Applications & Pathways
Role of Batteries and Fuel Cells in Achieving Net Zero- Session 1
Mar 2021
Publication
The House of Lords Science and Technology Committee will question experts on the role of batteries and fuel cells for decarbonisation and how much they can contribute to meeting the net-zero target.
Tuesday’s evidence session will be the first of the committee’s new decarbonisation inquiry which was launched on Wednesday 3 March and is currently accepting written evidence submissions.
The session will give an overview of battery and fuel cell technologies and their applications in transport and other sectors. The Committee will ask how battery manufacture can be scaled up to meet wide-scale deployment of electric vehicles and whether technical challenges can be overcome to allow batteries and fuel cells to be used in HGVs and trains. The Committee will also investigate the wider use of batteries and fuel cells in various sectors including integration into power grids and heating systems.
Inquiry Role of batteries and fuel cells in achieving Net Zero
Professor Nigel Brandon Dean of the Faculty of Engineering at Imperial College London
Professor Mauro Pasta Associate Professor of Materials at University of Oxford
Professor Pam Thomas CEO at Faraday Institution and Pro Vice Chancellor for Research at University of Warwick
Mr Amer Gaffar Director of Manchester Fuel Cell Innovation Centre at Manchester Metropolitan University
Possible questions
What contribution are battery and fuel cell technologies currently making towards decarbonization in the UK?
What advances do we expect to see in battery and fuel cell technologies and over what timeframes?
How quickly can UK battery and fuel cell manufacture be scaled up to meet electrification demands?
What are the challenges facing technological innovation and deployment in heavy transport?
Are there any sectors where battery and fuel cell technologies are not currently used but could contribute to decarbonisation?
What are the life cycle environmental impacts of batteries and fuel cells?
Parliament TV video of the meeting
This is part one of a three part enquiry.
Part two can be found here and part three can be found here.
Tuesday’s evidence session will be the first of the committee’s new decarbonisation inquiry which was launched on Wednesday 3 March and is currently accepting written evidence submissions.
The session will give an overview of battery and fuel cell technologies and their applications in transport and other sectors. The Committee will ask how battery manufacture can be scaled up to meet wide-scale deployment of electric vehicles and whether technical challenges can be overcome to allow batteries and fuel cells to be used in HGVs and trains. The Committee will also investigate the wider use of batteries and fuel cells in various sectors including integration into power grids and heating systems.
Inquiry Role of batteries and fuel cells in achieving Net Zero
Professor Nigel Brandon Dean of the Faculty of Engineering at Imperial College London
Professor Mauro Pasta Associate Professor of Materials at University of Oxford
Professor Pam Thomas CEO at Faraday Institution and Pro Vice Chancellor for Research at University of Warwick
Mr Amer Gaffar Director of Manchester Fuel Cell Innovation Centre at Manchester Metropolitan University
Possible questions
What contribution are battery and fuel cell technologies currently making towards decarbonization in the UK?
What advances do we expect to see in battery and fuel cell technologies and over what timeframes?
How quickly can UK battery and fuel cell manufacture be scaled up to meet electrification demands?
What are the challenges facing technological innovation and deployment in heavy transport?
Are there any sectors where battery and fuel cell technologies are not currently used but could contribute to decarbonisation?
What are the life cycle environmental impacts of batteries and fuel cells?
Parliament TV video of the meeting
This is part one of a three part enquiry.
Part two can be found here and part three can be found here.
Hybrid Hydrogen PEM Fuel Cell and Batteries Without DC–DC Converter
Sep 2013
Publication
Concerns about greenhouse gases as well as the price and security of oil supply have acted as a spur to sustainable automobile development. The hydrogen fuel cells electric vehicle (HFCEV) is generally recognised by leading automobile manufacturers and scientists as one of the optimum technologies for long-term future low carbon vehicle. In a typical HFCEV power train a DC–DC converter is required to balance the voltage difference between the fuel cells (FCs) stack and batteries. However research shows that a considerable amount of energy generated by the hydrogen FCs stack is deplete during this conversion process as heat. This experiment aims to improve the power train efficiency by eliminating the DC–DC converter by finding the best combination of FC stack and batteries matching the size and capacity of the electrical components.
Holistic Energy Efficiency and Environmental Friendliness Model for Short-Sea Vessels with Alternative Power Systems Considering Realistic Fuel Pathways and Workloads
Apr 2022
Publication
Energy requirements push the shipping industry towards more energy-efficient ships while environmental regulations influence the development of environmentally friendly ships by replacing fossil fuels with alternatives. Current mathematical models for ship energy efficiency which set the analysis boundaries at the level of the ship power system are not able to consider alternative fuels as a powering option. In this paper the energy efficiency and emissions index are formulated for ships with alternative power systems considering three different impacts on the environment (global warming acidification and eutrophication) and realistic fuel pathways and workloads. Besides diesel applications of alternative powering options such as electricity methanol liquefied natural gas hydrogen and ammonia are considered. By extending the analysis boundaries from the ship power system to the complete fuel cycle it is possible to compare different ships within the considered fleet or a whole shipping sector from the viewpoint of energy efficiency and environmental friendliness. The applicability of the model is illustrated on the Croatian ro-ro passenger fleet. A technical measure of implementation of alternative fuels in combination with an operational measure of speed reduction results in an even greater emissions reduction and an increase in energy efficiency. Analysis of the impact of voluntary speed reduction for ships with different power systems resulted in the identification of the optimal combination of alternative fuel and speed reduction by a specific percentage from the ship design speed.
Environmental Sustainability of Renewable Hydrogen in Comparison with Conventional Cooking Fuels
Jun 2018
Publication
Hydrogen could be used as a ‘cleaner’ cooking fuel particularly in communities that rely on biomass and fossil fuels to reduce local pollution and related health effects. However hydrogen must be produced using sustainable feedstocks and energy sources to ensure that local impacts are not reduced at the expense of other impacts generated elsewhere in the life cycle. To this end this paper evaluates life cycle environmental impacts of renewable hydrogen produced in a proton-exchange membrane electrolyser using solar energy. The aim of the study is to find out if hydrogen produced in this system and used as a cooking fuel is environmentally sustainable in comparison with conventional cooking fuels typically used in developing countries such as liquefied petroleum gas (LPG) charcoal and firewood. The results suggest that hydrogen would reduce the climate change impact by 2.5–14 times to 0.04 kg CO2 eq./MJ compared to firewood (0.10 kg CO2 eq./MJ) and LPG (0.57 kg CO2 eq./MJ). Some other impacts would also be lower by 6%–35 times including depletion of fossil fuels summer smog and health effects from emissions of particulates both locally and across the rest of the life cycle. However some other impacts would increase by 6%–6.7 times such as depletion of metals and freshwater and marine ecotoxicity. These are mainly due to the solar photovoltaic panels used to generate power for the electrolyser. In terms of the local impacts the study suggests that hydrogen would reduce local pollution and related health impacts by 8%–35 times. However LPG is still environmentally a better option than hydrogen for most of the impacts both at the point of use and on a life cycle basis.
The Role of Hydrogen in Achieving Net Zero: Parliamentary Inquiry
Mar 2021
Publication
A key component of the Government's recently announced ‘Ten Point Plan for a Green Industrial Revolution’ is 'Driving the Growth of Low Carbon Hydrogen'. The plan outlined a range of measures to support the development and adoption of hydrogen including a £240 million 'Net Zero Hydrogen Fund'. Noting this and the further £81 million allocated for hydrogen heating trials in the 2020 Spending Review the House of Commons Science and Technology Committee is today launching a new inquiry into the role of hydrogen in achieving Net Zero.
Following recommendations from the Committee on Climate Change that the Government develop a strategy for hydrogen use and should aim for largescale hydrogen trials to begin in the early 2020s the Committee seeks to ensure that the Government's intended plan will be suitable and effective. The Committee will also assess the infrastructure required for hydrogen as a Net Zero fuel and examine progress made so far internationally to determine the viability of hydrogen as a significant contributor to achieving Net Zero.
All documents are in the Supplements tab above.
Following recommendations from the Committee on Climate Change that the Government develop a strategy for hydrogen use and should aim for largescale hydrogen trials to begin in the early 2020s the Committee seeks to ensure that the Government's intended plan will be suitable and effective. The Committee will also assess the infrastructure required for hydrogen as a Net Zero fuel and examine progress made so far internationally to determine the viability of hydrogen as a significant contributor to achieving Net Zero.
All documents are in the Supplements tab above.
Hydrogen for Transport Prospective Australian Use Cases
Oct 2019
Publication
The Australian transport sector is under increasing pressure to reduce carbon emissions whilst also managing a fuel supply chain that relies heavily on foreign import partners.
Transport in Australia equates to a significant proportion (approximately 18%) of the country’s total greenhouse gas emissions. Due to ongoing population growth these emissions have been steadily rising with the increase of cars on our roads and freight trucks in transit. Coupled with this the transport fuel supply chain is highly reliant on overseas partners – Australia currently imports 90% of its liquid fuel. These two challenges present an interesting dichotomy for the industry incentivising research and development into new technologies that can address one or both of these issues.
Hydrogen is one technology that has the potential to provide a reduction in greenhouse gas emissions as well as a more reliable domestic fuel supply. Hydrogen fuel cell electric vehicles (FCEVs) are an emerging zero-emission alternative for the transport sector which offer a variety of benefits.
You can read the full report on the Aurecon Australasia website at this link
Transport in Australia equates to a significant proportion (approximately 18%) of the country’s total greenhouse gas emissions. Due to ongoing population growth these emissions have been steadily rising with the increase of cars on our roads and freight trucks in transit. Coupled with this the transport fuel supply chain is highly reliant on overseas partners – Australia currently imports 90% of its liquid fuel. These two challenges present an interesting dichotomy for the industry incentivising research and development into new technologies that can address one or both of these issues.
Hydrogen is one technology that has the potential to provide a reduction in greenhouse gas emissions as well as a more reliable domestic fuel supply. Hydrogen fuel cell electric vehicles (FCEVs) are an emerging zero-emission alternative for the transport sector which offer a variety of benefits.
You can read the full report on the Aurecon Australasia website at this link
Roadmap to Decarbonising European Shipping
Nov 2018
Publication
Shipping is one of the largest greenhouse gas (GHG) emitting sectors of the global economy responsible for around 1 Gt of CO2eq every year. If shipping were a country it would be the 6th biggest GHG emitter. EU related shipping is responsible for about 1/5 of global ship GHG emissions emitting on average 200 Mt/year. This report assesses potential technology pathways for decarbonising EU related shipping through a shift to zero carbon technologies and the impact such a move could have on renewable electricity demand in Europe. It also identifies key policy and sustainability issues that should be considered when analysing and supporting different technology options to decarbonise the maritime sector. The basis of the study is outbound journeys under the geographical scope of the EU ship MRV Regulation.
We have not tried to quantify the emissions reductions that specific regulatory measures to be introduced at the IMO or EU level might contribute towards decarbonisation by 2050 because there are too many uncertainties. We have taken a more limited first approach and investigated how zero carbon propulsion pathways that currently seem feasible to decarbonise shipping would likely affect the future EU renewable energy supply needs.
It is now generally accepted that ship design efficiency requirements while potentially having an important impact on future emissions growth will fall well short of what is needed. Further operational efficiency measures such as capping operational speed will be important to immediately peak energy consumption and emissions but will be insufficient to decarbonise the sector or reduce its growing energy needs. In this context this study assumes that with all the likely immediate measures adopted energy demand for EU related shipping will still grow by 50% by 2050 over 2010 levels. This is within the range of the 20 -1 20% global BAU maritime energy demand growth estimate.
The decarbonisation of shipping will require changes in on -board energy storage and use and the necessary accompanying bunkering infrastructure. This study identifies the technology options for zero emission propulsion that based on current know-how are likely to be adopted. It is not exhaustive nor prescriptive because the ultimate pathways will likely depend on both the requirements of the shipping industry in terms of cost efficiency and safety and on the future renewable electricity sources that the shipping sect or will need to compete for.
Literature is nascent on the different techno-economic options likely to be available to decarbonise shipping and individual ships 4 but almost completely lacking on the possible impacts of maritime decarbonisation on the broader energy system(s). Understanding these impacts is nevertheless essential because it will influence financial and economic decision making by the EU and member states including those related to investment in future renewable energy supplies and new ship bunkering infrastructure. With this in mind the report aims to provide a preliminary first answer to the following question: Under different zero emission technology pathways how much additional renewable electricity would be needed to cater for the needs of EU related shipping in 2050?
Link to Document Download on Transport & Environment website
We have not tried to quantify the emissions reductions that specific regulatory measures to be introduced at the IMO or EU level might contribute towards decarbonisation by 2050 because there are too many uncertainties. We have taken a more limited first approach and investigated how zero carbon propulsion pathways that currently seem feasible to decarbonise shipping would likely affect the future EU renewable energy supply needs.
It is now generally accepted that ship design efficiency requirements while potentially having an important impact on future emissions growth will fall well short of what is needed. Further operational efficiency measures such as capping operational speed will be important to immediately peak energy consumption and emissions but will be insufficient to decarbonise the sector or reduce its growing energy needs. In this context this study assumes that with all the likely immediate measures adopted energy demand for EU related shipping will still grow by 50% by 2050 over 2010 levels. This is within the range of the 20 -1 20% global BAU maritime energy demand growth estimate.
The decarbonisation of shipping will require changes in on -board energy storage and use and the necessary accompanying bunkering infrastructure. This study identifies the technology options for zero emission propulsion that based on current know-how are likely to be adopted. It is not exhaustive nor prescriptive because the ultimate pathways will likely depend on both the requirements of the shipping industry in terms of cost efficiency and safety and on the future renewable electricity sources that the shipping sect or will need to compete for.
Literature is nascent on the different techno-economic options likely to be available to decarbonise shipping and individual ships 4 but almost completely lacking on the possible impacts of maritime decarbonisation on the broader energy system(s). Understanding these impacts is nevertheless essential because it will influence financial and economic decision making by the EU and member states including those related to investment in future renewable energy supplies and new ship bunkering infrastructure. With this in mind the report aims to provide a preliminary first answer to the following question: Under different zero emission technology pathways how much additional renewable electricity would be needed to cater for the needs of EU related shipping in 2050?
Link to Document Download on Transport & Environment website
Role of batteries and fuel cells in achieving Net Zero- Session 3
Mar 2021
Publication
The House of Lords Science and Technology Committee will hear from officials research funders and leading research consortia about the UK’s strategy for research and development of batteries and fuel cells to help meet the net-zero target.
The Committee will question officials from government departments and research councils about the UK’s increased support for battery development and how the initiatives and funding will evolve. The Committee will compare the support given to fuel cell research and ask how this technology will be developed for applications such as heavy transport. For both technologies it will ask how training will be delivered to provide a skilled workforce.
The Committee will also hear from leaders of research consortia asking them about support for their research sectors and how this compares with countries leading the development of the technologies. The Committee will explore coordination between research into batteries fuel cells and wider strategies such as for hydrogen and whether research for transport can be transferred to applications in other sectors such as power grids and heating.
At 10.00am: Oral evidence
Mr Tony Harper Industrial Strategy Challenge Director Faraday Battery Challenge at UK Research and Innovation (UKRI) at University of Central Lancashire
Dr Lucy Martin Deputy Director of Cross-Council Programmes and lead for Net Zero at University of Central Lancashire
Dr Bob Moran Deputy Director Head of Environment Strategy at University of Central Lancashire
Professor Paul Monks Chief Scientific Adviser at University of Central Lancashire
At 11.00am: Oral evidence
Professor Philip Taylor Director at EPSRC Supergen Energy Networks Hub and Pro-Vice Chancellor for Research and Enterprise at University of Bristol
Professor David Greenwood CEO High Value Manufacturing Catapult at University of Central Lancashire Director Industrial Engagement at University of Central Lancashire and Professor of Advanced Propulsion Systems at University of Warwick
Professor Paul Dodds Professor of Energy Systems at University of Central Lancashire
Possible questions
Parliament TV video of the meeting
This is part three of a three part enquiry.
Part one can be found here and part two can be found here.
The Committee will question officials from government departments and research councils about the UK’s increased support for battery development and how the initiatives and funding will evolve. The Committee will compare the support given to fuel cell research and ask how this technology will be developed for applications such as heavy transport. For both technologies it will ask how training will be delivered to provide a skilled workforce.
