between the more mature technology of low-temperature electrolysis and a potentially more efficient solid oxide electrolysis (SOEL) is given highlighting the potential of SOEL technology. The conducted forecast to 2050 shows that SOEL-based CDA offers lower production cost when technological maturity is reached. Based on the results of the economic assessment possible legislative support mechanisms are studied showing that legislative actions are necessary to allow for market entry as well as for sustainable and economically feasible operation of fossil-free direct reduction plants.
A Compilation of Operability and Emissions Performance of Residential Water Heaters Operated on Blends of Natural Gas and Hydrogen Including Consideration for Reporting Bases
Feb 2023
Publication
The impact of hydrogen added to natural gas on the performance of commercial domestic water heating devices has been discussed in several recent papers in the literature. Much of the work focuses on performance at specific hydrogen levels (by volume) up to 20–30% as a near term blend target. In the current work new data on several commercial devices have been obtained to help quantify upper limits based on flashback limits. In addition results from 39 individual devices are compiled to help generalize observations regarding performance. The emphasis of this work is on emissions performance and especially NOx emissions. It is important to consider the reporting bases of the emissions numbers to avoid any unitended bias. For water heaters the trends associated with both mass per fuel energy input and concentration-based representation are similar For carbon free fuels bases such as 12% CO2 should be avoided. In general the compiled data shows that NOx NO UHC and CO levels decrease with increasing hydrogen percentage. The % decrease in NOx and NO is greater for low NOx devices (meaning certified to NOx <10 ng/J using premixing with excess air) compared to conventional devices (“pancake burners” partial premixing). Further low NOx devices appear to be able to accept greater amounts of hydrogen above 70% hydrogen in some cases without modification while conventional water heaters appear limited to 40–50% hydrogen. Reporting emissions on a mass basis per unit fuel energy input is preferred to the typical dry concentration basis as the greater amount of water produced by hydrogen results in a perceived increase in NOx when hydrogen is used. While this effort summarizes emissions performance with added hydrogen additional work is needed on transient operation higher levels of hydrogen system durability/reliability and heating efficiency.
A Critical Review of Polymer Electrolyte Membrane Fuel Cell Systems for Automotive Applications: Components, Materials, and Comparative Assessment
Mar 2023
Publication
The development of innovative technologies based on employing green energy carriers such as hydrogen is becoming high in demand especially in the automotive sector as a result of the challenges associated with sustainable mobility. In the present review a detailed overview of the entire hydrogen supply chain is proposed spanning from its production to storage and final use in cars. Notably the main focus is on Polymer Electrolyte Membrane Fuel Cells (PEMFC) as the fuel-cell type most typically used in fuel cell electric vehicles. The analysis also includes a cost assessment of the various systems involved; specifically the materials commonly employed to manufacture fuel cells stacks and hydrogen storage systems are considered emphasizing the strengths and weaknesses of the selected strategies together with assessing the solutions to current problems. Moreover as a sought-after parallelism a comparison is also proposed and discussed between traditional diesel or gasoline cars battery-powered electric cars and fuel cell electric cars thus highlighting the advantages and main drawbacks of the propulsion systems currently available on the market.
Hydrogen-Fuel Cell Hybrid Powertrain: Conceptual Layouts and Current Applications
Nov 2022
Publication
Transportation is one of the largest sources of CO2 emissions accounting for more than 20% of worldwide emissions. However it is one of the areas where decarbonization presents the greatest hurdles owing to its capillarity and the benefits that are associated with the use of fossil fuels in terms of energy density storage and transportation. In order to accomplish comprehensive decarbonization in the transport sector it will be required to encourage a genuine transition to low-carbon fuels and the widespread deployment of the necessary infrastructures to allow for a large-scale innovation. Renewable hydrogen shows potential for sustainable transportation applications whether in fuel cell electric vehicles (FCEVs) such as automobiles trucks and trains or as a raw material for ship and airplane synthetic fuels. The present paper aims to present how hydrogen-fuel cell hybrid powertrains for road vehicles work in terms of conceptual layouts and operating strategies. A comprehensive overview of real and current applications is presented concerning existing prototypes and commercially available vehicles with a focus on the main key performance indicators such as efficiency mileage and energy consumption.
Feasibility Analysis of Green Hydrogen Production from Wind
May 2023
Publication
Renewable hydrogen production has an important role in global decarbonization. However when coupled with intermittent and variable sources such as wind or PV electrolyzers are subjected to part-load and dynamic operation. This can lead to low utilization factors and faster degradation of the electrolyzers and affect the specific hydrogen cost. The design and sizing of such electrolysis systems are fundamental to minimize costs. In this study several configurations of an electrolysis system producing green hydrogen from a 39 MWwind farm are compared. The effects of both the size of the plant and the number of separated groups into which it is divided are investigated. Dividing the plant into two separated groups resulted to be enough to increase hydrogen production; a further increase in the number of groups didn't produce significant differences. The most profitable configurations resulted that with one or two groups depending on the hydrogen selling price.
Analysis and Design of Fuel Cell Systems for Aviation
Feb 2018
Publication
In this paper the design of fuel cells for the main energy supply of passenger transportation aircraft is discussed. Using a physical model of a fuel cell general design considerations are derived. Considering different possible design objectives the trade-off between power density and efficiency is discussed. A universal cost–benefit curve is derived to aid the design process. A weight factor wP is introduced which allows incorporating technical (e.g. system mass and efficiency) as well as non-technical design objectives (e.g. operating cost emission goals social acceptance or technology affinity political factors). The optimal fuel cell design is not determined by the characteristics of the fuel cell alone but also by the characteristics of the other system components. The fuel cell needs to be designed in the context of the whole energy system. This is demonstrated by combining the fuel cell model with simple and detailed design models of a liquid hydrogen tank. The presented methodology and models allows assessing the potential of fuel cell systems for mass reduction of future passenger aircraft.
Advances in Hydrogen Production from Natural Gas Reforming
Jun 2021
Publication
Steam natural gas reforming is the preferred technique presently used to produce hydrogen. Proposed in 1932 the technique is very well established but still subjected to perfections. Herein first the improvements being sought in catalysts and processes are reviewed and then the advantage of replacing the energy supply from burning fuels with concentrated solar energy is discussed. It is especially this advance that may drastically reduce the economic and environmental cost of hydrogen production. Steam reforming can be easily integrated into concentrated solar with thermal storage for continuous hydrogen production.
Perspectives and Prospects of Underground Hydrogen Storage and Natural Hydrogen
Jun 2022
Publication
Hydrogen is considered the fuel of the future due to its cleaner nature compared to methane and gasoline. Therefore renewable hydrogen production technologies and long-term affordable and safe storage have recently attracted significant research interest. However natural underground hydrogen production and storage have received scant attention in the literature despite its great potential. As such the associated formation mechanisms geological locations and future applications remain relatively under-explored thereby requiring further investigation. In this review the global natural hydrogen formation along with reaction mechanisms (i.e. metamorphic processes pyritization and serpentinization reactions) as well as the suitable geological locations (i.e. ophiolites organic-rich sediments fault zones igneous rocks crystalline basements salt bearing strata and hydrocarbon-bearing basins) are discussed. Moreover the underground hydrogen storage mechanisms are detailed and compared with underground natural gas and CO2 storage. Techno-economic analyses of large-scale underground hydrogen storage are presented along with the current challenges and future directions.
Hydrogen Europe Podcast: Wind and Hydrogen - Delivering REPower EU
Jun 2022
Publication
In this episode of Hydrogen Europe's podcast "Hydrogen the first element" our CEO Jorgo Chatzimarkakis discusses with Wind Europe's CEO Giles Dickson. Starting off on how Giles joined Wind Europe the two CEOs discuss the responsibilities their industries have in the new energy strategy set in the REPowerEU as well as the fruitful synergies between hydrogen and wind.
Evaluating Hydrogen Gas Transport in Pipelines: Current State of Numerical and Experimental Methodologies
Apr 2024
Publication
This review article provides a comprehensive overview of the fundamentals modelling approaches experimental studies and challenges associated with hydrogen gas flow in pipelines. It elucidates key aspects of hydrogen gas flow including density compressibility factor and other relevant properties crucial for understanding its behavior in pipelines. Equations of state are discussed in detail highlighting their importance in accurately modeling hydrogen gas flow. In the subsequent sections one-dimensional and three-dimensional modelling techniques for gas distribution networks and localized flow involving critical components are explored. Emphasis is placed on transient flow friction losses and leakage characteristics shedding light on the complexities of hydrogen pipeline transportation. Experimental studies investigating hydrogen pipeline transportation dynamics are outlined focusing on the impact of leakage on surrounding environments and safety parameters. The challenges and solutions associated with repurposing natural gas pipelines for hydrogen transport are discussed along with the influence of pipeline material on hydrogen transportation. Identified research gaps underscore the need for further investigation into areas such as transient flow behavior leakage mitigation strategies and the development of advanced modelling techniques. Future perspectives address the growing demand for hydrogen as a clean energy carrier and the evolving landscape of hydrogen-based energy systems.
Green and Blue Hydrogen Production: An Overview in Colombia
Nov 2022
Publication
Colombia a privileged country in terms of diversity availability of natural resources and geographical location has set a roadmap for hydrogen as part of the energy transition plan proposed in 2021. To reduce its emissions in the mid-term and foster its economy hydrogen production should be green and blue with specific targets set for 2030 for the hydrogen costs and produced quantities. This work compares the state-of-the-art production of blue and green hydrogen and how Colombia is doing in each pathway. A deeper analysis considers the advantages of Colombia’s natural resources the possible paths the government could follow and the feedstock’s geographical location for hydrogen production and transportation. Then one discusses what may be the next steps in terms of policies and developments to succeed in implementing the plan. Overall it is concluded that green hydrogen could be the faster more sustainable and more efficient method to implement in Colombia. However blue hydrogen could play an essential role if oil and gas companies assess the advantages of carbon dioxide utilization and promote its deployment.
Transition to a Hydrogen-Based Economy: Possibilities and Challenges
Nov 2022
Publication
Across the globe energy production and usage cause the greatest greenhouse gas (GHG) emissions which are the key driver of climate change. Therefore countries around the world are aggressively striving to convert to a clean energy regime by altering the ways and means of energy production. Hydrogen is a frontrunner in the race to net-zero carbon because it can be produced using a diversity of feedstocks has versatile use cases and can help ensure energy security. While most current hydrogen production is highly carbon-intensive advances in carbon capture renewable energy generation and electrolysis technologies could help drive the production of low-carbon hydrogen. However significant challenges such as the high cost of production a relatively small market size and inadequate infrastructure need to be addressed before the transition to a hydrogen-based economy can be made. This review presents the state of hydrogen demand challenges in scaling up low-carbon hydrogen possible solutions for a speedy transition and a potential course of action for nations.
