Publications
Hydrogen Inhibition as Explosion Prevention in Wet Metal Dust Removal Systems
Mar 2022
Publication
Hydrogen energy attracts an amount of attention as an environmentally friendly and sustainable energy source. However hydrogen is also flammable. Hydrogen fires and explosions might occur in wet-dust-removal systems if accumulated aluminum dust reacts with water. Hydrogen inhibition is a safe method to address these issues. For this purpose we used sodium citrate a renewable and nontoxic raw material to inhibit H2 formation. Specifically hydrogen inhibition experiments with sodium citrate were carried out using custom-built equipment developed by our research group. When the concentration of sodium citrate solution was in the range of 0.4–4.0 g/L a protective coating was formed on the surface of the Al particles which prevented them from contacting with water. The inhibitory effect was achieved when the concentration of sodium citrate was in a certain range and too much or too little addition may reduce the inhibitory effect. In this paper we also discuss the economic aspects of H2 inhibition with this method because it offers excellent safety advantages and could be incorporated on a large scale. Such an intrinsic safety design of H2 inhibition to control explosions in wet-dust-removal systems could be applied to ensure the safety of other systems such as nuclear reactors.
Hydrogen Production Cost Forecasts since the 1970s and Implications for Technological Development
Jun 2022
Publication
This study reviews the extant literature on hydrogen production cost forecasts to identify and analyze the historical trend of such forecasts in order to explore the feasibility of wider adoption. Hydrogen is an important energy source that can be used to achieve a carbon-neutral society but the widespread adoption of hydrogen production technologies is hampered by the high costs. The production costs vary depending on the technology employed: gray renewable electrolysis or biomass. The study identifies 174 production cost forecast data points from articles published between 1979 and 2020 and makes a comparative assessment using non-parametric statistical tests. The results show three different cost forecast trends across technologies. First the production cost of gray hydrogen showed an increasing trend until 2015 but started declining after 2015. Second the renewable electrolysis hydrogen cost was the highest of all but has shown a gradual declining trend since 2015. Finally the biomass hydrogen cost has been relatively cheaper up until 2015 after which it became the highest. Renewable electrolysis and biomass hydrogen will be potential candidates (as principal drivers) to reduce CO2 emissions in the future but renewable electrolysis hydrogen is more promising in this regard due to its declining production cost trend. Gray hydrogen can also be an alternative candidate to renewable electrolysis hydrogen because it can be equipped with carbon capture storage (CCS) to produce blue hydrogen although we need to consider additional production costs incurred by the introduction of CCS. The study discusses the technological development and policy implications of the results on hydrogen production costs.
Assessment of Operability and Inspection, Maintenance and Repair Requirements for Transmission Pipelines and Installations in Hydrogen Service
Apr 2021
Publication
This report has been prepared for Hytechnical work programme to support the technical strategy for repurposing existing transmission pipelines and installations for the transportation and distribution of hydrogen and natural gas / hydrogen blends. The aim of the Hytechnical work programme is to support the implementation of the IGEM supplements to the standards TD/1 TD/13 TD/3 and TD/4.<br/>The report covers a desk study into the requirements for the inspection maintenance operation and repair of above 7 bar natural gas pipelines and installations designed and operated in accordance with the standards existing IGEM/TD/1 and IGEM/TD/13 which are repurposed for hydrogen service.
How Knowledge about or Experience with Hydrogen Fueling Stations Improves Their Public Acceptance
Nov 2019
Publication
Hydrogen which is expected to be a popular type of next-generation energy is drawing attention as a fuel option for the formation of a low-carbon society. Because hydrogen energy is different in nature from existing energy technologies it is necessary to promote sufficient social recognition and acceptability of the technology for its widespread use. In this study we focused on the effect of initiatives to improve awareness of hydrogen energy technology thereby investigating the acceptability of hydrogen energy to those participating in either several hydrogen energy technology introduction events or professional seminars. According to the survey results participants in the technology introduction events tended to have lower levels of hydrogen and hydrogen energy technology knowledge than did participants in the hydrogen-energy-related seminars but confidence in the technology and acceptability of the installation of hydrogen stations near their own residences tended to be higher. It was suggested that knowledge about hydrogen and technology could lead to improved acceptability through improved levels of trust in the technology. On the other hand social benefits such as those for the environment socioeconomics and energy security have little impact on individual levels of acceptance of new technology.
Molten Carbonate Fuel Cells for Simultaneous CO2 Capture, Power Generation, and H2 Generation
Mar 2022
Publication
This article presents a new technology for the generation of power and steam or other process heat with very low CO2 emissions. It is well known that cogeneration of electricity and steam is highly efficient and that amine units can be used to remove CO2 from combustion flue gas but that the amine unit consumes a significant amount of steam and power reducing the overall system efficiency. In this report the use of molten carbonate fuel cells (MCFCs) to capture CO2 from cogen units is investigated and shown to be highly efficient due to the additional power that they produce while capturing the CO2. Furthermore the MCFCs are capable of reforming methane to hydrogen simultaneous to the power production and CO2 capture. This hydrogen can either be recycled as fuel for consumption by the cogen or MCFCs or exported to an independent combustion unit as low carbon fuel thereby decarbonizing that unit as well. The efficiency of MCFCs for CO2 capture is higher than use of amines in all cases studied often by a substantial margin while at the same time the MCFCs avoid more CO2 than the amine technology. As one example the use of amines on a cogeneration unit can avoid 87.6% of CO2 but requires 4.91 MJ/kg of additional primary energy to do so. In contrast the MCFCs avoid 89.4% of CO2 but require only 1.37 MJ/kg of additional primary energy. The high thermal efficiency and hydrogen export option demonstrate the potential of this technology for widespread deployment in a low carbon energy economy.
Thermodynamic Evaluation of Bi-directional Solid Oxide Cell Systems Including Year-round Cumulative Exergy Analysis
Jun 2018
Publication
Bi-directional solid oxide cell systems (Bi-SOC) are being increasingly considered as an electrical energy storage method and consequently as a means to boost the penetration of renewable energy (RE) and to improve the grid flexibility by power-to-gas electrochemical conversion. A major advantage of these systems is that the same SOC stack operates as both energy storage device (SOEC) and energy producing device (SOFC) based on the energy demand and production. SOEC and SOFC systems are now well-optimised as individual systems; this work studies the effect of using the bi-directionality of the SOC at a system level. Since the system performance is highly dependent on the cell-stack operating conditions this study improves the stack parameters for both operation modes. Moreover the year-round cumulative exergy method (CE) is introduced in the solid oxide cell (SOC) context for estimating the system exergy efficiencies. This method is an attempt to obtain more insightful exergy assessments since it takes into account the operational hours of the SOC system in both modes. The CE method therefore helps to predict more accurately the most efficient configuration and operating parameters based on the power production and consumption curves in a year. Variation of operating conditions configurations and SOC parameters show a variation of Bi-SOC system year-round cumulative exergy efficiency from 33% to 73%. The obtained thermodynamic performance shows that the Bi-SOC when feasible can prove to be a highly efficient flexible power plant as well as an energy storage system.
Safety Design and Engineering Solution of Fuel Cell Powered Ship in Inland Waterway of China
Oct 2021
Publication
From the perspective of risk control when hydrogen fuel and fuel cells are used on ships there is a possibility of low-flash fuel leakage leading to the risk of explosion. Since the fuel cell space (cabin for fuel cell installations) is an enclosed space any small amount of leakage must be handled properly. In ship design area classification is a method of analyzing and classifying the areas where explosive gas atmospheres may occur. If the fuel cell space is regarded as a hazardous area all the electrical devices inside it must be explosion-proof type which will make the ship’s design very difficult. This paper takes a Chinese fuel cell powered ship as an example to analyze its safety. Firstly the leakage rates of fuel cell modules valves and connectors are calculated. Secondly the IEC60079-10-1 algorithm is used to calculate the risk level of the fuel cell space. Finally the ship and fuel cells are optimized and redesigned and the risk level of the fuel cell space is recalculated and compared. The result shows that the optimized fuel space risk level could be reduced to the level of the non-hazardous zone.
New Combustion Modelling Approach for Methane-Hydrogen Fueled Engines Using Machine Learning and Engine Virtualization
Oct 2021
Publication
The achievement of a carbon-free emissions economy is one of the main goals to reduce climate change and its negative effects. Scientists and technological improvements have followed this trend improving efficiency and reducing carbon and other compounds that foment climate change. Since the main contributor of these emissions is transportation detaching this sector from fossil fuels is a necessary step towards an environmentally friendly future. Therefore an evaluation of alternative fuels will be needed to find a suitable replacement for traditional fossil-based fuels. In this scenario hydrogen appears as a possible solution. However the existence of the drawbacks associated with the application of H2 -ICE redirects the solution to dual-fuel strategies which consist of mixing different fuels to reduce negative aspects of their separate use while enhancing the benefits. In this work a new combustion modelling approach based on machine learning (ML) modeling is proposed for predicting the burning rate of different mixtures of methane (CH4 ) and hydrogen (H2). Laminar flame speed calculations have been performed to train the ML model finding a faster way to obtain good results in comparison with actual models applied to SI engines in the virtual engine model framework.
Seasonal Hydrogen Storage for Sustainable Renewable Energy Integration in the Electricity Sector: A Case Study of Finland
Nov 2021
Publication
Wind power is rapidly growing in the Finnish grid and Finland’s electricity consumption is low in the summer compared to the winter. Hence there is a need for storage that can absorb a large amount of energy during summer and discharge it during winter. This study examines one such storage technology geological hydrogen storage which has the potential to store energy on a GWh scale and also over longer periods of time. Finland’s electricity generation system was modelled with and without hydrogen storage using the LEAP-NEMO modeling toolkit. The results showed about 69% decline in carbon dioxide emissions as well as a decline in the fossil fuel-based power accompanied with a higher capability to meet demand with less imports in both scenarios. Finally a critical analysis of the Finnish electricity mix with and without hydrogen storage is presented.
Hydrogen-assisted Fatigue Crack Growth: Pre-charging vs In-situ Testing in Gaseous Environments
Mar 2023
Publication
We investigate the implications of conducting hydrogen-assisted fatigue crack growth experiments in a hydrogen gas environment (in-situ hydrogen charging) or in air (following exposure to hydrogen gas). The study is conducted on welded 42CrMo4 steel a primary candidate for the future hydrogen transport infrastructure allowing us to additionally gain insight into the differences in behavior between the base steel and the coarse grain heat affected zone. The results reveal significant differences between the two testing approaches and the two weld regions. The differences are particularly remarkable for the comparison of testing methodologies with fatigue crack growth rates being more than one order of magnitude higher over relevant loading regimes when the samples are tested in a hydrogen-containing environment relative to the pre-charged samples. Aided by finite element modelling and microscopy analysis these differences are discussed and rationalized. Independent of the testing approach the heat affected zone showed a higher susceptibility to hydrogen embrittlement. Similar microstructural behavior is observed for both testing approaches with the base metal exhibiting martensite lath decohesion while the heat affected zone experienced both martensite lath decohesion and intergranular fracture.
Everything About Hydrogen Podcast: Hydrogen from Waste
Mar 2021
Publication
On this episode of EAH the team is joined by Tim Yeo Chairman of Powerhouse Energy to talk about the work they are doing in the waste-to-energy space and how they see the sector evolving in the coming years.
The podcast can be found on their website
The podcast can be found on their website
Everything About Hydrogen Podcast: Building Europe's Hydrogen Mobility Network
Jan 2020
Publication
On this weeks episode the team are talking all things hydrogen with Jacob Krogsgaard the CEO of Everfuel a leading supplier of green hydrogen for mobility and industry in Europe. Since its establishment by Nel and a Consortium of parties and investors Everfuel has become a market leader in establishing green hydrogen solutions for mobility in Europe and has recently expanded into areas such as power-to-gas as well. The team catch up with Jacob on Everfuels business model the establishment of the H2Bus Consortium Jacob’s views on how the market for green hydrogen is evolving in Europe and where he sees the greatest early potential for scaling.…..All this and more on the show!
The podcast can be found on their website
The podcast can be found on their website
Petroleum Sector-Driven Roadmap for Future Hydrogen Economy
Nov 2021
Publication
In the climate change mitigation context based on the blue hydrogen concept a narrative frame is presented in this paper to build the argument for solving the energy trilemma which is the possibility of job loss and stranded asset accumulation with a sustainable energy solution in gas- and oil-rich regions especially for the Persian Gulf region. To this aim scientific evidence and multidimensional feasibility analysis have been employed for making the narrative around hydrogen clear in public and policy discourse so that choices towards acceleration of efforts can begin for paving the way for the future hydrogen economy and society. This can come from natural gas and petroleum-related skills technologies experience and infrastructure. In this way we present results using multidimensional feasibility analysis through STEEP and give examples of oil- and gas-producing countries to lead the transition action along the line of hydrogen-based economy in order to make quick moves towards cost effectiveness and sustainability through international cooperation. Lastly this article presents a viewpoint for some regional geopolitical cooperation building but needs a more full-scale assessment.