The Committee will also hear from leaders of research consortia asking them about support for their research sectors and how this compares with countries leading the development of the technologies. The Committee will explore coordination between research into batteries fuel cells and wider strategies such as for hydrogen and whether research for transport can be transferred to applications in other sectors such as power grids and heating.
At 10.00am: Oral evidence
Mr Tony Harper Industrial Strategy Challenge Director Faraday Battery Challenge at UK Research and Innovation (UKRI) at University of Central Lancashire
Dr Lucy Martin Deputy Director of Cross-Council Programmes and lead for Net Zero at University of Central Lancashire
Dr Bob Moran Deputy Director Head of Environment Strategy at University of Central Lancashire
Professor Paul Monks Chief Scientific Adviser at University of Central Lancashire
At 11.00am: Oral evidence
Professor Philip Taylor Director at EPSRC Supergen Energy Networks Hub and Pro-Vice Chancellor for Research and Enterprise at University of Bristol
Professor David Greenwood CEO High Value Manufacturing Catapult at University of Central Lancashire Director Industrial Engagement at University of Central Lancashire and Professor of Advanced Propulsion Systems at University of Warwick
Professor Paul Dodds Professor of Energy Systems at University of Central Lancashire
Possible questions
- On which aspects of battery and fuel cell research and development is the UK focusing and why?
- How successful have the UK’s new research initiatives been in advancing battery science and application?
- Does battery research receive greater public funding than fuel cell research? If so why?
- What technologies are seen as the most likely options for heavy transport i.e. HGVs buses and trains?
- What is the Government’s strategy for supporting the growth of skilled workers for battery and fuel cell research and development?
- To what extent is battery and fuel cell research and development coordinated in the UK? If so who is responsible for this coordination?
Parliament TV video of the meeting
This is part three of a three part enquiry.
Part one can be found here and part two can be found here.
Supporting Hydrogen Development in Australia Short Film
Jan 2021
Publication
This short film promotes Geoscience Australia's online and publicly accessible hydrogen data products. The film steps through the functionality of GA's Australian Hydrogen Opportunities Tool (AusH2) and describes the upcoming Hydrogen Economic Fairways Tool which has been created through a collaborative effort with Monash University.
Assessment of Full Life-cycle Air Emissions of Alternative Shipping Fuels
Oct 2017
Publication
There is a need for alternative fuels in the shipping sector for two main motivations: to deliver a reduction in local pollutants and comply with existing regulation; and to mitigate climate change and cut greenhouse gas emissions. However any alternative fuel must meet a range of criteria to become a viable option. Key among them is the requirement that it can deliver emissions reductions over its full life-cycle. For a set of fuels comprising both conventional and alternative fuels together with associated production pathways this paper presents a life-cycle assessment with respect to six emissions species: local pollutants sulphur oxides nitrogen oxides and particulate matter; and greenhouse gases carbon dioxide methane and nitrous oxide. While the analysis demonstrates that no widely available fuel exists currently to deliver on both motivations some alternative fuel options have the potential if key barriers can be overcome. Hydrogen or other synthetic fuels rely on decarbonisation of both energy input to production and other feedstock materials to deliver reductions in greenhouse gas emissions. Similarly bio-derived fuels can be an abatement option but only if it can be ensured that land-use change whilst growing biomass does not impact wider potential savings and the sector is able to compete sufficiently for their use. These examples show that crucial barriers are located upstream in the respective fuel life-cycle and that the way to overcome them may reside beyond the scope of the shipping sector alone.
Role of batteries and fuel cells in achieving Net Zero: Session 2
Mar 2021
Publication
The House of Lords Science and Technology Committee will hear from leading researchers about anticipated developments in batteries and fuel cells over the next ten years that could contribute to meeting the net-zero target.
The Committee continues its inquiry into the Role of batteries and fuel cells in achieving Net Zero. It will ask a panel of experts about batteries hearing about the current state-of-the-art in technologies that are currently in deployment primarily lithium-ion batteries. It will also explore the potential of next generation technologies currently in development and the challenges in scaling them up to manufacture.
The Committee will then question a second panel about fuel cells hearing about the different types available and their applications. It will explore challenges that need to be overcome in the development of the technology and will consider the UK’s international standing in the sector.
Meeting details
At 10.00am: Oral evidence
Professor Serena Corr Chair in Functional Nanomaterials and Director of Research Department of Chemical and Biological Engineering at University of Sheffield
Professor Paul Shearing Professor in Chemical Engineering at University College London
Dr Jerry Barker Founder and Chief Technology Officer at Faradion Limited
Dr Melanie Loveridge Associate Professor Warwick Manufacturing Group at University of Warwick
At 11.00am: Oral evidence
Professor Andrea Russell Professor of Physical Electrochemistry at University of Southampton
Professor Anthony Kucernak Professor of Physical Chemistry Faculty of Natural Sciences at Imperial College London
Professor John Irvine Professor School of Chemistry at University of St Andrews
Possible questions
Parliament TV video of the meeting
This is part two of a three part enquiry.
Part one can be found here and part three can be found here.
The Committee continues its inquiry into the Role of batteries and fuel cells in achieving Net Zero. It will ask a panel of experts about batteries hearing about the current state-of-the-art in technologies that are currently in deployment primarily lithium-ion batteries. It will also explore the potential of next generation technologies currently in development and the challenges in scaling them up to manufacture.
The Committee will then question a second panel about fuel cells hearing about the different types available and their applications. It will explore challenges that need to be overcome in the development of the technology and will consider the UK’s international standing in the sector.
Meeting details
At 10.00am: Oral evidence
Professor Serena Corr Chair in Functional Nanomaterials and Director of Research Department of Chemical and Biological Engineering at University of Sheffield
Professor Paul Shearing Professor in Chemical Engineering at University College London
Dr Jerry Barker Founder and Chief Technology Officer at Faradion Limited
Dr Melanie Loveridge Associate Professor Warwick Manufacturing Group at University of Warwick
At 11.00am: Oral evidence
Professor Andrea Russell Professor of Physical Electrochemistry at University of Southampton
Professor Anthony Kucernak Professor of Physical Chemistry Faculty of Natural Sciences at Imperial College London
Professor John Irvine Professor School of Chemistry at University of St Andrews
Possible questions
- What contribution are battery and fuel cell technologies currently making towards decarbonization in the UK?
- What advances do we expect to see in battery and fuel cell technologies and over what timeframes?
- How quickly can UK battery and fuel cell manufacture be scaled up to meet electrification demands?
- What are the challenges facing technological innovation and deployment in heavy transport?
- Are there any sectors where battery and fuel cell technologies are not currently used but could contribute to decarbonisation?
- What are the life cycle environmental impacts of batteries and fuel cells?
Parliament TV video of the meeting
This is part two of a three part enquiry.
Part one can be found here and part three can be found here.
The Use of Hydrogen to Separate and Recycle Neodymium–iron–boron-type Magnets from Electronic Waste
May 2015
Publication
The rare earth metals have been identified by the European Union and the United States as being at greatest supply risk of all the materials for clean energy technologies. Of particular concern are neodymium and dysprosium both of which are employed in neodymium–iron–boron based magnets. Recycling of magnets based on these materials and contained within obsolete electronic equipment could provide an additional and secure supply. In the present work hydrogen has been employed as a processing agent to decrepitate sintered neodymium–iron–boron based magnets contained within hard disk drives into a demagnetised hydrogenated powder. This powder was then extracted mechanically from the devices with an extraction efficiency of 90 ± 5% and processed further using a combination of sieves and ball bearings to produce a powder containing <330 parts per million of nickel contamination. It is then possible for the extracted powder to be re-processed in a number of ways namely directly by blending and re-sintering to form fully dense magnets by Hydrogenation Disproportionation Desorption Recombination processing to produce an anisotropic coercive powder suitable for bonded magnets by re-melting; or by chemical extraction of the rare earth elements from the alloy. For example it was shown that by the re-sintering route it was possible to recover >90% of the magnetic properties of the starting material with significantly less energy than that employed in primary magnet production. The particular route used will depend upon the magnetic properties required the level of contamination of the extracted material and the compositional variation of the feedstock. The various possibilities have been summarised in a flow diagram.
Controller Design for Polymer Electrolyte Membrane Fuel Cell Systems for Automotive Applications
May 2021
Publication
Continuous developments in Proton Exchange Membrane Fuel Cells (PEMFC) make them a promising technology to achieve zero emissions in multiple applications including mobility. Incremental advancements in fuel cells materials and manufacture processes make them now suitable for commercialization. However the complex operation of fuel cell systems in automotive applications has some open issues yet. This work develops and compares three different controllers for PEMFC systems in automotive applications. All the controllers have a cascade control structure where a generator of setpoints sends references to the subsystems controllers with the objective to maximize operational efficiency. To develop the setpoints generators two techniques are evaluated: off-line optimization and Model Predictive Control (MPC). With the first technique the optimal setpoints are given by a map obtained off-line of the optimal steady state conditions and corresponding setpoints. With the second technique the setpoints time profiles that maximize the efficiency in an incoming time horizon are continuously computed. The proposed MPC architecture divides the fast and slow dynamics in order to reduce the computational cost. Two different MPC solutions have been implemented to deal with this fast/slow dynamics separation. After the integration of the setpoints generators with the subsystems controllers the different control systems are tested and compared using a dynamic detailed model of the automotive system in the INN-BALANCE project running under the New European Driving Cycle.
Microbial Fuel Cells: Technologically Advanced Devices and Approach for Sustainable/renewable Energy Development
Dec 2021
Publication
There is a huge quantity of energy needs/demands for multiple developmental and domestic activities in the modern era. And in this context consumption of more non-renewable energy is reported and created many problems or issues (availability of fossil fuel stocks in the future period causes a huge quantity of toxic gases or particles or climatic change effects) at the global level. And only sustainable or renewable fuel development can provide alternate fuel and we report from various biological agents processes including microbial biofuel cell applications for future energy needs only. These will not cause any interference in natural resources or services. Microbial biofuel cells utilize the living cell to produce bioelectricity via bioelectrochemical system. It can drive electricity or other energy generation currents via lived cell interaction. Microbial fuel cells (MFCs) and enzymatic biofuel cells with their advancement in design can improve sustainable bio-energy production by proving an efficient conversion system compared to chemical fuels into electric power. Different types of MFCs operation are reported in wastewater treatment with biogas biohydrogen and other biofuel/energy generation. Later biogas can convert into electric power. Hybrid microbial biofuel cell utility with photochemical reaction is found for electricity generation. Recent research and development in microbial biofuel design and its application will emphasize bioenergy for the future.
Numerical Simulation of Solid Oxide Fuel Cells Comparing Different Electrochemical Kinetics
Mar 2021
Publication
Solid oxide fuel cells (SOFCs) produce electricity with high electrical efficiency and fuel flexibility without pollution for example CO2 NOx SOx and particles. Still numerous issues hindered the large‐scale commercialization of fuel cell at a large scale such as fuel storage mechanical failure catalytic degradation electrode poisoning from fuel and air for example lifetime in relation to cost. Computational fluid dynamics (CFD) couples various physical fields which is vital to reduce the redundant workload required for SOFC development. Modeling of SOFCs includes the coupling of charge transfer electrochemical reactions fluid flow energy transport and species transport. The Butler‐Volmer equation is frequently used to describe the coupling of electrochemical reactions with current density. The most frequently used is the activation‐ and diffusion‐controlled Butler‐Volmer equation. Three different electrode reaction models are examined in the study which is named case 1 case 2 and case 3 respectively. Case 1 is activation controlled while cases 2 and 3 are diffusion‐controlled which take the concentration of redox species into account. It is shown that case 1 gives the highest reaction rate followed by case 2 and case 3. Case 3 gives the lowest reaction rate and thus has a much lower current density and temperature. The change of activation overpotential does not follow the change of current density and temperature at the interface of the anode and electrolyte and interface of cathode and electrolyte which demonstrates the non‐linearity of the model. This study provides a reference to build electrochemical models of SOFCs and gives a deep understanding of the involved electrochemistry.
Hydrogen from Natural Gas – The Key to Deep Decarbonisation
Jul 2019
Publication
This Discussion Paper was commissioned by Zukunft ERDGAS to contribute to the debate concerning the deep decarbonisation of the European energy sector required to meet the Paris Agreement targets. Previous discussion papers have put forward decarbonisation pathways that rely heavily on ‘All-Electric’ solutions. These depend predominantly on renewable electricity to deliver decarbonisation of all sectors. This paper offers an alternative to an ‘All-Electric’ solution by building an alternative pathway that allows the inclusion of gas based technologies alongside the ‘All-Electric’ pathway technologies. The new pathway demonstrates that hydrogen from natural gas can be an essential complement to renewable electricity. The pathway also considers the benefits of utilising methane pyrolysis technology in Europe to produce zero carbon hydrogen.
Read the full report at this link
Read the full report at this link
Assessing Uncertainties of Well-To-Tank Greenhouse Gas Emissions from Hydrogen Supply Chains
Jun 2017
Publication
Hydrogen is a promising energy carrier in the clean energy systems currently being developed. However its effectiveness in mitigating greenhouse gas (GHG) emissions requires conducting a lifecycle analysis of the process by which hydrogen is produced and supplied. This study focuses on the hydrogen for the transport sector in particular renewable hydrogen that is produced from wind- or solar PV-powered electrolysis. A life cycle inventory analysis is conducted to evaluate the Well-to-Tank (WtT) GHG emissions from various renewable hydrogen supply chains. The stages of the supply chains include hydrogen being produced overseas converted into a transportable hydrogen carrier (liquid hydrogen or methylcyclohexane) imported to Japan by sea distributed to hydrogen filling stations restored from the hydrogen carrier to hydrogen and filled into fuel cell vehicles. For comparison an analysis is also carried out with hydrogen produced by steam reforming of natural gas. Foreground data related to the hydrogen supply chains are collected by literature surveys and the Japanese life cycle inventory database is used as the background data. The analysis results indicate that some of renewable hydrogen supply chains using liquid hydrogen exhibited significantly lower WtT GHG emissions than those of a supply chain of hydrogen produced by reforming of natural gas. A significant piece of the work is to consider the impacts of variations in the energy and material inputs by performing a probabilistic uncertainty analysis. This suggests that the production of renewable hydrogen its liquefaction the dehydrogenation of methylcyclohexane and the compression of hydrogen at the filling station are the GHG-intensive stages in the target supply chains.
Health-Conscious Optimization of Long-Term Operation for Hybrid PEMFC Ship Propulsion Systems
Jun 2021
Publication
The need to decarbonize the shipping sector is leading to a growing interest in fuel cell-based propulsion systems. While Polymer Electrolyte Membrane Fuel Cells (PEMFC) represent one of the most promising and mature technologies for onboard implementation they are still prone to remarkable degradation. The same problem is also affecting Lithium-ion batteries (LIB) which are usually coupled with PEMFC in hybrid powertrains. By including the combined degradation effects in an optimization strategy the best compromise between costs and PEMFC/LIB lifetime could be determined. However this is still a challenging yet crucial aspect rarely addressed in the literature and rarely yet explored. To fill this gap a health-conscious optimization is here proposed for the long-term minimization of costs and PEMFC/LIB degradation. Results show that a holistic multi-objective optimization allows a 185% increase of PEMFC/LIB lifetime with respect to a fuel-consumption-minimization-only approach. With the progressive ageing of PEMFC/LIB the hybrid propulsion system modifies the energy management strategy to limit the increase of the daily operation cost. Comparing the optimization results at the beginning and the end of the plant lifetime daily operation costs are increased by 73% and hydrogen consumption by 29%. The proposed methodology is believed to be a useful tool able to give insights into the effective costs involved in the long-term operation of this new type of propulsion system.
Process of Transformation to Net Zero Steelmaking: Decarbonisation Scenarios Based on the Analysis of the Polish Steel Industry
Apr 2023
Publication
The European steel industry is experiencing new challenges related to the market situation and climate policy. Experience from the period of pandemic restrictions and the effects of Russia’s armed invasion of Ukraine has given many countries a basis for including steel along with raw materials (coke iron ore electricity) in economic security products (CRMA). Steel is needed for economic infrastructure and construction development as well as a material for other industries (without steel factories will not produce cars machinery ships washing machines etc.). In 2022 steelmakers faced a deepening energy crisis and economic slowdown. The market situation prompted steelmakers to impose restrictions on production volumes (worldwide production fell by 4% compared to the previous year). Despite the difficult economic situation of the steel industry (production in EU countries fell by 11% in 2022 compared to the previous year) the EU is strengthening its industrial decarbonisation policy (“Fit for 55”). The decarbonisation of steel production is set to accelerate by 2050. To sharply reduce carbon emissions steel mills need new steelmaking technologies. The largest global steelmakers are already investing in new technologies that will use green hydrogen (produced from renewable energy sources). Reducing iron ore with hydrogen plasma will drastically reduce CO2 emissions (steel production using hydrogen could emit up to 95% less CO2 than the current BF + BOF blast furnace + basic oxygen furnace integrated method). Investments in new technologies must be tailored to the steel industry. A net zero strategy (deep decarbonisation goal) may have different scenarios in different EU countries. The purpose of this paper was to introduce the conditions for investing in low-carbon steelmaking technologies in the Polish steel market and to develop (based on expert opinion) scenarios for the decarbonisation of the Polish steel industry.
