Publications
Techno-economic Viability of Islanded Green Ammonia as a Carbon-free Energy Vector and as a Substitute for Conventional Production
Jul 2020
Publication
Decarbonising ammonia production is an environmental imperative given that it independently accounts for 1.8% of global carbon dioxide emissions and supports the feeding of over 48% of the global population. The recent decline of production costs and its potential as an energy vector warrant investigation of whether green ammonia production is commercially competitive. Considering 534 locations in 70 countries and designing and operating the islanded production process to minimise the levelised cost of ammonia (LCOA) at each we show the range of achievable LCOA the cost of process flexibility the components of LCOA and therein the scope of LCOA reduction achievable at present and in 2030. These results are benchmarked against ammonia spot prices cost per GJ of refined fuels and the LCOE of alternative energy storage methods. Currently a LCOA of $473 t1 is achievable at the best locations the required process flexibility increases the achievable LCOA by 56%; the electrolyser CAPEX and operation are the most significant costs. By 2030 $310 t1 is predicted to be achievable with multiple locations below $350 t1 . At $25.4 GJ11 ) that do not have the benefit of being carbon-free.
Simulation and Study of PEMFC System Directly Fueled by Ammonia Decomposition Gas
Mar 2022
Publication
Ammonia can be stored as a liquid under relatively easy conditions (Ambient temperature by applying 10 bar or Ambient pressure with the temperature of 239 K). At the same time liquid ammonia has a high hydrogen storage density and is therefore a particularly promising carrier for hydrogen storage. At the same time the current large-scale industrial synthesis of ammonia has long been mature and in the future it will be possible to achieve a zero-emission ammonia regeneration cycle system by replacing existing energy sources with renewable ones. Ammonia does not contain carbon and its use in fuel cells can avoid NOx production during energy release. high temperature solid oxide fuel cells can be directly fueled by ammonia and obtain good output characteristics but the challenges inherent in high temperature solid oxide fuel cells greatly limit the implementation of this option. Whereas PEMFC has gained initial commercial use however for PEMFC ammonia is a toxic gas so the general practice is to convert ammonia to pure hydrogen. Ammonia to hydrogen requires decomposition under high temperature and purification which increases the complexity of the fuel system. In contrast PEMFC that can use ammonia decomposition gas directly can simplify the fuel system and this option has already obtained preliminary experimental validation studies. The energy efficiency of the system obtained from the preliminary validation experiments is only 34–36% which is much lower than expected. Therefore this paper establishes a simulation model of PEMFC directly using ammonia decomposition gas as fuel to study the maximum efficiency of the system and the effect of the change of system parameters on the efficiency and the results show that the system efficiency can reach up to 45% under the condition of considering certain heat loss. Increasing the ammonia decomposition reaction temperature decreases the system efficiency but the effect is small and the system efficiency can reach 44% even at a temperature of 850°C. The results of the study can provide a reference for a more scientific and quantitative assessment of the potential value of direct ammonia decomposition gas-fueled PEMFC.
The Spatio-Temporal Evolution of China’s Hydrogen Fuel Cell Vehicle Innovation Network: Evidence From Patent Citation at Provincial Level
Oct 2021
Publication
Hydrogen fuel cell vehicle industry is in a rapid development stage. Studying the domestic spatial distribution of hydrogen fuel cell vehicle industry across a country especially the spatio-temporal evolution of the innovation level and position of each region in innovation network will help to understand the industry’s development trends and characteristics and avoid repeated construction. This article uses social network analysis and patent citation information of 2971 hydrogen fuel cell vehicle related invention patents owned by 218 micro-innovators across 25 provinces of China from 2001 to 2020 to construct China’s hydrogen fuel cell vehicle innovation network. Based on the dimensions of knowledge production knowledge consumption and network broker the network positions of sample provinces in three periods divided by four main national policies are classified. The main findings are as follows. 1) In China the total sales of hydrogen fuel cell vehicle and the development of supporting infrastructure are balanced and a series of national and local industrial development polices have been issued. 2) China’s hydrogen fuel cell vehicle innovation network density the proportion of universities and research institutes among the innovators and the active degree of the eastern provinces are all becoming higher. 3) The provinces in optimal network position are all from the eastern region. Shanghai and Liaoning are gradually replaced by Beijing and Jiangsu. 4) Sichuan in the western region is the only network broker based on knowledge consumption. 5) Although Zhejiang Tianjin Hebei Guangdong and Hubei are not yet in the optimal position they are outstanding knowledge producers. Specifically Guangdong is likely to climb to the optimal network position in the next period. The conclusions will help China’s provinces to formulate relevant development policies to optimize industry layout and enhance collaborative innovation in the hydrogen fuel cell vehicle industry.
Exploring Technological Solutions for Onboard Hydrogen Storage Systems Through a Heterogeneous Knowledge Network: From Current State to Future Research Opportunities
Jun 2022
Publication
With the imminent threat of the energy crises innovation in energy technologies is happening world-wide. The aim is to reduce our reliance on fossil fuels. Electric vehicles with fuel-cells that use hydrogen as an energy carrier are touted to be one of the most important potential replacements of the gasoline vehicle in both future transportation scenarios and emerging smart energy grids. However hydrogen storage is a major technical barrier that lies between where we are now and the mass application of hydrogen energy. Further exploration of onboard hydrogen storage systems (OHSS) is urgently needed and in this regard a comprehensive technology opportunity analysis will help. Hence with this research we drew on scientific papers and patents related to OHSS and developed a novel methodology for investigating the past present and future development trends in OHSS. Specifically we constructed a heterogeneous knowledge network using a unique multi-component structure with three core components: hydrogen carriers hydrogen storage materials and fuel cells. From this network we extracted both the developed and underdeveloped technological solutions in the field and applied a well-designed evaluation system and prediction model to score the future development potential of these technological solutions. What emerged was the most promising directions of research in the short medium and long term. The results show that our methodology can effectively identify technology opportunities in OHSS along with providing valuable decision support to researchers and enterprise managers associated with the development and application of OHSS.
Environmental Benefit and Investment Value of Hydrogen-Based Wind-Energy Storage System
Mar 2021
Publication
Alongside the rapid expansion of wind power installation in China wind curtailment is also mounting rapidly due to China’s energy endowment imbalance. The hydrogen-based wind-energy storage system becomes an alternative to solve the puzzle of wind power surplus. This article introduced China’s energy storage industry development and summarized the advantages of hydrogen-based wind-energy storage systems. From the perspective of resource conservation it estimated the environmental benefits of hydrogen-based wind-energy storages. This research also builds a valuation model based on the Real Options Theory to capture the distinctive flexible charging and discharging features of the hydrogen-based wind-energy storage systems. Based on the model simulation results including the investment value and operation decision of the hydrogen energy storage system with different electricity prices system parameters and different levels of subsidies are presented. The results show that the hydrogen storage system fed with the surplus wind power can annually save approximately 2.19–3.29 million tons of standard coal consumption. It will reduce 3.31–4.97 million tons of CO2 SO2 NOx and PM saving as much as 286.6–429.8 million yuan of environmental cost annually on average. The hydrogen-based wind-energy storage system’s value depends on the construction investment and operating costs and is also affected by the meanreverting nature and jumps or spikes in electricity prices. The market-oriented reform of China’s power sector is conducive to improve hydrogen-based wind-energy storage systems’ profitability. At present subsidies are still essential to reduce initial investment and attract enterprises to participate in hydrogen energy storage projects.
A Simulated Roadmap of Hydrogen Technology Contribution to Climate Change Mitigation Based on Representative Concentration Pathways Considerations
Apr 2018
Publication
Hydrogen as fuel has been a promising technology toward climate change mitigation efforts. To this end in this paper we analyze the contribution of hydrogen technology to our future environmental goals. It is assumed that hydrogen is being produced in higher efficiency across time and this is simulated on Global Change Assessment Model (GCAM). The environmental restrictions applied are the expected emissions representative concentration pathways (RCP) 2.6 4.5 and 6.0. Our results have shown increasing hydrogen production as the environmental constraints become stricter and hydrogen more efficient in being produced. This increase has been quantified and provided on open access as Supporting Information to this manuscript.
Hydrogen-Electric Coupling Coordinated Control Strategy of Multi-Station Integrated System Based on the Honeycomb Topology
Mar 2022
Publication
With the high-proportion accession of renewable energy and randomness of the load side in the new energy power system unbalanced feeder power and heavy overload of the transformer caused by massive access of highly uncertain source loads become more and more serious. In order to solve the aforementioned problems a honeycomb topology of the multi-station integrated system is proposed. The soft open point (SOP) is used as the key integrated equipment of the internal unit of a multi-station integrated system. The honeycomb grid structure is composed of flexible nodes and the multi-station integrated system is composed of multi-network flexible interconnection. Based on the characteristics of the regional resource endowment hydrogen energy flow is deeply coupled in parts of honeycomb grids. In order to improve the reliability and flexibility of the multi-station integrated unit the structure of the new multi-station integrated unit the power balance constraints on the unit and the switching process of SOP control mode are studied. At the same time the hydrogen electricity coupling structure and the coordinated control strategy of hydrogen electricity conversion are proposed to solve the problem of deep application of hydrogen energy. Finally the effectiveness of the proposed multi-station integrated system is verified by using three simulation models.
Contribution of Potential Clean Trucks in Carbon Peak Pathway of Road Freight Based on Scenario Analysis: A Case Study of China
Oct 2022
Publication
Reducing the carbon emissions from trucks is critical to achieving the carbon peak of road freight. Based on the prediction of truck population and well-to-wheel (WTW) emission analysis of traditional diesel trucks and potential clean trucks including natural gas battery-electric plug-in hybrid electric and hydrogen fuel cell the paper analyzed the total greenhouse gas (GHG) emissions of China's road freight under four scenarios including baseline policy facilitation (PF) technology breakthrough (TB) and PF-TB. The truck population from 2021 to 2035 is predicted based on regression analysis by selecting the data from 2002 to 2020 of the main variables such as the GDP scale road freight turnover road freight volume and the number of trucks. The study forecasts the truck population of different segments such as mini-duty trucks (MiDT) light-duty trucks (LDT) medium-duty trucks (MDT) and heavy-duty trucks (HDT). Relevant WTW emissions data are collected and adopted based on the popular truck in China's market PHEVs have better emission intensity especially in the HDT field which reduces by 51% compared with ICEVs. Results show that the scenario of TB and PF-TB can reach the carbon peak with 0.13% and 1.5% total GHG emissions reduction per year. In contrast the baseline and PF scenario fail the carbon peak due to only focusing on the number of clean trucks while lacking the restrictions on the GHG emission factors of energy and ignoring the improvement of trucks' energy efficiency and the total emissions increased by 29.76% and 16.69% respectively compared with 2020. As the insights adopting clean trucks has an important but limited effect which should coordinate with the transition to low carbon energy and the melioration of clean trucks to reach the carbon peak of road freight in China.
A Systematic Review of the Techno-economic Assessment of Various Hydrogen Production Methods of Power Generation
Oct 2022
Publication
Hydrogen is a low or zero-carbon energy source that is considered the most promising and potential energy carrier of the future. In this study the energy sources feedstocks and various methods of hydrogen production from power generation are comparatively investigated in detail. In addition this study presents an economic assessment to evaluate cost-effectiveness based on different economic indicators including sensitivity analysis and uncertainty analysis. Proton exchange membrane fuel cell (PEMFCs) technology has the most potential to be developed compared to several other technologies. PEMFCs have been widely used in various fields and have advantages (i.e. start-up zero-emissions high power density). Among the various sources of uncertainty in the sensitivity analysis the cost estimation method shows inflationary deviations from the proposed cost of capital. This is due to the selection process and untested technology. In addition the cost of electricity and raw materials as the main factors that are unpredictable.
Fuel Cell Hybrid Model for Predicting Hydrogen Inflow through Energy Demand
Nov 2019
Publication
Hydrogen-based energy storage and generation is an increasingly used technology especially in renewable systems because they are non-polluting devices. Fuel cells are complex nonlinear systems so a good model is required to establish efficient control strategies. This paper presents a hybrid model to predict the variation of H2 flow of a hydrogen fuel cell. This model combining clusters’ techniques to get multiple Artificial Neural Networks models whose results are merged by Polynomial Regression algorithms to obtain a more accurate estimate. The model proposed in this article use the power generated by the fuel cell the hydrogen inlet flow and the desired power variation to predict the necessary variation of the hydrogen flow that allows the stack to reach the desired working point. The proposed algorithm has been tested on a real proton exchange membrane fuel cell and the results show a great precision of the model so that it can be very useful to improve the efficiency of the fuel cell system.
Electrochemical Ammonia: Power to Ammonia Ratio and Balance of Plant Requirements for Two Different Electrolysis Approaches
Nov 2021
Publication
Electrochemical ammonia generation allows direct low pressure synthesis of ammonia as an alternative to the established Haber-Bosch process. The increasing need to drive industry with renewable electricity central to decarbonisation and electrochemical ammonia synthesis offers a possible efficient and low emission route for this increasingly important chemical. It also provides a potential route for more distributed and small-scale ammonia synthesis with a reduced production footprint. Electrochemical ammonia synthesis is still early stage but has seen recent acceleration in fundamental understanding. In this work two different ammonia electrolysis systems are considered. Balance of plant (BOP) requirements are presented and modelled to compare performance and determine trade-offs. The first option (water fed cell) uses direct ammonia synthesis from water and air. The second (hydrogen-fed cell) involves a two-step electrolysis approach firstly producing hydrogen followed by electrochemical ammonia generation. Results indicate that the water fed approach shows the most promise in achieving low energy demand for direct electrochemical ammonia generation. Breaking the reaction into two steps for the hydrogen fed approach introduces a source of inefficiency which is not overcome by reduced BOP energy demands and will only be an attractive pathway for reactors which promise both high efficiency and increased ammonia formation rate compared to water fed cells. The most optimised scenario investigated here with 90% faradaic efficiency (FE) and 1.5 V cell potential (75% nitrogen utilisation) gives a power to ammonia value of 15 kWh/kg NH3 for a water fed cell. For the best hydrogen fed arrangement the requirement is 19 kWh/kg NH3. This is achieved with 0.5 V cell potential and 75% utilisation of both hydrogen and nitrogen (90% FE). Modelling demonstrated that balance of plant requirements for electrochemical ammonia are significant. Electrochemical energy inputs dominate energy requirements at low FE however in cases of high FE the BOP accounts for approximately 50% of the total energy demand mostly from ammonia separation requirements. In the hydrogen fed cell arrangement it was also demonstrated that recycle of unconverted hydrogen is essential for efficient operation even in the case where this increases BOP energy inputs
EU Decarbonization under Geopolitical Pressure: Changing Paradigms and Implications for Energy and Climate Policy
Mar 2023
Publication
This paper aims to assess the impact of EU energy and climate policy as a response to Russia’s war in Ukraine on the EU decarbonization enterprise. It showcases how the Russian invasion was a crunch point that forced the EU to abandon its liberal market dogma and embrace in practice an open strategic autonomy approach. This led to an updated energy and climate policy with significant changes underpinning its main pillars interdependence diversification and the focus of market regulation and build-up. The reversal of enforced interdependence with Russia and the legislative barrage to support and build-up a domestic clean energy market unlocks significant emission reduction potential with measures targeting energy efficiency solar wind and hydrogen development; an urban renewable revolution and electricity and carbon market reforms standing out. Such positive decarbonization effects however are weakened by source and fuel diversification moves that extend to coal and shale gas especially when leading to an infrastructure build-up and locking-in gas use in the mid-term. Despite these caveats the analysis overall vindicates the hypothesis that geopolitics constitutes a facilitator and accelerator of EU energy transition.
