Policy & Socio-Economics
Everything About Hydrogen Podcast: Policy Simplicity & Certainty
Mar 2023
Publication
On this episode of Everything About Hydrogen we have Daria Nochevnik the Director of Policy and Partnerships for Hydrogen Council.
The podcast can be found on their website.
The podcast can be found on their website.
Paving the Way: Analysing Energy Transition Pathways and Green Hydrogen Exports in Developing Countries - The Case of Algeria
Apr 2024
Publication
The measures needed to limit global warming pose a particular challenge to current fossil fuel exporters who must not only decarbonise their local energy systems but also compensate for the expected decline in fossil fuel revenues. One possibility is seen in the export of green hydrogen. Using Algeria as a case study this paper analyses how different levels of ambition in hydrogen exports energy efficiency and fuel switching affect the costoptimal expansion of the power sector for a given overall emissions reduction path. Despite falling costs for photovoltaics and wind turbines the results indicate that in countries with very low natural gas prices such as Algeria a fully renewable electricity system by 2050 is unlikely without appropriate policy measures. The expansion of renewable energy should therefore start early given the high annual growth rates required which will be reinforced by additional green hydrogen exports. In parallel energy efficiency is a key factor as it directly mitigates CO2 emissions from fossil fuels and reduces domestic electricity demand which could instead be used for hydrogen production. Integrating electrolysers into the power system could potentially help to reduce specific costs through load shifting. Overall it seems advisable to analyse hydrogen exports together with local decarbonisation in order to better understand their interactions and to reduce emissions as efficiently as possible. These results and the methodology could be transferred to other countries that want to become green hydrogen exporters in the future and are therefore a useful addition for researchers and policy makers.
Willingness of Chinese Households to Pay Extra for Hydrogen-fuelled Buses: A Survey Based on Willingness to Pay
Mar 2023
Publication
Hydrogen-fuelled buses play an important role in the construction of low-carbon cities as a means of green travel. Beijing as a pilot city of hydrogen-fuelled buses in China is very important in the promotion of hydrogen-fuelled buses in China. Unfortunately the public acceptance of hydrogen-fuelledfuelled buses and their environmental positive externality value have not been studied. In this paper we investigated the willingness of Beijing households to pay for the promotion of hydrogen-fuelled buses and its influencing factors by means of a web-based questionnaire. The spike model was also used to estimate the willingness to pay (WTP) for hydrogen buses. The results show that the WTP of Beijing households is CNY 3.19 per trip. The value of a positive environmental externality is approximately CNY 29.15 million per trip. Household income level environmental knowledge individual environmental ethics and perceived behavioural control are the main influencing factors of WTP. Therefore policymakers should strengthen publicity efforts to increase individuals’ environmental awareness and environmental ethics and optimize the layout of hydrogen-fuelled bus schedules and riding experiences to improve individuals’ perceptual and behaviour control. Finally the positive environmental externality value of hydrogen buses should be valued which will help increase investor interest.
THyGA - Roadmap H2NG for Europe
May 2023
Publication
This report aims at summarizing the different stakeholders’ opinions on H2NG blends and cross them with the THyGA results to recommend some necessary actions to prepare the field for operational large-scale blending (liability delayed ignition adjustment…).
Does Time Matter? A Multi-level Assessment of Delayed Energy Transitions and Hydrogen Pathways in Norway
Mar 2023
Publication
The Russian invasion of Ukraine has undeniably disrupted the EU's energy system and created a window of opportunity for an acceleration of the low-carbon energy transition in Europe. As the trading bloc's biggest gas supplier Norway faces the imminent threat of fast-depleting gas reserves and declining value for its exports. Norway is trying to beat the clock by aggressively exploring more petroleum therefore delaying its energy transition. In anticipation of the future drop in gas prices Norway is counting on blue hydrogen to valorise its gas resources before gradually shifting to green hydrogen export. Against this background this article seeks to understand how changes in the EU's energy landscape have affected the energy export sector and low-carbon hydrogen export developments in Norway from a multi-level perspective. Using the exploratory scenario approach the article assesses the implications of the different petroleum exploration outcomes on the development of the low-carbon hydrogen export market in Norway. The findings show that despite gas discoveries there is an urgent need for a phase-out plan for the Norwegian petroleum sector. For low-carbon hydrogen to play an important role in Norway's energy transition time is of the essence and action needs to be taken during this window of opportunity. An industrial sector and its value chain could take 25 years to transform which means that actions and policies for a full transformation pathway need to take place in Norway by 2025 to be ready for a climate-neutral Europe in 2050.
Green Hydrogen in Developing Countries
Aug 2020
Publication
In the future green hydrogen—hydrogen produced with renewable energy resources—could provide developing countries with a zero-carbon energy carrier to support national sustainable energy objectives and it needs further consideration by policy makers and investors. Developing countries with good renewable energy resources could produce green hydrogen locally generating economic opportunities and increasing energy security by reducing exposure to oil price volatility and supply disruptions. Support from development finance institutions and concessional funds could play an important role in deploying first-of-a-kind green hydrogen projects accelerating the uptake of green hydrogen in developing countries and increasing capacity and creating the necessary policy and regulatory enabling environment.
A Review of Sustainable Hydrogen Energy by 2050: Asupply Chain, Export Markets, Circular Economy, Social Dimensions, and Future Prospects: Australia vs. Worldwide
Jul 2025
Publication
Australia’s transition to a sustainable hydrogen economy by 2050 presents a transformative opportunity for decarbonization economic growth and global energy leadership. This review critically examines the state of hydrogen development in Australia covering supply chains export markets circular economy integration social dimensions and policy implications. The analysis highlights the critical interplay between technological innovation strategic government initiatives and market demand as key enablers for large-scale hydrogen deployment by 2050. The paper identifies research gaps in harmonizing hydrogen development with circular economy principles safety social equity and policy alignment. This work outlines clear policy implications including the need for coordinated infrastructure investment domestic market stimulation international certification for exports and integration of hydrogen into broader energy system planning. This work serves as a roadmap synthesizing recent literature and addressing the challenges and opportunities emphasizing cross-sector collaboration regulatory reform and targeted innovation investment. This review contributes a strategic framework to support decision-makers industry partners and researchers in advancing Australia’s hydrogen sector by 2050.
From Grey to Green and from West to East: The Geography and Innovation Trajectories of Hydrogen Fuel Technologies
May 2023
Publication
Despite the potential of hydrogen as a sustainable energy carrier existing studies analysing the recent evolution of this technology are scattered typically focusing on a specific type of hydrogen technology within a single country or region. In this paper we adopt a broader perspective providing an overview of the evolution of knowledge generation across different types of hydrogen fuel and the leading countries in developing new technologies in this field. Using data from the European Patent Office we map knowledge generation on hydrogen fuel technologies exploring its geographic distribution and its link with environmental sustainability. While the United States leads the generation of new knowledge other Asian and European countries show greater dynamism in growth and specialisation. Our study shows that although hydrogen fuel is considered environmentally friendly most recent technological developments are still related to fossil energy sources. However a faster growth rate is observed in the knowledge of hydrogen fuel from renewable sources pointing to a promising path towards sustainability. Moreover our analysis of the knowledge interconnection between different hydrogen types suggests that those technologies developed for hydrogen based on fossil energy sources have enabled novel applications based on renewable energies.
Some Inconvenient Truths about Decarbonization, the Hydrogen Economy, and Power to X Technologies
May 2024
Publication
The decarbonization of the energy sector has been a subject of research and of political discussions for several decades gaining significant attention in the last years. It is commonly acknowledged that the most obvious way to achieve decarbonization is the use of renewable energy sources. Within the context of the energy sector decarbonization many mainly industrialized countries recently started developing national plans to establish a hydrogen-based economy in the very near future. The plans for green hydrogen initially try to (a) target sectors that are difficult to decarbonize and (b) address issues related to the storage and transportation of CO2-free energy. To achieve almost complete decarbonization electric power must be generated exclusively from renewable sources. In so-called Power-to-X (PtX) technologies green hydrogen is generated from electricity and subsequently converted to another energy carrier which can be further stored transported and used. In PtX X stands for example for liquid hydrogen methanol or ammonia. The challenges associated with decarbonization include those associated with (a) the expansion of renewable energies (e.g. high capital demand political and social issues) (b) the production transportation and storage of hydrogen and the energy carriers denoted by X in PtX (e.g. high cost and low overall efficiency) and (c) the expected significant increase in the demand for electrical energy. The paper discusses whether and under which conditions the current national and international hydrogen plans of many industrialized countries could lead to a maximization of decarbonization in the world. It concludes that in general as long as the conditions for generating large excess amounts of green electricity are not met the quick establishment of a hydrogen economy could not only be very expensive but also counterproductive to the worldwide decarbonization efforts.
Everything About Hydrogen Podcast: A Green Future for Oman
Feb 2023
Publication
On this episode of Everything About Hydrogen we are speaking with Nashwa Al Rawahy Director of HMR Environmental Consultants based in Muscat Oman with regional offices in the United Arab Emirates.
We are excited to have an expert like Nashwa join us to discuss environmental and social impact studies their value to the communities and projects and the importance of building long term In Country Value (ICV).
The podcast can be found on their website.
We are excited to have an expert like Nashwa join us to discuss environmental and social impact studies their value to the communities and projects and the importance of building long term In Country Value (ICV).
The podcast can be found on their website.
Economic Complexity of Green Hydrogen Production Technologies - A Trade Data-based Analysis of Country-sepcific Industrial Preconditions
May 2023
Publication
Countries with high energy demand but limited renewable energy potential are planning to meet part of their future energy needs by importing green hydrogen. For potential exporting countries in addition to sufficient renewable resources industrial preconditions are also relevant for the successful implementation of green hydrogen production value chains. A list of 36 “Green H2 Products” needed for stand-alone hydrogen production plants was defined and their economic complexity was analyzed using international trade data from 1995 to 2019. These products were found to be comparatively complex to produce and represent an opportunity for countries to enter new areas of the product space through green diversification. Large differences were revealed between countries in terms of industrial preconditions and their evolution over time. A detailed analysis of nine MENA countries showed that Turkey and Tunisia already possess industrial know-how in various green hydrogen technology components and perform only slightly worse than potential European competitors while Algeria Libya and Saudi Arabia score the lowest in terms of calculated hydrogen-related green complexity. These findings are supported by statistical tests showing that countries with a higher share of natural resources rents in their gross domestic product score significantly lower on economic and green complexity. The results thus provide new perspectives for assessing the capabilities of potential hydrogen-producing countries which may prove useful for policymakers and investors. Simultaneously this paper contributes to the theory of economic complexity by applying its methods to a new subset of products and using a dataset with long-term coverage.
Necessary and Sufficient Conditions for Deploying Hydrogen Homes: A Consumer-oriented Perspective
May 2024
Publication
As part of its efforts to secure a ‘net-zero society’ the UK government will take a strategic decision on the role of hydrogen in decarbonising homes within the next years. While scholars have recently advanced the social science research agenda on hydrogen technology acceptance studies are yet to engage with the prospective dynamics of adopting ‘hydrogen homes’. In response this study examines the perceived adoption potential of hydrogen heating and cooking technologies as evaluated through the eyes of consumer. Engaging with behavioural and market acceptance this research draws on data from a broadly nationally representative online survey to examine the influence of safety technological economic environmental and emotional factors on the domestic hydrogen transition in the UK context. The analysis follows a multi-stage empirical approach integrating findings from partial least squares structural equation and necessary condition analysis to crystallise insights on this emergent subject. At this juncture perceived adoption potential may hinge primarily on emotional environmental safety and to a lesser extent technological perspectives. However consumers have an expressed preference for hydrogen heating over hydrogen cooking with perceived boiler performance emerging as a necessary condition for enabling adoption potential. At the formative phase of the transition risks associated with energy insecurity and fuel poverty exceed concerns over purchasing and running costs. Nevertheless economic factors remain less critical during the pre-deployment phase of the innovation-decision process. Across the full sample simple slope analysis highlights the moderating effects of gender age and housing tenure. Moreover statistically significant differences from both a sufficiency- and necessity-based perspective are detected between male property owners aged 55+ and female mortgage owners 18–34 years old. By bridging the knowledge gap between social acceptance and adoption intention this contribution reinforces the need for consumer engagement in the hydrogen economy advocating for more fine-grained mixed-methods analyses of technology acceptance dynamics to support decarbonisation strategies.
Gauging Public Perceptions of Blue and Green Hydrogen Futures: Is the Twin-track Approach Compatible with Hydrogen Acceptance?
Jun 2023
Publication
National hydrogen strategies are emerging as a critical pillar of climate change policy. For homes connected to the gas grid hydrogen may offer an alternative decarbonisation pathway to electrification. Hydrogen production pathways in countries such as the UK will involve both the gas network and the electricity grid with related policy choices and investment decisions impacting the potential configuration of consumer acceptance for hydrogen homes. Despite the risk of public resistance be it on environmental economic or social grounds few studies have explored the emerging contours of domestic hydrogen acceptance. To date there is scarce evidence on public perceptions of national hydrogen policy and the extent to which attitudes may be rooted in prior knowledge and awareness or open to change following information provision and engagement. In response this study evaluates consumer preferences for a low-carbon energy future wherein parts of the UK housing stock may adopt low-carbon hydrogen boilers and hobs. Drawing on data from online focus groups we examine consumer perceptions of the government's twin-track approach which envisions important roles for both ‘blue’ and ‘green’ hydrogen to meet net zero ambitions. Through a mixed-methods multigroup analysis the underlying motivation is to explore whether the twin-track approach appears compatible with hydrogen acceptance. Moving forward hydrogen policy should ensure greater transparency concerning the benefits costs and risks of the transition with clearer communication about the justification for supporting respective hydrogen production pathways.
Accelerating the Green Hydrogen Revolution: A Comprehensive Analysis of Technological Advancements and Policy Interventions
Apr 2024
Publication
Promoting green hydrogen has emerged as a pivotal discourse in the contemporary energy landscape driven by pressing environmental concerns and the quest for sustainable energy solutions. This paper delves into the multifaceted domain of C-Suite issues about green hydrogen encompassing both technological advancements and policy considerations. The question of whether green hydrogen is poised to become the focal point of the upcoming energy race is explored through an extensive analysis of its potential as a clean and versatile energy carrier. The transition from conventional fossil fuels to green hydrogen is considered a fundamental shift in energy paradigms with far-reaching implications for global energy markets. The paper provides a comprehensive overview of state-of-the-art green hydrogen technologies including fuel cells photocatalysts photo electrocatalysts and hydrogen panels. In tandem with technological advancements the role of policy and strategy in fostering the development of green hydrogen energy assumes paramount significance. The paper elucidates the critical interplay between government policies market dynamics and corporate strategies in shaping the green hydrogen landscape. It delves into policy mechanisms such as subsidies carbon pricing and renewable energy mandates shedding light on their potential to incentivize the production and adoption of green hydrogen. This paper offers a nuanced exploration of C-Suite issues surrounding green hydrogen painting a comprehensive picture of the technological and policy considerations that underpin its emergence as a transformative energy source. As the global community grapples with the imperatives of climate change mitigation and the pursuit of sustainable energy solutions understanding these issues becomes imperative for executives policymakers and stakeholders alike.
The Perspectives for the Use of Hydrogen for Electricity Storage Considering the Foreign Experience
Mar 2017
Publication
Over the last years the European Union has seen a rapid increase in installed capacity of generating units based on renewable energy sources (RES). The most significant increase in installed capacity was recorded in 2015 in wind farms and solar PV installations. One of the most serious is the volatile character of RES on a time basis. Therefore for a further expected increase in the use of RES and their effectiveness improvements investments are needed allowing for electricity to be stored. One of the electricity storage options is to use excess electricity in order to produce hydrogen by electrolysis of water. Although this process plays a marginal role in obtaining hydrogen on a worldwide basis due to high costs experience in recent years has shown that periodically low (negative) electricity prices developing on the power exchanges in the situation where there is surplus electricity available affect economic requirements for hydrogen production technologies. The paper shows activities undertaken by European countries (mainly Germany) aiming at making it possible for hydrogen to be stored in the natural gas grids. A particular attention is given to material resource issues and possible operational problems that might arise while blending natural gas with hydrogen into the grid. The experiences of selected European countries are of particular interest from the Polish perspective having regard to significant increase of RES in electricity generation during the last few years and adopted objectives for the growing importance of RES in the Poland’s energy balance.