Solar Hydrogen for High Capacity, Dispatchable, Long-distance Energy transmission – A Case Study for Injection in the Greenstream Natural Gas Pipeline
Nov 2022
Publication
This paper presents the results of techno-economic modelling for hydrogen production from a photovoltaic battery electrolyser system (PBES) for injection into a natural gas transmission line. Mellitah in Libya connected to Gela in Italy by the Greenstream subsea gas transmission line is selected as the location for a case study. The PBES includes photovoltaic (PV) arrays battery electrolyser hydrogen compressor and large-scale hydrogen storage to maintain constant hydrogen volume fraction in the pipeline. Two PBES configurations with different large-scale storage methods are evaluated: PBESC with compressed hydrogen stored in buried pipes and PBESL with liquefied hydrogen stored in spherical tanks. Simulated hourly PV electricity generation is used to calculate the specific hourly capacity factor of a hypothetical PV array in Mellitah. This capacity factor is then used with different PV sizes for sizing the PBES. The levelised cost of delivered hydrogen (LCOHD) is used as the key techno-economic parameter to optimise the size of the PBES by equipment sizing. The costs of all equipment except the PV array and batteries are made to be a function of electrolyser size. The equipment sizes are deemed optimal if PBES meets hydrogen demand at the minimum LCOHD. The techno-economic performance of the PBES is evaluated for four scenarios of fixed and constant hydrogen volume fraction targets in the pipeline: 5% 10% 15% and 20%. The PBES can produce up to 106 kilotonnes of hydrogen per year to meet the 20% target at an LCOHD of 3.69 €/kg for compressed hydrogen storage (PBESC) and 2.81 €/kg for liquid hydrogen storage (PBESL). Storing liquid hydrogen at large-scale is significantly cheaper than gaseous hydrogen even with the inclusion of a significantly larger PV array that is required to supply additional electrcitiy for liquefaction.
Implementation of Fuel Cells in Aviation from a Maintenance, Repair and Overhaul Perspective
Dec 2022
Publication
Hydrogen is one of the most promising power sources for meeting the aviation sector’s long-term decarbonization goals. Although on-board hydrogen systems namely fuel cells are extensively researched the maintenance repair and overhaul (MRO) perspective remains mostly unaddressed. This paper analyzes fuel cells from an MRO standpoint based on a literature review and comparison with the automotive sector. It also examines how well the business models and key resources of MRO providers are currently suited to provide future MRO services. It is shown that fuel cells require extensive MRO activities and that these are needed to meet the aviation sector’s requirements for price safety and especially durability. To some extent experience from the automotive sector can be built upon particularly with respect to facility requirements and qualification of personnel. Yet MRO providers’ existing resources only partially allow them to provide these services. MRO providers’ underlying business models must adapt to the implementation of fuel cells in the aviation sector. MRO providers and services should therefore be considered and act as enablers for the introduction of fuel cells in the aviation industry.
An Inter-laboratory Comparison between 13 International Laboratories for Eight Components Relevant for Hydrogen Fuel Quality Assessment
Mar 2024
Publication
The quality of the hydrogen delivered by refuelling stations is critical for end-users and society. The purity of the hydrogen dispensed at hydrogen refuelling points should comply with the technical specifications included in the ISO 14687:2019 and EN 17124:2022 standards. Once laboratories have set up methods they need to verify their performances for example through participation in interlaboratory comparisons. Due to the challenge associated with the production of stable reference materials and transport of these which are produced in hydrogen at high pressure (>10 bar) interlaboratory comparisons have been organized in different steps with increasing extent. This study describes an inter-laboratory comparison exercise for hydrogen fuel involving a large number of participants (13 laboratories) completed in less than a year and included eight key contaminants of hydrogen fuel at level close to the ISO14687 threshold. These compounds were selected based on their high probability of occurrence or because they have been found in hydrogen fuel samples. For the results of the intercomparison it appeared that fully complying with ISO 21087:2019 is still challenging for many participants and highlighted the importance of organising these types of exercises. Many laboratories performed corrective actions based on their results which in turn significantly improved their performances.
Research on the Adaptability of Proton Exchange Membrane Electrolysis in Green Hydrogen-Electric Coupling System Under Multi-operating Conditions
Mar 2023
Publication
The green hydrogen–electric coupling system can consume locally generated renewable energy thereby improving energy utilization and enabling zero-carbon power supply within a certain range. This study focuses on a green hydrogen–electric coupling system that integrates photovoltaic energy storage and proton exchange membrane electrolysis (PEME). Firstly the impact of operating temperature power quality and grid auxiliary services on the characteristics of the electrolysis cell is analyzed and a voltage model and energy model for the cell are established. Secondly a multi-operating conditions adaptability experiment for PEME grid-connected operation is designed. A test platform consisting of a grid simulator simulated photovoltaic power generation system lithium battery energy storage system PEME and measurement and acquisition device is then built. Finally experiments are conducted to simulate multi-operating conditions such as temperature changes voltage fluctuations frequency offsets harmonic pollution and current adjustment speed. The energy efficiency and consumption is calculated based on the recorded data and the results are helpful to guide the operation of the system.
Increasing Technical Efficiency of Renewable Energy Sources in Power Systems
Mar 2023
Publication
This paper presents a method for refining the forecast schedule of renewable energy sources (RES) generation by its intraday adjustment and investigates the measures for reserving RES with unstable generation in electric power systems (EPSs). Owing to the dependence of electricity generation by solar and wind power plants (PV and WPPs respectively) on natural conditions problems arise with their contribution to the process of balancing the power system. Therefore the EPS is obliged to keep a power reserve to compensate for deviations in RES from the planned generation amount. A system-wide reserve (mainly the shunting capacity of thermal and hydroelectric power plants) is used first followed by other means of power reserve: electrochemical hydrogen or biogas plants. To analyze the technical and economic efficiency of certain backup means mathematical models based on the theory of similarity and the criterion method were developed. This method is preferred because it provides the ability to compare different methods of backing up RES generation with each other assess their proportionality and determine the sensitivity of costs to the capacity of backup methods with minimal available initial information. Criterion models have been formed that allow us to build dependencies of the costs of backup means for unstable RES generation on the capacity of the backup means. It is shown that according to the results of the analysis of various methods and means of RES backup hydrogen technologies are relatively the most effective. The results of the analysis in relative units can be clarified if the current and near-term price indicators are known.
Low Carbon Optimal Operation of Integrated Energy System Based on Concentrating Solar Power Plant and Power to Hydrogen
Mar 2023
Publication
A new integrated energy system (IES) framework is created in order to encourage the consumption of renewable energy which is represented by wind and solar energy and lower carbon emissions. The connection between the units in the composite system is examined in this research. In-depth analysis is done on how energy is transferred between electricity heat gas and hydrogen. The system model and constraints are used to build an objective function with the lowest total operating cost. The calculation of carbon trading includes the ladder carbon trading method. And set up 6 cases for analysis which verifies the effectiveness of the participation of the concentrated solar power plant (CSPP) in the heat supply and power to hydrogen system (P2HS) in reducing the total operating cost of the system reducing wind curtailment and light curtailment and reducing carbon emissions. Under the model considered in this paper reduces the total operating cost reduces by 27.04% when the concentrated solar power plant is involved in the supply of thermal load. And the carbon emission is reduced by 14.529%. Compared with the traditional power to gas considers the power to hydrogen system in this paper which reduces the total operating cost by 4.79%.
Green Hydrogen Value Chain: Modelling of a PV Power Plant Integrated with H2 Production for Industry Application
Mar 2024
Publication
Based on the Sustainable Development Goals outlined in the 2030 agenda of the United Nations affordable and clean energy is one of the most relevant goals to achieve the decarbonization targets and break down the global climate change effects. The use of renewable energy sources namely solar energy is gaining attention and market share due to reductions in investment costs. Nevertheless it is important to overcome the energy storage problems mostly in industrial applications. The integration of photovoltaic power plants with hydrogen production and its storage for further conversion to usable electricity are an interesting option from both the technical and economic points of view. The main objective of this study is to analyse the potential for green hydrogen production and storage through PV production based on technical data and operational considerations. We also present a conceptual model and the configuration of a PV power plant integrated with hydrogen production for industry supply. The proposed power plant configuration identifies different pathways to improve energy use: supply an industrial facility supply the hydrogen production and storage unit sell the energy surplus to the electrical grid and provide energy to a backup battery. One of the greatest challenges for the proposed model is the component sizing and water electrolysis process for hydrogen production due to the operational requirements and the technology costs.
Refuelling Infrastructure Requirements for Renewable Hydrogen Road Fuel through the Energy Transition
Nov 2022
Publication
Current commercially available options for decarbonisation of road transport are battery electric vehicles or hydrogen fuel cell electric vehicles. BEVs are increasingly deployed while hydrogen is in its infancy. We examine the infrastructure necessary to support hydrogen fuelling to various degrees of market penetration. Scotland makes a good exemplar of transport transition with a world leading Net-Zero ambition and proven pathways for generating ample renewable energy. We identified essential elements of the new transport systems and the associated capital expenditure. We developed nine scenarios based on the pace of change and the ultimate market share of hydrogen and constructed a model to analyse their infrastructure requirements. This is a multi-period model incorporating Monte Carlo and Markov Chain elements. A “no-regrets” initial action is rapid deployment of enough hydrogen infrastructure to facilitate the early years of a scenario where diesel fuel becomes replaced with hydrogen. Even in a lower demand scenario of only large and heavy goods vehicles using hydrogen the same infrastructure would be required within a further two years. Subsequent investment in infrastructure could be considered in the light of this initial development.
Comprehensive Analysis of the Operation of an Internal Combustion Engine Fueled by Hydrogen-containing Mixtures
Mar 2023
Publication
At present hydrogen is considered as one of the most promising motor fuels capable of replacing traditional hydrocarbons. This article presents the results of a comprehensive experimental study of the effect of hydrogen additives on the main parameters of a gasoline spark-ignition ICE. The thermophysical parameters of the processes of ignition and combustion inside the cylinder with the addition of hydrogen in the amount of 0%–20% of the air volume as well as the fuel and energy characteristics of the engine and its impact on the environment were studied. It has been established that hydrogen leads to significant changes in the engine operation. It increases some parameters and reduces others improving or worsening them compared to running on pure gasoline. So with a 20% H2 addition at an average engine load the following parameters increase: the maximum pressure in the cylinder by almost 20%; the rate of pressure increase in the combustion chamber by 2.8 times; the highest combustion temperature by 140 K. At the same time the following parameters decrease: average indicator pressure by 18%; ignition timing by 82% (6◦ to TDC versus 34◦ for gasoline); crank angle corresponding to the maximum pressure by 32% (9.4◦ versus 13.9◦ for gasoline); crank angle corresponding to maximum temperature by 54% (17.7◦ after TDC versus 38.3◦ for clean gasoline); ignition delay time (τind = 0.32 ms) and visible combustion time (τvis = 1.58 ms) by 4 and 2.3 times respectively.
Towards a Prioritization of Alternative Energy Sources for Sustainable Shipping
Apr 2023
Publication
Studies on the prospects of the use of alternative fuels in the maritime industry have rarely been assessed in the context of developing countries. This study assesses seven energy sources for shipping in the context of Bangladesh with a view to ranking their prospects based on sustainability as well as identifying the energy transition criteria. Data were collected from maritime industry experts including seafarers shipping company executives government representatives and academics. The Bayesian Best-Worst Method (BWM) was used for ranking nine criteria related to the suitability and viability of the considered alternative energy sources. Next the PROMETHEE-GAIA method is applied for priority analysis of the seven energy alternatives. The findings reveal that capital cost alternative energy price and safety are the most important factors for alternative energy transition in Bangladesh. Apart from the benchmark HFO Liquified Natural Gas (LNG) HFO-Wind and LNG-Wind hybrids are considered the most viable alternatives. The findings of the study can guide policymakers in Bangladesh in terms of promoting viable energy sources for sustainable shipping.
Economic Evaluation of a Power-to-hydrogen System Providing Frequency Regulation Reserves: A Case Study of Denmark
Mar 2023
Publication
Operating costs are dominant in the hydrogen production of a power-to-hydrogen system. An optimal operational strategy or bidding framework is effective in reducing these costs. However it is still found that the production cost of hydrogen is high. As the electrolysis unit is characterized by high flexibility providing ancillary service to the grid becomes a potential pathway for revenue stacking. Recent research has demonstrated the feasibility of providing such a service but the related economics have not been well evaluated. In this work we propose a comprehensive operation model to enable participation in the day-head balancing and reserve markets. Three types of reserves are considered by using different operational constraints. Based on the proposed operation framework we assess the economic performance of a power-to-hydrogen system in Denmark using plentiful actual market data. The results reveal that providing frequency containment reserve and automatic frequency restoration reserve efficiently raises the operational contribution margins. In parallel by investing in the cash flows net present value and break-even hydrogen prices we conclude that providing reserves makes the power-to-hydrogen project more profitable in the studied period and region.
Reduction of Iron Oxides with Hydrogen - A Review
Aug 2019
Publication
This review focuses on the reduction of iron oxides using hydrogen as a reducing agent. Due to increasing requirements from environmental issues a change of process concepts in the iron and steel industry is necessary within the next few years. Currently crude steel production is mainly based on fossil fuels and emitting of the climate-relevant gas carbon dioxide is integral. One opportunity to avoid or reduce greenhouse gas emissions is substituting hydrogen for carbon as an energy source and reducing agent. Hydrogen produced via renewable energies allows carbon-free reduction and avoids forming harmful greenhouse gases during the reduction process. The thermodynamic and kinetic behaviors of reduction with hydrogen are summarized and discussed in this review. The effects of influencing parameters such as temperature type of iron oxide grain size etc. are shown and compared with the reduction behavior of iron oxides with carbon monoxide. Different methods to describe the kinetics of the reduction progress and the role of the apparent activation energy are shown and proofed regarding their plausibility.
Power Scheduling Optimization Method of Wind-Hydrogen Integrated Energy System Based on the Improved AUKF Algorithm test2
Nov 2022
Publication
With the proposal of China’s green energy strategy the research and development technologies of green energy such as wind energy and hydrogen energy are becoming more and more mature. However the phenomenon of wind abandonment and anti-peak shaving characteristics of wind turbines have a great impact on the utilization of wind energy. Therefore this study firstly builds a distributed wind-hydrogen hybrid energy system model then proposes the power dispatching optimization technology of a wind-hydrogen integrated energy system. On this basis a power allocation method based on the AUKF (adaptive unscented Kalman filter) algorithm is proposed. The experiment shows that the power allocation strategy based on the AUKF algorithm can effectively reduce the incidence of battery overcharge and overdischarge. Moreover it can effectively deal with rapid changes in wind speed. The wind hydrogen integrated energy system proposed in this study is one of the important topics of renewable clean energy technology innovation. Its grid-connected power is stable with good controllability and the DC bus is more secure and stable. Compared with previous studies the system developed in this study has effectively reduced the ratio of abandoned air and its performance is significantly better than the system with separate grid connected fans and single hydrogen energy storage. It is hoped that this research can provide some solutions for the research work on power dispatching optimization of energy systems.
Renewable Electricity for Decarbonisation of Road Transport: Batteries or E-Fuels?