A Review on CO2 Mitigation in the Iron and Steel Industry through Power to X Processes
Feb 2021
Publication
In this paper we present the first systematic review of Power to X processes applied to the iron and steel industry. These processes convert renewable electricity into valuable chemicals through an electrolysis stage that produces the final product or a necessary intermediate. We have classified them in five categories (Power to Iron Power to Hydrogen Power to Syngas Power to Methane and Power to Methanol) to compare the results of the different studies published so far gathering specific energy consumption electrolysis power capacity CO2 emissions and technology readiness level. We also present for the first time novel concepts that integrate oxy-fuel ironmaking and Power to Gas. Lastly we round the review off with a summary of the most important research projects on the topic including relevant data on the largest pilot facilities (2–6 MW).
Favorable Start-Up Behavior of Polymer Electrolyte Membrane Water Electrolyzers
Nov 2022
Publication
Dynamically-operated water electrolyzers enable the production of green hydrogen for cross-sector applications while simultaneously stabilizing power grids. In this study the start-up phase of polymer electrolyte membrane (PEM) water electrolyzers is investigated in the context of intermittent renewable energy sources. During the start-up of the electrolysis system the temperature increases which directly influences hydrogen production efficiency. Experiments on a 100 kWel electrolyzer combined with simulations of electrolyzers with up to 1 MWel were used to analyze the start-up phase and assess its implications for operators and system designers. It is shown that part-load start-up at intermediate cell voltages of 1.80 V yields the highest efficiencies of 74.0 %LHV compared to heat-up using resistive electrical heating elements which reaches maximum efficiencies of 60.9 %LHV. The results further indicate that large-scale electrolyzers with electrical heaters may serve as flexible sinks in electrical grids for durations of up to 15 min.
Hydrogen-powered Aviation in Germany: A Macroeconomic Perspective and Methodological Approach of Fuel Supply Chain Integration into an Economy-wide Dataset
Oct 2022
Publication
The hydrogen (H2) momentum affects the aviation sector. However a macroeconomic consideration is currently missing. To address this research gap the paper derives a methodology for evaluating macroeconomic effects of H2 in aviation and applies this approach to Germany. Three goals are addressed: (1) Construction of a German macroeconomic database. (2) Translation of H2 supply chains to the system of national accounts. (3) Implementation of H2-powered aviation into the macroeconomic data framework. The article presents an economy-wide database for analyzing H2-powered aviation. Subsequently the paper highlights three H2 supply pathways provides an exemplary techno-economic cost break-down for ten H2 components and translates them into the data framework. Eight relevant macroeconomic sectors for H2-powered aviation are identified and quantified. Overall the paper contributes on a suitable foundation to apply the macroeconomic dataset to and conduct macroeconomic analyses on H2-powered aviation. Finally the article highlights further research potential on job effects related to future H2 demand.
Hydrogen Liquefaction: A Review of the Fundamental Physics, Engineering Practice and Future Opportunities
Apr 2022
Publication
Hydrogen is emerging as one of the most promising energy carriers for a decarbonised global energy system. Transportation and storage of hydrogen are critical to its large-scale adoption and to these ends liquid hydrogen is being widely considered. The liquefaction and storage processes must however be both safe and efficient for liquid hydrogen to be viable as an energy carrier. Identifying the most promising liquefaction processes and associated transport and storage technologies is therefore crucial; these need to be considered in terms of a range of interconnected parameters ranging from energy consumption and appropriate materials usage to considerations of unique liquid-hydrogen physics (in the form of ortho–para hydrogen conversion) and boil-off gas handling. This study presents the current state of liquid hydrogen technology across the entire value chain whilst detailing both the relevant underpinning science (e.g. the quantum behaviour of hydrogen at cryogenic temperatures) and current liquefaction process routes including relevant unit operation design and efficiency. Cognisant of the challenges associated with a projected hydrogen liquefaction plant capacity scale-up from the current 32 tonnes per day to greater than 100 tonnes per day to meet projected hydrogen demand this study also reflects on the next-generation of liquid-hydrogen technologies and the scientific research and development priorities needed to enable them.
Propulsion System Integration for a First-generation Hydrogen Civil Airliner?
May 2021
Publication
An unusual philosophical approach is proposed here to decarbonise larger civil aircraft that fly long ranges and consume a large fraction of civil aviation fuel. These inject an important amount of carbon emissions into the atmosphere and holistic decarbonising solutions must consider this sector. A philosophical–analytical investigation is reported here on the feasibility of an airliner family to fly over long ranges and assist in the elimination of carbon dioxide emissions from civil aviation. Backed by state-of-the-art correlations and engine performance integration analytical tools a family of large airliners is proposed based on the development and integration of the body of a very large two-deck four-engine airliner with the engines wings and flight control surfaces of a very long-range twin widebody jet. The proposal is for a derivative design and not a retrofit. This derivative design may enable a swifter entry to service. The main contribution of this study is a philosophical one: a carefully evaluated aircraft family that appears to have very good potential for first-generation hydrogen-fuelled airliners using gas turbine engines for propulsion. This family offers three variants: a 380-passenger aircraft with a range of 3300nm a 330-passenger aircraft with a range of 4800nm and a 230- passenger aircraft with a range of 5500nm. The latter range is crucially important because it permits travel from anywhere in the globe to anywhere else with only one stop. The jet engine of choice is a 450kN high-bypass turbofan.
Comparative Risk Assessment of a Hydrogen Refueling Station Using Gaseous Hydrogen and Formic Acid as the Hydrogen Carrier
Mar 2023
Publication
To realize a hydrogen economy many studies are being conducted regarding the development and analysis of hydrogen carriers. Recently formic acid has been receiving attention as a potential hydrogen carrier due to its high volumetric energy density and relatively safe characteristics. However hydrogen refueling systems using formic acid are very different from conventional hydrogen refueling stations and quantitative risks assessments need to be conducted to verify their safe usage. In this study a comparative safety analysis of a formic acid hydrogen refueling station (FAHRS) and a gaseous hydrogen refueling station (GHRS) was conducted. Since there is no FAHRS under operation a process simulation model was developed and integrated with quantitative risk assessment techniques to perform safety analysis. Results of the analysis show that the FAHRS poses less risk than the GHRS where the vapor cloud explosion occurring in the buffer tank is of greatest consequence. A GHRS poses a greater risk than an FAHRS due to the high pressure required to store hydrogen in the tube trailer. The mild operating conditions required for storage and dehydrogenation of formic acid contribute to the low risk values of an FAHRS. For risk scenarios exceeding the risk limit risk mitigation measures were applied to design a safe process for GHRS. The results show that the installation of active safety systems for the GHRS allow the system to operate within acceptable safety regions.
Refurbishment of Natural Gas Pipelines towards 100% Hydrogen—A Thermodynamic-Based Analysis
Dec 2022
Publication
Hydrogen is a key enabler of a sustainable society. Refurbishment of the existing natural gas infrastructure for up to 100% H2 is considered one of the most energy- and resource-efficient energy transportation methods. The question remains whether the transportation of 100% H2 with reasonable adaptions of the infrastructure and comparable energy amounts to natural gas is possible. The well-known critical components for refurbishment such as increased compressor power reduced linepack as well as pipeline transport efficiencies and their influencing factors were considered based on thermodynamic calculations with a step-by-step overview. A H2 content of 20–30% results in comparable operation parameters to pure natural gas. In addition to transport in pipelines decentralized H2 production will also play an important role in addressing future demands.
Renewable Energy Potentials and Roadmap in Brazil, Austria, and Germany
Mar 2024
Publication
The emerging energy transition is particularly described as a move towards a cleaner lower-carbon system. In the context of the global shift towards sustainable energy sources this paper reviews the potential and roadmap for hydrogen energy as a crucial component of the clean energy landscape. The primary objective is to present a comprehensive literature overview illuminating key themes trends and research gaps in the scientific discourse concerning hydrogen production and energy policy. This review focuses particularly on specified geographic contexts with an emphasis on understanding the unique energy policies related to renewable energy in Brazil Austria and Germany. Given their distinct social systems and developmental stages this paper aims to delineate the nuanced approaches these countries adopt in their pursuit of renewable energy and the integration of hydrogen within their energy frameworks. Brazil exhibits vast renewable energy potential particularly in wind and solar energy sectors positioning itself for substantial growth in the coming years. Germany showcases a regulatory framework that promotes innovation and technological expansion reflecting its highly developed social system and commitment to transitioning away from fossil fuels. Austria demonstrates dedication to decarbonization particularly through the exploration of biomethane for residential heating and cooling.
Optimization of High-Temperature Electrolysis System for Hydrogen Production Considering High-Temperature Degradation
Mar 2023
Publication
Solid oxide electrolysis cells (SOECs) have great application prospects because of their excellent performance but the long-term applications of the stacks are restricted by the structural degradation under the high-temperature conditions. Therefore an SOEC degradation model is developed and embedded in a process model of the high-temperature steam electrolysis (HTSE) system to investigate the influence of the stack degradation at the system level. The sensitivity analysis and optimization were carried out to study the influence factors of the stack degradation and system hydrogen production efficiency and search for the optimal operating conditions to improve the hydrogen production efficiency and mitigate the stack degradation. The analysis results show that the high temperature and large current density can accelerate the stack degradation but improve the hydrogen production efficiency while the high temperature gradually becomes unfavorable in the late stage. The low air-to-fuel feed ratio is beneficial to both the degradation rate and hydrogen production efficiency. The results show that the optimization method can improve the hydrogen production efficiency and inhibit the stack degradation effectively. Moreover part of the hydrogen production efficiency has to be sacrificed in order to obtain a lower stack degradation rate.
Centralized and Decentralized Electrolysis-based Hydrogen Supply Systems for Road Transportation - A Modeling Study of Current and Future Costs
Oct 2022
Publication
This work compares the costs of three electrolysis-based hydrogen supply systems for heavy road transportation: a decentralized off-grid system for hydrogen production from wind and solar power (Dec-Sa); a decentralized system connected to the electricity grid (Dec-Gc); and a centralized grid-connected electrolyzer with hydrogen transported to refueling stations (Cen-Gc). A cost-minimizing optimization model was developed in which the hydrogen production is designed to meet the demand at refueling stations at the lowest total cost for two timeframes: one with current electricity prices and one with estimated future prices. The results show that: For most of the studied geographical regions Dec-Gc gives the lowest costs of hydrogen delivery (2.2e3.3V/kgH2) while Dec-Sa entails higher hydrogen production costs (2.5e6.7V/kgH2). In addition the centralized system (Cen-Gc) involves lower costs for production and storage than the grid-connected decentralized system (Dec-Gc) although the additional costs for hydrogen transport increase the total cost (3.5e4.8V/kgH2).