The Vision of France, Germany, and the European Union on Future Hydrogen Energy Research and Innovation
Jul 2021
Publication
Hydrogen (H2) is an essential vector for freeing our societies from fossil fuels and effectively initiating the energy transition. Offering high energy density hydrogen can be used for mobile stationary or industrial applications of all sizes. This perspective on the crucial role of hydrogen is shared by a growing number of countries worldwide (e.g. China Germany Japan Republic of Korea Australia and United States) which are publishing ambitious roadmaps for the development of hydrogen and fuel cell technologies supported by substantial financial efforts.
A Recent Review of Primary Hydrogen Carriers, Hydrogen Production Methods, and Applications
Mar 2023
Publication
Hydrogen is a promising energy carrier especially for transportation owing to its unique physical and chemical properties. Moreover the combustion of hydrogen gas generates only pure water; thus its wide utilization can positively affect human society to achieve global net zero CO2 emissions by 2050. This review summarizes the characteristics of the primary hydrogen carriers such as water methane methanol ammonia and formic acid and their corresponding hydrogen production methods. Additionally state-of-the-art studies and hydrogen energy applications in recent years are also included in this review. In addition in the conclusion section we summarize the advantages and disadvantages of hydrogen carriers and hydrogen production techniques and suggest the challenging tasks for future research.
Reaching Zero with Renewables
Sep 2020
Publication
Patrick Akerman,
Pierpaolo Cazzola,
Emma Skov Christiansen,
Renée Van Heusden,
Joanna Kolomanska-van Iperen,
Johannah Christensen,
Kilian Crone,
Keith Dawe,
Guillaume De Smedt,
Alex Keynes,
Anaïs Laporte,
Florie Gonsolin,
Marko Mensink,
Charlotte Hebebrand,
Volker Hoenig,
Chris Malins,
Thomas Neuenhahn,
Ireneusz Pyc,
Andrew Purvis,
Deger Saygin,
Carol Xiao and
Yufeng Yang
Eliminating CO2 emissions from industry and transport in line with the 1.5⁰C climate goal
To avoid catastrophic climate change the world needs to reach zero carbon dioxide (CO2) emissions in all all sectors of the economy by the 2050s. Effective energy decarbonisation presents a major challenge especially in key industry and transport sectors.
The International Renewable Energy Agency (IRENA) has produced a comprehensive study of deep decarbonisation options focused on reaching zero into time to fulfil the Paris Agreement and hold the line on rising global temperatures.
Several sectors stand out as especially hard to decarbonise. Four of the most energy-intensive industries (iron and steel chemicals and petrochemicals cement and lime and aluminium) and three key transport sectors (road freight aviation and shipping) could together account for 38% of energy and process emissions and 43% of final energy use by 2050 without major policy changes now the report finds.
Reaching zero with renewables considers how these sectors could achieve zero emissions by 2060 and assesses the use of renewables and related technologies to achieve this. Decarbonisation options for each sector span efficiency improvements electrification direct heat and fuel production using renewables along with CO2 removal measures.
Without such measures energy and process emissions could amount to 11.4 gigatonnes from industry and 8.6 gigatonnes from transport at mid-century the report indicates. Along with sector-specific actions cross-cutting actions are needed at higher levels.
The report offers ten broad recommendations for industries and governments:
1. Pursue a renewables-based strategy for end-use sectors with an end goal of zero emissions.
2. Develop a shared vision and strategy and co-develop practical roadmaps involving all major players.
3. Build confidence and knowledge among decision makers.
4. Plan and deploy enabling infrastructure early on.
5. Foster early demand for green products and services.
6. Develop tailored approaches to ensure access to finance.
7. Collaborate across borders.
8. Think globally while utilising national strengths.
9. Establish clear pathways for the evolution of regulations and international standards.
10. Support research development and systemic innovation.
With the right plans and sufficient support the goal of reaching zero is achievable the report shows.
To avoid catastrophic climate change the world needs to reach zero carbon dioxide (CO2) emissions in all all sectors of the economy by the 2050s. Effective energy decarbonisation presents a major challenge especially in key industry and transport sectors.
The International Renewable Energy Agency (IRENA) has produced a comprehensive study of deep decarbonisation options focused on reaching zero into time to fulfil the Paris Agreement and hold the line on rising global temperatures.
Several sectors stand out as especially hard to decarbonise. Four of the most energy-intensive industries (iron and steel chemicals and petrochemicals cement and lime and aluminium) and three key transport sectors (road freight aviation and shipping) could together account for 38% of energy and process emissions and 43% of final energy use by 2050 without major policy changes now the report finds.
Reaching zero with renewables considers how these sectors could achieve zero emissions by 2060 and assesses the use of renewables and related technologies to achieve this. Decarbonisation options for each sector span efficiency improvements electrification direct heat and fuel production using renewables along with CO2 removal measures.
Without such measures energy and process emissions could amount to 11.4 gigatonnes from industry and 8.6 gigatonnes from transport at mid-century the report indicates. Along with sector-specific actions cross-cutting actions are needed at higher levels.
The report offers ten broad recommendations for industries and governments:
1. Pursue a renewables-based strategy for end-use sectors with an end goal of zero emissions.
2. Develop a shared vision and strategy and co-develop practical roadmaps involving all major players.
3. Build confidence and knowledge among decision makers.
4. Plan and deploy enabling infrastructure early on.
5. Foster early demand for green products and services.
6. Develop tailored approaches to ensure access to finance.
7. Collaborate across borders.
8. Think globally while utilising national strengths.
9. Establish clear pathways for the evolution of regulations and international standards.
10. Support research development and systemic innovation.
With the right plans and sufficient support the goal of reaching zero is achievable the report shows.
The New Oil? The Geopolitics and International Governance of Hydrogen
Jun 2020
Publication
While most hydrogen research focuses on the technical and cost hurdles to a full-scale hydrogen economy little consideration has been given to the geopolitical drivers and consequences of hydrogen developments. The technologies and infrastructures underpinning a hydrogen economy can take markedly different forms and the choice over which pathway to take is the object of competition between different stakeholders and countries. Over time cross-border maritime trade in hydrogen has the potential to fundamentally redraw the geography of global energy trade create a new class of energy exporters and reshape geopolitical relations and alliances between countries. International governance and investments to scale up hydrogen value chains could reduce the risk of market fragmentation carbon lock-in and intensified geo-economic rivalry.
Hydrogen Economy and the Built Environment
Nov 2011
Publication
The hydrogen economy is a proposition for the distribution of energy by using hydrogen in order to potentially eliminate carbon emissions and end our reliance on fossil fuels. Some futuristic forecasters view the hydrogen economy as the ultimate carbon free economy. Hydrogen operated vehicles are on trial in many countries. The use of hydrogen as an energy source for buildings is in its infancy but research and development is evolving. Hydrogen is generally fed into devices called fuel cells to produce energy. A fuel cell is an electrochemical device that produces electricity and heat from a fuel (often hydrogen) and oxygen. Fuel cells have a number of advantages over other technologies for power generation. When fed with clean hydrogen they have the potential to use less fuel than competing technologies and to emit no pollution (the only bi-product being water). However hydrogen has to be produced and stored in the first instance. It is possible to generate hydrogen from renewable sources but the technology is still immature and the transformation is wasteful. The creation of a clean hydrogen production and distribution economy at a global level is very costly. Proponents of a world-scale hydrogen economy argue that hydrogen can be an environmentally cleaner source of energy to end-users particularly in transportation applications without release of pollutants (such as particulate matter) or greenhouse gases at the point of end use. Critics of a hydrogen economy argue that for many planned applications of hydrogen direct use of electricity or production of liquid synthetic fuels from locally-produced hydrogen and CO2 (e.g. methanol economy) might accomplish many of the same net goals of a hydrogen economy while requiring only a small fraction of the investment in new infrastructure. This paper reviews the hydrogen economy how it is produced and distributed. It then investigates the different types of fuel cells and identifies which types are relevant to the built environment both in residential and nonresidential sections. It concludes by examining what are the future plans in terms of implementing fuel cells in the built environment and discussing some of the needs of built environment sector.
Link to Document
Link to Document
Governing the UK’s Transition to Decarbonised Heating: Lessons from a Systematic Review of Past and Ongoing Heat Transitions
May 2020
Publication
According to the UK’s Committee on Climate Change the economically efficient achievement of Government’s legally-binding carbon-reduction target will require full decarbonisation of all heat in buildings and the decarbonisation of most industrial heat over the next 20 to 30 years (BEIS 2018). This goliath task is not unprecedented. Indeed the scale of this transition is similar to the UK’s former transition from coal to natural gas heating. Albeit the rate of transition away from natural gas will certainly need to be greater than the rate of the transition toward natural gas to achieve net zero greenhouse gas emissions by 2050.<br/><br/>At present Government’s commitment stands in sharp contrast with its inaction on heat decarbonisation to date. Under pressure to progress this agenda Government has charged the Clean Heat Directorate with the task of outlining the process for determining the UK’s long-term heat policy framework to be published in the ‘Roadmap for policy on heat decarbonisation’ in the summer of 2020 (BEIS 2017). This report resulting from one of six EPSRC-funded secondments is designed to support early thinking on the roadmap by answering the research question: How can ‘Transitions’ research informs the roadmap for governing the UK’s heating transition?<br/><br/>‘Transitions’ research is an interdisciplinary field of study within the Social Sciences and Humanities that investigates the co-evolution of social and technological systems (such as the UK heating system) and the dynamics by which fundamental change in these systems occur. To investigate what insights this area of research may hold for the governance of the UK’s heat transition a systematic literature review was conducted focusing specifically on past and ongoing heat transitions across Europe.<br/><br/>The review uncovered learnings about the role of path dependency; power and politics; complexity; cross-sector interactions; multi-level governance; and intermediaries in shaping non-linear transitions toward renewable heat. This report illustrates each learning with real-world examples from case studies undertaken by Transitions researchers and concludes with a long list of policy and process-oriented governance recommendations for the UK Government.
Business Energy and Industrial Strategy Committee Inquiry into Post-Pandemic Economic Growth
Sep 2020
Publication
The Hydrogen Taskforce welcomes the opportunity to submit evidence to the Business Energy and
Industrial Strategy Committee’s inquiry into post-pandemic economic growth.
It is the Taskforce’s view that:
You can download the whole document from the Hydrogen Taskforce website here
Industrial Strategy Committee’s inquiry into post-pandemic economic growth.
It is the Taskforce’s view that:
- Due to its various applications hydrogen is critical for the UK to reach net zero by 2050;
- The UK holds world-class advantages in hydrogen production distribution and application;
- Other economies are moving ahead in the development of this sector and the UK must respond;
- The post pandemic economic recovery planning should reflect the need to achieve deep decarbonisation and support wider objectives such as achieving net zero and levelling up the
- economy; and
- The hydrogen sector is well-placed to play a key role in the UK’s economic recovery with the right policies and financial structures in place.
- Development of a cross departmental UK Hydrogen Strategy within UK Government;
- Commit £1bn of capex funding over the next spending review period to hydrogen production storage and distribution projects;
- Develop a financial support scheme for the production of hydrogen in blending industry power and transport;
- Amend Gas Safety Management Regulations (GSMR) to enable hydrogen blending and take the next steps towards 100 per cent hydrogen heating through supporting public trials and
- mandating 100 per cent hydrogen-ready boilers by 2025; and
- Commit to the support of 100 Hydrogen Refuelling Stations (HRS) by 2025 to support the rollout of hydrogen transport.
You can download the whole document from the Hydrogen Taskforce website here
Horizon 2020 Impact Assessment Report
Nov 2011
Publication
Horizon 2020 is the biggest EU Research and Innovation programme ever with nearly €80 billion of funding available over 7 years (2014 to 2020) – in addition to the private investment that this money will attract. It promises more breakthroughs discoveries and world-firsts by taking great ideas from the lab to the market.<br/>Horizon 2020 is the financial instrument implementing the Innovation Union a Europe 2020 flagship initiative aimed at securing Europe's global competitiveness.<br/><br/>Seen as a means to drive economic growth and create jobs Horizon 2020 has the political backing of Europe’s leaders and the Members of the European Parliament. They agreed that research is an investment in our future and so put it at the heart of the EU’s blueprint for smart sustainable and inclusive growth and jobs.<br/><br/>By coupling research and innovation Horizon 2020 is helping to achieve this with its emphasis on excellent science industrial leadership and tackling societal challenges. The goal is to ensure Europe produces world-class science removes barriers to innovation and makes it easier for the public and private sectors to work together in delivering innovation.<br/><br/>Horizon 2020 is open to everyone with a simple structure that reduces red tape and time so participants can focus on what is really important. This approach makes sure new projects get off the ground quickly – and achieve results faster.<br/><br/>The EU Framework Programme for Research and Innovation will be complemented by further measures to complete and further develop the European Research Area. These measures will aim at breaking down barriers to create a genuine single market for knowledge research and innovation.
People’s Attitude to Energy from Hydrogen—From the Point of View of Modern Energy Technologies and Social Responsibility
Dec 2020
Publication
Energy from hydrogen is an appropriate technological choice in the context of sustainable development. The opportunities offered by the use of energy from hydrogen also represent a significant challenge for mobile technologies and daily life. Nevertheless despite a significant amount of research and information regarding the benefits of hydrogen energy it creates considerable controversy in many countries. Globally there is a lack of understanding about the production process of hydrogen energy and the benefits it provides which leads to concerns regarding the consistency of its use. In this study an original questionnaire was used as a research tool to determine the opinions of inhabitants of countries in which hydrogen energy is underutilized and where the infrastructure for hydrogen energy is underdeveloped. Respondents presented their attitude to ecology and indicated their knowledge regarding the operation of hydrogen energy and the use of hydrogen fuel. The results indicate that society is not convinced that the safety levels for energy derived from hydrogen are adequate. It can be concluded that knowledge about hydrogen as an energy source and the production safety and storage methods of hydrogen is very low. Negative attitudes to hydrogen energy can be an important barrier in the development of this energy in many countries.
Just Transition Commission
Mar 2021
Publication
The Just Transition Commission started work in early 2019 with a remit to provide practical and affordable recommendations to Scottish Ministers. This report sets out their view of the key opportunities and challenges for Scotland and recommends practical steps to achieving a just transition<br/><br/>Climate action fairness and opportunity must go together. Taking action to tackle climate change must make Scotland a healthier more prosperous and more equal society whilst restoring its natural environment. We want a Scotland where wellbeing is at the heart of how we measure ourselves and our prosperity. We know that the scars from previous industrial transitions have remained raw for generations. We know that some more recent aspirations for green jobs have not delivered on all the benefits promised for Scottish workers and communities. We need rapid interventions to fully realise the potential (and mitigate the potential injustice) associated with the net-zero transition.
The Clean Growth Strategy: Leading the Way to a Low Carbon Future
Oct 2017
Publication
Seizing the clean growth opportunity. The move to cleaner economic growth is one of the greatest industrial opportunities of our time. This Strategy will ensure Britain is ready to seize that opportunity. Our modern Industrial Strategy is about increasing the earning power of people in every part of the country. We need to do that while not just protecting but improving the environment on which our economic success depends. In short we need higher growth with lower carbon emissions. This approach is at the heart of our Strategy for clean growth. The opportunity for people and business across the country is huge. The low carbon economy could grow 11 per cent per year between 2015 and 2030 four times faster than the projected growth of the economy as a whole. This is spread across a large number of sectors: from low cost low carbon power generators to more efficient farms; from innovators creating better batteries to the factories putting them in less polluting cars; from builders improving our homes so they are cheaper to run to helping businesses become more productive. This growth will not just be seen in the UK. Following the success of the Paris Agreement where Britain played such an important role in securing the landmark deal the transition to a global low carbon economy is gathering momentum. We want the UK to capture every economic opportunity it can from this global shift in technologies and services.<br/>Our approach to clean growth is an important element of our modern Industrial Strategy: building on the UK’s strengths; improving productivity across the country; and ensuring we are the best place for innovators and new businesses to start up and grow. A good example of this is offshore wind where costs have halved in just a few years. A combination of sustained commitment – across different Governments – and targeted public sector innovation support harnessing the expertise of UK engineers working in offshore conditions and private sector ingenuity has created the conditions for a new industry to flourish while cutting emissions. We need to replicate this success in sectors across our economy. This Strategy delivers on the challenge that Britain embraced when Parliament passed the Climate Change Act. If we get it right we will not just deliver reduced emissions but also cleaner air lower energy bills for households and businesses an enhanced natural environment good jobs and industrial opportunity. It is an opportunity we will seize.
