Publications
Recent Progress in Hydrogen Flammability Prediction for the Safe Energy Systems
Nov 2020
Publication
Many countries consider hydrogen as a promising energy source to resolve the energy challenges over the global climate change. However the potential of hydrogen explosions remains a technical issue to embrace hydrogen as an alternate solution since the Hindenburg disaster occurred in 1937. To ascertain safe hydrogen energy systems including production storage and transportation securing the knowledge concerning hydrogen flammability is essential. In this paper we addressed a comprehensive review of the studies related to predicting hydrogen flammability by dividing them into three types: experimental numerical and analytical. While the earlier experimental studies had focused only on measuring limit concentration recent studies clarified the extinction mechanism of a hydrogen flame. In numerical studies the continued advances in computer performance enabled even multi-dimensional stretched flame analysis following one-dimensional planar flame analysis. The different extinction mechanisms depending on the Lewis number of each fuel type could be observed by these advanced simulations. Finally historical attempts to predict the limit concentration by analytical modelling of flammability characteristics were discussed. Developing an accurate model to predict the flammability limit of various hydrogen mixtures is our remaining issue.
Utilization and Recycling of End of Life Plastics for Sustainable and Clean Industrial Processes Including the Iron and Steel Industry
Aug 2019
Publication
About 400 million tonnes of plastics are produced per annum worldwide. End-of-life of plastics disposal contaminates the waterways aquifers and limits the landfill areas. Options for recycling plastic wastes include feedstock recycling mechanical /material recycling industrial energy recovery municipal solid waste incineration. Incineration of plastics containing E-Wastes releases noxious odours harmful gases dioxins HBr polybrominated diphenylethers and other hydrocarbons. This study focusses on recycling options in particular feedstock recycling of plastics in high-temperature materials processing for a sustainable solution to the plastic wastes not suitable for recycling. Of the 7% CO2 emissions attributed to the iron and steel industry worldwide ∼30% of the carbon footprint is reduced using the waste plastics compared to other carbon sources in addition to energy savings. Plastics have higher H2 content than the coal. Hydrogen evolved from the plastics acts as the reductant alongside the carbon monoxide. Hydrogen reduction of iron ore in presence of plastics increases the reaction rates due to higher diffusion of H2 compared to CO. Plastic replacement reduces the process temperature by at least 100–200 °C due to the reducing gases (hydrogen) which enhance the energy efficiency of the process. Similarly plastics greatly reduce the emissions in other high carbon footprint process such as magnesia production while contributing to energy.
Success Stories: A Partnership Dedicated to Clean Energy and Transport in Europe
Dec 2018
Publication
As 2018 marks the ten-year anniversary of the Fuel Cells and Hydrogen Joint Undertaking (FCH JU) it is inspiring to look back over the many accomplishments of the past decade. The projects described in these pages illustrate the approach of continuous learning exemplified by the FCH JU’s projects from creating low-carbon and sustainable solutions enabling market entry for new products developing ‘next generation’ products based on previous research to opening new markets for European expertise in fuel cell and hydrogen (FCH) technology.<br/>The FCH JU’s achievements are due in part to its multi-stakeholder structure: a public-private partnership between industry research and the European Commission. Industry-led research has pioneered new developments in FCH technology and brought many of them to the cusp of commercialisation. Market uptake from public authorities major companies and citizens alike has boosted confidence in these clean technologies establishing hydrogen as a cornerstone of Europe’s energy transition.<br/>DEVELOPING SOLUTIONS FOR A GREENER WORLD<br/>Citizens are at the heart of Europe’s Energy Union a strategy aimed at providing clean secure and affordable energy for all. For some years now and as a signatory to the Paris Agreement in 2015 the EU has been actively targeting reductions in carbon dioxide (CO2) emissions.
Is Direct Seawater Splitting Economically Meaningful?
Jun 2021
Publication
Electrocatalytic water splitting is the key process for the formation of green fuels for energy transport and storage in a sustainable energy economy. Besides electricity it requires water an aspect that seldomly has been considered until recently. As freshwater is a limited resource (<1% of earth's water) lately plentiful reports were published on direct seawater (around 96.5% of earth's water) splitting without or with additives (buffers or bases). Alternatively the seawater can be split in two steps where it is first purified by reverse osmosis and then split in a conventional water electrolyser. This quantitative analysis discusses the challenges of the direct usage of non-purified seawater. Further herein we compare the energy requirements and costs of seawater purification with those of conventional water splitting. We find that direct seawater splitting has substantial drawbacks compared to conventional water splitting and bears almost no advantage. In short it is less promising than the two-step scenario as the capital and operating costs of water purification are insignificant compared to those of electrolysis of pure water.
Analysis of Samples Cleaning Methods Prior to Hydrogen Content Determination in Steel
May 2020
Publication
There are multiple references to sample cleaning methods prior to hydrogen content determination or hydrogen spectroscopy analysis but there is still no unified criteria; different authors use their own “know-how” to perform this task. The aim of this paper is to solve or at least clarify this issue. In this work the most commonly used sample cleaning methods are compared. Then five different methodologies are applied on certified hydrogen content calibration pins and on high strength steel concrete-prestressing strands and the three main situations regarding hydrogen content in the microstructural net (non-charged charged and charged and uncharged) are studied. It was concluded that the HCl solution C-3.5 cleaning method recommended by ASTM G1 introduces large amounts of hydrogen in the samples; but can be useful for eliminating superficial oxides if necessary. The rest of the methods had similar results; but the more complete ones that involve ultrasounds and last longer than 8 min are not appropriated when important diffusion may occur on the samples during their application. Simple methods that involve acetone or trichloroethylene and last around 1 min are preferable for almost all situations as these are faster easier and cheaper. As a final recommendation as trichloroethylene is toxic the simple acetone method is in general the most convenient one for regular hydrogen content analysis.
Comparative Study of Battery Storage and Hydrogen Storage to Increase Photovoltaic Self-sufficiency in a Residential Building of Sweden
Dec 2016
Publication
Photovoltaic (PV) is promising to supply power for residential buildings. Battery is the most widely employed storage method to mitigate the intermittence of PV and to overcome the mismatch between production and load. Hydrogen storage is another promising method that it is suitable for long-term storage. This study focuses on the comparison of self-sufficiency ratio and cost performance between battery storage and hydrogen storage for a residential building in Sweden. The results show that battery storage is superior to the hydrogen storage in the studied case. Sensitivity study of the component cost within the hydrogen storage system is also carried out. Electrolyzer cost is the most sensitive factor for improving system performance. A hybrid battery and hydrogen storage system which can harness the advantages of both battery and hydrogen storages is proposed in the last place.
