Publications
A Portfolio of Powertrains for the UK: An Energy Systems Analysis
Jul 2014
Publication
There has recently been a concerted effort to commence a transition to fuel cell vehicles (FCVs) in Europe. A coalition of companies released an influential McKinsey-coordinated report in 2010 which concluded that FCVs are ready for commercial deployment. Public–private H2Mobility programmes have subsequently been established across Europe to develop business cases for the introduction of FCVs. In this paper we examine the conclusions of these studies from an energy systems perspective using the UK as a case study. Other UK energy system studies have identified only a minor role for FCVs after 2030 but we reconcile these views by showing that the differences are primarily driven by different data assumptions rather than methodological differences. Some energy system models do not start a transition to FCVs until around 2040 as they do not account for the time normally taken for the diffusion of new powertrains. We show that applying dynamic growth constraints to the UK MARKAL energy system model more realistically represents insights from innovation theory. We conclude that the optimum deployment of FCVs from an energy systems perspective is broadly in line with the roadmap developed by UK H2Mobility and that a transition needs to commence soon if FCVs are to become widespread by 2050.
Removing the Disrupting Wind Effect in Single Vented Enclosure Exposed to External Wind
Oct 2015
Publication
We are addressing hydrogen release into a single-vented facility with wind blowing onto the opposite side of the vent wall. Earlier work based on tests performed by HSL with wind (within the HyIndoor project) and comparative CFD simulations with and without wind ([1]within the H2FC project) has shown that the hydrogen concentrations inside the enclosure are increased compared to the case with no wind. This was attributed to the fact that wind is disrupting the passive ventilation. The present work is based on the GAMELAN tests (within the HyIndoor project) performed with one vent and no wind. For this enclosure simulations were performed with and without wind and reproduced the disrupting wind effect. In order to remove this effect and enhance the ventilation additional simulations were performed by considering different geometrical modifications near the vent. A simple geometrical layout around the vent is here proposed that leads to elimination of the disrupting wind effect. The analysis has been performed using the ADREA-HF code earlier validated both for the HSL and the GAMELAN tests. The current work was performed partly within HyIndoor project
Pressure Effects of an Ignited Release from Onboard Storage in a Garage with a Single Vent
Sep 2017
Publication
This work is driven by the need to understand the hazards resulting from the rapid ignited release of hydrogen from onboard storage tanks through a thermally activated pressure relief device (TPRD) inside a garage-like enclosure with low natural ventilation i.e. the consequences of a jet fire which has been immediately ignited. The resultant overpressure is of particular interest. Previous work [1] focused on an unignited release in a garage with minimum ventilation. This initial work demonstrated that high flow rates of unignited hydrogen through a thermally activated pressure relief device (TPRD) in ventilated enclosures with low air change per hour can generate overpressures above the limit of 10- 15 kPa which a typical civil structure like a garage could withstand. This is due to the pressure peaking phenomenon. Both numerical and phenomenological models were developed for an unignited release and this has been recently validated experimentally [2]. However it could be expected that the majority of unexpected releases through a TPRD may be ignited; leading to even greater overpressures and to date whilst there has been some work on fires in enclosures the pressure peaking phenomenon for an ignited release has yet to be studied or compared with that for an equivalent unignited release. A numerical model for ignited releases in enclosures has been developed and computational fluid dynamics has then been used to examine the pressure dynamics of an ignited hydrogen release in a real scale garage. The scenario considered involves a high mass flow rate release from an onboard hydrogen storage tank at 700 bar through a 3.34 mm diameter orifice representing the TPRD in a small garage with a single vent equivalent in area to small window. It is shown that whilst this vent size garage volume and TPRD configuration may be considered “safe” from overpressures in the event of an unignited release the overpressure resulting from an ignited release is two orders of magnitude greater and would destroy the structure. Whilst further investigation is needed the results clearly indicate the presence of a highly dangerous situation which should be accounted for in regulations codes and standards. The hazard relates to the volume of hydrogen released in a given timeframe thus the application of this work extends beyond TPRDs and is relevant where there is a rapid ignited release of hydrogen in an enclosure with limited ventilation.
Comparison of Two-layer Model for High Pressure Hydrogen Jets with Notional Nozzle Model Predictions and Experimental Data
Oct 2015
Publication
A two-layer reduced order model of high pressure hydrogen jets was developed which includes partitioning of the flow between the central core jet region leading to the Mach disk and the supersonic slip region around the core. The flow after the Mach disk is subsonic while the flow around the Mach disk is supersonic with a significant amount of entrained air. This flow structure significantly affects the hydrogen concentration profiles downstream. The predictions of this model are compared to previous experimental data for high pressure hydrogen jets up to 20 MPa and to notional nozzle models and CFD models for pressures up to 35 MPa using ideal gas properties. The results show that this reduced order model gives better predictions of the mole fraction distributions than previous models for highly underexpanded jets. The predicted locations of the 4% lower flammability limit also show that the two-layer model much more accurately predicts the measured locations than the notional nozzle models. The comparisons also show that the CFD model always underpredicts the measured mole fraction concentrations.
The Slow Burst Test as a Method for Probabilistic Quantification of Cylinder Degradation
Sep 2013
Publication
"The current practise of focusing the periodic retesting of composite cylinders primarily on the hydraulic pressure test has to be evaluated as critical - with regard to the damage of the specimen as well as in terms of their significance. This is justified by micro damages caused to the specimen by the test itself and by a lack of informative values. Thus BAM Federal Institute of Materials Research and Testing (Germany) uses a new approach of validation of composite for the determination of re-test periods. It enables the description of the state of a population of composite cylinders based on destructive tests parallel to operation.<br/>An essential aspect of this approach is the prediction of residual safe service life. In cases where it cannot be estimated by means of hydraulic load cycle tests as a replacement the creep or burst test remains. As a combination of these two test procedures BAM suggests the ""slow burst test SBT"". On this a variety of about 150 burst test results on three design types of cylinders with plastic liners are presented. For this purpose both the parameters of the test protocol as well as the nature and intensity of the pre-damage artificially aged test samples are analysed statistically. This leads first to an evaluation of the different types of artificial ageing but also to the clear recommendation that conventional burst tests be substituted totally if indented for assessment of composite pressure receptacles."
Feasibility of Renewable Hydrogen Based Energy Supply for a District
Sep 2017
Publication
Renewable generation technologies (e.g. photovoltaic panels (PV)) are often installed in buildings and districts with an aim to decrease their carbon emissions and consumption of non-renewable energy. However due to a mismatch between supply and demand at an hourly but also on a seasonal timescale; a large amount of electricity is exported to the grid rather than used to offset local demand. A solution to this is local storage of electricity for subsequent self-consumption. This could additionally provide districts with new business opportunities financial stability flexibility and reliability.<br/>In this paper the feasibility of hydrogen based electricity storage for a district is evaluated. The district energy system (DES) includes PV and hybrid photovoltaic panels (PVT). The proposed storage system consists of production of hydrogen using the renewable electricity generated within the district hydrogen storage and subsequent use in a fuel cell. Combination of battery storage along with hydrogen conversion and storage is also evaluated. A multi-energy optimization approach is used to model the DES. Results of the model are optimal battery capacity electrolyzer capacity hydrogen storage capacity fuel cell capacity and energy flows through the system. The model is also used to compare different system design configurations. The results of this analysis show that both battery capacity and conversion of electricity to hydrogen enable the district to decrease its carbon emissions by approximately 22% when compared to the reference case with no energy storage.
Hydrogen Production Using Solar Energy - Technical Analysis
Mar 2019
Publication
This paper presents a case study concerning a plant for hydrogen production and storage having a daily capacity of 100kg. The plant is located in Cluj-Napoca Romania. It produces hydrogen by means of water electrolysis while the energy is provided using solar energy. We performed the calculations for four different technical solutions used for the hydrogen production and storage plant and also we considered three scenarios regarding the sub-systems of the hydrogen production and storage plant efficiency. The conclusion of this study is that one can maximize the conversion of solar radiation into chemical energy in the form of hydrogen by hybridizing the solar hydrogen production system namely using both electrical energy as well as thermal energy in the form of steam.
Safe Storage of Compressed Hydrogen at Ambient and Cryogenic Temperatures in Flexible Glass Capillaries
Sep 2013
Publication
We have demonstrated that the strength of produced flexible quartz capillaries can be high enough to withstand the internal hydrogen pressure up to 233 MPa at normal and cryogenic temperature. According to the experimental results the cryo-compressed storage of hydrogen in the capillaries at moderate pressure can enable one to reach DOE 2015 aims for the gravimetric and volumetric capacities of vessels for the safe mobile hydrogen storage. Furthermore flexible capillaries in a bundle can probably serve as a high-pressure pipes for the transportation of gases over long distances. The developed technology of hydrogen storage can be applied to methane and hythane (H₂ - CH₄ mixture) which bridge the gap between conventional fossil fuels and the clean future of a hydrogen economy. It can be also applied to other gases i.e. air oxygen and helium-oxygen mixtures widely used in autonomic breathing devices.
Detonation Wave Propagation in Semi-confined Layers of Hydrogen-air and Hydrogen-oxygen Mixtures
Oct 2015
Publication
This paper presents results of an experimental investigation on detonation wave propagation in semi-confined geometries. Large scale experiments were performed in layers up to 0.6 m filled with uniform and non-uniform hydrogen–air mixtures in a rectangular channel (width 3 m; length 9 m) which is open from below. A semi confined driver section is used to accelerate hydrogen flames from weak ignition to detonation. The detonation propagation was observed in a 7 m long unobstructed part of the channel. Pressure measurements ionization probes soot-records and high speed imaging were used to observe the detonation propagation. Critical conditions for detonation propagation in different layer thicknesses are presented for uniform H2/air-mixtures as well as experiments with uniform H2/O2 mixtures in a down scaled transparent channel. Finally detail investigations on the detonation wave propagation in H2/air-mixtures with concentration gradients are shown.
Very Low-cost Visual and Wireless Sensors for Effective Hydrogen Gas Leak Detection
Sep 2013
Publication
Element One Inc. Boulder CO is developing novel hydrogen gas leak indicators to improve the safety and maintenance operations of hydrogen production and chemical processing facilities and hydrogen fueling stations. These technologies can be used to make visual gas leak indicators such as paints decals and conformal plastic films as well as RF sensors for wireless networks. The primary advantage of the Element One hydrogen gas indicators is their low cost and easy deployment which allows them to be used ubiquitously at each and every potential hydrogen leak site. They have the potential to convert safety problems into routine maintenance problems thereby improving overall safety and decreasing operational costs.
Radiation from Hydrogen Jet Fires Investigated by Time-resolved Spectroscopy
Sep 2013
Publication
Jet fires develop on release of hydrogen from pressurized storage depending on orifice pressures and volumes. Risks arise from flame contact dispersion of hot gases and heat radiation. The latter varies strongly in time at short scales down to milliseconds caused by turbulent air entrainment and fluctuations. These jets emit bands of OH in the UV and water in the NIR and IR spectral range. These spectra enable the temperature measurement and the estimation of the air number of the measuring spot which can be used to estimate the total radiation at least from the bright combustion zones. Compared to video and IR camera frames the radiation enables to estimate species and temperatures distributions and total emissions. Impurities generate continuum radiation and the emission of CO2 in the IR indicates air entrainment which can be compared to CHEMKIN II calculation of the reaction with air.
Experimental Study of the Thermal Behaviour of Hydrogen Tanks During Hydrogen Cycling
Sep 2013
Publication
The thermal behaviour of several commercial hydrogen tanks has been studied during high pressure (70-84 MPa) hydrogen cycling. The temperature of the gas at different points inside the tank the temperature at the bosses and the tank outer wall temperature have been measured under different filling and emptying conditions. From the experimental results the effect of the filling rate (1.5-4 g/s) and the influence of the liner material in the thermal behaviour of the hydrogen tanks have been evaluated. Bosses thermal response under the different cycling conditions has also been investigated.
Energy Storage as Part of a Secure Energy Supply
Mar 2017
Publication
Florian Ausfelder,
Christian Beilmann,
Martin Bertau,
Sigmar Bräuninger,
Angelika Heinzel,
Renate Hoer,
Wolfram Koch,
Falko Mahlendorf,
Anja Metzelthin,
Marcell Peuckert,
Ludolf Plass,
Konstantin Räuchle,
Martin Reuter,
Georg Schaub,
Sebastian Schiebahn,
Ekkehard Schwab,
Ferdi Schüth,
Detlef Stolten,
Gisa Teßmer,
Kurt Wagemann and
Karl-Friedrich Ziegahn
The current energy system is subject to a fundamental transformation: A system that is oriented towards a constant energy supply by means of fossil fuels is now expected to integrate increasing amounts of renewable energy to achieve overall a more sustainable energy supply. The challenges arising from this paradigm shift are currently most obvious in the area of electric power supply. However it affects all areas of the energy system albeit with different results. Within the energy system various independent grids fulfill the function of transporting and spatially distributing energy or energy carriers and the demand-oriented supply ensures that energy demands are met at all times. However renewable energy sources generally supply their energy independently from any specific energy demand. Their contribution to the overall energy system is expected to increase significantly.<br/>Energy storage technologies are one option for temporal matching of energy supply and demand. Energy storage systems have the ability to take up a certain amount of energy store it in a storage medium for a suitable period of time and release it in a controlled manner after a certain time delay. Energy storage systems can also be constructed as process chains by combining unit operations each of which cover different aspects of these functions. Large-scale mechanical storage of electric power is currently almost exclusively achieved by pumped-storage hydroelectric power stations.<br/>These systems may be supplemented in the future by compressed-air energy storage and possibly air separation plants. In the area of electrochemical storage various technologies are currently in various stages of research development and demonstration of their suitability for large-scale electrical energy storage. Thermal energy storage technologies are based on the storage of sensible heat exploitation of phase transitions adsorption/desorption processes and chemical reactions. The latter offer the possibility of permanent and loss-free storage of heat. The storage of energy in chemical bonds involves compounds that can act as energy carriers or as chemical feedstocks. Thus they are in direct economic competition with established (fossil fuel) supply routes. The key technology here – now and for the foreseeable future – is the electrolysis of water to produce hydrogen and oxygen.<br/>Hydrogen can be transformed by various processes into other energy carriers which can be exploited in different sectors of the energy system and/or as raw materials for energy-intensive industrial processes. Some functions of energy storage systems can be taken over by industrial processes. Within the overall energy system chemical energy storage technologies open up opportunities to link and interweave the various energy streams and sectors. Chemical energy storage not only offers means for greater integration of renewable energy outside the electric power sector it also creates new opportunities for increased flexibility novel synergies and additional optimization.<br/>Several examples of specific energy utilization are discussed and evaluated with respect to energy storage applications. The article describes various technologies for energy storage and their potential applications in the context of Germany’s Energiewende i.e. the transition towards a more sustainable energy system. Therefore the existing legal framework defines some of the discussions and findings within the article specifically the compensation for renewable electricity providers defined by the German Renewable Energy Sources Act which is under constant reformation. While the article is written from a German perspective the authors hope this article will be of general interest for anyone working in the areas of energy systems or energy technology.