Net Zero Public Dialogue
Mar 2021
Publication
This research project brought together members of the public from across the UK to participate in online workshops to explore:
- public understanding and perceptions of what reaching climate targets in the UK will mean for them individually and for society as a whole
- public attitudes and preferences towards the role that individual behaviour change should have in reaching net zero
- public perceptions of the easiest and toughest areas of change to help reach net zero
- public views on how they would prefer to engage with net zero policies and relevant initiatives that they feel could support the delivery of net zero
Are We Building Back Better? Evidence from 2020 and Pathways for Inclusive Green Recovery Spending
Mar 2021
Publication
COVID-19 has led to a global crisis threatening the lives and livelihoods of the most vulnerable by increasing poverty exacerbating inequalities and damaging long-term economic growth prospects. The report Are We Building Back Better? Evidence from 2020 and Pathways for Inclusive Green Recovery Spending provides an analysis of over 3500 fiscal policies announced by leading economies in 2020 and calls for governments to invest more sustainably and tackle inequalities as they stimulate growth in the wake of the devastation wrought by the pandemic.
Can Industry Keep Gas Distribution Networks Alive? Future Development of the Gas Network in a Decarbonized World: A German Case Study
Dec 2022
Publication
With the growing need for decarbonization the future gas demand will decrease and the necessity of a gas distribution network is at stake. A remaining industrial gas demand on the distribution network level could lead to industry becoming the main gas consumer supplied by the gas distribution network leading to the question: can industry keep the gas distribution network alive? To answer this research question a three-stage analysis was conducted starting from a rough estimate of average gas demand per production site and then increasing the level of detail. This paper shows that about one third of the German industry sites investigated are currently supplied by the gas distribution network. While the steel industry offers new opportunities the food and tobacco industry alone cannot sustain the gas distribution network by itself.
The Road to Zero: Next Steps Towards Cleaner Road Transport and Delivering our Industrial Strategy
Jul 2018
Publication
Our mission is to put the UK at the forefront of the design and manufacturing of zero emission vehicles and for all new cars and vans to be effectively zero emission by 2040. As set out in the NO2 plan we will end the sale of new conventional petrol and diesel cars and vans by 2040. By then we expect the majority of new cars and vans sold to be 100% zero emission and all new cars and vans to have significant zero emission capability. By 2050 we want almost every car and van to be zero emission. We want to see at least 50% and as many as 70% of new car sales and up to 40% of new van sales being ultra low emission by 2030.<br/>We expect this transition to be industry and consumer led supported in the coming years by the measures set out in this strategy. We will review progress towards our ambitions by 2025. Against a rapidly evolving international context we will seek to maintain the UK’s leadership position and meet our ambitions and will consider what interventions are required if not enough progress is being made.
Energy White Paper: Powering our Net Zero Future
Dec 2020
Publication
The Prime Minister’s Ten Point Plan has set out the measures that will help ensure the UK is at the forefront of this revolution just as we led the first over two centuries ago. As nations move out of the shadow of coronavirus and confront the challenge of climate change with renewed vigour markets for new green products and services will spring up round the world. Taking action now will help ensure not just that we end our contribution to climate change by achieving our target of net zero emissions. It will help position UK companies and our world class research base to seize the business opportunities which flow from it creating jobs and wealth for our country.
Following on from the Ten Point Plan and the National Infrastructure Strategy the Energy White Paper provides further clarity on the Prime Minister’s measures and puts in place a strategy for the wider energy system that:
Following on from the Ten Point Plan and the National Infrastructure Strategy the Energy White Paper provides further clarity on the Prime Minister’s measures and puts in place a strategy for the wider energy system that:
- Transforms energy building a cleaner greener future for our country our people and our planet
- Supports a green recovery growing our economy supporting thousands of green jobs across the country in new green industries and leveraging new green export opportunities
- Creates a fair deal for consumers protecting the fuel poor providing opportunities to save money on bills giving us warmer more comfortable homes and balancing investment against bill impacts.
A Perspective on Hydrogen Investment, Deployment and Cost Competitiveness
Feb 2021
Publication
Deployment and investments in hydrogen have accelerated rapidly in response to government commitments to deep decarbonisation establishing hydrogen as a key component in the energy transition.
To help guide regulators decision-makers and investors the Hydrogen Council collaborated with McKinsey & Company to release the report ‘Hydrogen Insights 2021: A Perspective on Hydrogen Investment Deployment and Cost Competitiveness’. The report offers a comprehensive perspective on market deployment around the world investment momentum as well as implications on cost competitiveness of hydrogen solutions.
The document can be downloaded from their website
To help guide regulators decision-makers and investors the Hydrogen Council collaborated with McKinsey & Company to release the report ‘Hydrogen Insights 2021: A Perspective on Hydrogen Investment Deployment and Cost Competitiveness’. The report offers a comprehensive perspective on market deployment around the world investment momentum as well as implications on cost competitiveness of hydrogen solutions.
The document can be downloaded from their website
Future Fuels Strategy: Discussion Paper Powering Choice
Feb 2021
Publication
New vehicle technologies and fuels will drive the future of road transport in Australia. Increased availability of battery electric vehicles hydrogen fuel cell vehicles biofuels and associated recharging and refuelling infrastructure will:
- give consumers more choice
- provide productivity emissions reduction fuel security and air quality benefits
100% Renewable Energy in Japan
Feb 2022
Publication
Low-cost solar photovoltaics and wind offer a reliable and affordable pathway to deep decarbonization of energy which accounts for three quarters of global emissions. However large-scale deployment of solar photovoltaics and wind requires space and may be challenging for countries with dense population and high per capita energy consumption. This study investigates the future role of renewable energy in Japan as a case study. A 40-year hourly energy balance model is presented of a hypothetical 100% renewable Japanese electricity system using representative demand data and historical meteorological data. Pumped hydro energy storage high voltage interconnection and dispatchable capacity (existing hydro and biomass and hydrogen energy produced from curtailed electricity) are included to balance variable generation and demand. Differential evolution is used to find the least-cost solution under various constraints. This study shows that Japan has 14 times more solar and offshore wind resources than needed to supply 100% renewable electricity and vast capacity for off-river pumped hydro energy storage. Assuming significant cost reductions of solar photovoltaics and offshore wind towards global norms in the coming decades driven by large-scale deployment locally and global convergence of renewable generation costs the levelized cost of electricity is found to be US$86/Megawatt-hour for a solar-dominated system and US$110/Megawatt-hour for a wind-dominated system. These costs can be compared with 2020 average system prices on the spot market in Japan of US$102/Megawatt-hour. Cost of balancing 100% renewable electricity in Japan ranges between US$20–27/Megawatt-hour for a range of scenarios. In summary Japan can be self-sufficient for electricity supply at competitive costs provided that the barriers to the mass deployment of solar photovoltaics and offshore wind in Japan are overcome.
Quantifying the Potential of Renewable Natural Gas to Support a Reformed Energy Landscape: Estimates for New York State
Jun 2021
Publication
Public attention to climate change challenges our locked-in fossil fuel-dependent energy sector. Natural gas is replacing other fossil fuels in our energy mix. One way to reduce the greenhouse gas (GHG) impact of fossil natural gas is to replace it with renewable natural gas (RNG). The benefits of utilizing RNG are that it has no climate change impact when combusted and utilized in the same applications as fossil natural gas. RNG can be injected into the gas grid used as a transportation fuel or used for heating and electricity generation. Less common applications include utilizing RNG to produce chemicals such as methanol dimethyl ether and ammonia. The GHG impact should be quantified before committing to RNG. This study quantifies the potential production of biogas (i.e. the precursor to RNG) and RNG from agricultural and waste sources in New York State (NYS). It is unique because it is the first study to provide this analysis. The results showed that only about 10% of the state’s resources are used to generate biogas of which a small fraction is processed to RNG on the only two operational RNG facilities in the state. The impact of incorporating a second renewable substitute for fossil natural gas “green” hydrogen is also analyzed. It revealed that injecting RNG and “green” hydrogen gas into the pipeline system can reduce up to 20% of the state’s carbon emissions resulting from fossil natural gas usage which is a significant GHG reduction. Policy analysis for NYS shows that several state and federal policies support RNG production. However the value of RNG can be increased 10-fold by applying a similar incentive policy to California’s Low Carbon Fuel Standard (LCFS).
Hydrogen - A Pipeline to the Future
Sep 2020
Publication
Scotland’s Achievements and Ambitions for Clean Hydrogen - a joint webinar between the Scottish Hydrogen and Fuel Cell Association and the Pipeline Industries Guild (Scottish branch).
Nigel Holmes. CEO Scottish Hydrogen & Fuel Cell Association provides an update on Scotland’s ambitions backed up by progress in key areas. This will show the potential for hydrogen at scale to support the delivery of policy targets highlighting areas of key strengths for Scotland.
You will also hear about the need to build up scale for hydrogen production and supply in tandem with hydrogen pipeline and distribution networks in order to meet demand for low carbon energy and achieve key milestones on the pathway to Net Zero by 2045.
Nigel Holmes. CEO Scottish Hydrogen & Fuel Cell Association provides an update on Scotland’s ambitions backed up by progress in key areas. This will show the potential for hydrogen at scale to support the delivery of policy targets highlighting areas of key strengths for Scotland.
You will also hear about the need to build up scale for hydrogen production and supply in tandem with hydrogen pipeline and distribution networks in order to meet demand for low carbon energy and achieve key milestones on the pathway to Net Zero by 2045.
How Hydrogen Empowers the Energy Transition
Jan 2017
Publication
This report commissioned by the Hydrogen Council and announced in conjunction with the launch of the initiative at the World Economic Forum in January 2017 details the future potential that hydrogen is ready to provide and sets out the vision of the Council and the key actions it considers fundamental for policy makers to implement to fully unlock and empower the contribution of hydrogen to the energy transition.
In this paper we explore the role of hydrogen in the energy transition including its potential recent achievements and challenges to its deployment. We also offer recommendations to ensure that the proper conditions are developed to accelerate the deployment of hydrogen technologies with the support of policymakers the private sector and society.
You can download the full report from the Hydrogen Council website here
In this paper we explore the role of hydrogen in the energy transition including its potential recent achievements and challenges to its deployment. We also offer recommendations to ensure that the proper conditions are developed to accelerate the deployment of hydrogen technologies with the support of policymakers the private sector and society.
You can download the full report from the Hydrogen Council website here
What Role for Hydrogen in Turkey’s Energy Future?
Nov 2021
Publication
Since early 2020 Turkey has been considering the role of hydrogen in its energy future with a view to producing a hydrogen strategy in the next few months. Unlike many other countries considering the role of hydrogen Turkey has only recently (October 2021) ratified the Paris Agreement addressing climate change and its interest is driven more by geopolitical strategic and energy security concerns. Specifically with concerns about the high share of imported energy particularly gas from Russia it sees hydrogen as part of a policy to increase indigenous energy production. Turkey already has a relatively high share of renewable power generation particularly hydro and recent solar auctions have resulted in low prices leading to a focus on potential green hydrogen production. However it still generates over half of its electricity from fossil fuel including over 25% from coal and lignite. Against that background it provides an interesting case study on some of the key aspects that a country needs to consider when looking to incorporate low-carbon hydrogen into the development of their energy economy.
The research paper can be found on their website
The research paper can be found on their website
H2FC SUPERGEN- Opportunities for Hydrogen and Fuel Cell Technologies to Contribute to Clean Growth in the UK
May 2020
Publication
Hydrogen is expected to have an important role in decarbonising several parts of the UK energy system. This white paper examines the opportunities for hydrogen and fuel cell technologies (H2FC) to contribute to clean growth in the UK.
We assess the strength of the sector by surveying 196 companies working in the area and using other key metrics (for example publication citations and patents). There is already a nascent fuel cell industry working at the cutting edge of global innovation. The UK has an opportunity to grow this industry and to develop an export-focused hydrogen industry over the next few decades. However this will require public nurturing and support. We make a series of recommendations that include:
We assess the strength of the sector by surveying 196 companies working in the area and using other key metrics (for example publication citations and patents). There is already a nascent fuel cell industry working at the cutting edge of global innovation. The UK has an opportunity to grow this industry and to develop an export-focused hydrogen industry over the next few decades. However this will require public nurturing and support. We make a series of recommendations that include:
- Creating separate national fuel cell and hydrogen strategies. These should take UK energy needs capabilities and export opportunities into account. There is a need to coordinate public R&D support and to manage the consequences if European funding and collaboration opportunities become unavailable due to Brexit.
- Creating a public–private “Hydrogen Partnership” to accelerate a shift to hydrogen energy systems in the UK and to stimulate opportunities for businesses.
- Putting in place infrastructure to underpin nascent fuel cell and hydrogen markets including a national refuelling station network and a green hydrogen standard scheme.
- Study what would constitute critical mass in the hydrogen and fuel cell sectors in terms of industry and academic capacity and the skills and knowledge base and consider how critical mass could be achieved most efficiently.
- Consider creating a “Hydrogen Institute” and an “Electrochemical Centre” to coordinate and underpin national innovation over the next decade.
Hydrogen Strategy for Canada: Seizing the Opportunities for Hydrogen - A Call to Action
Dec 2020
Publication
For more than a century our nation’s brightest minds have been working on the technology to turn the invisible promise of hydrogen into tangible solutions. Canadian ingenuity and innovation has once again brought us to a pivotal moment. As we rebuild our economy from the impacts of COVID-19 and fight the existential threat of climate change the development of low-carbon hydrogen is a strategic priority for Canada. The time to act is now.<br/>The Hydrogen Strategy for Canada lays out an ambitious framework for actions that will cement hydrogen as a tool to achieve our goal of net-zero emissions by 2050 and position Canada as a global industrial leader of clean renewable fuels. This strategy shows us that by 2050 clean hydrogen can help us achieve our net-zero goal—all while creating jobs growing our economy and protecting our environment. This will involve switching from conventional gasoline diesel and natural gas to zero-emissions fuel sources taking advantage of new regulatory environments and embracing new technologies to give Canadians more choice of zero emission alternatives.<br/>As one of the top 10 hydrogen producers in the world today we are rich in the feedstocks that produce hydrogen. We are blessed with a strong energy sector and the geographic assets that will propel Canada to be a major exporter of hydrogen and hydrogen technologies. Hydrogen might be nature’s smallest molecule but its potential is enormous. It provides new markets for our conventional energy resources and holds the potential to decarbonize many sectors of our economy including resource extraction freight transportation power generation manufacturing and the production of steel and cement. This Strategy is a call to action. It will spur investments and strategic partnerships across the country and beyond our borders. It will position Canada to seize economic and environmental opportunities that exist coast to coast. Expanding our exports. Creating as many as 350000 good green jobs over the next three decades. All while dramatically reducing our greenhouse gas emissions. And putting a net-zero future within our reach.<br/>The importance of Canada’s resource industries and our clean technology sectors has been magnified during the pandemic. We must harness our combined will expertise and financial resources to fully seize the opportunities that hydrogen presents. This strategy is the product of three years of study and analysis including extensive engagement sessions where we heard from more than 1500 of our country’s leading experts and stakeholders. But its release is not the end of a process. This is only the beginning. Together we will use this Strategy to guide our actions and investments. By working with provinces and territories Indigenous partners and the private-sector and by leveraging our many advantages we will create the prosperity we all want protect the planet we all cherish and we will ensure we leave no one behind.