The Interaction between Short- and Long-Term Energy Storage in an nZEB Office Building
Mar 2024
Publication
The establishment of near-autonomous micro-grids in commercial or public building complexes is gaining increasing popularity. Short-term storage capacity is provided by means of large battery installations or more often by the employees’ increasing use of electric vehicle batteries which are allowed to operate in bi-directional charging mode. In addition to the above short-term storage means a long-term storage medium is considered essential to the optimal operation of the building’s micro-grid. The most promising long-term energy storage carrier is hydrogen which is produced by standard electrolyzer units by exploiting the surplus electricity produced by photovoltaic installation due to the seasonal or weekly variation in a building’s electricity consumption. To this end a novel concept is studied in this paper. The details of the proposed concept are described in the context of a nearly Zero Energy Building (nZEB) and the associated micro-grid. The hydrogen produced is stored in a high-pressure tank to be used occasionally as fuel in an advanced technology hydrogen spark ignition engine which moves a synchronous generator. A size optimization study is carried out to determine the genset’s rating the electrolyzer units’ capacity and the tilt angle of the rooftop’s photovoltaic panels which minimize the building’s interaction with the external grid. The hydrogen-fueled genset engine is optimally sized to 40 kW (0.18 kW/kWp PV). The optimal tilt angle of the rooftop PV panels is 39◦ . The maximum capacity of the electrolyzer units is optimized to 72 kW (0.33 kWmax/kWp PV). The resulting system is tacitly assumed to integrate to an external hydrogen network to make up for the expected mismatches between hydrogen production and consumption. The significance of technology in addressing the current challenges in the field of energy storage and micro-grid optimization is discussed with an emphasis on its potential benefits. Moreover areas for further research are highlighted aiming to further advance sustainable energy solutions.
A Review of Hydrogen/rock/brine Interaction: Implications for Hydrogen Geo-storage
Dec 2022
Publication
Hydrogen (H2) is currently considered a clean fuel to decrease anthropogenic greenhouse gas emissions and will play a vital role in climate change mitigation. Nevertheless one of the primary challenges of achieving a complete H2 economy is the large-scale storage of H2 which is unsafe on the surface because H2 is highly compressible volatile and flammable. Hydrogen storage in geological formations could be a potential solution to this problem because of the abundance of such formations and their high storage capacities. Wettability plays a critical role in the displacement of formation water and determines the containment safety storage capacity and amount of trapped H2 (or recovery factor). However no comprehensive review article has been published explaining H2 wettability in geological conditions. Therefore this review focuses on the influence of various parameters such as salinity temperature pressure surface roughness and formation type on wettability and consequently H2 storage. Significant gaps exist in the literature on understanding the effect of organic material on H2 storage capacity. Thus this review summarizes recent advances in rock/H2/brine systems containing organic material in various geological reservoirs. The paper also presents influential parameters affecting H2 storage capacity and containment safety including liquid–gas interfacial tension rock–fluid interfacial tension and adsorption. The paper aims to provide the scientific community with an expert opinion to understand the challenges of H2 storage and identify storage solutions. In addition the essential differences between underground H2 storage (UHS) natural gas storage and carbon dioxide geological storage are discussed and the direction of future research is presented. Therefore this review promotes thorough knowledge of UHS provides guidance on operating large-scale UHS projects encourages climate engineers to focus more on UHS research and provides an overview of advanced technology. This review also inspires researchers in the field of climate change to give more credit to UHS studies.
Determining the Production and Transport Cost for H2 on a Global Scale
May 2022
Publication
Hydrogen (H2) produced using renewable energy could be used to reduce greenhouse gas (GHG) emissions in industrial sectors such as steel chemicals transportation and energy storage. Knowing the delivered cost of renewable H2 is essential to decisionmakers looking to utilize it. The cheapest location to source it from as well as the transport method and medium are also crucial information. This study presents a Monte Carlo simulation to determine the delivered cost for renewable H2 for any usage location globally as well as the most cost-effective production location and transport route from nearly 6000 global locations. Several industrially dense locations are selected for case studies the primary two being Cologne Germany and Houston United States. The minimum delivered H2 cost to Cologne is 9.4 €/kg for small scale (no pipelines considered) shipped from northern Egypt as a liquid organic hydrogen carrier (LOHC) and 7.6 €/kg piped directly as H2 gas from southern France for large scale (pipelines considered). For smallscale H2 in Houston the minimum delivered cost is 8.6 €/kg trucked as H2 gas from the western Gulf of Mexico and 7.6 €/kg for large-scale demand piped as H2 gas from southern California. The south-west United States and Mexico northern Chile the Middle East and north Africa south-west Africa and north-west Australia are identified as the regions with the lowest renewable H2 cost potential with production costs ranging from 6.7—7.8 €/kg in these regions. Each is able to supply differing industrially dominant areas. Furthermore the effect of parameters such as year of construction electrolyser and H2 demand is analysed. For the case studies in Houston and Cologne the delivered H2 cost is expected to reduce to about 7.8 €/kg by 2050 in Cologne (no pipelines considered PEM electrolyser) and 6.8 €/kg in Houston.
Life Cycle Assessment of Alternative Ship Fuels for Coastal Ferry Operating in Republic of Korea
Aug 2020
Publication
In this study the environmental impacts of various alternative ship fuels for a coastal ferry were assessed by the life cycle assessment (LCA) analysis. The comparative study was performed with marine gas oil (MGO) natural gas and hydrogen with various energy sources for a 12000 gross tonne (GT) coastal ferry operating in the Republic of Korea (ROK). Considering the energy imports of ROK i.e. MGO from Saudi Arabia and natural gas from Qatar these countries were chosen to provide the MGO and the natural gas for the LCA. The hydrogen is considered to be produced by steam methane reforming (SMR) from natural gas with hard coal nuclear energy renewable energy and electricity in the ROK model. The lifecycles of the fuels were analyzed in classifications of Well-toTank Tank-to-Wake and Well-to-Wake phases. The environmental impacts were provided in terms of global warming potential (GWP) acidification potential (AP) photochemical potential (POCP) eutrophication potential (EP) and particulate matter (PM). The results showed that MGO and natural gas cannot be used for ships to meet the International Maritime Organization’s (IMO) 2050 GHG regulation. Moreover it was pointed out that the energy sources in SMR are important contributing factors to emission levels. The paper concludes with suggestions for a hydrogen application plan for ships from small nearshore ships in order to truly achieve a ship with zero emissions based on the results of this study.
Hydrogen Emissions from a Hydrogen Economy and their Potential Global Warming Impact
Aug 2022
Publication
Hydrogen (H2) is expected to be a key instrument to meet the European Union (EU) Green Deal main objective: i.e. climate neutrality by 2050. Renewable hydrogen deployment is expected to significantly reduce EU greenhouse gas (GHG) emissions by displacing carbon-intensive sources of energy. However concerns have been raised recently regarding the potential global warming impact caused by hydrogen emissions. Although hydrogen is neither intentionally emitted to the atmosphere when used nor a direct greenhouse gas hydrogen losses affect atmospheric chemistry indirectly contributing to global warming. To better understand the potential environmental impact of a hydrogen economy and to assess the need for action in this respect the Clean Hydrogen Joint Undertaking and the U.S. Department of Energy jointly organised with the support of the European Commission Hydrogen Europe Hydrogen Europe Research the Hydrogen Council and the International Partnership for Hydrogen and Fuel Cells in the Economy a 2-day expert workshop. Experts agreed that a low-carbon and in particular a renewable hydrogen economy would significantly reduce the global warming impact compared to a fossil fuel economy. However hydrogen losses to the atmosphere will impact the lifetime of other greenhouse gases namely methane ozone and water vapour indirectly contributing to the increase of the Earth’s temperature in the near-term. To minimise the climate impact of a hydrogen economy losses should therefore be minimised prevented and monitored. Unfortunately current loss rates along the hydrogen supply chain are not well constrained and are currently estimated to go from few percents for compressed hydrogen (1-4%) up to 10-20% for liquefied hydrogen. Both the global warming impact of hydrogen emissions and the leakage rates from a developed hydrogen economy are subject to a high level of uncertainty. It is therefore of paramount importance to invest in developing the ability to accurately quantify hydrogen emissions as well as engage in more research on hydrogen leakage prevention and monitoring systems. More data from the hydrogen industry and improved observational capacity are needed to improve the accuracy of the global hydrogen budget. Finally it is recommended to always report the amount and location of hydrogen emissions when environmental assessments are performed. There is a range of emission metrics and time scales that are designed to evaluate the climate impacts of short-lived GHG emissions compared to CO2 (i.e. CO2 equivalents). The metric choice must depend on the specific policy goal as they can provide very different perspectives on the relative importance of H2 emissions on the climate depending on the time horizon of concern. These differences need to be viewed in the context of the specific policy objectives.
Flexible Power and Biomass-To-Methanol Plants With Different Gasification Technologies
Jan 2022
Publication
The competitiveness of biofuels may be increased by integrating biomass gasification plants with electrolysis units which generate hydrogen to be combined with carbon-rich syngas. This option allows increasing the yield of the final product by retaining a higher amount of biogenic carbon and improving the resilience of the energy sector by favoring electric grid services and sector coupling. This article illustrates a techno-economic comparative analysis of three flexible power and biomass to methanol plants based on different gasification technologies: direct gasification indirect gasification and sorptionenhanced gasification. The design and operational criteria of each plant are conceived to operate both without green hydrogen addition (baseline mode) and with hydrogen addition (enhanced mode) following an intermittent use of the electrolysis system which is turned on when the electricity price allows an economically viable hydrogen production. The methanol production plants include a gasification section syngas cleaning conditioning and compression section methanol synthesis and purification and heat recovery steam cycle to be flexibly operated. Due to the high oxygen demand in the gasifier the direct gasification-based plant obtains a great advantage to be operated between a minimum load to satisfy the oxygen demand at high electricity prices and a maximum load to maximize methanol production at low electricity prices. This allows avoiding large oxygen storages with significant benefits for Capex and safety issues. The analysis reports specific fixed-capital investments between 1823 and 2048 €/kW of methanol output in the enhanced operation and LCOFs between 29.7 and 31.7 €/GJLHV. Economic advantages may be derived from a decrease in the electrolysis capital investment especially for the direct gasification-based plants which employ the greatest sized electrolyzer. Methanol breakeven selling prices range between 545 and 582 €/t with the 2019 reference Denmark electricity price curve and between 484 and 535 €/t with an assumed modified electricity price curve of a future energy mix with increased penetration of intermittent renewables.
Hydrogen for the De-carbonization of the Resources and Energy Intensive Industries (REIIs)
Aug 2022
Publication
This study deals with the use of hydrogen for the de-carbonization of the Resources and Energy Intensive Industries (REIIs) and gives a specific insight of the situation of the steel-making industry. The growing use of hydrogen in our economy is synonym for an equal increase in electricity consumption. This results from the fact that the current most promising technologies of H2 production is water electrolysis. For this purpose the EU hydrogen strategy foresees a progressive ramp up of H2 production capacities. But bottlenecks (especially regarding energy needed for electrolysers) may occur. Capacities should reach 40 GW (around 10 Mt/y) by the end of 2030. The steel-making industry relies heavily on H2 to decarbonise its process (through direct iron ore reduction). Our study analyses the conditions under which this new process will be able to compete with both European and offshore existing carbonised assets (i.e. blast furnaces). It emphasises the need for integrated and consistent policies from carbon prices to the carbon border adjustment mechanism through carbon contracts for differences but also highlightsthat a better regulation of electricity prices should not be neglected.
Potential Global Warming Impact of 1 kW Polymer Electrolyte Membrane Fuel Cell System for Residential Buildings on Operation Phase
Mar 2023
Publication
This study established global warming potential(GWP) emission factors through a life cycle assessment on the operation phases of two different 1 kW polymer electrolyte membrane fuel cell (PEMFC) systems for residential buildings (NG-PEMFC fed with hydrogen from natural gas reforming; WE-PEMFC fed with hydrogen from photovoltaics-powered water electrolyzer). Their effectiveness was also compared with conventional power grid systems in Korea specifically in the area of greenhouse gas emissions. The operation phases of the NG-PEMFC and the WE-PEMFC were divided into burner reformer and stack and into water electrolysis and stack respectively. The functional unit of each fuel cell system was defined as 1 kWh of electricity production. In the case of NG-PEMFC the GWP was 3.72E-01 kg-CO2eq/kWh the embodied carbon emissions due to using city gas during the life cycle process was about 20.87 % the carbon emission ratio according to the reformer's combustion burner was 6.07 % and the direct carbon emission ratio of the air emissions from the reformer was 73.06 % indicating that the carbon emission from the reformer contributed over 80 % of the total GWP. As for the WE-PEMFC the GWP was 1.76E-01 kg-CO2eq/kWh and the embodied carbon emissions from photovoltaic power generation during the life cycle process contributed over 99 % of the total GWP.
Exploring Supply Chain Design and Expansion Planning of China's Green Ammonia Production with an Optimization-based Simulation Approach
Aug 2021
Publication
Green ammonia production as an important application for propelling the upcoming hydrogen economy has not been paid much attention by China the world's largest ammonia producer. As a result related studies are limited. This paper explores potential supply chain design and planning strategies of green ammonia production in the next decade of China with a case study in Inner Mongolia. A hybrid optimization-based simulation approach is applied considering traditional optimization approaches are insufficient to address uncertainties and dynamics in a long-term energy transition. Results show that the production cost of green ammonia will be at least twice that of the current level due to higher costs of hydrogen supply. Production accounts for the largest share of the total expense of green hydrogen (~80 %). The decline of electricity and electrolyser prices are key in driving down the overall costs. In addition by-product oxygen is also considered in the model to assess its economic benefits. We found that by-product oxygen sales could partly reduce the total expense of green hydrogen (~12 % at a price of USD 85/t) but it also should be noted that the volatile price of oxygen may pose uncertainties and risks to the effectiveness of the offset. Since the case study may represent the favourable conditions in China due to the abundant renewable energy resources and large-scale ammonia industry in this region we propose to take a moderate step towards green ammonia production and policies should be focused on reducing the electricity price and capital investments in green hydrogen production. We assume the findings and implications are informative to planning future green ammonia production in China.
Optimal Renewable Energy Distribution Between Gasifier and Electrolyzer for Syngas Generation in a Power and Biomass-to-Liquid Fuel Process
Jan 2022
Publication
By adding energy as hydrogen to the biomass-to-liquid (BtL) process several published studies have shown that carbon efficiency can be increased substantially. Hydrogen can be produced from renewable electrical energy through the electrolysis of water or steam. Adding high-temperature thermal energy to the gasifier will also increase the overall carbon efficiency. Here an economic criterion is applied to find the optimal distribution of adding electrical energy directly to the gasifier as opposed to the electrolysis unit. Three different technologies for electrolysis are applied: solid oxide steam electrolysis (SOEC) alkaline water electrolysis (AEL) and proton exchange membrane (PEM). It is shown that the addition of part of the renewable energy to the gasifier using electric heaters is always beneficial and that the electrolysis unit operating costs are a significant portion of the costs. With renewable electricity supplied at a cost of 50 USD/MWh and a capital cost of 1500 USD/kW installed SOEC the operating costs of electric heaters and SOEC account for more than 70% of the total costs. The energy efficiency of the electrolyzer is found to be more important than the capital cost. The optimal amount of energy added to the gasifier is about 37–39% of the energy in the biomass feed. A BtL process using renewable hydrogen imports at 2.5 USD/kg H2 or SOEC for hydrogen production at reduced electricity prices gives the best values for the economic objective.