The Study on the Internal Temperature Change of Type 3 and Type 4 Composite Cylinder During Filling
Sep 2013
Publication
The number of eco friendly vehicle which is using green energy such as natural gas(NG) and hydrogen(H2) is rapidly increasing in the world. Almost all of the car manufacturers are adopting the pressurizing fuel method to storage gas. The fuel storage system which can pressurize the fuel as high as possible is necessary to maximize the mileage of the vehicle. In Korea the most important issue is that makes sure of safety of the fuel storage system and several tests are performed to verify safety of the composite cylinder especially for Type 3 and Type 4. In this research an empirical study on the internal temperature change of Type 3 and Type 4 composite cylinder during filling is performed by gas cycling test equipment. In order to measure the temperature totally twelve sensors(every four sensors on the top middle and bottom) are installed in each cylinder. As a consequence large amount of compression heat is generated during rapid filling and the result temperature change in Type 4 is greater than Type 3 is confirmed depending on property of the liner material such as thermal conduction and thickness of carbon composite.
Communicating Leakage Risk in the Hydrogen Economy: Lessons Already Learned from Geoenergy Industries
Sep 2019
Publication
Hydrogen may play a crucial part in delivering a net zero emissions future. Currently hydrogen production storage transport and utilisation are being explored to scope opportunities and to reduce barriers to market activation. One such barrier could be negative public response to hydrogen technologies. Previous research around socio-technical risks finds that public acceptance issues are particularly challenging for emerging remote technical sensitive uncertain or unfamiliar technologies - such as hydrogen. Thus while the hydrogen value chain could offer a range of potential environmental economic and social benefits each will have perceived risks that could challenge the introduction and subsequent roll-out of hydrogen. These potential issues must be identified and managed so that the hydrogen sector can develop adapt or respond appropriately. Geological storage of hydrogen could present challenges in terms of perceived safety. Valuable lessons can be learned from international research and practice of CO2 and natural gas storage in geological formations (for carbon capture and storage CCS and for power respectively). Here we explore these learnings. We consider the similarities and differences between these technologies and how these may affect perceived risks. We also reflect on lessons for effective communication and community engagement. We draw on this to present potential risks to the perceived safety of - and public acceptability of – the geological storage of hydrogen. One of the key lessons learned from CCS and natural gas storage is that progress is most effective when risk communication and public acceptability is considered from the early stages of technology development.
Sample Scale Testing Method to Prevent Collapse of Plastic Liners in Composite Pressure Vessels
Sep 2017
Publication
Type IV pressure vessels are commonly used for hydrogen on-board stationary or bulk storages. When pressurised hydrogen permeates through the materials and solves into them. Emptying then leads to a difference of pressure at the interface between composite and liner possibly leading to a permanent deformation of the plastic liner called “collapse” or “buckling”. This phenomenon has been studied through French funded project Colline allowing to better understand its initiation and long-term effects. This paper presents the methodology followed using permeation tests hydrogen decompression tests on samples and gas diffusion calculation in order to determine safe operating conditions such as maximum flow rate or residual pressure level.
Boundary Layer Effects on the Critical Nozzle of Hydrogen Sonic Jet
Oct 2015
Publication
When hydrogen flows through a small finite length constant exit area nozzle the viscous effects create a fluid throat which acts as a converging-diverging nozzle and lead to Mach number greater than one at the exit if the jet is under-expanded. This phenomenon influences the mass flow rate and the dispersion cloud size. In this study the boundary layer effect on the unsteady hydrogen sonic jet flow through a 1 mm diameter pipe from a high pressure reservoir (up to 70 MPa) is studied using computational fluid dynamics with a large eddy simulation turbulence model. This viscous flow simulation is compared with a non-viscous simulation to demonstrate that the velocity is supersonic at the exit of a small exit nozzle and that the mass flow is reduced.
Vented Hydrogen Deflagrations in Containers: Effect of Congestion for Homogeneous Mixtures
Sep 2017
Publication
This paper presents results from an experimental study of vented hydrogen deflagrations in 20-foot ISO containers. The scenarios investigated include 14 tests with explosion venting through the doors of the containers and 20 tests with venting through openings in the roof. The parameters investigated include hydrogen concentration vent area type of venting device and the level of congestion inside the containers. All tests involved homogeneous and initially quiescent hydrogen-air mixtures. The results demonstrate the strong effect of congestion on the maximum reduced explosion pressures which typically is not accounted for in current standards and guidelines for explosion protection. The work is a deliverable from work package 2 (WP2) in the project “Improving hydrogen safety for energy applications through pre-normative research on vented deflagrations” or HySEA which receives funding from the Fuel Cells and Hydrogen Joint Undertaking (FCH JU) under grant agreement no. 671461.
Early Community Engagement with Hydrogen in Australia
Sep 2019
Publication
Community support and acceptance is part of the licence to operate for any industry. The hydrogen industry is no different and we will need to have strong support from the broad community to establish a viable hydrogen economy in Australia.<br/>As Woodside progresses our plans for bulk hydrogen export and associated domestic opportunities stakeholder engagement throughout will be critical to success. This talk will share Woodside’s approach to community engagement and local opportunities and how we plan to draw on more than 30 years’ experience operating liquefied natural gas plants in Western Australia’s Pilbara region.<br/>At this early stage of our hydrogen work we are beginning with the end in mind: engaging the customer. We’ve worked with local Australian businesses to help raise public awareness and interest in hydrogen by producing prototype consumer products. We will share experiences from this work that underscore the value of early engagement with all stakeholders: government regulators industrial and community neighbours and end consumers to enable the hydrogen economy vision for Australia. This paper will present information on community engagement and acceptance of hydrogen in Australia.<br/>This information has come from Woodside Energy Ltd by engaging with small businesses government regulators and the community at large. As we establish community acceptance for hydrogen as an energy carrier in Australia Woodside has been working in parallel to have standards and regulations established for hydrogen in Australia. Through our work with Hydrogen Mobility Australia we are advocating the adoption of ISO standards unless there is a specific geographic or health safety and environment reason not to.
Safety Concept of Nuclear Cogeneration of Hydrogen and Electricity
Oct 2015
Publication
There is a significant potential for nuclear combined heat and power (CHP) in quite a number of industries. The reactor concepts of the next generation would be capable to open up in particular the high temperature heat market where nuclear energy is applicable to the production processes of hydrogen (or liquid fuels) by steam reforming or water splitting. Due to the need to locate a nuclear facility near the hydrogen plant an overall safety concept has to deal with the question of safety of the combined nuclear/industrial system by taking into account a qualitatively new class of events characterized by interacting influences. Specific requirements will be determined by such factors as the reactor type the nature of the industrial process the separation distances of the industrial facility and population centers from the nuclear plant and prevailing public attitudes. Based on the Japanese concept of the GTHTR300C nuclear reactor for electricity and hydrogen cogeneration theoretical studies were conducted on the release dispersive transport and explosion of a hydrogen cloud in the atmosphere for the sake of assessing the required minimum separation distance to avoid any risk to the nuclear plant's safety systems. In the case of sulfur-iodine water splitting the accidental release of process intermediates including large amounts of sulfur dioxide sulfur trioxide and sulfuric acid need to be investigated as well to estimate the potential risk to nuclear installations like the operators' room and estimate appropriate separation distances against toxic gas propagation. Results of respective simulation studies will be presented.
HIAD 2.0 – Hydrogen Incident and Accident Database
Sep 2019
Publication
Hydrogen technologies are expected to play a key role in implementing the transition from a fossil fuel- based to a more sustainable lower-carbon energy system. To facilitate their widespread deployment the safe operation and hydrogen systems needs to be ensured together with the evaluation of the associated risk.<br/>HIAD has been designed to be a collaborative and communicative web-based information platform holding high quality information of accidents and incidents related to hydrogen technologies. The main goal of HIAD was to become not only a standard industrial accident database but also an open communication platform suitable for safety lessons learned and risk communication as well as a potential data source for risk assessment; it has been set up to improve the understanding of hydrogen unintended events to identify measures and strategies to avoid incidents/accidents and to reduce the consequence if an accident occurs.<br/>In order to achieve that goal the data collection is characterized by a significant degree of detail and information about recorded events (e.g. causes physical consequences lesson learned). Data are related not only to real incident and accidents but also to hazardous situations.<br/>The concept of a hydrogen accident database was generated in the frame of the project HySafe an EC co-funded NoE of the 6th Frame Work Programme. HIAD was built by EC-JRC and populated by many HySafe partners. After the end of the project the database has been maintained and populated by JRC with publicly available events. The original idea was to provide a tool also for quantitative risk assessment able to conduct simple analyses of the events; unfortunately that goal could not be reached because of a lack of required statistics: it was not possible to establish a link with potential event providers coming from private sector not willing to share information considered confidential. Starting from June 2016 JRC has been developing a new version of the database (i.e. HIAD 2.0); the structure of the database and the web-interface have been redefined and simplified resulting in a streamlined user interface compared to the previous version of HIAD. The new version is mainly focused to facilitate the sharing of lessons learned and other relevant information related to hydrogen technology; the database will be public and the events will be anonymized. The database will contribute to improve the safety awareness fostering the users to benefit from the experiences of others as well as to share information from their own experiences.
Formation and Dissociation Behaviour Studies of Hydrogen Hydrate in the Presence of Tetrahydrofuran by using High Pressure DSC
Mar 2019
Publication
Significant challenges still remain in the development of suitable materials for storing hydrogen for practical applications. Clathrate hydrates as a special inclusion compounds could be tailored by changing the storage pressure and temperature to adapt ambient conditions. In this work the hydrates were adopted to encage hydrogen in tetrahydrofuran (THF) aqueous solution with concentration of 3.0 mol%. The formation and dissociation behaviours were investigated by a high pressure micro-differential scanning calorimeter at the operating pressure of 18 MPa 25 MPa and 34 MPa. Experimental results show that the memory water only affects the hydrate formation behaviour instead of the hydrate dissociation behaviour. The dissociation temperature of the THF-H2 hydrate increases with the increase of the operating pressure and its dissociation equilibrium data can be obtained. The dissociation temperatures of the THF-H2 hydrate are 9.26 ℃ 10.94 ℃ and 12.67 ℃ at the operating pressure of 18 MPa 25 MPa and 34 MPa respectively. It is fundamental for performing the kinetics and microscopic experiments.
Flame Propagation Near the Limiting Conditions in a Thin Layer Geometry
Sep 2019
Publication
A series of experiments on hydrogen flame propagation in a thin layer geometry is presented. Premixed hydrogen-air compositions in the range from 6 to 15%(vol.) H2 are tested. Semi-open vertical combustion chamber consists of two transparent Plexiglas side walls with main dimensions of 90x20 cm with a gap from 1 to 10 mm in between. Test mixtures are ignited at the open end of the chamber so that the flame propagates towards the closed end. Ignition position changes from top to bottom in order to take into account an effect of gravity on flame propagation regimes. High-speed shadow imaging is used to visualize and record the combustion process. Thermal-diffusion and Darrieus-Landau instabilities are governing the general flame behaviour. Heat losses to side walls and viscous friction in a thin layer may fully suppress the flame propagation with local or global extinction. The sensitivity to heat losses can be characterized using a Peclet number as a ratio of layer thickness to laminar flame thickness. Approaching to critical Peclet number Pec = 42 the planar or wrinkled flame surface degradants to one-or two-heads "finger" flame propagating straight (for two-heads flame) or chaotic (for one-head "finger" flame). Such a "fingering" of the flame is found for the first time for gaseous systems and very similar to that reported for smouldering or filtering combustion of solid materials and also under micro-gravity conditions. The distance between "fingers" may depend on deficit of limiting component. The processes investigated can be very important from academic and practical points of view with respect to safety of hydrogen fuel cells.
Hydrogen for Renewable Energy Export: Broadening the Concept of Hydrogen Safety
Sep 2019
Publication
Recently we have seen hydrogen (re)emerge as an important component of widespread decarbonisation of energy sectors. From an Australian perspective this brings with it an opportunity to store transport and export renewable energy—either as liquefied hydrogen or in a carrier such as ammonia. The growth of the hydrogen industry to now include the power and transport sectors as well as the notion of hydrogen export has broadened the range of safety considerations required and seen them extend into the realm of the consumer for the first time.<br/>Hydrogen as well as ammonia and other carriers such as methanol are existing industrial chemicals which have established protocols for their handling and use in the chemicals sector. As their use in energy and transport increases especially in the context of widespread domestic use their handling and use by inexperienced people in less-controlled environments expands shifting the risk profiles and management systems required. There is also the potential for novel hydrogen carriers such as methylcyclohexane/toluene to reach commercial viability at industrial scale.<br/>This paper will discuss some of these emerging applications of hydrogen and its carriers and discuss some of the technological innovations under development that may accompany a new energy industry— with some consideration given to their potential risks and the required safety considerations. In addition we will also provide an overview of global activity in this area and how new standards and regulations would need to be developed for the adaption of these technologies in an Australian context.