Modeling and Economic Operation of Energy Hub Considering Energy Market Price and Demand
Feb 2022
Publication
This paper discusses the economic operation strategy of the energy hub which is being established in South Korea. The energy hub has five energy conversion devices: a turbo expander generator a normal fuel cell a fuel cell with a hydrogen outlet a small-scale combined heat and power device and a photovoltaic device. We are developing the most economically beneficial operation strategy for the operators who own the hub without making any systematic improvements to the energy market. First sixteen conversion efficiency matrices can be achieved by turning each device (except the PV) on or off. Next even the same energy must be divided into different energy flows according to price. The energy flow is controlled to obtain the maximum profit considering the internal load of the energy hub and the price fluctuations of the energy market. Using our operating strategy the return on investment period is approximately 9.9 years which is three years shorter than that without the operating strategy.
Hy4Heat Safety Assessment: Precis - Work Package 7
May 2021
Publication
The Hy4Heat Safety Assessment has focused on assessing the safe use of hydrogen gas in certain types of domestic properties and buildings. The summary reports (the Precis and the Safety Assessment Conclusions Report) bring together all the findings of the work and should be looked to for context by all readers. The technical reports should be read in conjunction with the summary reports. While the summary reports are made as accessible as possible for general readers the technical reports may be most accessible for readers with a degree of technical subject matter understanding. All of the safety assessment reports have now been reviewed by the HSE.<br/><br/>This document is an overview of the Safety Assessment work undertaken as part of the Hy4Heat programme
A Fracture Analysis of Ti-10Mo-8V-1Fe-3.5Al Alloy Screws during Assembly
Oct 2016
Publication
Titanium screws have properties that make them ideal for applications that require both a high strength-to-weight ratio and corrosion resistance such as fastener applications for aviation and aerospace. The fracture behavior of Ti-10Mo-8V-1Fe-3.5Al (TB3) alloy screws during assembly was explored. Besides visual examination other experimental techniques used for the investigation are as follows: (1) fracture characteristics and damage morphology via scanning electron microscopy (SEM); (2) chemical constituents via energy dispersive spectroscopy (EDS) and hydrogen concentration testing; (3) metallographic observation; (4) stress durability embrittlement testing; and (5) torsion simulation testing. Results show that the fracture mode of the screws is brittle. There is no obvious relation to hydrogen-induced brittle. The main reason for the fracture of titanium alloy screws is internal defects around which oxygen content is high increasing brittleness. The internal defects of screws result from grain boundary cracking caused by hot forging.
Willingness to Pay and Public Acceptance for Hydrogen Buses: A Case Study of Perugia
Sep 2015
Publication
Sustainability transportation is characterized by a positive externality on the environment health social security land use and social inclusion. The increasing interest in global warming has caused attention to be paid to the introduction of the hydrogen bus (H2B). When introducing new environmental technologies such as H2B it is often necessary to assess the environmental benefits related to this new technology. However such benefits are typically non-priced due to their public good nature. Therefore we have to address this problem using the contingent valuation (CV) method. This method has been developed within environmental economics as a means to economically assess environmental changes which are typically not traded in the market. So far several big cities have been analyzed to evaluate the perceived benefit related to H2B introduction but to the best of our knowledge no one has performed a CV analysis of a historical city where smog also damages historical buildings. This paper presents the results obtained using a multi-wave survey. We have investigated user preferences to elicit their willingness to pay for H2B introduction in Perugia taking into account all types of negative externalities due to the traffic pollution. The results confirm that residents in Perugia are willing to pay extra to support the introduction of H2B.
Overview of Biomass Conversion to Electricity and Hydrogen and Recent Developments in Low-Temperature Electrochemical Approaches
Nov 2020
Publication
Biomass is plant or animal material that stores both chemical and solar energies and that is widely used for heat production and various industrial processes. Biomass contains a large amount of the element hydrogen so it is an excellent source for hydrogen production. Therefore biomass is a sustainable source for electricity or hydrogen production. Although biomass power plants and reforming plants have been commercialized it remains a difficult challenge to develop more effective and economic technologies to further improve the conversion efficiency and reduce the environmental impacts in the conversion process. The use of biomass-based flow fuel cell technology to directly convert biomass to electricity and the use of electrolysis technology to convert biomass into hydrogen at a low temperature are two new research areas that have recently attracted interest. This paper first briefly introduces traditional technologies related to the conversion of biomass to electricity and hydrogen and then reviews the new developments in flow biomass fuel cells (FBFCs) and biomass electrolysis for hydrogen production (BEHP) in detail. Further challenges in these areas are discussed.
Development of a Turnkey Hydrogen Fuelling Station
Jul 2010
Publication
The transition to hydrogen as a fuel source presents several challenges. One of the major hurdles is the cost-effective production of hydrogen in small quantities (less than 1MMscf/month). In the early demonstration phase hydrogen can be provided by bulk distribution of liquid or compressed gas from central production plants; however the next phase to fostering the hydrogen economy will likely include onsite generation and extensive pipeline networks to help effect a pervasive infrastructure. Providing inexpensive hydrogen at a fleet operator’s garage or local fuelling station is a key enabling technology for direct hydrogen Fuel Cell Vehicles (FCVs). The objective of this project was to develop a comprehensive turnkey stand-alone commercial hydrogen fuelling station for FCVs with state-of-the-art technology that is cost-competitive with current hydrocarbon fuels. Such a station would promote the advent of the hydrogen fuel economy for buses fleet vehicles and ultimately personal vehicles. Air Products partnering with the U.S. Department of Energy (DOE) The Pennsylvania State University Harvest Energy Technology and QuestAir developed a turnkey hydrogen fuelling station on the Penn State campus. Air Products aimed at designing a station that would have 65% overall station efficiency 82% PSA (pressure swing adsorption) efficiency and the capability of producing hydrogen at $3.00/kg (gge) H2 at mass production rates. Air Products designed a fuelling station at Penn State from the ground up. This project was implemented in three phases. The first phase evaluated the various technologies available in hydrogen generation compression storage and gas dispensing. In the second phase Air Products designed the components chosen from the technologies examined. Finally phase three entailed a several-month period of data collection full-scale operation maintenance of the station and optimization of system reliability and performance. Based on field data analysis it was determined by a proprietary hydrogen-analysis model that hydrogen produced from the station at a rate of 1500 kg/day and when produced at 1000 stations per year would be able to deliver hydrogen at a price of $3.03/kg (gge) H2. The station’s efficiency was measured to be 65.1% and the PSA was tested and ran at an efficiency of 82.1% thus meeting the project targets. From the study it was determined that more research was needed in the area of hydrogen fuelling. The overall cost of the hydrogen energy station when combined with the required plot size for scaled-up hydrogen demands demonstrated that a station using steam methane reforming technology as a means to produce on–site hydrogen would have limited utility in the marketplace. Alternative hydrogen supplies such as liquid or pipeline delivery to a refuelling station need to be included in the exploration of alternative energy site layouts. These avenues need to be explored before a definitive refuelling station configuration and commercialization pathway can be determined.