Hydrogen Relative Permeability Hysteresis in Underground Storage
Aug 2022
Publication
Implementation of the hydrogen economy for emission reduction will require storage facilitiesand underground hydrogen storage (UHS) in porous media offers a readily available large-scale option. Lack ofstudies on multiphase hydrogen flow in porous media is one of the several barriers for accurate predictions ofUHS. This paper reports for the first time measurements of hysteresis in hydrogen-water relative permeabilityin a sandstone core under shallow storage conditions. We use the steady state technique to measure primarydrainage imbibition and secondary drainage relative permeabilities and extend laboratory measurements withnumerical history matching and capillary pressure measurements to cover the whole mobile saturation range.We observe that gas and water relative permeabilities show strong hysteresis and nitrogen as substitute forhydrogen in laboratory assessments should be used with care. Our results serve as calibrated input to field scalenumerical modeling of hydrogen injection and withdrawal processes during porous media UHS.
Low-Carbon Economic Dispatch of Integrated Energy Systems in Industrial Parks Considering Comprehensive Demand Response and Multi-Hydrogen Supply
Mar 2024
Publication
To address the increasing hydrogen demand and carbon emissions of industrial parks this paper proposes an integrated energy system dispatch strategy considering multi-hydrogen supply and comprehensive demand response. This model adopts power-to-gas technology to produce green hydrogen replacing a portion of gray hydrogen and incorporates a carbon capture system to effectively reduce the overall carbon emissions of the industrial park. Meanwhile incentive-based and price-based demand response strategies are implemented to optimize the load curve. A scheduling model is established targeting the minimization of procurement operation carbon emission and wind curtailment costs. The case study of a northern industrial park in China demonstrates that the joint supply of green and gray hydrogen reduces carbon emissions by 40.98% and costs by 17.93% compared to solely using gray hydrogen. The proposed approach successfully coordinates the economic and environmental performance of the integrated energy system. This study provides an effective scheduling strategy for industrial parks to accommodate high shares of renewables while meeting hydrogen needs and carbon reduction targets.
Hybrid PEM Fuel Cell Power Plants Fuelled by Hydrogen for Improving Sustainability in Shipping: State of the Art and Review on Active Projects
Feb 2023
Publication
The interest in hybrid polymer electrolyte membrane fuel cells (PEMFC) fuelled by hydrogen in shipping has seen an unprecedented growth in the last years as it could allow zero-emission navigation. However technical safety and regulatory barriers in PEMFC ship design and operation are hampering the use of such systems on a large scale. While several studies analyse these aspects a comprehensive and up-to-date overview on hydrogen PEMFCs for shipping is missing. Starting from the survey of past/ongoing projects on FCs in shipping this paper presents an extensive review on maritime hydrogen PEMFCs outlining the state of the art and future trends for hydrogen storage and bunkering powertrain and regulations. In addition to the need for a clear regulatory framework future studies should investigate the development of an efficient fuel supply chain and bunkering facilities ashore. As for the onboard power system health-conscious energy management low-temperature heat recovery and advancements in fuel processing have emerged as hot research topics.
Low-Carbon Strategic Planning of Integrated Energy Systems
Mar 2022
Publication
With the rapid promotion of renewable energy technologies and the trend to a low-carbon society the positive impacts of an integrated energy system that realizes various forms of energy-utilizing improvement and carbon reduction have fully emerged. Hydrogen with a decarbonized characteristic being integrated into the integrated energy system has become a viable option to offset the intermittency of renewables and decline the fossil fuel usage. An optimal planning model of a wind–photovoltaic–hydrogen storage-integrated energy system with the objective of total economic and environmental cost minimization by considering various energy technology investments is proposed. Case studies are developed to compare the economic and environmental benefits of different energy investment scenarios especially hydrogen applications. The cost–benefit analysis was carried out to prove that hydrogen investment is not a cost-competitive option but can alleviate the burden of carbon emissions somehow. Finally sensitivity analysis of key parameters of sale capacity carbon tax and renewable penetration level was performed to indicate the rational investment for a wind–photovoltaic–hydrogen storage-integrated energy system.
Earth-Abundant Electrocatalysts in Proton Exchange Membrane Electrolyzers
Dec 2018
Publication
In order to adopt water electrolyzers as a main hydrogen production system it is critical to develop inexpensive and earth-abundant catalysts. Currently both half-reactions in water splitting depend heavily on noble metal catalysts. This review discusses the proton exchange membrane (PEM) water electrolysis (WE) and the progress in replacing the noble-metal catalysts with earth-abundant ones. The efforts within this field for the discovery of efficient and stable earth-abundant catalysts (EACs) have increased exponentially the last few years. The development of EACs for the oxygen evolution reaction (OER) in acidic media is particularly important as the only stable and efficient catalysts until now are noble-metal oxides such as IrOx and RuOx. On the hydrogen evolution reaction (HER) side there is significant progress on EACs under acidic conditions but there are very few reports of these EACs employed in full PEM WE cells. These two main issues are reviewed and we conclude with prospects for innovation in EACs for the OER in acidic environments as well as with a critical assessment of the few full PEM WE cells assembled with EACs.
Nuclear Cogeneration: Civil Nuclear Energy in a Low-carbon Future
Oct 2020
Publication
This policy briefing considers how the use of nuclear energy could be expanded to make the most of the energy produced and also to have the flexibility to complement an energy system with a growing input of intermittent renewable energy.<br/>What is nuclear cogeneration?<br/>Nuclear cogeneration is where the heat generated by a nuclear power station is used not only to generate electricity but to address some of the ‘difficult to decarbonise’ energy demands such as domestic heating and hydrogen production. It also enables a nuclear plant to be used more flexibly by switching between electricity generation and cogeneration applications.<br/>Applications for nuclear cogeneration<br/>Heat generated by civil nuclear reactors can be extracted at two different points for applications requiring either low-temperature or high-temperature heat. Each application differs in many aspects of operation and have different challenges.<br/>Low-temperature cogeneration<br/>Applications for the lower temperature ‘waste’ heat include:<br/>District heating<br/>Seawater desalination<br/>Low-temperature industrial process heating<br/>High-temperature cogeneration<br/>Higher temperature heat can be accessed earlier and used for:<br/>High-temperature industrial process heating<br/>Hydrogen production<br/>Sustainable synthetic fuel production<br/>Direct air capture<br/>Thermal energy storage<br/>Challenges of cogeneration systems<br/>Whilst some nuclear cogeneration applications have been employed in many countries the economic benefit of widescale nuclear cogeneration needs to be determined. However if the construction cost reductions for small modular reactors (SMRs) can be realised and the regulation and licencing processes streamlined then the additional revenue benefits of cogeneration could be material for SMRs and for the future of nuclear generation in the UK.<br/>Other outstanding issues include the ownership of reactors the future demand for hydrogen and other cogeneration products at a regional national and international level and the cost of carbon and dependable power.
Green-hydrogen Research: What Have We Achieved, and Where Are We Going? Bibliometrics Analysis
Jul 2022
Publication
In response to the global challenge of climate change 136 countries accounting for 90% of global GDP and 85% of the population have now set net-zero targets. A transition to net-zero will require the decarbonization of all sectors of the economy. Green-hydrogen produced from renewable energy sources poses little to no threat to the environment and increasing its production will support net-zero targets Our study examined the evolution of green-hydrogen research themes since the UN Sustainable Development Goals were adopted in 2015 by utilizing bibliographic couplings keyword co-occurrence and keyphrase analysis of 642 articles from 2016 to 2021 in the Scopus database. We studied bibliometrics indicators and temporal evolution of publications and citations patterns of open access the effect of author collaboration influential publications and top contributing countries. We also consider new indicators like publication views keyphrases topics with prominence and field weighted citation impact and Altmetrics to understand the research direction further. We find four major thematic distributions of green-hydrogen research based on keyword co-occurrence networks: hydrogen storage hydrogen production electrolysis and the hydrogen economy. We also find networks of four research clusters that provide new information on the journal’s contributions to green-hydrogen research. These are materials chemistry hydrogen energy and cleaner production applied energy and fuel cells. Most green-hydrogen research aligns with Affordable and Clean Energy (SDG 7) and Climate Action (SDG 13). The outcomes of policy decisions in the United States Europe India and China will profoundly impact green-hydrogen production and storage over the next five years. If these policies are implemented these countries will account for two-thirds of this growth. Asia will account for the most significant part and become the second-largest producer globally.
Multi-port Coordination: Unlocking Flexibility and Hydrogen Opportunities in Green Energy Networks
Mar 2024
Publication
Seaports are responsible for consuming a large amount of energy and producing a sizeable amount of environmental emissions. However optimal coordination and cooperation present an opportunity to transform this challenge into an opportunity by enabling flexibility in their generation and load units. This paper introduces a coordination framework for exploiting flexibility across multiple ports. The proposed method fosters cooperation between ports in achieving lower environmental emissions while leveraging flexibility to increase their revenue. This platform allows ports to participate in providing flexibility for the energy grid through the introduction of a green port-to-grid concept while optimising their cooperation. Furthermore the proximity to offshore wind farms is considered an opportunity for the ports to investigate their role in harnessing green hydrogen. The proposed method explores the hydrogen storage capability of ports as an opportunity for increasing the techno-economic benefits particularly through coupling them with offshore wind farms. Compared to existing literature the proposed method enjoys a comprehensive logistics-electric model for the ports a novel coordination framework for multi-port flexibility and the potentials of hydrogen storage for the ports. These unique features position this paper a valuable reference for research and industry by demonstrating realistic cooperation among ports in the energy network. The simulation results confirm the effectiveness of the proposed port flexibility coordination from both environmental and economic perspectives.
Modeling of Hydrogen Production System for Photovoltaic Power Generation and Capacity Optimization of Energy Storage System
Sep 2022
Publication
Hydrogen production using solar energy is an important way to obtain hydrogen energy. However the inherent intermittent and random characteristics of solar energy reduce the efficiency of hydrogen production. Therefore it is necessary to add an energy storage system to the photovoltaic power hydrogen production system. This paper establishes a model of a photovoltaic power generation hydrogen system and optimizes the capacity configuration. Firstly the mathematical model is modeled and analyzed and the system is modeled using Matlab/Simulink; secondly the principle of optimal configuration of energy storage capacity is analyzed to determine the optimization strategy we propose the storage capacity configuration algorithm based on the low-pass filtering principle and optimal time constant selection; finally a case study is conducted whose photovoltaic installed capacity of 30 MW verifying the effectiveness of the proposed algorithm analyzing the relationship between energy storage capacity and smoothing effect. The results show that as the cut-off frequency decreases the energy storage capacity increases and the smoothing effect is more obvious. The proposed algorithm can effectively reduce the 1 h maximum power variation of PV power generation. In which the maximum power variation of PV generation 1 h before smoothing is 4.31 MW. We set four different sets of time constants the maximum power variation of PV generation 1 h after smoothing is reduced to 0.751 0.389 0.078 and 0.04 MW respectively.
Effect of Mechanical Ventilation on Accidental Hydrogen Releases - Large Scale Experiments
Sep 2021
Publication
This paper presents a series of experiments on the effectiveness of existing mechanical ventilation systems during accidental hydrogen releases in confined spaces like underground garages. The purpose was to find the mass flow rate limit hence the TPRD diameter limit that will not require a change in the ventilation system. The experiments were performed in a 40 ft ISO container in Norway and hydrogen gas was used in all experiments. The forced ventilation system was installed with a standard outlet 315 mm diameter. The ventilation parameters during the investigation were British Standard with 10 ACH and British Standard with 6 ACH. The hydrogen releases were obtained through 0.5 mm and 1 mm nozzle from different hydrogen reservoir pressures. Both types of mass flow: constant and blowdown were included in the experimental matrix. The analysis of hydrogen concentration of created hydrogen cloud in the container shows the influence of the forced ventilation on hydrogen releases together with TPRD diameter and reservoir pressure. The generated experimental data will be used to validate a CFD model in the next step.
Fundamentals, Materials, and Machine Learning of Polymer Electrolyte Membrane Fuel Cell Technology
Jun 2020
Publication
Polymer electrolyte membrane (PEM) fuel cells are electrochemical devices that directly convert the chemical energy stored in fuel into electrical energy with a practical conversion efficiency as high as 65%. In the past years significant progress has been made in PEM fuel cell commercialization. By 2019 there were over 19000 fuel cell electric vehicles (FCEV) and 340 hydrogen refueling stations (HRF) in the U.S. (~8000 and 44 respectively) Japan (~3600 and 112 respectively) South Korea (~5000 and 34 respectively) Europe (~2500 and 140 respectively) and China (~110 and 12 respectively). Japan South Korea and China plan to build approximately 3000 HRF stations by 2030. In 2019 Hyundai Nexo and Toyota Mirai accounted for approximately 63% and 32% of the total sales with a driving range of 380 and 312 miles and a mile per gallon (MPGe) of 65 and 67 respectively. Fundamentals of PEM fuel cells play a crucial role in the technological advancement to improve fuel cell performance/durability and reduce cost. Several key aspects for fuel cell design operational control and material development such as durability electrocatalyst materials water and thermal management dynamic operation and cold start are briefly explained in this work. Machine learning and artificial intelligence (AI) have received increasing attention in material/energy development. This review also discusses their applications and potential in the development of fundamental knowledge and correlations material selection and improvement cell design and optimization system control power management and monitoring of operation health for PEM fuel cells along with main physics in PEM fuel cells for physics-informed machine learning. The objective of this review is three fold: (1) to present the most recent status of PEM fuel cell applications in the portable stationary and transportation sectors; (2) to describe the important fundamentals for the further advancement of fuel cell technology in terms of design and control optimization cost reduction and durability improvement; and (3) to explain machine learning physics-informed deep learning and AI methods and describe their significant potentials in PEM fuel cell research and development (R&D).
Ammonia as a Suitable for Fuel Cells
Aug 2014
Publication
Ammonia an important basic chemical is produced at a scale of 150 million tons per year. Half of hydrogen produced in chemical industry is used for ammonia production. Ammonia containing 17.5 wt% hydrogen is an ideal carbon-free fuel for fuel cells. Compared to hydrogen ammonia has many advantages. In this mini-review the suitability of ammonia as fuel for fuel cells the development of different types of fuel cells using ammonia as the fuel and the potential applications of ammonia fuel cells are briefly reviewed.
Review of Energy Challenges and Horizons of Hydrogen City Buses
Sep 2022
Publication
This paper discusses fuel cell electric vehicles and more specifically the challenges and development of hydrogen-fueled buses for people accessing this transportation in cities and urban environments. The study reveals the main innovations and challenges in the field of hydrogen bus deployment and identifies the most common approaches and errors in this area by extracting and critically appraising data from sources important to the energy perspective. Three aspects of the development and horizons of fuel cell electric buses are reviewed namely energy consumption energy efficiency and energy production. The first is associated with the need to ensure a useful and sustainable climate-neutral public transport. Herewith the properties of the hydrogen supply of electric buses and their benefits over gasoline gas and battery vehicles are discussed. The efficiency issue is related to the ratio of consumed and produced fuel in view of energy losses. Four types of engines–gasoline diesel gas and electrical–are evaluated in terms of well-to-wheel tank-to-wheel delivery and storage losses. The third problem arises from the production operating and disposal constraints of the society at the present juncture. Several future-oriented initiatives of the European Commission separate countries and companies are described. The study shows that the effectiveness of the FCEBs depends strongly on the energy generation used to produce hydrogen. In the countries where the renewables are the main energy sources the FCEBs are effective. In other regions they are not effective enough yet although the future horizons are quite broad.