Environmental Economical Dispatching of Electric–Gas Integrated Energy System Considering Hydrogen Compressed-Natural Gas
Dec 2022
Publication
As a high-quality secondary energy hydrogen energy has great potential in energy storage and utilization. The development of power-to-hydrogen (P2H) technology has alleviated the problem of wind curtailment and improved the coupling between the power grid and the natural gas grid. Under the premise of ensuring safety using P2H technology to mix the produced hydrogen into the natural gas network for long-distance transmission and power generation can not only promote the development of hydrogen energy but also reduce carbon emissions. This paper presents a new model for incorporating hydrogen into natural gas pipelines. To minimize the sum of wind curtailment cost operation cost and carbon emission cost an electric–gas integrated energy system (EGIES) model of hydrogen-compressed natural gas (HCNG) containing P2H for power generation is constructed. Aiming at the problem of global warming caused by a lot of abandoned wind and carbon emissions the economy and environmental protection of the system model are analyzed. The results show that the model of EGIES considering HCNG can not only absorb excess wind power but also reduce carbon emission costs and system costs which can reduce the total cost of the environmental economic dispatch of the EGIES by about 34.1%. In the context of the EGIES the proposal of this model is of great significance to the economical and environmentally friendly operation of the system.
What Can Accelerate Technological Convergence of Hydrogen Energy: A Regional Perspective
Jun 2023
Publication
Focusing on technological innovation and convergence is crucial for utilizing hydrogen energy an emerging infrastructure area. This research paper analyzes the extent of technological capabilities in a region that could accelerate the occurrence of technological convergence in the fields related to hydrogen energy through the use of triadic patents their citation information and their regional information. The results of the Bayesian spatial model indicate that the active exchange of diverse original technologies could facilitate technological convergence in the region. On the other hand it is difficult to achieve regional convergence with regard to radical technology. The findings could shed light on the establishment of an R&D strategy for hydrogen technologies. This study could contribute to the dissemination and utilization of hydrogen technologies for sustainable industrial development.
Hydrogenerally - Episode 7: Hydrogen for Heat
Dec 2022
Publication
In this seventh episode Steffan Eldred Hydrogen Innovation Network Knowledge Transfer Manager and Jenni McDonnell MBE Heating and Cooling Knowledge Transfer Manager from Innovate UK KTN discuss why using hydrogen to generate heat is so important and explore the hydrogen economy opportunities and challenges within this sector alongside their special guest Jeff House Head of External Affairs Baxi Boilers.
The podcast can be found on their website.
The podcast can be found on their website.
Hydrogen Fuel Cells for Sustainable Energy: Development and Progress in Selected Developed Countries
Jan 2021
Publication
The sustainable development goals concept towards zero carbon emission set forth by the Paris Agreement is the foundation of decarbonisation implemented in most developed countries worldwide. One of the efforts in the decarbonisation of the environment is through hydrogen fuel cell technology. A fuel cell is an energy converter device that produces electricity via the electrochemical reaction with water as the by-product. The application of fuel cells is strongly related to the economic aspect including local and infrastructure costs making it more relevant to be implemented in a developed country. This work presents a short review of the development and progress of hydrogen fuel cells in a developed country such as Japan Germany USA Denmark and China (in transition between developing to developed status); which championed hydrogen fuel cell technology in their region.
Prioritization and Optimal Location of Hydrogen Fueling Stations in Seoul: Using Multi-Standard Decision-Making and ILP Optimization
Mar 2023
Publication
Thus far the adoption of hydrogen fuel cell vehicles (HCEVs) has been hampered by the lack of hydrogen fueling infrastructure. This study aimed to determine the optimal location and prioritization of hydrogen fueling stations (HFSs) in Seoul by utilizing a multi-standard decision making approach and optimization method. HFS candidate sites were evaluated with respect to relevant laws and regulations. Key factors such as safety economy convenience and demand for HCEVs were considered. Data were obtained through a survey of experts in the fields of HCEV and fuel cells and the Analytic Hierarchy Process method was applied to prioritize candidate sites. The optimal quantity and placement of HFSs was then obtained using optimization software based on the acceptable travel time from intersections of popular roads in Seoul. Our findings suggest that compliance with legal safety regulations is the most important factor when constructing HFSs. Furthermore sensitivity analysis revealed that the hydrogen supply cost currently holds the same weight as other elements. The study highlights the importance of utilizing a multi-standard decision-making approach and optimization methods when determining the optimal location and prioritization of HFSs and can help develop a systematic plan for the nationwide construction of HFSs in South Korea.
Forecasting Hydrogen Production from Wind Energy in a Suburban Environment Using Machine Learning
Nov 2022
Publication
The environment is seriously threatened by the rising energy demand and the use of conventional energy sources. Renewable energy sources including hydro solar and wind have been the focus of extensive research due to the proliferation of energy demands and technological advancement. Wind energy is mostly harvested in coastal areas and little work has been done on energy extraction from winds in a suburban environment. The fickle behavior of wind makes it a less attractive renewable energy source. However an energy storage method may be added to store harvested wind energy. The purpose of this study is to evaluate the feasibility of extracting wind energy in terms of hydrogen energy in a suburban environment incorporating artificial intelligence techniques. To this end a site was selected latitude 33.64◦ N longitude 72.98◦ N and elevation 500 m above mean sea level in proximity to hills. One year of wind data consisting of wind speed wind direction and wind gust was collected at 10 min intervals. Subsequently long short-term memory (LSTM) support vector regression (SVR) and linear regression models were trained on the empirically collected data to estimate daily hydrogen production. The results reveal that the overall prediction performance of LSTM was best compared to that of SVR and linear regression models. Furthermore we found that an average of 6.76 kg/day of hydrogen can be produced by a 1.5 MW wind turbine with the help of an artificial intelligence method (LSTM) that is well suited for time-series data to classify process and predict.
Secure Hydrogen Production Analysis and Prediction Based on Blockchain Service Framework for Intelligent Power Management System
Nov 2023
Publication
The rapid adoption of hydrogen as an eco-friendly energy source has necessitated the development of intelligent power management systems capable of efficiently utilizing hydrogen resources. However guaranteeing the security and integrity of hydrogen-related data has become a significant challenge. This paper proposes a pioneering approach to ensure secure hydrogen data analysis by integrating blockchain technology enhancing trust transparency and privacy in handling hydrogen-related information. Combining blockchain with intelligent power management systems makes the efficient utilization of hydrogen resources feasible. Using smart contracts and distributed ledger technology facilitates secure data analysis (SDA) real-time monitoring prediction and optimization of hydrogen-based power systems. The effectiveness and performance of the proposed approach are demonstrated through comprehensive case studies and simulations. Notably our prediction models including ABiLSTM ALSTM and ARNN consistently delivered high accuracy with MAE values of approximately 0.154 0.151 and 0.151 respectively enhancing the security and efficiency of hydrogen consumption forecasts. The blockchain-based solution offers enhanced security integrity and privacy for hydrogen data analysis thus advancing clean and sustainable energy systems. Additionally the research identifies existing challenges and outlines future directions for further enhancing the proposed system. This study adds to the growing body of research on blockchain applications in the energy sector specifically on secure hydrogen data analysis and intelligent power management systems.
Economic Feasibility of Green Hydrogen in Providing Flexibility to Medium-voltage Distribution Grids in the Presence of Local-heat Systems
Nov 2022
Publication
The recent strong increase in the penetration of renewable energy sources (RESs) in medium-voltage distribution grids (MVDNs) has raised the need for congestion management in such grids as they were not designed for this new condition. This paper examines to what extent producing green hydrogen through electrolyzers can profitably contribute to congestion alleviation in MVDNs in the presence of high amounts of RES as well as flexible consumers of electricity and a local heat system. To address this issue an incentive-based method for improving flexibility in MVDNs is used which is based on a single-leader–multiple-followers game formulated by bi-level mathematical programming. At the upper level the distribution system operator who is the leader of this game determines dynamic prices as incentives at each node based on the levels of generation and load. Next at the lower level providers of flexibility including producers using electrolyzers price-responsive power consumers heat consumers as well as heat producers respond to these incentives by reshaping their output and consumption patterns. The model is applied to a region in the North of The Netherlands. The obtained results demonstrate that converting power to hydrogen can be an economically efficient way to reduce congestion in MVDNs when there is a high amount of RES. However the economic value of electrolyzers as providers of flexibility to MVDNs decreases when more other options for flexibility provision exist.
Potential of Producing Green Hydrogen in Jordan
Nov 2022
Publication
Green hydrogen is becoming an increasingly important energy supply source worldwide. The great potential for the use of hydrogen as a sustainable energy source makes it an attractive energy carrier. In this paper we discuss the potential of producing green hydrogen in Jordan. Aqaba located in the south of Jordan was selected to study the potential for producing green hydrogen due to its proximity to a water source (i.e. the Red Sea). Two models were created for two electrolyzer types using MATLAB. The investigated electrolyzers were alkaline water (ALK) and polymeric electrolyte membrane (PEM) electrolyzers. The first model was used to compare the required capacity of the PV solar system using ALK and PEM from 2022 to 2025 depending on the learning curves for the development of these technologies. In addition this model was used to predict the total investment costs for the investigated electrolyzers. Then a techno-economic model was constructed to predict the feasibility of using this technology by comparing the use of a PV system and grid electricity as sources for the production of hydrogen. The net present value (NPV) and levelized cost of hydrogen (LCOH) were used as indicators for both models. The environmental effect according to the reduction of CO2 emissions was also taken into account. The annual production of hydrogen was 70.956 million kg. The rate of hydrogen production was 19.3 kg/s and 1783 kg/s for ALK and PEM electrolyzers respectively. The LCOH was 4.42 USD/kg and 3.13 USD/kg when applying electricity from the grid and generated by the PV system respectively. The payback period to cover the capital cost of the PV system was 11 years of the project life with a NPV of USD 441.95 million. Moreover CO2 emissions can be reduced by 3042 tons/year by using the PV as a generation source instead of fossil fuels to generate electricity. The annual savings with respect to the reduction of CO2 emissions was USD 120135.