Quantifying the Potential Consequences of a Detonation in a Hydrogen Jet Release
Sep 2019
Publication
The unconfined release of high-pressure hydrogen can create a large flammable jet with the potential to generate significant damage. To properly understand the separation distances necessary to protect the immediate surroundings it is important to accurately assess the potential consequences. In these events the possibility for a detonation cannot be excluded and would generally result in the worst case scenario from the standpoint of damaging overpressure. The strong concentration gradients created by a jet release however raises the question of what portion of the flammable cloud should be considered. Often all of the fuel within the limits of fast-flame acceleration or even all of the fuel within the flammability range is considered which typically comprises the majority of the flammable cloud. In this work prior detonation studies are reviewed to illustrate the inherently unstable nature of detonations with a focus on the critical dimensions and concentration gradients that can support a propagating detonation wave. These criteria are then applied to the flammable cloud concentration distributions generated by an unconfined jet release of hydrogen. By evaluating these limits it is found that the portion of the flammable cloud that is likely to participate is significantly reduced. These results are compared with existing experimental data on the ignition of unconfined hydrogen releases and the peak pressures that were measured are consistent with a detonation of a mass of fuel that is equivalent to the model prediction for the mass of fuel within the detonable limits. This work demonstrates how the critical conditions for detonation propagation can be used to estimate the portion of a hydrogen release that could participates in a detonation and how these criteria can be readily incorporated into existing dispersion modelling approaches.
Cautiously Optimistic: Understanding the Australian Public’s Response to the Hydrogen Opportunity
Sep 2019
Publication
The increased activity across the technical world for developing hydrogen has not gone unnoticed at the political level. However there remains a gap in understanding of how the general public will respond to the development of such an emergent industry. Recognising this gap we undertook ten focus groups (N=92) and a nationally representative online survey (N=2785) with the Australian public to better understand their response to hydrogen and the opportunities it presents for export and domestic use. In both focus groups and the national survey when Australians first heard the word hydrogen they were most likely to respond with a neutral response. For example in the survey 81% responded with words such as gas energy water; with only 13% giving negative associations (e.g. bomb explosion Hindenburg); and 3% positive (e.g. clean future). Males were more likely to be supportive of hydrogen than females. Those who answered more knowledge questions correctly were also more supportive. The main benefits associated with the use of hydrogen technologies centred around the environment - reduced greenhouse gas emissions and climate change mitigation potential were key benefits. With safety cost and environmental impacts - particularly concerns around pollution emissions and water use - being the most frequently cited concerns about the production and use of hydrogen. This presentation focuses on Australian attitudes to the developing hydrogen export opportunity and also for domestic use. Implications for industry and policy makers will be discussed in light of these Australians responses.
Application of Natural Ventilation Engineering Models to Hydrogen Build Up in Confined Zones
Sep 2013
Publication
Correlative engineering models (Linden 1994) are compared to recent published (Cariteau et al. (2009) Pitts et al. (2009) Barley and Gawlick (2009) Swain et al. (1999) Merilo et al. (2010)) and unpublished (CEA experiments in a 1 m3 with two openings) experimental hydrogen or helium distribution in enclosures (with one and two openings). The modelling-experiments comparison is carried out in transient and in steady state conditions. On this basis recommendations and limits of use of these models are proposed.
Kinetic Model of Incipient Hydride Formation in Zr Clad under Dynamic Oxide Growth Conditions
Feb 2020
Publication
The formation of elongated zirconium hydride platelets during corrosion of nuclear fuel clad is linked to its premature failure due to embrittlement and delayed hydride cracking. Despite their importance however most existing models of hydride nucleation and growth in Zr alloys are phenomenological and lack sufficient physical detail to become predictive under the variety of conditions found in nuclear reactors during operation. Moreover most models ignore the dynamic nature of clad oxidation which requires that hydrogen transport and precipitation be considered in a scenario where the oxide layer is continuously growing at the expense of the metal substrate. In this paper we perform simulations of hydride formation in Zr clads with a moving oxide/metal boundary using a stochastic kinetic diffusion/reaction model parameterized with state-of-the-art defect and solute energetics. Our model uses the solutions of the hydrogen diffusion problem across an increasingly-coarse oxide layer to define boundary conditions for the kinetic simulations of hydrogen penetration precipitation and dissolution in the metal clad. Our method captures the spatial dependence of the problem by discretizing all spatial derivatives using a stochastic finite difference scheme. Our results include hydride number densities and size distributions along the radial coordinate of the clad for the first 1.6 h of evolution providing a quantitative picture of hydride incipient nucleation and growth under clad service conditions.
Hydrogen-powered Vehicles in Urban Transport Systems – Current State and Development
Mar 2020
Publication
The work is dedicated to the possibility of using hydrogen-powered vehicles in urban transport systems. Due to the need to look for alternative solutions for vehicles with conventional drive in cities hydrogen-powered cars are one of the practical possibilities of realizing the sustainable transport assumptions and independence from oil imports - which is one of the main priorities of the European Union. This paper presents a literature analysis the analysis of the current state and development of use hydrogen-powered vehicles in the world.<br/>The article refers to the possibilities of use hydrogen-vehicles in different ways of mobility: individual vehicles taxis and shared mobility. In addition the author focused on showing the advantages and disadvantages of using hydrogen-powered vehicles in urban transport systems.
Changing the Fate of Fuel Cell Vehicles: Can lessons be Learnt from Tesla Motors?
Dec 2014
Publication
Fuel Cell Vehicles (FCVs) are a disruptive innovation and are currently looking towards niche market entry. However commercialisation has been unsuccessful thus far and there is a limited amount of literature that can guide their market entry. In this paper a historical case study is undertaken which looks at Tesla Motors high-end encroachment market entry strategy. FCVs have been compared to Tesla vehicles due to their similarities; both are disruptive innovations both are high cost and both are zero emission vehicles. Therefore this paper looks at what can be learned form Tesla Motors successful market entry strategy and proposes a market entry strategy for FCVs. It was found that FCVs need to enact a paradigm shift from their current market entry strategy to one of high-end encroachment. When this has been achieved FCVs will have greater potential for market penetration.
European Hydrogen Safety Panel (EHSP)
Sep 2019
Publication
Inaki Azkarate,
Marco Carcassi,
Francesco Dolci,
Alberto Garcia-Hombrados,
Stuart J. Hawksworth,
Thomas Jordan,
Georg W. Mair,
Daniele Melideo,
Vladimir V. Molkov,
Pietro Moretto,
Ernst Arndt Reinecke,
Pratap Sathiah,
Ulrich Schmidtchen,
Trygve Skjold,
Etienne Studer,
Tom Van Esbroeck,
Elena Vyazmina,
Jennifer Xiaoling Wen,
Jianjun Xiao and
Joachim Grüne
The FCH 2 JU launched the European Hydrogen Safety Panel (EHSP) initiative in 2017. The mission of the EHSP is to assist the FCH 2 JU both at programme and at project level in assuring that hydrogen safety is adequately managed and to promote and disseminate H2 safety culture within and outside of the FCH 2 JU programme. The EHSP is composed of a multidisciplinary pool of safety experts grouped in ad-hoc working groups (task forces) according to the tasks to be performed and to expertise. The scope and activities of the EHSP are structured around four main areas:
TF.1. Support at project level The EHSP task under this category includes the development of measures to avoid any accident by integrating safety learnings expertise and planning into FCH 2 JU funded projects and by ensuring that all projects address and incorporate the state-of-the-art in hydrogen safety appropriately. To this end a Safety guidance document for hydrogen and fuel cell projects will be produced.
TF.2. Support at programme level Activities under this category include answering questions related to hydrogen safety in an independent coordinated and consolidated way via hotline-support or if necessary via physical presence of safety representative at the FCH 2 JU. It could also include a short introduction to hydrogen safety and the provision of specific guidelines for the handling storage and use of hydrogen in the public domain. As a start a clear strategy on this should be developed and therefore related M ulti-annual work plan 2018-2020.
TF.3. Data collection and assessment The EHSP tasks include the analysis of existing events already introduced in the European Hydrogen Safety Reference Database (HIAD) and of new information from relevant mishaps incidents or accidents. The EHSP should therefore derive lessons learned and provide together with the involved parties further general recommendations to all stakeholders based on these data. For 2018 the following deliverables should be produced: methodology to collect inputs from projects and to provide lessons learned and guidelines assessment and lessons learned from HIAD and a report on research progress in the field of hydrogen safety.
TF.4. Public outreach Framed within the context of the intended broad information exchange the EHSP tasks under this category include the development of a regularly updated webpage hosted on the FCH 2 JU website.
Heat Transfer Analysis for Fast Filling of On-board Hydrogen Tank
Mar 2019
Publication
The heat transfer analysis in the filling process of compressed on-board hydrogen storage tank has been the focus of hydrogen storage research. The initial conditions mass flow rate and heat transfer coefficient have certain influence on the hydrogen filling performance. In this paper the effects of mass flow rate and heat transfer coefficient on hydrogen filling performance are mainly studied. A thermodynamic model of the compressed hydrogen storage tank was established by Matlab/Simulink. This 0D model is utilized to predict the hydrogen temperature hydrogen pressure tank wall temperature and SOC (State of Charge) during filling process. Comparing the simulated results with the experimental data the practicability of the model can be verified. The simulated results have certain meaning for improving the hydrogenation parameters in real filling process. And the model has a great significance to the study of hydrogen filling and purification.
The Pressure Peaking Phenomenon: Validation for Unignited Releases in Laboratory-scale Enclosure
Oct 2015
Publication
This study is aimed at the validation of the pressure peaking phenomenon against laboratory-scale experiments. The phenomenon was discovered recently as a result of analytical and numerical studies performed at Ulster University. The phenomenon is characterized by the existence of a peak on the overpressure transient in an enclosure with vent(s) at some conditions. The peak overpressure can significantly exceed the steady-state pressure and jeopardise a civil structure integrity causing serious life safety and property protection problems. However the experimental validation of the phenomenon was absent until recently. The validation experiments were performed at Karlsruhe Institute of Technology within the framework of the HyIndoor project. Tests were carried out with release of three different gases (air helium and hydrogen) within a laboratory-scale enclosure of about 1 m3 volume with a vent of comparatively small size. The model of pressure peaking phenomenon reproduced closely the experimental pressure dynamics within the enclosure for all three used gases. The prediction of pressure peaking phenomenon consists of two steps which are explained in detail. Examples of calculation for typical hydrogen applications are presented.
Experimental Study on Hydrogen/Air Premixed Flame Propagation in Closed Rectangular Channels
Sep 2019
Publication
An experimental study of hydrogen/air premixed flame propagation in a closed rectangular channel with the inhibitions (N2 or CO2) was conducted to investigate the inhibiting effect of N2 and CO2 on the flame properties during its propagation. Both Schlieren system and the pressure sensor were used to capture the evolution of flame shape and pressure changes in the channel. It was found that both N2 and CO2 have considerable inhibiting effect on hydrogen/air premixed flames. Compared with N2 CO2 has more prominent inhibition which has been interpreted from thermal and kinetic standpoints. In all the flames the classic tulip shape was observed. With different inhibitor concentration the flame demonstrated three types of deformation after the classic tulip inversion. A simple theoretical analysis has also been conducted to indicate that the pressure wave generated upon the first flame-wall contact can affect the flame deformation depending on its meeting moment with the flame front. Most importantly the meeting moment is always behind the start of tulip inversion which suggests the non-dominant role of pressure wave on this featured phenomenon.
The Future of the UK Gas Network
Jun 2013
Publication
The UK has an extensive natural gas pipeline network supplying 84% of homes. Previous studies of decarbonisation pathways using the UK MARKAL energy system model have concluded that the low pressure gas networks should be mostly abandoned by 2050. yet most of the iron pipes near buildings are currently being replaced early for safety reasons. Our study suggests that this programme will not lock-in the use of gas in the long-term. We examine potential future uses of the gas network in the UK energy system using an improved version of UK MARKAL that introduces a number of decarbonisation options for the gas network including bio-methane hydrogen injection to the natural gas and conversion of the network to deliver hydrogen.<br/>We conclude that hydrogen conversion is the only gas decarbonisation option that might enable the gas networks to continue supplying energy to most buildings in the long-term from a cost-optimal perspective. There is an opportunity for the government to adopt a longt erm strategy for the gas distribution networks that either curtails the iron mains replacement programme or alters it to prepare the network for hydrogen conversion; both options could substantially reduce the long-term cost of supplying heat to UK buildings.
An Inter-comparison Exercise on Engineering Models Capabilities to Simulate Hydrogen Vented Explosions
Sep 2013
Publication
A benchmark exercise on vented explosion engineering model was carried out against the maximum overpressures (one or two peaks) of published experiments. The models evaluated are Bauwens et al. (2012-1 and 2012-2) [4 7] models Molkov Vent Sizing Technology 1999 2001 and 2008 models [12 13 6]. The experiments in consideration are Pasman et al. experiments (1974) (30% H2 - 1m3) [1] Bauwens et al. (2012) experiments (64m3) [4] Daubech et al. (2011) experiments (10 to 30% H2 - 1 and 10 m3) [2] and Daubech et al. (2013) [5] experiments (4 m3 – H2 10 to 30%). On this basis recommendations and limits of use of these models are proposed.
Self-acceleration of a Spherically Expanding Hydrogen-air Flame at Elevated Pressure
Sep 2019
Publication
Self-acceleration of a spherically expanding hydrogen-air flame was experimentally investigated in a closed dual-chamber apparatus with the quartz windows enabled to a flame diameter with up to 240 mm. The flame radius and flame speed in lean hydrogen-air mixtures at elevated pressure were evaluated using a high speed Schlieren photography. The experimental results from hydrogen-air explosion at elevated pressure validated the prediction model for self-similar propagation. The flame radius and its speed calculated by the prediction models agree well with the experimental results of hydrogen-air explosions at elevated pressure. Furthermore the acceleration exponent α is evaluated by plotting the flame radius with time. The results show the α value increase with the dimensionless flame radius r/rcl. It is indicated that the self-acceleration and the transition regime to self-similar propagation exist in the spherically expanding hydrogen-air flame.
Integrating IT-SOFC and Gasification Combined Cycle with Methanation Reactor and Hydrogen Firing for Near Zero-emission Power Generation from Coal
Apr 2011
Publication
Application of Solid Oxide Fuel Cells (SOFC) in gasification-based power plants would represent a turning point in the power generation sector allowing to considerably increase the electric efficiency of coal-fired power stations while reducing CO2 and other pollutant emissions. The aim of this paper is the thermodynamic assessment of a SOFC-based IGFC plant with methanation reactor hydrogen post-firing and CO2 capture by physical absorption. The configuration proposed allows to obtain a very high net efficiency (51.6%) overcoming the main limits of configurations assessed in previous works.