Annual Science Review 2018
Mar 2018
Publication
THIS ANNUAL SCIENCE Review showcases the high quality of science evidence and analysis that underpins HSE’s risk-based regulatory regime. To be an effective regulator HSE has to balance its approaches to informing directing advising and enforcing through a variety of activities. For this we need capacity to advance knowledge; to develop and use robust evidence and analysis; to challenge thinking; and to review effectiveness.<br/>In simple terms policy provides the route map to tackling issues. HSE is particularly well placed in terms of the three components of effective policy - “politics” “evidence” and “delivery”. Unlike most regulators and arms-length bodies HSE leads on policy development which draws directly on front line delivery expertise and intelligence; and we are also unusual in having our own world class science and insight capabilities.<br/>The challenge is to ensure we bring these components together to best effect to respond to new risk management and regulatory issues with effective innovative and proportionate approaches.<br/>Many of the articles in this Review relate to new and emerging technologies and the changing world of work and it is important to understand the risks these may pose and how they can be effectively controlled or how they themselves can contribute to improved health and safety in the workplace. Good policy development can support approaches to change that are proportionate relevant persuasive and effective. For example work described in these pages is: to help understand changing workplace exposures; to provide robust evidence to those negotiating alternatives to unduly prescriptive standards; to understand how best to influence duty<br/>holder behaviors in the changing world of work; to inform possible legislative changes to allow different modes of safe gas transmission; to change administrative processes for Appointed Doctors; and to support our position as a model modern regulator by further focusing our inspection activity where it matters most.<br/>The vital interface between HSE science and policy understand how best to influence duty holder behaviors in the changing world of work; to inform possible legislative changes to allow different modes of safe gas transmission; to change administrative processes for Appointed Doctors; and to support our position as a model modern regulator by further focusing our inspection activity where it matters most.<br/>We work well together and it is important we maintain this engagement as a conscious collaboration.
Annual Science Review 2020
Mar 2020
Publication
HSE maintains a national network of doctors appointed doctors and approved medical examiners of divers who are appointed to deliver certain vital functions under our regulatory framework.1 Over the last year or so we have been reaching out to them and offering training and networking opportunities so that we can learn from each other. Their intelligence from real workplaces helps ensure that our medical approach is grounded by what actually happens and this helped us ensure that our health and work strategy took account of their views. I think that it is increasingly important to share our approaches and our research outcomes on the global stage in an attempt to learn from other researchers around the world. A good example is the work described in this report on the artificial stone issue. I have been lucky enough to work with the Australian research group who identified an epidemic of silicosis from this exposure in their country and helped to facilitate some cross-comparison of materials with our hygienists and measurement scientists. The dialogue continues and I hope that by doing so we can help to prevent such an epidemic from occurring in the UK.<br/>All HSE research findings are published as soon as we are able to do this and this demonstrates both my and Andrew Curran’s commitment to ensure that we publish the evidence we generate to make workplaces healthier for all.
Energy Innovation Needs Assessment: Carbon Capture Usage & Storage
Nov 2019
Publication
The Energy Innovation Needs Assessment (EINA) aims to identify the key innovation needs across the UK’s energy system to inform the prioritisation of public sector investment in low-carbon innovation. Using an analytical methodology developed by the Department for Business Energy & Industrial Strategy (BEIS) the EINA takes a system level approach and values innovations in a technology in terms of the system-level benefits a technology innovation provides. This whole system modelling in line with BEIS’s EINA methodology was delivered by the Energy Systems Catapult (ESC) using the Energy System Modelling Environment (ESMETM) as the primary modelling tool.
To support the overall prioritisation of innovation activity the EINA process analyses key technologies in more detail. These technologies are grouped together into sub-themes according to the primary role they fulfil in the energy system. For key technologies within a sub-theme innovations and business opportunities are identified. The main findings at the technology level are summarised in sub-theme reports. An overview report will combine the findings from each sub-theme to provide a broad system-level perspective and prioritisation.
This EINA analysis is based on a combination of desk research by a consortium of economic and engineering consultants and stakeholder engagement. The prioritisation of innovation and business opportunities presented is informed by a workshop organised for each sub-theme assembling key stakeholders from the academic community industry and government.
This report was commissioned prior to advice being received from the CCC on meeting a net zero target and reflects priorities to meet the previous 80% target in 2050. The newly legislated net zero target is not expected to change the set of innovation priorities rather it will make them all more valuable overall. Further work is required to assess detailed implications.
To support the overall prioritisation of innovation activity the EINA process analyses key technologies in more detail. These technologies are grouped together into sub-themes according to the primary role they fulfil in the energy system. For key technologies within a sub-theme innovations and business opportunities are identified. The main findings at the technology level are summarised in sub-theme reports. An overview report will combine the findings from each sub-theme to provide a broad system-level perspective and prioritisation.
This EINA analysis is based on a combination of desk research by a consortium of economic and engineering consultants and stakeholder engagement. The prioritisation of innovation and business opportunities presented is informed by a workshop organised for each sub-theme assembling key stakeholders from the academic community industry and government.
This report was commissioned prior to advice being received from the CCC on meeting a net zero target and reflects priorities to meet the previous 80% target in 2050. The newly legislated net zero target is not expected to change the set of innovation priorities rather it will make them all more valuable overall. Further work is required to assess detailed implications.
Economic Impact Assessment: Hydrogen is Ready to Power the UK’s Green Recovery
Aug 2020
Publication
Hydrogen solutions have a critical role to play in the UK not only in helping the nation meet its net-zero target but in creating the economic growth and jobs that will kickstart the green recovery.
The Government must act now to ensure that the UK capitalises on the opportunity presented by hydrogen and builds a world-leading industry.
COVID-19 has caused significant economic upheaval across the country with unemployment expected to reach up to 14.8 per cent by the end of 20201. The UK must identify those areas of the economy which have significant economic growth potential and can deliver long-term and sustainable increases in GVA and jobs. It will be important to consider regional factors and ensure that investment is targeted in those areas that have been hardest hit by the crisis.
Many major economies have identified hydrogen as a key part of both decarbonisation and economic recovery. As part of its stimulus package Germany announced a €9billion investment in green hydrogen solutions aiming to deploy 5GW by 2030. The Hydrogen Council estimates a future hydrogen and equipment market worth $2.5 trillion globally by 2050 supporting 30 million new jobs.
Hydrogen offers the UK a pathway to deep cost-effective decarbonisation while delivering economic growth and job creation. It should therefore be at the heart of the Government’s green recovery programme ensuring that the UK builds back better and greener.
The Government must act now to ensure that the UK capitalises on the opportunity presented by hydrogen and builds a world-leading industry.
COVID-19 has caused significant economic upheaval across the country with unemployment expected to reach up to 14.8 per cent by the end of 20201. The UK must identify those areas of the economy which have significant economic growth potential and can deliver long-term and sustainable increases in GVA and jobs. It will be important to consider regional factors and ensure that investment is targeted in those areas that have been hardest hit by the crisis.
Many major economies have identified hydrogen as a key part of both decarbonisation and economic recovery. As part of its stimulus package Germany announced a €9billion investment in green hydrogen solutions aiming to deploy 5GW by 2030. The Hydrogen Council estimates a future hydrogen and equipment market worth $2.5 trillion globally by 2050 supporting 30 million new jobs.
Hydrogen offers the UK a pathway to deep cost-effective decarbonisation while delivering economic growth and job creation. It should therefore be at the heart of the Government’s green recovery programme ensuring that the UK builds back better and greener.
You can download the whole document from the Hydrogen Taskforce website at the following links
- Economic Impact Assessment Summary
- Economic impact Assessment Methodology
- Economic impact Assessment of the Hydrogen Value Chain of the UK infographic
- Imperial College Consultants Review of the EIA.
Net Zero Review: Interim Report
Dec 2020
Publication
Climate change is an existential threat to humanity. Without global action to limit greenhouse gas emissions the climate will change catastrophically with almost unimaginable consequences for societies across the world. In recognition of the risks to the UK and other countries the UK became in 2019 the first major economy to implement a legally binding net zero target.<br/>The UK has made significant progress in decarbonising its economy but needs to go much further to achieve net zero. This will be a collective effort requiring changes from households businesses and government. It will require substantial investment and significant changes to how people live their lives.<br/>This transformation will also create opportunities for the UK economy. New industries and jobs will emerge as existing sectors decarbonise or give way to lowcarbon equivalents. The Ten Point Plan for a Green Industrial Revolution and Energy White Paper start to set out how the UK can make the most of these opportunities with new investment in sectors like offshore wind and hydrogen.1 The transition will also have distributional and competitiveness impacts that the government will need to consider as it designs policy.<br/>This interim report sets out the analysis so far from the Treasury’s Net Zero Review and seeks feedback on the approach ahead of the final report due to be published next year.
Welsh Government’s Department for Economy, Skills & Natural Resources Briefing: Cardiff University’s Expertise to Help Address the Challenges to Creating a CO2 Circular Economy for Wales
Oct 2021
Publication
Through its “Reducing Carbon whilst Creating Social Value: How to get Started’ initiative Welsh Government is keen to explore whether a ‘circular economy’ (and industry) could be developed for Wales for CO2.<br/>Although most companies have targets to reduce their CO2 by 2030 Wales does not have the space to store or bury any excess with the current choice to ship or ‘move the problem’ elsewhere. Meanwhile other industry sectors in Wales are experiencing shortages of CO2 e.g. food production.<br/>Net Zero commitments will require dealing with CO2 emissions from agricultural and industrial sectors and from the production of blue and grey hydrogen during the transition time of switching to green hydrogen. Sequestration and shipping off of CO2 could be costly are not currently possible at large scale and are not sustainable. The use of CO2 by industry e.g. in construction materials and in food production processes can play a major role in addressing CO2 waste production from grey and blue hydrogen.<br/>In a Cradle-to-Cradle approach everything has a use. Is Wales missing out on creating and developing a new innovative industry around a CO2 circular economy?
Renewable Energy Market Analysis: Africa and its Regions
Jan 2022
Publication
An energy system centred on renewable energy can help resolve many of Africa’s social economic health and environmental challenges. A profound energy transition is not only feasible it is essential for a climate-safe future in which sustainable development prerogatives are met. Renewables are key to overcoming energy poverty providing needed energy services without damaging human health or ecosystems and enabling a transformation of economies in support of development and industrialisation.
Africa is extraordinarily diverse and no single approach will advance its energy future. But efforts must be made to build modern resilient and sustainable energy systems across the continent to avoid trapping economies and societies in increasingly obsolete energy systems that burden them with stranded assets and limited economic prospects.
This report from the International Renewable Energy Agency (IRENA) sets out the opportunities at hand while also acknowledging the challenges Africa faces. It lays out a pathway to a renewables-based energy system and shows that the transition promises substantial gains in GDP employment and human welfare in each region of the continent.
Among the findings:
A large part of Africa has so far been left out of the energy transition:
Africa is extraordinarily diverse and no single approach will advance its energy future. But efforts must be made to build modern resilient and sustainable energy systems across the continent to avoid trapping economies and societies in increasingly obsolete energy systems that burden them with stranded assets and limited economic prospects.
This report from the International Renewable Energy Agency (IRENA) sets out the opportunities at hand while also acknowledging the challenges Africa faces. It lays out a pathway to a renewables-based energy system and shows that the transition promises substantial gains in GDP employment and human welfare in each region of the continent.
Among the findings:
A large part of Africa has so far been left out of the energy transition:
- Only 2% of global investments in renewable energy in the last two decades were made in Africa with significant regional disparities
- Less than 3% of global renewables jobs are in Africa
- In Sub-Saharan Africa electrification rate was static at 46% in 2019 with 906 million people still lacking access to clean cooking fuels and technologies
- Africa has vast resource potential in wind solar hydro and geothermal energy and falling costs are increasingly bringing renewables within reach
- Central and Southern Africa have abundant mineral resources essential to the production of electric batteries wind turbines and other low-carbon technologies
- Renewable energy deployment has grown in the last decade with more than 26 GW of renewables-based generation capacity added. The largest additions were in solar energy
- Average annual investments in renewable energy grew ten-fold from less than USD 0.5 billion in the 2000-2009 period to USD 5 billion in 2010-2020
- Distributed renewable energy solutions including stand-alone systems and mini-grids are playing a steadily growing role in expanding electricity access in off-grid areas and strengthening supply in already connected areas
- The energy transition under IRENA’s 1.5°C Scenario pathway predicts 6.4% higher GDP 3.5% higher economy-wide jobs and a 25.4% higher welfare index than that realised under current plans on average up to 2050
- Jobs created in the renewable energy transition will outweigh those lost by moving away from traditional energy. Every million U.S. dollars invested in renewables between 2020 – 2050 would create at least 26 job-years; for every million invested in energy efficiency at least 22 job-years would be created annually; for energy flexibility the figure is 18
- A comprehensive policy package that combines the pursuit of climate and environmental goals; economic development and jobs creation; and social equity and welfare for society as a whole
- Strong institutions international co-operation (including South- South co-operation) and considerable co-ordination at the regional level
Balancing GHG Mitigation and Land-use Conflicts: Alternative Northern European Energy System Scenarios
Jan 2022
Publication
Long-term power market outlooks suggest a rapid increase in renewable energy deployment as a main solution to greenhouse gas mitigation in the Northern European energy system. However the consequential area requirement is a non-techno-economic aspect that currently is omitted by many energy system optimization models. This study applies modeling to generate alternatives (MGA) technique to the Balmorel energy system model to address spatial conflicts related to increased renewable energy deployment. The approach searches for alternative solutions that minimize land-use conflicts while meeting the low-carbon target by allowing a 1% to 15% increase in system costs compared to the least-cost solution. Two alternative objectives are defined to reflect various aspects of spatial impact. The results show that the least-cost solution requires 1.2%–3.6% of the land in the modeled countries in 2040 for onshore wind and solar PV installations. A 10% increase in costs can reduce the required land area by 58% by relying more on offshore wind. Nuclear energy may also be an option if both onshore and offshore areas are to be reduced or in a less flexible system. Both offshore wind and nuclear energy technologies are associated with higher risks and pose uncertainties in terms of reaching the climate targets in time. The changes in costs and required land areas imply significantly higher annual costs ranging from 200 to 750 kEUR/km2 to avoid land use for energy infrastructure. Overall this study confirms that the energy transition strategies prioritizing land savings from energy infrastructure are feasible but high risks and costs of averted land are involved.
Scenario-Based Techno-Economic Analysis of Steam Methane Reforming Process for Hydrogen Production
Jun 2021
Publication
Steam methane reforming (SMR) process is regarded as a viable option to satisfy the growing demand for hydrogen mainly because of its capability for the mass production of hydrogen and the maturity of the technology. In this study an economically optimal process configuration of SMR is proposed by investigating six scenarios with different design and operating conditions including CO2 emission permits and CO2 capture and sale. Of the six scenarios the process configuration involving CO2 capture and sale is the most economical with an H2 production cost of $1.80/kg-H2. A wide range of economic analyses is performed to identify the tradeoffs and cost drivers of the SMR process in the economically optimal scenario. Depending on the CO2 selling price and the CO2 capture cost the economic feasibility of the SMR-based H2 production process can be further improved.
Oxford Energy Podcast – Energy Transition Post-Pandemic in the Gulf: Clean Energy, Sustainability and Hydrogen
Jun 2021
Publication
The COVID-19 pandemic has exacerbated challenges faced by hydrocarbon exporters in the Gulf owing to the global push to transition to cleaner energy sources. In this podcast Manal Shehabi (OIES) discusses with David Ledesma a recent OIES-KFAS workshop held in April 2021 titled “Energy Transition Post-Pandemic in the Gulf States” held with support from the Kuwait Foundation for the Advancement of Sciences (KFAS). They discuss separate but interrelated issues on clean energy economic and climate sustainability and hydrogen. Specially they examine how the global energy transition outlook has changed post-pandemic along with its impacts on Gulf States’ economies and energy transition projects. They explain implications to Gulf states’ sustainability evaluating whether these countries are fiscally sustainable post-pandemic and their urgent need for energy and economic diversification. They focus in on the possibility of the Gulf States’ using hydrogen to diversify both in domestic and export markets evaluating opportunities and challenges for both blue and green hydrogen. A preliminary case study on the economics of hydrogen in Kuwait is highlighted as indication of whether Gulf states can produce green hydrogen competitively. They conclude with policy recommendations to increase economic sustainability and resilience post-pandemic both through the energy transition and responses to it.
The podcast can be found on their website
The podcast can be found on their website
Carbons Formed in Methane Thermal and Thermocatalytic Decomposition Processes: Properties and Applications
Jun 2021
Publication
The hydrogen economy will play a key role in future energy systems. Several thermal and catalytic methods for hydrogen production have been presented. In this review methane thermocatalytic and thermal decomposition into hydrogen gas and solid carbon are considered. These processes known as the thermal decomposition of methane (TDM) and thermocatalytic decomposition (TCD) of methane respectively appear to have the greatest potential for hydrogen production. In particular the focus is on the different types and properties of carbons formed during the decomposition processes. The applications for carbons are also investigated.
Flexibility in Great Britain
May 2021
Publication
The Flexibility in Great Britain project analysed the system-level value of deploying flexibility across the heat transport industry and power sectors in Great Britain to provide a robust evidence-base on the role and value of flexibility in a net zero system.