Notch-induced Anisotropic Fracture of Cold Drawn Pearlitic Steels and the Associated Crack Path Deflection and Mixed-mode Stress State: A Tribute to Masaccio
Jul 2018
Publication
This paper deals with notch-induced anisotropic fracture behavior of progressively cold drawn pearlitic steels on the basis of their microstructural evolution during manufacturing by multi-step cold drawing that produces slenderizing and orientation of the pearlitic colonies together with densification and orientation of the Fe/Fe3C lamellae reviewing previous research by the author. Results of fracture test using notched specimens of cold drawn pearlitic steels with different degrees of cold drawing (distinct levels of strain hardening) in air and hydrogen environment shows: (i) the key impact of the colonies and lamellae alignment and orientation on notch-induced fracture producing anisotropic fracture behavior with its related crack path deflection (or fracture path deviation); (ii) the necessity of both stress triaxiality (constraint) and microstructural orientation (colonies/lamellae) alignment to produce fracture path deflection; (iii) hydrogen presence (the circumstance) promotes crack path deviation in addition to the inherent microstructural anisotropy created by cold drawing; (iv) the anisotropic fracture path with a stepped profile in cold drawn pearlitic steel consisting of deflections and deviations from the initial transverse fracture path in mode I resembles Masaccio’s Tribute Money painting with its mountains at the background so that the present paper can be considered as a Tribute to Masaccio.
Analysis of the Environmental Degradation Effects on the Cables of “La Arena” Bridge (Spain)
Sep 2017
Publication
After nearly 25 years of service some of the wires of the tendons of “La Arena” bridge (Spain) started to exhibit the effects of environmental degradation processes. “La Arena” is cable-stayed bridge with 6 towers and a reference span between towers of about 100 meters. After a maintenance inspection of the bridge evidences of corrosion were detected in some of the galvanized wires of the cables. A more in-deep analysis of these wires revealed that many of them exhibited loss of section due to the corrosion process. In order to clarify the causes of this degradation event and to suggest some remedial actions an experimental program was designed. This program consisted of tensile and fatigue tests on some strand samples of the bridge together with a fractographic analysis of the fracture surfaces of the wires its galvanized layer thickness and some hydrogen measurements (hydrogen embrittlement could be another effect of the environmental degradation process).Once the type and extension of the flaws in the wires was characterized a structural integrity assessment of the strands was performed with the aim of quantifying the margins until failure and establishing some maintenance recommendations.
Boosting Carbon Efficiency of the Biomass to Liquid Process with Hydrogen from Power: The Effect of H2/CO Ratio to the Fischer-Tropsch Reactors on the Production and Power Consumption
Jun 2019
Publication
Carbon efficiency of a biomass to liquid process can be increased from ca. 30 to more than 90% by adding hydrogen generated from renewable power. The main reason is that in order to increase the H2/CO ratio after gasification to the value required for Fischer-Tropsch (FT) synthesis the water gas shift reaction step can be avoided; instead a reversed water gas shift reactor is introduced to convert produced CO2 to CO. Process simulations are done for a 46 t/h FT biofuel production unit. Previous results are confirmed and it is shown how the process can be further improved. The effect of changing the H2/CO ratio to the Fischer-Tropsch synthesis reactors is studied with the use of three different kinetic models. Keeping the CO conversion in the reactors constant at 55% the volume of the reactors decreases with increasing H2/CO ratio because the reaction rates increase with the partial pressure of hydrogen. Concurrently the production of C5+ products and the consumption of hydrogen increases. However the power required per extra produced liter fuel also increases pointing at optimum conditions at a H2/CO feed ratio significantly lower than 2. The trends are the same for all three kinetic models although one of the models is less sensitive to the hydrogen partial pressure. Finally excess renewable energy can be transformed to FT syncrude with an efficiency of 0.8–0.88 on energy basis.
Building Hydrogen Competence, a Technology Aligned Skills and Knowledge Approach
Sep 2021
Publication
There is a pressing need for a framework and strategic approach to be taken to workforce safety training requirements of new hydrogen projects. It is apparent that organisations embarking on projects utilizing or producing green hydrogen need to implement a program of training for their workforce in order to ensure that all personnel within their organisation understand not only the environmental benefits of green hydrogen but also the safety considerations that come with either producing or using hydrogen as a fuel. Energy Transition must be safe to be successful. If such an approach is taken by industry and stakeholders it is also possible to use the high level content as a vehicle and basis to offer public audiences which also require a basic level of understanding in order to fully accept the transition to using hydrogen more widely as a fuel. This will be crucial to the success of national hydrogen strategies. Coeus Energy has developed an innovative framework of training following engagement with operators keen to ensure their duty of care responsibilities have been met. Whilst having highly skilled personnel already employed within their organisations specific hydrogen content is still required for workforce competence. This is where the framework need arises as the knowledge is required at all levels of an organisation.
Cost-optimized Design Point and Operating Strategy of Polymer Electrolyte Membrane Electrolyzers
Nov 2022
Publication
Green hydrogen is a key solution for reducing CO2 emissions in various industrial applications but high production costs continue to hinder its market penetration today. Better competitiveness is linked to lower investment costs and higher efficiency of the conversion technologies among which polymer electrolyte membrane electrolysis seems to be attractive. Although new manufacturing techniques and materials can help achieve these goals a less frequently investigated approach is the optimization of the design point and operating strategy of electrolyzers. This means in particular that the questions of how often a system should be operated and which cell voltage should be applied must be answered. As existing techno-economic models feature gaps which means that these questions cannot be adequately answered a modified model is introduced here. In this model different technical parameters are implemented and correlated to each other in order to simulate the lowest possible levelized cost of hydrogen and extract the required designs and strategies from this. In each case investigated the recommended cost-based cell voltage that should be applied to the system is surprisingly low compared to the assumptions made in previous publications. Depending on the case the cell voltage is in a range between 1.6 V and 1.8 V with an annual operation of 2000e8000 h. The wide range of results clearly indicate how individual the design and operation must be but with efficiency gains of several percent the effect of optimization will be indispensable in the future.
Reduction of Maritime GHG Emissions and the Potential Role of E-fuels
Nov 2021
Publication
Maritime transport accounts for around 3% of global anthropogenic Greenhouse gas (GHG) emissions (Well-to-Wake) and these emissions must be reduced with at least 50% in absolute values by 2050 to contribute to the ambitions of the Paris agreement (2015). Zero carbon fuels made from renewable sources (hydro wind or solar) are by many seen as the most promising option to deliver the desired GHG reductions. For the maritime sector these fuels come in two forms: First as E-Hydrogen or E-Ammonia; Second as Hydrocarbon E-fuels in the form of E-Diesel E-LNG or E-Methanol. We evaluate emissions energy use and cost for E-fuels and find that the most robust path to these fuels is through dual-fuel engines and systems to ensure flexibility in fuel selection to prepare for growing supplies and lower risks. The GHG reduction potential of E-fuels depends entirely on abundant renewable electricity.
A Real-Time Load Prediction Control for Fuel Cell Hybrid Vehicle
May 2022
Publication
The development of hydrogen energy is an effective solution to the energy and environmental crisis. Hydrogen fuel cells and energy storage cells as hybrid power have broad application prospects in the field of vehicle power. Energy management strategies are key technologies for fuel cell hybrid systems. The traditional optimization strategy is generally based on optimization under the global operating conditions. The purpose of this project is to develop a power allocation optimization method based on real-time load forecasting for fuel cell/lithium battery hybrid electric vehicles which does not depend on specific working conditions or causal control methods. This paper presents an energy-management algorithm based on real-time load forecasting using GRU neural networks to predict load requirements in the short time domain and then the local optimization problem for each predictive domain is solved using a method based on Pontryagin’s minimum principle (PMP). The algorithm adopts the idea of model prediction control (MPC) to transform the global optimization problem into a series of local optimization problems. The simulation results show that the proposed strategy can achieve a good fuel-saving control effect. Compared with the rule-based strategy and equivalent hydrogen consumption strategy (ECMS) the fuel consumption is lower under two typical urban conditions. In the 1800 s driving cycle under WTCL conditions the fuel consumption under the MPC-PMP strategy is 22.4% lower than that based on the ECMS strategy and 10.3% lower than the rules-based strategy. Under CTLT conditions the fuel consumption of the MPC-PMP strategy is 13.12% lower than that of the rule-based strategy and 3.01% lower than the ECMS strategy.
Everything About Hydrogen Podcast: Rethinking Hydrogen Storage with H2GOPOWER
Sep 2019
Publication
For this episode we speak to Enass Abo-Hamed the CEO of H2GOPower about their cutting edge hydrogen storage technology. Below we have attached a few links to the content discussed on the show and some further background reading.
The podcast can be found on their website
The podcast can be found on their website
Thermodynamic and Ecological Preselection of Synthetic Fuel Intermediates from Biogas at Farm Sites
Jan 2020
Publication
Background: Synthetic fuels based on renewable hydrogen and CO2 are a currently highly discussed piece of the puzzle to defossilize the transport sector. In this regard CO2 can play a positive role in shaping a sustainable future. Large potentials are available as a product of biogas production however occurring in small scales and in thin spatial distributions. This work aims to evaluate suitable synthetic fuel products to be produced at farm sites.<br/>Methods: A thermodynamic analysis to assess the energetic efficiency of synthesis pathways and a qualitative assessment of product handling issues is carried out.<br/>Results: Regarding the technical and safety-related advantages in storage liquid products are the superior option for fuel production at decentralized sites. Due to the economy of scale multi-stage synthesis processes lose economic performance with rising complexity. A method was shown which covers a principle sketch of all necessary reaction separation steps and all compression and heat exchanger units. The figures showed that methanol and butanol are the most suitable candidates in contrast to OME3-5 for implementation in existing transportation and fuel systems. These results were underpin by a Gibbs energy analysis.<br/>Conclusions: As long as safety regulations are met and the farm can guarantee safe storage and transport farm-site production for all intermediates can be realized technically. Ultimately this work points out that the process must be kept as simple as possible favoring methanol production at farm site and its further processing to more complicated fuels in large units for several fuel pathways.
Potential Role of Natural Gas Infrastructure in China to Supply Low-carbon Gases During 2020–2050
Oct 2021
Publication
As natural gas (NG) demand increases in China the question arises how the NG infrastructure fit into a low greenhouse gas (GHG) emissions future towards 2050. Herein the potential role of the NG infrastructure in supplying low-carbon gases during 2020–2050 for China at a provincial resolution was analyzed for different scenarios. In total four low-carbon gases were considered in this study: biomethane bio-synthetic methane hydrogen and low-carbon synthetic methane. The results show that the total potential of low-carbon gas production can increase from 1.21 EJ to 5.25 EJ during 2020–2050 which can replace 20%–67% of the imported gas. In particular Yunnan and Inner Mongolia contribute 17% of China’s low-carbon gas production. As the deployment of NG infrastructure can be very different three scenarios replacing imported pipeline NG were found to reduce the expansion of gas infrastructure by 35%–42% while the three scenarios replacing LNG imports were found to increase infrastructure expansion by 31%–53% as compared to the base case. The cumulative avoided GHG emissions for the 6 analyzed scenarios were 6.0–8.3 Gt CO2. The GHG avoidance costs were highly influenced by the NG price. This study shows that the NG infrastructure has the potential to supply low-carbon gases in China thereby significantly reducing GHG emissions and increasing both China’s short- and long-term gas supply independence.
Building Efficiency- Reducing Energy Demand in the Commercial Sector
Dec 2013
Publication
The report was formally launched on 2nd December in Parliament at a panel debate chaired by Lord Whitty and Oliver Colvile and featured representatives from Government and Industry. The report outlines the case for investment by businesses in the energy efficiency of their buildings and operations and highlights how this could help neutralise the threat to profitability posed by increasing energy bills energy price volatility and an increasing reliance on electricity in the commercial sector. The report highlights that business in the UK have the opportunity to not only reduce energy bills but increase their competitiveness and improve worker productivity through better designed buildings.
Is Hydrogen the Future of Nuclear Energy?
Jan 2008
Publication
The traditionally held belief is that the future of nuclear energy is electricity production. However another possible future exists: nuclear energy used primarily for the production of hydrogen. The hydrogen in turn would be used to meet our demands for transport fuels (including liquid fuels) materials such as steel and fertilizer and peak-load electricity production. Hydrogen would become the replacement for fossil fuels in these applications that consume more than half the world’s energy. Such a future would follow from several factors: (a) concerns about climatic change that limit the use of fossil fuels (b) the fundamental technological differences between hydrogen and electricity that may preferentially couple different primary energy sources with either hydrogen or electricity and (c) the potential for other technologies to competitively produce electricity but not hydrogen. Electricity (movement of electrons) is not fundamentally a large-scale centralized technology that requires centralized methods of production distribution or use. In contrast hydrogen (movement of atoms) is intrinsically a large-scale centralized technology. The large-scale centralized characteristics of nuclear energy as a primary energy source hydrogen production systems and hydrogen storage systems naturally couple these technologies. This connection suggests that serious consideration be given to hydrogen as the ultimate product of nuclear energy and that nuclear systems be designed explicitly for hydrogen production.