Planning and Operational Aspects of Individual and Clustered Multi-Energy Microgrid Options
Feb 2022
Publication
With the restructuring of the power system household-level end users are becoming more prominent participants by integrating renewable energy sources and smart devices and becoming flexible prosumers. The use of microgrids is a way of aggregating local end users into a single entity and catering for the consumption needs of shareholders. Various microgrid architectures are the result of the local energy community following different decarbonisation strategies and are frequently not optimised in terms of size technology or other influential factors for energy systems. This paper discusses the operational and planning aspects of three different microgrid setups looking at them as individual market participants within a local electricity market. This kind of implementation enables mutual trade between microgrids without additional charges where they can provide flexibility and balance for one another. The developed models take into account multiple uncertainties arising from photovoltaic production day-ahead electricity prices and electricity load. A total number of nine case studies and sensitivity analyses are presented from daily operation to the annual planning perspective. The systematic study of different microgrid setups operational principles/goals and cooperation mechanisms provides a clear understanding of operational and planning benefits: the electrification strategy of decarbonising microgrids outperforms gas and hydrogen technologies by a significant margin. The value of coupling different types of multi-energy microgrids with the goal of joint market participation was not proven to be better on a yearly level compared to the operation of same technology-type microgrids. Additional analyses focus on introducing distribution and transmission fees to an MG cooperation model and allow us to come to the conclusion of there being a minor impact on the overall operation.
Modelling Decentralized Hydrogen Systems: Lessons Learned and Challenges from German Regions
Feb 2022
Publication
Green hydrogen produced by power‐to‐gas will play a major role in the defossilization of the energy system as it offers both carbon‐neutral chemical energy and the chance to provide flexibility. This paper provides an extensive analysis of hydrogen production in decentralized energy systems as well as possible operation modes (H2 generation or system flexibility). Modelling was realized for municipalities—the lowest administrative unit in Germany thus providing high spatial resolution—in the linear optimization framework OEMOF. The results allowed for a detailed regional analysis of the specific operating modes and were analyzed using full‐load hours share of used negative residual load installed capacity and levelized cost of hydrogen to derive the operation mode of power‐to‐gas to produce hydrogen. The results show that power‐to‐gas is mainly characterized by constant hydrogen production and rarely provides flexibility to the system. Main drivers of this dominant operation mode include future demand for hydrogen and the fact that high full‐load hours reduce hydrogen‐production costs. However changes in the regulatory market and technical framework could promote more flexibility and support possible use cases for the central technology to succeed in the energy transition.
Exergetic Aspects of Hydrogen Energy Systems—The Case Study of a Fuel Cell Bus
Feb 2017
Publication
Electrifying transportation is a promising approach to alleviate climate change issues arising from increased emissions. This study examines a system for the production of hydrogen using renewable energy sources as well as its use in buses. The electricity requirements for the production of hydrogen through the electrolysis of water are covered by renewable energy sources. Fuel cells are being used to utilize hydrogen to power the bus. Exergy analysis for the system is carried out. Based on a steady-state model of the processes exergy efficiencies are calculated for all subsystems. The subsystems with the highest proportion of irreversibility are identified and compared. It is shown that PV panel has exergetic efficiency of 12.74% wind turbine of 45% electrolysis of 67% and fuel cells of 40%.
Hybrid Power-heat Microgrid Solution Using Hydrogen as an Energy Vector for Residential Houses in Spain. A Case Study
May 2022
Publication
In order to favor a transition to a renewable energy economy it is necessary to study the possible permeation of renewable energy sources not only in the electric grid or industrial scale but also in the small householding scale. One of the most interesting technologies available for this purpose is solar energy since it is a mature technology that can be easily installed in every rooftop. Thus a techno-economic assessment was carried out to evaluate the installation of a solar-based power-heat hybrid microgrid considering the use of hydrogen as an energy vector in a typical residential house in Spain. Lead-acid batteries plus the photovoltaic and solar thermal energy installation are complemented with a hydrogen system composed of an electrolyzer two metal hydride bottles and a fuel cell. A simulation tool has been generated using experimental models developed and validated with real equipment for each one of the electric microgrid component. Three operating modes were tested making use of this tool to better manage the energy consumed/produced and optimize the economic output of the facility. The results show that setting up a hydrogen-based microgrid in a residential house is unviable today mainly due to the high cost of hydrogen generation and consumption equipment. If only solar energy is considered the microgrid inversion (12.500 €) is recovered in ten years. On the other hand selling the electricity output has almost no repercussions considering current electrical rates in Spain. Finally while using an optimization algorithm to manage energy use battery life-spam and economic benefit slightly increase. However this profit may not be enough to justify the use of a more complex control system. The results of this research will help users renewable energy companies investigators and policymakers to better understand the different factors influencing the spread of renewable smart grids in households and propose solutions to address these.