Overview
Findings from this groundbreaking analysis of the future net zero energy system in Great Britain are expected to have profound implications for policymakers households and the wider energy sector across Great Britain.
Key findings include:
Read the Full Report here on the Carbon Trust Website
View the interactive analysis here at the Carbon Trust Website
Watch an accompanying video here at the Carbon Trust Youtube channel
Overview
Findings from this groundbreaking analysis of the future net zero energy system in Great Britain are expected to have profound implications for policymakers households and the wider energy sector across Great Britain.
Key findings include:
- Embedding greater flexibility across the entire energy system will reduce the cost of achieving net zero for all consumers while assuring energy security.
- Investing in flexibility is a no-regrets decision as it has the potential to deliver material net savings of up to £16.7bn per annum across all scenarios analysed in 2050.
- A more flexible system will accelerate the benefits of decarbonisation supported by decentralisation and digitalisation.
- To maximise the benefits of flexibility households and businesses should play an active role in the development and operation of the country’s future energy system as energy use for transport heat and appliances becomes more integrated.
- Policymakers should preserve existing flexibility options and act now to maximise future flexibility such as by building it into ‘smart’ appliances or building standards.
Read the Full Report here on the Carbon Trust Website
View the interactive analysis here at the Carbon Trust Website
Watch an accompanying video here at the Carbon Trust Youtube channel
Closing the Low-carbon Material Loop Using a Dynamic Whole System Approach
Feb 2017
Publication
The transition to low carbon energy and transport systems requires an unprecedented roll-out of new infrastructure technologies containing significant quantities of critical raw materials. Many of these technologies are based on general purpose technologies such as permanent magnets and electric motors that are common across different infrastructure systems. Circular economy initiatives that aim to institute better resource management practices could exploit these technological commonalities through the reuse and remanufacturing of technology components across infrastructure systems. In this paper we analyze the implementation of such processes in the transition to low carbon electricity generation and transport on the Isle of Wight UK. We model two scenarios relying on different renewable energy technologies with the reuse of Lithium-ion batteries from electric vehicles for grid-attached storage. A whole-system analysis that considers both electricity and transport infrastructure demonstrates that the optimal choice of renewable technology can be dependent on opportunities for component reuse and material recycling between the different infrastructure systems. Hydrogen fuel cell based transport makes use of platinum from obsolete catalytic converters whereas lithium-ion batteries can be reused for grid-attached storage when they are no longer useful in vehicles. Trade-offs exist between the efficiency of technology reuse which eliminates the need for new technologies for grid attached storage completely by 2033 and the higher flexibility afforded by recycling at the material level; reducing primary material demand for Lithium by 51% in 2033 compared to 30% achieved by battery reuse. This analysis demonstrates the value of a methodology that combines detailed representations of technologies and components with a systemic approach that includes multiple interconnected infrastructure systems.
UK Hydrogen Economy: Debate Pack
Dec 2020
Publication
A Westminster Hall debate on the UK hydrogen economy has been scheduled for Thursday 17 December 2020 at 3.00pm. The debate will be led by Alexander Stafford MP. This House of Commons Library debate pack provides background information and press and parliamentary coverage of the issues.<br/><br/>The Government has legally binding targets under the Climate Change Act 2008 to reach ‘net zero’ carbon emissions by 2050. Background information is available from the Library webpage on Climate Change: an overview.<br/><br/>In order to meet the net zero target the use of fossil fuels (without abatement such as carbon capture usage and storage) across the economy will need to be almost entirely phased out by 2050. Hydrogen gas is regarded as an energy option to help decarbonisation especially in relation to applications that may be more challenging to decarbonise. These applications include heating transport (including heavy goods shipping and aviation) and some industrial processes.<br/><br/>The Government has legally binding targets under the Climate Change Act 2008 to reach ‘net zero’ carbon emissions by 2050. Background information is available from the Library webpage on Climate Change: an overview.<br/><br/>In order to meet the net zero target the use of fossil fuels (without abatement such as carbon capture usage and storage) across the economy will need to be almost entirely phased out by 2050. Hydrogen gas is regarded as an energy option to help decarbonisation especially in relation to applications that may be more challenging to decarbonise. These applications include heating transport (including heavy goods shipping and aviation) and some industrial processes.
Role of Batteries and Fuel Cells in Achieving Net Zero- Session 1
Mar 2021
Publication
The House of Lords Science and Technology Committee will question experts on the role of batteries and fuel cells for decarbonisation and how much they can contribute to meeting the net-zero target.
Tuesday’s evidence session will be the first of the committee’s new decarbonisation inquiry which was launched on Wednesday 3 March and is currently accepting written evidence submissions.
The session will give an overview of battery and fuel cell technologies and their applications in transport and other sectors. The Committee will ask how battery manufacture can be scaled up to meet wide-scale deployment of electric vehicles and whether technical challenges can be overcome to allow batteries and fuel cells to be used in HGVs and trains. The Committee will also investigate the wider use of batteries and fuel cells in various sectors including integration into power grids and heating systems.
Inquiry Role of batteries and fuel cells in achieving Net Zero
Professor Nigel Brandon Dean of the Faculty of Engineering at Imperial College London
Professor Mauro Pasta Associate Professor of Materials at University of Oxford
Professor Pam Thomas CEO at Faraday Institution and Pro Vice Chancellor for Research at University of Warwick
Mr Amer Gaffar Director of Manchester Fuel Cell Innovation Centre at Manchester Metropolitan University
Possible questions
What contribution are battery and fuel cell technologies currently making towards decarbonization in the UK?
What advances do we expect to see in battery and fuel cell technologies and over what timeframes?
How quickly can UK battery and fuel cell manufacture be scaled up to meet electrification demands?
What are the challenges facing technological innovation and deployment in heavy transport?
Are there any sectors where battery and fuel cell technologies are not currently used but could contribute to decarbonisation?
What are the life cycle environmental impacts of batteries and fuel cells?
Parliament TV video of the meeting
This is part one of a three part enquiry.
Part two can be found here and part three can be found here.
Tuesday’s evidence session will be the first of the committee’s new decarbonisation inquiry which was launched on Wednesday 3 March and is currently accepting written evidence submissions.
The session will give an overview of battery and fuel cell technologies and their applications in transport and other sectors. The Committee will ask how battery manufacture can be scaled up to meet wide-scale deployment of electric vehicles and whether technical challenges can be overcome to allow batteries and fuel cells to be used in HGVs and trains. The Committee will also investigate the wider use of batteries and fuel cells in various sectors including integration into power grids and heating systems.
Inquiry Role of batteries and fuel cells in achieving Net Zero
Professor Nigel Brandon Dean of the Faculty of Engineering at Imperial College London
Professor Mauro Pasta Associate Professor of Materials at University of Oxford
Professor Pam Thomas CEO at Faraday Institution and Pro Vice Chancellor for Research at University of Warwick
Mr Amer Gaffar Director of Manchester Fuel Cell Innovation Centre at Manchester Metropolitan University
Possible questions
What contribution are battery and fuel cell technologies currently making towards decarbonization in the UK?
What advances do we expect to see in battery and fuel cell technologies and over what timeframes?
How quickly can UK battery and fuel cell manufacture be scaled up to meet electrification demands?
What are the challenges facing technological innovation and deployment in heavy transport?
Are there any sectors where battery and fuel cell technologies are not currently used but could contribute to decarbonisation?
What are the life cycle environmental impacts of batteries and fuel cells?
Parliament TV video of the meeting
This is part one of a three part enquiry.
Part two can be found here and part three can be found here.
Options for Multilateral Initiatives to Close the Global 2030 Climate Ambition and Action Gap - Policy Field Synthetic E-fuels
Jan 2021
Publication
Achieving the goals of the Paris Agreement requires increased global climate action especially towards the production and use of synthetic e-fuels. This paper focuses on aviation and maritime transport and the role of green hydrogen for indirect electrification of industry sectors. Based on a sound analysis of existing multilateral cooperation the paper proposes four potential initiatives to increase climate ambition of the G20 countries in the respective policy field: a Sustainable e-Kerosene Alliance a Sustainable e-fuel Alliance for Maritime Shipping a Hard-to-Abate Sector Partnership and a Global Supply-demand-partnership.
The full report can be found here on the Umweltbundesamt website
The full report can be found here on the Umweltbundesamt website
Hydrogen Valleys. Insights Into the Emerging Hydrogen Economies Around the World
Jun 2021
Publication
Clean hydrogen is universally considered an important energy vector in the global efforts to limit greenhouse gas emissions to the "well below 2 °C scenario" as agreed by more than 190 states in the 2015 Paris Agreement. Hydrogen Valleys – regional ecosystems that link hydrogen production transportation and various end uses such as mobility or industrial feedstock – are important steps towards enabling the development of a new hydrogen economy.<br/><br/>This report has been issued during the setup of the "Mission Innovation Hydrogen Valley Platform" which was commissioned by the European Union and developed by the Fuel Cells and Hydrogen Joint Undertaking. The global information sharing platform to date already features 30+ global Hydrogen Valleys with a cumulative investment volume of more than EUR 30 billion. The projects provide a first-of-its kind look into the global Hydrogen Valley project landscape its success factors and remaining barriers. This report summarizes the findings and presents identified best practices for successful project development as well as recommendations for policymakers on how to provide a favourable policy environment that paves the way to reach the Hydrogen Valleys' full potential as enablers of the global hydrogen economy.
When and How to Regulate Hydrogen Networks?
Feb 2021
Publication
This European Green Deal Regulatory White Paper provides the views of Europe’s energy regulators represented by ACER and CEER on when and how to regulate the hydrogen networks in the future.
With the EU goal of becoming a carbon neutral continent by 2050 hydrogen is set to play a key role in decarbonising Europe's economy.
To realise the European Green Deal's ambitions for hydrogen the right regulatory framework must be created to facilitate a hydrogen economy in a cost-effective way.
European energy regulators (ACER and CEER) have published a set of recommendations on when and how to regulate pure hydrogen networks. The need and scope of hydrogen network regulation will depend on its structure and evolution.
This paper is the first in our new series of ACER-CEER European Green Deal Regulatory White Papers. This hydrogen paper examines:
The aim is to deepen understanding on the regulatory aspects of Green Deal issues and to assist the European Commission in assessing various options as part of the preparations for legislation on hydrogen and energy system integration. With the EU goal of becoming a carbon neutral continent by 2050 hydrogen is set to play a key role in decarbonising Europe's economy.
The Full report can be found on the ACER website
With the EU goal of becoming a carbon neutral continent by 2050 hydrogen is set to play a key role in decarbonising Europe's economy.
To realise the European Green Deal's ambitions for hydrogen the right regulatory framework must be created to facilitate a hydrogen economy in a cost-effective way.
European energy regulators (ACER and CEER) have published a set of recommendations on when and how to regulate pure hydrogen networks. The need and scope of hydrogen network regulation will depend on its structure and evolution.
This paper is the first in our new series of ACER-CEER European Green Deal Regulatory White Papers. This hydrogen paper examines:
- The circumstances under which regulating hydrogen networks is needed;
- How to treat existing hydrogen network infrastructure;
- How to address regulatory challenges related to the repurposing of gas infrastructure for dedicated hydrogen transport.
The aim is to deepen understanding on the regulatory aspects of Green Deal issues and to assist the European Commission in assessing various options as part of the preparations for legislation on hydrogen and energy system integration. With the EU goal of becoming a carbon neutral continent by 2050 hydrogen is set to play a key role in decarbonising Europe's economy.
The Full report can be found on the ACER website
Role of batteries and fuel cells in achieving Net Zero- Session 3
Mar 2021
Publication
The House of Lords Science and Technology Committee will hear from officials research funders and leading research consortia about the UK’s strategy for research and development of batteries and fuel cells to help meet the net-zero target.
The Committee will question officials from government departments and research councils about the UK’s increased support for battery development and how the initiatives and funding will evolve. The Committee will compare the support given to fuel cell research and ask how this technology will be developed for applications such as heavy transport. For both technologies it will ask how training will be delivered to provide a skilled workforce.
The Committee will also hear from leaders of research consortia asking them about support for their research sectors and how this compares with countries leading the development of the technologies. The Committee will explore coordination between research into batteries fuel cells and wider strategies such as for hydrogen and whether research for transport can be transferred to applications in other sectors such as power grids and heating.
At 10.00am: Oral evidence
Mr Tony Harper Industrial Strategy Challenge Director Faraday Battery Challenge at UK Research and Innovation (UKRI) at University of Central Lancashire
Dr Lucy Martin Deputy Director of Cross-Council Programmes and lead for Net Zero at University of Central Lancashire
Dr Bob Moran Deputy Director Head of Environment Strategy at University of Central Lancashire
Professor Paul Monks Chief Scientific Adviser at University of Central Lancashire
At 11.00am: Oral evidence
Professor Philip Taylor Director at EPSRC Supergen Energy Networks Hub and Pro-Vice Chancellor for Research and Enterprise at University of Bristol
Professor David Greenwood CEO High Value Manufacturing Catapult at University of Central Lancashire Director Industrial Engagement at University of Central Lancashire and Professor of Advanced Propulsion Systems at University of Warwick
Professor Paul Dodds Professor of Energy Systems at University of Central Lancashire
Possible questions
Parliament TV video of the meeting
This is part three of a three part enquiry.
Part one can be found here and part two can be found here.
The Committee will question officials from government departments and research councils about the UK’s increased support for battery development and how the initiatives and funding will evolve. The Committee will compare the support given to fuel cell research and ask how this technology will be developed for applications such as heavy transport. For both technologies it will ask how training will be delivered to provide a skilled workforce.
The Committee will also hear from leaders of research consortia asking them about support for their research sectors and how this compares with countries leading the development of the technologies. The Committee will explore coordination between research into batteries fuel cells and wider strategies such as for hydrogen and whether research for transport can be transferred to applications in other sectors such as power grids and heating.
At 10.00am: Oral evidence
Mr Tony Harper Industrial Strategy Challenge Director Faraday Battery Challenge at UK Research and Innovation (UKRI) at University of Central Lancashire
Dr Lucy Martin Deputy Director of Cross-Council Programmes and lead for Net Zero at University of Central Lancashire
Dr Bob Moran Deputy Director Head of Environment Strategy at University of Central Lancashire
Professor Paul Monks Chief Scientific Adviser at University of Central Lancashire
At 11.00am: Oral evidence
Professor Philip Taylor Director at EPSRC Supergen Energy Networks Hub and Pro-Vice Chancellor for Research and Enterprise at University of Bristol
Professor David Greenwood CEO High Value Manufacturing Catapult at University of Central Lancashire Director Industrial Engagement at University of Central Lancashire and Professor of Advanced Propulsion Systems at University of Warwick
Professor Paul Dodds Professor of Energy Systems at University of Central Lancashire
Possible questions
- On which aspects of battery and fuel cell research and development is the UK focusing and why?
- How successful have the UK’s new research initiatives been in advancing battery science and application?
- Does battery research receive greater public funding than fuel cell research? If so why?
- What technologies are seen as the most likely options for heavy transport i.e. HGVs buses and trains?
- What is the Government’s strategy for supporting the growth of skilled workers for battery and fuel cell research and development?
- To what extent is battery and fuel cell research and development coordinated in the UK? If so who is responsible for this coordination?
Parliament TV video of the meeting
This is part three of a three part enquiry.
Part one can be found here and part two can be found here.
Role of batteries and fuel cells in achieving Net Zero: Session 2
Mar 2021
Publication
The House of Lords Science and Technology Committee will hear from leading researchers about anticipated developments in batteries and fuel cells over the next ten years that could contribute to meeting the net-zero target.
The Committee continues its inquiry into the Role of batteries and fuel cells in achieving Net Zero. It will ask a panel of experts about batteries hearing about the current state-of-the-art in technologies that are currently in deployment primarily lithium-ion batteries. It will also explore the potential of next generation technologies currently in development and the challenges in scaling them up to manufacture.
The Committee will then question a second panel about fuel cells hearing about the different types available and their applications. It will explore challenges that need to be overcome in the development of the technology and will consider the UK’s international standing in the sector.