Feb 2023
Publication
Road transport is one of the most energy-consuming and greenhouse gas (GHG) emitting sectors. Progressive decarbonisation of electricity generation could support the ambitious target of road vehicle climate neutrality in two different ways: direct electrification with onboard electro-chemical storage or a change of energy vector with e-fuels. The most promising state-of-the-art electrochemical storages for road transport have been analysed considering current and future technologies (the most promising ones) whose use is assumed to occur within the next 10–15 years. Different e-fuels (e-hydrogen e-methanol e-diesel e-ammonia E-DME and e-methane) and their production pathways have been reviewed and compared in terms of energy density synthesis efficiency and technology readiness level. A final energetic comparison between electrochemical storages and e-fuels has been carried out considering different powertrain architectures highlighting the huge difference in efficiency for these competing solutions. E-fuels require 3–5 times more input energy and cause 3–5 times higher equivalent vehicle CO2 emissions if the electricity is not entirely decarbonised.
Fuel Cells for Shipping: To Meet On-board Auxiliary Demand and Reduce Emissions
Feb 2021
Publication
The reduction of harmful emissions from the international shipping sector is necessary. On-board energy demand can be categorised as either: propulsion or auxiliary services. Auxiliary services contribute a significant proportion of energy demand with major loads including: compressors pumps and HVAC (heating ventilation and air-conditioning). Typically this demand is met using the same fuel source as the main propulsion (i.e. fossil fuels). This study has analysed whether emissions from large scale ships could feasibly be reduced by meeting auxiliary demand by installing a hydrogen fuel cell using data from an LNG tanker to develop a case study. Simulations have shown that for a capacity of 10 x 40ft containers of compressed hydrogen the optimal fuel cell size would be 3 MW and this could save 10600 MWh of fossil fuel use equivalent to 2343 t of CO2. Hence this could potentially decarbonise a significant proportion of shipping energy demand. Although there are some notable technical and commercial considerations such as fuel cell lifetime and capital expenditure requirements. Results imply that if auxiliary loads could be managed to avoid peaks in demand this could further increase the effectiveness of this concept.
Assessing the Performance of Fuel Cell Electric Vehicles Using Synthetic Hydrogen Fuel
Mar 2024
Publication
The deployment of hydrogen fuel cell electric vehicles (FCEVs) is critical to achieve zero emissions. A key parameter influencing FCEV performance and durability is hydrogen fuel quality. The real impact of contaminants on FCEV performance is not well understood and requires reliable measurements from real-life events (e.g. hydrogen fuel in poor-performing FCEVs) and controlled studies on the impact of synthetic hydrogen fuel on FCEV performance. This paper presents a novel methodology to flow traceable hydrogen synthetic fuel directly into the FCEV tank. Four different synthetic fuels containing N2 (90–200 µmol/mol) CO (0.14–5 µmol/mol) and H2S (4–11 nmol/mol) were supplied to an FCEV and subsequently sampled and analyzed. The synthetic fuels containing known contaminants powered the FCEV and provided real-life performance testing of the fuel cell system. The results showed for the first time that synthetic hydrogen fuel can be used in FCEVs without the requirement of a large infrastructure. In addition this study carried out a traceable H2 contamination impact study with an FCEV. The impact of CO and H2S at ISO 14687:2019 threshold levels on FCEV performance showed that small exceedances of the threshold levels had a significant impact even for short exposures. The methodology proposed can be deployed to evaluate the composition of any hydrogen fuel.
Drop-in and Hydrogen-based Biofuels for Maritime Transport: Country-based Assessment of Climate Change Impacts in Europe up to 2050
Nov 2022
Publication
Alternative fuels are crucial to decarbonize the European maritime transport but their net climate benefits vary with the type of fuel and production country. In this study we assess the energy potential and climate change mitigation benefits of using agricultural and forest residues in different European countries for drop-in (Fast Pyrolysis Hydrothermal Liquefaction and Gasification to Fischer-Tropsch fuels or Bio-Synthetic Natural Gas) and hydrogen-based biofuels (hydrogen ammonia and methanol) with or without carbon capture and storage (CCS). Our results show the combinations of countries and biofuel options that successfully achieve the decarbonization targets set by the FuelEU Maritime initiative for the next years including a prospective analysis that include technological changes projected for the biofuel supply chains until 2050. With the current technologies the largest greenhouse gas (GHG) mitigation potential per year at a European scale is obtained with bio-synthetic natural gas and hydrothermal liquefaction. Among carbon-free biofuels ammonia currently has higher mitigation but hydrogen can achieve a lower GHG intensity per unit of energy with the projected decarbonization of the electricity mixes until 2050. The full deployment of CCS can further accelerate the decarbonization of the maritime sector. Choosing the most suitable renewable fuels requires a regional perspective and a transition roadmap where countries coordinate actions to meet ambitious climate targets.
Hydrogen or Hydrogen-derived Methanol for Dual-fuel Compression-ignition Combustion: An Engine Perspective
Oct 2022
Publication
Synthetic fuels or e-fuels produced from captured CO2 and renewable hydrogen are envisaged as a feasible path towards a climate-neutral transportation in medium/heavy-duty and maritime sectors. EU is presently debating energy targets by 2030 for these fuels. As their production involves chemical processing of hydrogen it must be evaluated if the extra cost is worthy at least in applications where hydrogen use is possible. This manuscript focuses on the performance and environmental impact when hydrogen and methanol are fed to a heavy-duty compression-ignition engine working under dual-fuel combustion. The trade-off thermal efficiency-NOx emissions is primary considered in the assessment by combining both variables in an own defined function. During the work engine operating settings were adjusted to exploit the potential of methanol and hydrogen. Compared to conventional combustion methanol required centering the combustion towards TDC and doubling the EGR rate resulting in a low temperature highly premixed combustion almost soot-free and with extremely low NOx emissions. The best settings for hydrogen were in the middle of those for methanol and conventional combustion. Results showed great dependance with the engine load but methanol proved superior to hydrogen for all conditions. At high load 20–60 % methanol even improved the efficiency and reduced the NOx emissions obtained by conventional combustion. However at low load hydrogen could substitute 90 % of the diesel fuel while methanol failed at substitutions higher than 55 %.
Pre-cooling Systems for Hydrogen Fueling Stations: Techno-economic Analysis for Scaled Enactment
Mar 2023
Publication
Hydrogen fueling standards stipulates a sustainable cooling system technically and economically. Accordingly the interior surface temperature of the on-board H2 storage tank in fuel cell electric vehicles must not exceed the maximum specified limit (358.15 K) and the fueling rate must be ≤ 42.86 sec / kg-H2 with T40 dispenser at 70 MPa. In this context H2 refueling stations often employ double-tube and block heat exchangers for heat transfer. This study examines the H2 pre-cooling system for various loads and provides a comparative techno-economic analysis of double tube heat exchangers (DTHE) and microchannel heat exchangers (MCHE) under stipulated technical operational and outlet gas standards. For this purpose thermal and hydraulic performances were simulated using ANSYS-CFX. Technical and cost models utilize manufacturer specifications and literature-based technical and economic characteristics to derive the minimum sustainable price defined as the price to sustain the product. The results showed that the MCHE outperformed the DTHE for setups in mass manufacturing improved effective heat transfer area and predicted long term unit cost. The annual quantitative output affects manufacturing expenses and profit margins substantially. With high production rates it is expected that the unit cost of the MCHE will decrease by up to 74%. In switching from DTHE to MCHE general material requirements decreased by ~60% with scrap waste savings of ~45% reflecting an appreciable footprint reduction.
Assessment of the Co-combustion Process of Ammonia with Hydrogen in a Research VCR Piston Engine
Oct 2022
Publication
The presented work concerns experimental research of a spark-ignition engine with variable compression ratio (VCR) adapted to dual-fuel operation in which co-combustion of ammonia with hydrogen was conducted and the energy share of hydrogen varied from 0% to 70%. The research was aimed at assessing the impact of the energy share of hydrogen co-combusted with ammonia on the performance stability and emissions of an engine operating at a compression ratio of 8 (CR 8) and 10 (CR 10). The operation of the engine powered by ammonia alone for both CR 8 and CR 10 is associated with either a complete lack of ignition in a significant number of cycles or with significantly delayed ignition and the related low value of the maximum pressure pmax. Increasing the energy share of hydrogen in the fuel to 12% allows to completely eliminate the instability of the ignition process in the combustible mixture which is confirmed by a decrease in the IMEP uniqueness and a much lower pmax dispersion. For 12% of the energy share of hydrogen co-combusted with ammonia the most favorable course of the combustion process was obtained the highest engine efficiency and the highest IMEP value were recorded. The conducted research shows that increasing the H2 share causes an increase in NO emissions for both analyzed compression ratios
Green Hydrogen Based Power Generation Prospect for Sustainable Development of Bangladesh using PEMFC and Hydrogen Gas Turbine
Feb 2023
Publication
Bangladesh focuses on green energy sources to be a lesser dependent on imported fossil fuels and to reduce the GHG emission to decarbonize the energy sector. The integration of renewable energy technologies for green hydrogen production is promising for Bangladesh. Hybrid renewable plants at the coastline along the Bay of Bengal Kuakata Sandwip St. Martin Cox’sbazer and Chattogram for green hydrogen production is very promising to solve the power demand scarcity of Bangladesh. Hydrogen gas turbine and hydrogen fuel cell configured power plant performances are studied to observe the feasibility/prospect to the green energy transition. The Plant’s performances investigated based on specification of the plant’s units and verified by MATLAB SIMULINK software. Fuels blending (different percent of hydrogen with fossil fuel/NG) technique makes the hydrogen more feasible as turbine fuel. The net efficiency of the fuel cell-based combined cycle configuration (74%) is higher than that of the hydrogen gas turbine-based configuration (51.9%). Moreover analyses show that the increment of combined cycle gas turbine efficiency (+18.5%) is more than the combined cycle PEMFC configuration (+14%). Long-term storage of renewable energy in the salt cavern as green hydrogen can be a source of energy for emergency. A significant share of power can be generated by a numbers of green power plants at specified places in Bangladesh.
Overview of the Method and State of Hydrogenization of Road Transport in the World and the Resulting Development Prospects in Poland
Jan 2021
Publication
National Implementation Plans (NIP) in regard hydrogenation motor transport are in place in European Union (EU) countries e.g.Germany France or Belgium Denmark Netherlands. Motor transport hydrogenization plans exist in the Japan and USA. In Poland the methodology deployment Hydrogen Refuelling Stations (HRS) developed in Motor Transport Institute is of multi-stage character are as follows: Stage I: Method allowing to identify regions in which HRS should be located. Stage II: Method allowing to identify urban centres in which should be located the said stations. Stage III: Method for determining the area of the station location. The presentation of the aforesaid NIPS and based on that and the mentioned methodology the conditions for hydrogenization of motor transport in Poland is the purpose of this article which constitutes its novelty. The scope of the article concerns the hydrogenization of motor transport in the abovementioned countries. With the above criteria the order the construction in Poland of a HRS in the order of their creation along the TEN-T corridors is as follows: 1 - Poznan 2 - Warsaw 3 - Bialystok 4 - Szczecin 5 - the Lodz region 6 - the Tri-City region 7 - Wrocław 8 - the Katowice region 9 – Krakow. The concluding discussion sets out the status of deployment HRS and FCEVs in the analysed countries.
Study on the Use of Fuel Cells in Shipping
Jan 2017
Publication
Fuel Cells are a promising technology in the context of clean power sustainability and alternative fuels for shipping. Different specific developments on Fuel Cells are available today with research and pilot projects under evaluation that have revealed strong potential for further scaled up implementation. The EMSA Study on the use of Fuel Cells in Shipping has been the result of this Agency’s initiative under the agreement of the Commission and in support of EU Member States an important instrument developed in close partnership with DNV-GL.
Notwithstanding the close dependency of Fuel Cell technology and the development of hydrogen fuel solutions different solutions are today in place making use of LNG methanol and other low flashpoint fuels. EMSA participates in support of the Commission in the 2nd phase development of the IGF Code where provisions for Fuel Cells are to be included as a new part of the text.
The EMSA Study on the use of Fuel Cells in Shipping includes a technology and regulatory review identifying gaps to be further explored the selection of the most promising Fuel Cell technologies for shipping and finally a generic Safety Assessment where the selected technologies are evaluated according to Risk & Safety aspects in generic ship design applications.
Notwithstanding the close dependency of Fuel Cell technology and the development of hydrogen fuel solutions different solutions are today in place making use of LNG methanol and other low flashpoint fuels. EMSA participates in support of the Commission in the 2nd phase development of the IGF Code where provisions for Fuel Cells are to be included as a new part of the text.
The EMSA Study on the use of Fuel Cells in Shipping includes a technology and regulatory review identifying gaps to be further explored the selection of the most promising Fuel Cell technologies for shipping and finally a generic Safety Assessment where the selected technologies are evaluated according to Risk & Safety aspects in generic ship design applications.
Comparing e-Fuels and Electrification for Decarbonization of Heavy-Duty Transports
Oct 2022
Publication
The freight sector is expected to keep or even increase its fundamental role for the major modern economies and therefore actions to limit the growing pressure on the environment are urgent. The use of electricity is a major option for the decarbonization of transports; in the heavy-duty segment it can be implemented in different ways: besides full electric-battery powertrains electricity can be used to supply catenary roads or can be chemically stored in liquid or gaseous fuels (e-fuels). While the current EU legislation adopts a tailpipe Tank-To-Wheels approach which results in zero emissions for all direct uses of electricity a Well-To-Wheels (WTW) method would allow accounting for the potential benefits of using sustainable fuels such as e-fuels. In this article we have performed a WTW-based comparison and modelling of the options for using electricity to supply heavy-duty vehicles: e-fuels eLNG eDiesel and liquid Hydrogen. Results showed that the direct use of electricity can provide high Greenhouse Gas (GHG) savings and also in the case of the e-fuels when low-carbonintensity electricity is used for their production. While most studies exclusively focus on absolute GHG savings potential considerations of the need for new infrastructures and the technological maturity of some options are fundamental to compare the different technologies. In this paper an assessment of such technological and non-technological barriers has been conducted in order to compare alternative pathways for the heavy-duty sector. Among the available options the flexibility of using drop-in energy-dense liquid fuels represents a clear and substantial immediate advantage for decarbonization. Additionally the novel approach adopted in this paper allows us to quantify the potential benefits of using e-fuels as chemical storage able to accumulate electricity from the production peaks of variable renewable energies which would otherwise be wasted due to grid limitations.
Exploring Hydrogen-Enriched Fuels and the Promise of HCNG in Industrial Dual-Fuel Engines
Mar 2024
Publication
This paper presents a theoretical analysis of the selected properties of HCNG fuel calculations and a literature review of the other fuels that allow the storage of ecologically produced hydrogen. Hydrogen has the most significant CO2 reduction potential of all known fuels. However its transmission in pure form is still problematic and its use as a component of fuels modified by it has now become an issue of interest for researchers. Many types of hydrogen-enriched fuels have been invented. However this article will describe the reasons why HCNG may be the hydrogen-enriched fuel of the future and why internal combustion (IC) piston engines working on two types of fuel could be the future method of using it. CO2 emissions are currently a serious problem in protecting the Earth’s natural climate. However secondarily power grid stabilization with a large share of electricity production from renewable energy sources must be stabilized with very flexible sources—as flexible as multi-fuel IC engines. Their use is becoming an essential element of the electricity power systems of Western countries and there is a chance to use fuels with zero or close to zero CO2 emissions like e-fuels and HCNG. Dual-fuel engines have become an effective way of using these types of fuels efficiently; therefore in this article the parameters of hydrogen-enriched fuel selected in terms of relevance to the use of IC engines are considered. Inaccuracies found in the literature analysis are discussed and the essential properties of HCNG and its advantages over other hydrogen-rich fuels are summarized in terms of its use in dual-fuel (DF) IC engines.
Power Balance Control and Dimensioning of a Hybrid Off-grid Energy system for a Nordic Climate Townhouse
Mar 2023
Publication
This paper investigates conversion of a Nordic oil-heated townhouse into carbon-neutral by different energy efficiency (EE) improvements and an off-grid system including solar photovoltaics (PV) wind power and battery and hydrogen energy storage systems (BESS and HESS). A heat-pump-based heating system including waste heat recovery (WHR) from the HESS and an off-grid electrical system are dimensioned for the building by applying models developed in MATLAB and Microsoft Excel to study the life cycle costs (LCC). The work uses a measured electrical load profile and the heat generation of the new heating system and the power generation are simulated by commercial software. It is shown that the EE improvements and WHR from the HESS have a positive effect on the dimensioning of the off-grid system and the LCC can be reduced by up to €2 million. With the EE improvements and WHR the component dimensioning can be reduced by 22%–41% and 13%–51% on average respectively. WHR can cover up to 57% of the building's annual heat demand and full-power dimensioning of the heat pump is not reasonable when WHR is applied. Wind power was found to be very relevant in the Nordic conditions reducing the LCC by 32%.