Detonation Dynamics in a Curved Chamber for an Argon Diluted Hydrogen-oxygen Mixture
Sep 2019
Publication
The dynamics of detonation transmission from a straight channel into a curved chamber was investigated as a function of initial pressure using a combined experimental and numerical study. Hi-speed Schlieren and *OH chemiluminescense were used for flow visualization; numerical simulations considered the two-dimensional reactive Euler equations with detailed chemistry. Results show the highly transient sequence of events (i.e. detonation diffraction re-initiation attempts and wave reflections) that precede the formation of a steadily rotating Mach detonation along the outer wall of the chamber. An increase in pressure from 15 kPa to 26 kPa expectedly resulted in detonations that are less sensitive to diffraction. Local quenching of the initial detonation occurred for all pressures considered. The location where this decoupling occurred along the inner wall determined the location where transition from regular reflection to a rather complex wave structure occurred along the outer wall. This complex wave structure includes a steadily rotating Mach detonation (stem) an incident decoupled shock-reaction zone region and a transverse detonation that propagates in pre-shocked mixture.
H-Mat Hydrogen Compatibility of Polymers and Elastomers
Sep 2019
Publication
The H2@Scale program of the U.S. Department of Energy (DOE) Fuel Cell Technologies Office is supporting work on the hydrogen compatibility of polymers to improve the durability and reliability of materials for hydrogen infrastructure. The hydrogen compatibility program (H-Mat) seeks “to address the challenges of hydrogen degradation by elucidating the mechanisms of hydrogen-materials interactions with the goal of providing science-based strategies to design materials (micro)structures and morphology with improved resistance to hydrogen degradation.” This research has found hydrogen and pressure interactions with model rubber-material compounds demonstrating volume change and compression-set differences in the materials. The research leverages state-of-the-art capabilities of the DOE national labs. The materials were investigated using helium-ion microscopy which revealed significant morphological changes in the plasticizer incorporating compounds after exposure as evidenced by time-of-flight secondary ion mass spectrometry. Additional studies using transmission electron microscopy and nuclear magnetic resonance revealed that nanosized inclusions developed after gas decompression in rubber- and plasticizer-only materials; this is an indication of void formation at the nanometer level.
Framing Policy on Low Emissions Vehicles in Terms of Economic Gains: Might the Most Straightforward Gain be Delivered by Supply Chain Activity to Support Refuelling?
May 2018
Publication
A core theme of the UK Government's new Industrial Strategy is exploiting opportunities for domestic supply chain development. This extends to a special ‘Automotive Sector Deal’ that focuses on the shift to low emissions vehicles (LEVs). Here attention is on electric vehicle and battery production and innovation. In this paper we argue that a more straightforward gain in terms of framing policy around potential economic benefits may be made through supply chain activity to support refuelling of battery/hydrogen vehicles. We set this in the context of LEV refuelling supply chains potentially replicating the strength of domestic upstream linkages observed in the UK electricity and/or gas industries. We use input-output multiplier analysis to deconstruct and assess the structure of these supply chains relative to that of more import-intensive petrol and diesel supply. A crucial multiplier result is that for every £1million of spending on electricity (or gas) 8 full-time equivalent jobs are supported throughout the UK. This compares to less than 3 in the case of petrol/diesel supply. Moreover the importance of service industries becomes apparent with 67% of indirect and induced supply chain employment to support electricity generation being located in services industries. The comparable figure for GDP is 42%.
HyP SA – Our safety story
Sep 2019
Publication
Australian Gas Infrastructure Group’s (AGIG’s) vision is to be the leading gas infrastructure business in Australia this means delivering for our customers being a good employer and being sustainably cost efficient. Establishing and developing a hydrogen industry is a key pathway for us to achieve our vision.
In South Australia AGIG is pioneering the introduction of hydrogen into its existing gas distribution networks through the Hydrogen Park South Australia (HyP SA) project. With safety our top priority we would like to give an overview of the safety considerations of our site our network methodology and the development of new safety procedures and culture regarding the production handling and reticulation of a 5% hydrogen blend.
We will cover three themes each having a safety story that is specific to the Australian context and to the project’s success:
The Production Plant and Site
Project site safety known hazards and risk mitigation electrical protection safety procedures lighting and security. Hydrogen storage filling and transportation.
The Network
Securing the network for an isolated safe demonstration footprint. Gas network and hydrogen safety considerations why 5%? Emergency procedures and crew training. New safety regulations blended networks. How does hydrogen perform in a blended gas with respect to leaks? How safe is the existing network and what sensors and controls are we using.
The Home
Introducing blended gas to existing homes. Appliance safety and failure mode analysis. Community engagement and education on a 5% renewable hydrogen gas blend and use in the home
.
We aim to give a comprehensive overview of delivering a safe demonstration network for the HyP SA project in terms of the three main ecosystems that the hydrogen will be present our learnings so far and the development of the safety methodologies that will be applied in the industry in the future.
In South Australia AGIG is pioneering the introduction of hydrogen into its existing gas distribution networks through the Hydrogen Park South Australia (HyP SA) project. With safety our top priority we would like to give an overview of the safety considerations of our site our network methodology and the development of new safety procedures and culture regarding the production handling and reticulation of a 5% hydrogen blend.
We will cover three themes each having a safety story that is specific to the Australian context and to the project’s success:
The Production Plant and Site
Project site safety known hazards and risk mitigation electrical protection safety procedures lighting and security. Hydrogen storage filling and transportation.
The Network
Securing the network for an isolated safe demonstration footprint. Gas network and hydrogen safety considerations why 5%? Emergency procedures and crew training. New safety regulations blended networks. How does hydrogen perform in a blended gas with respect to leaks? How safe is the existing network and what sensors and controls are we using.
The Home
Introducing blended gas to existing homes. Appliance safety and failure mode analysis. Community engagement and education on a 5% renewable hydrogen gas blend and use in the home
.
We aim to give a comprehensive overview of delivering a safe demonstration network for the HyP SA project in terms of the three main ecosystems that the hydrogen will be present our learnings so far and the development of the safety methodologies that will be applied in the industry in the future.
Simulation of Hydrogen Dispersion under Cryogenic Release Conditions
Sep 2013
Publication
The use of hydrogen as fuel should always be accompanied by a safety assessment in case of an accidental release. To evaluate the potential hazards in a spill accident both experiments and simulations are performed. In the present work the CFD code ADREA-HF is used to simulate the liquefied hydrogen (LH2) spill experiments (test 5 6 7) conducted by the Health and Safety Laboratory (HSL). In these tests LH2 was spilled at a fixed rate of 60lt/min in several directions and for several durations. The factors that influence the vapor dispersion under cryogenic release conditions that were examined in this study are: the air humidity the wind direction and the slip effect of droplets formed by both the cryogenic liquid and the condensation of air humidity. The numerical results were compared with the experimental measurements and the effect of each abovementioned factors in the vapor dispersion is being discussed.
Safe Hydrogen Fuel Handling and Use for Efficient Implementation – SH2IFT
Sep 2019
Publication
The SH2IFT project combines social and technical scientific methods to address knowledge gaps regarding safe handling and use of gaseous and liquid hydrogen. Theoretical approaches will be complemented by fire and explosion experiments with emphasis on topics of strategic importance to Norway such as tunnel safety maritime applications etc. Experiments include Rapid Phase Transition Boiling Liquid Expanding Vapour Explosion and jet fires. This paper gives an overview of the project and preliminary results.
Membrane Based Purification of Hydrogen System (MEMPHYS)
Feb 2019
Publication
A hydrogen purification system based on the technology of the electrochemical hydrogen compression and purification is introduced. This system is developed within the scope of the project MEMPHYS. Therefore the project its targets and the different work stages are presented. The technology of the electrochemical purification and the state of the art of hydrogen purification are described. Early measurements in the project have been carried out and the results are shown and discussed. The ability of the technology to recover hydrogen from a gas mixture can be recognized and an outlook into further optimizations shows the future potential. A big advantage is the simultaneous compression of the purified hydrogen up to 200 bar therefore facilitating the transportation and storage.
Chitosan Flocculation Associated with Biofilms of C. Saccharolyticus and C. Owensensis Enhances Biomass Retention in a CSTR
Jun 2021
Publication
Cell immobilization and co-culture techniques have gained attention due to its potential to obtain high volumetric hydrogen productivities (QH2). Chitosan retained biomass in the fermentation of co-cultures of Caldicellulosiruptor saccharolyticus and C. owensensis efficiently up to a maximum dilution rate (D) of 0.9 h−1. Without chitosan wash out of the co-culture occurred earlier accompanied with approximately 50% drop in QH2 (D > 0.4 h−1). However butyl rubber did not show as much potential as carrier material; it did neither improve QH2 nor biomass retention in continuous culture. The population dynamics revealed that C. owensensis was the dominant species (95%) in the presence of chitosan whereas C. saccharolyticus was the predominant (99%) during cultivation without chitosan. In contrast the co-culture with rubber as carrier maintained the relative population ratios around 1:1. This study highlighted chitosan as an effective potential carrier for immobilization thereby paving the way for cost – effective hydrogen production.
Delivering a Safe, Viable Hydrogen Economy in Australia
Sep 2019
Publication
At Woodside Energy Ltd (Woodside) safety is built into everything we do and progressing hydrogen opportunities is no exception. This paper will present information from the macro level of process safety for hydrogen at a plant level through to the consumer experience. Examples of the benefits of an integrated process safety approach will be used from Woodside’s experience pioneering the liquefied natural gas industry in Australia.<br/>This paper will underscore the reasons why Australia needs to adopt robust safety standards for hydrogen as quickly as possible in order to advance the hydrogen economy across all sectors. Focus areas requiring attention during development of standards and potential mechanisms to close will be proposed. Establishing a hydrogen economy in Australia could lower carbon emissions stabilise power grids increase renewable energy penetration and create jobs. Developing Australian standards that are fully aligned with international standards will facilitate Australia taking a leading role in the global hydrogen economy.
Homogeneous and Inhomogeneous Hydrogen Deflagrations in 25 m3 Enclosure
Sep 2019
Publication
Explosion venting is a frequently used measure to mitigate the consequence of gas deflagrations in closed environments. Despite the effort to predict the vent area needed to achieved the protection through engineering formulas and CFD tools work has still to be done to reliably predict the outcome of a vented gas explosion. Most of available data derived from experimental campaigns performed in the past involved homogeneous conditions while especially in the case of a very buoyant gas such as hydrogen the most probable scenario that can follow and unintended release in a closed environment foresee the ignition of a stratified inhomogeneous mixture. University of Pisa performed experimental tests in a 25 m3 facility in homogeneous and inhomogeneous conditions. The present paper is aimed to share the results of hydrogen dispersion and deflagration tests and discuss the comparison of maximum peak overpressure generated in the two scenarios. Description of the experimental set-up includes all the details deemed necessary to reproduce the phenomenon with a CFD tool.
Dependency of Equivalence Ratio on Hydrogen Cylindrical Detonation Induced by Direct Initiation
Sep 2011
Publication
A hydrogen fuel is expected to expand its demand in the future. However hydrogen has to be treated with enough caution because of wide combustible conditions and easiness to ignite. Detonation accidents are caused in hydrogen gas such as the explosion accident in Fukushima first nuclear plant (2011). Therefore it is necessary to comprehend initiation conditions of detonation to prevent its detonation explosion. In the present study cylindrical detonation induced by direct initiation is simulated to understand the dependency of equivalence ratios in hydrogen-oxygen mixture. The several detailed kinetic models are compared to select the most appropriate model for detonation in a wide range of equivalence ratios. The Petersen-Hanson model is used in the present study due to the best agreement among the other models. In the numerical results of cylindrical detonation induced by direct initiation a cellular structure which is similar to the experimental smoked foil record is observed. The local pressure is up to 12 MPa under the condition at the standard state. The ignition process of cylindrical detonation has two stages. At the first stage the normalized cell width /L1/2 at each equivalence ratio increases linearly. At the second stage cell bifurcations appear due to a generation of new transverse waves. It is observed that a transverse wave transforms to a transverse detonation at the end of the first stage and after that some disturbance is developed to be a new transverse wave at the beginning of the second stage.
Experimental Results on The Dispersion of Buoyant Gas in a Full Scale Garage from a Complex Source
Sep 2009
Publication
The lack of experimental data on hydrogen dispersion led to the experimental project DRIVE (Experimental Data for Hydrogen Automotive Risks Assessment for the validation of numerical tools and for the Edition of guidelines) that involves the CEA (French Atomic Energy Commission) the National Institute of Industrial Environment and Risks (INERIS) the French car manufacturer PSA PEUGEOT CITROËN and the Research Institute on Out of Equilibrium Phenomena (IRPHE). The CEA has developed an experimental setup named GARAGE in order to analyze the condition of formation of an explosive atmosphere in an enclosure. This is a full scale facility in which a real car can be parked. Hydrogen releases were simulated with helium which volume fraction was measured with mini-katharometers. These thermal conductivity probes allow spatial and time volume fraction variations measurements. We present experimental results on the dispersion of helium in the enclosure due to releases in a typical car. The tested parameters are the location of the source (engine bottom of the car storage) and the flow rate. Emphasis is put on the influence of these parameters on the time evolution of the volume fraction in the enclosure as well as on the vertical distribution of helium.
Experiments on the Distribution of Concentration Due to Buoyant Gas Low Flow Rate Release in an Enclosure.
Sep 2009
Publication
Hydrogen energy based vehicles or power generators are expected to come into widespread use in the near future. Safety information is of major importance to support the successful public acceptance of hydrogen as an energy carrier. One of the most important issues in terms of safety is the use of such system in closed area such as a private garage in which a fuel cell car may be parked. This kind of situation leads to the fundamental problem of the dispersion of hydrogen due to a simple vertical source in an enclosure. Many numerical and experimental studies have already been conducted on this problem showing the formation of a stably stratified distribution of concentration. Most of them consider the cases of accidental situation in which the flow rate is relatively important (of the order of 10Nl/min to 100Nl/min). We present a set of experiments conducted on a full scale facility of the size of a typical private garage with helium as a model gas for hydrogen. In this study we focus on the low flow rates that can be characteristic of chronic leaks that may not be detected by security devices of the system (of the order of 0.1Nl/min to 10Nl/min). The facility allows changing natural ventilation conditions and experiments have been conducted from the tightest which is less than 0.01ACH to that typical of a real garage say of the order of 0.1ACH.