Synergies between Renewable Energy and Flexibility Investments: A Case of a Medium-Sized Industry
Nov 2021
Publication
Climate and energy policies are tools used to steer the development of a sustainable economy supplied by equally sustainable energy systems. End-users should plan their investments accounting for future policies such as incentives for system-oriented consumption emission prices and hydrogen economy to ensure long-term competitiveness. In this work the utilization of variable renewable energy and flexibility potentials in a case study of an an aggregate industry is investigated. An energy concept considering PV and battery expansion flexible production fuel cell electric trucks (FCEV) and hydrogen production is proposed and analysed under expected techno-economic conditions and policies of 2030 using an energy system optimization model. Under this concept total costs and emissions are reduced by 14% and 70% respectively compared to the business-as-usual system. The main benefit of PV investment is the lowered electricity procurement. Flexibility from schedule manufacturing and hydrogen production increases not only the self-consumption of PV generation from 51% to 80% but also the optimal PV capacity by 41%. Despite the expected cost reduction and efficiency improvement FCEV is still not competitive to diesel trucks due to higher investment and fuel prices i.e. its adoption increases the costs by 8%. However this is resolved when hydrogen can be produced from own surplus electricity generation. Our findings reveal synergistic effects between different potentials and the importance of enabling local business models e.g. regional hydrogen production and storage services. The SWOT analysis of the proposed concept shows that the pursuit of sustainability via new technologies entails new opportunities and risks. Lastly end-users and policymakers are advised to plan their investments and supports towards integration of multiple application consumption sectors and infrastructure.
Everything About Hydrogen Podcast: Building Hydrogen Infrastructure with Black & Veatch
Feb 2020
Publication
On this weeks episode the team are talking all things hydrogen with Maryline Daviaud Lewett Director of Business Development for Transformative Technologies at Black & Veatch (B&V). On the show we discuss the role that Engineering Procurement and Construction (EPC) firms are playing in developing hydrogen and fuel cell infrastructure as well as discussing the unique aspects of developing projects in North America. As the leading EPC for hydrogen refuelling stations in North America and a wealth of experience across electric vehicle charging and hydrogen Maryline brings a uniquely well rounded perspective to the discussion and shares a wealth of insights for how the market may evolve. All this and more on the show!
The podcast can be found on their website
The podcast can be found on their website
Everything About Hydrogen Podcast: The Other Hydrogen Vehicle?
Oct 2019
Publication
For this episode we speak to Amanda Lyne the Managing Director of ULEMCo and the Chair of the UK Hydrogen and Fuel Cell Association (UKHFCA). Below are a few links to some of the content discussed on the show and some further background reading.
The podcast can be found on their website
The podcast can be found on their website
The Czech Republic's Hydrogen Strategy
Jul 2021
Publication
The Czech Republic’s Hydrogen Strategy is being developed in the context of the Hydrogen Strategy for a climate neutral Europe which reflects the European Green Deal objective of climate neutrality by 2050. The objective of the Strategy is thus to reduce greenhouse gas emissions in such a way that the economy shifts smoothly to low-carbon technologies.
This is associated with two strategic goals:
This is associated with two strategic goals:
- Reduce greenhouse gas emissions
- Stimulate the economic growth
- Volume of low-carbon hydrogen production
- Volume of low-carbon hydrogen consumption
- Infrastructure readiness for hydrogen transport and storage
- Progress in R&D and production of hydrogen technologies
- Low-carbon hydrogen production
- Low-carbon hydrogen use
- Hydrogen transport and storage
- Hydrogen technologies
Energy-Efficient Distributed Carbon Capture in Hydrogen Production from Natural Gas
Apr 2011
Publication
Lowering the energy penalty associated with CO2 capture is one of the key issues of Carbon Capture and Storage (CCS) technologies. The efficiency of carbon capture must be improved to reduce the energy penalty because capture stage is the most energy-consuming stage in the entire process of CCS. Energy-efficient distributed carbon capture in hydrogen production has been demonstrated with an advanced membrane reformer system. We have already developed and operated an advanced 40 Nm3 /h-class membrane reformer system and demonstrated its high hydrogen production efficiency of 81.4% (HHV) which is the world highest efficiency in terms of hydrogen production from natural gas. The system has another significant feature that the CO2 concentration in the reactor off-gas is as high as 70~90% and CO2 can be liquefied and separated easily with little energy loss. An apparatus for CO2 capture was combined to the membrane reformer system and over 90% of CO2 in the reactor off-gas was captured by cryogenic separation. The total energy efficiency of hydrogen production even with CO2 capture was still as high as 78.6% (HHV) which is 510% higher than the conventional reforming technologies. The total CO2 emission from hydrogen production was decreased by 50% with only a 3% energy loss. A sensitivity analysis was also carried out to evaluate the effects of the operating conditions of the system on hydrogen production efficiency and CO2 reduction rate.
Renewable Hydrogen Production from Butanol Steam Reforming over Nickel Catalysts Promoted by Lanthanides
Oct 2021
Publication
Hydrogen is mainly produced by steam reforming of natural gas a non-renewable resource. Alternative and renewable routes for hydrogen production play an important role in reducing dependence on oil and minimizing the emission of greenhouse gases. In this work butanol a model compound of bio-oil was employed for hydrogen production by steam reforming. The reaction was evaluated for 30 h in a tubular quartz reactor at 500 ◦C atmospheric pressure GHSV of 500000 h−1 and an aqueous solution feed of 10% v/v butanol. For this reaction catalysts with 20 wt.% NiO were prepared by wet impregnation using three supports: γ-alumina and alumina modified with 10 wt.% of cerium and lanthanum oxides. Both promoters increased the reduction degree of the catalysts and decreased catalyst acidity which is closely related to coke formation and deactivation. Ni/La2O3– Al2O3 presented a higher nickel dispersion (14.6%) which combined with other properties led to a higher stability higher mean hydrogen yield (71%) and lower coke formation per mass (56%). On the other hand the nonpromoted catalyst suffered a significant deactivation associated with coke formation favored by its highest acidity (3.1 µmol m−2 ).
Climate Change Impacts of E-fuels for Aviation in Europe Under Present-day Conditions and Future Policy Scenarios
Jan 2023
Publication
‘E-fuels’ or ‘synthetic fuels’ are hydrocarbon fuels synthesized from hydrogen (H2) and carbon dioxide (CO2) where H2 can be produced via electrolysis of water or steam reforming of natural gas and CO2 is captured from the combustion of a fossil or biogenic source or directly from the atmosphere. E-fuels are drop-in substitutes for fossil fuels but their climate change mitigation benefits are largely unclear. This study evaluates the climate change impacts of e-fuels for aviation by combining different sources of CO2 and H2 up to 2050 under two contrasting policy scenarios. The analysis includes different climate metrics and the effects of near-term climate forcers which are particularly relevant for the aviation sector. Results are produced for European average conditions and for Poland and Norway two countries with high and low emission intensity from their electricity production mix. E-fuels can either have higher or lower climate change impacts than fossil fuels depending on multiple factors such as in order of importance the electricity mix the origin of CO2 the technology for H2 production and the electrolyzer efficiency. The climate benefits are generally higher for e-fuels produced from CO2 of biogenic origin while e-fuels produced from CO2 from direct air capture or fossil fuel combustion require countries with clean electricity to outperform fossil fuels. Synthetic fuels produced from H2 derived from natural gas have higher impacts than fossil fuels even when coupled with carbon capture and storage if CO2 is sourced from fossil fuels or the atmosphere. Climate change impacts of e-fuels improve in the future and they can all achieve considerable climate change mitigation in 2050 relative to fossil jet fuel provided that strict climate policy measures are implemented to decarbonize the electricity sector. Under reduced policy efforts future climate impacts in 2050 of e-fuels from atmospheric or fossil CO2 are still higher than those of fossil jet fuels with an average European electricity mix. This study shows the conditions to maximize the climate change mitigation benefits of e-fuels which essentially depend on progressive decarbonization of the electricity sector and on reduced use of CO2 sourced from fossil fuels.
Everything About Hydrogen Podcast: Greening the Maritime Transport Sector
Nov 2021
Publication
We have been talking about the difficulties of decarbonizing the maritime sector since the beginning of the Everything About Hydrogen podcast. For this episode we finally bring on the experts who are looking to make the changes in maritime and marine operations a reality for a zero-carbon shipping future. The EAH Team sits down with Tomas Tronstad Head of Shipping and Technology for the New Energy Division at Wilhelmsen Group. Founded in Norway in 1861 Wilhelmsen is now a comprehensive global maritime group providing essential products and services to the merchant fleet along with supplying crew and technical management to the largest and most complex vessels ever to sail. Committed to shaping the maritime industry the company also seeks to develop new opportunities and collaborations in renewables zero-emission shipping and marine digitalization. Tomas is helping Wilhelmsen achieve its decarbonization ambitions and we are delighted to share our conversation with him with our listerners!
The podcast can be found on their website
The podcast can be found on their website
Controlled Autoignition of Hydrogen in a Direct-injection Optical Engine
Mar 2021
Publication
Research into novel internal combustion engines requires consideration of the diversity in future fuels in an attempt to reduce drastically CO2 emissions from vehicles and promote energy sustainability. Hydrogen has been proposed as a possible fuel for future internal combustion engines and can be produced from renewable sources. Hydrogen’s wide flammability range allows higher engine efficiency than conventional fuels with both reduced toxic emissions and no CO2 gases. Most previous work on hydrogen engines has focused on spark-ignition operation. The current paper presents results from an optical study of controlled autoignition (or homogeneous charge compression ignition) of hydrogen in an engine of latest spark-ignition pentroof combustion chamber geometry with direct injection of hydrogen (100 bar). This was achieved by a combination of inlet air preheating in the range 200–400 C and residual gas recirculated internally by negative valve overlap. Hydrogen fuelling was set to various values of equivalence ratio typically in the range / = 0.40–0.63. Crank-angle resolved flame chemiluminescence images were acquired for a series of consecutive cycles at 1000 RPM in order to calculate in-cylinder rates of flame expansion and motion. Planar Laser Induced Fluorescence (LIF) of OH was also applied to record more detailed features of the autoignition pattern. Single and double (i.e. ‘split’ per cycle) hydrogen injection strategies were employed in order to identify the effect of mixture preparation on autoignition’s timing and spatial development. An attempt was also made to review relevant in-cylinder phenomena from the limited literature on hydrogen-fuelled spark-ignition optical engines and make comparisons were appropriate.
Everything About Hydrogen Podcast: Venturing into Hydrogen
Apr 2021
Publication
Since 2014 when the firm was founded within Anglo-American AP Ventures has been at the forefront of investment in hydrogen sector technologies. At the time the firm started the concerns around climate change and investment in renewable energy tech was gearing up but interest in hydrogen as part of the path to a decarbonized future was limited. The founders of AP Ventures felt differently and saw significant potential for hydrogen to offer a means for cleaning up highly carbon intensive sectors such as heavy transport industrial manufacturing and mining operations. Today that vision for hydrogen appears rather prescient. We are delighted to have two members from the team at AP Ventures with us on the show today. The team is joined by Kevin Eggers - a founding partner at AP - and Michell Robson - associate on the firm's investment team.
The podcast can be found on their website
The podcast can be found on their website
Future Heat Series Part 2 - Policy for Heat
Oct 2015
Publication
Policy for Heat: Transforming the System urges Government to implement an ambitious long-term decarbonisation strategy for the heat sector before it’s too late in new inquiry report. The report builds on the work of Part 1 in the Future Heat Series which compared recent decarbonisation pathways and analyses to identify and highlight key policy mechanisms and transitions that are needed in order to decarbonise heat for buildings by 2050. Chaired by Shadow Energy Minister Jonathan Reynolds MP and Conservative MP Rebecca Pow (and also previous MP and member of the Energy and Climate Change Select Committee Dan Byles MP until he stood down at the General Election) the report is written by cross-party think tank group Carbon Connect. The report was published in Parliament at a cross-party debate on Wednesday 14th October. Sponsored by Energy & Utilities Alliance (EUA) and the Institution of Gas Engineers and Managers (IGEM) the report is the second in a cross-party and independent inquiry series.
Everything About Hydrogen Podcast: Hydrogen: The Next Generation
May 2021
Publication
This is the inaugural episode of the EAH: Deep Dive podcast mini-series! Our first episode features the co-founders of Enapter Vaitea Cowan and Jan Justus-Schmidt. Enapter is a young company that has made a big splash in the hydrogen space with their modular scalable AEM electrolyzer technology. Last year they made headlines with their successful public offering on the DAX and the company is expected to be a the forefront of the hydrogen sector again in 2021 as they begin construction of their mass production facility in Germany and announce the upcoming Generation Hydrogen event on May 19 2021.
The podcast can be found on their website
The podcast can be found on their website
Prospects of Integrated Photovoltaic‐Fuel Cell Systems in a Hydrogen Economy: A Comprehensive Review
Oct 2021
Publication
Integrated photovoltaic‐fuel cell (IPVFC) systems amongst other integrated energy generation methodologies are renewable and clean energy technologies that have received diverse re‐ search and development attentions over the last few decades due to their potential applications in a hydrogen economy. This article systematically updates the state‐of‐the‐art of IPVFC systems and provides critical insights into the research and development gaps needed to be filled/addressed to advance these systems towards full commercialization. Design methodologies renewable energy‐ based microgrid and off‐grid applications energy management strategies optimizations and the prospects as self‐sustaining power sources were covered. IPVFC systems could play an important role in the upcoming hydrogen economy since they depend on solar hydrogen which has almost zero emissions during operation. Highlighted herein are the advances as well as the technical challenges to be surmounted to realize numerous potential applications of IPVFC systems in unmanned aerial vehicles hybrid electric vehicles agricultural applications telecommunications desalination synthesis of ammonia boats buildings and distributed microgrid applications.