Design and Optimization of Coal to Hydrogen System Coupled with Non-Nominal Operation of Thermal Power Unit
Dec 2022
Publication
In an actual thermal power plant deep peak shaving will cause thermal power units to run under non-nominal conditions for an extended period resulting in serious problems such as increased equipment wearing low equipment utilization efficiency and decreased benefits. To this end in this work both the design and optimization method for a coal to hydrogen system which is coupled with the expected non-nominal operation of thermal power units are proposed. Aiming towards maximum profit in the context of thermal power plants a mathematical optimization model for a coal to hydrogen system based on the multi-period operating conditions of thermal power plants is established. The corresponding optimal design scheme of the coal to hydrogen system is determined using variable operating conditions. The superiority of the integrated system compared with an independent system is explored and the feasibility of the proposed method is verified by using the case study of an actual thermal power plant. The results show that compared with the independent system the economic benefits of the integrated system can increase by 13.56% where the sale of hydrogen in the coal to hydrogen system accounts for 60.3% of the total benefit. The main expenditure associated with the system is the purchase cost of feedstock coal accounting for 91.8%. Since the required power and medium-pressure steam in the coal to hydrogen process are provided by thermal power units the minimum operating load of the thermal power plant in the integrated system increases from 40% to 60.1% which significantly improves the utilization efficiency and service life of the generator units. In addition the proposed integration scheme of the system is simple and controllable which can contribute to the maintenance of the safe and stable operation of power generation and hydrogen production processes. These results are expected to provide the necessary methodological guidance for the integration and optimization of coal-fired power plants and coal to hydrogen systems.
Renewable Energy Transport via Hydrogen Pipelines and HVDC Transmission Lines
May 2021
Publication
The majority penetration of Variable Renewable Energy (VRE) will challenge the stability of electrical transmission grids due to unpredictable peaks and troughs of VRE generation. With renewable generation located further from high demand urban cores there will be a need to develop new transmission pathways to deliver the power. This paper compares the transport and storage of VRE through a hydrogen pipeline to the transport of VRE through a High Voltage Direct Current (HVDC) transmission line. The analysis found a hydrogen pipeline can offer a cost-competitive method for VRE transmission compared to a HVDC transmission line on a life-cycle cost basis normalized by energy flows for distances at 1000 miles with 2030 technology. This finding has implications for policy makers project developers and system operators for the future development of transmission infrastructure projects given the additionality which hydrogen pipelines can provide in terms of energy storage.
Thermodynamic Analysis of Solid Oxide Electrolyzer Integration with Engine Waste Heat Recovery for Hydrogen Production
Jul 2021
Publication
Water electrolysis based on solid oxide electrolysis cell (SOEC) exhibits high conversion efficiency due to part of energy demand can be derived from thermal energy. Therefore it can be integrated with other sources of thermal energy to reduce the consumption of electrical energy. In this paper a diesel engine is integrated with the SOEC stacks for heat recovery steam generator (HRSG). The thermal energy from the engine exhaust gas used to heat the inlet H2O of the SOEC is carried out as the integration case. A SOEC plant using electricity as the thermal heat input is selected as the base case. Thermodynamic analysis of the benchmark and integration scheme reveals that an electrical efficiency of 73.12% and 85.17% can be achieved respectively. The diesel to power efficiency can be increased to 70% when the exhaust gas is completely utilized by the SOEC system. The impacts of some key parameters including current density and operating temperature on system performance have also been conducted and found that the system has optimized parameters of current density and operating temperature to achieve better performance.
Energy Storage Systems: A Review
Jul 2022
Publication
The world is rapidly adopting renewable energy alternatives at a remarkable rate to address the ever-increasing environmental crisis of CO2 emissions. Renewable Energy Systems (RES) offers enormous potential to decarbonize the environment because they produce no greenhouse gases or other polluting emissions. However the RES relies on natural resources for energy generation such as sunlight wind water geothermal which are generally unpredictable and reliant on weather season and year. To account for these intermittencies renewable energy can be stored using various techniques and then used in a consistent and controlled manner as needed. Several researchers from around the world have made substantial contributions over the last century to developing novel methods of energy storage that are efficient enough to meet increasing energy demand and technological break-throughs. This review attempts to provide a critical review of the advancements in the Energy Storage System (ESS) from 1850–2022 including its evolution classification operating principles and comparison
Life Cycle Greenhouse Gas Emission Assessment for Using Alternative Marine Fuels: A Very Large Crude Carrier (VLCC) Case Study
Dec 2022
Publication
The International Maritime Organization (IMO) has set decarbonisation goals for the shipping industry. As a result shipowners and operators are preparing to use low- or zero-carbon alternative fuels. The greenhouse gas (GHG) emission performances are fundamental for choosing suitable marine fuels. However the current regulations adopt tank-to-wake (TTW) emission assessment methods that could misrepresent the total climate impacts of fuels. To better understand the well-to-wake (WTW) GHG emission performances this work applied the life cycle assessment (LCA) method to a very large crude carrier (VLCC) sailing between the Middle East and China to investigate the emissions. The life cycle GHG emission impacts of using alternative fuels including liquified natural gas (LNG) methanol and ammonia were evaluated and compared with using marine gas oil (MGO). The bunkering site of the VLCC was in Zhoushan port China. The MGO and LNG were imported from overseas while methanol and ammonia were produced in China. Four production pathways for methanol and three production pathways for ammonia were examined. The results showed that compared with MGO using fossil energy-based methanol and ammonia has no positive effect in terms of annual WTW GHG emissions. The emission reduction effects of fuels ranking from highest to lowest were full solar and battery-based methanol full solar and battery-based ammonia and LNG. Because marine ammonia-fuelled engines have not been commercialised laboratory data were used to evaluate the nitrous oxide (N2O) emissions. The GHG emission reduction potential of ammonia can be exploited more effectively if the N2O emitted from engines is captured and disposed of through after-treatment technologies. This paper discussed three scenarios of N2O emission abatement ratios of 30% 50% and 90%. The resulting emission reduction effects showed that using full solar and battery-based ammonia with 90% N2O abatement performs better than using full solar and battery-based methanol. The main innovation of this work is realising the LCA GHG emission assessment for a deep-sea ship.
Design of a Hydrogen Production System Considering Energy Consumption, Water Consumption, CO2 Emissions and Cost
Oct 2022
Publication
CO2 emissions associated with hydrogen production can be reduced replacing steam methane reforming with electrolysis using renewable electricity with a trade-off of increasing energy consumption water consumption and cost. In this research a linear programming optimization model of a hydrogen production system that considers simultaneously energy consumption water consumption CO2 emissions and cost on a cradle-to-gate basis was developed. The model was used to evaluate the impact of CO2 intensity on the optimum design of a hydrogen production system for Japan considering different stakeholders’ priorities. Hydrogen is produced using steam methane reforming and electrolysis. Electricity sources include grid wind solar photovoltaic geothermal and hydro. Independent of the stakeholders’ priorities steam methane reforming dominates hydrogen production for cradle-to-gate CO2 intensities larger than 9 kg CO2/kg H2 while electrolysis using renewable electricity dominates for lower cradle-to-gate CO2 intensities. Reducing the cradle-to-gate CO2 intensity increases energy consumption water consumption and specific cost of hydrogen production. For a cradle-to-gate CO2 intensity of 0 kg CO2/kg H2 the specific cost of hydrogen production varies between 8.81 and 13.6 USD/kg H2; higher than the specific cost of hydrogen production targeted by the Japanese government in 2030 of 30 JPY/Nm3 3.19 USD/kg H2.
Optimal Design of a Hydrogen-powered Fuel Cell System for Aircraft Applications
Mar 2024
Publication
Recently hydrogen and fuel cells have gained interest as an emerging technology to mitigate the effects of climate change caused by the aviation sector. The aim of this work is to evaluate the applicability of this technology to an existing regional aircraft in order to assess its electrification with the aim of reducing greenhouse gas emissions and achieving sustainability goals. The design of a proton-exchange membrane fuel cell system (PEMFC) with the inclusion of liquid hydrogen storage is carried out. Specifically a general mathematical model is developed which involves multiple scales ranging from individual cells to aircraft scale. First the fuel cell electrochemical model is developed and validated against published polarization curves. Then different sizing approaches are used to compute the overall weight of the hydrogen-based propulsion system in order to optimize the system and minimize its weight. Crucially this work underscores that the feasibility of hydrogenbased fuel cell systems relies not only on hydrogen storage but especially on the electrochemical cell performance which influences the size of the balance of plant and especially its thermal management section. In particular the strategic significance of working with fuel cells at partial loads is demonstrated. This entails achieving an optimal balance between the stacks oversizing and the weights of both hydrogen storage and balance of plant thereby minimizing the overall weight of the system. It is thus shown that an integrated approach is imperative to guide progress towards efficient and implementable hydrogen technology in regional aviation. Furthermore a high-performance PEMFC is analyzed resulting in an overall weight reduction up to nearly 10% compared to the baseline case study. In this way it is demonstrated as technological advancements in PEMFCs can offer further prospects for improving system efficiency.
Everything About Hydrogen Podcast: Plotting the Course for a Decarbonized Global Maritime Industry
Jan 2023
Publication
On this episode of EAH we sat down with Dr. Bo Cerup-Simonsen Chief Executive Officer of the Maersk Mc-Kinney Møller Center for Zero Carbon Shipping. Bo holds a PHD in Naval Architecture and Mechanical Engineering and spent seven years as a research engineer at MIT.
Bo explains the Center's work and we discuss decarbonization of shipping using hydrogen derived green fuels.
The podcast can be found on their website.
Bo explains the Center's work and we discuss decarbonization of shipping using hydrogen derived green fuels.
The podcast can be found on their website.
Hydrogenerally - Episode 8: Hydrogen for Combustion
Jan 2023
Publication
In this episode Steffan Eldred Hydrogen Knowledge Transfer Manager and Debra Jones Chemistry Knowledge Transfer Manager from Innovate UK KTN talk about hydrogen combustion with special guest Duncan Engeham European Research and Development Director at Cummins Inc.
The podcast can be found on their website.
The podcast can be found on their website.
Large-scale Hydrogen Production via Water Electrolysis: A Techno-economic and Environmental Assessment
Jul 2022
Publication
Low-carbon (green) hydrogen can be generated via water electrolysis using photovoltaic wind hydropower or decarbonized grid electricity. This work quantifies current and future costs as well as environmental burdens of large-scale hydrogen production systems on geographical islands which exhibit high renewable energy potentials and could act as hydrogen export hubs. Different hydrogen production configurations are examined considering a daily hydrogen production rate of 10 tonnes on hydrogen production costs life cycle greenhouse gas emissions material utilization and land transformation. The results demonstrate that electrolytic hydrogen production costs of 3.7 Euro per kg H2 are within reach today and that a reduction to 2 Euro per kg H2 in year 2040 is likely hence approaching cost parity with hydrogen from natural gas reforming even when applying ‘‘historical’’ natural gas prices. The recent surge of natural gas prices shows that cost parity between green and grey hydrogen can already be achieved today. Producing hydrogen via water electrolysis with low costs and low GHG emissions is only possible at very specific locations nowadays. Hybrid configurations using different electricity supply options demonstrate the best economic performance in combination with low environmental burdens. Autonomous hydrogen production systems are especially effective to produce low-carbon hydrogen although the production of larger sized system components can exhibit significant environmental burdens and investments. Some materials (especially iridium) and the availability of land can be limiting factors when scaling up green hydrogen production with polymer electrolyte membrane (PEM) electrolyzers. This implies that decision-makers should consider aspects beyond costs and GHG emissions when designing large-scale hydrogen production systems to avoid risks coming along with the supply of for example scarce materials
New Control Strategy for Heating Portable Fuel Cell Power Systems for Energy-Efficient and Reliable Operation
Dec 2022
Publication
Using hydrogen fuel cells for power systems temperature conditions are important for efficient and reliable operations especially in low-temperature environments. A heating system with an electrical energy buffer is therefore required for reliable operation. There is a research gap in finding an appropriate control strategy regarding energy efficiency and reliable operations for different environmental conditions. This paper investigates heating strategies for the subfreezing start of a fuel cell for portable applications at an early development stage to enable frontloading in product engineering. The strategies were investigated by simulation and experiment. A prototype for such a system was built and tested for subfreezing start-ups and non-subfreezing start-ups. This was done by heating the fuel cell system with different control strategies to test their efficiency. It was found that operating strategies to heat up the fuel cell system can ensure a more reliable and energy efficient operation. The heating strategy needs to be adjusted according to the ambient conditions as this influences the required heating energy efficiency and reliable operation of the system. A differentiation in the control strategy between subfreezing and non-subfreezing temperatures is recommended due to reliability reasons.