NewGasMet - Flow Metering of Renewable Gases (Biogas, Biomethane, Hydrogen, Syngas and Mixtures with Natural Gas): Effect of the Renewable Gases on the Uncertainty Budgets of Gas Meters
Sep 2022
Publication
During the study of the CEN/TC 237 standards “Gas meters” in the European Metrology Programme for Innovation and Research (EMPIR) project named NEWGASMET the impact of the renewable gases (biogas biomethane hydrogen syngas and mixtures with natural gas) on the uncertainty on the gas meter was discussed and described in several recommendation reports. This report is on the activity A2.1.15 where the objective is “Using input from A2.1.2-A2.1.8 FORCE with support from Cesame CMI NEL PTB VSL and ISSI will write a report on the effects of renewable gases on the uncertainty budgets of gas meters.”
Quantifying the Impacts of Heat Decarbonisation Pathways on the Future Electricity and Gas Demand
May 2022
Publication
The decarbonisation of heat supply will play a critical role in meeting the emissions reduction target. There is however great uncertainty associated with the achievable levels of heat decarbonisation and the optimal heat technology mix which can have serious implications for the future electricity and gas demand. This work employs an integrated gas electricity and heat supply model to quantify the impacts of heat decarbonisation pathways on the future electricity and gas demand. A case study in the Great Britain is performed considering two heat decarbonisation scenarios in 2050: one is the predominantly electrified heat supply and the other is the predominantly hydrogen-based heat supply. The electricity demand becomes more volatile in the electrified heat scenario as the peak surges to 107.3 GW compared to 51.1 GW in the 2018 reference scenario while the peak in hydrogen-based heat scenario is 78.4 GW. The peak gas demand declines from 247.6 GW for 2018 to 81.7 GW for electrified heat scenario and to 85.1 GW for hydrogen-based heat scenario confirming that the seasonality associated with heat demand is shifting away from the gas network and towards electricity network. Moreover a sensitivity analysis shows that the future electricity demand is highly sensitive to parameters such as relative heat demand coefficient of performance of air source heat pumps and share of electricity in hydrogen production. Finally the application of a load shifting strategy demonstrates that demand-side flexibility has the potential to maintain the electricity system balance and minimise the generation and network infrastructure requirements arising from heat electrification. While the case study presented in this paper is based on the Great Britain the findings regarding the future electricity and gas demand are relevant for the global energy transition.
Source-to-sink Efficiency of Blue and Green District Heating and Hydrogen-based Heat Supply Systems
Apr 2022
Publication
Hydrogen is commonly mentioned as a future proof energy carrier. Hydrogen supporters 6 advocate for repurposing existing natural gas grids for a sustainable hydrogen supply. While the 7 long-term vision of the hydrogen community is green hydrogen the community acknowledges that 8 in the short term it will be to large extent manufactured from natural gas but in a decarbonized 9 way giving it the name blue hydrogen. While hydrogen has a role to play in hard to decarbonize 10 sectors its role for building heating demands is doubtful as mature and more energy efficient alter- 11 natives exist. As building heat supply infrastructures built today will operate for the decades to 12 come it is of highest importance to ensure that the most efficient and sustainable infrastructures are 13 chosen. This paper compares the source to sink efficiencies of hydrogen-based heat supply system 14 to a district heating system operating on the same primary energy source. The results show that a 15 natural gas-based district heating could be 267% more efficient and consequently have significantly 16 lower global warming potential than a blue hydrogen-based heat supply A renewable power-based 17 district heating could achieve above 440% higher efficiency than green hydrogen-based heat supply 18 system.
Opportunities and Limitations of Hydrogen Energy in Poland against the Background of the European Union Energy Policy
Jul 2022
Publication
One of the strategic goals of developed countries is to significantly increase the share of renewable energy sources in electricity generation. However the process may be hindered by e.g. the storage and transport of energy from renewable sources. The European Union countries see the development of the hydrogen economy as an opportunity to overcome this barrier. Therefore since 2020 the European Union has been implementing a hydrogen strategy that will increase the share of hydrogen in the European energy mix from the current 2 percent to up to 13–14 percent by 2050. In 2021 following the example of other European countries the Polish government adopted the Polish Hydrogen Strategy until 2030 with an outlook until 2040 (PHS). However the implementation of the strategy requires significant capital expenditure and infrastructure modernisation which gives rise to question as to whether Poland is likely to achieve the goals set out in the Polish Hydrogen Strategy and European Green Deal. The subject of the research is an analysis of the sources of financing for the PHS against the background of solutions implemented by the EU countries and a SWOT/TOWS analysis on the hydrogen economy in Poland. The overall result of the SWOT/TOWS analysis shows the advantage of strengths and related opportunities. This allows for a positive assessment of the prospects for the hydrogen economy in Poland. Poland should continue its efforts to take advantage of the external factors (O/S) such as EU support an increased price competitiveness of hydrogen and the emergence of a competitive cross-border hydrogen market in Europe. At the same time the Polish authorities should not forget about the weaknesses and threats that may inhibit the development of the domestic hydrogen market. It is necessary to modernise the infrastructure; increase the share of renewable energy sources in hydrogen production; increase R&D expenditure and in particular to complete the negotiations related to the adoption of the Fit for 55 package.
Assessing the Prospective Environmental Performance of Hydrogen from High Temperature Electrolysis Coupled with Concentrated Solar Power
Jul 2022
Publication
Hydrogen is currently being promoted because of its advantages as an energy vector its potential 12 to decarbonise the economy and strategical implications in terms of energy security. Hydrogen 13 from high-temperature electrolysis coupled with concentrated solar power (CSP) is especially 14 interesting since it enhances the last two aspects and could benefit from significant technological 15 progress in the coming years. However there is a lack of studies assessing its future 16 environmental performance. This work fills this gap by carrying out a prospective life cycle 17 assessment based on the expected values of key performance parameters in 2030. The results 18 show that parabolic trough CSP coupled with a solid oxide electrolyser is a promising solution 19 under environmental aspects. It leads to a prospective hydrogen carbon footprint (1.85 kg CO2 20 eq/kg H2) which could be classified as low-carbon according to current standards. The 21 benchmarking study for the year 2030 shows that the assessed system significantly decreases the 22 hydrogen carbon footprint compared to future hydrogen from steam methane reforming (81% 23 reduction) and grid electrolysis (51%) even under a considerable penetration of renewable energy 24 sources.
Prospect of Green Hydrogen Generation from Hybrid Renewable Energy Sources: A Review
Feb 2023
Publication
Hydrogen is one of the prospective clean energies that could potentially address two pressing areas of global concern namely energy crises and environmental issues. Nowadays fossil‐ based technologies are widely used to produce hydrogen and release higher greenhouse gas emis‐ sions during the process. Decarbonizing the planet has been one of the major goals in the recent decades. To achieve this goal it is necessary to find clean sustainable and reliable hydrogen pro‐ duction technologies with low costs and zero emissions. Therefore this study aims to analyse the hydrogen generation from solar and wind energy sources and observe broad prospects with hybrid renewable energy sources in producing green hydrogen. The study mainly focuses on the critical assessment of solar wind and hybrid‐powered electrolysis technologies in producing hydrogen. Furthermore the key challenges and opportunities associated with commercial‐scale deployment are addressed. Finally the potential applications and their scopes are discussed to analyse the important barriers to the overall commercial development of solar‐wind‐based hydrogen production systems. The study found that the production of hydrogen appears to be the best candidate to be employed for multiple purposes blending the roles of fuel energy carrier and energy storage modality. Further studies are recommended to find technical and sustainable solutions to overcome the current issues that are identified in this study.
Fire Spread Scenarios Involving Hydrogen Vehicles
Sep 2021
Publication
Fire spread between vehicles provides a potential risk in parking areas with many vehicles. Several reported very large fires caused the loss of a great number of vehicles. These fires seem to be in contradiction to the European design rules for car parks assuming only a very limited number of vehicles may be on fire at the same time. The fire spread in a car park environment is dependent on many factors of both the vehicles and the structure e.g. the latter has an impact on the rate of fire spread due to reradiation of the vehicles heat release. Therefore a CFD model is established to develop a tool to assess vehicles and better understand fire scenarios in different structures. Further the model enables testing of building design to prevent and mitigate such fires scenarios involving hydrogen vehicles. In this study a real layout of a car park is modelled to investigate the effects of hydrogen emergency releases that have used different TPRD diameters. The results provide insight into the behaviour of hydrogen cars and the release pattern of the TPRD's as well as the temperature development of the concrete ceiling and concrete beams above the cars. It shows that the TPRD diameter has a little effect on the TPRD activation time of the no.1 vehicle when the amount of H2 in the tank is the same. For the surface temperature of the ceiling and beam the peak temperature for a 1mm diameter TPRD release is found highest.
Water Electrolysis: From Textbook Knowledge to the Latest Scientific Strategies and Industrial Developments
May 2022
Publication
Replacing fossil fuels with energy sources and carriers that are sustainable environmentally benign and affordable is amongst the most pressing challenges for future socio-economic development. To that goal hydrogen is presumed to be the most promising energy carrier. Electrocatalytic water splitting if driven by green electricity would provide hydrogen with minimal CO2 footprint. The viability of water electrolysis still hinges on the availability of durable earth-abundant electrocatalyst materials and the overall process efficiency. This review spans from the fundamentals of electrocatalytically initiated water splitting to the very latest scientific findings from university and institutional research also covering specifications and special features of the current industrial processes and those processes currently being tested in large-scale applications. Recently developed strategies are described for the optimisation and discovery of active and durable materials for electrodes that ever-increasingly harness first principles calculations and machine learning. In addition a technoeconomic analysis of water electrolysis is included that allows an assessment of the extent to which a large-scale implementation of water splitting can help to combat climate change. This review article is intended to cross-pollinate and strengthen efforts from fundamental understanding to technical implementation and to improve the ‘junctions’ between the field’s physical chemists materials scientists and engineers as well as stimulate much-needed exchange among these groups on challenges encountered in the different domains.
Towards Electrochemical Hydrogen Storage in Liquid Organic Hydrogen Carriers via Proton-coupled Electron Transfers
Jun 2022
Publication
Green hydrogen is identified as one of the prime clean energy carriers due to its high energy density and a zero emission of CO2. A possible solution for the transport of H2 in a safe and low-cost way is in the form of liquid organic hydrogen carriers (LOHCs). As an alternative to loading LOHC with H2 via a two-step procedure involving preliminary electrolytic production of H2 and subsequent chemical hydrogenation of the LOHC we explore here the possibility of electrochemical hydrogen storage (EHS) via conversion of proton of a proton donor into a hydrogen atom involved in covalent bonds with the LOHC (R) via a proton-coupled electron transfer (PCET) reaction: . 2 + +2 ― + ox↔ 0 2red We chose 9-fluorenone/fluorenol (Fnone/Fnol) conversion as such a model PCET reaction. The electrochemical activation of Fnone via two sequential electron transfers was monitored with in-situ and operando spectroscopies in absence and in presence of different alcohols as proton donors of different reactivity which enabled us to both quantify and get the mechanistic insight on PCET. The possibility of hydrogen extraction from the loaded carrier molecule was illustrated by chemical activation.
Experimental Study on the Cycle Variation Characteristics of Direct Injection Hydrogen Engine
Jun 2022
Publication
Hydrogen energy is an important technical route to achieve carbon peak and carbon neutrality. Direct injection hydrogen engine is one of the ways of hydrogen energy application. It has the advantages of high thermal efficiency and limit/reduce abnormal combustion phenomena. In order to explore the cycle characteristics of direct injection hydrogen engine based on a 2.0L direct injection hydrogen engine an experimental study on the cycle characteristics of direct injection hydrogen engine was carried out. The experimental results show that cycle variation increases from 0.67% to 1.02% with the increasing of engine speed. The cycle variation decreases from 1.52% to 0.64% with the increasing of engine load. As the equivalence ratio increases the cycle variation first decreases significantly from 2.52% to 0.35% and then stabilizes. The ignition advance angle has a better angle to minimize the cycle variation. An experimental study on the influence of the start of injection on the cycle variation was carried out. As the engine speed/engine load is 2000rpm/4bar the cycle variation increases from 0.72% to 2.42% with the start of injection changing from -280°CA to -180°CA; then rapidly decreases to 0.99% and then increases to 2.26% with the start of injection changing from -180°CA to -100°CA. The experimental results show that SOI could cause significant influence on cycle variation because of intake valve closing and shortening mixing time and both the process of intake valve closing and lagging the SOI could cause the cycle variation to increase. The SOI remarkably affects the cycle variation at low engine load/equivalence ratio and high engine speed. This study lays the foundation for the follow-up research of hydrogen engine performance matching of the cycle variation.
Hydrogen Production from the Air
Sep 2022
Publication
Green hydrogen produced by water splitting using renewable energy is the most promising energy carrier of the low-carbon economy. However the geographic mismatch between renewables distribution and freshwater availability poses a significant challenge to its production. Here we demonstrate a method of direct hydrogen production from the air namely in situ capture of freshwater from the atmosphere using hygroscopic electrolyte and electrolysis powered by solar or wind with a current density up to 574 mA cm−2 . A prototype of such has been established and operated for 12 consecutive days with a stable performance at a Faradaic efficiency around 95%. This so-called direct air electrolysis (DAE) module can work under a bone-dry environment with a relative humidity of 4% overcoming water supply issues and producing green hydrogen sustainably with minimal impact to the environment. The DAE modules can be easily scaled to provide hydrogen to remote (semi-) arid and scattered areas.
Hybrid Renewable Hydrogen Energy Solution for Application in Remote Mines
Dec 2020
Publication
Mining operations in remote locations rely heavily on diesel fuel for the electricity haulage and heating demands. Such significant diesel dependency imposes large carbon footprints to these mines. Consequently mining companies are looking for better energy strategies to lower their carbon footprints. Renewable energies can relieve this over-reliance on fossil fuels. Yet in spite of their many advantages renewable systems deployment on a large scale has been very limited mainly due to the high battery storage system. Using hydrogen for energy storage purposes due to its relatively cheaper technology can facilitate the application of renewable energies in the mining industry. Such cost-prohibitive issues prevent achieving 100% penetration rate of renewables in mining applications. This paper offers a novel integrated renewable–multi-storage (wind turbine/battery/fuel cell/thermal storage) solution with six different configurations to secure 100% off-grid mining power supply as a stand-alone system. A detailed comparison between the proposed configurations is presented with recommendations for implementation. A parametric study is also performed identifying the effect of different parameters (i.e. wind speed battery market price and fuel cell market price) on economics of the system. The result of the present study reveals that standalone renewable energy deployment in mine settings is technically and economically feasible with the current market prices depending on the average wind speed at the mine location.
Everything About Hydrogen Podcast: Using the Law and Regulation to Facilitate Hydrogen Development
Jun 2022
Publication
Burges Salmon’s energy lawyers are known for ground-breaking work in the energy power and utilities sector. They understand the opportunities the technologies and the challenges which the sector presents. Their reputation has been built upon first-of-a-kind projects and deals and an intimate knowledge of energy regulation. Burges Salmon specialists provide expert advice throughout the project/plant life cycle. Over the years this has in turn led to investors and funders requesting their services in the knowledge that they understand the key issues technologies face. They have a team of over 80 lawyers who focus on helping developers investors and funders achieve their aims in the sector. The team has won or been shortlisted for all the key industry awards in energy over the last decade.