Review of the Liquid Hydrogen Storage Tank and Insulation System for the High-Power Locomotive
Jun 2022
Publication
Hydrogen has been attracting attention as a fuel in the transportation sector to achieve carbon neutrality. Hydrogen storage in liquid form is preferred in locomotives ships drones and aircraft because these require high power but have limited space. However liquid hydrogen must be in a cryogenic state wherein thermal insulation is a core problem. Inner materials including glass bubbles multi-layer insulation (MLI) high vacuum and vapor-cooled shields are used for thermal insulation. An analytic study is preferred and proceeds liquid hydrogen tanks due to safety regulations in each country. This study reviewed the relevant literature for thermodynamic modeling. The literature was divided into static dynamic and systematic studies. In summary the authors summarized the following future research needs: The optimal design of the structure including suspension baffle and insulation system can be studied to minimize the boil-off gas (BOG). A dynamic study of the pressure mass flow and vaporizer can be completed. The change of the components arrangement from the conventional diesel–electric locomotive is necessary.
Implementation of Transition Metal Phosphides as Pt-Free Catalysts for PEM Water Electrolysis
Mar 2022
Publication
Proton Exchange Membrane (PEM) water electrolysis (WE) produces H2 with a high degree of purity requiring only water and energy. If the energy is provided from renewable energy sources it releases “Green H2” a CO2 -free H2 . PEMWE uses expensive and rare noble metal catalysts which hinder their use at a large industrial scale. In this work the electrocatalytic properties of Transition Metal Phosphides (TMP) catalysts supported on Carbon Black (CB) for Hydrogen Evolution Reaction (HER) were investigated as an alternative to Platinum Group Metals. The physico-chemical properties and catalytic performance of the synthesized catalysts were characterized. In the ex situ experiments the 25% FeP/CB 50% FeP/CB and 50% CoP/CB with overpotentials of −156.0 −165.9 and −158.5 mV for a current density of 100 mA cm−2 showed the best catalytic properties thereby progressing to the PEMWE tests. In those tests the 50% FeP/CB required an overpotential of 252 mV for a current density of 10 mA cm−2 quite close to the 220 mV of the Pt catalyst. This work provides a proper approach to the synthesis and characterization of TMP supported on carbon materials for the HER paving the way for further research in order to replace the currently used PGM in PEMWE.
Everything About Hydrogen Podcast: Why Generate Capital is Excited About the Prospects of Hydrogen
Dec 2019
Publication
On this weeks episode the team are talking all things hydrogen with Jigar Shah the President of Generate Capital and Co-host of the Energy Gang podcast. Jigar Shah has a well earned reputation as one of the most influential voices in the US clean energy market having pioneered no-money down solar with SunEdison and led the not for profit climate group the Carbon War Room. Since its founding in 2014 Generate Capital the company has provided $130 million of funds to a leading fuel cell provide Plug Power meanwhile in October 2019 Jigar declared hydrogen to be the ultimate clean electricity enabler. On the show we ask Jigar why he thinks Hydrogen is becoming interesting for investors today what business models he feels are exciting and offer the most attractive niches for hydrogen technology businesses whilst getting his side of the story on that time he met Chris at a conference…..All this and more on the show!
The podcast can be found on their website
The podcast can be found on their website
Everything About Hydrogen Podcast: Ending on a Hy Note
Jul 2021
Publication
This week's show is the last episode of Season 2! To celebrate we invited our friend and colleague Markus Wilthaner partner at McKinsey & Company to come speak with us. Markus has been a leader in the hydrogen space for the past ten years and has drafted a number of the Hydrogen Council's reports since its founding including the newly released - and highly anticipated - Hydrogen Insights 2021 (link below). In this episode we speak with Markus about the state of the market and the innovation he has seen in the last couple of years that make hydrogen a critical part of the energy transition. We had a lot of fun recording this interview and it was the perfect way to end a fantastic EAH season!
The podcast can be found on their website
The podcast can be found on their website
Life Cycle Assessment and Water Footprint of Hydrogen Production Methods: From Conventional to Emerging Technologies
Oct 2020
Publication
A common sustainability issue arising in production systems is the efficient use of resources for providing goods or services. With the increased interest in a hydrogen (H2) economy the life-cycle environmental performance of H2 production has special significance for assisting in identifying opportunities to improve environmental performance and to guide challenging decisions and select between technology paths. Life cycle impact assessment methods are rapidly evolving to analyze multiple environmental impacts of the production of products or processes. This study marks the first step in developing process-based streamlined life cycle analysis (LCA) of several H2 production pathways combining life cycle impacts at the midpoint (17 problem-oriented) and endpoint (3 damage-oriented) levels using the state-of-the-art impact assessment method ReCiPe 2016. Steam reforming of natural gas coal gasification water electrolysis via proton exchange membrane fuel cell (PEM) solid oxide electrolyzer cell (SOEC) biomass gasification and reforming and dark fermentation of lignocellulosic biomass were analyzed. An innovative aspect is developed in this study is an analysis of water consumption associated with H2 production pathways by life-cycle stage to provide a better understanding of the life cycle water-related impacts on human health and natural environment. For water-related scope Water scarcity footprint (WSF) quantified using Available Water Remaining (AWARE) method was applied as a stand-alone indicator. The paper discusses the strengths and weaknesses of each production pathway identify the drivers of environmental impact quantify midpoint environmental impact and its influence on the endpoint environmental performance. The findings of this study could serve as a useful theoretical reference and practical basis to decision-makers of potential environmental impacts of H2 production systems.
Everything About Hydrogen Podcast: Hydrogen Technology: The Engineer's Perspective
Sep 2020
Publication
The team are joined by Dr. Jenifer Baxter of the Institution for Mechanical Engineers (IMECHE). Dr. Baxter is based in the UK and is the Chief Engineer at IMECHE. We often focus heavily on the business cases and development models at the heart of the hydrogen economy here at EAH. On this episode we bring the technical discussion to the forefront and speak with Dr. Baxter about the technical advantages and the challenges that hydrogen presents as an essential part of the path to decarbonizing the future. The team's conversation is a can't miss exploration of a wide range of potential applications for hydrogen technologies that brings a new and essential perspective to the podcast. Don't miss out on EAH's newest episode where we get the engineer's perspective on the future of hydrogen!
The podcast can be found on their website
The podcast can be found on their website
Comprehensive Investigation of Solar-based Hydrogen and Electricity Production in Iran
Jun 2021
Publication
Hydrogen is a clean and environmentally friendly energy vector that can play an important role in meeting the world’s futureenergy needs. Therefore a comprehensive study of the potential for hydrogen production from solar energy could greatlyfacilitate the transition to a hydrogen economy. Because by knowing the exact amount of potential for solar hydrogenproduction the cost-effectiveness of its production can be compared with other methods of hydrogen production. Consideringthe above it can be seen that so far no comprehensive study has been done on finding the exact potential of solar hydrogenproduction in different stations of Iran and finding the most suitable station. Therefore in the present work for the first timeusing the HOMER and ArcGIS softwares the technical-economic study of solar hydrogen production at home-scale was done.The results showed that Jask station with a levelized cost of energy equal to $ 0.172 and annual production of 83.8 kg ofhydrogen is the best station and Darab station with a levelized cost of energy equal to $ 0.286 and annual production of 50.4 kgof hydrogen is the worst station. According to the results other suitable stations were Bushehr and Deyr and other unsuitablestations were Anzali and Khalkhal. Also in 102 under study stations 380 MW of solar electricity equivalent to 70.2 tons ofhydrogen was produced annually. Based on the geographic information system map it is clear that the southern half of Iranespecially the coasts of the Persian Gulf and the sea of Oman is suitable for hydrogen production and the northernnortheastern northwestern and one region in southern of Iran are unsuitable for hydrogen production. The authors of thisarticle hope that the results of the present work will help the energy policymakers to create strategic frameworks and a roadmapfor the production of solar hydrogen in Iran.
Everything About Hydrogen Podcast: Giga-watt it Takes to Scale Green Hydrogen (and Ammonia)
Feb 2021
Publication
How do we get green hydrogen (and green ammonia) production to scale and make it cost competitive? It's a great question and we ask it all the time on the show. Well Alicia Eastman Co-founder & Managing Director of InterContinental Energy (ICE) may be one of the best authorities in the world on this topic and she joins us on this episode of EAH to tell the team all about her and ICE's work developing the Asian Renewable Energy Hub (AREH). Located in Western Australia the AREH when completed will be the largest renewable energy project by total generation capacity on the planet. At 26 GW it surpasses even the likes of the Three Gorges Dam and will act as a central production and distribution point for huge quantities of clean hydrogen and ammonia for offtakers and customers across APAC and beyond. The AREH is a truly massive project that has global implications for the global energy landscape of the future.
The podcast can be found on their website.
The podcast can be found on their website.
Everything About Hydrogen Podcast: ITM Power
Sep 2019
Publication
On this weeks show we discuss with Graham Cooley the CEO of ITM Power how his company has expanded from a research company on AIM in the early 2000’s to one of the largest electrolyser manufacturers in the world. On the show we also ask Graham to talk about how the hydrogen market has evolved where he sees the potential growth trajectory for the industry and how ITM sees its role within this space.
The podcast can be found on their website
The podcast can be found on their website
Resilience-oriented Schedule of Microgrids with Hybrid Energy Storage System using Model Predictive Control
Nov 2021
Publication
Microgrids can be regarded as a promising solution by which to increase the resilience of power systems in an energy paradigm based on renewable generation. Their main advantage is their ability to work as islanded systems under power grid outage conditions. Microgrids are usually integrated into electrical markets whose schedules are carried out according to economic aspects while resilience criteria are ignored. This paper shows the development of a resilience-oriented optimization for microgrids with hybrid Energy Storage System (ESS) which is validated via numerical simulations. A hybrid ESS composed of hydrogen and batteries is therefore considered with the objective of improving the autonomy of the microgrid while achieving a rapid transition response. The control problem is formulated using Stochastic Model Predictive Control (SMPC) techniques in order to take into account possible transitions between grid-connected and islanded modes at all the sample instants of the schedule horizon (SH). The control problem is developed by considering a healthy operation of the hybrid ESS thus avoiding degradation issues. The plant is modeled using the Mixed Logic Dynamic (MLD) framework owing to the presence of logic and dynamic control variables.
THyGA - Overview of Relevant Existing Certification Experience and On-going Standardization Activities in the EU and Elsewhere Related to Gas Appliances Using H2NG
Oct 2021
Publication
This 2nd deliverable from WP4 gives an overview of relevant existing certification experience on-going standardization activities and field trials in the European Union and other countries regarding gas appliances using H2NG. It gives a picture of the today’s situation as many of the identified initiatives are ongoing and progressing continuously.
Everything About Hydrogen Podcast: Hydrogen, Net Zero and Circularity a Perfect Syzygy!
Jul 2020
Publication
On this week's show we speak with Trevor Best CEO of Syzygy Plasmonics a Houston area startup who is a pioneer in the field of photocatalytic based hydrogen production. The company has recently closed its series A funding round. We discuss with Trevor the potential applications of the Syzygy approach and where they are aiming to engage the market first as well as his view of the evolution of the hydrogen market today. All this and more on the show!
The podcast can be found on their website
The podcast can be found on their website
Everything About Hydrogen Podcast: Catching up on the State of Scale in PEM Electrolysis
Feb 2022
Publication
This episode of EAH is a chance for the team to catch up with one of our early guests on the show Graham Cooley - CEO of ITM Power. For the past twenty years ITM Power PLC has been designing and manufacturing electrolyser systems that generate hydrogen based on proton exchange membrane (PEM) technology. As the first hydrogen related company to be listed on the London Stock Exchange ITM are globally recognised experts in the field of electrolysis. In 2021 the company opened its first Gigafactory in Bessemer Park Sheffield: the world’s largest electrolyser production factory.
The podcast can be found on their website
The podcast can be found on their website
Hydrogen Blending and the Gas Commercial Framework - Report on Conclusions of NIA study
Sep 2020
Publication
Blending hydrogen into the gas grid could be an important stepping stone during the transition to a sustainable net zero system. In particular it may: provide a significant and reliable source of demand for hydrogen producers supporting the investment case for hydrogen; provide learnings and incremental change towards what could potentially become a 100% hydrogen grid; and immediately decarbonise a portion of the gas flowing through the grid. Technical questions relating to hydrogen blending are being taken forward by the industry (e.g. through the HyDeploy project in relation to the maximum potential blend of hydrogen that can be accommodated without end user appliances needing to be altered or replaced). But if blending is to take place changes to commercial arrangements will be necessary as today these assume a relatively uniform gas quality. In particular the commercial framework will need to ensure that limits on the percentage of hydrogen that can safely be blended (currently expected to be around 20% by volume) are not exceeded. We have been commissioned by Cadent to undertake a Network Innovation Allowance (NIA) project to identify the changes required to the gas commercial framework that will enable hydrogen blending in the GB gas grid and to set out a roadmap for how these can be delivered. This report sets out our recommendations.