Influence of Hydrogen-Based Storage Systems on Self-Consumption and Self-Sufficiency of Residential Photovoltaic Systems
Aug 2015
Publication
This paper analyzes the behavior of residential solar-powered electrical energy storage systems. For this purpose a simulation model based on MATLAB/Simulink is developed. Investigating both short-time and seasonal hydrogen-based storage systems simulations on the basis of real weather data are processed on a timescale of 15 min for a consideration period of 3 years. A sensitivity analysis is conducted in order to identify the most important system parameters concerning the proportion of consumption and the degree of self-sufficiency. Therefore the influences of storage capacity and of storage efficiencies are discussed. A short-time storage system can increase the proportion of consumption by up to 35 percentage points compared to a self-consumption system without storage. However the seasonal storing system uses almost the entire energy produced by the photovoltaic (PV) system (nearly 100% self-consumption). Thereby the energy drawn from the grid can be reduced and a degree of self-sufficiency of about 90% is achieved. Based on these findings some scenarios to reach self-sufficiency are analyzed. The results show that full self-sufficiency will be possible with a seasonal hydrogen-based storage system if PV area and initial storage level are appropriate.
Numerical Modelling of Hydrogen Deflagration Dynamics in Enclosed Space
Sep 2009
Publication
A three-dimensional mathematical model of gaseous hydrogen deflagration in the enclosed space is developed. The process is described by the system of gas dynamics differential equations. Thermodynamic parameters of the mixture and its components are defined as functions of the local temperature and mixture composition. The concentration changes of the fuel and combustion products are determined using conservation laws taking into account rates of component disappearance and formation and turbulent diffusion. It is assumed that the chemical reaction takes place only in the volume where the fuel concentration is within the limits of inflammability. The mathematical model is validated during an intercomparison test to predict deflagration of a large-scale hydrogen-air mixture in open atmosphere. An algorithm of numerical solution based on the Godunov method is developed. A computer system of engineering analysis of gas-dynamic processes of hydrogen-air mixture formation and combustion in enclosed space with natural ventilation is created. It allows predicting the history of the changes of overpressure temperature concentrations of hydrogen and combustion products and other thermogasdynamic parameters of the mixture in space. This prognosis can be used to estimate dangerous zones of destruction and recommend some safety measures.
Laser Powder Bed Fusion of WE43 in Hydrogen-argon-gas Atmosphere
Sep 2020
Publication
Growing demand for individual and especially complex parts with emphasis on biomedical or lightweight applications enhances the importance of laser powder bed fusion. Magnesium alloys offer both biocompatibility and low density but feature a very high melting point of oxide layers while the evaporation temperature of pure magnesium is much lower. This impedes adequate part quality and process reproducibility. To weaken this oxide layer and enhance processability a 2 %-hydrogen-argon-gas atmosphere was investigated. A machine system was modified to the use of the novel inert gas to determine the influence of gas atmosphere on hollow cuboids and solid cubes. While processing a 20.3 % decrease in structure width and 20.6 % reduction in standard deviation of the cuboids was determined. There was no significate influence on relative density of solid cubes although eight of the ten highest density specimen were fabricated with the hydrogen addition.
Cyclic Voltammetry of a Cobaloxime Catalyst
Jul 2019
Publication
<br/>Cyclic Voltammetry Measurements performed on a Cobaloxime Catalyst designed for photochemical hydrogen production.
The Battle between Battery and Fuel Cell Powered Electric Vehicles: A BWM Approach
Oct 2017
Publication
The transition to a more sustainable personal transportation sector requires the widespread adoption of electric vehicles. However a dominant design has not yet emerged and a standards battle is being fought between battery and hydrogen fuel cell powered electric vehicles. The aim of this paper is to analyze which factors are most likely to influence the outcome of this battle thereby reducing the uncertainty in the industry regarding investment decisions in either of these technologies. We examine the relevant factors for standard dominance and apply a multi-criteria decision-making method best worst method to determine the relative importance of these factors. The results indicate that the key factors include technological superiority compatibility and brand reputation and credibility. Our findings show that battery powered electric vehicles have a greater chance of winning the standards battle. This study contributes to theory by providing further empirical evidence that the outcome of standards battles can be explained and predicted by applying factors for standard success. We conclude that technology dominance in the automotive industry is mostly driven by technological characteristics and characteristics of the format supporter.
Determination of Distribution Function Used in Monte Carlo Simulation on Safety Analysis of Hydrogen Vessels
Sep 2019
Publication
The test data of static burst strength and load cycle strength of composite pressure vessels are often described by GAUSSian normal or WEIBULL distribution function to perform safety analyses. The goodness of assumed distribution function plays a significant role in the inferential statistics to predict the population properties by using limited test data. Often GAUSSian and WEIBULL probability nets are empirical methods used to validate the distribution function; Anderson-Darling and Kolmogorov-Smirnov tests are the mostly favorable approaches for Goodness of Fit. However the different approaches used to determine the parameters of distribution function lead mostly to different conclusions for safety assessments.<br/>In this study six different methods are investigated to show the variations on the rates for accepting the composite pressure vessels according to GTR No. 13 life test procedure. The six methods are: a) Norm- Log based method b) Least squares regression c) Weighted least squares regression d) A linear approach based on good linear unbiased estimators e) Maximum likelihood estimation and f) The method of moments estimation. In addition various approaches of ranking function are considered. In the study Monte Carlo simulations are conducted to generate basic populations based on the distribution functions which are determined using different methods. Then the samples are extracted randomly from a population and evaluated to obtain acceptance rate. Here the “populations” and “samples” are corresponding to the burst strength or load cycle strength of the pressure vessels made from composite material and a plastic liner (type 4) for the storage of hydrogen. To the end the results are discussed and the best reliable methods are proposed.
Mesh-Independent Large-Eddy Simulation with Anisotropic Adaptive Mesh Refinement for Hydrogen Deflagration Prediction in Closed Vessels
Sep 2019
Publication
The use of high-fidelity simulation methods based on large-eddy simulation (LES) are proving useful for understanding and mitigating the safety hazards associated with hydrogen releases from nuclear power plants. However accurate modelling of turbulent premixed hydrogen flames via LES can require very high resolution to capture both the large-scale turbulence and its interaction with the flame fronts. Standard meshing strategies can result in impractically high computational costs especially for the thin fronts of hydrogen flames. For these reasons the use of a recently formulated integral length scale approximation (ILSA) subfilter-scale model in combination with an efficient anisotropic block-based adaptive mesh refinement (AMR) technique is proposed and examined herein for performing LES of turbulent premixed hydrogen flames. The anisotropic AMR method allows dynamic and solution-dependent resolution of flame fronts and the grid-independent properties of the ILSA model ensure that numerical errors associated with implicitly-filtered LES techniques in regions with varying resolution are avoided. The combined approach has the potential to allow formally converged LES solutions (direct numerical simulation results are typically reached in the limit of very fine meshes with standard subgrid models). The proposed LES methodology is applied to combustion simulations of lean premixed hydrogen-air mixtures within closed vessels: a problem relevant to hydrogen safety applications in nuclear facilities. A progress variable-based method with a multi-phenomena burning velocity model is used as the combustion model. The present simulation results are compared to the available experiment data for several previously studied THAI vessel cases and the capabilities of the proposed LES approach are assessed.
Multi-objective Optimal Configurations of a Membrane Reactor for Steam Methane Reforming
Nov 2021
Publication
The combination of traditional reactor and permeable membrane is beneficial to increase the production rate of the target product. How to design a high efficiency and energy saving membrane reactor is one of the key problems to be solved urgently. This paper utilizes finite-time thermodynamics and nonlinear programming to solve the optimal configurations of the membrane reactor of steam methane reforming (MR-SMR) for two optimization objectives that is heat exchange rate minimization and power consumption minimization. The exterior wall temperature and fixed hydrogen production rate are regarded as the control variable and constraint respectively. The results indicate that the hydrogen production rate and heat exchange rate in MR-SMR are increased by 108.58% and 58.42% respectively while the power consumption is reduced by 33.44% compared with those in the traditional reactor under the same condition. Compared with the results in reference reactor (MR-SMR obtained with initial values) the heat exchange rate is reduced by 1.40% by optimizing the exterior wall temperature and the power consumption is reduced by 5.10% by optimizing the exterior wall temperature and molar flow rate of sweep gas. The optimal distributions of exterior wall temperatures in the optimal reactors of minimum heat exchange rate and power consumption have a theoretical guiding significance for the thermal design of the membrane reactors.
Heading for Hydrogen - The Oil and Gas Industry’s Outlook for Hydrogen, From Ambition to Reality
May 2020
Publication
The future of hydrogen energy is wrapped up with the future of natural gas renewable energy and carbon capture and storage (CCS). This yields useful synergies but also political economic and technical complexity. Nevertheless our survey of more than 1000 senior oil and gas professionals suggests a more certain future for hydrogen and that the time is right to begin scaling the hydrogen economy.
Materials Towards Carbon-free, Emission-free and Oil-free Mobility: Hydrogen Fuel-cell Vehicles—Now and in the Future
Jul 2010
Publication
In the past material innovation has changed society through new material-induced technologies adding a new value to society. In the present world engineers and scientists are expected to invent new materials to solve the global problem of climate change. For the transport sector the challenge for material engineers is to change the oil-based world into a sustainable world. After witnessing the recent high oil price and its adverse impact on the global economy it is time to accelerate our efforts towards this change.
Industries are tackling global energy issues such as oil and CO2 as well as local environmental problems such as NOx and particulate matter. Hydrogen is the most promising candidate to provide carbon-free emission-free and oil-free mobility. As such engineers are working very hard to bring this technology into the real society. This paper describes recent progress of vehicle technologies as well as hydrogen-storage technologies to extend the cruise range and ensure the easiness of refuelling and requesting material scientists to collaborate with industry to fight against global warming.
Link to document download on Royal Society Website
Industries are tackling global energy issues such as oil and CO2 as well as local environmental problems such as NOx and particulate matter. Hydrogen is the most promising candidate to provide carbon-free emission-free and oil-free mobility. As such engineers are working very hard to bring this technology into the real society. This paper describes recent progress of vehicle technologies as well as hydrogen-storage technologies to extend the cruise range and ensure the easiness of refuelling and requesting material scientists to collaborate with industry to fight against global warming.
Link to document download on Royal Society Website
Innovation Insights Brief: Energy Scenarios Comparison Review
Apr 2019
Publication
Energy transition is a part of a much wider Grand Transition which is not all about energy. Energy transition cannot be achieved all at once or by any one actor. Relying only on better energy modelling and forecasting to guide successful transition will be fatal even in a data-rich era.<br/>It is timely for energy leaders to ask:<br/>Are global energy scenarios achieving their potential in opening up action on new energy futures?<br/>How do the Council’s World Energy Scenarios compare with global energy outlooks scenarios and normative visions used by others and what can we learn by contrasting the increasing richness of energy futures thinking?<br/>In anticipation of the 24th World Energy Congress the Council is refreshing its global energy foresight and updating its global scenarios narratives. The focus is on an ‘innovation twist to 2040’ and the use of scenarios to explore and navigate new exponential growth opportunities for accelerating successful energy transition in an era of epic and disruptive innovation.<br/>As a part of the refresh the Council has conducted a comparison study of global energy scenarios in order to test the continued plausibility relevance and challenge of its own existing scenario set the World Energy Scenarios 2016 launched at the 23rd World Energy Congress in Istanbul in 2016.<br/>By comparing the methods narratives and assumptions associated with a benchmarkable set of global energy futures initiatives and studies the Council seeks to provide our members with clearer understanding and new insights on energy transition while preparing them to better engage with leadership dialogues which pivot on visions of a new energy future.<br/>The review also provides an opportunity to reflect on the challenges and obstacles for utilising global energy scenarios to drive impact and the challenges in bridging agile and flexible qualitative storytelling with long term quantitative energy modelling."
The National Hydrogen Strategy - The Federal Government Germany
Jun 2020
Publication
The energy transition – which represents the efforts undertaken and results achieved on renewable energy expansion and energy efficiency – is our basis for a clean secure and affordable energy supply which is essential for all our lives. By adopting the 2030 Climate Action Plan the Federal Government has paved the way for meeting its climate targets for 2030. Its long-term goal is to achieve carbon neutrality in line with the targets agreed under the Paris Agreement which seeks to keep global warming well below 2 degrees and if possible below 1.5 degrees. In addition Germany has committed itself together with the other European Member States to achieving greenhouse gas (GHG) neutrality by 2050. Apart from phasing out coal-fired power for which Germany has already taken the relevant decisions this means preventing emissions which are particularly hard to reduce such as process-related GHG emissions from the industrial sector.<br/>In order for the energy transition to be successful security of supply affordability and environmental compatibility need to be combined with innovative and smart climate action. This means that the fossil fuels we are currently using need to be replaced by alternative options. This applies in particular to gaseous and liquid energy sources which will continue to be an integral part of Germany’s energy supply. Against this backdrop hydrogen will play a key role in enhancing and completing the energy transition.