The podcast can be found on their website
The podcast can be found on their website
Novel Ways for Hydrogen Production Based on Methane Steam and Dry Reforming Integrated with Carbon Capture
Sep 2022
Publication
The combination of methane steam reforming technology and CCS (Carbon Capture and Storage) technology has great potential to reduce carbon emissions in the process of hydrogen production. Different from the traditional idea of capturing CO2 (Carbon Dioxide) in the exhaust gas with high work consumption this study simultaneously focuses on CO2 separation from fuel gas and recycling. A new hydrogen production system is developed by methane steam reforming coupled with carbon capture. Separated and captured high-purity carbon dioxide could be recycled for methane dry reforming; on this basis a new methane-dry-reforming-driven hydrogen production system with a carbon dioxide reinjection unit is innovatively proposed. In this study the energy flow and irreversible loss in the two newly developed systems are analyzed in detail through energy and exergy balance analysis. The advantages are explored from the perspective of hydrogen production rate natural gas consumption and work consumption. In addition in consideration of the integrated performance an optimal design analysis was conducted. In terms of hydrogen production the new system based on dry reforming is better with an advantage of 2.41%; however it is worth noting that the comprehensive thermal performance of the new steam reforming system is better reaching 10.95%. This study provides new ideas for hydrogen production from a low carbon emission perspective and also offers a new direction for future distributed energy system integration.
Time‐Decoupling Layered Optimization for Energy and Transportation Systems under Dynamic Hydrogen Pricing
Jul 2022
Publication
The growing popularity of renewable energy and hydrogen‐powered vehicles (HVs) will facilitate the coordinated optimization of energy and transportation systems for economic and en‐ vironmental benefits. However little research attention has been paid to dynamic hydrogen pricing and its impact on the optimal performance of energy and transportation systems. To reduce the dependency on centralized controllers and protect information privacy a time‐decoupling layered optimization strategy is put forward to realize the low‐carbon and economic operation of energy and transportation systems under dynamic hydrogen pricing. First a dynamic hydrogen pricing mechanism was formulated on the basis of the share of renewable power in the energy supply and introduced into the optimization of distributed energy stations (DESs) which will promote hydro‐ gen production using renewable power and minimize the DES construction and operation cost. On the basis of the dynamic hydrogen price optimized by DESs and the traffic conditions on roads the raised user‐centric routing optimization method can select a minimum cost route for HVs to purchase fuels from a DES with low‐cost and/or low‐carbon hydrogen. Finally the effectiveness of the proposed optimization strategy was verified by simulations.
Modelling and Performance Analysis of an Autonomous Marine Vehicle Powered by a Fuel Cell Hybrid Powertrain
Sep 2022
Publication
This paper describes the implementation of a hydrogen-based system for an autonomous surface vehicle in an effort to reduce environmental impact and increase driving range. In a suitable computational environment the dynamic electrical model of the entire hybrid powertrain consisting of a proton exchange membrane fuel cell a hydrogen metal hydride storage system a lithium battery two brushless DC motors and two control subsystems is implemented. The developed calculation tool is used to perform the dynamic analysis of the hybrid propulsion system during four different operating journeys investigating the performance achieved to examine the obtained performance determine the feasibility of the work runs and highlight the critical points. During the trips the engine shows fluctuating performance trends while the energy consumption reaches 1087 Wh for the fuel cell (corresponding to 71 g of hydrogen) and 370 Wh for the battery consuming almost all the energy stored on board.
Impacts of Low-Carbon Targets and Hydrogen Production Alternatives on Energy Supply System Transition: An Infrastructure-Based Optimization Approach and a Case Study of China
Jan 2021
Publication
Low-carbon transition pathways oriented from different transition targets would result in a huge variation of energy system deployment and transition costs. Hydrogen is widely considered as an imperative energy carrier to reach carbon neutral targets. However hydrogen production either from non-fossil power or fossil fuels with carbon capture is closely linked with an energy supply system and has great impacts on its structure. Identifying an economically affordable transition pathway is attractive and energy infrastructure is critical due to massive investment and long life-span. In this paper a multi-regional multi-period and infrastructure-based model is proposed to quantify energy supply system transition costs with different low-carbon targets and hydrogen production alternatives and China is taken as a case study. Results show that fulfilling 2-degree and 1.5-degree temperature increase targets would result in 84% and 151% increases in system transition costs 114% and 246% increases in infrastructure investment and 211% and 339% increases in stranded investment compared to fulfilling stated policy targets. Producing hydrogen from coal would be economical when carbon capture and sequestration cost is lower than 437 yuan per tonne and reduce infrastructure investment and stranded coal investment by 16% and 35% respectively than producing hydrogen from renewable power.
Hydrogen Leakage Simulation and Risk Analysis of Hydrogen Fueling Station in China
Sep 2022
Publication
Hydrogen is a renewable energy source with various features clean carbon-free high energy density which is being recognized internationally as a “future energy.” The US the EU Japan South Korea China and other countries or regions are gradually clarifying the development position of hydrogen. The rapid development of the hydrogen energy industry requires more hydrogenation infrastructure to meet the hydrogenation need of hydrogen fuel cell vehicles. Nevertheless due to the frequent occurrence of hydrogen infrastructure accidents their safety has become an obstacle to large-scale construction. This paper analyzed five sizes (diameters of 0.068 mm 0.215 mm 0.68 mm 2.15 mm and 6.8 mm) of hydrogen leakage in the hydrogen fueling station using Quantitative Risk Assessment (QRA) and HyRAM software. The results show that unignited leaks occur most frequently; leaks caused by flanges valves instruments compressors and filters occur more frequently; and the risk indicator of thermal radiation accident and structure collapse accident caused by over-pressure exceeds the Chinese individual acceptable risk standard and the risk indicator of a thermal radiation accident and head impact accident caused by overpressure is below the Chinese standard. On the other hand we simulated the consequences of hydrogen leak from the 45 MPa hydrogen storage vessels by the physic module of HyRAM and obtained the ranges of plume dispersion jet fire radiative heat flux and unconfined overpressure. We suggest targeted preventive measures and safety distance to provide references for hydrogen fueling stations’ safe construction and operation.
Ultra-Cheap Renewable Energy as an Enabling Technology for Deep Industrial Decarbonization via Capture and Utilization of Process CO2 Emissions
Jul 2022
Publication
Rapidly declining costs of renewable energy technologies have made solar and wind the cheapest sources of energy in many parts of the world. This has been seen primarily as enabling the rapid decarbonization of the electricity sector but low-cost low-carbon energy can have a great secondary impact by reducing the costs of energy-intensive decarbonization efforts in other areas. In this study we consider by way of an exemplary carbon capture and utilization cycle based on mature technologies the energy requirements of the “industrial carbon cycle” an emerging paradigm in which industrial CO2 emissions are captured and reprocessed into chemicals and fuels and we assess the impact of declining renewable energy costs on overall economics of these processes. In our exemplary process CO2 is captured from a cement production facility via an amine scrubbing process and combined with hydrogen produced by a solar-powered polymer electrolyte membrane using electrolysis to produce methanol. We show that solar heat and electricity generation costs currently realized in the Middle East lead to a large reduction in the cost of this process relative to baseline assumptions found in published literature and extrapolation of current energy price trends into the near future would bring costs down to the level of current fossil-fuel-based processes.
On the Feasibility of Direct Hydrogen Utilisation in a Fossil-free Europe
Oct 2022
Publication
Hydrogen is often suggested as a universal fuel that can replace fossil fuels. This paper analyses the feasibility of direct hydrogen utilisation in all energy sectors in a 100% renewable energy system for Europe in 2050 using hour-by-hour energy system analysis. Our results show that using hydrogen for heating purposes has high costs and low energy efficiency. Hydrogen for electricity production is beneficial only in limited quantities to restrict biomass consumption but increases the system costs due to losses. The transport sector results show that hydrogen is an expensive alternative to liquid e-fuels and electrified transport due to high infrastructure costs and respectively low energy efficiency. The industry sector may benefit from hydrogen to reduce biomass at a lower cost than in the other energy sectors but electrification and e-methane may be more feasible. Seen from a systems perspective hydrogen will play a key role in future renewable energy systems but primarily as e-fuel feedstock rather than direct end-fuel in the hard-to-abate sectors.
Combustion Characteristics of Hydrogen Direct Injection in a Helium–oxygen Compression Ignition Engine
Jul 2022
Publication
The ignition of hydrogen in compression ignition (CI) engines by adding noble gas as a working gas can yield excellent thermal efficiency due to its high specific heat ratio. This paper emphasizes the potential of helium–oxygen atmosphere for hydrogen combustion in CI engines and provides data on the engine configuration. A simulation was conducted using Converge CFD software based on the Yanmar NF19SK engine parameters. Helium–oxygen atmosphere compression show promising hydrogen autoignition results with the in-cylinder temperature was significantly higher than that of air during the compression stroke. In a compression ignition engine with a low compression ratio (CR) and intake temperature helium–oxygen atmosphere is recognized as the best working gas for hydrogen combustion. The ambient intake temperature was sufficient for hydrogen ignition in low CR with minimal heat flux effect. The best intake temperature for optimum engine efficiency in a low CR engine is 340 K and the engine compression ratio for optimum engine efficiency at ambient intake temperature is CR12 with an acceptable cylinder wall heat flux value. The helium–oxygen atmosphere as a working gas for hydrogen combustion in CI engines should be consider based on the parameter provided for clean energy transition with higher thermal efficiency.
Experiment and Numerical Study of the Combustion Behavior of Hydrogen-blended Natural Gas in Swirl Burners
Oct 2022
Publication
Hydrogen production from renewable energy is gaining increasing attention to enhance energy consumption structure and foster a more eco-friendly and sustainable society. At the same time mixing hydrogen with natural gas and supplying it to civilians is one of the best ways to reduce carbon emissions and increase the reliability of technology while reducing the costs of storing and transporting hydrogen. Even though numerous researchers have conducted experimental and simulation studies on hydrogen-doped natural gas most of these studies have focused on the effects of hydrogen-doped ratio equivalence ratio and fuel combustion mode. The impact of burner structure on hydrogen-enriched natural gas has not received much attention. Compared with conventional direct-flow combustion swirl combustion can improve the mixing effect of the fuel mixture during combustion and the use of regions of reversed flow due to swirl can make the fuel burn more fully to achieve the reduction of pollutant emissions. Swirling flames are widely used in gas turbines and industrial furnaces because of their high stability. However the application of swirl combustion in domestic equipment is still in its infancy which deserves more researchers to explore and enhance the working conditions of domestic combustion equipment. In this paper a three-dimensional swirl burner model is utilized to examine the effect of swirl angle θ and swirl length L of the swirler on the combustion behavior of hydrogen-enriched natural gas in a swirl burner. The results indicate that the swirl angle θ and swirl length L play an essential role in the combustion of natural gas containing hydrogen. As the swirl angle θ increases the flame temperature decreases more slowly the combustion becomes more stable and the length of the flame is slightly increased. Simultaneously CO and NO emissions will gradually decrease and the combustion effect is enhanced when the swirl angle is 45◦. With increased swirl length L the flame length grows the high-temperature region expands and CO and NO emissions decrease. Meanwhile the change in swirl length has little effect on the increase of flame peak temperature when the fuel is thoroughly mixed. When the swirl length is 12 mm CO and NO emissions are lower and NO emissions are reduced by 36.11% compared to a swirl length of 6 mm. This work is a reference point for applying hydrogen-mixed natural gas in the swirl burner but it must be studied and optimized further in future research.
NewGasMet - Flow Metering of Renewable Gases (Biogas, Biomethane, Hydrogen, Syngas and Mixtures with Natural Gas): Criteria and Proposals for EMC Tests on Ultrasonic Meters with Non-conventional Gases
Oct 2022
Publication
The NEWGASMET project has the overall objective to increase knowledge about the accuracy and durability of commercially available gas meters after exposure to renewable gases. This should lead to the improvement of existing meter designs and flow calibration standards. One of the recently released results is a proposal for a set of test gases to represent the range of non-conventional gases in the scope of the revision of the gas meter standards. In details these were proposed to be used in the CEN/TC237 standards and the OIML-R137:2014. During the project meetings concerns have been raised regarding the applicability of such test gases to EMC tests for static meters. Today such tests are performed in air but there is a clear agreement that the behaviour of the meter during EMC tests can be influenced by the renewable gas type. At least this agreement exists for the ultrasonic measurement technology while further discussion might be needed for the mass flow. However it is not simply possible to redesign the current EMC tests by replacing air with the defined gas mixtures as this would be quite impractical especially considering the explosive nature of the test gases.
The Role of New Energy in Carbon Neutral
Mar 2021
Publication
Carbon dioxide is an important medium of the global carbon cycle and has the dual properties of realizing the conversion of organic matter in the ecosystem and causing the greenhouse effect. The fixed or available carbon dioxide in the atmosphere is defined as “gray carbon” while the carbon dioxide that cannot be fixed or used and remains in the atmosphere is called “black carbon”. Carbon neutral is the consensus of human development but its implementation still faces many challenges in politics resources technology market and energy structure etc. It is proposed that carbon replacement carbon emission reduction carbon sequestration and carbon cycle are the four main approaches to achieve carbon neutral among which carbon replacement is the backbone. New energy has become the leading role of the third energy conversion and will dominate carbon neutral in the future. Nowadays solar energy wind energy hydropower nuclear energy and hydrogen energy are the main forces of new energy helping the power sector to achieve low carbon emissions. “Green hydrogen” is the reserve force of new energy helping further reduce carbon emissions in industrial and transportation fields. Artificial carbon conversion technology is a bridge connecting new energy and fossil energy effectively reducing the carbon emissions of fossil energy. It is predicted that the peak value of China’s carbon dioxide emissions will reach 110108 t in 2030. The study predicts that China's carbon emissions will drop to 22108 t 33108 t and 44108 t respectively in 2060 according to three scenarios of high medium and low levels. To realize carbon neutral in China seven implementation suggestions have been put forward to build a new “three small and one large” energy structure in China and promote the realization of China's energy independence strategy.
NewGasMet - Flow Metering of Renewable Gases (Biogas, Biomethane, Hydrogen, Syngas and Mixtures with Natural Gas): Effect of Hydrogen Admixture on the Accuracy of a Rotary Flow Meter
Aug 2021
Publication
With the rise of hydrogen use in the natural gas grid a need exists for reliable measurements of the amount of energy being transported and traded for hydrogen admixtures. Using VSL’s high-pressure Gas Oil Piston Prover (GOPP) primary standard the effect of mixing hydrogen with natural gas on the performance of a high-pressure gas flow meter was investigated. The error of a rotary flow meter was determined using the best possible uncertainty by calibration with the primary standard for high-pressure natural gas flow. The rotary flow meter was calibrated using both natural gas and hydrogen enriched natural gas (nominally 15% hydrogen) at two different pressures: 9 and 16 bar. Results indicate that for the rotary flow meter and hydrogen admixtures used the differences in the meter errors between high-pressure hydrogen-enriched natural gas calibration and high-pressure natural gas calibration are smaller than the corresponding differences between atmospheric pressure air calibration and high-pressure natural gas calibration.