On the Technology of Solid Oxide Fuel Cell (SOFC) Energy Systems for Stationary Power Generation: A Review
Nov 2022
Publication
This paper presents a comprehensive overview on the current status of solid oxide fuel cell (SOFC) energy systems technology with a deep insight into the techno-energy performance. In recent years SOFCs have received growing attention in the scientific landscape of high efficiency energy technologies. They are fuel flexible highly efficient and environmentally sustainable. The high working temperature makes it possible to work in cogeneration and drive downstream bottomed cycles such as Brayton and Hirn/Rankine ones thus configuring the hybrid system of a SOFC/turbine with very high electric efficiency. Fuel flexibility makes SOFCs independent from pure hydrogen feeding since hydrocarbons can be fed directly to the SOFC and then converted to a hydrogen rich stream by the internal thermochemical processes. SOFC is also able to convert carbon monoxide electrochemically thus contributing to energy production together with hydrogen. SOFCs are much considered for being supplied with biofuels especially biogas and syngas so that biomass gasifiers/SOFC integrated systems contribute to the “waste to energy” chain with a significant reduction in pollution. The paper also deals with the analysis of techno-energy performance by means of ad hoc developed numerical modeling in relation to the main operating parameters. Ample prominence is given to the aspect of fueling emphasizing fuel processing with a deep discussion on the impurities and undesired phenomena that SOFCs suffer. Constituent materials geometry and design methods for the balance of plant were studied. A wide analysis was dedicated to the hybrid system of the SOFC/turbine and to the integrated system of the biomass gasifier/SOFC. Finally an overview of SOFC system manufacturing companies on SOFC research and development worldwide and on the European roadmap was made to reflect the interest in this technology which is an important signal of how communities are sensitive toward clean low carbon and efficient technologies and therefore to provide a decisive and firm impulse to the now outlined energy transition.
Characterization of the Hydrogen Combustion Process in a Scramjet Engine
May 2024
Publication
In this paper by using a large eddy simulation we study the combustion process in the HyShot II scramjet combustor. By conducting a detailed analysis of the mass-fraction distributions of the main species such as H2 H2O and the radicals OH and HO2 of the mass source terms of these main species and of the chemical source term of the energy equation we detect the regions where chemical reactions occur through a diffusion process and the regions where auto-ignition and premixed combustion may develop. The analysis indicates that the combustion process is mainly of diffusive type along a thin shear layer enveloping the hydrogen plume whereas there could be some auto-ignition and/or premixed combustion cores inside the plume.
Research on Energy Management Method of Fuel Cell/Supercapacitor Hybrid Trams Based on Optimal Hydrogen Consumption
Jul 2023
Publication
In this paper based on the operating states and characteristics of fuel cell/supercapacitor hybrid trams an optimal hydrogen energy management method is proposed. This method divides the operating states into two parts: traction state and non-traction state. In the traction state the real-time loss function of the hybrid power system which is used to obtain the fuel cell optimal output power under the different demand powers and supercapacitor voltage is established. In the non-traction state the constant-power charging method which is obtained by solving the power-voltage charging model is used to ensure the supercapacitor voltage of the beginning-state and the end-state in an entire operation cycle are the same. The RT-LAB simulation platform is used to verify that the proposed method has the ability to control the hybrid real-time system. Using the comparative experiment between the proposed method and power-follow method the results show that the proposed method offers a significant improvement in both fuel cell output stability and hydrogen consumption in a full operation cycle.
Precise Dynamic Modelling of Real-World Hybrid Solar-Hydrogen Energy Systems for Grid-Connected Buildings
Jul 2023
Publication
Hybrid renewable hydrogen energy systems could play a key role in delivering sustainable solutions for enabling the Net Zero ambition; however the lack of exact computational modelling tools for sizing the integrated system components and simulating their real-world dynamic behaviour remains a key technical challenge against their widespread adoption. This paper addresses this challenge by developing a precise dynamic model that allows sizing the rated capacity of the hybrid system components and accurately simulating their real-world dynamic behaviour while considering effective energy management between the grid-integrated system components to ensure that the maximum possible proportion of energy demand is supplied from clean sources rather than the grid. The proposed hybrid system components involve a solar PV system electrolyser pressurised hydrogen storage tank and fuel cell. The developed hybrid system model incorporates a set of mathematical models for the individual system components. The developed precise dynamic model allows identifying the electrolyser’s real-world hydrogen production levels in response to the input intermittent solar energy production while also simulating the electrochemical behaviour of the fuel cell and precisely quantifying its real-world output power and hydrogen consumption in response to load demand variations. Using a university campus case study building in Scotland the effectiveness of the developed model has been assessed by benchmarking comparison between its results versus those obtained from a generic model in which the electrochemical characteristics of the electrolyser and fuel cell systems were not taken into consideration. Results from this comparison have demonstrated the potential of the developed model in simulating the real-world dynamic operation of hybrid solar hydrogen energy systems for grid-connected buildings while sizing the exact capacity of system components avoiding oversizing associated with underutilisation costs and inaccurate simulation.
Analyzing the Future Potential of Defossilizing Industrial Specialty Glass Production with Hydrogen by LCA
Mar 2022
Publication
The glass industry is part of the energy-intensive industry with most of the energy needed to melt the raw materials. To produce glass temperatures between 1000 and 1600 °C are necessary. Presently mostly fossil natural gas is the dominant energy source. As direct electrification is not always possible in this paper a Life Cycle Assessment (LCA) for specialty glass production is conducted where the conventional fossil-based reference process is compared to a hydrogen-fired furnace. This hydrogen can be produced on-site in an water electrolyzer using not only the hydrogen for the combustion but also the produced oxygen. Hydrogen can be produced alternatively off-site in a large scale electrolyzer to facilitate economy of scale. For the transport and distribution of this hydrogen different options are available. A rather new option are liquid organic hydrogen carriers (LOHC) which bind the hydrogen in a chemical substance. However temperatures around 300 °C are necessary to separate the hydrogen from the LOHC after transport. At the glass trough waste heat is available at the required temperature level to facilitate the dehydrogenation. The comparison is completed by the production of off-site hydrogen transported to the glass trough as conventional liquefied hydrogen in cooling tanks by truck or in hydrogen pipelines. In this assessment to power the electrolyzers the national grid mix of Germany is used. A time frame from 2020 till 2050 and its changing energy system towards defossilisation is analyzed. Regarding climate change on-site hydrogen production causes the least impact for specialty glass production in 2050. However negative trade-offs for other environmental impact categories e.g. Metal depletion are recorded.
Numerical Investigation of a Fuel Cell-Powered Agricultural Tractor
Nov 2022
Publication
In recent years growing awareness about environmental issues is pushing humankind to explore innovative technologies to reduce the anthropogenic sources of pollutants. Among these sources internal combustion engines in non-road mobile machinery (NRMM) such as agricultural tractors are one of the most important. The aim of this work is to explore the possibility of replacing the conventional diesel engine with an electric powertrain powered by a hybrid storage system consisting of a small battery pack and a fuel-cell system. The battery pack (BP) is necessary to help the fuel cell manage sudden peaks in power demands. Numerical models of the conventional powertrain and a fuel-cell tractor were carried out. To compare the two powertrains work cycles derived from data collected during real operative conditions were exploited and simulated. For the fuel-cell tractor a control strategy to split the electric power between the battery pack and the fuel cell was explored. The powertrains were compared in terms of greenhouse gas emissions (GHG) according to well-to-wheel (WTW) equivalent CO2 emission factors available in the literature. Considering the actual state-of-the-art hydrogen production methods the simulation results showed that the fuel-cell/battery powertrain was able to accomplish the tasks with a reduction of about 50% of the equivalent CO2 emissions compared to traditional diesel-powered vehicles.
The Sector Coupling Concept: A Critical Review
Jun 2020
Publication
Pursued climate goals require reduced greenhouse gas emissions by substituting fossil fuels with energy from renewable sources in all energy-consuming processes. On a large-scale this can mainly be achieved through electricity from wind and sun which are subject to intermittency. To efficiently integrate this variable energy a coupling of the power sector to the residential transport industry and commercial/trade sector is often promoted called sector coupling (SC). Nevertheless our literature review indicates that SC is frequently misinterpreted and its scope varies among available research from exclusively considering the use of excess renewable electricity to a rather holistic view of integrated energy systems including excess heat or even biomass sources. The core objective of this article is to provide a thorough understanding of the SC concept through an analysis of its origin and its main purpose as described in the current literature. We provide a structured categorization of SC derived from our findings and critically discuss its remaining challenges as well as its value for renewable energy systems. We find that SC is rooted in the increasing use of variable renewable energy sources and its main assets are the flexibility it provides for renewable energy systems decarbonization potential for fossil-fuel-based end-consumption sectors and consequently reduced dependency on oil and gas extracting countries. However the enabling technologies face great challenges in their economic feasibility because of the uncertain future development of competing solutions.
Global Green Hydrogen-based Steel Opportunities Surrounding High Quality Renewable Energy and Iron Ore Deposits
May 2023
Publication
The steel sector currently accounts for 7% of global energy-related CO2 emissions and requires deep reform to disconnect from fossil fuels. Here we investigate the market competitiveness of one of the widely considered decarbonisation routes for primary steel production: green hydrogen-based direct reduction of iron ore followed by electric arc furnace steelmaking. Through analysing over 300 locations by combined use of optimisation and machine learning we show that competitive renewables-based steel production is located nearby the tropic of Capricorn and Cancer characterised by superior solar with supplementary onshore wind in addition to high-quality iron ore and low steelworker wages. If coking coal prices remain high fossil-free steel could attain competitiveness in favourable locations from 2030 further improving towards 2050. Large-scale implementation requires attention to the abundance of suitable iron ore and other resources such as land and water technical challenges associated with direct reduction and future supply chain configuration.
The Potential of Zero-carbon Bunker Fuels in Developing Countries
Apr 2015
Publication
To meet the climate targets set forth in the International Maritime Organization’s Initial GHG Strategy the maritime transport sector needs to abandon the use of fossil-based bunker fuels and turn toward zero-carbon alternatives which emit zero or at most very low greenhouse gas (GHG) emissions throughout their lifecycles. This report “The Potential of Zero-Carbon Bunker Fuels in Developing Countries” examines a range of zero-carbon bunker fuel options that are considered to be major contributors to shipping’s decarbonized future: biofuels hydrogen and ammonia and synthetic carbon-based fuels. The comparison shows that green ammonia and green hydrogen strike the most advantageous balance of favorable features due to their lifecycle GHG emissions broader environmental factors scalability economics and technical and safety implications. Furthermore the report finds that many countries including developing countries are very well positioned to become future suppliers of zero-carbon bunker fuels—namely ammonia and hydrogen. By embracing their potential these countries would be able to tap into an estimated $1+ trillion future fuel market while modernizing their own domestic energy and industrial infrastructure. However strategic policy interventions are needed to unlock these potentials.
Carbon-neutral Cement: The Role of Green Hydrogen
Mar 2024
Publication
Business-as-usual (BAU) cement production is associated with a linear model that contributes significantly to global warming and is dependent on volatile energy markets. A novel circular model is proposed by adding three power-to-gas system components to current production systems: a calcium-looping (CaL) CO2 capture unit; water electrolysis for hydrogen and oxygen generation; and a methanation unit for synthetic natural gas (SNG) production. The paper presents the first analysis of the combined industrial-scale operation of these components in a closed loop where the SNG fuels the cement kiln and the CaL unit while the O2 produced feeds it. The circular hybrid and BAU models are compared in three feasibility scenarios. It is concluded that the circular model outperforms the other alternatives environmentally opening a potential pathway for the cement industry to achieve near net-zero CO2 emissions reduce energy dependence and improve economic efficiency.
Delivering a Reliable Decarbonised Power System
Mar 2023
Publication
This report illustrates what a reliable resilient decarbonised electricity supply system could look like in 2035 and the steps required to achieve it. It provides new insights and new advice on how such a system can be achieved by 2035 using real weather data and hourly analysis of Great Britain’s power system (Northern Ireland is part of the all-Ireland system). It also looks at the implications for hydrogen.
How Hydrogen (H2) Can Support Food Security: From Farm to Fork
Mar 2024
Publication
Molecular hydrogen (H2 ) is a low-molecular-weight non-polar and electrochemically neutral substance that acts as an effective antioxidant and cytoprotective agent with research into the effects of H2 incorporation into the food chain at various stages rapidly gaining momentum. H2 can be delivered throughout the food growth production delivery and storage systems in numerous ways including as a gas as hydrogen-rich water (HRW) or with hydrogen-donating food supplements such as calcium (Ca) or magnesium (Mg). In plants H2 can be exploited as a seedpriming agent during seed germination and planting during the latter stages of plant development and reproduction as a post-harvest treatment and as a food additive. Adding H2 during plant growth and developmental stages is noted to improve the yield and quality of plant produce through modulating antioxidant pathways and stimulating tolerance to such environmental stress factors as drought stress enhanced tolerance to herbicides (paraquat) and increased salinity and metal toxicity. The benefits of pre- and post-harvest application of H2 include reductions in natural senescence and microbial spoilage which contribute to extending the shelf-life of animal products fruits grains and vegetables. This review collates empirical findings pertaining to the use of H2 in the agri-food industry and evaluates the potential impact of this emerging technology.
Research on Power Optimization for Energy System of Hydrogen Fuel Cell Wheel-Driven Electric Tractor
Apr 2024
Publication
Hydrogen fuel cell tractors are emerging as a new power source for tractors. Currently there is no mature energy management control method available. Existing methods mostly rely on engineers’ experience to determine the output power of the fuel cell and the power battery resulting in relatively low energy utilization efficiency of the energy system. To address the aforementioned problems a power optimization method for the energy system of hydrogen fuel cell wheel-driven electric tractor was proposed. A dynamic model of tractor ploughing conditions was established based on the system dynamics theory. From this based on the equivalent hydrogen consumption theory the charging and discharging of the power battery were equivalent to the fuel consumption of the hydrogen fuel cell forming an equivalent hydrogen consumption model for the tractor. Using the state of charge (SOC) of the power battery as a constraint and with the minimum equivalent hydrogen consumption as the objective function an instantaneously optimized power allocation method based on load demand in the energy system is proposed by using a traversal algorithm. The optimization method was simulated and tested based on the MATLAB simulation platform and the results showed under ploughing conditions compared with the rule-based control strategy the proposed energy system power optimization method optimized the power output of hydrogen fuel cells and power batteries allowing the energy system to work in a high-efficiency range reducing the equivalent hydrogen consumption of the tractor by 7.79% and solving the energy system power distribution problem.
Efficiency and Optimal Load Capacity of E-Fuel-Based Energy Storage Systems
Apr 2023
Publication
This work evaluates the effectiveness of chemical-based solutions for storing large amounts of renewable electricity. Four “Power-to-X-to-Power” pathways are examined comprising hydrogen methane methanol and ammonia as energy carriers. The pathways are assessed using a model scenario where they are produced with electricity from an onshore wind farm stored in suitable facilities and then reconverted to electricity to meet the energy demand of a chemical site. An energy management and storage capacity estimation tool is used to calculate the annual load coverage resulting from each pathway. All four pathways offer a significant increase in load coverage compared to a scenario without storage solution (56.19%). The hydrogen-based pathway has the highest load coverage (71.88%) and round-trip efficiency (36.93%) followed by the ammonia-based (69.62% 31.37%) methanol-based (67.85% 27.00%) and methane-based (67.64% 26.47% respectively) pathways. The substantially larger storage capacity required for gaseous energy carriers to ensure a steady supply to the consumer could be a decisive factor. The hydrogen pathway requires a storage volume up to 10.93 times larger than ammonia and 16.87 times larger than methanol. Notably ammonia and methanol whose load coverages are only 2.26 and 4.03 percentage points lower than that of hydrogen offer the possibility of implementing site-specific storage solutions avoiding potential bottlenecks due to limited pipeline and cavern capacities.