Hytunnel Project to Investigate the Use of Hydrogen Vehicles in Road Tunnels
Sep 2009
Publication
Hydrogen vehicles may emerge as a leading contender to replace today’s internal combustion engine powered vehicles. A Phenomena Identification and Ranking Table exercise conducted as part of the European Network of Excellence on Hydrogen Safety (HySafe) identified the use of hydrogen vehicles in road tunnels as a topic of important concern. An internal project called HyTunnel was duly established within HySafe to review identify and analyse the issues involved and to contribute to the wider activity to establish the true nature of the hazards posed by hydrogen vehicles in the confined space of a tunnel and their relative severity compared to those posed by vehicles powered by conventional fuels including compressed natural gas (CNG). In addition to reviewing current hydrogen vehicle designs tunnel design practice and previous research a programme of experiments and CFD modelling activities was performed for selected scenarios to examine the dispersion and explosion hazards potentially posed by hydrogen vehicles. Releases from compressed gaseous hydrogen (CGH2) and liquid hydrogen (LH2) powered vehicles have been studied under various tunnel geometries and ventilation regimes. The findings drawn from the limited work done so far indicate that under normal circumstances hydrogen powered vehicles do not pose a significantly higher risk than those powered by petrol diesel or CNG but this needs to be confirmed by further research. In particular obstructions at tunnel ceiling level have been identified as a potential hazard in respect to fast deflagration or even detonation in some circumstances which warrants further investigation. The shape of the tunnel tunnel ventilation and vehicle pressure relief device (PRD) operation are potentially important parameters in determining explosion risks and the appropriate mitigation measures.
Emissions control and performance evaluation of spark ignition engine with oxy-hydrogen blending
Mar 2018
Publication
Fast depletion of fossil fuels and their detrimental effect to the environment is demanding an urgent need of alternative fuels for meeting sustainable energy demand with minimum environmental impact. Expert studies indicate hydrogen is one of the most promising energy carriers for the future due to its superior combustion qualities and availability. The use of hydrogen in spark ignition internal combustion engine may be part of an integrated solution to the problem of depletion of fossil fuels and pollution of the environment. The broader flammability limits and fast flame propagation velocity of hydrogen ensures complete combustion of fuel and allows engine to be operated at lean ranges. Lean burn operation comparatively maintains NOx CO and HC emissions at a very low level. In the present work oxyhydrogen (HHO) gas is produced in leak proof plexiglass reactor by electrolysis of water using potassium hydroxide as electrolyte. The HHO gas generator is attached to a spark ignition engine currently operating on the road without any modifications of the engine. The HHO gas produced is then added to the air which is being drawn into the engine. Experiments were conducted on a 4-stroke single cylinder natural air cooled spark ignition engine to determine total fuel consumption specific fuel consumption air fuel ratio brake power and brake thermal efficiency and emissions CO CO2 O2 NOx HC at different loads with and without addition of HHO gas to gasoline for lower speeds ranging from 700 rpm to 1500 rpm. Also mileage tests were conducted to find the speed at which the fuel consumption is optimum.
Experimental Investigation of Nonideality and Nonadiabatic Effects Under High Pressure Releases
Sep 2013
Publication
Due to the nonideality of a high pressure hydrogen release the possibility of a two-phase flow and its effect on the dynamics of the discharge process was experimentally investigated. A small-scale facility was designed and constructed to simulate the transient blow-down of a cryogenic fluid through a small break. Gaseous and liquid nitrogen were planned to were used as a surrogate for GH2 and LH2. The results will complement the quasi-stationary safety regulation tests and will provide time-dependent data for verification of the theoretical models. Different orifice sizes (0.5 1 2 4 mm) and initial N2 pressures (30 – 200 bar) were used in the tests. The measured time-dependent data for vessel discharge pressure thrust discharge mass flow rate and gas temperatures were compared against a theoretical model for high pressure nitrogen release. This verification for nitrogen also assures the equation of state for hydrogen which is based on the same methodology.
A Turbulent Combustion Model for Ignition of Rapidly Expanding Hydrogen Jets
Mar 2013
Publication
A turbulent combustion model based on the Linear Eddy Model for Large Eddy Simulation (LEM- LES) is currently proposed to study self-ignition events of rapidly expanding hydrogen jets. The model is a one-dimensional treatment of a diffusion-reaction system within each multi-dimensional LES cell. This reduces the expense of solving a complete multi-dimensional problem while preserving micro-scale hotspots and their effects on ignition. The current approach features a Lagrangian description of fluid particles on the sub-grid for increased accuracy. Also Adaptive Mesh Refinement (AMR) is implemented for increased computational efficiency. In this paper the model is validated for various inviscid laminar 1-D mixing and ignition problems shock tube problems flames and detonations.
Accumulation of Hydrogen Released into a Vented Enclosure - Experimental Results
Sep 2013
Publication
This paper reports experimental results from a series of experiments in which gaseous hydrogen was released into a 31 m3 enclosure and the hydrogen concentrations at a number of points within the enclosure were monitored to assess whether hydrogen accumulation occurred and whether a homogeneous or stratified mixture was formed. The enclosure was located in the open air and therefore subject to realistic and therefore variable wind conditions. The hydrogen release rate and the passive vent arrangements were varied. The experiments were carried out as part of the EU Hyindoor Project.
Numerical Investigation of Vented Hydrogen-air Deflagration in a Chamber
Oct 2015
Publication
This paper shows numerical investigation related to hydrogen-air deflagration venting. The aim of this study is to clarify the influence of concentration gradient on the pressure histories and peak pressures in a chamber. The numerical analysis target is a 27 m3 cubic chamber which has 2.6 m2 vent area on the sidewall. The vent opening pressure is set to be gauge 10 kPa. Two different conditions of the hydrogen concentration are assumed which are uniform and gradient. In the uniform case 15 20 25 30 and 35 vol.% concentrations are assumed. In the gradient case the concentration linearly increases from 0 vol.% (at the ground) to 30 40 50 60 70 vol.% (at the ceiling). The initial total mass of hydrogen inside the chamber is the same as the uniform case. Moreover three different ignition points are assumed: on the rear center and the front of the chamber relative to the vent. The deflagrations are initiated by a single ignition source. In most gradient cases the highest peak is lower than in the uniform case though the initial total mass of hydrogen inside the chamber is the same as in the uniform case. This is because the generated burned gas per time is smaller in the gradient case than in the uniform case. In 15 vol.% gradient case however the peak pressure gets higher than in the uniform case. This is because in 15 vol.% gradient case the burning velocity around the ignition point gets faster and the flame surface gets larger which induces larger amount of burned gas per time.
Experimental Investigation of Nozzle Aspect Ratio Effects on Under Expanded Hydrogen Jet Release Characteristics
Sep 2013
Publication
Most experimental investigations of underexpanded hydrogen jets have been limited to circular nozzles in an attempt to better understand the fundamental jet-exit flow physics and model this behaviour with pseudo source models. However realistic compressed storage leak exit geometries are not always expected to be circular. In the present study jet dispersion characteristics from rectangular slot nozzles with aspect ratios from 2 to 8 were investigated and compared with an equivalent circular nozzle. Schlieren imaging was used to observe the jet-exit shock structure while quantitative Planar Laser Rayleigh Scattering was used to measure downstream dispersion characteristics. These results provide physical insight and much needed model validation data for model development.
An Assessment on the Quantification of Hydrogen Releases Through Oxygen Displacement Using Oxygen
Sep 2013
Publication
Contrary to several reports in the recent literature the use of oxygen sensors for indirectly monitoring ambient hydrogen concentration has serious drawbacks. This method is based on the assumption that a hydrogen release will displace oxygen which is quantified using oxygen sensors. Despite its shortcomings the draft Hydrogen Vehicle Global Technical Regulation lists this method as a means to monitor hydrogen leaks to verify vehicle fuel system integrity. Experimental evaluations that were designed to impartially compare the ability of commercial oxygen and hydrogen sensors to reliably measure and report hydrogen concentration changes are presented. Numerous drawbacks are identified and discussed.
IPHE Regulations Codes and Standards Working Group-type IV COPV Round Robin Testing
Oct 2015
Publication
This manuscript presents the results of a multi-lateral international activity intended to understand how to execute a cycle stress test as specified in a chosen standard (GTR SAE ISO EIHP …). The purpose of this work was to establish a harmonized test method protocol to ensure that the same results would be achieved regardless of the testing facility. It was found that accurate temperature measurement of the working fluid is necessary to ensure the test conditions remain within the tolerances specified. Continuous operation is possible with adequate cooling of the working fluid but this becomes more demanding if the cycle frequency increases. Recommendations for future test system design and operation are presented.
Numerical Investigation of Hydrogen Leakage from a High Pressure Tank and its Explosion
Oct 2015
Publication
We numerically investigated the initial behaviour of leakage and diffusion from high-pressure hydrogen storage tank assumed in hydrogen station. First calculations are carried out to validate the present numerical approach and compare with the theoretical distribution of hydrogen mass fraction to the direction which is vertical to the jet direction in the case of hydrogen leaking out from the circular injection port whose diameter is 0.25 mm. Then performing calculations about hydrogen leakage and diffusion behaviour on different tank pressures the effects are examined to reduce damage by gas explosion assumed in the hydrogen station. There is no significant difference in the diffusion distance to the jet direction from a start to 0.2 ms. After 0.2 ms it is seen the difference in the diffusion distance to the jet direction in different pressure. As tank pressures become large the hydrogen diffusion not only to the jet direction but also to the direction which is vertical to the jet direction is remarkably seen. Then according to histories of the percentage of the flammable mass to total one in the space it drastically increases up to 30%2between 0 and 0.05 ms. After 0.05 ms it uniformly increases so it is shown that the explosion risk becomes high over time. The place where mass within flammability range distributes at a certain time is shown. Hydrogen widely diffuses to jet direction and distributes in each case and time. Therefore it is found that when it is assumed that ignition occurs by some sources in place where high-pressure hydrogen is leaked and diffused the magnitude of the explosion damage can be predicted when and where ignition occurs.
Time Response of Hydrogen Sensors
Sep 2013
Publication
The efficiency of gas sensor application for facilitating the safe use of hydrogen depends to a considerable extent on the response time of the sensor to change in hydrogen concentration. The response and recovery times have been measured for five different hydrogen sensors three commercially available and two promising prototypes which operate at room temperature. Experiments according to ISO 26142 show that most of the sensors surpass much for a concentration change from clean to hydrogen containing air the demands of the standard for the response times t(90) and values of 2 to 16 s were estimated. For an opposite shift to clean air the recovery times t(10) are from 7 to 70 s. Results of transient behaviour can be fitted with an exponential approach. It can be demonstrated that results on transient behaviour depend not only from investigation method and the experimental conditions like gas changing rate and concentration jump as well as from operating parameters of sensors. In comparison to commercial MOS and MIS-FET hydrogen sensors new sensor prototypes operating at room temperature possesses in particular longer recovery times.
Uncertainties in Risk Assessment of Hydrogen Discharges from Pressurized Storage Vessels Ranging from Cryogenic to Ambient Temperatures
Sep 2013
Publication
Evaluations of the uncertainties resulting from risk assessment tools to predict releases from the various hydrogen storage types are important to support risk informed safety management. The tools have to predict releases from a wide range of storage pressures (up to 80 MPa) and temperatures (at 20K) e.g. the cryogenic compressed gas storage covers pressures up to 35 MPa and temperatures between 33K and 338 K. Accurate calculations of high pressure releases require real gas EOS. This paper compares a number of EOS to predict hydrogen properties typical in different storage types. The vessel dynamics are modelled to evaluate the performance of various EOS to predict exit pressures and temperatures. The results are compared to experimental data and results from CFD calculations.
The Mitigation of Hydrogen Explosions Using Water Fog, Nitrogen Dilution and Chemical Additives
Sep 2013
Publication
This paper describes research work that has been performed at LSBU using both a laminar burning velocity rig and a small scale cylindrical explosion vessel to explore the use of very fine water fog nitrogen dilution and sodium hydroxide additives in the mitigation of hydrogen deflagrations. The results of the work suggest that using a combination of the three measures together produces the optimal mitigation performance and can be extremely effective in: inhibiting the burning velocity reducing the rate of explosion overpressure rise and narrowing the flammability limits of hydrogen-oxygen-nitrogen mixtures.
Renewables Readiness Assessment: The Hashemite Kingdom of Jordan
Feb 2021
Publication
Jordan's energy diversification strategy is centred around renewables which are expected will provide the low-cost reliable secure and environmentally sustainable energy required to power its new engines of economic growth – manufacturing transport construction and agriculture.
The National Energy Strategy 2020–2030 presents the evolution of the energy sector under its vision for stimulating demand achieving efficiency and improving electricity system flexibility.
This Renewables Readiness Assessment (RRA) highlights key actions for the short and medium-term that could create more conductive conditions for renewable energy development. It aims to help unlock Jordan's renewable energy potential and provide the means to meet the energy diversification goals of its national strategy.
The study was undertaken by the Ministry of Energy and Mineral Resources (MEMR) in collaboration with the International Renewable Energy Agency (IRENA).
Key recommendations:
The National Energy Strategy 2020–2030 presents the evolution of the energy sector under its vision for stimulating demand achieving efficiency and improving electricity system flexibility.
This Renewables Readiness Assessment (RRA) highlights key actions for the short and medium-term that could create more conductive conditions for renewable energy development. It aims to help unlock Jordan's renewable energy potential and provide the means to meet the energy diversification goals of its national strategy.
The study was undertaken by the Ministry of Energy and Mineral Resources (MEMR) in collaboration with the International Renewable Energy Agency (IRENA).
Key recommendations:
- Provide the necessary conditions for renewables growth in the power sector.
- Foster continued growth of renewable power generation.
- Plan the integration of higher shares of renewable power.
- Incentivise the use of renewables for heating and cooling.
- Support renewable transport and mobility options.
- Catalyse renewable energy investment. Strengthen local industries and create jobs in renewables.
CFD Based Simulation of Hydrogen Release Through Elliptical Orifices
Sep 2013
Publication
Computational Fluid Dynamics (CFD) is applied to investigate the near exit jet behavior of high pressure hydrogen release into quiescent ambient air through different types of orifices. The size and geometry of the release hole can affect the possibility of auto-ignition. Therefore the effect of release geometry on the behavior and development of hydrogen jet issuing from non-axisymmetric (elliptical) and expanding orifices is investigated and compared with their equivalent circular orifices. A three-dimensional in-house code is developed using the MPI library for parallel computing to simulate the flow based on an inviscid approximation. Convection dominates viscous effects in strongly underexpanded supersonic jets in the vicinity of release exit justifying the use of the Euler equations. The transport (advection) equation is applied to calculate the concentration of hydrogen-air mixture. The Abel-Nobel equation of state is used because high pressure hydrogen flow deviates from the ideal gas assumption. This work effort is conducted to fulfill two objectives. First two types of circular and elliptic orifices with the same cross sectional area are simulated and the flow behavior of each case is studied and compared during the initial stage of release. Second the comparative study between expanding circular exit and its fixed counterpart is carried out. This evaluation is conducted for different sizes of nozzle with different aspect ratios.