Life Cycle Assessment of Carbon Footprint in Public Transportation - A Case Study of Bus Route NO. 2 in Tainan City, Taiwan
Apr 2019
Publication
Human activities have exacerbated global greenhouse effects resulting in extreme climate changes that have caused disasters and food and water shortages in recent years. Transport activities are the one of the main causes of global greenhouse gas (GHG) emissions. Therefore policy makers must develop some strategies to reduce GHG emissions. One of the Taiwan’s transportation policies intended to reduce CO2 emissions is to replace all traditional diesel fuel urban buses with alternative energy buses. This paper uses a case study of bus route NO. 2 in Tainan City and follows the international standard ISO/TS 14067 and PAS2050 to measure the carbon footprints of different energy buses. The purpose is to measure the environmental benefits of alternative energy buses. The results of the bus carbon footprints from high to low were LNG buses 63.14g CO2e/pkm; traditional diesel buses 54.6g CO2e/pkm; liquefied petroleum gas buses 47.4g CO2e/pkm; plug-in electric buses 37.82g CO2e/pkm and hydrogen fuel cell bus es 29.17g CO2e/pkm respectively. It was also found that the use of hydrogen fuel cell buses would potentially reduce CO2e emissions in Tainan City by 1244081 tons which at this time is only city bus No. 2. If all the Taiwan city buses were switched to hydrogen fuel cell buses this would potentially reduce CO2e by 227832.39 tons. The effect of the reduction in carbon emissions from the use of hydrogen fuel cells buses in all Taiwanese urban areas is the equivalent of planting 22.78 million trees. It is thus suggested that the government use hydrogen fuel cell buses as the future of the country’s major alternative energy buses since they are the most environmentally friendly alternative to reducing CO2 emissions.
Annealing Effects on SnO2 Thin Film for H2 Gas Sensing
Sep 2022
Publication
Hydrogen (H2 ) is attracting attention as a renewable energy source in various fields. However H2 has a potential danger that it can easily cause a backfire or explosion owing to minor external factors. Therefore H2 gas monitoring is significant particularly near the lower explosive limit. Herein tin dioxide (SnO2 ) thin films were annealed at different times. The as-obtained thin films were used as sensing materials for H2 gas. Here the performance of the SnO2 thin film sensor was studied to understand the effect of annealing and operating temperature conditions of gas sensors to further improve their performance. The gas sensing properties exhibited by the 3-h annealed SnO2 thin film showed the highest response compared to the unannealed SnO2 thin film by approximately 1.5 times. The as-deposited SnO2 thin film showed a high response and fast response time to 5% H2 gas at 300 ◦C of 257.34% and 3 s respectively.
Everything About Hydrogen Podcast: Taking Hydrogen off the Grid
Jun 2022
Publication
On this episode of Everything About Hydrogen we chat with Andrew Cunningham Founder and Director at GeoPura. GeoPura is enabling the production transport and use of zero-emissions fuels with innovative and commercially viable technology to decarbonise the global economy. As the world transitions away from fossils fuels there is an increasing need for reliable clean electricity. If global power demand continues to grow as expected the electricity grid system will need support from renewable energy sources such as hydrogen and fuel cell power generator. GeoPura seeks to address exactly that kind of need.
The podcast can be found on their website
The podcast can be found on their website
Development of a Hydrogen Fuel Cell Prototype Vehicle Supported by Artificial Intelligence for Green Urban Transport
Mar 2024
Publication
In the automotive sector the zero emissions area has been dominated by battery electric vehicles. However prospective users cite charging times large batteries and the deployment of charging stations as a counter-argument. Hydrogen will offer a solution to these areas in the future. This research focuses on the development of a prototype three-wheeled vehicle that is named Neumann H2. It integrates state-of-the-art energy storage systems demonstrating the benefits of solar- battery- and hydrogen-powered drives. Of crucial importance for the R&D platform is the system’s ability to record its internal states in a time-synchronous format providing valuable data for researchers and developers. Given that the platform is equipped with the ROS2 Open-Source interface the data are recorded in a standardized format. Energy management is supported by artificial intelligence of the “Reinforcement Learning” type which selects the optimal energy source for operation based on different layers of high-fidelity maps. In addition to powertrain control the vehicle also uses artificial intelligence to detect the environment. The vehicle’s environment-sensing system is essentially designed to detect distinguish and select environmental elements through image segmentation using camera images and then to provide feedback to the user via displays.
Energy-Economic Assessment of Islanded Microgrid with Wind Turbine, Photovoltaic Field, Wood Gasifier, Battery, and Hydrogen Energy Storage
Sep 2022
Publication
Island energy systems are becoming an important part of energy transformation due to the growing needs for the penetration of renewable energy. Among the possible systems a combination of different energy generation technologies is a viable option for local users as long as energy storage is implemented. The presented paper describes an energy-economic assessment of an island system with a photovoltaic field small wind turbine wood chip gasifier battery and hydrogen circuit with electrolyzer and fuel cell. The system is designed to satisfy the electrical energy demand of a tourist facility in two European localizations. The operation of the system is developed and dynamically simulated in the Transient System Simulation (TRNSYS) environment taking into account realistic user demand. The results show that in Gdansk Poland it is possible to satisfy 99% of user demand with renewable energy sources with excess energy equal to 31% while in Agkistro Greece a similar result is possible with 43% of excess energy. Despite the high initial costs it is possible to obtain Simple Pay Back periods of 12.5 and 22.5 years for Gdansk and Agkistro respectively. This result points out that under a high share of renewables in the energy demand of the user the profitability of the system is highly affected by the local cost of energy vectors. The achieved results show that the system is robust in providing energy to the users and that future development may lead to an operation based fully on renewables.
Review and Comparison of Worldwide Hydrogen Activities in the Rail Sector with Special Focus on On-board Storage and Refueling Technologies
Aug 2022
Publication
"This paper investigates hydrogen storage and refueling technologies that were used in rail vehicles over the past 20 years as well as planned activities as part of demonstration projects or feasibility studies. Presented are details of the currently available technology and its vehicle integration market availability as well as standardization and research and development activities. A total of 80 international studies corporate announcements as well as vehicle and refueling demonstration projects were evaluated with regard to storage and refueling technology pressure level hydrogen amount and installation concepts inside rolling stock. Furthermore current hydrogen storage systems of worldwide manufacturers were analyzed in terms of technical data.<br/>We found that large fleets of hydrogen-fueled passenger railcars are currently being commissioned or are about to enter service along with many more vehicles on order worldwide. 35 MPa compressed gaseous storage system technology currently dominates in implementation projects. In terms of hydrogen storage requirements for railcars sufficient energy content and range are not a major barrier at present (assuming enough installation space is available). For this reason also hydrogen refueling stations required for 35 MPa vehicle operation are currently being set up worldwide.<br/>A wide variety of hydrogen demonstration and retrofit projects are currently underway for freight locomotive applications around the world in addition to completed and ongoing feasibility studies. Up to now no prevailing hydrogen storage technology emerged especially because line-haul locomotives are required to carry significantly more energy than passenger trains. The 35 MPa compressed storage systems commonly used in passenger trains offer too little energy density for mainline locomotive operation - alternative storage technologies are not yet established. Energy tender solutions could be an option to increase hydrogen storage capacity here."
Study of Heat Loss Mechanism in Argon-circulated Hydrogen Engine Combustion Chamber Wall Surface Conditions
Jul 2022
Publication
Hydrogen fuel in internal combustion engine gives a very big advantage to the transportation sector especially in solving the greenhouse emission problem. However there are only few research discovered the ability of argon as a working gas in hydrogen combustion in internal combustion engine. The high temperature rises from the argon compression tend to result in heat loss problem. This research aims to study the heat loss mechanism on wall surface condition in the combustion chamber. Experiments were conducted to study the effects of different heat flux sensor locations and the effect of ignition delay on heat flux. Local heat flux measurement was collected and images were observed using high speed shadowgraph images. The ignition delay that occurred near the combustion wall will result in larger heat loss throughout the combustion process. Higher ambient pressure results in a bigger amount of heat flux value. Other fundamental characteristics were obtained and discussed which may help in contributing the local heat loss data of an argon-circulated hydrogen engine in future engine operation.
CFD Study of Dual Fuel Combustion in a Research Diesel Engine Fueled by Hydrogen
Jul 2022
Publication
Superior fuel economy higher torque and durability have led to the diesel engine being widely used in a variety of fields of application such as road transport agricultural vehicles earth moving machines and marine propulsion as well as fixed installations for electrical power generation. However diesel engines are plagued by high emissions of nitrogen oxides (NOx) particulate matter (PM) and carbon dioxide when conventional fuel is used. One possible solution is to use low-carbon gaseous fuel alongside diesel fuel by operating in a dual-fuel (DF) configuration as this system provides a low implementation cost alternative for the improvement of combustion efficiency in the conventional diesel engine. An initial step in this direction involved the replacement of diesel fuel with natural gas. However the consequent high levels of unburned hydrocarbons produced due to non-optimized engines led to a shift to carbon-free fuels such as hydrogen. Hydrogen can be injected into the intake manifold where it premixes with air then the addition of a small amount of diesel fuel auto-igniting easily provides multiple ignition sources for the gas. To evaluate the efficiency and pollutant emissions in dual-fuel diesel-hydrogen combustion a numerical CFD analysis was conducted and validated with the aid of experimental measurements on a research engine acquired at the test bench. The process of ignition of diesel fuel and flame propagation through a premixed air-hydrogen charge was represented the Autoignition-Induced Flame Propagation model included ANSYS-Forte software. Because of the inefficient operating conditions associated with the combustion the methodology was significantly improved by evaluating the laminar flame speed as a function of pressure temperature and equivalence ratio using Chemkin-Pro software. A numerical comparison was carried out among full hydrogen full methane and different hydrogen-methane mixtures with the same energy input in each case. The use of full hydrogen was characterized by enhanced combustion higher thermal efficiency and lower carbon emissions. However the higher temperatures that occurred for hydrogen combustion led to higher NOx emissions.
Potential Role of Renewable Gas in the Transition of Electricity and District Heating Systems
Dec 2019
Publication
With the constant increase in variable renewable energy production in electricity and district heating systems integration with the gas system is a way to provide flexibility to the overall energy system. In the sustainable transition towards a zero-emission energy system traditional natural gas can be substituted by renewable gasses derived from anaerobic digestion or thermal gasification and hydrogen. In this paper we present a methodology for modelling renewable gas options and limits on biomass resources across sectors in the energy optimisation model Balmorel. Different scenarios for socio-economic pathways to emission neutral electricity and district heating systems in Denmark Sweden Norway and Germany show that a renewable based energy system benefits from a certain percentage of gas as a supplement to other flexibility options like interconnectors. Especially upgraded biogas from anaerobic digestion serves as a substitute for natural gas in all scenarios. Allocating only 10% of available biomass to the electricity and district heating sector leads to full exploitation of the scarce biomass resource by boosting biogas and syngas with hydrogen. The need for renewable gasses is highest in Germany and least in Norway where hydro-power provides flexibility in terms of storable and dispatchable electricity production. The scenarios show that a required ‘‘late sprint" from fossils to achieve a zero-emission energy system in 2050 causes (1) significant higher accumulated emissions and (2) a system which strongly relies on fuels also in an emission free system instead of stronger integration of the electricity and district heating systems through electrification as well as stronger integration of the power systems across countries through interconnectors.
Techno-Economic Feasibility of a Solar-Wind-Fuel Cell Energy System in Duqm, Oman
Jul 2022
Publication
Duqm is located in the Al Wasta Governorate in Oman and is currently fed by 10 diesel generators with a total capacity of around 76 MW and other rental power sources with a size of 18 MW. To make the electric power supply come completely from renewables one novel solution is to replace the diesel with hydrogen. The extra energy coming from the PV-wind system can be utilized to produce green hydrogen that will be utilized by the fuel cell. Measured data of solar insolation hourly wind speeds and hourly load consumption are used in the proposed system. Finding an ideal configuration that can match the load demand and be suitable from an economic and environmental point of view was the main objective of this research. The Hybrid Optimization Model for Multiple Energy Resources (HOMER Pro) microgrid software was used to evaluate the technical and financial performance. The findings demonstrated that the suggested hybrid system (PV-wind-fuel cell) will remove CO2 emissions at a cost of energy (COE) of USD 0.436/kWh and will reduce noise. With a total CO2 emission of 205676830 kg/year the levelized cost of energy for the current system is USD 0.196/kWh. The levelized cost for the diesel system will rise to USD 0.243/kWh when taking 100 US dollars per ton of CO2 into account. Due to system advantages the results showed that using solar wind and fuel cells is the most practical and cost-effective technique. The results of this research illustrated the feasibility and effectiveness of utilizing wind and solar resources for both hydrogen and energy production and also suggested that hydrogen is a more cost-effective long-term energy storage option than batteries.
The State-of-the-Art Progress on the Forms and Modes of Hydrogen and Ammonia Energy Utilization in Road Transportation
Sep 2022
Publication
The crisscross progress of transportation and energy carries the migrating track of human society development and the evolution of civilization among which the decarbonization strategy is a key issue. Traffic carbon emissions account for 16.2% of total energy carbon emissions while road traffic carbon emissions account for 11.8% of total energy carbon emissions. Therefore road traffic is a vital battlefield in attaining the goal of decarbonization. Employing clean energy as an alternative fuel is of great significance to the transformation of the energy consumption structure in road transportation. Hydrogen and ammonia are renewable energy with the characteristics of being widely distributed and clean. Both exist naturally in nature and the products of complete combustion are substances (water and nitrogen) that do not pollute the atmosphere. Because it can promote agricultural production ammonia has a long history in human society. Both have the potential to replace traditional fossil fuel energy. An overview of the advantages of hydrogen and ammonia as well as their development in different countries such as the United States the European Union Japan and other major development regions is presented in this paper. Related research topics of hydrogen and ammonia’s production storage and transferring technology have also been analyzed and collated to stimulate the energy production chain for road transportation. The current cost of green hydrogen is between $2.70–$8.80 globally which is expected to approach $2–$6 by 2030. Furthermore the technical development of hydrogen and ammonia as a fuel for engines and fuel cells in road transportation is compared in detail and the tests practical applications and commercial popularization of these technologies are summarized respectively. Opportunities and challenges coexist in the era of the renewable energy. Based on the characteristics and development track of hydrogen and ammonia the joint development of these two types of energy is meant to be imperative. The collaborative development mode of hydrogen and ammonia together with the obstacles to their development of them are both compared and discussed. Finally referring to the efforts and experiences of different countries in promoting hydrogen and ammonia in road transportation corresponding constructive suggestions have been put forward for reference. At the end of the paper a framework diagram of hydrogen and ammonia industry chains is provided and the mutual promotion development relationship of the two energy sources is systematically summarized.
Feasibility and Impact of a Swedish Fuel Cell-powered Rescue Boat
Jun 2021
Publication
With the increasing interest for zero-emission vehicles electric boats represent a growing area. Weight is a limiting factor for battery-powered boats therefore the use of fuel cell/battery systems is investigated. The present study examines the power requirements the energy-storage solutions and the sustainability assessment of a light and fast rescue boat operating in the Swedish lake Barken. A weight-optimized hybrid fuel cell/battery system is presented. The results show that if the hydrogen storage is wisely selected the weight of the hybrid system is significantly less than that of a battery system and can compete with an internal combustion engine system. The sustainability assessment highlights and compares the impact in terms of cost and emissions of the different energy storage solutions. The quantification of the emissions for the different energy systems under several scenarios shows a clear advantage for the electric solutions.
Research on Motor Rotor Loss of High-Speed Air Compressor in the Application of Hydrogen Fuel Cell Vehicle
Feb 2023
Publication
As an important component of hydrogen fuel cell vehicles the air compressor with an air foil bearing rotates at tens of thousands of revolutions per minute. The heat generation concentration problem caused by the high-speed motor loss seriously affects the safe and normal operation of the motor so it is very important to clarify the loss distribution of the high-speed motor and adopt a targeted loss reduction design for air compressor heat dissipation. In this paper for an air compressor with a foil bearing with a rated speed of 80000 rpm an empirical formula and a three-dimensional transient magnetic field finite element model are used to model and calculate the air friction loss stator core loss winding loss and permanent magnet eddy current loss. The accuracy of the analytical calculation method is verified by torque test experiments under different revolutions and the average simulation accuracy can reach 91.1%. Then the distribution of the air friction loss stator core loss winding loss and eddy current loss of the air compressor motor at different revolutions is obtained by using this method. The results show that the proposed method can effectively calculate the motor rotor loss of a high-speed air compressor with air foil bearing. Although the motor efficiency increases with the increase in motor speed the absolute value of loss also increases with the increase in motor speed. Stator core loss and air friction loss are the main sources of loss accounting for 55.64% and 29% of the total motor loss respectively. The electromagnetic loss of winding the eddy current and other alloys account for a relatively small proportion which is 15% in total. The conclusions obtained in this paper can effectively guide calculations of motor loss the motor heat dissipation design of a high-speed air compressor with an air foil bearing.