Dynamic Model to Expand Energy Storage in Form of Battery and Hydrogen Production Using Solar Powered Water Electrolysis for Off Grid Communities
Feb 2022
Publication
In this model we used a 50 WP photovoltaic panel to produce electrical energy. This electricity production was used directly and stored in a battery. In this design we coupled batteries and hydrogen as a means of storing energy. In case of overcharging the battery it will be attached with water electrolysis to convert the excess amount of chemical energy of the battery into hydrogen energy storage. Hydrogen will be stored as a compacted gas and in chemical storage. We used PEM (proton exchange membrane) electrolysis technologies to breakdown water molecules into hydrogen and oxygen which were then stored in the designed tanks. Different supply voltages were used in our practical readings with an average gaining of 22.8 mL/min on a voltage supply of 2. While using Ansys simulation software we extrapolated hydrogen production until reaching 300 mL/min on 12 V of supply (which represents 220% higher production). By using the second phase of this model hydrogen energy was converted back into electrical energy with the help of a PEM (proton exchange membrane) fuel cell when needed. This model explores the feasibility of energy storage in the form of hydrogen and chemical energy for off-grid communities and remote areas comprising batteries water electrolysis and fuel cells. The main purpose of hydrogen storage in this system is to store and handle the extra energy of system produced through PV panel and utilize it for any desired requirements.
Feature of Stress Corrosion Cracking of Degraded Gas Pipeline Steels
Aug 2019
Publication
Stress corrosion cracking (SCC) of steels can reduce the structural integrity of gas pipelines. To simulate in-service degradation of pipeline steels in laboratory the method of accelerated degradation consisted in subjecting specimens to electrolytic hydrogenation to loading up the certain plastic deformation and heating of specimen at 250°C was recently developed. The purpose of this paper was to analyse mechanical and SCC behaviour of in-service and in-laboratory degraded gas pipeline steels and to reveal some fractographic features of SCC. Three pipeline steels of the different strength (17H1S which is equivalent of API X52 API X60 and API X70) were investigated. The characteristics of the as-received pipeline steels with different strength were compared with the properties of pipeline steels after in-service and in-laboratory degradation. An influence of the NS4 solution on SCC resistance of 17H1S and API X60 steels in the as-received state and after the accelerated degradation using slow strain rate tension method was analysed. The noticeable decrease of plasticity for 17H1S and API X60 steels after long-term operation was shown. Deep microdelaminations revealed in the central part of fracture surfaces for the operated steels can be considered as the signs of dissipated damaging in the metal caused by texture and hydrogen absorbed by metal. Comparison of the SCC tests results showed that the characteristics of both steels in the as-received state were insignificantly changed under the influence of the environment. At the same time the degraded steels were characterized by a high sensitivity to SCC. It was shown fractographically that it associated with cracking along interfaces of ferrite and pearlite grains with secondary deep intergranular cracks formation and also by delamination between ferrite and cementite inside pearlite grains. The similar fracture mechanism at SCC tests was revealed for near the outer surface of the specimens and in the central part of the fracture surfaces of in-laboratory degraded specimens. These results demonstrated the key role of hydrogen during SCC and in-bulk cracking as well.
Complex Methods of Estimation Technological Strength of Welded Joints in Welding at Low Temperatures
Feb 2021
Publication
A comprehensive methodology for estimating the technological strength of welded joints are developed based on parameters reflecting the welding technology weldability hydrogen force and deformation conditions for welding and other informative parameters that correlate with the characteristics of the welded joint as well as improving existing methods for estimating the technological strength of welded joints connections through the introduction of modern equipment and non-destructive testing systems. It has been established that the proposed comprehensive estimation methodology will allow reaching a new qualitative level in assessing the technological strength of a welded joint using modern equipment and measuring instruments. According to the results of the experimental work it was found that when welding at low temperatures the increase in the probability of the formation and development of cold cracks is mainly determined by the critical content of diffusible hydrogen in the weld metal depending on the structural and force parameters of the welded joints.
Methane Emissions from Natural Gas and LNG Imports: An Increasingly Urgent Issue for the Future of Gas in Europe
Nov 2020
Publication
Pressure is mounting on the natural gas and LNG community to reduce methane emissions and this is most urgent in EU countries following the adoption of much tougher greenhouse gas reduction targets of 2030 and the publication of the European Commission’s Methane Strategy. With rapidly declining indigenous EU production and therefore rising import dependence there are increasing calls for emissions from imported pipeline gas and LNG to be quantified and based on actual measurements as opposed to standard emission factors. The Methane Strategy promises to be a significant milestone in that process. Companies which are supplying (or intending to supply) natural gas to the EU – the largest global import market for pipeline gas and a very significant market for LNG – would be well advised to pay close attention to how the regulation of methane emissions is unfolding and to make an immediate and positive response. Failure to do so could accelerate the demise of natural gas in European energy balances faster than would otherwise have been the case and shorten the time available for transition to decarbonised gases – specifically hydrogen – using existing natural gas infrastructure.<br/>This EU initiative will (and arguably already has) attracted attention from non-EU governments and companies involved in global gas and LNG trade. We have already seen deliveries of `carbon neutral’ LNG cargos to Asia as well as a long-term LNG contract in which the greenhouse gas content of cargos will be measured reported and verified (MRV) according to an agreed methodology. Natural gas and LNG exports if based on these standards or those set out in the EU Methane Strategy may be able to command premium prices from buyers eager to demonstrate their own GHG reduction credentials to governments customers and civil society.
A Methodology for Assessing the Sustainability of Hydrogen Production from Solid Fuels
May 2010
Publication
A methodology for assessing the sustainability of hydrogen production using solid fuels is introduced in which three sustainability dimensions (ecological sociological and technological) are considered along with ten indicators for each dimension. Values for each indicator are assigned on a 10-point scale based on a high of 1 and a low of 0 depending on the characteristic of the criteria associated with each element or process utilizing data reported in the literature. An illustrative example is presented to compare two solid fuels for hydrogen production: coal and biomass. The results suggest that qualitative sustainability indicators can be reasonably defined based on evaluations of system feasibility and that adequate flexibility and comprehensiveness is provided through the use of ten indicators for each of the dimensions for every process or element involved in hydrogen production using solid fuels. Also the assessment index values suggest that biomasses have better sustainability than coals and that it may be advantageous to use coals in combination with biomass to increase their ecological and social sustainability. The sustainability assessment methodology can be made increasingly quantitative and is likely extendable to other energy systems but additional research and development is needed to lead to a more fully developed approach.