Validation Strategy for CFD Models Describing Safety-relevant Scenarios Including LH2/GH2 Release and the Use of Passive Autocatalytic Recombiners
Sep 2013
Publication
An increase in use of hydrogen for energy storage and clean energy supply in a future energy and mobility market will strengthen the focus on safety and the safe handling of hydrogen facilities. The ability to simulate the whole chain of physical phenomena that may occur during an accident is mandatory for future safety studies on an industrial or urban scale. Together with the RWTH Aachen University Forschungszentrum Jülich (JÜLICH) develops numerical methods to predict safety incidents connected with the release of either LH2 or GH2 using the commercial CFD code ANSYS CFX. The full sequence from the release distribution or accumulation of accidentally released hydrogen till the mitigation of accident consequences by safety devices is considered. For specific phenomena like spreading and vaporization of LH2 pools or the operational behavior of passive auto-catalytic recombiners (PAR) in-house sub-models are developed and implemented. The paper describes the current development status gives examples of the validation and concludes with future work to provide the full range of hydrogen release and recombination simulation.
Department of Energy Hydrogen Program Plan
Nov 2020
Publication
The Department of Energy (DOE) Hydrogen Program Plan (the Program Plan or Plan) outlines the strategic high-level focus areas of DOE’s Hydrogen Program (the Program). The term Hydrogen Program refers not to any single office within DOE but rather to the cohesive and coordinated effort of multiple offices that conduct research development and demonstration (RD&D) activities on hydrogen technologies. This terminology and the coordinated efforts on hydrogen among relevant DOE offices have been in place since 2004 and provide an inclusive and strategic view of how the Department coordinates activities on hydrogen across applications and sectors. This version of the Plan updates and expands upon previous versions including the Hydrogen Posture Plan and the DOE Hydrogen and Fuel Cells Program Plan and provides a coordinated high-level summary of hydrogen related activities across DOE.
The 2006 Hydrogen Posture Plan fulfilled the requirement in the Energy Policy Act of 2005 (EPACT 2005) that the Energy Secretary transmit to Congress a coordinated plan for DOE’s hydrogen and fuel cell activities. For historical context the original Posture Plan issued in 2004 outlined a coordinated plan for DOE and the U.S. Department of Transportation to meet the goals of the Hydrogen Fuel Initiative (HFI) and implement the 2002 National Hydrogen Energy Technology Roadmap. The HFI was launched in 2004 to accelerate research development and demonstration (RD&D) of hydrogen and fuel cell technologies for use in transportation electricity generation and portable power applications. The Roadmap provided a blueprint for the public and private efforts required to fulfill a long-term national vision for hydrogen energy as outlined in A National Vision of America’s Transition to a Hydrogen Economy—to 2030 and Beyond. Both the Roadmap and the Vision were developed out of meetings involving DOE industry academia non-profit organizations and other stakeholders. The Roadmap the Vision the Posture Plans the 2011 Program Plan and the results of key stakeholder workshops continue to form the underlying basis for this current edition of the Program Plan.
This edition of the Program Plan reflects the Department’s focus on conducting coordinated RD&D activities to enable the adoption of hydrogen technologies across multiple applications and sectors. It includes content from the various plans and documents developed by individual offices within DOE working on hydrogen-related activities including: the Office of Fossil Energy's Hydrogen Strategy: Enabling a Low Carbon Economy the Office of Energy Efficiency and Renewable Energy’s Hydrogen and Fuel Cell Technologies Office Multi-year RD&D Plan the Office of Nuclear Energy’s Integrated Energy Systems 2020 Roadmap and the Office of Science’s Basic Research Needs for the Hydrogen Economy. Many of these documents are also in the process of updates and revisions and will be posted online.
Through this overarching document the reader will gain information on the key RD&D needs to enable the largescale use of hydrogen and related technologies—such as fuel cells and turbines—in the economy and how the Department’s various offices are addressing those needs. The Program will continue to periodically revise the Plan along with all program office RD&D plans to reflect technological progress programmatic changes policy decisions and updates based on stakeholder input and reviews.
The 2006 Hydrogen Posture Plan fulfilled the requirement in the Energy Policy Act of 2005 (EPACT 2005) that the Energy Secretary transmit to Congress a coordinated plan for DOE’s hydrogen and fuel cell activities. For historical context the original Posture Plan issued in 2004 outlined a coordinated plan for DOE and the U.S. Department of Transportation to meet the goals of the Hydrogen Fuel Initiative (HFI) and implement the 2002 National Hydrogen Energy Technology Roadmap. The HFI was launched in 2004 to accelerate research development and demonstration (RD&D) of hydrogen and fuel cell technologies for use in transportation electricity generation and portable power applications. The Roadmap provided a blueprint for the public and private efforts required to fulfill a long-term national vision for hydrogen energy as outlined in A National Vision of America’s Transition to a Hydrogen Economy—to 2030 and Beyond. Both the Roadmap and the Vision were developed out of meetings involving DOE industry academia non-profit organizations and other stakeholders. The Roadmap the Vision the Posture Plans the 2011 Program Plan and the results of key stakeholder workshops continue to form the underlying basis for this current edition of the Program Plan.
This edition of the Program Plan reflects the Department’s focus on conducting coordinated RD&D activities to enable the adoption of hydrogen technologies across multiple applications and sectors. It includes content from the various plans and documents developed by individual offices within DOE working on hydrogen-related activities including: the Office of Fossil Energy's Hydrogen Strategy: Enabling a Low Carbon Economy the Office of Energy Efficiency and Renewable Energy’s Hydrogen and Fuel Cell Technologies Office Multi-year RD&D Plan the Office of Nuclear Energy’s Integrated Energy Systems 2020 Roadmap and the Office of Science’s Basic Research Needs for the Hydrogen Economy. Many of these documents are also in the process of updates and revisions and will be posted online.
Through this overarching document the reader will gain information on the key RD&D needs to enable the largescale use of hydrogen and related technologies—such as fuel cells and turbines—in the economy and how the Department’s various offices are addressing those needs. The Program will continue to periodically revise the Plan along with all program office RD&D plans to reflect technological progress programmatic changes policy decisions and updates based on stakeholder input and reviews.
Influence of the Location of a Buoyant Gas Release in Several Configurations Varying the Height of the Release and the Geometry of the Enclosure
Sep 2013
Publication
The present work proposes a parametric study on the influence of the height of the release source on the helium dispersion regimes inside a naturally ventilated enclosure. Several configurations were experimentally addressed in order to improve knowledge on dispersion considering conditions close to hydrogen energy systems in terms of operating characteristics and design. Thus the varying parameters of the study were mainly the height of the release and also the releasing flow rate the volume and the geometry of the enclosure. Experimental results were compared to existing analytical models and considered through model improvements allowing a better approach of these specific cases for hydrogen systems risk assessment.
Deploying Fuel Cell Systems, What Have We Learned
Sep 2013
Publication
The Hydrogen Safety Panel brings a broad cross-section of expertise from the industrial government and academic sectors to help advise the U.S. Department of Energy's (DOE) Fuel Cell Technologies Office through its work in hydrogen safety codes and standards. The Panel's initiatives in reviewing safety plans conducting safety evaluations identifying safety-related technical data gaps and supporting safety knowledge tools and databases cover the gamut from research and development to demonstration. The Panel's recent work has focused on the safe deployment of hydrogen and fuel cell systems in support of DOE efforts to accelerate fuel cell commercialization in early market applications: vehicle refuelling material handling equipment backup power for warehouses and telecommunication sites and portable power devices. This paper summarizes the work and learnings from the Panel's early efforts the transition to its current focus and the outcomes and conclusions from recent work on the deployment of hydrogen and fuel cell systems.
Visualization of Auto-ignition Phenomenon Under the Controlled Burst Pressure
Oct 2015
Publication
A high-pressure hydrogen jet released into the air has the possibility of igniting in a tube without any ignition source. The mechanism of this phenomenon called spontaneous ignition is considered to be that hydrogen diffuses into the hot air caused by the shock wave from diaphragm rupture and the hydrogen-oxidizer mixed region is formed enough to start chemical reaction. Recently flow visualization studies on the spontaneous ignition process have been conducted to understand its detailed mechanism but such ignition has not yet been well clarified. In this study the spontaneous ignition phenomenon was observed in a rectangular tube. The results confirm the presence of a flame at the wall of the tube when the shock wave pressure reaches 1.2–1.5 MPa in more than 9 MPa burst pressure and that ignition occurs near the wall followed by multiple ignitions as the shock wave propagates with the ignitions eventually combining to form a flame.
Safety and Risk Management in Nuclear-Based Hydrogen Production with Thermal Water Splitting
Sep 2013
Publication
The challenges and approaches of the safety and risk management for the hydrogen production with nuclear-based thermochemical water splitting have been far from sufficiently reported as the thermochemical technology is still at a fledgling stage and the linkage of a nuclear reactor with a hydrogen production plant is unprecedented. This paper focuses on the safety issues arising from the interactions between the nuclear heat source and thermochemical hydrogen production cycle as well between the proximate individual processes in the cycle. As steam is utilized in most thermochemical cycles for the water splitting reaction and heat must be transferred from the nuclear source to hydrogen production plant this paper particularly analyzes and quantifies the heat hazard for the scenarios of start-up and shutdown of the hydrogen production plant. Potential safety impacts on the nuclear reactor are discussed. It is concluded that one of the main challenges of safety and risk management is efficient rejection of heat in a shutdown accident. Several options for the measures to be taken are suggested. Copper-chlorine and sulphur-iodine thermochemical cycles are taken as two representative examples for the hazard analysis. It is expected that these newly reported challenges and approaches could help build the future safety and risk management codes and standards for the infrastructure of the thermochemical hydrogen production.
Trends in Gas Sensor Development for Hydrogen Safety
Sep 2013
Publication
Gas sensors are applied for facilitating the safe use of hydrogen in for example fuel cell and hydrogen fuelled vehicles. New sensor developments aimed at meeting the increasingly stringent performance requirements in emerging applications are presented based on in-house technical developments and a literature study. The strategy of combining different detection principles i.e. sensors based on electrochemical cells semiconductors or field effects in combination with thermal conductivity sensor or catalytic combustion elements in one new measuring system is reported. This extends the dynamic measuring range of the sensor while improving sensor reliability to achieve higher safety integrity through diverse redundancy. The application of new nanoscaled materials nano wires carbon tubes and graphene as well as the improvements in electronic components of field-effect resistive-type and optical systems are evaluated in view of key operating parameters such as sensor response time low energy consumption and low working temperature.
Safety Issues of the Liquefaction, Storage and Transportation of Liquid Hydrogen
Sep 2013
Publication
The objectives of the IDEALHY project which receives funding from the European Union’s 7th Framework Programme (FP7/2007-2013) for the Fuel Cells and Hydrogen Joint Technology Initiative under grant agreement No. 278177 are to design a novel process that will significantly increase the efficiency of hydrogen liquefaction and be capable of delivering liquid hydrogen at a rate that is an order of magnitude greater than current plants. The liquid hydrogen could then be delivered to refueling stations in road tankers. As part of the project the safety management of the new large scale process and the transportation of liquid hydrogen by road tanker into urban areas are being considered. Effective safety management requires that the hazards are identified and well understood. This paper describes the scope of the safety work within IDEALHY and presents the output of the work completed so far. Initially a review of available experimental data on the hazards posed by releases of liquid hydrogen was undertaken which identified that generally there is a dearth of data relevant to liquid hydrogen releases. Subsequently HAZIDs have been completed for the new liquefaction process storage of liquid hydrogen and its transportation by road. This included a review of incidents relevant to these activities. The principal causes of the incidents have been analysed. Finally the remaining safety work for the IDEALHY project is outlined.
3D Risk Management for Hydrogen Installations (HY3DRM)
Oct 2015
Publication
This paper introduces the 3D risk management (3DRM) concept with particular emphasis on hydrogen installations (Hy3DRM). The 3DRM framework entails an integrated solution for risk management that combines a detailed site-specific 3D geometry model a computational fluid dynamics (CFD) tool for simulating flow-related accident scenarios methodology for frequency analysis and quantitative risk assessment (QRA) and state-of-the-art visualization techniques for risk communication and decision support. In order to reduce calculation time and to cover escalating accident scenarios involving structural collapse and projectiles the CFD-based consequence analysis can be complemented with empirical engineering models reduced order models or finite element analysis (FEA). The paper outlines the background for 3DRM and presents a proof-of-concept risk assessment for a hypothetical hydrogen filling station. The prototype focuses on dispersion fire and explosion scenarios resulting from loss of containment of gaseous hydrogen. The approach adopted here combines consequence assessments obtained with the CFD tool FLACS-Hydrogen from Gexcon and event frequencies estimated with the Hydrogen Risk Assessment Models (HyRAM) tool from Sandia to generate 3D risk contours for explosion pressure and radiation loads. For a given population density and set of harm criteria it is straightforward to extend the analysis to include personnel risk as well as risk-based design such as detector optimization. The discussion outlines main challenges and inherent limitations of the 3DRM concept as well as prospects for further development towards a fully integrated framework for risk management in organizations.
ISO 19880-1, Hydrogen Fueling Station and Vehicle Interface Safety Technical Report
Oct 2015
Publication
Hydrogen Infrastructures are currently being built up to support the initial commercialization of the fuel cell vehicle by multiple automakers. Three primary markets are presently coordinating a large build up of hydrogen stations: Japan; USA; and Europe to support this. Hydrogen Fuelling Station General Safety and Performance Considerations are important to establish before a wide scale infrastructure is established.