Performance Evaluation of a Hydrogen-fired Combined Cycle with Water Recovery
Mar 2023
Publication
Hydrogen can alleviate the increasing environmental pollution and has good development prospects in power generation due to its high calorific value and low environmental impact. The previously designed hydrogen-fired combined cycle ignored water recycling which led to an inefficient application of hydrogen and the wastage of water. This paper proposes the concept of a hydrogen-fired combined cycle with water recovery to reuse the condensed water as an industrial heat supply. It was applied to an F-class combined cycle power plant. The results demonstrate that the efficiency of hydrogen-fired combined cycles with and without water recovery increased by 1.92% and 1.35% respectively compared to that of the natural-gas-fired combined cycle under full working conditions. In addition an economic comparison of the three cycles was conducted. The levelized cost of energy of the hydrogen-fired combined cycle with water recovery will be 52.22% lower than that of the natural-gas-fired combined cycle in 2050. This comparative study suggested that water recovery supplementation could improve the gas turbine efficiency. The proposed hydrogen-fired combined cycle with water recovery would provide both environmental and economic benefits.
Green Steel: Synergies between the Australian Iron Ore Industry and the Production of Green Industry
May 2023
Publication
Green steel produced using renewable energy and hydrogen presents a promising avenue to decarbonize steel manufacturing and expand the hydrogen industry. Australia endowed with abundant renewable resources and iron ore deposits is ideally placed to support this global effort. This paper's two-step analytical approach offers the first comprehensive assessment of Australia's potential to develop green steel as a value-added export commodity. The Economic Fairways modelling reveals a strong alignment between prospective hydrogen hubs and current and future iron ore operations enabling shared infrastructure development and first-mover advantages. By employing a site-based system optimization that integrates both wind and solar power sources the cost of producing green steel could decrease significantly to around AU$900 per tonne by 2030 and AU$750 per tonne by 2050. Moreover replacing 1% of global steel production would require 35 GW of well-optimized wind and solar photovoltaics 11 GW of hydrogen electrolysers and 1000 square kilometres of land. Sensitivity analysis further indicates that iron ore prices would exert a long-term influence on green steel prices. Overall this study highlights the opportunities and challenges facing the Australian iron ore industry in contributing to the decarbonization of the global steel sector underscoring the crucial role of government support in driving the growth and development of the green steel industry.
Everything About Hydrogen Podcast: Manufacturing the Components of a Hydrogen Economy
Dec 2022
Publication
On today’s episode Alicia Chris and Patrick are chatting with Vonjy Rakajoba UK Managing Director at Robert Bosch. The Bosch Group is a leading global supplier of technology and services and employs roughly 402600 associates worldwide. Its operations are divided into four business sectors: Mobility Solutions Industrial Technology Consumer Goods and Energy and Building Technology. Bosch believes that hydrogen has a bright future as an energy carrier and is making considerable upfront investments in this area. From 2021 to 2024 the company plans to invest around 600 million euros in mobile fuel-cell applications and a further 400 million euros in stationary ones for the generation of electricity and heat. Vonjy is here with us to discuss more about what Bosch’s expansion into the hydrogen energy sector will look like and how the company expects the market to grow moving forward.
The podcast can be found on their website.
The podcast can be found on their website.
Spatiotemporal Analysis of Hydrogen Requirement to Minimize Seasonal Variability in Future Solar and Wind Energy in South Korea
Nov 2022
Publication
Renewable energy supply is essential for carbon neutrality; however technologies aiming to optimally utilize renewable energy sources remain insufficient. Seasonal variability in renewable energy is a key issue which many studies have attempted to overcome through operating systems and energy storage. Currently hydrogen is the only technology that can solve this seasonal storage problem. In this study the amount of hydrogen required to circumvent the seasonal variability in renewable energy supply in Korea was quantified. Spatiotemporal analysis was conducted using renewable energy resource maps and power loads. It was predicted that 50% of the total power demand in the future will be met using solar and wind power and a scenario was established based on the solar-to-wind ratio. It was found that the required hydrogen production differed by approximately four-times depending on the scenarios highlighting the importance of supplying renewable energy at an appropriate ratio. Spatially wind power was observed to be unsuitable for the physical transport of hydrogen because it has a high potential at mountain peaks and islands. The results of this study are expected to aid future hydrogen research and solve renewable energy variability problems.
Evaluation of the Potential for Distributed Generation of Green Hydrogen Using Metal-hydride Storage Methods
May 2023
Publication
This study presents methodology for the evaluation of appropriateness of a hydrogen generator for gas production in multiple distributed plants based on renewable energy sources. The general idea is to form hydrogen clusters integrated with storage and transportation. The paper focuses on the financial viability of the plants presenting the results of economic evaluation together with sensitivity analysis for various economic factors. The analyzed case study proves that over a wide range of parameters alkaline electrolyzers show favorable economic characteristics however a PEM-based plant is more resilient to changes in the price of electricity which is the main cost component in hydrogen generation. The study is enriched with an experimental investigation of low-pressure storage methods based on porous metal hydride tanks. The effectiveness of the tanks (β) compared to pressurized hydrogen tanks in the same volume and pressure is equal to β = 10.2. A solution is proposed whereby these can be used in a distributed hydrogen generation concept due to their safe and simple operation without additional costly equipment e.g. compressors. A method for evaluation of the avoided energy consumption as a function of the effectiveness of the tanks is developed. Avoided energy consumption resulting from implementing MH tanks equals 1.33 – 1.37 kWh per kilogram of hydrogen depending on the number of stages of a compressor. The methods proposed in this paper are universal and can be used for various green hydrogen facilities.
Comparative Study of Spark-Ignited and Pre-Chamber Hydrogen-Fueled Engine: A Computational Approach
Nov 2022
Publication
Hydrogen is a promising future fuel to enable the transition of transportation sector toward carbon neutrality. The direct utilization of H2 in internal combustion engines (ICEs) faces three major challenges: high NOx emissions severe pressure rise rates and pre-ignition at mid to high loads. In this study the potential of H2 combustion in a truck-size engine operated in spark ignition (SI) and pre-chamber (PC) mode was investigated. To mitigate the high pressure rise rate with the SI configuration the effects of three primary parameters on the engine combustion performance and NOx emissions were evaluated including the compression ratio (CR) the air–fuel ratio and the spark timing. In the simulations the severity of the pressure rise was evaluated based on the maximum pressure rise rate (MPRR). Lower compression ratios were assessed as a means to mitigate the auto-ignition while enabling a wider range of engine operation. The study showed that by lowering CR from 16.5:1 to 12.5:1 an indicated thermal efficiency of 47.5% can be achieved at 9.4 bar indicated mean effective pressure (IMEP) conditions. Aiming to restrain the auto-ignition while maintaining good efficiency growth in λ was examined under different CRs. The simulated data suggested that higher CRs require a higher λ and due to practical limitations of the boosting system λ at 4.0 was set as the limit. At a fixed spark timing using a CR of 13.5 combined with λ at 3.33 resulted in an indicated thermal efficiency of 48.6%. It was found that under such lean conditions the exhaust losses were high. Thus advancing the spark time was assessed as a possible solution. The results demonstrated the advantages of advancing the spark time where an indicated thermal efficiency exceeding 50% was achieved while maintaining a very low NOx level. Finally the optimized case in the SI mode was used to investigate the effect of using the PC. For the current design of the PC the results indicated that even though the mixture is lean the flame speed of H2 is sufficiently high to burn the lean charge without using a PC. In addition the PC design used in the current work induced a high MPRR inside the PC and MC leading to an increased tendency to engine knock. The operation with PC also increased the heat transfer losses in the MC leading to lower thermal efficiency compared to the SI mode. Consequently the PC combustion mode needs further optimizations to be employed in hydrogen engine applications.
Assessment of Paper Industry Decarbonization Potential via Hydrogen in a Multi-energy System Scenario: A Case Study
Jul 2023
Publication
Green hydrogen is currently regarded as a key catalyst for the decarbonization of energy-intensive industries. In this context the pulp and paper industry stands out as one of the most demanding given the simultaneous need for large amounts of heat and electricity usually satisfied via cogeneration systems. Given the urgent need for cost-effective solutions in response to the climate crisis it is crucial to analyze the feasibility of retrofitting existing power plants to operate carbon-neutral. The aim of this work is to provide a techno-economic analysis for the conversion of a conventional cogeneration system to run on locally produced hydrogen. Building on the energy consumption of the paper mill the operation of a hydrogen-fuelled gas turbine is modelled in detail. Based on these results a multi-energy system model for the production of green fuel is presented considering production via solar-powered PEM electrolyzers storage in tanks and final use in the gas turbine. An optimal configuration for the system is defined leading to the definition of a solution that ensures a cost of 6.41 /kg for the production of green hydrogen. Finally a sensitivity analysis highlights the close dependence of the economic profitability of the Power-to-X system on the natural gas price. The results indicate that although positive performance is achieved the cost of investment remains still prohibitive for systems of this size and the high initial capital expenditure needs to be supported by incentive policies that facilitate the adoption of hydrogen in industrial applications making it competitive in the short term.