Decarbonising UK Transport: Implications for Electricity Generation, Land Use and Policy
Dec 2022
Publication
To ensure the UK’s net zero targets are met the transition from conventionally fueled transport to low emission alternatives is necessary. The impact from increased decarbonised electricity generation on ecosystem services (ES) and natural capital (NC) are not currently quantified with decarbonisation required to minimise impacts from climate change. This study aims to project the future electric and hydrogen energy demand between 2020 and 2050 for car bus and train to better understand the land/sea area that would be required to support energy generation. In this work predictions of the geospatial impact of renewable energy (onshore/offshore wind and solar) nuclear and fossil fuels on ES and NC were made considering generation mix number of generation installations and energy density. Results show that electric transport will require ~136599 GWh for all vehicle types analysed in 2050 much less than hydrogen transport at ~425532 GWh. We estimate that to power electric transport at least 1515 km2 will be required for solar 1672 km2 for wind and 5 km2 for nuclear. Hydrogen approximately doubles this requirement. Results provide an approximation of the future demands from the transport sector on land and sea area use indicating that a combined electric and hydrogen network will be needed to accommodate a range of socio-economic requirements. While robust assessments of ES and NC impacts are critical in future policies and planning significant reductions in energy demands through a modal shift to (low emission) public transport will be most effective in ensuring a sustainable transport future.
Design and Analysis of an Offshore Wind Power to Ammonia Production System in Nova Scotia
Dec 2022
Publication
Green ammonia has potential as a zero-emissions energy vector in applications such as energy storage transmission and distribution and zero-emissions transportation. Renewable energy such as offshore wind energy has been proposed to power its production. This paper designed and analyzed an on-land small-scale power-to-ammonia (P2A) production system with a target nominal output of 15 tonnes of ammonia per day which will use an 8 MW offshore turbine system off the coast of Nova Scotia Canada as the main power source. The P2A system consists of a reverse osmosis system a proton exchange membrane (PEM) electrolyser a hydrogen storage tank a nitrogen generator a set of compressors and heat exchangers an autothermal Haber-Bosch reactor and an ammonia storage tank. The system uses an electrical grid as a back-up for when the wind energy is insufficient as the process assumes a steady state. Two scenarios were analyzed with Scenario 1 producing a steady state of 15 tonnes of ammonia per day and Scenario 2 being one that switched production rates whenever wind speeds were low to 55% the nominal capacity. The results show that the grid connected P2A system has significant emissions for both scenarios which is larger than the traditional fossil-fuel based ammonia production when using the grid in provinces like Nova Scotia even if it is just a back-up during low wind power generation. The levelized cost of ammonia (LCOA) was calculated to be at least 2323 CAD tonne−1 for both scenarios which is not cost competitive in this small production scale. Scaling up the whole system reducing the reliance on the electricity grid increasing service life and decreasing windfarm costs could reduce the LCOA and make this P2A process more cost competitive.
Assessing the Life-Cycle Performance of Hydrogen Production via Biofuel Reforming in Europe
Jun 2015
Publication
Currently hydrogen is mainly produced through steam reforming of natural gas. However this conventional process involves environmental and energy security concerns. This has led to the development of alternative technologies for (potentially) green hydrogen production. In this work the environmental and energy performance of biohydrogen produced in Europe via steam reforming of glycerol and bio-oil is evaluated from a life-cycle perspective and contrasted with that of conventional hydrogen from steam methane reforming. Glycerol as a by-product from the production of rapeseed biodiesel and bio-oil from the fast pyrolysis of poplar biomass are considered. The processing plants are simulated in Aspen Plus® to provide inventory data for the life cycle assessment. The environmental impact potentials evaluated include abiotic depletion global warming ozone layer depletion photochemical oxidant formation land competition acidification and eutrophication. Furthermore the cumulative (total and non-renewable) energy demand is calculated as well as the corresponding renewability scores and life-cycle energy balances and efficiencies of the biohydrogen products. In addition to quantitative evidence of the (expected) relevance of the feedstock and impact categories considered results show that poplar-derived bio-oil could be a suitable feedstock for steam reforming in contrast to first-generation bioglycerol.
Can the Current EU Regulatory Framework Deliver Decarbonisation of Gas?
Jun 2020
Publication
This Energy Insight examines the current regulatory framework and challenges facing the natural gas industry (producers transporters suppliers and consumers) during the transition to a zero-carbon economy. The EU has declared its intention to be climate neutral by 2050 which means that the current level of natural gas usage will no longer be possible. However natural gas is a crucial component of energy supply representing 24 per cent of primary energy supply for the EU27+UK and 36 per cent of residential energy consumption. In some countries the use of natural gas is much higher – around 40 per cent of primary energy supply in Netherlands UK and Italy. The current framework impacting gas addresses two different market failures – natural monopolies for gas transportation and the externalities of Greenhouse Gas Emissions. The framework will not deliver decarbonisation of gas as it does not stimulate either supply or demand for alternatives such as hydrogen nor create the conditions to enable gas networks to transition to a decarbonised future. Policy makers need to prioritise their objectives to take account of the trade-offs involved in designing a new framework. Exclusion of certain low carbon technologies risks driving away investors and reduces the chances of targets being met whilst “picking winners” involves risks because of the many uncertainties involved such as future costs and time required to build new value chains.
Link to Document on Oxford Institute for Energy Studies website
Link to Document on Oxford Institute for Energy Studies website
Carbon Capture, Usage and Storage: An Update on Business Models for Carbon Capture, Usage and Storage
Dec 2020
Publication
An update on the proposed commercial frameworks for transport and storage power and industrial carbon capture business models.
Recent Advances in Seawater Electrolysis
Jan 2022
Publication
Hydrogen energy as a clean and renewable energy has attracted much attention in recent years. Water electrolysis via the hydrogen evolution reaction at the cathode coupled with the oxygen evolution reaction at the anode is a promising method to produce hydrogen. Given the shortage of freshwater resources on the planet the direct use of seawater as an electrolyte for hydrogen production has become a hot research topic. Direct use of seawater as the electrolyte for water electrolysis can reduce the cost of hydrogen production due to the great abundance and wide availability. In recent years various high-efficiency electrocatalysts have made great progress in seawater splitting and have shown great potential. This review introduces the mechanisms and challenges of seawater splitting and summarizes the recent progress of various electrocatalysts used for hydrogen and oxygen evolution reaction in seawater electrolysis in recent years. Finally the challenges and future opportunities of seawater electrolysis for hydrogen and oxygen production are presented.
Materials for End to End Hydrogen Roadmap
Jun 2021
Publication
This report is commissioned by the Henry Royce Institute for advanced materials as part of its role around convening and supporting the UK advanced materials community to help promote and develop new research activity. The overriding objective is to bring together the advanced materials community to discuss analyse and assimilate opportunities for emerging materials research for economic and societal benefit. Such research is ultimately linked to both national and global drivers namely Transition to Zero Carbon Sustainable Manufacture Digital & Communications Circular Economy as well as Health & Wellbeing.