Everything About Hydrogen Podcast: Financing the Hydrogen Revolution
Aug 2020
Publication
On this week's episode of Everything About Hydrogen the team are catching up with Astrid Behaghel the Energy Transition expert on hydrogen for BNP Paribas. On the show the team discuss how BNP Paribas see the emerging role of hydrogen in the energy transition how the financing of hydrogen projects differs for newer hydrogen initiatives and why BNP Paribas joined the Hydrogen Council. We also dive into the question of what role can (or even should) Banks play in the evolution and development of the emerging hydrogen market and BNPs plans to expand its activities in this sector. All this and more!
The podcast can be found on their website
The podcast can be found on their website
Analysis of Trends and Emerging Technologies in Water Electrolysis Research Based on a Computational Method: A Comparison with Fuel Cell Research
Feb 2018
Publication
Water electrolysis for hydrogen production has received increasing attention especially for accumulating renewable energy. Here we comprehensively reviewed all water electrolysis research areas through computational analysis using a citation network to objectively detect emerging technologies and provide interdisciplinary data for forecasting trends. The results show that all research areas increase their publication counts per year and the following two areas are particularly increasing in terms of number of publications: “microbial electrolysis” and “catalysts in an alkaline water electrolyzer (AWE) and in a polymer electrolyte membrane water electrolyzer (PEME).”. Other research areas such as AWE and PEME systems solid oxide electrolysis and the whole renewable energy system have recently received several review papers although papers that focus on specific technologies and are cited frequently have not been published within the citation network. This indicates that these areas receive attention but there are no novel technologies that are the center of the citation network. Emerging technologies detected within these research areas are presented in this review. Furthermore a comparison with fuel cell research is conducted because water electrolysis is the reverse reaction to fuel cells and similar technologies are employed in both areas. Technologies that are not transferred between fuel cells and water electrolysis are introduced and future water electrolysis trends are discussed.
Everything About Hydrogen Podcast: Costs, Cost, Costs!
Aug 2020
Publication
On this week's episode of Everything About Hydrogen the team are celebrating the show's one year anniversary with Randy MacEwen the CEO of Ballard Power Systems. On the show the team ask Randy to explain the stunning rise of hydrogen over the last 12-24 months how the use cases for hydrogen are evolving and how the growing capitalisation of listed businesses like Ballard is driving a change in the investor base across the hydrogen & fuel cell sector. We also dive into the future for Ballard where the challenges and focuses for the business lie while the team reflect on what has been a very intense year for the show and the hydrogen industry. All this and more!
The podcast can be found on their website
The podcast can be found on their website
Scenario-Based Comparative Analysis for Coupling Electricity and Hydrogen Storage in Clean Oilfield Energy Supply System
Mar 2022
Publication
In response to the objective of fully attaining carbon neutrality by 2060 people from all walks of life are pursuing low-carbon transformation. Due to the high water cut in the middle and late phases of development the oilfield’s energy consumption will be quite high and the rise in energy consumption will lead to an increase in carbon emission at the same time. As a result the traditional energy model is incapable of meeting the energy consumption requirement of high water cut oilfields in their middle and later phases of development. The present wind hydrogen coupling energy system was researched and coupled with the classic dispersed oilfield energy system to produce energy for the oilfields in this study. This study compares four future energy system models to existing ones computes the energy cost and net present value of an oilfield in Northwest China and proposes a set of economic evaluation tools for oilfield energy systems. The study’s findings indicate that scenario four provides the most economic and environmental benefits. This scenario effectively addresses the issue of high energy consumption associated with aging oilfields at this point significantly reduces carbon emissions absorbs renewable energy locally and reduces the burden on the power grid system. Finally sensitivity analysis is utilized to determine the effect of wind speed electricity cost and oilfield gas output on the system’s economic performance. The results indicate that the system developed in this study can be applied to other oilfields.
Conceptual Study and Development of an Autonomously Operating, Sailing Renewable Energy Conversion System
Jun 2022
Publication
With little time left for humanity to reduce climate change to a tolerable level a highly scalable and rapidly deployable solution is needed that can be implemented by any country. Offshore wind energy in international waters is an underused resource and could even be harnessed by landlocked countries. In this paper the use of sailing wind turbines operating autonomously in high seas to harvest energy is proposed. The electrical energy that is generated by the wind turbine is converted to a renewable fuel and stored onboard. Later the fuel will be transferred to shore or to other destinations of use. The presented idea is explored at the system level where the basic subsystems necessary are identified and defined such as energy conversion and storage as well as propulsion subsystems. Moreover various operating possibilities are investigated including a comparison of different sailing strategies and fuels for storage. Existing ideas are also briefly addressed and an example concept is suggested as well. In this paper the proposed sailing renewable energy conversion system is explored at a higher level of abstraction. Following up on this conceptual study more detailed investigations are necessary to determine whether the development of such a sailing renewable energy conversion system is viable from an engineering economic and environmental point of view.
Everything About Hydrogen Podcast: Geopolitical Factors in Hydrogen Markets
Mar 2022
Publication
The EAH Team takes a break from standard format on this special episode of Everything About Hydrogen to discuss some of the geopolitical factors and considerations driving the evolution of global hydrogen markets.
The podcast can be found on their website
The podcast can be found on their website
Domestic Gas Meter Durability in Hydrogen and Natural Gas Mixtures
Nov 2021
Publication
Blending hydrogen into the natural gas infrastructure is becoming a very promising practice to increase the exploitation of renewable energy sources which can be used to produce “green” hydrogen. Several research projects and field experiments are currently aimed at evaluating the risks associated with utilization of the gas blend in end-use devices such as the gas meters. In this paper the authors present the results of experiments aimed at assessing the effect of hydrogen injection in terms of the durability of domestic gas meters. To this end 105 gas meters of different measurement capabilities and manufacturers both brand-new and withdrawn from service were investigated in terms of accuracy drift after durability cycles of 5000 and 10000 h with H2NG mixtures and H2 concentrations of 10% and 15%. The obtained results show that there is no metrologically significant or statistically significant influence of hydrogen content on changes in gas meter indication errors after subjecting the meters to durability testing with a maximum of 15% H2 content over 10000 h. A metrologically significant influence of the long-term operation of the gas meters was confirmed but it should not be made dependent on the hydrogen content in the gas. No safety problems related to the loss of external tightness were observed for either the new or 10-year-old gas meters.
Dedicated Large-scale Floating Offshore Wind to Hydrogen: Assessing Design Variables in Proposed Typologies
Mar 2022
Publication
To achieve the Net-Zero Emissions goal by 2050 a major upscale in green hydrogen needs to be achieved; this will also facilitate use of renewable electricity as a source of decarbonised fuel in hard-to-abate sectors such as industry and transport. Nearly 80% of the world’s offshore wind resource is in waters deeper than 60 m where bottom-fixed wind turbines are not feasible. This creates a significant opportunity to couple the high capacity factor floating offshore wind and green hydrogen. In this paper we consider dedicated large-scale floating offshore wind farms for hydrogen production with three coupling typologies; (i) centralised onshore electrolysis (ii) decentralised offshore electrolysis and (iii) centralised offshore electrolysis. The typology design is based on variables including for: electrolyser technology; floating wind platform; and energy transmission vector (electrical power or offshore hydrogen pipelines). Offshore hydrogen pipelines are assessed as economical for large and distant farms. The decentralised offshore typology employing a semi-submersible platform could accommodate a proton exchange membrane electrolyser on deck; this would negate the need for an additional separate structure or hydrogen export compression and enhance dynamic operational ability. It is flexible; if one electrolyser (or turbine) fails hydrogen production can easily continue on the other turbines. It also facilities flexibility in further expansion as it is very much a modular system. Alternatively less complexity is associated with the centralised offshore typology which may employ the electrolysis facility on a separate offshore platform and be associated with a farm of spar-buoy platforms in significant water depth locations.
Power-to-Gas and Power-to-X—The History and Results of Developing a New Storage Concept
Oct 2021
Publication
Germany’s energy transition known as ‘Energiewende’ was always very progressive. However it came technically to a halt at the question of large-scale seasonal energy storage for wind and solar which was not available. At the end of the 2000s we combined our knowledge of both electrical and process engineering imitated nature by copying photosynthesis and developed Power-to-Gas by combining water electrolysis with CO2 -methanation to convert water and CO2 together with wind and solar power to synthetic natural gas. Storing green energy by coupling the electricity with the gas sector using its vast TWh-scale storage facility was the solution for the biggest energy problem of our time. This was the first concept that created the term ‘sector coupling’ or ‘sectoral integration’. We first implemented demo sites presented our work in research industry and ministries and applied it in many macroeconomic studies. It was an initial idea that inspired others to rethink electricity as well as eFuels as an energy source and energy carrier. We developed the concept further to include Power-to-Liquid Power-to-Chemicals and other ways to ‘convert’ electricity into molecules and climate-neutral feedstocks and named it ‘Power-to-X’ at the beginning of the 2010s.
Everything About Hydrogen Podcast: FCEV's "Down Under"
Dec 2020
Publication
On today's show the EAH team will be joined by Brendan Norman to talk about deployment of sustainable FCEV technologies across many different segments of the transport sector and utility vehicles. Brendan is the CEO of H2X a new vehicle manufacturing company based in Sydney with a manufacturing facility in Port Kembla will deliver its first hydrogen FCEVs to market beginning in 2022 before expanding its vehicle offerings in subsequent years. Brendan joined the EAH team via SquadCast from Kuala Lumpur to talk fuel cells with us and you don't want to miss the excellent discussion that we had on this week's episode.
The podcast can be found on their website
The podcast can be found on their website
Effect of the High-Pressure Hydrogen Gas Exposure in the Silica-Filled EPDM Sealing Composites with Different Silica Content
Mar 2022
Publication
With the increasing interest in hydrogen energy the stability of hydrogen storage facilities and components is emphasized. In this study we analyzed the effect of high-pressure hydrogen gas treatment in silica-filled EPDM composites with different silica contents. In detail cure characteristics crosslink density mechanical properties and hydrogen permeation properties were investigated. Results showed that material volume remaining hydrogen content and mechanical properties were changed after 96.3 MPa hydrogen gas exposure. With an increase in the silica content the crosslink density and mechanical properties increased but hydrogen permeability was decreased. After treatment high-silica-content composites showed lower volume change than low-silica-content composites. The crack damage due to the decompression caused a decrease in mechanical properties but high silica content can inhibit the reduction in mechanical properties. In particular EPDM/silica composites with a silica content of above 60 phr exhibited excellent resistance to hydrogen gas as no change in their physical and mechanical properties was observed.
Solar Energy: Applications, Trends Analysis, Bibliometric Analysis and Research Contribution to Sustainable Development Goals (SDGs)
Jan 2023
Publication
Over the past decade energy demand has witnessed a drastic increase mainly due to huge development in the industry sector and growing populations. This has led to the global utilization of renewable energy resources and technologies to meet this high demand as fossil fuels are bound to end and are causing harm to the environment. Solar PV (photovoltaic) systems are a renewable energy technology that allows the utilization of solar energy directly from the sun to meet electricity demands. Solar PV has the potential to create a reliable clean and stable energy systems for the future. This paper discusses the different types and generations of solar PV technologies available as well as several important applications of solar PV systems which are “Large-Scale Solar PV” “Residential Solar PV” “Green Hydrogen” “Water Desalination” and “Transportation”. This paper also provides research on the number of solar papers and their applications that relate to the Sustainable Development Goals (SDGs) in the years between 2011 and 2021. A total of 126513 papers were analyzed. The results show that 72% of these papers are within SDG 7: Affordable and Clean Energy. This shows that there is a lack of research in solar energy regarding the SDGs especially SDG 1: No Poverty SDG 4: Quality Education SDG 5: Gender Equality SDG 9: Industry Innovation and Infrastructure SDG 10: Reduced Inequality and SDG 16: Peace Justice and Strong Institutions. More research is needed in these fields to create a sustainable world with solar PV technologies.
Everything About Hydrogen Podcast: Championing a Clean Energy Future
Nov 2021
Publication
With COP starting this week we discuss with the HLC team the role of hydrogen in decarbonization and the critical need for hydrogen to scale quickly. Andrew and Patrick sit down with Kieran Coleman Energy & Industry Lead for the United Nations COP High Level Champions to chat about the work being done in advance of COP with partners and the level of ambition we’ve seen across various sectors about the future of hydrogen and a lot more!
The podcast can be found on their website
The podcast can be found on their website
Does the United Kingdom Have Sufficient Geological Storage Capacity to Support a Hydrogen Economy? Estimating the Salt Cavern Storage Potential of Bedded Halite Formations
Jun 2022
Publication
Hydrogen can be used to enable decarbonisation of challenging applications such as provision of heat and as a fuel for heavy transport. The UK has set out a strategy for developing a new low carbon hydrogen sector by 2030. Underground storage will be a key component of any regional or national hydrogen network because of the variability of both supply and demand across different end-use applications. For storage of pure hydrogen salt caverns currently remain the only commercially proven subsurface storage technology implemented at scale. A new network of hydrogen storage caverns will therefore be required to service a low carbon hydrogen network. To facilitate planning for such systems this study presents a modelling approach used to evaluate the UK's theoretical hydrogen storage capacity in new salt caverns in bedded rock salt. The findings suggest an upper bound potential for hydrogen storage exceeding 64 million tonnes providing 2150 TWh of storage capacity distributed in three discrete salt basins in the UK. The modelled cavern capacity has been interrogated to identify the practical inter-seasonal storage capacity suitable for integration in a hydrogen transmission system. Depending on cavern spacing a peak load deliverability of between 957 and 1876 GW is technically possible with over 70% of the potential found in the East Yorkshire and Humber region. The range of geologic uncertainty affecting the estimates is approximately ±36%. In principle the peak domestic heating demand of approximately 170 GW across the UK can be met using the hydrogen withdrawn from caverns alone albeit in practice the storage potential is unevenly distributed. The analysis indicates that the availability of salt cavern storage potential does not present a limiting constraint for the development of a low-carbon hydrogen network in the UK. The general framework presented in this paper can be applied to other regions to estimate region-specific hydrogen storage potential in salt caverns.