Meeting details
At 10.00am: Oral evidence
Professor Serena Corr Chair in Functional Nanomaterials and Director of Research Department of Chemical and Biological Engineering at University of Sheffield
Professor Paul Shearing Professor in Chemical Engineering at University College London
Dr Jerry Barker Founder and Chief Technology Officer at Faradion Limited
Dr Melanie Loveridge Associate Professor Warwick Manufacturing Group at University of Warwick
At 11.00am: Oral evidence
Professor Andrea Russell Professor of Physical Electrochemistry at University of Southampton
Professor Anthony Kucernak Professor of Physical Chemistry Faculty of Natural Sciences at Imperial College London
Professor John Irvine Professor School of Chemistry at University of St Andrews
Possible questions
Parliament TV video of the meeting
This is part two of a three part enquiry.
Part one can be found here and part three can be found here.
The Committee continues its inquiry into the Role of batteries and fuel cells in achieving Net Zero. It will ask a panel of experts about batteries hearing about the current state-of-the-art in technologies that are currently in deployment primarily lithium-ion batteries. It will also explore the potential of next generation technologies currently in development and the challenges in scaling them up to manufacture.
The Committee will then question a second panel about fuel cells hearing about the different types available and their applications. It will explore challenges that need to be overcome in the development of the technology and will consider the UK’s international standing in the sector.
Meeting details
At 10.00am: Oral evidence
Professor Serena Corr Chair in Functional Nanomaterials and Director of Research Department of Chemical and Biological Engineering at University of Sheffield
Professor Paul Shearing Professor in Chemical Engineering at University College London
Dr Jerry Barker Founder and Chief Technology Officer at Faradion Limited
Dr Melanie Loveridge Associate Professor Warwick Manufacturing Group at University of Warwick
At 11.00am: Oral evidence
Professor Andrea Russell Professor of Physical Electrochemistry at University of Southampton
Professor Anthony Kucernak Professor of Physical Chemistry Faculty of Natural Sciences at Imperial College London
Professor John Irvine Professor School of Chemistry at University of St Andrews
Possible questions
- What contribution are battery and fuel cell technologies currently making towards decarbonization in the UK?
- What advances do we expect to see in battery and fuel cell technologies and over what timeframes?
- How quickly can UK battery and fuel cell manufacture be scaled up to meet electrification demands?
- What are the challenges facing technological innovation and deployment in heavy transport?
- Are there any sectors where battery and fuel cell technologies are not currently used but could contribute to decarbonisation?
- What are the life cycle environmental impacts of batteries and fuel cells?
Parliament TV video of the meeting
This is part two of a three part enquiry.
Part one can be found here and part three can be found here.
Investment in Wind-based Hydrogen Production under Economic and Physical Uncertainties
Feb 2023
Publication
This paper evaluates the economic viability of a combined wind-based green-hydrogen facility from an investor’s viewpoint. The paper introduces a theoretical model and demonstrates it by example. The valuation model assumes that both the spot price of electricity and wind capacity factor evolve stochastically over time; these state variables can in principle be correlated. Besides it explicitly considers the possibility to use curtailed wind energy for producing hydrogen. The model derives the investment project’s net present value (NPV) as a function of hydrogen price and conversion capacity. Thus the NPV is computed for a given price and a range of capacities. The one that leads to the maximum NPV is the ‘optimal’ capacity (for the given price). Next the authors estimate the parameters underlying the two stochastic processes from Spanish hourly data. These numerical estimates allow simulate hourly paths of both variables over the facility’s expected useful lifetime (30 years). According to the results green hydrogen production starts becoming economically viable above 3 €/kg. Besides it takes a hydrogen price of 4.7 €/kg to reach an optimal conversion capacity half the capacity of the wind park. The authors develop sensitivity analyses with respect to wind capacity factor curtailment rate and discount rate.
Global Hydrogen and Synfuel Exchanges in an Emission-Free Energy System
Apr 2023
Publication
This study investigates the global allocation of hydrogen and synfuels in order to achieve the well below 2 ◦C preferably 1.5 ◦C target set in the Paris Agreement. For this purpose TIMES Integrated Assessment Model (TIAM) a global energy system model is used. In order to investigate global hydrogen and synfuel flows cost potential curves are aggregated and implemented into TIAM as well as demand technologies for the end use sectors. Furthermore hydrogen and synfuel trades are established using liquid hydrogen transport (LH2 ) and both new and existing technologies for synfuels are implemented. To represent a wide range of possible future events four different scenarios are considered with different characteristics of climate and security of supply policies. The results show that in the case of climate policy the renewable energies need tremendous expansion. The final energy consumption is shifting towards the direct use of electricity while certain demand technologies (e.g. aviation and international shipping) require hydrogen and synfuels for full decarbonization. Due to different security of supply policies the global allocation of hydrogen and synfuel production and exports is shifting while the 1.5 ◦C target remains feasible in the different climate policy scenarios. Considering climate policy Middle East Asia is the preferred region for hydrogen export. For synfuel production several regions are competitive including Middle East Asia Mexico Africa South America and Australia. In the case of security of supply policies Middle East Asia is sharing the export volume with Africa while only minor changes can be seen in the synfuel supply.
Chilean National Green Hydrogen Strategy
Nov 2020
Publication
Like hydrogen Chile is small by nature and accordingly contributes just 0.3% to global greenhouse gas emissions. However we too have an outsized role to play in turning the tide on rising emissions and pursuing a low carbon path to growth and development.<br/>What we lack in size we more than make up for in potential. In the desert in the North with the highest solar irradiance on the planet and in the Patagonia in the South with strong and consistent winds we have the renewable energy potential to install 70 times the electricity generation capacity we have today. This abundant renewable energy will enable us to become the cheapest producer of green hydrogen on Earth. Our National Green Hydrogen Strategy is aimed at turning this promise into reality.<br/>The Strategy is the result of collaborative work between industry academia civil society and the public sector and is an essential piece of our carbon neutrality plan and commitment to sustainable development. It will allow us to produce and export products that are created using zero carbon fuels distinguishing our exports as clean products for end users. It will also enable us to export our renewable energy to the world in the form of green liquid hydrogen green ammonia and clean synthetic fuels.<br/>Traditionally Chile lacked fossil fuels and was forced to import the energy it required. Now the coming of age of the tiniest atom will allow us to drive deep decarbonization in our own country and throughout the world. This Strategy is the first step for Chile in embracing this promise and fulfilling its new potential.
International Competitiveness of Low-carbon Hydrogen Supply to the Northwest European Market
Oct 2022
Publication
This paper analyses which sources of low-carbon hydrogen for the Northwest European market are most competitive taking into account costs of local production conversion and transport. Production costs of electrolysis are strongly affected by local renewable electricity costs and capacity factors. Transport costs are the lowest by pipelines for distances under 10000 km with costs linearly increasing with distance. For larger distances transport as ammonia is more efficient with less relation to distance despite higher conversion costs. The most competitive low-carbon hydrogen supply to the Northwest European market appears to be local Steam Methane Reforming with Carbon Capture and Storage when international gas prices return back to historical levels. When gas prices however remain high then import from Morocco with electrolysis directly connected to offshore wind generation is found to be the most competitive source of low-carbon hydrogen. These conclusions are robust for various assumptions on costs and capacity factors.
Comparative Levelized Cost Analysis of Transmitting Renewable Solar Energy
Feb 2023
Publication
A bottom-up cost analysis for delivering utility-scale PV-generated electricity as hydrogen through pipelines and as electricity through power is undertaken. Techno-economic generation and demand data for California are used to calculate the levelized cost of transmitting (LCOT) energy and the levelized cost of electricity (LCOE) prior to distribution. High-voltage levels of 230 kV and 500 kV and 24-inch and 36-inch pipelines for 100 to 700 miles of transmission are considered. At 100 miles of transmission the cost of transmission between each medium is comparable. At longer distances the pipeline scenarios become increasingly cheaper at low utilization levels. The all-electric pathways utilizing battery energy storage systems can meet 95% of the load for as low as 356 USD/MWh whereas when meeting 100% of load with the hydrogen gas turbine and fuel cell pathways the costs are 278 and 322 USD/MWh respectively.
Boosting Hydrogen through a European Hydrogen Bank
Mar 2023
Publication
Hydrogen is indispensable to decarbonise European industry and reach the EU’s 2030 climate targets and 2050 climate neutrality. It is one of the key technologies of Europe’s Net Zero Industry Act. By scaling up its production we will reduce the use of fossil fuels in European industries and serve the needs of hard-to-electrify sectors.
Current Development Status, Policy Support and Promotion Path of China’s Green Hydrogen Industries under the Target of Carbon Emission Peaking and Carbon Neutrality
Jun 2023
Publication
The green hydrogen industry highly efficient and safe is endowed with flexible production and low carbon emissions. It is conducive to building a low-carbon efficient and clean energy structure optimizing the energy industry system and promoting the strategic transformation of energy development and enhancing energy security. In order to achieve carbon emission peaking by 2030 and neutrality by 2060 (dual carbon goals) China is vigorously promoting the green hydrogen industry. Based on an analysis of the green hydrogen industry policies of the U.S. the EU and Japan this paper explores supporting policies issued by Chinese central and local authorities and examines the inherent advantages of China’s green hydrogen industry. After investigating and analyzing the basis for the development of the green hydrogen industry in China we conclude that China has enormous potential including abundant renewable energy resources as well as commercialization experience with renewable energy robust infrastructure and technological innovation capacity demand for large-scale applications of green hydrogen in traditional industries etc. Despite this China’s green hydrogen industry is still in its early stage and has encountered bottlenecks in its development including a lack of clarity on the strategic role and position of the green hydrogen industry low competitiveness of green hydrogen production heavy reliance on imports of PEMs perfluorosulfonic acid resins (PFSR) and other core components the development dilemma of the industry chain lack of installed capacity for green hydrogen production and complicated administrative permission etc. This article therefore proposes that an appropriate development road-map and integrated administration supervision systems including safety supervision will systematically promote the green hydrogen industry. Enhancing the core technology and equipment of green hydrogen and improving the green hydrogen industry chain will be an adequate way to reduce dependence on foreign technologies lowering the price of green hydrogen products through the scale effect and thus expanding the scope of application of green hydrogen. Financial support mechanisms such as providing tax breaks and project subsidies will encourage enterprises to carry out innovative technological research on and invest in the green hydrogen industry.
The Socio-technical Dynamics of Net-zero Industrial Megaprojects: Outside-in and Inside-out Analyses of the Humber Industrial Cluster
Feb 2023
Publication
Although energy-intensive industries are often seen as ‘hard-to-decarbonise’ net-zero megaprojects for industrial clusters promise to improve the technical and economic feasibility of hydrogen fuel switching and carbon capture and storage (CCS). Mobilising insights from the megaproject literature this paper analyses the dynamics of an ambitious first-of-kind net-zero megaproject in the Humber industrial cluster in the United Kingdom which includes CCS and hydrogen infrastructure systems industrial fuel switching CO2 capture green and blue hydrogen production and hydrogen storage. To analyse the dynamics of this emerging megaproject the article uses a socio-technical system lens to focus on developments in technology actors and institutions. Synthesising multiple megaproject literature insights the paper develops a comprehensive framework that addresses both aggregate (‘outside-in’) developments and the endogenous (‘inside-out’) experiences and activities regarding three specific challenges: technical system integration actor coordination and institutional alignment. Drawing on an original dataset involving expert interviews (N = 46) site visits (N = 7) and document analysis the ‘outside-in’ analysis finds that the Humber megaproject has progressed rapidly from outline visions to specific technical designs enacted by new coalitions and driven by strengthening policy targets and financial support schemes. The complementary ‘inside-out’ analysis however also finds 12 alignment challenges that can delay or derail materialisation of the plans. While policies are essential aggregate drivers institutional misalignments presently also prevent project-actors from finalising design and investment decisions. Our analysis also finds important tensions between the project's high-pace delivery focus (to meet government targets) and allowing sufficient time for pilot projects learning-by-doing and design iterations.
Industrial Status, Technological Progress, Challenges, and Prospects of Hydrogen Energy
Apr 2022
Publication
Under the requirements of China's strategic goal of "carbon peaking and carbon neutrality" as a renewable clean and efficient secondary energy source hydrogen benefits from abundant resources a wide variety of sources a high combustion calorific value clean and non-polluting various forms of utilization energy storage mediums and good security etc. It will become a realistic way to help energy transportation petrochemical and other fields to achieve deep decarbonization and will turn into an important replacement energy source for China to build a modern clean energy system. It is clear that accelerating the development of hydrogen energy has become a global consensus. In order to provide a theoretical support for the accelerated transformation of hydrogen-related industries and energy companies and provide a basis and reference for the construction of "Hydrogen Energy China" this paper describes main key technological progresses in the hydrogen industry chain such as hydrogen production storage transportation and application. The status and development trends of hydrogen industrialization are analyzed and then the challenges faced by the development of the hydrogen industry are discussed. At last the development and future of the hydrogen industry are prospected. The following conclusions are achieved. (1) Hydrogen technologies of our country will become mature and enter the road of industrialization. The whole industry chain system of the hydrogen industry is gradually being formed and will realize the leap-forward development from gray hydrogen blue hydrogen to green hydrogen. (2) The overall development of the entire hydrogen industry chain such as hydrogen production storage and transportation fuel cells hydrogen refueling stations and other scenarios should be accelerated. Besides in-depth integration and coordination with the oil and gas industry needs more attention which will rapidly promote the high-quality development of the hydrogen industry system. (3) The promotion and implementation of major projects such as "north-east hydrogen transmission" "west-east hydrogen transmission" "sea hydrogen landing" and utilization of infrastructures such as gas filling stations can give full play to the innate advantages of oil and gas companies in industrial chain nodes such as hydrogen production and refueling etc. which can help to achieve the application of "oil gas hydrogen and electricity" four-station joint construction form a nationwide hydrogen resource guarantee system and accelerate the planning and promotion of the "Hydrogen Energy China" strategy.
OIES Podcast - Hydrogen Financing
Jan 2023
Publication
In this Podcast David Ledesma discusses with Stephen Craen Visiting Research Fellow OIES the challenges facing the financing of future hydrogen projects as it is expected that a substantial amount of capital will need to be invested in green hydrogen production to meet the 2050 net zero targets. Based around an ‘Archetype’ world scale hydrogen export project where 1 GW solar power is used to make green hydrogen which is converted to 250000 tpa green ammonia for export with a capital cost in the region of USD 2 billion the podcast discusses how ‘efficient financing’ can make an important contribution to minimising cost and making projects cost competitive. Stephen Craen argues that lenders and investors will look to precedents when assessing the nascent green hydrogen sector and the foremost will be LNG and offshore wind which both represent large-scale technically complex projects. Commercial structures of the green hydrogen business are expected to borrow concepts from offshore wind projects particularly in relation to price but also from LNG where this is relevant such as take-or-pay contracts. In this podcast we discuss the key issues that will need to be addressed to make a green hydrogen export project bankable concluding that commercial debt from either commercial banks or project bonds can help create competition.
The podcast can be found on their website.
The podcast can be found on their website.
Ireland National Hydrogen Strategy
Jul 2023
Publication
The National Hydrogen Strategy sets out the strategic vision on the role that hydrogen will play in Ireland’s energy system looking to its long-term role as a key component of a zero-carbon economy and the short-term actions that need to be delivered over the coming years to enable the development of the hydrogen sector in Ireland.<br/>The Strategy is being developed for three primary reasons:<br/>1. Decarbonising our economy providing a solution to hard to decarbonise sectors where electrification is not feasible or cost-effective<br/>2. Enhancing our energy security through the development of an indigenous zero carbon renewable fuel which can act as an alternative to the 77% of our energy system which today relies on fossil fuel imports<br/>3. Developing industrial opportunities through the potential development of export markets for renewable hydrogen and other areas such as Sustainable Aviation Fuels<br/>The Strategy considers the needs of the entire hydrogen value chain including production end-uses transportation and storage safety regulation markets innovation and skills.<br/>It also sets out that Ireland will focus its efforts on the scale up and production of renewable ""green"" hydrogen as it supports both our decarbonisation needs and energy security needs given our vast indigenous renewable resources. Renewable hydrogen is a renewable and zero-carbon fuel that can play a key role in the ""difficult-to-decarbonise"" sectors of our economy where other solutions such as direct electrification are not feasible or cost effective.<br/>In the coming years renewable hydrogen is envisioned to play an important role as a zero-emission source of dispatchable flexible electricity as a long duration store of renewable energy in decarbonising industrial processes and as a transport fuel in sectors such as heavy goods transport maritime and aviation. The Strategy will provide clarity for stakeholders on how we expect the hydrogen economy to develop and scale up over the coming decades across the entire value chain.