This paper can be download from their website
This paper can be download from their website
Fuel Cell Industry Review 2019 - The Year of the Gigawatt
Jan 2020
Publication
E4tech’s 6th annual review of the global fuel cell industry is now available here. Using primary data straight from the main players and free to download it quantifies shipments by fuel cell type by application and by region of deployment and summarises industry developments over the year.
2019 saw shipments globally grow significantly to 1.1 GW. Numbers grew slightly to around 70000 units. The growth in capacity came mainly from cars Hyundai with its NEXO and Toyota with its Mirai together accounting for around two-thirds of shipments by capacity. Unit numbers are still dominated by Japan’s ene-Farm cogeneration appliances at around 45000 shipments. Large numbers of trucks and buses are now manufactured and shipped in China though numbers deployed are limited by the availability of refuelling infrastructure. But growth in China is uncertain as policy changes are under discussion.
2020 looks like it will be an even bigger year again dominated by Hyundai and Toyota. The Japanese fuel cell market is expected also to grow partly on the back of the Tokyo ‘Hydrogen Olympics’. Korea is another growth story buoyed by its latest roadmap which aims to shift large swathes of its economy to hydrogen energy by 2040. Elsewhere much of the supply chain development is in heavy duty vehicles and big supply chain players like Cummins Weichai and Michelin are making significant investments.
2019 saw shipments globally grow significantly to 1.1 GW. Numbers grew slightly to around 70000 units. The growth in capacity came mainly from cars Hyundai with its NEXO and Toyota with its Mirai together accounting for around two-thirds of shipments by capacity. Unit numbers are still dominated by Japan’s ene-Farm cogeneration appliances at around 45000 shipments. Large numbers of trucks and buses are now manufactured and shipped in China though numbers deployed are limited by the availability of refuelling infrastructure. But growth in China is uncertain as policy changes are under discussion.
2020 looks like it will be an even bigger year again dominated by Hyundai and Toyota. The Japanese fuel cell market is expected also to grow partly on the back of the Tokyo ‘Hydrogen Olympics’. Korea is another growth story buoyed by its latest roadmap which aims to shift large swathes of its economy to hydrogen energy by 2040. Elsewhere much of the supply chain development is in heavy duty vehicles and big supply chain players like Cummins Weichai and Michelin are making significant investments.
Reference Standard for Low Pressure Hydrogen Utilisation
May 2021
Publication
This standard has been created for the specific purposes of the Hy4Heat programme. The standard was commissioned in 2018 and this version was considered and approved by the relevant IGEM committees in May of 2020. This version of the standard was developed using the latest publicly available information at that time and may include some conservative requirements which further research may deem not necessary. The supplement will be updated regularly following the publication of new research into the application of hydrogen.
This Reference Standard aims to identify and discuss the principles required for the safety and integrity of Hydrogen installation and utilisation in premises.
This document intends to:
The standard is available to download through the IGEM website here.
This Reference Standard aims to identify and discuss the principles required for the safety and integrity of Hydrogen installation and utilisation in premises.
This document intends to:
- provide a point of reference for those requiring an understanding of the implications of using hydrogen as a distributed gas in properties
- detail the characteristics of Hydrogen
- detail the comparisons between hydrogen and Natural Gas (NG)
- discuss the safety implications of using hydrogen
- discuss the implications for materials when using hydrogen
- discuss the implications for the installation and use of using hydrogen in domestic & smaller commercial buildings.
The standard is available to download through the IGEM website here.
Comprehensive Review on Fuel Cell Technology for Stationary Applications as Sustainable and Efficient Poly-Generation Energy Systems
Aug 2021
Publication
Fuel cell technologies have several applications in stationary power production such as units for primary power generation grid stabilization systems adopted to generate backup power and combined-heat-and-power configurations (CHP). The main sectors where stationary fuel cells have been employed are (a) micro-CHP (b) large stationary applications (c) UPS and IPS. The fuel cell size for stationary applications is strongly related to the power needed from the load. Since this sector ranges from simple backup systems to large facilities the stationary fuel cell market includes few kWs and less (micro-generation) to larger sizes of MWs. The design parameters for the stationary fuel cell system differ for fuel cell technology (PEM AFC PAFC MCFC and SOFC) as well as the fuel type and supply. This paper aims to present a comprehensive review of two main trends of research on fuel-cell-based poly-generation systems: tracking the market trends and performance analysis. In deeper detail the present review will list a potential breakdown of the current costs of PEM/SOFC production for building applications over a range of production scales and at representative specifications as well as broken down by component/material. Inherent to the technical performance a concise estimation of FC system durability efficiency production maintenance and capital cost will be presented.
Hydrogen Act Towards the creation of the European Hydrogen Economy
Apr 2021
Publication
It is time that hydrogen moves from an afterthought to a central pillar of the energy system and its key role in delivering climate neutrality means it merits a dedicated framework. It becomes paramount to allow hydrogen to express its full potential as the other leg of the energy mobility and industry transitions. The proposed “Hydrogen Act” is not a single piece of legislation it is intended to be a vision for an umbrella framework aimed at harmonising and integrating all separate hydrogen-related actions and legislations. It focuses on infrastructure and market aspects describing three phases of development: the kick-start phase the ramp-up phase and the market-growth phase.
The Future Role of Gas in Transport
Mar 2021
Publication
This is a Network Innovation Allowance funded project overseen by a steering group comprising the UK and Ireland gas network operators (Cadent Gas Networks Ireland National Grid Northern Gas Networks SGN Wales and West). The project follows on from previous studies that modelled the role of green gases in decarbonising the GB economy. The role of this study is to understand the transition from the GB economy today to a decarbonised economy in 2050 focusing on how the transition is achieved and the competing and complementary nature of different low and zero emission fuels and technologies over time.
While the project covers the whole economy it focuses on transport especially trucks as an early adopter of green gases and as a key enabler of the transition. The study and resulting report are aimed at the gas industry and government and tries to build a green gas decarbonisation narrative supported by a wide range of stakeholders in order clarify the path ahead and thereby focus future efforts on delivering decarbonisation through green gases as quickly as possible.