The Impact of Fuel Cell Electric Freight Vehicles on Fuel Consumption and CO2 Emissions: The Case of Italy
Oct 2022
Publication
The Italian Recovery and Resilience Plan promotes among its many actions the use of hydrogen by the deployment of refuelling stations for heavy-duty vehicles predicting a 5–7% penetration rate of fuel cell electric vehicles (FCEVs) for long-distance freight transport. In this work the impact of this action on the reduction of greenhouse gas emissions and consumption was estimated assuming the plan’s objectives are met. To achieve this aim a national simulation model of the road freight transport system was implemented consisting of a graph of the national road network and an inter-provincial origin-destination matrix; the graph was based on data available from OpenStreetMap while the interprovincial matrix was estimated from the interregional matrix with the use of two linear regression models one for emitted goods and one for attracted goods. The simulation of the system made it possible to estimate the impact of this action on CO2 emissions and fuel consumption under three different scenarios. From 2025 to 2040 a reduction in CO2 emissions ranging from around 9 to around 16.5 million tonnes was estimated and a reduction in consumption ranging from around 3 billion to around 5.6 billion litres of diesel. These results show how this action can be seen as one of the bricks contributing to the fight against global warming.
Utilization of Excess Water Accumulation for Green Hydrogen Production in a Run-ofTiver Hydropower Plant
Jun 2022
Publication
This paper discusses the potential for green-hydrogen production in a run-of-river 9 hydropower plant. This particular hydropower plant has no significant water accumulation but 10 there is the potential for limited hydrogen production due to a mismatch between the daily 11 predefined electricity production (known as the timetable) and the actual water inflows. The 12 timetable for the hydropower plant is prepared by the operator of the electro-energetic system 13 based on a model of the available production capacities forecasted consumption water 14 accumulation state of the river flows weather forecasts and the system operator’s strategy. The 15 uncertainty in the model’s input parameters is reflected in the output timetable for the 16 hydropower plant and for this reason a small reserve of water for potential exploitation is 17 envisaged. By using real data for the timetable and the water inflow we estimate the excess 18 hydropower that can be used for hydrogen cogeneration. Since the primary task of the 19 hydropower plant is to produce electricity according to the timetable the production of 20 hydrogen is only possible to a limited extent. Therefore we present a control algorithm that 21 regulates the amount of hydrogen production while considering the predefined timetable and 22 the real water accumulation. The second part of the paper deals with the economic viability of 23 hydrogen cogeneration in the case-study run-of-river hydropower plant and discusses the 24 possibility of using it for local public transport.
Carbon-negative Hydrogen from Biomass Using Gas Switching Integrated Gasification: Techno-economic Assessment
Sep 2022
Publication
Ambitious decarbonization pathways to limit the global temperature rise to well below 2 ◦C will require largescale CO2 removal from the atmosphere. One promising avenue for achieving this goal is hydrogen production from biomass with CO2 capture. The present study investigates the techno-economic prospects of a novel biomass-to-hydrogen process configuration based on the gas switching integrated gasification (GSIG) concept. GSIG applies the gas switching combustion principle to indirectly combust off-gas fuel from the pressure swing adsorption unit in tubular reactors integrated into the gasifier to improve efficiency and CO2 capture. In this study these efficiency gains facilitated a 5% reduction in the levelized cost of hydrogen (LCOH) relative to conventional O2-blown fluidized bed gasification with pre-combustion CO2 capture even though the larger and more complex gasifier cancelled out the capital cost savings from avoiding the air separation and CO2 capture units. The economic assessment also demonstrated that advanced gas treatment using a tar cracker instead of a direct water wash can further reduce the LCOH by 12% and that the CO2 prices in excess of 100 €/ton consistent with ambitious decarbonization pathways will make this negative-emission technology economically highly attractive. Based on these results further research into the GSIG concept to facilitate more efficient utilization of limited biomass resources can be recommended.
Numerical Modeling for Rapid Charging of Hydrogen Gas Vessel in Fuel Cell Vehicle
Feb 2023
Publication
As a fuel for power generation high-pressure hydrogen gas is widely used for transportation and its efficient storage promotes the development of fuel cell vehicles (FCVs). However as the filling process takes such a short time the maximum temperature in the storage tank usually undergoes a rapid increase which has become a thorny problem and poses great technical challenges to the steady operation of hydrogen FCVs. For security reasons SAE J2601/ISO 15869 regulates a maximum temperature limit of 85 ◦C in the specifications for refillable hydrogen tanks. In this paper a two-dimensional axisymmetric and a three-dimensional numerical model for fast charging of Type III 35 MPa and 70 MPa hydrogen vehicle cylinders are proposed in order to effectively evaluate the temperature rise within vehicle tanks. A modified standard k-ε turbulence model is utilized to simulate hydrogen gas charging. The equation of state for hydrogen gas is adopted with the thermodynamic properties taken from the National Institute of Standards and Technology (NIST) database taking into account the impact of hydrogen gas’ compressibility. To validate the numerical model three groups of hydrogen rapid refueling experimental data are chosen. After a detailed comparison it is found that the simulated results calculated by the developed numerical model are in good agreement with the experimental results with average temperature differences at the end time of 2.56 K 4.08 K and 4.3 K. The present study provides a foundation for in-depth investigations on the structural mechanics analysis of hydrogen gas vessels during fast refueling and may supply some technical guidance on the design of charging experiments.
Estimation of Liquid Hydrogen Fuels in Aviation
Sep 2022
Publication
As the demand for alternative fuels to solve environmental problems increases worldwide due to the greenhouse gas problem this study predicted the demand for liquid hydrogen fuel in aviation to achieve ‘zero‐emission flight’. The liquid hydrogen fuel models of an aircraft and all aviation sectors were produced based on the prediction of aviation fleet growth through the classification of currently operated aircraft. Using these models the required amount of liquid hydrogen fuel and the total cost of liquid hydrogen were also calculated when various environmental regulations were satisfied. As a result it was found to be necessary to convert approximately 66% to 100% of all aircraft from existing aircraft to liquid hydrogen aircraft in 2050 according to regulations. The annual liquid hydrogen cost was 4.7–5.2 times higher in the beginning due to the high production cost but after 2030 it will be maintained at almost the same price and it was found that the cost was rather low compared to jet fuel.
The Hydrogen Fuel Cell Battery: Replacing the Combustion Engine in Heavy Vehicles
Nov 2022
Publication
This opinion piece describes how the optimal integration of hydrogen-fuel-cell with battery in a heavy highly-utilised vehicle can extend vehicle range while cutting refuelling time and reducing cost compared to a pure battery electric vehicle.
Navigating the Implementation of Tax Credits for Natural-Gas-Based Low-Carbon-Intensity Hydrogen Projects
Mar 2024
Publication
This paper delves into the critical role of tax credits specifically Sections 45Q and 45V in the financing and economic feasibility of low-carbon-intensity hydrogen projects with a focus on natural-gas-based hydrogen production plants integrated with carbon capture and storage (CCS). This study covers the current clean energy landscape underscoring the importance of low-carbon hydrogen as a key component in the transition to a sustainable energy future and then explicates the mechanics of the 45Q and 45V tax credits illustrating their direct impact on enhancing the economic attractiveness of such projects through a detailed net present value (NPV) model analysis. Our analysis reveals that the application of 45Q and 45V tax credits significantly reduces the levelized cost of hydrogen production with scenarios indicating a reduction in cost ranging from USD 0.41/kg to USD 0.81/kg of hydrogen. Specifically the 45Q tax credit demonstrates a slightly more advantageous impact on reducing costs compared to the 45V tax credit underpinning the critical role of these fiscal measures in enhancing project returns and feasibility. Furthermore this paper addresses the inherent limitations of utilizing tax credits primarily the challenge posed by the mismatch between the scale of tax credits and the tax liability of the project developers. The concept and role of tax equity investments are discussed in response to this challenge. These findings contribute to the broader dialogue on the financing of sustainable energy projects providing valuable insights for policymakers investors and developers in the hydrogen energy sector. By quantifying the economic benefits of tax credits and elucidating the role of tax equity investments our research supports informed decision-making and strategic planning in the pursuit of a sustainable energy future.
OIES Podcast: Global Trade of Hydrogen: What is the Best Way to Transfer Hydrogen Over Long Distances?
Aug 2022
Publication
In this podcast David Ledesma talks with Rahmat Poudineh Senior Research Fellow and Aliaksei Patonia Research Fellow on issues and options with respect to long distance transportation of the hydrogen.
Hydrogen currently is mainly a local or regional commodity. If hydrogen is to become a truly global-traded commodity it needs to be transported over long transoceanic distances in an economical way. However unlike natural gas shipping compressed or liquefied hydrogen over long distances is very inefficient and expensive. At the same time hydrogen can be converted into multiple carriers with a higher energy density and higher transport capacity such as liquid ammonia toluene/methylcyclohexane (MCH) or methanol. These chemicals have their own advantages and drawbacks and their techno-economic characteristics in terms of boil-off gas and thermodynamic and conversion losses play a key role in the efficiency of transoceanic transportation of the hydrogen.
On the other hand apart from techno-economic features there are other factors to consider for long distance transportation of the hydrogen via its careers. Here such issues as safety public acceptance as well as legal and regulatory constraints may come into play. Another factor is the availability of the industries and infrastructures already developed around any of possible hydrogen carriers as well as their potential industrial applicability beyond hydrogen. Finally technological progress in other decarbonization applications and most importantly full commercialization of CCUS solutions is likely to dramatically change the approach towards long distance hydrogen transportation.
The podcast can be found on their website.
Hydrogen currently is mainly a local or regional commodity. If hydrogen is to become a truly global-traded commodity it needs to be transported over long transoceanic distances in an economical way. However unlike natural gas shipping compressed or liquefied hydrogen over long distances is very inefficient and expensive. At the same time hydrogen can be converted into multiple carriers with a higher energy density and higher transport capacity such as liquid ammonia toluene/methylcyclohexane (MCH) or methanol. These chemicals have their own advantages and drawbacks and their techno-economic characteristics in terms of boil-off gas and thermodynamic and conversion losses play a key role in the efficiency of transoceanic transportation of the hydrogen.
On the other hand apart from techno-economic features there are other factors to consider for long distance transportation of the hydrogen via its careers. Here such issues as safety public acceptance as well as legal and regulatory constraints may come into play. Another factor is the availability of the industries and infrastructures already developed around any of possible hydrogen carriers as well as their potential industrial applicability beyond hydrogen. Finally technological progress in other decarbonization applications and most importantly full commercialization of CCUS solutions is likely to dramatically change the approach towards long distance hydrogen transportation.
The podcast can be found on their website.
Optimal Configuration of Multi-Energy Storage in an Electric–Thermal–Hydrogen Integrated Energy System Considering Extreme Disaster Scenarios
Mar 2024
Publication
Extreme disasters have become increasingly common in recent years and pose significant dangers to the integrated energy system’s secure and dependable energy supply. As a vital part of an integrated energy system the energy storage system can help with emergency rescue and recovery during major disasters. In addition it can improve energy utilization rates and regulate fluctuations in renewable energy under normal conditions. In this study the sizing scheme of multienergy storage equipment in the electric–thermal–hydrogen integrated energy system is optimized; economic optimization in the regular operating scenario and resilience enhancement in extreme disaster scenarios are also considered. A refined model of multi-energy storage is constructed and a two-layer capacity configuration optimization model is proposed. This model is further enhanced by the integration of a Markov two-state fault transmission model which simulates equipment defects and improves system resilience. The optimization process is solved using the tabu chaotic quantum particle swarm optimization (TCQPSO) algorithm to provide reliable and accurate optimization results. The results indicate that addressing severe disaster situations in a capacity configuration fully leverages the reserve energy function of energy storage and enhances system resilience while maintaining economic efficiency; furthermore adjusting the load loss penalty coefficients offers a more targeted approach to the balancing of the system economy and resilience. Thus new algorithmic choices and planning strategies for future research on enhancing the resilience of integrated energy systems under extreme disaster scenarios are provided.
Everything About Hydrogen Podcast: Hydrogen on a Global Scale
Aug 2022
Publication
On today’s episode of Everything About Hydrogen we are speaking with Dan Sadler Vice President for UK Low Carbon Solutions at Equinor. Equinor is of course a giant in the global energy sector and is taking a prominent role in the development of the international hydrogen economy with high-profile investments in a number of large-scale production projects in major markets such as the UK. Dan has spent the better part of a decade focused on how to leverage hydrogen’s potential as a fuel for the energy transition and we are excited to have him with us to discuss how Equinor is deploying hydrogen technologies and how he and Equinor expect hydrogen to play a role in a decarbonized energy future.
The podcast can be found on their website.
The podcast can be found on their website.
Hydrogen Storage: Recent Improvements and Industrial Perspectives
Sep 2021
Publication
Efficient storage of hydrogen is crucial for the success of hydrogen energy markets. Hydrogen can be stored either as a compressed gas a refrigerated liquefied gas a cryo-compressed gas or in hydrides. This paper gives an overview of compressed hydrogen storage technologies focusing on high pressure storage tanks in metal and in composite materials. It details specific issues and constraints related to the materials and structure behavior in hydrogen and conditions representative of hydrogen energy uses. This paper is an update of the 2019 version that was presented in Australia. It especially covers recent progress made regarding regulations codes and standards for the design manufacturing periodic inspection and plastic materials’ evaluation of compressed hydrogen storage.
Breaking the Hard-to-abate Bottleneck in China’s Path to Carbon Neutrality with Clean Hydrogen
Sep 2022
Publication
Countries such as China are facing a bottleneck in their paths to carbon neutrality: abating emissions in heavy industries and heavy-duty transport. There are few in-depth studies of the prospective role for clean hydrogen in these ‘hard-to-abate’ (HTA) sectors. Here we carry out an integrated dynamic least-cost modelling analysis. Results show that first clean hydrogen can be both a major energy carrier and feedstock that can significantly reduce carbon emissions of heavy industry. It can also fuel up to 50% of China’s heavy-duty truck and bus fleets by 2060 and significant shares of shipping. Second a realistic clean hydrogen scenario that reaches 65.7 Mt of production in 2060 could avoid US$1.72 trillion of new investment compared with a no-hydrogen scenario. This study provides evidence of the value of clean hydrogen in HTA sectors for China and countries facing similar challenges in reducing emissions to achieve net-zero goals.
Economic Analysis of a Zero-carbon Liquefied Hydrogen Tanker Ship
Jun 2022
Publication
The green hydrogen economy is considered one of the sustainable solutions to mitigate climate change. This study provides an economic analysis of a novel liquified hydrogen (LH2) tanker fuelled by hydrogen with a total capacity of ~280000 m3 of liquified hydrogen named ‘JAMILA’. An established economic method was applied to investigate the economic feasibility of the JAMILA ship as a contribution to the future zero-emission target. The systematic economic evaluation determined the net present value of the LH2 tanker internal rate of return payback period and economic value added to support and encourage shipyards and the industrial sector in general. The results indicate that the implementation of the LH2 tanker ship can cover the capital cost of the ship within no more than 2.5 years which represents 8.3% of the assumed 30-year operational life cycle of the project in the best maritime shipping prices conditions and 6 years in the worst-case shipping marine economic conditions. Therefore the assessment of the economic results shows that the LH2 tankers may be a worthwhile contribution to the green hydrogen economy.