Renewable Power-to-Gas: A Technological and Economic Review
Aug 2015
Publication
The Power-to-Gas (PtG) process chain could play a significant role in the future energy system. Renewable electric energy can be transformed into storable methane via electrolysis and subsequent methanation. This article compares the available electrolysis and methanation technologies with respect to the stringent requirements of the PtG chain such as low CAPEX high efficiency and high flexibility. Three water electrolysis technologies are considered: alkaline electrolysis PEM electrolysis and solid oxide electrolysis. Alkaline electrolysis is currently the cheapest technology; however in the future PEM electrolysis could be better suited for the PtG process chain. Solid oxide electrolysis could also be an option in future especially if heat sources are available. Several different reactor concepts can be used for the methanation reaction. For catalytic methanation typically fixed-bed reactors are used; however novel reactor concepts such as three-phase methanation and micro reactors are currently under development. Another approach is the biochemical conversion. The bioprocess takes place in aqueous solutions and close to ambient temperatures. Finally the whole process chain is discussed. Critical aspects of the PtG process are the availability of CO2 sources the dynamic behaviour of the individual process steps and especially the economics as well as the efficiency.
Everything About Hydrogen Podcast: The year-end Round Up! 2020 in Review
Dec 2020
Publication
2020 has been a year for the history books! Some good most of it not so good; but 2020 has been a boom year for the future of hydrogen technologies. Patrick Chris and Andrew do their level best on this episode to talk about all the stories and the highlights of 2020 in under 50 minutes. Have a listen and let us know if we missed anything in our penultimate episode of 2020!
The podcast can be found on their website
The podcast can be found on their website
Optimal Integration of Hydrogen-Based Energy Storage Systems in Photovoltaic Microgrids: A Techno-Economic Assessment
Aug 2020
Publication
The feasibility and cost-effectiveness of hydrogen-based microgrids in facilities such as public buildings and small- and medium-sized enterprises provided by photovoltaic (PV) plants and characterized by low electric demand during weekends were investigated in this paper. Starting from the experience of the microgrid being built at the Renewable Energy Facility of Sardegna Ricerche (Italy) which among various energy production and storage systems includes a hydrogen storage system a modeling of the hydrogen-based microgrid was developed. The model was used to analyze the expected performance of the microgrid considering different load profiles and equipment sizes. Finally the microgrid cost-effectiveness was evaluated using a preliminary economic analysis. The results demonstrate that an effective design can be achieved with a PV system sized for an annual energy production 20% higher than the annual energy requested by the user and a hydrogen generator size 60% of the PV nominal power size. This configuration leads to a self-sufficiency rate of about 80% and without public grants a levelized cost of energy comparable with the cost of electricity in Italy can be achieved with a reduction of at least 25–40% of the current initial costs charged for the whole plant depending on the load profile shape.
Incentive Structures for Power-to-X and E-fuel Pathways for Transport in EU and Member States
Jun 2022
Publication
Though Power-to-X pathways primarily Power-to-Liquids attract interest as solutions for decarbonising parts of the transport sector that are not suitable for electrification the regulatory framework until recently slowed down their implementation. This paper examines the updates in the main aspects of the legal framework in the European Union from 2019 to the beginning of 2022 related to Power-to-X: support schemes specific targets and potential barriers. The results show increasing interest and market entrance of electrolysis and push from the different actors and regulatory parties to establish solutions that will enable faster upscaling. However it is visible from the National Energy and Climate Plans and hydrogen strategies that the most emphasis is still on hydrogen as an end fuel for personal vehicles or power-to-gas. On the other hand few countries have implemented legal frameworks facilitating diverse PtX pathways without focusing solely on hydrogen. Nevertheless revisions of RED II have finally set up specific targets for electrofuels and Fit for 55 has introduced new actions supporting electrofuels in aviation and marine transport.
Energy Transition on Sifnos: An Approach to Economic and Social Transition and Development
Mar 2022
Publication
This article aims to present the potential of energy transition in insular systems for social and economic transition and development when planned and implemented appropriately with the active involvement of local communities. To this end the example of Sifnos Energy Community is examined and presented as a pilot case. It proves that energy transition apart from its obvious energy conservation and climate necessity can provide a strong contribution to the development of remote areas and the remedying of crucial issues especially in insular communities such as unemployment low standards of living isolation and energy supply security. Energy transition on Sifnos has been undertaken by the Sifnos Energy Community (SEC) with the target to achieve 100% energy independency through effective and rational projects. The major project is a centralized hybrid power plant consisting of a wind park and a pumped hydro storage system. It was designed to fully cover the current electricity demand and the anticipated forthcoming load due to the overall transition to e-mobility for the transportation sector on the island. Through the exploitation of the excess electricity production with the production of potable water and hydrogen energy transition can facilitate the development of new professional activities on the island and reduce the local economy’s dependence on tourism. Additionally a daily link to the neighboring larger Cyclades islands can be established with a hydrogen powered-passenger vessel ensuring the secure and cheap overseas transportation connection of Sifnos throughout the whole year. The overall energy transition process is executed with the active involvement of the Sifnos citizens ensuring wide public acceptance and the minimization of the projects’ impacts on the natural and human environment. At the same time the anticipated benefits for the insular communities are maximized highlighting the energy transition process on Sifnos as a new sustainable development pattern. For all this effort and the already achieved results Sifnos has been declared as one of the six pilot islands of the European Community’s initiative “Clean Energy for EU Islands”.
Development of Analysis Program for Direct Containment Heating
Feb 2022
Publication
Direct containment heating (DCH) is one of the potential factors leading to early containment failure. DCH is closely related to safety analysis and containment performance evaluation of nuclear power plants. In this study a DCH prediction program was developed to analyze the DCH loads of containment vessel. The phenomenological model of debris dispersal metal oxidation reaction debris-atmospheric heat transfer and hydrogen jet burn was established. Code assessment was performed by comparing with several separate effect tests and integral effect tests. The comparison between the predicted results and experimental data shows that the program can predict the key parameters such as peak pressure temperature and hydrogen production in containment well and for most comparisons the relative errors can be maintained within 20%. Among them the prediction uncertainty of hydrogen production is slightly larger. The analysis shows that the main sources of the error are the difference of time scale and the oxidation of cavity debris.
Design of an Architectural Element Generating Hydrogen Energy by Photosynthesis—Model Case of the Roof and Window
Jun 2022
Publication
As is well known the realization of a zero-waste society is strongly desired in a sustainable society. In particular architectural elements that provide an energy-neutral living environment are attractive. This article presents the novel environmentally friendly architectural elements that generate hydrogen energy by the photosystem II (PSII) solution extracted from waste vegetables. In the present work as an architectural element the window (PSII window panel) and roof (PSII roof panel) were fabricated by injecting a PSII solution into a transparent double-layer panel and the aging properties of the power generation and the appearance of these PSII panels are investigated. It was found that the PSII roof can generate energy for 18 days under the sun shining and can actually drive the electronic device. In addition the PSII window for which light intensity is weaker than that for the PSII roof can maintain power generation for 40 days. These results indicate that the PSII roof and PSII window become the architectural elements generating energy although the lifespan depends on the total light intensity. Furthermore as an additional advantage the roof and window panels composed of the semitransparent PSII panel yield an interior space with the natural color of the leaf which gradually changes over time from green to yellow. Further it was also found that the thermal fluctuation of the PSII window is smaller than that of the typical glass window. These results indicate that the roof and window panels composed of the PSII solution extracted from waste vegetables can be used as the actual architectural elements to produce not only the electrical energy but also the beautiful transparent natural green/yellow spaces.
Pulsed-Supplied Water Electrolysis via Two-Switch Converter for PV Capacity Firming
Mar 2022
Publication
Hydrogen constitutes the only carbon-free fuel that can be used for energy conversion producing water as the only by-product. With water being one of the most abundant and inexhaustible raw materials in the world and the required electricity input being provided by renewable resources the produced hydrogen via water electrolysis constitutes a green pathway towards sustainability. In this work a hybrid PV power-to-hydrogen storage and fuel cell system is proposed to satisfy the domestic load of a residential building. Identifying alkaline as a mandatory electrolysis technology the performance of alkaline electrolysis cells is assessed considering the inclusion of a two-switch buck-boost converter. Following a comprehensive formulation with respect to each distinguished system component the balance condition at DC and AC buses is determined. The proposed configuration is evaluated taking into account PV systems of different ratings namely 3 kW 5 kW and 7 kW. Based on actual data relating to both PV generation and domestic load for the year 2020 the obtained results from the annual simulations are compared with feed-in tariff and net-metering schemes. According to the results PV capacity firming is achieved creating great opportunities for autonomy enhancement not only for electricity but also in other energy sectors.
Wind Power to Methanol: Renewable Methanol Production Using Electricity, Electrolysis of Water and CO2 Air Capture
Feb 2020
Publication
A 100 MW stand-alone wind power to methanol process has been evaluated to determine the capital requirement and power to methanol efficiency. Power available for electrolysis determines the amount of hydrogen produced. The stoichiometric amount of CO2– required for the methanol synthesis – is produced using direct air capture. Integration of utilities for CO2 air capture hydrogen production from co-harvested water and methanol synthesis is incorporated and capital costs for all process steps are estimated. Power to methanol efficiency is determined to be around 50%. The cost of methanol is around 300€ ton−1 excluding and 800€ ton−1 including wind turbine capital cost. Excluding 300 M€ investment cost for 100 MW of wind turbines total plant capital cost is around 200 M€. About 45% of the capital cost is reserved for the electrolysers 50% for the CO2 air capture installation and 5% for the methanol synthesis system. The conceptual design and evaluation shows that renewable methanol produced from air captured CO2 water and renewable electricity is becoming a realistic option at reasonable costs of 750–800 € ton−1.
Role of Hydrogen-based Energy Carriers as an Alternative Option to Reduce Residual Emissions Associated with Mid-century Decarbonization Goals
Mar 2022
Publication
Hydrogen-based energy carriers including hydrogen ammonia and synthetic hydrocarbons are expected to help reduce residual carbon dioxide emissions in the context of the Paris Agreement goals although their potential has not yet been fully clarified in light of their competitiveness and complementarity with other mitigation options such as electricity biofuels and carbon capture and storage (CCS). This study aimed to explore the role of hydrogen in the global energy system under various mitigation scenarios and technology portfolios using a detailed energy system model that considers various energy technologies including the conversion and use of hydrogen-based energy carriers. The results indicate that the share of hydrogen-based energy carriers generally remains less than 5% of global final energy demand by 2050 in the 2 ◦C scenarios. Nevertheless such carriers contribute to removal of residual emissions from the industry and transport sectors under specific conditions. Their share increases to 10–15% under stringent mitigation scenarios corresponding to 1.5 ◦C warming and scenarios without CCS. The transport sector is the largest consumer accounting for half or more of hydrogen production followed by the industry and power sectors. In addition to direct usage of hydrogen and ammonia synthetic hydrocarbons converted from hydrogen and carbon captured from biomass or direct air capture are attractive transport fuels growing to half of all hydrogen-based energy carriers. Upscaling of electrification and biofuels is another common cost-effective strategy revealing the importance of holistic policy design rather than heavy reliance on hydrogen.
A Unified European Hydrogen Infrastructure Planning to Support the Rapid Scale-up of Hydrogen Production
Jun 2024
Publication
Hydrogen will become a key player in transitioning toward a net-zero energy system. However a clear pathway toward a unified European hydrogen infrastructure to support the rapid scale-up of hydrogen production is still under discussion. This study explores plausible pathways using a fully sector-coupled energy system model. Here we assess the emergence of hydrogen infrastructure build-outs connecting neighboring European nations through hydrogen import and domestic production centers with Western and Central European demands via four distinct hydrogen corridors. We identify a potential lock-in effect of blue hydrogen in the medium term highlighting the risk of longterm dependence on methane. In contrast we show that a self-sufficient Europe relying on domestic green hydrogen by 2050 would increase yearly expenses by around 3% and require 518 gigawatts of electrolysis capacity. This study emphasizes the importance of rapidly scaling up electrolysis capacity building hydrogen networks and storage facilities deploying renewable electricity generation and ensuring coherent coordination across European nations.