Multi-Objective Optimization-Based Health-Conscious Predictive Energy Management Strategy for Fuel Cell Hybrid Electric Vehicles
Feb 2022
Publication
The Energy Management Strategy (EMS) in Fuel Cell Hybrid Electric Vehicles (FCHEVs) is the key part to enhance optimal power distribution. Indeed the most recent works are focusing on optimizing hydrogen consumption without taking into consideration the degradation of embedded energy sources. In order to overcome this lack of knowledge this paper describes a new health-conscious EMS algorithm based on Model Predictive Control (MPC) which aims to minimize the battery degradation to extend its lifetime. In this proposed algorithm the health-conscious EMS is normalized in order to address its multi-objective optimization. Then weighting factors are assigned in the objective function to minimize the selected criteria. Compared to most EMSs based on optimization techniques this proposed approach does not require any information about the speed profile which allows it to be used for real-time control of FCHEV. The achieved simulation results show that the proposed approach reduces the economic cost up to 50% for some speed profile keeping the battery pack in a safe range and significantly reducing energy sources degradation. The proposed health-conscious EMS has been validated experimentally and its online operation ability clearly highlighted on a PEMFC delivery postal vehicle.
Safety Issues of a Hydrogen Refueling Station and a Prediction for an Overpressure Reduction by a Barrier Using OpenFOAM Software for an SRI Explosion Test in an Open Space
Oct 2022
Publication
Safety issues arising from a hydrogen explosion accident in Korea are discussed herein. In order to increase the safety of hydrogen refueling stations (HRSs) the Korea Gas Safety Corporation (KGS) decided to install a damage-mitigation wall also referred to as a barrier around the storage tanks at the HRSs after evaluating the consequences of hypothetical hydrogen explosion accidents based on the characteristics of each HRS. To propose a new regulation related to the barrier installation at the HRSs which can ensure a proper separation distance between the HRS and its surrounding protected facilities in a complex city KGS planned to test various barrier models under hypothetical hydrogen explosion accidents to develop a standard model of the barrier. A numerical simulation to investigate the effect of the recommended barrier during hypothetical hydrogen explosion accidents in the HRS will be performed before installing the barrier at the HRSs. A computational fluid dynamic (CFD) code based on the open-source software OpenFOAM will be developed for the numerical simulation of various accident scenarios. As the first step in the development of the CFD code we conducted a hydrogen vapor cloud explosion test with a barrier in an open space which was conducted by the Stanford Research Institute (SRI) using the modified XiFoam solver in OpenFOAMv1912. A vapor cloud explosion (VCE) accident may occur due to the leakage of gaseous hydrogen or liquefied hydrogen owing to a failure of piping connected to the storage tank in an HRS. The analysis results using the modified XiFoam predicted the peak overpressure variation from the near field to the far field of the explosion site through the barrier with an error range of approximately ±30% if a proper analysis methodology including the proper mesh distribution in the grid model is chosen. In addition we applied the proposed analysis methodology using the modified XiFoam to barrier shapes that varied from that used in the test to investigate its applicability to predict peak overpressure variations with various barrier shapes. Through the application analysis we concluded that the proposed analysis methodology is sufficient for evaluating the safety effect of the barrier which will be recommended through experimental research during VCE accidents at the HRSs.
Techno-economic Assessment of Green Ammonia Production with Different Wind and Solar Potentials
Nov 2022
Publication
This paper focuses on developing a fast-solving open-source model for dynamic power-to-X plant techno-economic analysis and analysing the method bias that occurs when using other state-of-the-art power-to-X cost calculation methods. The model is a least-cost optimisation of investments and operation-costs taking as input techno-economic data varying power profiles and hourly grid prices. The fuel analysed is ammonia synthesised from electrolytic hydrogen produced with electricity from photovoltaics wind turbines or the grid. Various weather profiles and electrolyser technologies are compared. The calculated costs are compared with those derived using methods and assumptions prevailing in most literature. Optimisation results show that a semi-islanded set-up is the cheapest option and can reduce the costs up to 23% compared to off-grid systems but leads to e-fuels GHG emissions similar to fossil fuels with today’s electricity blend. For off-grid systems estimating costs using solar or wind levelized cost of electricity and capacity factors to derive operating hours leads to costs overestimation up to 30%. The cheapest off-grid configuration reaches production costs of 842 e/t3 . For comparison the "grey" ammonia price was 250 e/t3 in January 2021 and 1500 e/t3 in April 2022 (Western Europe). The optimal power mix is found to always include photovoltaic with 1-axis tracking and sometimes different types of onshore wind turbines at the same site. For systems fully grid connected approximating a highly fluctuating electricity price by a yearly average and assuming a constant operation leads to a small cost.
Fueling Tomorrow's Commute: Current Status and Prospects of Public Bus Transit Fleets Powered by Sustainable Hydrogen
Apr 2024
Publication
Transportation is an economic sector that contributes significantly to global warming due to its high consumption of fossil fuels and sustainably produced hydrogen is a major contender for an alternative clean energy source. Public transit is vital for environmental sustainability via reducing individual vehicle usage and traffic congestion and the prospect of powering buses using hydrogen fuel has been extensively studied lately. This paper seeks to comprehensively review the current status of research on hydrogen-powered buses considering triple bottom line sustainability perspectives. A brief technical overview of prospective environmentally benign hydrogen production processes has been presented. Technological economic and environmental findings and research trends seen in recent analyses on hydrogen-powered buses have been summarized along with the status quo of global hydrogen refuelling stations. Identified focal points for future studies include performance enhancements refuelling infrastructure propagation and policy formulation. The conclusions derived from this review will benefit the accelerated deployment of hydrogen-fuelled public transit fleets.
Modelling and Evaluation of PEM Hydrogen Technologies for Frequency Ancillary Services in Future Multi-energy Sustainable Power Systems
Mar 2019
Publication
This paper examines the prospect of PEM (Proton Exchange Membrane) electrolyzers and fuel cells to partake in European electrical ancillary services markets. First the current framework of ancillary services is reviewed and discussed emphasizing the ongoing European harmonization plans for future frequency balancing markets. Next the technical characteristics of PEM hydrogen technologies and their potential uses within the electrical power system are discussed to evaluate their adequacy to the requirements of ancillary services markets. Last a case study based on a realistic representation of the transmission grid in the north of the Netherlands for the year 2030 is presented. The main goal of this case study is to ascertain the effectiveness of PEM electrolyzers and fuel cells for the provision of primary frequency reserves. Dynamic generic models suitable for grid simulations are developed for both technologies including the required controllers to enable participation in ancillary services markets. The obtained results show that PEM hydrogen technologies can improve the frequency response when compared to the procurement with synchronous generators of the same reserve value. Moreover the fast dynamics of PEM electrolyzers and fuel cells can help mitigate the negative effects attributed to the reduction of inertia in the system.
Development of Various Photovoltaic-Driven Water Electrolysis Technologies for Green Solar Hydrogen Generation
Sep 2021
Publication
Sonya Calnan,
Rory Bagacki,
Fuxi Bao,
Iris Dorbandt,
Erno Kemppainen,
Christian Schary,
Rutger Schlatmann,
Marco Leonardi,
Salvatore A. Lombardo,
R. Gabriella Milazzo,
Stefania M. S. Privitera,
Fabrizio Bizzarri,
Carmelo Connelli,
Daniele Consoli,
Cosimo Gerardi,
Pierenrico Zani,
Marcelo Carmo,
Stefan Haas,
Minoh Lee,
Martin Mueller,
Walter Zwaygardt,
Johan Oscarsson,
Lars Stolt,
Marika Edoff,
Tomas Edvinsson and
Ilknur Bayrak Pehlivan
Direct solar hydrogen generation via a combination of photovoltaics (PV) andwater electrolysis can potentially ensure a sustainable energy supply whileminimizing greenhouse emissions. The PECSYS project aims at demonstrating asolar-driven electrochemical hydrogen generation system with an area >10 m 2with high efficiency and at reasonable cost. Thermally integrated PV electrolyzers(ECs) using thin-film silicon undoped and silver-doped Cu(InGa)Se 2 and siliconheterojunction PV combined with alkaline electrolysis to form one unit aredeveloped on a prototype level with solar collection areas in the range from 64 to2600 cm 2 with the solar-to-hydrogen (StH) efficiency ranging from 4 to 13%.Electrical direct coupling of PV modules to a proton exchange membrane EC totest the effects of bifaciality (730 cm 2 solar collection area) and to study the long-term operation under outdoor conditions (10 m 2 collection area) is also inves-tigated. In both cases StH efficiencies exceeding 10% can be maintained over thetest periods used. All the StH efficiencies reported are based on measured gasoutflow using mass flow meters.
Alternative Power Options for Improvement of the Environmental Friendliness of Fishing Trawlers
Dec 2022
Publication
The fishing sector is faced with emission problems arising from the extensive use of diesel engines as prime movers. Energy efficiency environmental performance and minimization of operative costs through the reduction of fuel consumption are key research topics across the whole maritime sector. Ship emissions can be determined at different levels of complexity and accuracy i.e. by analyzing ship technical data and assuming its operative profile or by direct measurements of key parameters. This paper deals with the analysis of the environmental footprint of a fishing trawler operating in the Adriatic Sea including three phases of the Life-Cycle Assessment (manufacturing Well-to-Pump (WTP) and Pump-to-Wake (PTW)). Based on the data on fuel consumption the viability of replacing the conventional diesel-powered system with alternative options is analyzed. The results showed that fuels such as LNG and B20 represent the easiest solution that would result in a reduction of harmful gases and have a positive impact on overall costs. Although electrification and hydrogen represent one of the cleanest forms of energy due to their high price and complex application in an obsolete fleet they do not present an optimal solution for the time being. The paper showed that the use of alternative fuels would have a positive effect on the reduction of harmful emissions but further work is needed to find an environmentally acceptable and economically profitable pathway for redesigning the ship power system of fishing trawlers.
Achieving Net Zero Emissions in Italy by 2050: Challenges and Opportunities
Dec 2021
Publication
This paper contributes to the climate policy discussion by focusing on the challenges and opportunities of reaching net zero emissions by 2050 in Italy. To support Italian energy planning we developed energy roadmaps towards national climate neutrality consistent with the Paris Agreement objectives and the IPCC goal of limiting the increase in global surface temperature to 1.5 ◦C. Starting from the Italian framework these scenarios identify the correlations among the main pillars for the change of the energy paradigm towards net emissions by 2050. The energy scenarios were developed using TIMES-RSE a partial equilibrium and technology-rich optimization model of the entire Italian energy system. Subsequently an in-depth analysis was developed with the sMTISIM a long-term simulator of power system and electricity markets. The results show that to achieve climate neutrality by 2050 the Italian energy system will have to experience profound transformations on multiple and strongly related dimensions. A predominantly renewable-based energy mix (at least 80–90% by 2050) is essential to decarbonize most of the final energy consumption. However the strong increase of non-programmable renewable sources requires particular attention to new flexibility resources needed for the power system such as Power-to-X. The green fuels produced from renewables via Power-to-X will be a vital energy source for those sectors where electrification faces technical and economic barriers. The paper’s findings also confirm that the European “energy efficiency first” principle represents the very first step on the road to climate neutrality.