Assessment of a Fully Renewable System for the Total Decarbonization of the Economy with Full Demand Coverage on Islands Connected to a Central Grid: The Balearic Case in 2040
Jul 2023
Publication
The transition to clean electricity generation is a crucial focus for achieving the current objectives of economy decarbonization. The Balearic Archipelago faces significant environmental economic and social challenges in shifting from a predominantly fossil fuel-based economy to one based on renewable sources. This study proposes implementing a renewable energy mix and decarbonizing the economy of the Balearic Islands by 2040. The proposed system involves an entirely renewable generation system with interconnections between the four Balearic islands and the Spanish mainland grid via a 650 MW submarine cable. This flexible electrical exchange can cover approximately 35% of the peak demand of 1900 MW. The scenario comprises a 6 GWp solar photovoltaic system a wind system of under 1.2 GWp and a 600 MW biomass system as generation sub-systems. A vanadium redox flow battery sub-system with a storage capacity of approximately 21 GWh and 2.5 GWp power is available to ensure system manageability. This system’s levelized electricity cost (LCOE) is around 13.75 cEUR/kWh. The design also incorporates hydrogen as an alternative for difficult-to-electrify uses achieving effective decarbonization of all final energy uses. A production of slightly over 5 × 104 tH2 per year is required with 1.7 GW of electrolyzer power using excess electricity and water resources. The system enables a significant level of economy decarbonization although it requires substantial investments in both generation sources and storage.
Insights into Decision-making for Offshore Green Hydrogen Infrastructure Developments
Apr 2023
Publication
Green hydrogen is a key element that has the potential to play a critical role in the global pursuit of a resilient and sustainable future. However like other energy production methods hydrogen comes with challenges including high costs and safety concerns across its entire value chain. To overcome these low-cost productions are required along with a promised market. Offshore renewables have an enormous potential to facilitate green hydrogen production on a large scale. Their plummeting cost technological advances and rising cost of carbon pave a pathway where green hydrogen can be cost-competitive against fossil-fuel-based hydrogen. Offshore industries including oil and gas aquaculture and shipping are looking for cleaner energy solutions to decarbonize their systems/operations and can serve as a substantial market. Offshore industrial nexus moreover can assist the production storage and transmission of green hydrogen through infrastructure sharing and logistical support. The development of offshore green hydrogen production facilities is in its infancy and requires a deeper insight into the key elements that govern decision-making during their life-cycle. This includes the parameters that reflect the performance of hydrogen technology with technical socio-political financial and environmental considerations. Therefore this study provides critical insight into the influential factors discovered through a comprehensive analysis that governs the development of an offshore green hydrogen system. Insights are also fed into the requirements for modelling and analysis of these factors considering the synergy of hydrogen production with the offshore industries coastal hydrogen hub and onshore energy demand. The results of this critical review will assist the researchers and developers in establishing and executing an effective framework for offshore site selection in largely uncertain and hazardous ocean environments. Overall the study will facilitate the stakeholders and researchers in developing decision-making tools to ensure sustainable and safe offshore green hydrogen facilities.
Technoeconomic Analysis for Green Hydrogen in Terms of Production, Compression, Transportation and Storage Considering the Australian Perspective
Jul 2023
Publication
This current article discusses the technoeconomics (TE) of hydrogen generation transportation compression and storage in the Australian context. The TE analysis is important and a prerequisite for investment decisions. This study selected the Australian context due to its huge potential in green hydrogen but the modelling is applicable to other parts of the world adjusting the price of electricity and other utilities. The hydrogen generation using the most mature alkaline electrolysis (AEL) technique was selected in the current study. The results show that increasing temperature from 50 to 90 ◦C and decreasing pressure from 13 to 5 bar help improve electrolyser performance though pressure has a minor effect. The selected range for performance parameters was based on the fundamental behaviour of water electrolysers supported with literature. The levelised cost of hydrogen (LCH2 ) was calculated for generation compression transportation and storage. However the majority of the LCH2 was for generation which was calculated based on CAPEX OPEX capital recovery factor hydrogen production rate and capacity factor. The LCH2 in 2023 was calculated to be 9.6 USD/kgH2 using a base-case solar electricity price of 65–38 USD/MWh. This LCH2 is expected to decrease to 6.5 and 3.4 USD/kgH2 by 2030 and 2040 respectively. The current LCH2 using wind energy was calculated to be 1.9 USD/kgH2 lower than that of solar-based electricity. The LCH2 using standalone wind electricity was calculated to be USD 5.3 and USD 2.9 in 2030 and 2040 respectively. The LCH2 predicted using a solar and wind mix (SWM) was estimated to be USD 3.2 compared to USD 9.6 and USD 7.7 using standalone solar and wind. The LCH2 under the best case was predicted to be USD 3.9 and USD 2.1 compared to USD 6.5 and USD 3.4 under base-case solar PV in 2030 and 2040 respectively. The best case SWM offers 33% lower LCH2 in 2023 which leads to 37% 39% and 42% lower LCH2 in 2030 2040 and 2050 respectively. The current results are overpredicted especially compared with CSIRO Australia due to the higher assumption of the renewable electricity price. Currently over two-thirds of the cost for the LCH2 is due to the price of electricity (i.e. wind and solar). Modelling suggests an overall reduction in the capital cost of AEL plants by about 50% in the 2030s. Due to the lower capacity factor (effective energy generation over maximum output) of renewable energy especially for solar plants a combined wind- and solar-based electrolysis plant was recommended which can increase the capacity factor by at least 33%. Results also suggest that besides generation at least an additional 1.5 USD/kgH2 for compression transportation and storage is required.
Vision for a European Metrology Network for Energy Gases
Mar 2022
Publication
As Europe moves towards decarbonising its energy infrastructure new measurement needs will arise that require collaborative efforts between European National Metrology Institutes and Designated Institutes to tackle. Such measurement needs include flow metering of hydrogen or hydrogen enriched natural gas in the gas grid for billing quality assurance of hydrogen at refuelling stations and equations of state for carbon dioxide in carbon capture and storage facilities. The European metrology network for energy gases for the first time provides a platform where metrology institutes can work together to develop a harmonised strategy prioritise new challenges and share expertise and capabilities to support the European energy gas industry to meet stringent EU targets for climate change and emissions reductions
China's Hydrogen Development: A Tale of Three Cities
Mar 2023
Publication
China is the world’s largest producer and consumer of hydrogen. The country has adopted a domestic strategy that targets significant growth in hydrogen consumption and production. Given the importance of hydrogen in the low-carbon energy transition it is critical to understand China’s hydrogen policies and their implementation as well as the extent to which these contribute to the country’s low-carbon goals.<br/>Existing research has focused on understanding policies and regulations in China and their implications for the country’s hydrogen prospects. This study aims to improve our understanding of central-government initiatives and look at how China’s hydrogen policies are implemented at the local level. The paper examines the three cities of Zhangjiakou (in China’s renewable-rich Hebei province) Datong (in the country’s coal-heartland of Shanxi province) and Chengdu which is rich in hydropower and natural gas. To be sure the three cities analysed in this paper do not cover all regional plans and initiatives but they offer a useful window into local hydrogen policy implementation. They also illustrate the major challenges facing green hydrogen as it moves beyond the narrow highly subsidized field of fuel cell vehicles (FCVs). Indeed costs as well as water land availability and technology continue to be constraints.<br/>The hydrogen policies and road maps reviewed in this paper offer numerous targets—often setting quantitative goals for FCVs hydrogen refuelling stations hydrogen supply chain revenue and new hydrogen technology companies—aligning with the view that hydrogen development is currently more of an industrial policy than a decarbonisation strategy. Indeed hydrogen’s potential to decarbonise sectors such as manufacturing and chemicals is of secondary importance if mentioned at all. But as the cities analysed here view hydrogen as part of their industrial programmes economic development and climate strategies support is likely to remain significant even as the specific incentive schemes will likely evolve.<br/>Given this local hydrogen development model rising demand for hydrogen in China could ultimately increase rather than decrease CO₂ emissions from fossil fuels in the short run. At the same time even though the central government’s hydrogen targets (as laid out in its 2022 policy documents) seem relatively conservative Chinese cities’ appetite for new sources of growth and the ability to fund various business models are worth watching.
Optimal Operation and Market Integration of a Hybrid Farm with Green Hydrogen and Energy Storage: A Stochastic Approach Considering Wind and Electricity Price Uncertainties
Mar 2024
Publication
In recent years growing interest has emerged in investigating the integration of energy storage and green hydrogen production systems with renewable energy generators. These integrated systems address uncertainties related to renewable resource availability and electricity prices mitigating profit loss caused by forecasting errors. This paper focuses on the operation of a hybrid farm (HF) combining an alkaline electrolyzer (AEL) and a battery energy storage system (BESS) with a wind turbine to form a comprehensive HF. The HF operates in both hydrogen and day-ahead electricity markets. A linear mathematical model is proposed to optimize energy management considering electrolyzer operation at partial loads and accounting for degradation costs while maintaining a straightforward formulation for power system optimization. Day-ahead market scheduling and real-time operation are formulated as a progressive mixed-integer linear program (MILP) extended to address uncertainties in wind speed and electricity prices through a two-stage stochastic optimization model. A bootstrap sampling strategy is introduced to enhance the stochastic model’s performance using the same sampled data. Results demonstrate how the strategies outperform traditional Monte Carlo and deterministic approaches in handling uncertainties increasing profits up to 4% per year. Additionally a simulation framework has been developed for validating this approach and conducting different case studies.
A Techno-economic Analysis of Cross-regional Renewable Hydrogen Supply Routes in China
Jun 2023
Publication
The cross-regional renewable hydrogen supply is significant for China to resolve the uneven distribution of renewable energy and decarbonize the transportation sector. Yet the economic comparison of various hydrogen supply routes remains obscure. This paper conducts a techno-economic analysis on six hydrogen supply routes for hydrogen refueling stations including gas-hydrogen tube-trailer gas-hydrogen pipeline liquid-hydrogen truck natural gas pipeline MeOH truck and NH3 truck. Furthermore the impacts of three critical factors are examined including electrolyzer selection transportation distance and electricity price. The results indicate that with a transport distance of 2000 km the natural gas pipeline route offers the lowest cost while the gas-hydrogen tube-trailer route is not economically feasible. The gas-hydrogen pipeline route shows outstanding cost competitiveness between 200 and 2000 km while it is greatly influenced by the utilization rate. The liquid-hydrogen truck route demonstrates great potential with the electricity price decreasing. This study may provide guidance for the development of the cross-regional renewable hydrogen supply for hydrogen refueling stations in China.
Green Hydrogen Futures: Tensions of Energy and Justice Within Sociotechnical Imaginaries
May 2024
Publication
As a reformist approach to low-carbon transitions green hydrogen is often promoted as an easy replacement for fossil fuels. This substitution narrative makes this technology compelling as it offers to reduce emissions while continuing the contemporary energy system. Using ‘sociotechnical imaginaries’ this paper explores the underlying political processes on what appears to be a mostly technical vision of green hydrogen. Analysis through expert interviews in Aotearoa New Zealand revealed two contrasting energy visions one emphasizing the technical role of green hydrogen in New Zealand's transition—the green hydrogen imaginary and the other which advocated for a future motivated by social change—the alternative energy imaginary. Comparing the tensions through a lens of hydrogen justice exposed the assumptions and exclusions present in the emerging green hydrogen imaginary. This paper argues that the technocratic business as usual approach of green hydrogen depoliticizes the social nature of energy and thus risks perpetuating inequalities and harms present in the current energy system. However these critiques also suggest that there is hope for green hydrogen to be reimagined in more ethical and just ways.
The Potential Role of a Hydrogen Network in Europe
Jul 2023
Publication
Europe’s electricity transmission expansion suffers many delays despite its significance for integrating renewable electricity. A hydrogen network reusing the existing gas network could not only help to supply the demand for low-emission fuels but could also balance variations in wind and solar energies across the continent and thus avoid power grid expansion. Our investigation varies the allowed expansion of electricity and hydrogen grids in net-zero CO2 scenarios for a sector-coupled European energy system capturing transmission bottlenecks renewable supply and demand variability and pipeline retrofitting and geological storage potentials. We find that a hydrogen network connecting regions with low-cost and abundant renewable potentials to demand centers electrofuel production and cavern storage sites reduces system costs by up to 26 bnV/a (3.4%). Although expanding both networks together can achieve the largest cost reductions by 9.9% the expansion of neither is essential for a net-zero system as long as higher costs can be accepted and flexibility options allow managing transmission bottlenecks.
Renewable Hydrogen: Modular Concepts from Production over Storage to the Consumer
Jan 2021
Publication
A simulation tool called HYDRA to optimize individual hydrogen infrastructure layouts is presented. The different electrolyzer technologies namely proton exchange membrane electrolysis anion exchange membrane electrolysis alkaline electrolysis and solid oxide electrolysis as well as hydrogen storage possibilities are described in more detail and evaluated. To illustrate the application opportunities of HYDRA three project examples are discussed. The examples include central and decentral applications while taking the usage of hydrogen into account.
A Comprehensive Resilience Assessment Framework for Hydrogen Energy Infrastructure Development
Jun 2023
Publication
In recent years sustainable development has become a challenge for many societies due to natural or other disruptive events which have disrupted economic environmental and energy infrastructure growth. Developing hydrogen energy infrastructure is crucial for sustainable development because of its numerous benefits over conventional energy sources. However the complexity of hydrogen energy infrastructure including production utilization and storage stages requires accounting for potential vulnerabilities. Therefore resilience needs to be considered along with sustainable development. This paper proposes a decision-making framework to evaluate the resilience of hydrogen energy infrastructure by integrating resilience indicators and sustainability contributing factors. A holistic taxonomy of resilience performance is first developed followed by a qualitative resilience assessment framework using a novel Intuitionistic fuzzy Weighted Influence Nonlinear Gauge System (IFWINGS). The results highlighted that Regulation and legislation Government preparation and Crisis response budget are the most critical resilience indicators in the understudy hydrogen energy infrastructure. A comparative case study demonstrates the practicality capability and effectiveness of the proposed approach. The results suggest that the proposed model can be used for resilience assessment in other areas.
The Prospects of Hydrogen in Achieving Net Zero Emissions by 2050: A Critical Review
May 2023
Publication
Hydrogen (H2) usage was 90 metric tonnes (Mt) in 2020 almost entirely for industrial and refining uses and generated almost completely from fossil fuels leading to nearly 900 Mt of carbon dioxide emissions. However there has been significant growth of H2 in recent years. Electrolysers' total capacity which are required to generate H2 from electricity has multiplied in the past years reaching more than 300 MW through 2021. Approximately 350 projects reportedly under construction could push total capacity to 54 GW by the year 2030. Some other 40 projects totalling output of more than 35 GW are in the planning phase. If each of these projects is completed global H2 production from electrolysers could exceed 8 Mt by 2030. It's an opportunity to take advantage of H2S prospects to be a crucial component of a clean safe and cost-effective sustainable future. This paper assesses the situation regarding H2 at the moment and provides recommendations for its potential future advancement. The study reveals that clean H2 is experiencing significant unparalleled commercial and political force with the amount of laws and projects all over the globe growing quickly. The paper concludes that in order to make H2 more widely employed it is crucial to significantly increase innovations and reduce costs. The practical and implementable suggestions provided to industries and governments will allow them to fully capitalise on this growing momentum.
Implications of Hydrogen Import Prices for the German Energy System in a Model-comparison Experiment
Mar 2024
Publication
With its ability to store and transport energy without releasing greenhouse gases hydrogen is considered an important driver for the decarbonisation of energy systems. As future hydrogen import prices from global markets are subject to large uncertainties it is unclear what impact different hydrogen and derivative import prices will have on the future German energy system. To answer that research question this paper explores the impact of three different import price scenarios for hydrogen and its derivatives on the German energy system in a climate-neutral setting for Europe in 2045 using three different energy system models. The analysis shows that the quantities of electricity generated as well as the installed capacities for electricity generation and electrolysis increase as the hydrogen import price rises. However the resulting differences between the import price scenarios vary across the models. The results further indicate that domestic German (and European) hydrogen production is often cost-efficient.