The objectives of the study are:
Green gases
This report discusses the future role of ‘green gases’ which are biomethane and hydrogen produced from low- and zero-carbon sources each produced via two main methods:
Biomethane from Anaerobic Digestion (AD): A mature technology for turning biological material into a non-fossil form of natural gas (methane). AD plants produce biogas which must then be upgraded to biomethane.
Biomethane from Bio-Substitute Natural Gas (Bio-SNG): This technology is at an earlier stage of development than AD but has the potential to unlock other feedstocks for biomethane production such as waste wood and residual household waste.
Blue Hydrogen: Hydrogen from reformation of natural gas which produces hydrogen and carbon monoxide. 90-95% of the carbon is captured and stored making this a low-carbon form of hydrogen.
Green Hydrogen: Water is split into hydrogen and oxygen via electrolysis using electricity generated by renewables. No carbon emissions are produced so this is zero-carbon hydrogen."
While the project covers the whole economy it focuses on transport especially trucks as an early adopter of green gases and as a key enabler of the transition. The study and resulting report are aimed at the gas industry and government and tries to build a green gas decarbonisation narrative supported by a wide range of stakeholders in order clarify the path ahead and thereby focus future efforts on delivering decarbonisation through green gases as quickly as possible.
The objectives of the study are:
- Analyse the complete supply chain production distribution and use of electricity biomethane bio-SNG and hydrogen to understand the role of each fuel and the timeline for scaling up of their use.
- Develop a narrative based on these findings to show how the use of these fuels scales up over time and how they compete and complement one another.
Green gases
This report discusses the future role of ‘green gases’ which are biomethane and hydrogen produced from low- and zero-carbon sources each produced via two main methods:
Biomethane from Anaerobic Digestion (AD): A mature technology for turning biological material into a non-fossil form of natural gas (methane). AD plants produce biogas which must then be upgraded to biomethane.
Biomethane from Bio-Substitute Natural Gas (Bio-SNG): This technology is at an earlier stage of development than AD but has the potential to unlock other feedstocks for biomethane production such as waste wood and residual household waste.
Blue Hydrogen: Hydrogen from reformation of natural gas which produces hydrogen and carbon monoxide. 90-95% of the carbon is captured and stored making this a low-carbon form of hydrogen.
Green Hydrogen: Water is split into hydrogen and oxygen via electrolysis using electricity generated by renewables. No carbon emissions are produced so this is zero-carbon hydrogen."
Hydrogen Refuelling Reference Station Lot Size Analysis for Urban Sites
Mar 2020
Publication
Hydrogen Fuelling Infrastructure Research and Station Technology (H2FIRST) is a project initiated by the DOE in 2015 and executed by Sandia National Laboratories and the National Renewable Energy Laboratory to address R&D barriers to the deployment of hydrogen fuelling infrastructure. One key barrier to the deployment of fuelling stations is the land area they require (i.e. ""footprint""). Space is particularly a constraint in dense urban areas where hydrogen demand is high but space for fuelling stations is limited. This work presents current fire code requirements that inform station footprint then identifies and quantifies opportunities to reduce footprint without altering the safety profile of fuelling stations. Opportunities analyzed include potential new methods of hydrogen delivery as well as alternative placements of station technologies (i.e. rooftop/underground fuel storage). As interest in heavy-duty fuelling stations and other markets for hydrogen grows this study can inform techniques to reduce the footprint of heavy-duty stations as well.
This work characterizes generic designs for stations with a capacity of 600 kg/day hydrogen dispensed and 4 dispenser hoses. Three base case designs (delivered gas delivered liquid and on-site electrolysis production) have been modified in 5 different ways to study the impacts of recently released fire code changes colocation with gasoline refuelling alternate delivery assumptions underground storage of hydrogen and rooftop storage of hydrogen resulting in a total of 32 different station designs. The footprints of the base case stations range from 13000 to 21000 ft2.
A significant focus of this study is the NFPA 2 requirements especially the prescribed setback distances for bulk gaseous or liquid hydrogen storage. While the prescribed distances are large in some cases these setback distances are found to have a nuanced impact on station lot size; considerations of the delivery truck path traffic flow parking and convenience store location are also important. Station designs that utilize underground and rooftop storage can reduce footprint but may not be practical or economical. For example burying hydrogen storage tanks underground can reduce footprint but the cost savings they enable depend on the cost of burial and the cost land. Siting and economic analysis of station lot sizes illustrate the benefit of smaller station footprints in the flexibility and cost savings they can provide. This study can be used as a reference that provides examples of the key design differences that fuelling stations can incorporate the approximate sizes of generic station lots and considerations that might be unique to particular designs.
This work characterizes generic designs for stations with a capacity of 600 kg/day hydrogen dispensed and 4 dispenser hoses. Three base case designs (delivered gas delivered liquid and on-site electrolysis production) have been modified in 5 different ways to study the impacts of recently released fire code changes colocation with gasoline refuelling alternate delivery assumptions underground storage of hydrogen and rooftop storage of hydrogen resulting in a total of 32 different station designs. The footprints of the base case stations range from 13000 to 21000 ft2.
A significant focus of this study is the NFPA 2 requirements especially the prescribed setback distances for bulk gaseous or liquid hydrogen storage. While the prescribed distances are large in some cases these setback distances are found to have a nuanced impact on station lot size; considerations of the delivery truck path traffic flow parking and convenience store location are also important. Station designs that utilize underground and rooftop storage can reduce footprint but may not be practical or economical. For example burying hydrogen storage tanks underground can reduce footprint but the cost savings they enable depend on the cost of burial and the cost land. Siting and economic analysis of station lot sizes illustrate the benefit of smaller station footprints in the flexibility and cost savings they can provide. This study can be used as a reference that provides examples of the key design differences that fuelling stations can incorporate the approximate sizes of generic station lots and considerations that might be unique to particular designs.
Mapping Australia's Hydrogen Future and release of the Hydrogen Economic Fairways Tool
Apr 2021
Publication
Hydrogen can be used for a variety of domestic and industrial purposes such as heating and cooking (as a replacement for natural gas) transportation (replacing petrol and diesel) and energy storage (by converting intermittent renewable energy into hydrogen). The key benefit of using hydrogen is that it is a clean fuel that emits only water vapour and heat when combusted.
To support implementation of the National Hydrogen Strategy Geoscience Australia in collaboration with Monash University are releasing the Hydrogen Economic Fairways Tool (HEFT). HEFT is a free online tool designed to support decision making by policymakers and investors on the location of new infrastructure and development of hydrogen hubs in Australia. It considers both hydrogen produced from renewable energy and from fossil fuels with carbon capture and storage.