Coordinated Planning and Operation of Inter Seasonal Heat Storage and P2G Devices Integrated to Urban Multi-energy System
Mar 2023
Publication
With the urbanization construction and the advancement of the carbon peaking and carbon neutrality goals urban energy systems are characterized by coupling multi-energy networks and a high proportion of renewable energy. Urban energy systems need to improve the quality of energy use as well as to achieve energy conservation and emission reduction. Inter-seasonal heat technology has satisfactory engineering application prospects in promoting renewable energy consumption and the energy supply of urban multi-energy systems. Considering inter-seasonal heat storage and electric hydrogen production a joint optimization method of planning and operation is proposed for the urban multi-energy flow system. First the operation framework of inter-seasonal heat storage and electric hydrogen production system is established which clarifies the energy flow of the urban multi-energy system. Secondly aiming at the goals of minimizing the equipment’s annual investment cost and the multi-energy system annual operation cost combined with the time series period division method a planning operation model has been established considering multi-objectives. Through case study it is shown that the proposed model can promote the renewable energy consumption and reduce the operation cost of the whole system.
THyGA - Test Report on Mitigation Solutions for Residential Natural Gas Appliances Not Designed for Hydrogen Admixture
Apr 2023
Publication
This report from the WP5 “Mitigation” provides information and test results regarding perturbations that hydrogen could cause to gas appliances when blended to natural gas especially on anatural draught for exhaust fumes or acidity for the condensates. The important topic of on-site adjustment is also studied with test results on alternative technologies and proposals of mitigation approaches.
Optimal Pathways for the Decarbonisation of the Transport Sector: Trade-offs Between Battery and Hydrogen Technologies Using a Whole Energy System Perspective
Jun 2023
Publication
Several countries have revised their targets in recent years to reach net-zero CO2 emissions across all sectors by 2050 and the transport sector is responsible for a significant share of these emissions. This study compares possible pathways to decarbonise the transport sector through electrification including passenger cars light commercial vehicles and heavy commercial vehicles. To do so we explore 125 scenarios by varying the share of battery and hydrogen-based fuel cell electric vehicles in each of the three categories above independently. We further model the decarbonisation of the industrial hydrogen demand using electrolysers with hydrogen storage. To explore the potential role of electric and hydrogen transport as well as their trade-offs we use GRIMSEL an open-source sector coupling energy system model of Switzerland which includes the residential commercial industrial and transport sectors with four energy carriers namely electricity heat hot water and hydrogen. The total costs are minimised from a social planner perspective. We find that the full electrification of the transport sector could lead on average to a 12% increase in costs by 2050 and 1.3 MtCO2/year which represents a 90% CO2 emissions reduction for the whole sector. Second the transport energy self-sufficiency (i.e. the share of domestic electricity generation in final transport demand) may reach up to 50% for the scenarios with the largest share of battery electric vehicles mainly due to a smaller energy demand than with hydrogen vehicles. Third more than three quarters of the industrial hydrogen production is met by local photovoltaic electricity coupled with battery at minimum costs i.e. green hydrogen. Finally the use of hydrogen as an energy carrier to store electricity over a long period is not cost-optimal.
Energy and Environmental Costs in Transitioning to Zero and Low Emission Trucks for the Australian Truck Fleet: An Industry Perspective
May 2024
Publication
Modernising Australia’s old truck fleet and adopting a more stringent standard to reduce emissions and air pollutants is a primary objective for the Australian truck sector. Various strategies worldwide have been introduced to cut emissions and pollutants in the truck sector such as a low-emission strategy supported by strict diesel standards and a zero-emission strategy to shift to battery-electric or hydrogen trucks. The paper focuses on emissions and local air pollutants of trucks under various transition scenarios at both the tailpipe and the wider supply chain including domestic power generation and hydrogen production. In contrast for diesel we focus on tailpipe outputs following fuel standards in Australia given diesel is imported other than in some limited refineries. We compare and recommend actions that government and truck operators may take in the near to longer term in transitioning to cleaner energy. We tested a number of scenarios using a decision support system incorporating all the latest information on costs and emissions for all truck classes using diesel electric or hydrogen. A key finding from our scenario tests is that the current electricity mix has high carbon emissions and air pollutants due to fossil fuel-fired sources for power generation. Without improvement in using renewable energy sources in the future transitioning to electric trucks implies more carbon emissions and air pollutants in the atmosphere from power plants even though electric trucks generate zero tailpipe emissions. The main motivation for switching to zero-emission trucks is energy cost savings. We urge the government to decide on a clear roadmap for the truck sector before the sector is in a position to take action to shift to low or zero-emission trucks without totally relying on the likely reduction of emission intensity in electricity and renewable energy production.
Wind Farm Control for Improved Battery Lifetime in Green Hydrogen Systems without a Grid Connection
Jul 2023
Publication
Green hydrogen is likely to play an important role in meeting the net-zero targets of countries around the globe. One potential option for green hydrogen production is to run electrolysers directly from offshore wind turbines with no grid connection and hence no expensive cabling to shore. In this work an innovative proof of concept of a wind farm control methodology designed to reduce variability in wind farm active power output is presented. Smoothing the power supplied by the wind farm to the battery reduces the size and number of battery charge cycles and helps to increase battery lifetime. This work quantifies the impact of the wind farm control method on battery lifetime for wind farms of 1 4 9 and 16 wind turbines using suitable wind farm battery and electrolyser models. The work presented shows that wind farm control for smoothing wind farm power output could play a critical role in reducing the levelised cost of green hydrogen produced from wind farms with no grid connection by reducing the damaging load cycles on batteries in the system. Hence this work paves the way for the design and testing of a full implementation of the wind farm controller.
Simulation and Control Strategy Study of the Hydrogen Supply System of a Fuel Cell Engine
Jun 2023
Publication
The hydrogen supply system is one of the important components of a hydrogen fuel cell engine and its performance has an important impact on the economy and power of the engine system. In this paper a hydrogen supply system based on cyclic mode is designed for a hydrogen fuel cell stack with a full load power of 150 kW and the corresponding hydrogen fuel cell engine simulation model is built and validated. The control strategy of the fuel cell hydrogen supply system is developed and its effect is verified through bench tests. The results show that the developed control strategy can keep the volume fraction of nitrogen below 6% the hydrogen excess ratio does not exceed 1.5 under medium and high operating conditions the anode pressure is relatively stable and the stack can operate efficiently and reliably.
Options for Methane Fuel Processing in PEMFC System with Potential Maritime Applications
Nov 2022
Publication
Proton-exchange membrane fuel cells (PEMFCs) are low-temperature fuel cells that have excellent starting performance due to their low operating temperature can respond quickly to frequent load fluctuations and can be manufactured in small packages. Unlike existing studies that mainly used hydrogen as fuel for PEMFCs in this study methane is used as fuel for PEMFCs to investigate its performance and economy. Methane is a major component of natural gas which is more economically competitive than hydrogen. In this study methane gas is reformed by the steam reforming method and is applied to the following five gas post-treatment systems: (a) Case 1—water– gas shift only (WGS) (b) Case 2—partial oxidation reforming only (PROX) (c) Case 3—methanation only (d) Case 4—WGS + methanation (e) Case 5—WGS + PROX. In the evaluation the carbon monoxide concentration in the gas did not exceed 10 ppm and the methane component which has a very large greenhouse effect was not regenerated in the post-treated exhaust gas. As a result Case 5 (WGS and PROX) is the only case that satisfied both criteria. Therefore we propose Case 5 as an optimized post-treatment system for methane reforming gas in ship PEMFCs.
Thermodynamic and Emission Analysis of a Hydrogen/Methane Fueled Gas Turbine
May 2023
Publication
The importance of hydrogen in the effort to decarbonize the power sector has grown immensely in recent years. Previous studies have investigated the effects of mixing hydrogen into natural gas for gas turbine combustors but limited studies have examined the resulting effects hydrogen addition has on the entire system. In this work a thermodynamic model of a gas turbine with combustion chemical kinetics integrated is created and the effects hydrogen addition (0-100 volume percent addition) has on the system performance emissions and combustion kinetics are analyzed. The maximum system performance is achieved when the maximum turbine inlet temperature is reached and the resulting optimal fuel/air equivalence ratio is determined. As hydrogen is added to the fuel mixture the optimal equivalence ratio shifts leaner causing non-linearity in emissions and system performance at optimal conditions. An analysis of variance is conducted and it is shown that isentropic efficiencies of the turbine and compressor influences the system performance the most out of any system parameter. While isentropic efficiencies of the turbine and compressor increase towards 100% an operating regime where the optimal system efficiency cannot be achieved is discovered due to the lower flammability limit of the fuel being reached. This can be overcome by mixing hydrogen into the fuel.
Technology Portfolio Assessment for Near-zero Emission Iron and Steel Industry in China
May 2023
Publication
China aims to peak CO2 emissions before 2030 and to achieve carbon neutrality before 2060; hence industrial sectors in China are keen to figure out appropriate pathways to support the national target of carbon neutrality. The objective of this study is to explore near-zero emission pathways for the steel industry of China through a detailed technology assessment. The innovative technology development has been simulated using the AIM-China/steel model developed by including material-based technologies and optimal cost analysis. Six scenarios have been given in terms of different levels of production output emission reduction and carbon tax. Near-zero emission and carbon tax scenarios have shown that China’s steel industry can achieve near-zero emission using electric furnaces and hydrogen-based direct reduction iron technologies with policy support. Based on these technologies minimised production costs have been calculated revealing that the steel produced by these technologies is cost-effective. Moreover the feedstock cost can play a key role in these technology portfolios especially the cost of scrap iron ore and hydrogen. In addition the feedstock supply can have strong regional effects and can subsequently impact the allocation of steelmaking in the future. Therefore China can achieve near-zero emissions in the steel industry and electric furnace and hydrogen-based direct reduction iron technologies are crucial to achieving them.
Techno-economic Assessment on Hybrid Energy Storage Systems Comprising Hydrogen and Batteries: A Case Study in Belgium
Jun 2023
Publication
This paper introduces a Techno-Economic Assessment (TEA) on present and future scenarios of different energy storage technologies comprising hydrogen and batteries: Battery Energy Storage System (BESS) Hydrogen Energy Storage System (H2ESS) and Hybrid Energy Storage System (HESS). These three configurations were assessed for different time horizons: 2019 2022 and 2030 under both on-grid and off-grid conditions. For 2030 a sensitivity analysis under different energy scenarios was performed covering other trends in on-grid electric consumption and prices CO2 taxation and the evolution of hydrogen technology prices from 2019 until 2030. The selected case study is the Research Park Zellik (RPZ) a CO2- neutral sustainable Local Energy Community (LEC) in Zellik Belgium. The software HOMER (Hybrid Optimisation Model for Electric Renewable) has been selected to design model and optimise the defined case study. The results showed that BESS was the most competitive when the electric grid was available among the three possible storage options. Additionally HESS was overall more competitive than H2ESS-only regardless of the grid connection mode. Finally as per HESS hydrogen was proved to play a complementary role when combined with batteries enhancing the flexibility of the microgrid and enabling deeper decarbonisation by reducing the electricity bought from the grid increasing renewable energy production and balancing toward an island operating mode.
A Theoretical Study on the Hydrogen Filling Process of the On-board Storage Cylinder in Hydrogen Refueling Station
May 2023
Publication
With the development of the hydrogen fuel automobile industry higher requirements are put forward for the construction of hydrogen energy infrastructure the matching of parameters and the control strategy of hydrogen filling rate in the hydrogen charging process of hydrogen refueling stations. At present the technological difficulty of hydrogen fueling is mainly reflected in the balanced treatment of reducing the temperature rise of hydrogen and shortening the filling time during the fast filling process. Vehicle hydrogen storage cylinder (VHSC) is one of the important components of hydrogen fuel cell vehicles. This study proposed a theoretical model for calculating the temperature rise in the VHSC during the high pressure refueling process and revealed the hydrogen temperature rise during refueling. A hydrogen temperature rise prediction model was constructed to elucidate the relationship between filling parameters and temperature rise. The filling process of VHSC was analyzed from the theoretical method. The theoretical analysis results were consistent with the simulation and experimental analysis results which provided a theoretical basis for the current hydrogen temperature control algorithm of the gas source in the hydrogen refueling station and then reduced the energy consumption required for hydrogen cooling in the hydrogen refueling station.
Investment Timing Analysis of Hydrogen-Refueling Stations and the Case of China: Independent or Co-Operative Investment?
Jun 2023
Publication
The investment in hydrogen-refueling stations (HRS) is key to the development of a hydrogen economy. This paper focuses on the decision-making for potential investors faced with the thought-provoking question of when the optimal timing to invest in HRS is. To fill the gap that exists due to the fact that few studies explain why HRS investment timing is critical we expound that earlier investment in HRS could induce the first mover advantages of the technology diffusion theory. Additionally differently from the previous research that only considered that HRS investment is just made by one individual firm we innovatively examine the HRS co-investment made by two different firms. Accordingly we compare these two optional investment modes and determine which is better considering either independent investment or co-operative investment. We then explore how the optimal HRS investment timing could be figured out under conditions of uncertainty with the real options approach. Given the Chinese HRS case under the condition of demand uncertainty the hydrogen demand required for triggering investment is viewed as the proxy for investment timing. Based on analytical and numerical results we conclude that one-firm independent investment is better than two-firm cooperative investment to develop HRS not only in terms of the earlier investment timing but also in terms of the attribute for dealing with the uncertainty. Finally we offer recommendations including stabilizing the hydrogen demand for decreasing uncertainty and accelerating firms’ innovation from both technological and strategic perspectives in order to ensure firms can make HRS investments on their own.
Energy Management of Hydrogen Hybrid Electric Vehicles—Online-Capable Control
May 2024
Publication
The results shown in this paper extend our research group’s previous work which presents the theoretically achievable hydrogen engine-out NOeo x (H2-NOeo x ) Pareto front of a hydrogen hybrid electric vehicle (H2-HEV). While the Pareto front is calculated offline which requires significant computing power and time this work presents an online-capable algorithm to tackle the energy management of a H2-HEV with explicit consideration of the H2-NOeo x trade-off. Through the inclusion of realistic predictive data on the upcoming driving mission a model predictive control algorithm (MPC) is utilized to effectively tackle the conflicting goal of achieving low hydrogen consumption while simultaneously minimizing NOeo x . In a case study it is shown that MPC is able to satisfy user-defined NOeo x limits over the course of various driving missions. Moreover a comparison with the optimal Pareto front highlights MPC’s ability to achieve close-to-optimal fuel performance for any desired cumulated NOeo x target on four realistic routes for passenger cars.
Forecasting Hydrogen Vehicle Refuelling for Sustainable Transportation: A Light Gradient-Boosting Machine Model
May 2024
Publication
Efficiently predicting and understanding refuelling patterns in the context of HFVs is paramount for optimising fuelling processes infrastructure planning and facilitating vehicle operation. This study evaluates several supervised machine learning methodologies for predicting the refuelling behaviour of HFVs. The LightGBM model emerged as the most effective predictive model due to its ability to handle time series and seasonal data. The selected model integrates various input variables encompassing refuelling metrics day of the week and weather conditions (e.g. temperature precipitation) to capture intricate patterns and relationships within the data set. Empirical testing and validation against real-world refuelling data underscore the efficacy of the LightGBM model demonstrating a minimal deviation from actual data given limited data and thereby showcasing its potential to offer valuable insights to fuelling station operators vehicle manufacturers and policymakers. Overall this study highlights the potential of sustainable predictive modelling for optimising fuelling processes infrastructure planning and facilitating vehicle operation in the context of HFVs.
Techno-Economic Evaluation of Hydrogen-Based Cooking Solutions in Remote African Communities—The Case of Kenya
Apr 2023
Publication
Hydrogen has recently been proposed as a versatile energy carrier to contribute to archiving universal access to clean cooking. In hard-to-reach rural settings decentralized produced hydrogen may be utilized (i) as a clean fuel via direct combustion in pure gaseous form or blended with Liquid Petroleum Gas (LPG) or (ii) via power-to-hydrogen-to-power (P2H2P) to serve electric cooking (e-cooking) appliances. Here we present the first techno-economic evaluation of hydrogen-based cooking solutions. We apply mathematical optimization via energy system modeling to assess the minimal cost configuration of each respective energy system on technical and economic measures under present and future parameters. We further compare the potential costs of cooking for the end user with the costs of cooking with traditional fuels. Today P2H2P-based e-cooking and production of hydrogen for utilization via combustion integrated into the electricity supply system have almost equal energy system costs to simultaneously satisfy the cooking and electricity needs of the isolated rural Kenyan village studied. P2H2P-based e-cooking might become advantageous in the near future when improving the energy efficiency of e-cooking appliances. The economic efficiency of producing hydrogen for utilization by end users via combustion benefits from integrating the water electrolysis into the electricity supply system. More efficient and cheaper hydrogen technologies expected by 2050 may improve the economic performance of integrated hydrogen production and utilization via combustion to be competitive with P2H2P-based e-cooking. The monthly costs of cooking per household may be lower than the traditional use of firewood and charcoal even today when applying the current life-line tariff for the electricity consumed or utilizing hydrogen via combustion. Driven by likely future technological improvements and the expected increase in traditional and fossil fuel prices any hydrogen-based cooking pathway may be cheaper for end users than using charcoal and firewood by 2030 and LPG by 2040. The results suggest that providing clean cooking in rural villages could economically and environmentally benefit from utilizing hydrogen. However facing the complexity of clean cooking projects we emphasize the importance of embedding the results of our techno-economic analysis in holistic energy delivery models. We propose useful starting points for future aspects to be investigated in the discussion section including business and financing models.