Optimal Dispatch Model for PV-electrolysis Plants in Self-consumption Regime to Produce Green Hydrogen: A Spanish Case Study
May 2022
Publication
The production of green hydrogen from renewable energy by means of water electrolysis is a promising approach to support energy sector decarbonization. This paper presents a techno-economic model of plants with PV sources connected to electrolysis in self-consumption regime that considers the dynamics of electrolysis systems. The model calculates the optimal hourly dispatch of the electrolysis system including the operational states (production standby and idle) the load factor in production and the energy imports and exports to the electricity grid. Results indicate that the model is a useful decision support tool to operate electrolysis plants connected to PV plants in self-consumption regimes with the target of reducing hydrogen production costs.
Performance Assessment of a Hybrid System with Hydrogen Storage and Fuel Cell for Cogeneration in Buildings
Jun 2020
Publication
The search for new fuels to supersede fossil fuels has been intensified these recent decades. Among these fuels hydrogen has attracted much interest due to its advantages mainly cleanliness and availability. It can be produced from various raw materials (e.g. water biomass) using many resources mainly water electrolysis and natural gas reforming. However water electrolysis combined with renewable energy sources is the cleanest way to produce hydrogen while reducing greenhouse gases. Besides hydrogen can be used by fuel cells for producing both electrical and thermal energy. The aim of this work was towards efficient integration of this system into energy efficient buildings. The system is comprised of a photovoltaic system hydrogen electrolyzer and proton exchange membrane fuel cell operating as a cogeneration system to provide the building with both electricity and thermal energy. The system’s modeling simulations and experimentations were first conducted over a short-run period to assess the system’s performance. Reported results show the models’ accuracy in analyzing the system’s performance. We then used the developed models for long-run testing of the hybrid system. Accordingly the system’s electrical efficiency was almost 32%. Its overall efficiency reached 64.5% when taking into account both produced electricity and thermal energy.
Everything About Hydrogen Podcast: Can CUTRIC Clean Canada?
Mar 2021
Publication
When the pandemic recedes lockdowns and restrictions are relaxed and eventually eliminated and millions of residents in cities across the world begin to return to their offices and workplaces public transit systems will once again be at the core of billions of commuters' daily activities. Urban transit systems are designed to move huge volumes of people through cities and communities quickly reliably and cost-efficiently (some systems accomplish these goals better than others!). The energy needed to run these networks of cars trains and buses is enormous and today most of it comes from fossil fuels. How can communities - both large and small - redesign their transit systems to eliminate operational carbon emissions in the future?
The podcast can be found on their website
The podcast can be found on their website
Integration of Hydrogen and Synthetic Natural Gas within Legacy Power Generation Facilities
Jun 2022
Publication
Whilst various new technologies for power generation are continuously being evaluated the owners of almost-new facilities such as combined-cycle gas turbine (CCGT) plants remain motivated to adapt these to new circumstances and avoid the balance-sheet financial impairments of underutilization. Not only are the owners reluctant to decommission the legacy CCGT assets but system operators value the inertia and flexibilities they contribute to a system becoming predominated with renewable generation. This analysis therefore focuses on the reinvestment cases for adapting CCGT to hydrogen (H2 ) synthetic natural gas (SNG) and/or retrofitted carbon capture and utilization systems (CCUS). Although H2 either by itself or as part of SNG has been evaluated attractively for longer-term electricity storage the business case for how it can be part of a hybrid legacy CCGT system has not been analyzed in a market context. This work compares the power to synthetic natural gas to power (PSNGP) adaptation with the simpler and less expensive power to hydrogen to power (P2HP) adaptation. Both the P2HP and PSNGP configurations are effective in terms of decarbonizations. The best results of the feasibility analysis for a UK application with low CCGT load factors (around 31%) were obtained for 100% H2 (P2HP) in the lower range of wholesale electricity prices (less than 178 GBP/MWh) but in the higher range of prices it would be preferable to use the PSNGP configuration with a low proportion of SNG (25%). If the CCGT load factor increased to 55% (the medium scenario) the breakeven profitability point between P2HP and PSNGP decreased to a market price of 145 GBP/MWh. Alternatively with the higher load factors (above 77%) satisfactory results were obtained for PSNGP using 50% SNG if with market prices above 185 GBP/MWh.
Green Hydrogen Storage in an Underground Cavern: A Case Study in Salt Diapir of Spain
Jun 2022
Publication
The Poza de la Sal diapir is a closed circular depression with Cretaceous Mesozoic materials formed by gypsum Keuper clays and a large extension of salt in the center with intercalations of ophite. The low seismic activity of the area the reduced permeability and porosity of the salt caverns and the proximity to the Páramo de Poza wind park make it a suitable place for the construction of a facility for underground storage of green hydrogen obtained from surplus wind power. The design of a cavern for hydrogen storage at a depth of 1000 m takes into account the differences in stresses temperatures and confining pressures involved in the salt deformation process. During the 8 months of the injection phase 23.0 GWh can be stored in the form of hydrogen obtained from the wind energy surplus to be used later in the extraction phase. The injection and extraction ratio must be developed under the conditions of geomechanical safety of the cavity so as to minimize the risks to the environment and people by conditioning the gas pressure inside the cavity to remain within a given range.
Review of Thermochemical Technologies for Water and Energy Integration Systems: Energy Storage and Recovery
Jun 2022
Publication
Thermochemical technologies (TCT) enable the promotion of the sustainability and the operation of energy systems as well as in industrial sites. The thermochemical operations can be applied for energy storage and energy recovery (alternative fuel production from water/wastewater in particular green hydrogen). TCTs are proven to have a higher energy density and long-term storage compared to standard thermal storage technologies (sensible and latent). Nonetheless these require further research on their development for the increasing of the technology readiness level (TRL). Since TCTs operate with the same input/outputs streams as other thermal storages (for instance wastewater and waste heat streams) these may be conceptually analyzed in terms of the integration in Water and Energy Integration System (WEIS). This work is set to review the techno-economic and environmental aspects related to thermochemical energy storage (sorption and reaction-based) and wastewater-to-energy (particular focus on thermochemical water splitting technology) aiming also to assess their potential into WEIS. The exploited technologies are in general proved to be suitable to be installed within the conceptualization of WEIS. In the case of TCES technologies these are proven to be significantly more potential analogues to standard TES technologies on the scope of the conceptualization of WEIS. In the case of energy recovery technologies although a conceptualization of a pathway to produce usable heat with an input of wastewater further study has to be performed to fully understand the use of additional fuel in combustion-based processes.
Simulation of Possible Fire and Explosion Hazards of Clean Fuel Vehicles in Garages
Nov 2021
Publication
Clean fuel is advocated to be used for sustainability. The number of liquefied petroleum gas (LPG) and hydrogen vehicles is increasing globally. Explosion hazard is a threat. On the other hand the use of hydrogen is under consideration in Hong Kong. Explosion hazards of these clean fuel (LPG and hydrogen) vehicles were studied and are compared in this paper. The computational fluid dynamics (CFD) software Flame Acceleration Simulator (FLACS) was used. A car garage with a rolling shutter as its entrance was selected for study. Dispersion of LPG from the leakage source with ignition at a higher position was studied. The same garage was used with a typical hydrogen vehicle leaking 3.4 pounds (1.5 kg) of hydrogen in 100 s the mass flow rate being equal to 0.015 kgs−1 . The hydrogen vehicle used in the simulation has two hydrogen tanks with a combined capacity of 5 kg. The entire tank would be completely vented out in about 333 s. Two scenarios of CFD simulation were carried out. In the first scenario the rolling shutter was completely closed and the leaked LPG or hydrogen was ignited at 300 s after leakage. The second scenario was conducted with a gap height of 0.3 m under the rolling shutter. Predicted results of explosion pressure and temperature show that appropriate active fire engineering systems are required when servicing these clean fuel vehicles in garages. An appropriate vent in an enclosed space such as the garage is important in reducing explosion hazards.
Gasification of Solid Fuels (Coal, Biomass and MSW): Overview, Challenges and Mitigation Strategies
Jun 2022
Publication
Currently hydrogen energy is the most promising energy vector while gasification is one of the major routes for its production. However gasification suffers from various issues including slower carbon conversion poor syngas quality lower heating value and higher emissions. Multiple factors affect gasification performance such as the selection of gasifiers feedstock’s physicochemical properties and operating conditions. In this review the status of gasification key gasifier technologies and the effect of solid-fuel (i.e. coal biomass and MSW) properties on gasification performance are reviewed critically. Based on the current review the co-gasification of coal biomass and solid waste along with a partial utilisation of CO2 as a reactant are suggested. Furthermore a technological breakthrough in carbon capture and sequestration is needed to make it industrially viable
THyGA - Review on Other Projects Related to Mitigation and Identification of Useable Sensors in Existing Appliances
Jun 2022
Publication
The main goal of THyGA’s WP5 is to investigate ways to adapt residential or commercial appliances that have safety or performance issues to different levels of H2 concentrations in natural gas. This first deliverable presents some possible mitigation measures based on a literature study and some calculations.<br/>Acting on gas quality to avoid that hydrogen addition enhance current gas properties variations was explored several times in the past. Designing new appliances that could operate with variable gas composition including hydrogen. Dealing with existing appliances in order to guaranty safety for users and appliances.
Overview on Hydrogen Risk Research and Development Activities: Methodology and Open Issues
Jan 2015
Publication
During the course of a severe accident in a light water nuclear reactor large amounts of hydrogen can be generated and released into the containment during reactor core degradation. Additional burnable gases [hydrogen (H2) and carbon monoxide (CO)] may be released into the containment in the corium/concrete interaction. This could subsequently raise a combustion hazard. As the Fukushima accidents revealed hydrogen combustion can cause high pressure spikes that could challenge the reactor buildings and lead to failure of the surrounding buildings. To prevent the gas explosion hazard most mitigation strategies adopted by European countries are based on the implementation of passive autocatalytic recombiners (PARs). Studies of representative accident sequences indicate that despite the installation of PARs it is difficult to prevent at all times and locations the formation of a combustible mixture that potentially leads to local flame acceleration. Complementary research and development (R&D) projects were recently launched to understand better the phenomena associated with the combustion hazard and to address the issues highlighted after the Fukushima Daiichi events such as explosion hazard in the venting system and the potential flammable mixture migration into spaces beyond the primary containment. The expected results will be used to improve the modeling tools and methodology for hydrogen risk assessment and severe accident management guidelines. The present paper aims to present the methodology adopted by Institut de Radioprotection et de Suˆ rete Nucleaire to assess hydrogen risk in nuclear power plants in particular French nuclear power plants the open issues and the ongoing R&D programs related to hydrogen distribution mitigation and combustion.
Complex Hydrides for Hydrogen Storage – New Perspectives
Apr 2014
Publication
Since the 1970s hydrogen has been considered as a possible energy carrier for the storage of renewable energy. The main focus has been on addressing the ultimate challenge: developing an environmentally friendly successor for gasoline. This very ambitious goal has not yet been fully reached as discussed in this review but a range of new lightweight hydrogen-containing materials has been discovered with fascinating properties. State-of-the-art and future perspectives for hydrogen-containing solids will be discussed with a focus on metal borohydrides which reveal significant structural flexibility and may have a range of new interesting properties combined with very high hydrogen densities.
Everything About Hydrogen Podcast: Hydrogen in the E-Mobility Sector
Oct 2021
Publication
Quantron AG was created in 2019 as a high-tech spin-off of the well-known Haller GmbH & Co. KG with the vision of paving the way for e-mobility in inner-city and regional passenger and cargo transportation. Quantron AG combines innovative ability and expertise in e-vans e-trucks and e-buses with the long-standing knowledge and experience of Haller GmbH & Co. KG in the commercial vehicle sector. The company's approach to e-Mobility is defined by its commitment to leveraging the most effective zero-emission vehicle technology for the use case which means Quantron is building both hydrogen fuel cell electric vehicles (FCEVs) and battery electric vehicles (BEVs) for its clients.
The podcast can be found on the website
The podcast can be found on the website
HyDeploy2 Technical Services Report: Downstream Gas Standards Review
Jan 2021
Publication
The application of appropriate procedures in the downstream gas industry (defined as any works downstream of the emergency control value) is critical in protecting consumers of gas both domestic and commercial. The two primary standard setting bodies for the downstream gas industry are the British Standard Institution (BSI) and the Institution of Gas Engineers and Managers (IGEM). To ensure only competent engineers carry out works on a gas installation all gas businesses or selfemployed persons must become a member of Gas Safe Register as stipulated by the Gas Safety (Installation and Use) Regulations 1998 1 and each gas operative shall be included on the register and hold a valid license card that covers the areas of gas work they undertake. Membership of the Gas Safe Register is contingent upon demonstration of competency the recognised competency assessments are based on the relevant BSI and IGEM standards. Therefore the primary source of a gas operative’s competency to work on natural gas installations are the associated BSI and IGEM natural gas downstream standards.<br/>Investigation was undertaken to understand the potential implications of introducing 20 mol% hydrogen (H2) within natural gas supplies on the ability of gas operatives to competently carry out works. This investigation took the form of identifying all BSI and IGEM standards that could be applied on natural gas installations and reviewing them within the context of the known effects of introducing a 20 mol% H2 blend. Following review a series of technical questions were generated and responded to by the Health and Safety Executive Science Division. The responses provided were then reviewed and if considered necessary challenged to provide further information. The procedural review was led by Blue Flame Associates a body deemed sufficiently competent in downstream standards training certification and investigation. The report was subsequently reviewed by industry and feedback received. The industry comments were reviewed by the Project Team and where considered necessary the report was updated.