Evaluation of Hydrogen Transportation Networks - A Case Study on the German Energy System
May 2023
Publication
Not only due to the energy crisis European policymakers are exploring options to substitute natural gas with renewable hydrogen. A condition for the application of hydrogen is a functioning transportation infrastructure. However the most efficient transport of large hydrogen quantities is still unclear and deeper analyses are missing. A promising option is converting the existing gas infrastructure. This study presents a novel approach to develop hydrogen networks by applying the Steiner tree algorithm to derive candidates and evaluate their costs. This method uses the existing grid (brownfield) and is compared to a newly built grid (Greenfield). The goal is the technical and economic evaluation and comparison of hydrogen network candidates. The methodology is applied to the German gas grid and demand and supply scenarios covering the industry heavy-duty transport power and heating sector imports and domestic production. Five brownfield candidates are compared to a greenfield candidate. The candidates differ by network length and pipeline diameters to consider the transported volume of hydrogen. The economic evaluation concludes that most brownfield candidates’ cost is significantly lower than those of the greenfield candidate. The candidates can serve as starting points for flow simulations and policymakers can estimate the cost based on the results.
Economic Analysis of P2G Green Hydrogen Generated by Existing Wind Turbines on Jeju Island
Dec 2022
Publication
Every wind turbine is subject to fluctuations in power generation depending on climatic conditions. When electricity supply exceeds demand wind turbines are forced to implement curtailment causing a reduction in generation efficiency and commercial loss to turbine owners. Since the frequency and amount of curtailment of wind turbines increases as the amount of renewable energy become higher on Jeju Island in South Korea Jeju is configuring a Power to Gas (P2G) water electrolysis system that will be connected to an existing wind farm to use the “wasted energy”. In this study economic analysis was performed by calculating the production cost of green hydrogen and sensitivity analysis evaluated the variance in hydrogen cost depending on several influential factors. Approaches to lower hydrogen costs are necessary for the following reasons. The operating company needs a periodical update of hydrogen sale prices by reflecting a change in the system margin price (SMP) with the highest sensitivity to hydrogen cost. Technical development to reduce hydrogen costs in order to reduce power consumption for producing hydrogen and a decrease in annual reduction rate for the efficiency of water electrolysis is recommended. Discussions and research regarding government policy can be followed to lower the hydrogen cost.
Urban Hydrogen Production Model Using Environmental Infrastructures to Achieve the Net Zero Goal
Dec 2022
Publication
Land available for energy production is limited in cities owing to high population density. To reach the net zero goal cities contributing 70% of overall greenhouse gas emissions need to dramatically reduce emissions and increase self-sufficiency in energy production. Environmental infrastructures such as sewage treatment and incineration plants can be used as energy production facilities in cities. This study attempted to examine the effect of using environmental infrastructure such as energy production facilities to contribute toward the carbon neutrality goal through urban energy systems. In particular since the facilities are suitable for hydrogen supply in cities the analysis was conducted focusing on the possibility of hydrogen production. First the current status of energy supply and demand and additional energy production potential in sewage treatment and incineration plants in Seoul were analyzed. Then the role of these environmental infrastructures toward energy self-sufficiency in the urban system was examined. This study confirmed that the facilities can contribute to the city’s energy self-sufficiency and the achievement of its net-zero goal.
Techno-economic Model and Feasibility Assessment of Green Hydrogen Projects Based on Electrolysis Supplied by Photovoltaic PPAs
Nov 2022
Publication
The use of hydrogen produced from renewable energy enables the reduction of greenhouse gas (GHG) emissions pursued in different international strategies. The use of power purchase agreements (PPAs) to supply renewable electricity to hydrogen production plants is an approach that can improve the feasibility of projects. This paper presents a model applicable to hydrogen projects regarding the technical and economic perspective and applies it to the Spanish case where pioneering projects are taking place via photovoltaic PPAs. The results show that PPAs are an enabling mechanism for sustaining green hydrogen projects.
Global Warming Potential and Societal-governmental Impacts of the Hydrogen Ecosystem in the Transportation Sector
Apr 2024
Publication
The environmental and societal challenges of our contemporary society are leading us to reconsider our approaches to vehicle design. The aim of this article is to provide the reader with the essential knowledge needed to responsibly design a vehicle equipped with a hydrogen fuel cell system. Two pivotal aspects of hydrogen-electric powertrain eco-design are examined. First the global warming potential is assessed for both PEMFC systems and Type IV hydrogen tanks accounting for material extraction production and end-of-life considerations. The usage phase was omitted from the study in order to facilitate data adaptation for each type of use. PEMFC exhibits a global warming potential of about 29.2 kgCO2eq/kW while the tank records 12.4 kgCO2eq/kWh with transportation factors considered. Secondly the societal and governmental impacts are scrutinized with the carbon-intensive hydrogen tank emerging as having the most significant societal and governmental risks. In fact on a scale of 1–5 with 5 representing the highest level of risk the PEMFC system has a societal impact and governance risk of 2.98. The Type IV tank has a societal impact and governance risk of 3.31. Although uncertainties persist regarding the results presented in this study the values obtained provide an overview of the societal and governmental impacts of the hydrogen ecosystem in the transportation sector. The next step will be to compare for the same usage which solution between hydrogen-electric and 100% battery is more respectful of humans and the environment.
Optimizing Renewable Injection in Integrated Natural Gas Pipeline Networks Using a Multi-Period Programming Approach
Mar 2023
Publication
In this paper we propose an optimization model that considers two pathways for injecting renewable content into natural gas pipeline networks. The pathways include (1) power-to-hydrogen or PtH where off-peak electricity is converted to hydrogen via electrolysis and (2) power-to-methane or PtM where carbon dioxide from different source locations is converted into renewable methane (also known as synthetic natural gas SNG). The above pathways result in green hydrogen and methane which can be injected into an existing natural gas pipeline network. Based on these pathways a multi-period network optimization model that integrates the design and operation of hydrogen from PtH and renewable methane is proposed. The multi-period model is a mixed-integer non-linear programming (MINLP) model that determines (1) the optimal concentration of hydrogen and carbon dioxide in the natural gas pipelines (2) the optimal location of PtH and carbon dioxide units while minimizing the overall system cost. We show using a case study in Ontario the optimal network structure for injecting renewable hydrogen and methane within an integrated natural gas network system provides a $12M cost reduction. The optimal concentration of hydrogen ranges from 0.2 vol % to a maximum limit of 15.1 vol % across the network while reaching a 2.5 vol % at the distribution point. This is well below the maximum limit of 5 vol % specification. Furthermore the optimizer realized a CO2 concentration ranging from 0.2 vol % to 0.7 vol %. This is well below the target of 1% specified in the model. The study is essential to understanding the practical implication of hydrogen penetration in natural gas systems in terms of constraints on hydrogen concentration and network system costs.
Identifying Informed Beliefs about Hydrogen Technologies Across the Energy Supply Chain
Apr 2023
Publication
Developing a thriving hydrogen industry will depend on public and community support. Past research mainly focusing on the acceptance of hydrogen fuelling stations and cars suggests that people generally support hydrogen energy technology (HET). Few studies have however considered how people think about other components of the hydrogen supply chain (i.e. technologies required to make store transport and use hydrogen). Moreover there has been limited research investigating how people interpret and develop beliefs about HET after being presented with technical information. This paper attempts to address these research gaps by presenting the findings from four face-to-face focus group discussions conducted in Australia. The findings suggest that people have differing views about HET which depends on the type of technology and these views influence levels of support. The study also revealed concerns about a range of other factors that have yet to be considered in hydrogen acceptance research (e.g. perceived water use efficiency and indirect benefits). The findings highlight the value of qualitative research for identifying salient beliefs that shape attitudes towards HET and provide recommendations for future research and how to effectively communicate with the public and communities about an emerging hydrogen industry.
Assessing Sizing Optimality of OFF-GRID AC-Linked Solar PV-PEM Systems for Hydrogen Production
Jul 2023
Publication
Herein a novel methodology to perform optimal sizing of AC-linked solar PV-PEM systems is proposed. The novelty of this work is the proposition of the solar plant to electrolyzer capacity ratio (AC/AC ratio) as optimization variable. The impact of this AC/AC ratio on the Levelized Cost of Hydrogen (LCOH) and the deviation of the solar DC/AC ratio when optimized specifically for hydrogen production are quantified. Case studies covering a Global Horizontal Irradiation (GHI) range of 1400e2600 kWh/m2 -year are assessed. The obtained LCOHs range between 5.9 and 11.3 USD/kgH2 depending on sizing and location. The AC/AC ratio is found to strongly affect cost production and LCOH optimality while the optimal solar DC/AC ratio varies up to 54% when optimized to minimize the cost of hydrogen instead of the cost of energy only. Larger oversizing is required for low GHI locations; however H2 production is more sensitive to sizing ratios for high GHI locations.
Development of a New Renewable Energy System for Clean Hydrogen and Ethanol Production
Mar 2024
Publication
The present research work aims to present a uniquely designed renewable energy-based integrated system along with an equilibrium model for the processing of feedstock by following a hybrid route of thermochemical and biochemical ways. In this regard Canadian maple leaves and plastic wastes are selected as potential feedstocks for co-pyrolysis and syngas fermentation. The influence of co-pyrolysis process parameters on the overall system performance is investigated and assessed. Also several sensitivity analyses are performed to determine the optimal operating parameters that can generate maximum yields of hydrogen and ethanol. The present system is further investigated thermodynamically in terms of energetic and exergetic approaches and efficiencies. The present study shows that a molar flow ratio of 1:1 for maple leaves to plastic wastes a temperature of 1000◦C temperature and a pressure of 1 bar appear to be the most suitable operating conditions with the net production capacities of 7.43 tons/day for hydrogen and 8.72 tons/day for ethanol. The cold gas efficiency and LHV of the syngas produced are found to be 57.23% and 19.96 MJ/kg respectively. The overall energetic and exergetic efficiencies of the present system are found to be 30.98% and 26.88% respectively.