Economic Assessment of Hydrogen Production in a Renewable Energy Community in Italy
Feb 2023
Publication
Renewable Energy Community (REC) is a new paradigm in European Union to produce transform share and sell renewables at a local consumer level also via e-fuel (i.e. hydrogen). This work investigates the economic feasibility of a hydrogen Power-to-Gas (PtG) system realized inside a REC using only excess renewable electricity not consumed by REC itself. A single centralized photovoltaic (PV) plant is directly connected to an electrolyser; a hydrogen compressor and two hydrogen storages at low and high pressure complete the PtG system. A scenario of a REC composed by 450 residential electric users (around 1000 people) has been analysed coupled with described PtG considering eight different sizes of PV plant. In the study Italian subsidies to REC shared energy are evaluated as incentives to hydrogen production. An optimal size of PtG components for each PV size is investigated at the limit of economical sustainability evaluating net present value (NPV) positive and near zero. Results show that for the considered REC it is possible to produce and sell up to around 3 tons per year of green hydrogen at most to the same lowest selling price declared currently in the Italian market (5 €/kg).
Policy Toolbox for Low Carbon and Renewable Hydrogen
Nov 2021
Publication
The report “Policy Toolbox for Low Carbon and Renewable Hydrogen” is based on an assessment of the performance of hydrogen policies in different stages of market maturity and segments of the value chain. 48 policies were shortlisted based on their economic efficiency and effectiveness and mapped to barriers across the value chain and over time. These policies were subsequently clustered into policy packages for three country archetypes: a self-sufficient hydrogen producer an importer and an exporter of hydrogen.
The paper can be found on their website.
The paper can be found on their website.
OIES Podcast - China and Hydrogen: A Tale of Three Cities
Apr 2023
Publication
China is by far the world’s largest producer and consumer of hydrogen mostly from coal and other fossil fuels and the country has an ambitious hydrogen strategy. In this podcast we dive into the provincial strategies on hydrogen in China and specifically discuss a recent paper published by the Institute entitled China’s hydrogen development: A tale of three cities. The paper looks at the experiences and plans of the pilot hydrogen clusters located in Datong Shanxi province Chengdu in Sichuan province and Zhangjiakou in the northern part of Hebei province which surrounds Beijing. In this podcast we are speaking with the paper’s author Arabella Miller-Wang recently an Aramco fellow at the Institute and also a Research Assistant at the Smith School of Enterprise and the Environment of The University of Oxford as well as with Michal Meidan director of the China Energy Programme at OIES and with Martin Lambert who heads hydrogen research at the OIES.
The podcast can be found on their website.
The podcast can be found on their website.
OIES Podcast - The EU Hydrogen and Gas Decarbonisation Package
Mar 2023
Publication
David Ledesma discusses with Alex Barnes the European Commission’s decision to make hydrogen a key part of its decarbonisation strategy. The 2022 REPowerEU Strategy set a target of 20MT consumption of renewable hydrogen by 2030. The Commission is keen to promote a single European market in hydrogen similar to the current one for natural gas. To this end it has published proposals on the regulation of future European hydrogen infrastructure (pipelines storage facilities and import terminals). The EU Council (representing Member States) and the EU Parliament are finalising their amendments to the Commission proposals prior to ‘trilogue’ negotiations and final agreement later this year. The OIES’s paper ‘The EU Hydrogen and Gas Decarbonisation Package: help or hindrance for the development of a European hydrogen market?’ published in March 2023 examines the EU Commission proposals and their suitability for a developing hydrogen market.
The podcast can be found on their website.
The podcast can be found on their website.
The EU Hydrogen and Gas Decarbonisation Package: Help or Hindrance for the Development of a European Hydrogen Market?
Mar 2023
Publication
The European Commission has identified hydrogen as a key part of its decarbonisation strategy. The 2022 REPowerEU Strategy set a target of 20MT consumption of renewable hydrogen by 2030. The Commission is keen to promote a single European market in hydrogen similar to the current one for natural gas. To this end it has published proposals on the regulation of future European hydrogen infrastructure (pipelines storage facilities and import terminals). The European Council (representing Member States) and the European Parliament are finalising their amendments to the Commission proposals prior to ’trilogue’ negotiations and final agreement later this year. The paper ‘The EU Hydrogen and Gas Decarbonisation Package: help or hindrance for the development of a European hydrogen market?’ examines the European Commission proposals and their suitability for a developing hydrogen market.
Research & Innovation to Support Net-zero Industrial Technologies
Mar 2023
Publication
The Green Deal Industrial Plan aims to boost the competitiveness of Europe’s net-zero industry and to accelerate the transition to climate neutrality. The Plan is based on four pillars: (1) a predictable and simplified regulatory environment; (2) faster access to funding; (3) developing skills for net-zero industry; and (4) open trade for resilient supply chains.
Green Hydrogen Potential in Tropical Countries: The Colombian Case
Mar 2023
Publication
Tropical countries can approach their natural resources to produce low-carbon H2 from solar wind hydro and biomass resources to satisfy their domestic demand and to export it. To do so Colombia published the National Hydrogen Roadmap in which green H2 was prioritized. This study estimates Colombia's potential to produce green H2 and a timeline of scenarios displaying the required installed capacity capital investment and environmental analysis related to water utilization and CO2 capture. Accordingly Colombia can produce H2 at a rate of 9 Mt/a by 2050 by installing 121 GW renewables while processing 303 Mt/a of residual biomass. In this scenario Colombia's share of the H2 international market can reach 1.2% with a cumulative investment of over 244 billion USD by 2050. This study provides insights into potential global resources for low-carbon H2 generation.
Evaluating Partners for Renewable Energy Trading: A Multidimensional Framework and Tool
Apr 2024
Publication
The worsening climate crisis has increased the urgency of transitioning energy systems from fossil fuels to renewable sources. However many industrialized countries are struggling to meet their growing demand for renewable energy (RE) through domestic production alone and therefore seek to import additional RE using carriers such as hydrogen ammonia or metals. The pressing question for RE importers is therefore how to select trading partners i.e. RE exporting countries. Recent research has identified a plethora of different selection criteria reflecting the complexity of energy systems and international cooperation. However there is little guidance on how to reduce this complexity to more manageable levels as well as a lack of tools for effective partner evaluation. This article aims to fill these gaps. It proposes a new multidimensional framework for evaluating and comparing potential RE trading partners based on four dimensions: economy and technology environment and development regulation and governance and innovation and cooperation. Focusing on Germany as an RE importer an exploratory factor analysis is used to identify a consolidated set of composite selection criteria across these dimensions. The results suggest that Germany’s neighboring developed countries and current net energy exporters such as Canada and Australia are among the most attractive RE trading partners for Germany. A dashboard tool has been developed to provide the framework and composite criteria including adjustable weights to reflect the varying preferences of decision-makers and stakeholders. The framework and the dashboard can provide helpful guidance and transparency for partner selection processes facilitating the creation of RE trade networks that are essential for a successful energy transition.
The Hydrogen Storage Challenge: Does Storage Method and Size Affect the Cost and Operational Flexbility of Hydrogen Supply Chains?
Jun 2023
Publication
Hydrogen is seen as a key energy vector in future energy systems due to its ability to be stored in large volumes for long periods providing energy flexibility and security. Despite the importance of storage in hydrogen's potential role in a zero-carbon energy system many techno-economic analyses fail to adequately model different storage methods in hydrogen supply chains often ignoring storage requirements altogether. Therefore this paper uses a data-driven techno-economic analysis (TEA) tool to examine the effect of storage size and cost on three different 2030 hydrogen supply chain scenarios: wind-based solar-based and mixed-source grid electrolysis. For varying storage sizes and specific capital costs the overall levelised cost of hydrogen (LCOH) including production storage and delivery to a constant demand varies significantly. The LCOH ranges from V3.90 e12.40/kgH2 V5.50e12.75/kgH2 and V2.80e15.65/kgH2 for the wind-based solar-based and mixed-source grid scenarios respectively with lower values for scenarios with low-cost storage. This highlights the critical role of low-cost hydrogen storage in realising the energy flexibility and security electrolytic hydrogen can provide.
An Analysis of Renewable Energy Sources for Developing a Sustainable and Low-Carbon Hydrogen Economy in China
Apr 2023
Publication
A significant effort is required to reduce China’s dependency on fossil fuels while also supporting worldwide efforts to reduce climate change and develop hydrogen energy systems. A hydrogen economy must include renewable energy sources (RESs) which can offer a clean and sustainable energy source for producing hydrogen. This study uses an integrated fuzzy AHP–fuzzy TOPSIS method to evaluate and rank renewable energy sources for developing a hydrogen economy in China. This is a novel approach because it can capture the uncertainty and vagueness in the decision-making process and provide a comprehensive and robust evaluation of the alternatives. Moreover it considers multiple criteria and sub-criteria that reflect the environmental economic technical social and political aspects of RESs from the perspective of a hydrogen economy. This study identified five major criteria fifteen sub-criteria and six RES alternatives for hydrogen production. This integrated approach uses fuzzy AHP to evaluate and rank the criteria and sub-criteria and fuzzy TOPSIS to identify the most suitable and feasible RES. The results show that environmental economic and technical criteria are the most important criteria. Solar wind and hydropower are the top three RES alternatives that are most suitable and feasible. Furthermore biomass geo-thermal and tidal energy were ranked lower which might be due to the limitations and challenges in their adoption and performance in the context of the criteria and sub-criteria used for the analysis. This study’s findings add to the literature on guidelines to strategize for renewable energy adoption for the hydrogen economy in China.
The Economics and the Environmental Benignity of Different Colors of Hydrogen
Feb 2022
Publication
Due to the increasing greenhouse gas emissions as well as due to the rapidly increasing use of renewable energy sources in the electricity generation over the last years interest in hydrogen is rising again. Hydrogen can be used as a storage for renewable energy balancing the whole energy systems and contributing to the decarbonization of the energy system especially of the industry and the transport sector. The major objective of this paper is to discuss various ways of hydrogen production depending on the primary energy sources used. Moreover the economic and environmental performance of three major hydrogen colors as well as major barriers for faster deployment in fuel cell vehicles are analyzed. The major conclusion is that the full environmental benefits of hydrogen use are highly dependent on the hydrogen production methods and primary sources used. Only green hydrogen with electricity from wind PV and hydro has truly low emissions. All other sources like blue hydrogen with CCUS or electrolysis using the electricity grid have substantially higher emissions coming close to grey hydrogen production. Another conclusion is that it is important to introduce an international market for hydrogen to lower costs and to produce hydrogen where conditions are best. Finally the major open question remaining is whether e including all external costs of all energy carriers hydrogen of any color may become economically competitive in any sector of the energy system. The future success of hydrogen is very dependent on technological development and resulting cost reductions as well as on future priorities and the corresponding policy framework. The policy framework should support the shift from grey to green hydrogen.
Hydrogen Deep Ocean Link: A Global Sustainable Interconnected Energy Grid
Mar 2022
Publication
The world is undergoing a substantial energy transition with an increasing share of intermittent sources of energy on the grid which is increasing the challenges to operate the power grid reliably. An option that has been receiving much focus after the COVID pandemic is the development of a hydrogen economy. Challenges for a hydrogen economy are the high investment costs involved in compression storage and long-distance transportation. This paper analyses an innovative proposal for the creation of hydrogen ocean links. It intends to fill existing gaps in the creation of a hydrogen economy with the increase in flexibility and viability for hydrogen production consumption compression storage and transportation. The main concept behind the proposals presented in this paper consists of using the fact that the pressure in the deep sea is very high which allows a thin and cheap HDPE tank to store and transport large amounts of pressurized hydrogen in the deep sea. This is performed by replacing seawater with pressurized hydrogen and maintaining the pressure in the pipes similar to the outside pressure. Hydrogen Deep Ocean Link has the potential of increasing the interconnectivity of different regional energy grids into a global sustainable interconnected energy system.
A Review of the Status of Fossil and Renewable Energies in Southeast Asia and Its Implications on the Decarbonization of ASEAN
Mar 2022
Publication
The ten nations of Southeast Asia collectively known as ASEAN emitted 1.65 Gtpa CO2 in 2020 and are among the most vulnerable nations to climate change which is partially caused by anthropogenic CO2 emission. This paper analyzes the history of ASEAN energy consumption and CO2 emission from both fossil and renewable energies in the last two decades. The results show that ASEAN’s renewable energies resources range from low to moderate are unevenly distributed geographically and contributed to only 20% of total primary energy consumption (TPEC) in 2015. The dominant forms of renewable energies are hydropower solar photovoltaic and bioenergy. However both hydropower and bioenergy have substantial sustainability issues. Fossil energies depend heavily on coal and oil and contribute to 80% of TPEC. More importantly renewable energies’ contribution to TPEC has been decreasing in the last two decades despite the increasing installation capacity. This suggests that the current rate of the addition of renewable energy capacity is inadequate to allow ASEAN to reach net-zero by 2050. Therefore fossil energies will continue to be an important part of ASEAN’s energy mix. More tools such as carbon capture and storage (CCS) and hydrogen will be needed for decarbonization. CCS will be needed to decarbonize ASEAN’s fossil power and industrial plants while blue hydrogen will be needed to decarbonize hard-to-decarbonize industrial plants. Based on recent research into regional CO2 source-sink mapping this paper proposes six large-scale CCS projects in four countries which can mitigate up to 300 Mtpa CO2 . Furthermore this paper identifies common pathways for ASEAN decarbonization and their policy implications.
Next Steps for the Gas Grid- Future Gas Series Part 1
Sep 2014
Publication
Policy Connect Carbon Connect and sector and Parliamentary experts have collaborated to present options for the gas grid to play a useful role in the UK’s transition to a low carbon energy system through the widespread use of low carbon gas. The report calls on Government to support the transition to a more flexible gas grid that uses various forms of gas including low carbon gases such as hydrogen and biomethane.
The Role of Hydrogen in Powering Industry: APPG on Hydrogen report
Jul 2021
Publication
The APPG on Hydrogen has published its report urging the Government to deliver beyond its existing net zero commitments and set ambitious hydrogen targets in forthcoming strategies to reach net zero by 2050.
The All-Party Parliamentary Group (APPG) on Hydrogen’s report on the role of ‘Hydrogen in powering industry’ sets out 10 recommendations to support and accelerate the growth of the UK’s hydrogen sector and enable a sustainable energy transition.
The All-Party Parliamentary Group (APPG) on Hydrogen’s report on the role of ‘Hydrogen in powering industry’ sets out 10 recommendations to support and accelerate the growth of the UK’s hydrogen sector and enable a sustainable energy transition.
- The Government must continue to expand beyond its existing commitments of 5GW production in the forthcoming Hydrogen Strategy.
- Any forthcoming Government and devolved policies must be complementary of the wider UK low-carbon commitments.
- Industrial clusters should be prioritised for hydrogen use and will be the key catalyst for driving forward the UK’s decarbonisation of industry.
- The Government must commit to incentivising hydrogen production within the UK as opposed to importing this.
- The Government must align hydrogen production pathways with nuclear technology to enhance hydrogen production.
- The Government must develop a UK wide hydrogen network to support the transport sector including a larger-scale implementation of hydrogen refuelling stations.
- Regulators must act quickly to update energy regulations and guidance to support hydrogen’s role in powering industry.
- For hydrogen to expand in the UK a technology neutral approach is required for all types of energy systems.
- Significant and long-term financial support is required for the development deployment and operation of hydrogen technologies.
- Ofgem must ensure the hydrogen market is subject to effective competition to drive down prices for consumers.
Economic and Technical Analysis of Power to Gas Factory Taking Karamay as an Example
May 2022
Publication
Power to gas (PTG) refers to the technology of converting power into energy-storage gas which can absorb excess power when there is excess power and release energy-storage gas when needed. Based on the carbon dioxide (CO2 ) emission of Karamay City in Northwest China this study designed a process flow of the CO2 absorption process and the hydrogen and CO2 methanation process in PTG technology. The results show that the efficiency of the CO2 absorption process was 91.5% and the methanation efficiency was 77.5%. The heat recovery module was set during the process and the total heat recovered was 17.85 MW. The cost of producing synthetic natural gas (SNG) in the PTG factory was 1782 USD/ton. In terms of cost the cost of hydrogen production from electrolyzed water accounted for the largest proportion. In terms of product profit the sale of pure oxygen was the largest part of the profit. At present the carbon emission reduction index profit brought by SNG production accounted for a small proportion. In the future with technological progress industrial upgrading and the improvement in the carbon trading market PTG technology is expected to become one of the ways to achieve carbon-emission-reduction targets.
No more items...