A Review of Ni Based Powder Catalyst for Urea Oxidation in Assisting Water Splitting Reaction
Jan 2022
Publication
Water splitting has been regarded as a sustainable and environmentally-friendly technique to realize green hydrogen generation while more energy is consumed due to the high overpotentials required for the anode oxygen evolution reaction. Urea electrooxidation an ideal substitute is thus received increasing attention in assisting water-splitting reactions. Note that highly efficient catalysts are still required to drive urea oxidation and the facile generation of high valence state species is significant in the reaction based on the electrochemical-chemical mechanisms. The high cost and rareness make the noble metal catalysts impossible for further consideration in large-scale application. Ni-based catalysts are very promising due to their cheap price facile structure tuning good compatibility and easy active phase formation. In the light of the significant advances made recently herein we reviewed the recent advances of Ni-based powder catalysts for urea oxidation in assisting water-splitting reaction. The fundamental of urea oxidation is firstly presented to clarify the mechanism of urea-assisted water splitting and then the prevailing evaluation indicators are briefly expressed based on the electrochemical measurements. The catalyst design principle including synergistic effect electronic effect defect construction and surface reconstruction as well as the main fabrication approaches are presented and the advances of various Ni-based powder catalysts for urea assisted water splitting are summarized and discussed. The problems and challenges are also concluded for the Ni-based powder catalysts fabrication the performance evaluation and their application. Considering the key influence factors for catalytic process and their application attention should be given to structure-property relationship deciphering novel Ni-based powder catalysts development and their construction in the real device; specifically the effort should be directed to the Ni-based powder catalyst with multi-functions to simultaneously promote the fundamental steps and high anti-corrosion ability by revealing the local structure reconstruction as well as the integration in the practical application. We believe the current summarization will be instructive and helpful for the Ni-based powder catalysts development and understanding their catalytic action for urea-assisted hydrogen generation via water splitting technique.
Cost Minimisation of Renewable Hydrogen in a Dutch Neighbourhood While Meeting European Union Sustainability Targets
Jun 2022
Publication
Decentralised renewable energy production in the form of fuels or electricity can have large scale deployment in future energy systems but the feasibility needs to be assessed. The novelty of this paper is in the design and implementation of a mixed integer linear programming optimisation model to minimise the net present cost of decentralised hydrogen production for different energy demands on neighbourhood urban scale while simultaneously adhering to European Union targets on greenhouse gas emission reductions. The energy system configurations optimised were assumed to possibly consist of a variable number or size of wind turbines solar photovoltaics grey grid electricity usage battery storage electrolyser and hydrogen storage. The demands served are hydrogen for heating and mobility and electricity for the households. A hydrogen residential heating project currently being developed in Hoogeveen The Netherlands served as a case study. Six scenarios were compared each taking one or multiple energy demand services into question. For each scenario the levelised cost of hydrogen was calculated. The lowest levelised cost of hydrogen was found for the combined heating and mobility scenario: 8.36 € kg− 1 for heating and 9.83 € kg− 1 for mobility. The results support potential cost reductions of combined demand patterns of different energy services. A sensitivity analysis showed a strong influence of electrolyser efficiency wind turbine parameters and emission reduction factor on levelised cost. Wind energy was strongly preferred because of the lower cost and the low greenhouse gas emissions compared to solar photovoltaics and grid electricity. Increasing electrolyser efficiency and greenhouse gas emission reduction of the used technologies deserve further research.
Heat Transfer Analysis of High Pressure Hydrogen Tank Fillings
Jun 2022
Publication
Fast fillings of hydrogen vehicles require proper control of the temperature to ensure the integrity of the storage tanks. This study presents an analysis of heat transfer during filling of a hydrogen tank. A conjugate heat transfer based on energy balance is introduced. The numerical model is validated against fast filling experiments of hydrogen in a Type IV tank by comparing the gas temperature evolution. The impact of filling parameters such as initial temperature inlet nozzle diameter and filling time is then assessed. For the considered Type IV tank the results show that both a higher and lower tank shell thermal conductivity results in lower inner wall peak temperatures. The presented model provides an analytical description of the temperature evolution in the gas and in the tank shell and is thus a useful tool to explore a broad range of parameters e.g. to determine new hydrogen filling protocols.
Optimized Configuration of Diesel Engine-Fuel Cell-Battery Hybrid Power Systems in a Platform Supply Vessel to Reduce CO2 Emissions
Mar 2022
Publication
The main objective of this paper is to select the optimal configuration of a ship’s power system considering the use of fuel cells and batteries that would achieve the lowest CO2 emissions also taking into consideration the number of battery cycles. The ship analyzed in this work is a Platform Supply Vessel (PSV) used to support oil and gas offshore platforms transporting goods equipment and personnel. The proposed scheme considers the ship’s retrofitting. The ship’s original main generators are maintained and the fuel cell and batteries are installed as complementary sources. Moreover a sensitivity analysis is pursued on the ship’s demand curve. The simulations used to calculate the CO2 emissions for each of the new hybrid configurations were developed using HOMER software. The proposed solutions are auxiliary generators three types of batteries and a protonexchange membrane fuel cell (PEMFC) with different sizes of hydrogen tanks. The PEMFC and batteries were sized as containerized solutions and the sizing of the auxiliary engines was based on previous works. Each configuration consists of a combination of these solutions. The selection of the best configuration is one contribution of this paper. The new configurations are classified according to the reduction of CO2 emitted in comparison to the original system. For different demand levels the results indicate that the configuration classification may vary. Another valuable contribution of this work is the sizing of the battery and hydrogen storage systems. They were installed in 20 ft containers since the installation of batteries fuel cells and hydrogen tanks in containers is widely used for ship retrofit. As a result the most significant reduction of CO2 emissions is 10.69%. This is achieved when the configuration includes main generators auxiliary generators a 3119 kW lithium nickel manganese cobalt (LNMC) battery a 250 kW PEMFC and 581 kg of stored hydrogen.
Porosity and Thickness Effect of Pd–Cu–Si Metallic Glasses on Electrocatalytic Hydrogen Production and Storage
Aug 2021
Publication
This contribution places emphasis on tuning pore architecture and film thickness of mesoporous Pd–Cu–Si thin films sputtered on Si/SiO2 substrates for enhanced electrocatalytic and hydrogen sorption/desorption activity and their comparison with the state-of-the-art thin film electrocatalysts. Small Tafel slope of 43 mV dec–1 for 1250 nm thick coatings with 2 µm diameter pores with 4.2 µm interspacing (H2) electrocatalyst with comparable hydrogen overpotentials to the literature suggests its use for standard fuel cells. The largest hydrogen sorption has been attained for the 250 nm thick electrocatalyst on 5 µm pore diameter and 12 µm interspacing (2189 µC cm–2 per CV cycle) making it possible for rapid storage systems. Moreover the charge transfer resistance described by an equivalent circuit model has an excellent correlation with Tafel slopes. Along with its very low Tafel slope of 42 mV dec–1 10 nm thick H2 pore design electrocatalyst has the highest capacitive response of ∼0.001 S sn cm–2 and is promising to be used as a nano-charger and hydrogen sensor.
HyDeploy Report: Summary of Gas Appliance and Installation Testing
Jun 2018
Publication
The HyDeploy project has undertaken a programme of work to assess the effect of hydrogen addition on the safety and performance of gas appliances and installations. A representative set of eight appliances have been assessed in laboratory experiments with a range of test gases that explored high and low Wobbe Index and hydrogen concentrations up to 28.4 % mol/mol. These tests have demonstrated that the addition of hydrogen does not affect the key hazard areas of CO production light back flame out or the operation of flame failure devices. It was identified that for some designs of gas fire appliances the operation of the oxygen depletion sensors may be affected by the addition of hydrogen. Testing of the gas fires that are present at Keele University that use oxygen depletion sensors have been shown to operate satisfactorily.<br/>A comprehensive onsite survey programme at Keele University has assessed 95% of the installations (126 of 133) that will receive the hydrogen blended gas during the HyDeploy trial. Where access to properties was not possible then the information obtained revealed that the appliances were annually checked either through British Gas service contracts or as a result of being rental properties. The onsite testing programme assessed installations for gas tightness and appliance combustion safety and operation with normal line gas G20 reference gas and two hydrogen blended gases. The checks identified a small number instances were remedial work was required to correct poor condition or operation. Only one case was found to be immediately dangerous which was capped off until repair work was undertaken. CO and smoke alarms were fitted in approximately half of properties and alarms were provided as required to the occupants. Gas tightness tests identified leaks in three installations. Where installations are gas tight then analysis has shown that no additional leaks would occur with hydrogen blended gas. There were no issues identified with the combustion performance of those appliances that were operating correctly and results were in line with those obtained in the laboratory testing programme.<br/>The findings of the Appliance and Installation testing program have been used to define the input values into the HyDeploy quantified risk assessment (QRA) where Keele University specific operation is different to GB as a whole or where the findings show the addition of hydrogen will change the risk profile.<br/>Click on supplements to see the other documents from this report
The Role of Research and Innovation in Europe for the Decarbonisation of Waterborne Transport
Sep 2021
Publication
Waterborne transport contributes to around 14% of the overall greenhouse gas emissions of transport in the European Union and it is among the most efficient modes of transport. Nonetheless considering the aim of making the European Union carbon-neutral by 2050 and the fundamental role of waterborne transport within the European economy effort is needed to reduce its environmental impact. This paper provides an assessment of research and innovation measures aiming at decreasing waterborne transport’s CO2 emissions by assessing European projects based on the European Commission’s Transport Research and Innovation Monitoring and Information System (TRIMIS). Additionally it provides an outlook of the evolution of scientific publications and intellectual property activity in the area. The review of project findings suggests that there is no single measure which can be considered as a problem solver in the area of the reduction of waterborne CO2 emissions and only the combination of different innovations should enable reaching this goal. The highlighted potential innovations include further development of lightweight composite materials innovative hull repair methods wind assisted propulsion engine efficiency waste heat electrification hydrogen and alternative fuels. The assessment shows prevalence of funding allocated to technological measures; however non-technological ones like improved vessel navigation and allocation systems also show a great potential for the reduction of CO2 emissions and reduction of negative environmental impacts of waterborne transport.
Liquid Hydrogen: A Review on Liquefaction, Storage, Transportation, and Safety
Sep 2021
Publication
Decarbonization plays an important role in future energy systems for reducing greenhouse gas emissions and establishing a zero-carbon society. Hydrogen is believed to be a promising secondary energy source (energy carrier) that can be converted stored and utilized efficiently leading to a broad range of possibilities for future applications. Moreover hydrogen and electricity are mutually converted creating high energy security and broad economic opportunities toward high energy resilience. Hydrogen can be stored in various forms including compressed gas liquid hydrogen hydrides adsorbed hydrogen and reformed fuels. Among these liquid hydrogen has advantages including high gravimetric and volumetric hydrogen densities and hydrogen purity. However liquid hydrogen is garnering increasing attention owing to the demand for long storage periods long transportation distances and economic performance. This paper reviews the characteristics of liquid hydrogen liquefaction technology storage and transportation methods and safety standards to handle liquid hydrogen. The main challenges in utilizing liquid hydrogen are its extremely low temperature and ortho- to para-hydrogen conversion. These two characteristics have led to the urgent development of hydrogen liquefaction storage and transportation. In addition safety standards for handling liquid hydrogen must be updated regularly especially to facilitate massive and large-scale hydrogen liquefaction storage and transportation.
Improvement of Temperature and Humidity Control of Proton Exchange Membrane Fuel Cells
Sep 2021
Publication
Temperature and humidity are two important interconnected factors in the performance of PEMFCs (Proton Exchange Membrane Fuel Cells). The fuel and oxidant humidity and stack temperature in a fuel cell were analyzed in this study. There are many factors that affect the temperature and humidity of the stack. We adopt the fuzzy control method of multi-input and multi-output to control the temperature and humidity of the stack. A model including a driver vehicle transmission motor air feeding electrical network stack hydrogen supply and cooling system was established to study the fuel cell performance. A fuzzy controller is proven to be better in improving the output power of fuel cells. The three control objectives are the fan speed control for regulating temperature the solenoid valve on/off control of the bubble humidifier for humidity variation and the speed of the pump for regulating temperature difference. In addition the results from the PID controller stack model and the fuzzy controller stack model are compared in this research. The fuel cell bench test has been built to validate the effectiveness of the proposed fuzzy control. The maximum temperature of the stack can be reduced by 5 ◦C with the fuzzy control in this paper so the fuel cell output voltage (power) increases by an average of approximately 5.8%.
Application of Hydrogen and Hydrogen-containing Gases in Internal Combustion Engines
Nov 2019
Publication
The results of studies of the influence of hydrogen and hydrogen-containing gas additives on the parameters of various types of internal combustion engines are analyzed and summarized. It made possible to identify the features of the effect on the combustion of fuel during internal combustion engine operation at partial loads. The dependences of reducing the toxicity and fuel consumption of internal combustion engine on the amount of addition of hydrogen and a hydrogen-containing gas to the air-fuel mixture were obtained. It allowed to establish quantitative effects of free hydrogen in particular to quantify the region of small hydrogen additives and the conditions under which hydrogen exhibits the qualities of a chemically active component of the mixture.
No more items...