Renewable Marine Fuel Production for Decarbonised Maritime Shipping: Pathways, Policy Measures and Transition Dynamics
Jun 2023
Publication
This article investigates the potential of renewable and low-carbon fuel production for the maritime shipping sector using Sweden as a case in focus. Techno-economic modelling and socio-technical transition studies are combined to explore the conditions opportunities and barriers to decarbonising the maritime shipping industry. A set of scenarios have been developed considering demand assumptions and potential instruments such as carbon price energy tax and blending mandate. The study finds that there are opportunities for decarbonising the maritime shipping industry by using renewable marine fuels such as advanced biofuels (e.g. biomethanol) electrofuels (e.g. e-methanol) and hydrogen. Sweden has tremendous resource potential for bio-based and hydrogen-based renewable liquid fuel production. In the evaluated system boundary biomethanol presents the cheapest technology option while e-ammonia is the most expensive one. Green electricity plays an important role in the decarbonisation of the maritime sector. The results of the supply chain optimisation identify the location sites and technology in Sweden as well as the trade flows to bring the fuels to where the bunker facilities are potentially located. Biomethanol and hydrogen-based marine fuels are cost-effective at a carbon price beyond 100 €/tCO2 and 200 €/tCO2 respectively. Linking back to the socio-technical transition pathways the study finds that some shipping companies are in the process of transitioning towards using renewable marine fuels thereby enabling niche innovations to break through the carbon lock-in and eventually alter the socio-technical regime while other shipping companies are more resistant. Overall there is increasing pressure from (inter)national energy and climate policy-making to decarbonise the maritime shipping industry.
Hydrogen as Short-Term Flexibility and Seasonal Storage in a Sector-Coupled Electricity Market
Jul 2023
Publication
The rapid expansion of renewable energies has the potential to decarbonize the electricity supply. This is more challenging in difficult-to-electrify sectors. The use of hydrogen provides a massive potential for this issue. However expanding hydrogen production increases electricity demand while providing additional flexibility to the electricity market. This paper mainly aims to analyze the economic effects of this sector coupling between the European electricity and national hydrogen markets. The developed energy market model jointly considers both markets to reach an overall welfare optimum. A novel modeling approach allows the interaction of these markets without the need for several iterative optimization runs. This allows for a detailed analysis of various market participants’ changes in consumer and producer surpluses. The optimization is conducted in 13 connected Central European countries to account for various power plant fleets generation mixes and electricity prices. Results show an overall welfare increase of EUR 4 to 28 billion in 2030 and an EUR 5 to 158 billion increase in 2040. However there is a surplus shift from consumers to producers. The consumer surplus is reduced by up to EUR 44 billion in 2030 and EUR 60 billion while producers benefit to achieve the overall welfare benefits. The reduction of consumer surplus changes if significant price peaks occur. Fuel cell applications can avoid these price peaks resulting in a surplus shift from thermal power plants to consumers. Hence consumer surplus can increase by up to EUR 146 billion in the respective 2040 scenarios. Pink hydrogen accounts for a sizable portion of total hydrogen production up to 58 percent in 2030 and up to 30 percent in 2040. As a result nuclear power plants that are nearly entirely allocated in France stand to benefit greatly from this sector coupling. Additional efforts could be made to address the link between hydrogen and natural gas prices. Furthermore the potential for cross-border hydrogen trade and the implementation of national legal and regulatory frameworks could be assessed.
Investigation of Different Load Characteristics, Component Dimensioning, and System Scaling for the Optimized Design of a Hybrid Hydrogen-Based PV Energy System
Jul 2023
Publication
The realization of a carbon-neutral civilization which has been set as a goal for the coming decades goes directly hand-in-hand with the need for an energy system based on renewable energies (REs). Due to the strong weather-related daily and seasonal fluctuations in supply of REs suitable energy storage devices must be included for such energy systems. For this purpose an energy system model featuring hybrid energy storage consisting of a hydrogen unit (for long-term storage) and a lithium-ion storage device (for short-term storage) was developed. With a proper design such a system can ensure a year-round energy supply by using electricity generated by photovoltaics (PVs). In the energy system that was investigated hydrogen (H2) was produced by using an electrolyser (ELY) with a PV surplus during the summer months and then stored in an H2 tank. During the winter due to the lack of PV power the H2 is converted back into electricity and heat by a fuel cell (FC). While the components of such a system are expensive a resource- and cost-efficient layout is important. For this purpose a Matlab/Simulink model that enabled an energy balance analysis and a component lifetime forecast was developed. With this model the results of extensive parameter studies allowed an optimized system layout to be created for specific applications. The parameter studies covered different focal points. Several ELY and FC layouts different load characteristics different system scales different weather conditions and different load levels—especially in winter with variations in heating demand—were investigated.
Optimization of Integrated Energy System Considering Electricity and Hydrogen Coordination in the Context of Carbon Trading
Apr 2024
Publication
In order to improve the consumption of renewable energy and reduce the carbon emissions of integrated energy systems (IESs) this paper proposes an optimal operation strategy for an integrated energy system considering the coordination of electricity and hydrogen in the context of carbon trading. The strategy makes full use of the traditional power-to-gas hydrogen production process and establishes a coupling model comprising cogeneration and carbon capture equipment an electrolytic cell a methane reactor and a hydrogen fuel cell. Taking a minimum daily operating cost and minimal carbon emissions from the system as objective functions a mixed-integer nonlinear optimal scheduling model is established. This paper designs examples based on MATLAB R2021b and uses the GUROBI solver to solve them. The results show that compared with the traditional two-stage operation process the optimization method can reduce the daily operation cost of an IES by 26.01% and its carbon emissions by 90.32%. The results show that the operation mode of electro-hydrogen synergy can significantly reduce the carbon emissions of the system and realize a two-way flow of electro-hydrogen energy. At the same time the addition of carbon capture equipment and the realization of carbon recycling prove the scheduling strategy’s ability to achieve a lowcarbon economy of the scheduling strategy.
THyGA - Long Term Effect of H2 on Appliances Tested
May 2023
Publication
The goals of the long-term tests were to see the impact of blends of hydrogen and natural gas on the technical condition of the appliances and their performance after several hours of operation. To do so they were run through an accelerated test program amounting to more than 3000 testing hours for the boilers and more than 2500 testing hours for the cookers. The percentage of hydrogen in the test gas was 30% by volume. Three boilers and two cookers were tested by DGC and two boilers by GWI. This report describes the test protocol the results and analysis on the seven appliances tested.
Hydrogen as a Renewable Energy Carrier in a Hybrid Configuration of Distributed Energy Systems: Bibliometric Mapping of Current Knowledge and Strategies
Jul 2023
Publication
Storing energy in hydrogen deposits balances the operation of energy systems and is an effective tool in the process of energy transformation towards achieving Sustainable Development Goals. To assess the validity of its use as an alternative renewable energy carrier in dispersed energy systems of hybrid configuration a comprehensive review of scientific literature was conducted in this study based on bibliometric analysis. The bibliographic database used in the study was the international Web of Science database. This review contributes to a better understanding of the characteristics of the selected research area. The evolution of research trends implemented in the design of energy systems associated with hydrogen technologies is revealed clearly indicating that it is a developing field. In recent years there has been an increase in the number of publications although the territorial range of research (mainly simulation) conducted in the domain does not include areas with the most favourable infrastructural conditions. The analysis reveals weak cooperation between South American African East Asian and Oceanic countries. In the light of earlier thematically similar literature reviews several research gaps are also identified and proposals for future research are presented. They concern in particular the parallel implementation and optimization of the operation of hydrogen (HRES—Hybrid Renewable Energy System and HESS—Hybrid Energy Storage System) solutions in terms of economics ecology lifespan and work efficiency as well as their feasibility analysis. With the support of other researchers and those involved in the subject matter this review may contribute to the further development of hybrid hydrogen systems in terms of increasing competitiveness and promoting the implementation of these technologies.
Hydrogen Combustion, Production, and Applications: A Review
May 2024
Publication
The demand for fossil fuels is rising rapidly leading to increased greenhouse gas emissions. Hydrogen has emerged as a promising clean energy alternative that could help meet future demands way sustainably especially if produced using renewable methods. For hydrogen to meaningfully contribute to energy transitions it needs more integration into sectors like transportation buildings and power that currently have minimal hydrogen usage. This requires developing extensive cross-sector hydrogen infrastructure. This review examines hydrogen combustion as a fuel by exploring and comparing production techniques enriching ammonia with hydrogen as a CO2-free option and hydrogen applications in engines. Additionally a techno-economic environmental risk analysis is discussed. Results showed steam methane reforming is the most established and cost-effective production method at $1.3–1.5/kg H2 and 70–85% efficiency but generates CO2. Biomass gasification costs $1.25–2.20/kg H2 and pyrolysis $1.77–2.05/kg H2 offering renewable options. However bio-photolysis currently has high costs of $1.42–2.13/kg H2 due to low conversion rates requiring large reactors. Blending H2/NH3 could enable carbon-free combustion aiding carbon neutrality pursuits but minimizing resultant NOx is crucial. Hydrogen’s wide uses from transportation to power underline its potential as a transformational energy carrier.
Optimal Battery and Hydrogen Fuel Cell Sizing in Heavy-haul Locomotives
Jul 2023
Publication
Global supply chains must be decarbonised as part of meeting climate targets set by the United Nations and world leaders. Rail networks are vital infrastructure in passenger and freight transport however have not received the same push for decarbonisation as road transport. In this investigation we used real world data from locomotives operating on seven rail corridors to identify optimal battery capacity and hydrogen fuel cell (HFC) power in hybrid systems. We found that the required battery capacity is dependent on both the available regenerative braking energy and on the capacity required to buffer surpluses and deficits from the HFC. The optimal system for each corridor was identified however it was found that one 3.6 MWh battery and 860 kW HFC system could service six of the seven corridors. The optimal systems presented in this work suggest an average of around 5 h of battery storage for the HFC power which is larger than the 2 h previously reported in literature. This may indicate a gap between purely theoretical works that use only route topography and speed and those that employ real world locomotive data.
Configuration Optimization of Hydrogen-Based Multi-Microgrid Systems under Electricity Market Trading and Different Hydrogen Production Strategies
Apr 2023
Publication
Hydrogen-based multi-microgrid systems (HBMMSs) are beneficial for energy saving and emission reductions. However the optimal sizing of HBMMSs lacks a practical configuration optimization model and a reasonable solution method. To address these problems we designed a novel structure of HBMMSs that combines conventional energy renewable energy and a hydrogen energy subsystem. Then we established a bi-level multi-objective capacity optimization model while considering electricity market trading and different hydrogen production strategies. The objective of the inner model which is the minimum annual operation cost and the three objectives of the outer model which are the minimum total annual cost (TAC); the annual carbon emission (ACE); and the maximum self-sufficiency rate (SSR) are researched simultaneously. To solve the above optimization model a two-stage solution method which considers the conflicts between objectives and the objectivity of objective weights is proposed. Finally a case study is performed. The results show that when green hydrogen production strategies are adopted the three objectives of the best configuration optimization scheme are USD 404.987 million 1.106 million tons and 0.486 respectively.
Study on the Dynamic Optimal Control Strategy of an Electric-Hydrogen Hybrid Energy Storage System for a Direct Drive Wave Power Generation System
Jul 2023
Publication
A direct drive wave power generation system (DDWPGS) has the advantages of a simple structure and easy deployment and is the first choice to provide electricity for islands and operation platforms in the deep sea. However due to the off-grid the source and load cannot be matched so accommodation is an important issue. Hydrogen storage is the optimal choice for offshore wave energy accommodation. Therefore aiming at the source-load mismatch problem of the DDWPGS an electric-hydrogen hybrid energy storage system (HESS) for the DDWPGS is designed in this paper. Based on the characteristics of the devices in the electric-hydrogen HESS a new dynamic power allocation strategy and its control strategy are proposed. Firstly empirical mode decomposition (EMD) is utilized to allocate the power fluctuations that need to be stabilized. Secondly with the state of charge (SOC) of the battery and the operating characteristics of the alkaline electrolyzer being considered the power assignments of the battery and the electrolyzer are determined using the rule-based method. In addition model predictive control (MPC) with good tracking performance is used to adjust the output power of the battery and electrolyzer. Finally the supercapacitor (SC) is controlled to maintain the DC bus voltage while also balancing the system’s power. A simulation was established to verify the feasibility of the designed system. The results show that the electric-hydrogen HESS can stabilize the power fluctuations dynamically when the DDWPGS captures instantaneous power. Moreover its control strategy can not only reduce the start-stop times of the alkaline electrolyzer but also help the energy storage devices to maintain a good state and extend the service life.
Energy Management Strategy for a Net Zero Emission Islanded Photovoltaic Microgrid-Based Green Hydrogen System
Apr 2024
Publication
Investing in green hydrogen systems has become a global objective to achieve the net-zero emission goal. Therefore it is seen as the primary force behind efforts to restructure the world’s energy lessen our reliance on gas attain carbon neutrality and combat climate change. This paper proposes a power management for a net zero emission PV microgrid-based decentralized green hydrogen system. The hybrid microgrid combines a fuel cell battery PV electrolyzer and compressed hydrogen storage (CHSU) unit aimed at power sharing between the total components of the islanded DC microgrid and minimizing the equivalent hydrogen consumption (EHC) by the fuel cell and the battery. In order to minimize the EHC and maintain the battery SOC an optimization-based approach known as the Equivalent Consumption Minimization Strategy (ECMS) is used. A rulebased management is used to manage the power consumed by the electrolyzer and the CHSU by the PV system in case of excess power. The battery is controlled by an inverse droop control to regulate the dc bus voltage and the output power of the PV system is maximized by the fuzzy logic controller-based MPPT. As the hybrid microgrid works in the islanded mode a two-level hierarchical control is applied in order to generate the voltage and the frequency references. The suggested energy management approach establishes the operating point for each system component in order to enhance the system’s efficiency. It allows the hybrid system to use less hydrogen while managing energy more efficiently.
Optimal Capacity Planning of Green Electricity-Based Industrial Electricity-Hydrogen Multi-Energy System Considering Variable Unit Cost Sequence
Apr 2024
Publication
Utilizing renewable energy sources (RESs) such as wind and solar to convert electrical energy into hydrogen energy can promote the accommodation of green electricity. This paper proposes an optimal capacity planning approach for an industrial electricity-hydrogen multi-energy system (EHMES) aimed to achieve the local utilization of RES and facilitate the transition to carbon reduction in industrial settings. The proposed approach models the EHMES equipment in detail and divides the system’s investment and operation into producer and consumer sides with energy trading for effective integration. Through this effort the specialized management for different operators and seamless incorporation of RES into industrial users can be achieved. In addition the variations in investment and operating costs of equipment across different installed capacities are considered to ensure a practical alignment with real-world scenarios. By conducting a detailed case study the influence of various factors on the capacity configuration outcomes within an EHMES is analyzed. The results demonstrate that the proposed method can effectively address the capacity configuration of equipment within EHMES based on the local accommodation of RES and variable unit cost sequence. Wind power serves as the primary source of green electricity in the system. Energy storage acts as crucial equipment for enhancing the utilization rate of RES.