Technical Reliability of Shipboard Technologies for the Application of Alternative Fuels
Jul 2022
Publication
Background: Naval trafc is highly dependent on depleting fossil resources and causes signifcant greenhouse gas emissions. At the same time marine transportation is a major backbone of world trade. Thus alternative fuel concepts are highly needed. Diferent fuels such as ammonia methanol liquefed natural gas and hydrogen have been proposed. For some of them frst prototype vessels have been in operation. However practical experience is still limited. Most studies so far focus on aspects such as efciency and economics. However particularly in marine applications reliability of propulsion systems is of utmost importance because failures on essential ship components at sea pose a huge safety risk. If the respective components lose their functionality repair can be much more challenging due to large distances to dockyards and the complicated transport of spare parts to the ship. Consequently evaluation of reliability should be a core element of system analysis for new marine fuels. Results: In this study reliability was studied for four potential fuels. The analysis involved several steps: estimation of overall failure rates identifcation of most vulnerable components and assessment of criticality by including severity of fault events. On the level of overall failure rate ammonia is shown to be very promising. Extending the view over a pure failure rate-based evaluation shows that other approaches such as LOHC or methanol can be competitive in terms of reliability and risk. As diferent scenarios require diferent weightings of the diferent reliability criteria the conclusion on the best technology can difer. Relevant aspects for this decision can be the availability of technical staf high-sea or coastal operation the presence of non-naval personnel onboard and other factors. Conclusions: The analysis allowed to compare diferent alternative marine fuel concepts regarding reliability. However the analysis is not limited to assessment of overall failure rates but can also help to identify critical elements that deserve attention to avoid fault events. As a last step severity of the individual failure modes was included. For the example of ammonia it is shown that the decomposition unit and the fuel cell should be subject to measures for increasing safety and reducing failure rates.
Production of Hydrogen from Offshore Wind in China and Cost-competitive Supply to Japan
Nov 2021
Publication
The Japanese government has announced a commitment to net-zero greenhouse gas emissions by 2050. It envisages an important role for hydrogen in the nation’s future energy economy. This paper explores the possibility that a significant source for this hydrogen could be produced by electrolysis fueled by power generated from offshore wind in China. Hydrogen could be delivered to Japan either as liquid or bound to a chemical carrier such as toluene or as a component of ammonia. The paper presents an analysis of factors determining the ultimate cost for this hydrogen including expenses for production storage conversion transport and treatment at the destination. It concludes that the Chinese source could be delivered at a volume and cost consistent with Japan’s idealized future projections.
Techno-economic Study of a 100-MW-class Multi-energy Vehicle Charging/Refueling Station: Using 100% Renewable, Liquid Hydrogen, and Superconductor Technologies
Dec 2022
Publication
Renewable energies such as the wind energy and solar energy generate low-carbon electricity which can directly charge battery electric vehicles (BEVs). Meanwhile the surplus electricity can be used to produce the “green hydrogen” which provides zero-emission hydrogen fuels to those fuel cell electric vehicles (FCEVs). In order to charge/refuel multi-energy vehicles we propose a novel scheme of hybrid hydrogen/electricity supply using cryogenic and superconducting technologies. In this scheme the green hydrogen is further liquefied into the high-density and low-pressure liquid hydrogen (LH2) for bulk energy storage and transmission. Taking the advantage of the cryogenic environment of LH2 (20 K) it can also be used as the cryogen to cool down super conducting cables to realize the virtually zero-loss power transmission from 100 % renewable sources to vehicle charging stations. This hybrid LH2/electricity energy pipeline can realize long-distance large-capacity and high efficiency clean energy transmission to fulfil the hybrid energy supply demand for BEVs and FCEVs. For the case of a 100 MW-class hybrid hydrogen/electricity supply station the system principle and energy management strategy are analyzed through 9 different operating sub-modes. The corresponding static and dynamic economic modeling are performed and the economic feasibility of the hybrid hydrogen/electricity supply is verified using life-cycle analysis. Taking an example of wind power capacity 1898 MWh and solar power capacity 1619 MWh per day the dynamic payback period is 15.06 years the profitability index is 1.17 the internal rate of return is 7.956 % and the accumulative NPV is 187.92 M$. The system design and techno-economic analysis can potentially offer a technically/economically superior solution for future multi-energy vehicle charging/refueling systems.
Numerical Simulations of Suppression Effect of Water Mist on Hydrogen Deflagration in Confined Spaces
Sep 2021
Publication
Hydrogen safety issues attract focuses increasingly as more and more hydrogen powered vehicles are going to be operated in traffic infrastructures of different kinds like tunnels. Due to the confinement feature of traffic tunnels hydrogen deflagration may pose a risk when a hydrogen leak event occurs in a tunnel e.g. failure of the hydrogen storage system caused by a car accident in a tunnel. A water injection system can be designed in tunnels as a mitigation measure to suppress the pressure and thermal loads of hydrogen combustion in accident scenarios. The COM3D is a fully verified three-dimensional finite-difference turbulent flow combustion code which models gas mixing hydrogen combustion and detonation in nuclear containment with mitigation device or other confined facilities like vacuum vessel of fusion and semi-confined hydrogen facilities in industry such as traffic tunnels hydrogen refueling station etc. Therefore by supporting of the European HyTunnel-CS project the COM3D is applied to simulate numerically the hydrogen deflagration accident in a tunnel model being suppressed by water mist injection. The suppression effect of water mist and the suppression mechanism is elaborated and discussed in the study.
Going Offshore or Not: Where to Generate Hydrogen in Future Integrated Energy Systems?
Jan 2023
Publication
Hydrogen can be key in the energy system transition. We investigate the role of offshore hydrogen generation in a future integrated energy system. By performing energy system optimisation in a model application of the Northern-central European energy system and the North Sea offshore grid towards 2050 we find that offshore hydrogen generation may likely only play a limited role and that offshore wind energy has higher value when sent to shore in the form of electricity. Forcing all hydrogen generation offshore would lead to increased energy system costs. Under the assumed scenario conditions which result in deep decarbonisation of the energy system towards 2050 hydrogen generation – both onshore and offshore – follows solar PV generation patterns. Combined with hydrogen storage this is the most cost-effective solution to satisfy future hydrogen demand. Overall we find that the role of future offshore hydrogen generation should not simply be derived from minimising costs for the offshore sub-system but by also considering the economic value that such generation would create for the whole integrated energy system. We find as a no-regret option to enable and promote the integration of offshore wind in onshore energy markets via electrical connections.
Fuel Cell Development for New Energy Vehicles (NEVs) and Clean Air in China
Apr 2018
Publication
This paper reviews the background to New Energy Vehicles (NEV) policies in China and the key scientific and market challenges that need to be addressed to accelerate fuel cells (FCs) in the rapidly developing NEV market. The global significance of the Chinese market key players core FC technologies and future research priorities are discussed.
Recent Progress in Catalysts for Hydrogen-Chlorine Regenerative Fuel Cells
Oct 2020
Publication
The increasing energy demand and the subsequent climate change consequences are supporting the search for sustainable alternatives to fossil fuels. In this scenario the link between hydrogen and renewable energy is playing a key role and unitized hydrogen-chlorine (H2-Cl2) regenerative cells (RFCs) have become promising candidates for renewable energy storage. Described herein are the recent advances in cell configurations and catalysts for the different reactions that may take place in these systems that work in both modes: electrolysis and fuel cell. It has been found that platinum (Pt)-based catalysts are the best choice for the electrode where hydrogen is involved whereas for the case of chlorine ruthenium (Ru)-based catalysts are the best candidates. Only a few studies were found where the catalysts had been tested in both modes and recent advances are focused on decreasing the amount of precious metals contained in the catalysts. Moreover the durability of the catalysts tested under realistic conditions has not been thoroughly assessed becoming a key and mandatory step to evaluate the commercial viability of the H2-Cl2 RFC technology.
Effect of State of Charge on Type IV Hydrogen Storage Tank Rupture in a Fire
Sep 2021
Publication
The use of hydrogen storage tanks at 100% of nominal working pressure NWP is expected only after refuelling. Driving between refuellings is characterised by the state of charge SoC<100%. There is experimental evidence that Type IV tanks tested in a fire at initial pressures below one-third of its NWP depending on a fire source were leaking without rupture. This paper aims at understanding this phenomenon and the development of a predictive model. The numerical research has demonstrated that the heat transfer from fire through the composite overwrap is sufficient to melt the polymer liner. This initiates hydrogen microleaks through the composite wall before it loses the load-bearing ability when the resin degrades deep enough to cause the tank to rupture. The dependence of tank fire-resistance rating (FRR) on the SoC is presented for tanks of volume in the range 36-244 L. The tank wall thickness non-uniformity i.e. thinner composite at the dome area is identified as a serious issue for tank’s fire resistance that must be addressed by tank manufacturers and OEMs. The effect of the burst pressure ratio on FRR is investigated. It is concluded that thermal parameters of the composite wall i.e. decomposition heat and temperatures play a vital role in simulations of tank failure and thus FRR.
Impact of Hydrogen-Enriched Natural Gas on the Accuracy of Odorant Measurements
Jul 2025
Publication
Blending hydrogen with natural gas is emerging as a pivotal strategy in the transition to low-carbon energy systems. However the exploitation of the natural gas infrastructure to distribute natural gas and hydrogen blends (and 100% hydrogen in the long-term) introduces several technical economic and safety issues. These latter are paramount especially in urban distribution networks that supply residential buildings and dwellings since the quality and safety of the living environment can also be significantly affected. In this scenario the reliability of odorant concentration measurements according to the best practices currently in use for natural gas becomes crucial. This study is aimed at assessing the accuracy of odorant measurements at different concentration levels (i.e. low medium and high) in 100% methane methane–hydrogen blend and 100% hydrogen. The obtained results show the tendency to overestimate the odorant concentration up to 2.3% in methane–hydrogen blends at medium and high concentrations of THT as well as the underestimation of −3.4% in 100% hydrogen at low concentration of TBM. These results are consistent with those of natural gas from the city distribution network with hydrogen content of 5% and 20%.
Experimental Study on Flame Characteristics of Cryogenic Hydrogen Jet Fire
Sep 2021
Publication
In this work cryogenic hydrogen fires at fixed pressures and various initial temperatures were investigated experimentally. Flame length width heat fluxes and temperatures in down-stream regions were measured for the scenarios with 1.6-3 mm jet nozzle 106 to 273 K 2-5 barabs. The results show that the flame size is related to not only the jet nozzle diameter but also the release pressure and initial temperature. The correlations of normalized flame length and width are proposed with the stagnation pressure and the ratio of ambient and stagnation temperatures. Under constant pressure the flame size total radiative power and radiation fraction increase with the decrease of temperature due to lower choked flow velocity and higher density of cryogenic hydrogen. The correlation of radiation fraction proposed by Molina et al. at room temperature is not suitable to predict the cryogenic hydrogen jet fires. Based on piecewise polynomial law
Enabling the Scale Up of Green Hydrogen in Ireland by Decarbonising the Haulage Sector
Jul 2022
Publication
The current research on green hydrogen can focus from the perspective of production but understanding the demand side is equally important to the initial creation of a hydrogen ecosystem in countries with low industrial activities that can utilise large amounts of hydrogen in the short term. Early movers in these countries must create a demand market in parallel with the green hydrogen plant commissioning. This paper presents research that explores the heavy-duty transport sector as a market-of-interest for early deployment of green hydrogen in Ireland. Conducting a survey-based market research amongst this sector indicate significant interest in hydrogen on the island of Ireland and the barriers the participants presented have been overcome in other jurisdictions. The study develops a model to estimate 1.) the annual hydrogen demand and 2.) the corresponding delivery cost to potential hydrogen consumers either directly or to central hydrogen fuelling hubs.
Explosive Phase Transition in LH2
Sep 2021
Publication
This paper describes two models for analysing and simulating the physical effects of explosive phase transition of liquid hydrogen (LH2) also known as cold BLEVE. The present work is based on theoretical and experimental work for liquefied CO2. A Rankine Hugoniot analysis for evaporation waves that was previously developed for CO2 is now extended to LH2. A CFD-method for simulating two-phase flow with mass transfer between the phases is presented and compared with the Rankine Hugoniot analysis results. The Rankine Hugoniot method uses real fluid equations of state suited for LH2 while the CFD method uses linear equations of state suited for shock capturing methods. The results show that there will be a blast from a catastrophic rupture of an LH2 vessel and that the blast waves will experience a slow decay due to the large positive pressure phase.
Parametric Study and Electrocatalyst of Polymer Electrolyte Membrane (PEM) Electrolysis Performance
Jan 2023
Publication
An investigation was conducted to determine the effects of operating parameters for various electrode types on hydrogen gas production through electrolysis as well as to evaluate the efficiency of the polymer electrolyte membrane (PEM) electrolyzer. Deionized (DI) water was fed to a single-cell PEM electrolyzer with an active area of 36 cm2 . Parameters such as power supply (50–500 mA/cm2 ) feed water flow rate (0.5–5 mL/min) water temperature (25−80 ◦C) and type of anode electrocatalyst (0.5 mg/cm2 PtC [60%] 1.5 mg/cm2 IrRuOx with 1.5 mg/cm2 PtB 3.0 mg/cm2 IrRuOx and 3.0 mg/cm2 PtB) were varied. The effects of these parameter changes were then analyzed in terms of the polarization curve hydrogen flowrate power consumption voltaic efficiency and energy efficiency. The best electrolysis performance was observed at a DI water feed flowrate of 2 mL/min and a cell temperature of 70 ◦C using a membrane electrode assembly that has a 3.0 mg/cm2 IrRuOx catalyst at the anode side. This improved performance of the PEM electrolyzer is due to the reduction in activation as well as ohmic losses. Furthermore the energy consumption was optimal when the current density was about 200 mA/cm2 with voltaic and energy efficiencies of 85% and 67.5% respectively. This result indicates low electrical energy consumption which can lower the operating cost and increase the performance of PEM electrolyzers. Therefore the optimal operating parameters are crucial to ensure the ideal performance and durability of the PEM electrolyzer as well as lower its operating costs.
Renewable Methanol Production from Green Hydrogen and Captured CO2: A Techno-economic Assessment
Nov 2022
Publication
This paper aims to present a pre-feasibility study of a power-to-fuel plant configuration designed for the production of 500 kg/h of renewable methanol (e-methanol) from green hydrogen and captured carbon dioxide. Hydrogen is obtained by water electrolysis employing the overproduction of renewable electricity. Carbon dioxide is assumed to be separated from the flue gas of a conventional power station by means of an amine-based CO2 absorption system. A comprehensive process model has been developed with the support of Aspen Plus tool to simulate all the plant sections and the overall system. After the process optimization a detailed economic analysis – based on capital and operating costs derived from commercial-scale experience and assuming a 20- year lifetime – has been performed to calculate a levelized cost of methanol (LCoM) of 960 €/t (about 175 €/MWh). The analysis confirms that today the technology is still not competitive from the economic point of view being LCoM more than double than the current methanol price in the international market (450 €/t). However it indicates that the process is expected to become competitive in a mid-term future as a consequence of the new European policies. The study also reveals that LCoM is mainly affected by the electricity price and the electrolyser capital cost as well as the capacity factor of the plant.
No more items...