This document introduces the ISO Technical Report 19880-1 and summarizes main elements of the proposed standard. Note: this ICHS paper is based on the draft TR 19880 and is subject to change when the document is published in 2015. International Standards Organisation (ISO) Technical Committee (TC) 197 Working Group (WG) 24 has been tasked with the preparation of the ISO standard 19880-1 to define the minimum requirements considered applicable worldwide for the hydrogen and electrical safety of hydrogen stations. This report includes safety considerations for hydrogen station equipment and components control systems and operation. The following systems are covered specifically in the document as shown in Figure 1:
This document introduces the ISO Technical Report 19880-1 and summarizes main elements of the proposed standard. Note: this ICHS paper is based on the draft TR 19880 and is subject to change when the document is published in 2015. International Standards Organisation (ISO) Technical Committee (TC) 197 Working Group (WG) 24 has been tasked with the preparation of the ISO standard 19880-1 to define the minimum requirements considered applicable worldwide for the hydrogen and electrical safety of hydrogen stations. This report includes safety considerations for hydrogen station equipment and components control systems and operation. The following systems are covered specifically in the document as shown in Figure 1:
- H2 production / supply delivery system
- Compression
- Gaseous hydrogen buffer storage;
- Pre-cooling device;
- Gaseous hydrogen dispensers.
- Hydrogen Fuelling Vehicle Interface
Environmental Sustainability of Alternative Marine Propulsion Technologies Powered by Hydrogen - A Life Cycle Assessment Approach
Jan 2022
Publication
Shipping is a very important source of pollution worldwide. In recent years numerous actions and measures have been developed trying to reduce the levels of greenhouse gases (GHG) from the marine exhaust emissions in the fight against climate change boosting the Sustainable Development Goal 13. Following this target the action of hydrogen as energy vector makes it a suitable alternative to be used as fuel constituting a very promising energy carrier for energy transition and decarbonization in maritime transport. The objective of this study is to develop an ex-ante environmental evaluation of two promising technologies for vessels propulsion a H2 Polymeric Electrolytic Membrane Fuel Cell (PEMFC) and a H2 Internal Combustion Engine (ICE) in order to determine their viability and eligibility compared to the traditional one a diesel ICE. The applied methodology follows the Life Cycle Assessment (LCA) guidelines considering a functional unit of 1 kWh of energy produced. LCA results reveal that both alternatives have great potential to promote the energy transition particularly the H2 ICE. However as technologies readiness level is quite low it was concluded that the assessment has been conducted at a very early stage so their sustainability and environmental performance may change as they become more widely developed and deployed which can be only achieved with political and stakeholder’s involvement and collaboration.
Vented Hydrogen Deflagrations in an ISO Container
Sep 2017
Publication
The commercial deployment of hydrogen will often involve housing portable hydrogen fuel cell power units in 20-foot or 40-foot shipping containers. Due to the unique properties of hydrogen hazards identification and consequence analysis is essential to safe guard the installations and design measures to mitigate potential hazards. In the present study the explosion of a premixed hydrogen-air cloud enclosed in a 20-foot container of 20’ x 8’ x 8’.6” is investigated in detail numerically. Numerical simulations have been performed using HyFOAM a dedicated solver for vented hydrogen explosions developed in-house within the frame of the open source computational fluid dynamics (CFD) code OpenFOAM toolbox. The flame wrinkling combustion model is used for modelling turbulent deflagrations. Additional sub-models have been added to account for lean combustion properties of hydrogen-air mixtures. The predictions are validated against the recent experiments carried out by Gexcon as part of the HySEA project supported by the Fuel Cells and Hydrogen 2 Joint Undertaking (FCH 2 JU) under the Horizon 2020 Framework Programme for Research and Innovation. The effects of congestion within the containers on the generated overpressures are also investigated.
Helios- A New Method for Hydrogen Permeation Test
Sep 2013
Publication
Hydrogen induced cracking is still a severe and current threat for several industrial applications. With the aim of providing a simple and versatile device for hydrogen detection a new instrument was designed based on solid state sensor technology. New detection technique allows to execute hydrogen permeation measurement in short time and without material surface preparation. Thanks to this innovation HELIOS offers a concrete alternative to traditional experimental methods for laboratory permeability tests. In addition it is proposed as a new system for Non Destructive Testing of components in service in hydrogenating environment. Hydrogen flux monitoring is particularly relevant for risk mitigation of elements involved in hydrogen storage and transportation. Hydrogen permeation tests were performed by means of HELIOS instruments both on a plane membrane and on the wall of a gas cylinder. Results confirmed the extreme sensitivity of the detection system and its suitability to perform measurements even on non metallic materials by means of an easy-to-handle instrument.
Influence of Doping Element in Distributed Hydrogen Optical Fiber Densors with Brillouin Scattering
Sep 2013
Publication
Distributed hydrogen optical fiber sensor with Brillouin scattering is an innovative solution to measure hydrogen in harsh environment as nuclear industry. Glass composition is the key point to enhance the sensing parameter of the fiber in the target application. Several optical fiber with different doping element were used for measuring hydrogen saturation. Permeability of optical plays a major role to the kinetic of hydrogen diffusion. Fluorine doped fiber increase the sorption and the desorption of hydrogen.
Study on Behavior of Ambient Hydraulic Cycling Test for 70 MPA Type-3 Hydrogen Composite Cylinder
Sep 2013
Publication
Hydrogen used in hydrogen fuel cell vehicles is the flammable gas which has wide flammable range and flame propagation speed is very fast. This fuel cell vehicle equipped with high-pressure vessel in the form of fuel to supply the high pressure hydrogen storage system needs to be checked carefully about a special safety design and exact weak point for high pressure repeated fatigue. 70 L liner and 70 MPa Type-3 vessel were tested using the equipments which can perform ambient hydraulic cycling test and burst test in the Korea Gas Safety Corporation. And it was performed to identify the internal external behaviour through the Finite Element Analysis (FEA) and real leakage mode for high pressure repeated fatigue when subjected to be pressurized in vessel. 70 L liner and 70 MPa Type-3 vessel were tested using the equipments which can perform ambient hydraulic cycling test and burst test in the Korea Gas Safety Corporation. And it was performed to identify the internal external behaviour through the Finite Element Analysis (FEA) and real leakage mode for high pressure repeated fatigue when subjected to be pressurized in vessel. Through this study liner of type-3 hydrogen vessel is ruptured first on cylindrical (body) part than Dome part in 8.5 MPa. Also the same Phenomena are confirmed through the Finite Element Analysis (FEA). External composite leakage mode in ambient hydraulic cycling test was occurred in different area such as the Dome Dome knuckle and cylindrical (body) parts. But cracks of inner liner for gas tight were occurred in only cylindrical (body) parts. Also in FEA results when vessel is pressurized Dome knuckle and cylindrical (body) parts is weakest among all parts because of expansion of cylindrical (body) parts.
Hydrogen Risk Analysis for a Generic Nuclear Containment Ventilation System
Oct 2015
Publication
Hydrogen safety issue in a ventilation system of a generic nuclear containment is studied. In accidental scenarios a large amount of burnable gas mixture of hydrogen with certain amount of oxygen is released into the containment. In case of high containment pressure the combustible mixture is further ventilated into the chambers and the piping of the containment ventilation system. The burnable even potentially detonable gas mixture could pose a risk to the structures of the system once being ignited unexpectedly. Therefore the main goal of the study is to apply the computational fluid dynamics (CFD) computer code – GASFLOW to analyze the distribution of the hydrogen in the ventilation system and to find how sensitive the mixture is to detonation in different scenarios. The CFD simulations manifest that a ventilation fan with sustained power supply can extinguish the hydrogen risk effectively. However in case of station blackout with loss of power supply to the fan hydrogen/oxygen mixture could be accumulated in the ventilation system. A further study proves that steam injection could degrade the sensitivity of the hydrogen mixture significantly.
Analysis of Acoustic Pressure Oscillation During Vented Deflagration
Oct 2015
Publication
In industrial buildings explosion relief panels or doors are often used to reduce damages caused by gas explosion. Decades of research produced a significant contribution to the understanding of the phenomena involved nevertheless among the aspects that need further research interaction between acoustic oscillation and the flame front is one of the more important. Interaction between the flame front and acoustic oscillation has raised technical problem in lots of combustion applications as well and had been studied theoretically and experimentally in such cases. Pressure oscillation had been observed in vented deflagration and in certain cases they are responsible for the highest pressure peak generated during the event. At Scalbatraio laboratory of Pisa University CVE test facility was built in order to investigate vented hydrogen deflagration. This paper is aimed to present an overview of the results obtained during several experimental campaigns which tests are analysed with the focus on the investigation of flame acoustic interaction phenomenon. Qualitative and quantitative analysis is presented and the possible physic generating the phenomenon investigated.
Self-ignition and Flame Propagation of Pressurized Hydrogen Released Through Tubes
Sep 2019
Publication
The spontaneous ignition of hydrogen released from the high pressure tank into the downstream pipes with different lengths varied from 0.3m to 2.2m has been investigated experimentally. In this study the development of shock wave was recorded by pressure sensors and photoelectric sensors were used to confirm the presence of a flame in the pipe. In addition the development of jet flame was recorded by high-speed camera and IR camera. The results show that the minimal release pressure in different tube when self-ignition of hydrogen occurred could decrease first and then increase with the increase of the aspect of pipe. And the minimum release pressure of hydrogen self-ignition was 3.87MPa. When the flame of self-ignition hydrogen spouted out of the tube Mach disk was observed. The method of CFD was adopted. The development of shock wave at the tube exit was reproduced and structures as barrel shock the reflected shock and the Mach disk are presented. Because of these special structures the flame at the nozzle is briefly extinguished and re-ignited. At the same time the complete development process of the jet flame was recorded including the formation and separation of the spherical flame. The flame structure exhibits three typical levels before the hemispherical flame separation.
Design of an Efficient, High Purity Hydrogen Generation Apparatus and Method for a Sustainable, Closed Clean Energy Cycle
Jul 2015
Publication
In this paper we present a detailed design study of a novel apparatus for safely generating hydrogen (H2) on demand according to a novel method using a controlled chemical reaction between water (H2O) and sodium (Na) metal that yields hydrogen gas of sufficient purity for direct use in fuel cells without risk of contaminating sensitive catalysts. The apparatus consists of a first pressure vessel filled with liquid H2O with an overpressure of nitrogen (N2) gas above the H2O reactant and a second pressure vessel that stores solid Na reactant. Hydrogen gas is generated above the solid Na when H2O reactant is introduced using a regulator that senses when the downstream pressure of H2 gas above the solid Na reactant has dropped below a threshold value. The sodium hydroxide (NaOH) byproduct of the hydrogen producing reaction is collected within the apparatus for later reprocessing by electrolysis to recover the Na reactant.
Hydrogen-air Vented Explosions- New Experimental Data
Sep 2013
Publication
The use of hydrogen as an energy carrier is a real perspective in Europe since a number of breakthroughs obtained in the last decades open the possibility to envision a deployment at the industrial scale if safety issues are duly accounted. However on this particular aspects experimental data are still lacking especially about the explosion dynamics in realistic dimensions. The purpose of this paper is to provide a set of totally new and well instrumented hydrogen - air vented explosions. Experiments were performed in a large explosion chamber within the scope of the DIMITRHY project (sponsored by the National French Agency for Research). The 4 m3 rectangular experimental chamber (2 m height 2 m width and 1 m depth) is equipped with transparent walls and is vented (0.25 and 0.5 m2 square vents).. Six pressure gauges were used to measure the overpressure evolution inside and outside the chamber. Six concentration gauges were used to control the hydrogen repartition in the vessel. The hydrogen-air cloud was seeded with micro particles of ammonium chloride to see the propagation of the flame the movement of the cloud inside and outside the chamber. The incidence of reactivity vent size ignition position and non homogenous repartition of hydrogen received a particular attention.
In-situ Study of the Effect of Hydrogen on Fatigue Crack Initiation in Polycrystalline Nickel
Aug 2019
Publication
Correlating hydrogen embrittlement phenomenon with the metallic microstructural features holds the key for developing metals resistant to hydrogen-based failures. In case of fatigue failure of hydrogen charged metals in addition to the hydrogen-based failure mechanisms associated with monotonic loading such as HELP HEDE etc. microstructural features such as grain size type of grain boundary (special/random) fraction of special grain boundaries; their network and triple junctions can play a complex role. The probable sites for fatigue crack initiation in such metals can be identified as the sites of highest hydrogen concentration or accumulated plastic strain. To this end we have developed an experimental framework based on in-situ fatigue crack initiation and propagation studies under scanning electron microscope (SEM) to identify the weakest link in the metallic microstructure leading to failure. In-situ fatigue experiments are performed on carefully designed polycrystalline nickel (99.95% pure) specimens (miniaturised shallow-notched & electro-polished) using a 10 kN fatigue stage inside the SEM. Electron Back Scattering Diffraction (EBSD) map of the notched region surface helps identify the distribution of special/random grain boundaries triple junctions and grain orientation. The specimen surface in the shallow notched region for both the hydrogen charged and un-charged specimens are then carefully studied to correlate the microstructural feature associated with fatigue crack initiation sites. Such correlation of the fatigue crack initiation site and microstructural feature is further corroborated with the knowledge of hydrogen trapping and grain’s elastic anisotropicity to be either the site of high hydrogen concentration accumulated plastic slip or both.
Vented Hydrogen-air Deflagrations in Low Strength Equipment and Buildings
Sep 2013
Publication
This paper aims to improve prediction capability of the vent sizing correlation presented in the form of functional dependence of the dimensionless deflagration overpressure on the turbulent Bradley number similar to our previous studies. The correlation is essentially upgraded based on recent advancements in understanding and modelling of combustion phenomena relevant to hydrogen-air vented deflagrations and unique large-scale tests carried out by different research groups. The focus is on hydrogen-air deflagrations in low-strength equipment and buildings when the reduced pressure is accepted to be below 0.1 MPa. The combustion phenomena accounted for by the correlation include: turbulence generated by the flame front itself; leading point mechanism stemming from the preferential diffusion of hydrogen in air in stretched flames; growth of the fractal area of the turbulent flame surface; initial turbulence in the flammable mixture; as well as effects of enclosure aspect ratio and presence of obstacles. The correlation is validated against the widest range of experimental conditions available to date (76 experimental points). The validation covers a wide range of test conditions: different shape enclosures of volume up to 120 m3; initially quiescent and turbulent hydrogen-air mixtures; hydrogen concentration in air from 6% to 30% by volume; ignition source location at enclosure centre near and far from a vent; empty enclosures and enclosures with obstacles.
No more items...