Future of Hydrogen in Industry: Initial Industrial Site Surveys
Jul 2023
Publication
This is a summary report of a study which aimed to understand the safety feasibility cost and impacts for 7 industrial sites to switch from natural gas to 100% hydrogen for heating. The volunteer industrial sites:<br/>♦ are located away from industrial clusters<br/>♦ use natural gas to meet most of their energy demand<br/>♦ will likely be most impacted by decisions on the future of the natural gas grid<br/>We have published the report in order to share its findings with other industrial sites and wider industry in particular those considering hydrogen as an option for decarbonisation.<br/>Note that:<br/>♦ some work was carried out on a non-hydrogen alternative energy source but to a lesser level of detail and not to determine the optimal decarbonisation solution<br/>♦ the findings do not apply to other end user environments because of differences between these environments and the consumption of gas<br/>The study was commissioned in 2022 by the former Department for Business and Energy and undertaken by AECOM and their safety sub-contractor ESR.<br/>The evidence will inform strategic decisions in 2026 on the role of low carbon hydrogen as a replacement for natural gas heating.
A Study on the Viability of Fuel Cells as an Alternative to Diesel Fuel Generators on Ships
Jul 2023
Publication
This study investigates methods for reducing air pollution in the shipping sector particularly in port areas. The study examines the use of fuel cells as an alternative to diesel generators. Environmental pollution at ports remains a critical issue so using fuel cells as an alternative to conventional energy systems warrants further research. This study compares commercial fuel cell types that can be used on a case study very large crude carrier (VLCC) vessel specifically although the technology is applicable to other vessels and requirements. Seven different fuel cell types were ranked based on five criteria to accomplish this. The proton-exchange membrane cell type was found to be the most suitable fuel cell type for the case study vessel. Based on the input fuel ammonia-based hydrogen storage has been identified as the most promising option along with using an ammonia reforming unit to produce pure hydrogen. Furthermore this study provides an integrated fuel cell module and highlights the economic environmental and maintenance aspects of implementing the proton-exchange membrane fuel cell module for this case study. It also calculates the required space as a crucial constraint of implementing fuel cell technology at sea.
High-Performance Hydrogen-Fueled Internal Combustion Engines: Feasibility Study and Optimization via 1D-CFD Modeling
Mar 2024
Publication
Hydrogen-powered mobility is believed to be crucial in the future as hydrogen constitutes a promising solution to make up for the non-programmable character of the renewable energy sources. In this context the hydrogen-fueled internal combustion engine represents one of the suitable technical solutions for the future of sustainable mobility. As a matter of fact hydrogen engines suffer from limitations in volumetric efficiency due to the very low density of the fuel. Consequently hydrogen-fueled ICEs can reach sufficient torque and power density only if suitable supercharging solutions are developed. Moreover gaseous-engine performance can be improved to a great extent if direct injection is applied. In this perspective a remarkable know-how has been developed in the last two decades on NG engines which can be successfully exploited in this context. The objective of this paper is twofold. In the first part a feasibility study has been carried out with reference to a typical 2000cc SI engine by means of 1D simulations. This study was aimed at characterizing the performance on the full load curve with respect to a baseline PFI engine fueled by NG. In this phase the turbocharging/supercharging device has not been included in the model in order to quantify the attainable benefits in the absence of any limitation coming from the turbocharger. In the second part of this paper the conversion of a prototype 1400cc direct injection NG engine running with stoichiometric mixture to run on a lean hydrogen combustion mode has been investigated via 1D simulations. The matching between engine and turbocharger has been included in the model and the effects of two different turbomatching choices have been presented and discussed.
Decarbonisation Options for the Cement Industry
Jan 2023
Publication
The cement industry is a building block of modern society and currently responsible for around 7% of global and 4% of EU CO2 emissions. While facing global competition and a challenging business environment the EU cement sector needs to decarbonise its production processes to comply with the EU’s ambitious 2030 and 2050 climate targets. This report provides a snapshot of the current cement production landscape and discusses future technologies that are being explored by the sector to decarbonise its processes describing the transformational change the industry faces. This report compiles the current projects and announcements to deploy breakthrough technologies which do require high capital investments. However with 2050 just one investment cycle away the sector needs to commercialise new low-CO2 technologies this decade to avoid the risk of stranded assets. As Portland cement production is highly CO2-intensive and EU plants are already operating close to optimum efficiency the industry appears to be focussing on carbon capture storage and utilisation technologies - while breakthroughs in alternative chemistries are still being explored - to reduce emissions. While the EU has played an important role in supporting early stage R&D for these technologies it is now striving to fill the funding gap for the commercialisation of breakthrough technologies. The recent momentum towards CO2-free cement provides the EU with the opportunity to be a frontrunner in creating markets for green cement.
On-site Hydrogen Refuelling Station Techno-economic Model for a Fleet of Fuel Cell Buses
May 2024
Publication
Fuel cell electric buses (FCBs) have proven to be a technically viable solution for transportation owing to various advantages such as reliability simplicity better energy efficiency and quietness of operation. However largescale adoption of FCBs is hindered by the lack of extensive and structured infrastructure and the high cost of clean hydrogen. Many studies agree that one of the significant contributors to the lack of competitiveness of green hydrogen is the cost of electricity for its production followed by transportation costs. On the one hand to reduce the investment cost of the electrolyzer high operating hours should be achieved; on the other as the number of operating hours decreases the impact of the electricity costs declines. This paper presents an innovative algorithm for a scalable hydrogen refuelling station (HRS) capable of successfully matching and identifying the most cost-efficient levelized cost of hydrogen (LCOH) produced via electrolysis and connected to the grid based on the HRS components’ cost curves and the hourly average electricity price profile. The objective is to identify the least-cost range of LCOH by considering both the electric energy and the investment costs associated with a hydrogen demand given by different FCB sizes and electrolyzer rated powers. In addition sensitivity analyses have been conducted to quantify the technology cost margins and a cost comparison between the refuelling of an FCB fleet and the recharging infrastructure required for an equivalent fleet of Battery Electric Buse (BEB) has been performed. An LCOH of around 10.5 €/kg varying from 12 €/kg (2 FCB) to 10.2 €/kg (30 FCB) has been found for the best-optimized configurations. The final major conclusion of this paper is that FCB technology is currently not economically competitive. Still a cost contraction of the electric energy price and the electrolyzer capital investment would lead to a 50% decrease in the LCOH. Furthermore increasing renewable energies into the grid may shift the electricity cost curve resulting in higher prices when the BEB recharging demand is more significant. This impact in addition to the peak power load and longer recharging times might contribute to bridging the gap with FCBs.
How to Make Climate-neutral Aviation Fly
Jul 2023
Publication
The European aviation sector must substantially reduce climate impacts to reach net-zero goals. This reduction however must not be limited to flight CO2 emissions since such a narrow focus leaves up to 80% of climate impacts unaccounted for. Based on rigorous life-cycle assessment and a time-dependent quantification of non-CO2 climate impacts here we show that from a technological standpoint using electricity-based synthetic jet fuels and compensating climate impacts via direct air carbon capture and storage (DACCS) can enable climate-neutral aviation. However with a continuous increase in air traffic synthetic jet fuel produced with electricity from renewables would exert excessive pressure on economic and natural resources. Alternatively compensating climate impacts of fossil jet fuel via DACCS would require massive CO2 storage volumes and prolong dependence on fossil fuels. Here we demonstrate that a European climate-neutral aviation will fly if air traffic is reduced to limit the scale of the climate impacts to mitigate.
Hydrogen Fuel Cell Vehicles: Opportunities and Challenges
Jul 2023
Publication
This paper provides an in-depth review of the current state and future potential of hydrogen fuel cell vehicles (HFCVs). The urgency for more eco-friendly and efficient alternatives to fossilfuel-powered vehicles underlines the necessity of HFCVs which utilize hydrogen gas to power an onboard electric motor producing only water vapor and heat. Despite their impressive energy efficiency ratio (EER) higher power-to-weight ratio and substantial emissions reduction potential the widespread implementation of HFCVs is presently hindered by several technical and infrastructural challenges. These include high manufacturing costs the relatively low energy density of hydrogen safety concerns fuel cell durability issues insufficient hydrogen refueling infrastructure and the complexities of hydrogen storage and transportation. Nevertheless technological advancements and potential policy interventions offer promising prospects for HFCVs suggesting they could become a vital component of sustainable transportation in the future.
Comparative Analysis of Direct Operating Costs: Conventional vs. Hydrogen Fuel Cell 19-Seat Aircraft
Jul 2023
Publication
In this paper a comparative analysis of direct operating costs between a 19-seat conventional and hydrogen-powered fuel cell aircraft is performed by developing a model to estimate direct operating costs and considering the evolution of costs over time from 2030 to 2050. However due to the technology being in its early stages of development and implementation there are still considerable uncertainties surrounding the direct operating costs of hydrogen aircraft. To address this the study considers high and low kerosene growth rates and optimistic and pessimistic development scenarios for hydrogen fuel cell aircraft while also considering the evolution of costs over time. The comparative analysis uses real flight and aircraft data for the airliner Trade Air. The results show that the use of 19-seat hydrogen fuel cell aircraft for air transportation is a viable option when compared to conventional aircraft. Additionally the study suggests potential policies and other measures that could accelerate the adoption of hydrogen fuel cell technology by considering their direct operating costs.
Air Mass Flow and Pressure Optimisation of a PEM Fuel Cell Range Extender System
Aug 2022
Publication
In order to eliminate the local CO2 emissions from vehicles and to combat the associated climate change the classic internal combustion engine can be replaced by an electric motor. The two most advantageous variants for the necessary electrical energy storage in the vehicle are currently the purely electrochemical storage in batteries and the chemical storage in hydrogen with subsequent conversion into electrical energy by means of a fuel cell stack. The two variants can also be combined in a battery electric vehicle with a fuel cell range extender so that the vehicle can be refuelled either purely electrically or using hydrogen. The air compressor a key component of a PEM fuel cell system can be operated at different air excess and pressure ratios which influence the stack as well as the system efficiency. To asses the steady state behaviour of a PEM fuel cell range extender system a system test bench utilising a commercially available 30 kW stack (96 cells 409 cm2 cell area) was developed. The influences of the operating parameters (air excess ratio 1.3 to 1.7 stack temperature 20 °C–60 °C air compressor pressure ratio up to 1.67 load point 122 mA/cm2 to 978 mA/cm2) on the fuel cell stack voltage level (constant ambient relative humidity of 45%) and the corresponding system efficiency were measured by utilising current voltage mass flow temperature and pressure sensors. A fuel cell stack model was presented which correlates closely with the experimental data (0.861% relative error). The air supply components were modelled utilising a surface fit. Subsequently the system efficiency of the validated model was optimised by varying the air mass flow and air pressure. It is shown that higher air pressures and lower air excess ratios increase the system efficiency at high loads. The maximum achieved system efficiency is 55.21% at the lowest continuous load point and 43.74% at the highest continuous load point. Future work can utilise the test bench or the validated model for component design studies to further improve the system efficiency.
An Economic and Greenhouse Gas Footprint Assessment of International Maritime Transportation of Hydrogen Using Liquid Organic Hydrogen Carriers
Apr 2023
Publication
The supply storage and (international) transport of green hydrogen (H2) are essential for the decarbonization of the energy sector. The goal of this study was to assess the final cost-price and carbon footprint of imported green H2 in the market via maritime shipping of liquid organic hydrogen carriers (LOHCs) including dibenzyl toluene-perhydro-dibenzyltoluene (DBTPDBT) and toluene-methylcyclohexane (TOL-MCH) systems. The study focused on logistic steps in intra-European supply chains in different scenarios of future production in Portugal and demand in the Netherlands and carbon tariffs between 2030 and 2050. The case study is based on a formally accepted agreement between Portugal and the Netherlands within the Strategic Forum on Important Projects of Common European Interest (IPCEI). Under the following assumptions the results show that LOHCs are a viable technical-economic solution with logistics costs from 2030 to 2050 varying between 0.30-0.37 €/kg-H2 for DBT-PDBT and 0.28-0.34 €/kg-H2 for TOL-MCH. The associated CO2 emissions of these international H2 supply chains are between 0.46 and 2.46 kg-CO2/GJ (LHV) and 0.55-2.95 kg-CO2/GJ (LHV) for DBT-PDBT and TOL-MCH respectively.
Optimal Energy Management in a Standalone Microgrid, with Photovoltaic Generation, Short-Term Storage, and Hydrogen Production
Mar 2020
Publication
This paper addresses the energy management of a standalone renewable energy system. The system is configured as a microgrid including photovoltaic generation a lead-acid battery as a short term energy storage system hydrogen production and several loads. In this microgrid an energy management strategy has been incorporated that pursues several objectives. On the one hand it aims to minimize the amount of energy cycled in the battery in order to reduce the associated losses and battery size. On the other hand it seeks to take advantage of the long-term surplus energy producing hydrogen and extracting it from the system to be used in a fuel cell hybrid electric vehicle. A crucial factor in this approach is to accommodate the energy consumption to the energy demand and to achieve this a model predictive control (MPC) scheme is proposed. In this context proper models for solar estimation hydrogen production and battery energy storage will be presented. Moreover the controller is capable of advancing or delaying the deferrable loads from its prescheduled time. As a result a stable and efficient supply with a relatively small battery is obtained. Finally the proposed control scheme has been validated on a real case scenario.
Optimal Scheduling of Power Systems with High Proportions of Renewable Energy Accounting for Operational Flexibility
Jul 2023
Publication
Yi Lin,
Wei Lin,
Wei Wu and
Zhenshan Zhu
The volatility and uncertainty of high-penetration renewable energy pose significant challenges to the stability of the power system. Current research often fails to consider the insufficient system flexibility during real-time scheduling. To address this issue this paper proposes a flexibility scheduling method for high-penetration renewable energy power systems that considers flexibility index constraints. Firstly a quantification method for flexibility resources and demands is introduced. Then considering the constraint of the flexibility margin index optimization scheduling strategies for different time scales including day-ahead scheduling and intra-day scheduling are developed with the objective of minimizing total operational costs. The intra-day optimization is divided into 15 min and 1 min time scales to meet the flexibility requirements of different time scales in the power system. Finally through simulation studies the proposed strategy is validated to enhance the system’s flexibility and economic performance. The daily operating costs are reduced by 3.1% and the wind curtailment rate is reduced by 4.7%. The proposed strategy not only considers the economic efficiency of day-ahead scheduling but also ensures a sufficient margin to cope with the uncertainty of intra-day renewable energy fluctuations.
Enhancing Energy Transition through Sector Coupling: A Review of Technologies and Models
Jul 2023
Publication
In order to effectively combat the effects of global warming all sectors must actively reduce greenhouse gas emissions in a sustainable and substantial manner. Sector coupling has emerged as a critical technology that can integrate energy systems and address the temporal imbalances created by intermittent renewable energy sources. Despite its potential current sector coupling capabilities remain underutilized and energy modeling approaches face challenges in understanding the intricacies of sector coupling and in selecting appropriate modeling tools. This paper presents a comprehensive review of sector coupling technologies and their role in the energy transition with a specific focus on the integration of electricity heat/cooling and transportation as well as the importance of hydrogen in sector coupling. Additionally we conducted an analysis of 27 sector coupling models based on renewable energy sources with the goal of aiding deciders in identifying the most appropriate model for their specific modeling needs. Finally the paper highlights the importance of sector coupling in achieving climate protection goals while emphasizing the need for technological openness and market-driven conditions to ensure economically efficient implementation.
Optimization of a Hydrogen-based Hybrid Propulsion System Under Aircraft Performance Constraints
Aug 2021
Publication
This paper addresses the topic of the conceptual design of a regional aircraft with hybrid electric propulsion based on hydrogen fuel cells. It aims at providing an optimization-based method to design a hybrid propulsive system comprising two power sources (jet fuel and hydrogen) for the generation of the required propulsive power and at studying the impact of fuel cell technologies on the aircraft performances. Indeed by performing optimizations for two hybrid propulsive systems using either low temperature or high temperature Proton-exchange membrane fuel cells this study provides a preliminary assessment of the impact of the fuel cell operating temperature on the system design and the overall aircraft performance. First this paper gives a description of the baseline turboprop regional aircraft with a focus on its high speed and low speed flight performances which will serve as requirements for the design of the hybrid aircraft. Then the hybrid electric architecture and the sizing models of the propulsion system are presented. Finally optimizations are performed to design two parallel hybrid propulsive systems based on different fuel cells technologies and aimed at minimizing the block fuel per passenger over a mission of 200 nm. Results show how the proposed methodology and models lead to design two propulsive systems capable of reducing the fuel consumption per passenger by more than 30% compared to the baseline aircraft. The study also shows that the choice of fuel cell operating temperature has a first-order impact on the total mass of the propulsive system due to the higher cooling requirement of the low temperature fuel cells.
No more items...