Geochemical Effects on Storage Gases and Reservoir Rock during Underground Hydrogen Storage: A Depleted North Sea Oil Reservoir Case Study
May 2023
Publication
In this work geochemical modelling using PhreeqC was carried out to evaluate the effects of geochemical reactions on the performance of underground hydrogen storage (UHS). Equilibrium exchange and mineral reactions were considered in the model. Moreover reaction kinetics were considered to evaluate the geochemical effect on underground hydrogen storage over an extended period of 30 years. The developed model was first validated against experimental data adopted from the published literature by comparing the modelling and literature values of H2 and CO2 solubility in water at varying conditions. Furthermore the effects of pressure temperature salinity and CO2% on the H2 and CO2 inventory and rock properties in a typical sandstone reservoir were evaluated over 30 years. Results show that H2 loss over 30 years is negligible (maximum 2%) through the studied range of conditions. The relative loss of CO2 is much more pronounced compared to H2 gas with losses of up to 72%. Therefore the role of CO2 as a cushion gas will be affected by the CO2 gas losses as time passes. Hence remedial CO2 gas injections should be considered to maintain the reservoir pressure throughout the injection and withdrawal processes. Moreover the relative volume of CO2 increases with the increase in temperature and decrease in pressure. Furthermore the reservoir rock properties porosity and permeability are affected by the underground hydrogen storage process and more specifically by the presence of CO2 gas. CO2 dissolves carbonate minerals inside the reservoir rock causing an increase in the rock’s porosity and permeability. Consequently the rock’s gas storage capacity and flow properties are enhanced
A Low-temperature Ammonia Electrolyser for Wastewater Treatment and Hydrogen Production
May 2023
Publication
Ammonia is a pollutant present in wastewater and is also a valuable carbon-free hydrogen carrier. Stripping recovery and anodic oxidation of ammonia to produce hydrogen via electrolysis is gaining momentum as a technology yet the development of an inexpensive stable catalytic material is imperative to reduce cost. Here we report on a new nickel copper (NiCu) catalyst electrodeposited onto a high surface area nickel felt (NF) as an anode for ammonia electrolysis. Cyclic voltammetry demonstrated that the catalyst/substrate combination reached the highest current density (200 mA cm2 at 20 C) achieved for a non-noble metal catalyst. A NiCu/NF electrode was tested in an anion exchange membrane electrolyser for 50 h; it showed good stability and high Faradaic efficiency for ammonia oxidation (88%) and hydrogen production (99%). We demonstrate that this novel electrode catalyst/substrate material combination can oxidise ammonia in a scaled system and hydrogen can be produced as a valuable by-product at industrial-level current densities and cell voltages lower than that for water electrolysis.
Experimental Analysis of the Effects of Ship Motion on Hydrogen Dispersion in an Enclosed Area
Apr 2023
Publication
This study aims to experimentally quantify the hydrogen diffusion characteristics by ship motion. Hydrogen leakage experiments were conducted under various ship motion conditions and the corresponding hydrogen concentrations for each sensor were expressed by an equation. The experimental facility was a scale model of the hydrogen fuel storage room of a ship. An experiment was conducted by implementing the roll and pitch motions of the ship as well as motion direction using a ship simulator. In the equation describing the hydrogen concentration the minimum and maximum root mean square deviations were 0.987 and 0.707 respectively and the correlations were 0.000109 and 0.0012289. Although the results differed as per the sensor location the hydrogen concentration was affected by the motion period of the ship. The experimental results and prediction equations can be useful for sensor and vent location selection by predicting the concentration when hydrogen leaks in ships in motion.
Low-cost Hydrogen in the Future European Electricity System – Enabled by Flexibility in Time and Space
Nov 2022
Publication
The present study investigates four factors that govern the ability to supply hydrogen at a low cost in Europe: the scale of the hydrogen demand; the possibility to invest in large-scale hydrogen storage; process flexibility in hydrogen-consuming industries; and the geographical areas in which hydrogen demand arises. The influence of the hydrogen demand on the future European zero-emission electricity system is investigated by applying the cost-minimising electricity system investment model eNODE to hydrogen demand levels in the range of 0–2500 TWhH2. It is found that the majority of the future European hydrogen demand can be cost-effectively satisfied with VRE assuming that the expansion of wind and solar power is not hindered by a lack of social acceptance at a cost of around 60–70 EUR/MWhH2 (2.0–2.3 EUR/kgH2). The cost of hydrogen in Europe can be reduced by around 10 EUR/MWhH2 if the hydrogen consumption is positioned strategically in regions with good conditions for wind and solar power and a low electricity demand. The cost savings potential that can be obtained from full temporal flexibility of hydrogen consumption is 3-fold higher than that linked to strategic localisation of the hydrogen consumption. The cost of hydrogen per kg increases and the value of flexibility diminishes as the size of the hydrogen demand increases relative to the traditional demand for electricity and the available VRE resources. Low-cost hydrogen is thus achieved by implementing efficiency and flexibility measures for hydrogen consumers as well as increasing acceptance of VRE.
Evaluation of a Hydrogen Powered Scooter Toy Prototype
Nov 2022
Publication
Electric scooters are used as alternative ways of transport because they easily make travel faster. However the batteries can take around 5 h to charge and have an autonomy of 30 km. With the presence of the hydrogen cell a hybrid system reduces the charging times and increases the autonomy of the vehicle by using two types of fuel. An increase of up to 80% in maximum distance and of 34% in operating times is obtained with a 1:10 scale prototype with the hydrogen cell; although more energy is withdrawn the combined fuel efficiency increases too. This suggests the cell that is used has the same behavior as some official reported vehicles which have a long range but low power. This allows concluding that use of the cell is functional for load tests and that the comparison factor obtained works as input for real-scale scooter prototypes to compete with the traditional electric scooters.
Impacts of Green Energy Expansion and Gas Import Reduction on South Korea’s Economic Growth: A System Dynamics Approach
Jun 2023
Publication
South Korea ranking ninth among the largest energy consumers and seventh in carbon dioxide emissions from 2016 to 2021 faces challenges in energy security and climate change mitigation. The primary challenge lies in transitioning from fossil fuel dependency to a more sustainable and diversified energy portfolio while meeting the growing energy demand for continued economic growth. This necessitates fostering innovation and investment in the green energy sector. This study examines the potential impact of green energy expansion (through integrating renewable energy and hydrogen production) and gas import reduction on South Korea’s economic growth using a system dynamics approach. The findings indicate that increasing investment in green energy can result in significant growth rates ranging from 7% to 35% between 2025 and 2040. Under the expansion renewable energy scenario (A) suggests steady but sustainable economic growth in the long term while the gas import reduction scenario (B) displays a potential for rapid economic growth in the short term with possible instability in the long term. The total production in Scenario B is USD 2.7 trillion in 2025 and will increase to USD 4.8 trillion by 2040. Scenario C which combines the effects of both Scenarios A and B results in consistently high economic growth rates over time and a substantial increase in total production by 2035–2040 from 20% to 46%. These findings are critical for policymakers in South Korea as they strive for sustainable economic growth and transition to renewable energy.
Regional Supply Chains for Decarbonising Steel: Energy Efficiency and Green Premium Mitigation
Jan 2022
Publication
Decarbonised steel enabled by green hydrogen-based iron ore reduction and renewable electricity-based steel making will disrupt the traditional supply chain. Focusing on the energetic and techno-economic assessment of potential green supply chains this study investigates the direct reduced iron-electric arc furnace production route enabled by renewable energy and deployed in regional settings. The hypothesis that co-locating manufacturing processes with renewable energy resources would offer highest energy efficiency and cost reduction is tested through an Australia-Japan case study. The binational partnership is structured to meet Japanese steel demand (for domestic use and regional exports) and source both energy and iron ore from the Pilbara region of Western Australia. A total of 12 unique supply chains differentiated by spatial configuration timeline and energy carrier were simulated which validated the hypothesis: direct energy and ore exports to remote steel producers (i.e. Japan-based production) as opposed to co-locating iron and steel production with abundant ore and renewable energy resources (i.e. Australia-based production) increased energy consumption and the levelised cost of steel by 45% and 32% respectively when averaged across 2030 and 2050. Two decades of technological development and economies of scale realisation would be crucial; 2030 supply chains were on average 12% more energy-intense and 23% more expensive than 2050 equivalents. On energy vectors liquefied hydrogen was more efficient than ammonia for export-dominant supply chains due to the pairing of its process flexibility and the intermittent solar energy profile as well as the avoidance of the need for ammonia cracking prior to direct reduction. To mitigate the green premium a carbon tax in the range of A$66–192/t CO2 would be required in 2030 and A$0–70/t CO2 in 2050; the diminished carbon tax requirement in the latter is achievable only by wholly Australia-based production. Further the modelled system scale was immense; producing 40 Mtpa of decarbonised steel will require 74–129% of Australia’s current electricity output and A$137–328 billion in capital investment for solar power production and shipping vessel infrastructure. These results call for strategic planning of regional resource pairing to drive energy and cost efficiencies which accelerate the global decarbonisation of steel.
Thermodynamic Analysis of Methanol, Ammonia, and Hydrogen as Alternative Fuels in HCCI Engines
May 2023
Publication
The present study enters in the context of reducing harmful emissions of the marine fleet by using three of the most promising alternative fuels namely methanol ammonia and hydrogen. These fuels are to be examined from the perspective of both the first and second laws of thermodynamics when employed in turbocharged and intercooled Homogeneous Charge Compression Ignition Engines (HCCI) under various values of ambient temperature and equivalence ratio. Results showed that the highest engine performance values favour using ammonia as fuel followed in order by hydrogen and methanol. Furthermore most of the exergy destruction rates (65.26% ammonia to 84.02% for hydrogen) of the exergy destruction rate occurring in the engine take place in the HCCI engine.
Study on Hydrogen in Ports and Industrial Coastal Areas - Report 1
Jan 2023
Publication
The study feeds into the work of the Global Hydrogen Ports Coalition launched at the latest Clean Energy Ministerial (CEM12). This important international initiative brings together ports from around the world to work together on hydrogen technologies. The planned study will be a comprehensive assessment of the hydrogen demand in ports and industrial coastal areas enabling the creation of a 'European Hydrogen Ports Roadmap'. It will also feature clear economic forecasts based on a variety of business models for the transition to renewable hydrogen in ports while presenting new case studies and project concepts. “The objective is to provide new directions for research and innovation guidance for regulation codes and standards and proposals on policy and regulation. The forthcoming study will also help create impetus for stakeholders to come together and take a long term perspective on the hydrogen transition in ports. Finally the study will be a centralized resource It will form a Europe wide hydrogen ports ' when combined with roadmaps and other materials created by individual ports.
The Impact of the Energy Crisis on the UK's Net Zero Transition
Mar 2023
Publication
Recent drastic increases in natural gas prices have brought into sharp focus the inherent tensions between net zero transitions energy security and affordability. We investigate the impact of different fuel prices on the energy system transition explicitly accounting for the increasingly coupled power and heating sectors and also incorporate the emerging hydrogen sector. The aim is to identify low-regret decisions and optimal energy system transitions for different fuel prices. We observe that the evolution of the heating sector is highly sensitive to the gas price whereas the composition of the power sector is not qualitatively impacted by gas prices. We also observe that bioenergy plays an important role in the energy system transition and the balance between gas price and biomass prices determines the optimal technology portfolios. The future evolution of the prices of these two resources is highly uncertain and future energy systems must be resilient to these uncertainties.
No more items...