This seminar demonstrates HEFT’s capabilities its potential to attract worldwide investment into Australia’s hydrogen industry and what’s up next for hydrogen at Geoscience Australia.
You can use the Hydrogen Economic Fairways Tool (HEFT) on the Website of the Australian government at the link here
To support implementation of the National Hydrogen Strategy Geoscience Australia in collaboration with Monash University are releasing the Hydrogen Economic Fairways Tool (HEFT). HEFT is a free online tool designed to support decision making by policymakers and investors on the location of new infrastructure and development of hydrogen hubs in Australia. It considers both hydrogen produced from renewable energy and from fossil fuels with carbon capture and storage.
This seminar demonstrates HEFT’s capabilities its potential to attract worldwide investment into Australia’s hydrogen industry and what’s up next for hydrogen at Geoscience Australia.
You can use the Hydrogen Economic Fairways Tool (HEFT) on the Website of the Australian government at the link here
Contrasting European Hydrogen Pathways: An Analysis of Differing Approaches in Key Markets
Mar 2021
Publication
European countries approach the market ramp-up of hydrogen very differently. In some cases the economic and political starting points differ significantly. While the probability is high that some countries such as Germany or Italy will import hydrogen in the long term other countries such as United Kingdom France or Spain could become hydrogen exporters. The reasons for this are the higher potential for renewable energies but also a technology-neutral approach on the supply side.
Prediction of Gaseous Products from Refuse Derived Fuel Pyrolysis Using Chemical Modelling Software - Ansys Chemkin-Pro
Nov 2019
Publication
There can be observed global interest in waste pyrolysis technology due to low costs and availability of raw materials. At the same time there is a literature gap in forecasting environmental effects of thermal waste treatment installations. In the article was modelled the chemical composition of pyrolysis gas with main focus on the problem in terms of environmental hazards. Not only RDF fuel was analysed but also selected waste fractions included in its composition. This approach provided comprehensive knowledge about the chemical composition of gaseous pyrolysis products which is important from the point of view of the heterogeneity of RDF fuel. The main goal of this article was to focus on the utilitarian aspect of the obtained calculation results. Final results can be the basis for estimating ecological effects both for existing and newly designed installations.
Pyrolysis process was modelled using Ansys Chemkin-Pro software. The investigation of the process were carried out for five different temperatures (700 750 800 850 and 900 °C). As an output the mole fraction of H2 H2O CH4 C2H2C2H4 C3H6 C3H8 CO CO2 HCl and H2S were presented. Additionally the reaction pathways for selected material were presented.
Based on obtained results it was established that the residence time did not influenced on the concentration of products contrary to temperature. The chemical composition of pyrolytic gas is closely related to wastes origin. The application of Chemkin-Pro allowed the calculation of formation for each products at different temperatures and formulation of hypotheses on the reaction pathways involved during pyrolysis process. Further based on the obtained results confirmed the possibilities of using pyrolysis gas from RDF as a substitute for natural gas in energy consumption sectors. Optimization of the process can be conducted with low financial outlays and reliable results by using calculation tools. Moreover it can be predicted negative impact of obtained products on the future installation.
Pyrolysis process was modelled using Ansys Chemkin-Pro software. The investigation of the process were carried out for five different temperatures (700 750 800 850 and 900 °C). As an output the mole fraction of H2 H2O CH4 C2H2C2H4 C3H6 C3H8 CO CO2 HCl and H2S were presented. Additionally the reaction pathways for selected material were presented.
Based on obtained results it was established that the residence time did not influenced on the concentration of products contrary to temperature. The chemical composition of pyrolytic gas is closely related to wastes origin. The application of Chemkin-Pro allowed the calculation of formation for each products at different temperatures and formulation of hypotheses on the reaction pathways involved during pyrolysis process. Further based on the obtained results confirmed the possibilities of using pyrolysis gas from RDF as a substitute for natural gas in energy consumption sectors. Optimization of the process can be conducted with low financial outlays and reliable results by using calculation tools. Moreover it can be predicted negative impact of obtained products on the future installation.
Life Cycle Assessment of Hydrogen Production and Consumption in an Isolated Territory
Apr 2018
Publication
Hydrogen produced from renewables works as an energy carrier and as energy storage medium and thus hydrogen can help to overcome the intermittency of typical renewable energy sources. However there is no comprehensive environmental performance study of hydrogen production and consumption. In this study detailed cradle to grave life cycle analyses are performed in an isolated territory. The hydrogen is produced on-site by Polymer Electrolyte Membrane (PEM) water electrolysis based on electricity from wind turbines that would otherwise have been curtailed and subsequently transported with gas cylinder by road and ferry. The hydrogen is used to provide electricity and heat through fuel cell stacks as well as hydrogen fuel for fuel cell vehicles. In order to evaluate the environmental impacts related to the hydrogen production and utilisation this work conducts an investigation of the entire life cycle of the described hydrogen production transportation and utilisation. All the processes related to the equipment manufacture operation maintenance and disposal are considered in this study.
Hydrogen in the Gas Distribution Networks: A Kickstart Project as an Input into the Development of a National Hydrogen Strategy for Australia
Nov 2019
Publication
The report investigates a kickstart project that allows up to 10% hydrogen into gas distribution networks. It reviews the technical impacts and standards to identify barriers and develop recommendations.
You can see the full report on the Australian Government website here
This report is developed in support of Australia's National Hydrogen Strategy
You can see the full report on the Australian Government website here
This report is developed in support of Australia's National Hydrogen Strategy
The European Green Deal
Dec 2019
Publication
Climate change and environmental degradation are an existential threat to Europe and the world. To overcome these challenges Europe needs a new growth strategy that will transform the Union into a modern resource-efficient and competitive economy where
The European Green Deal is our plan to make the EU's economy sustainable. We can do this by turning climate and environmental challenges into opportunities and making the transition just and inclusive for all
The European Green Deal provides an action plan to
The EU aims to be climate neutral in 2050. We proposed a European Climate Law to turn this political commitment into a legal obligation.
Reaching this target will require action by all sectors of our economy including
The EU will also provide financial support and technical assistance to help those that are most affected by the move towards the green economy. This is called the Just Transition Mechanism. It will help mobilise at least €100 billion over the period 2021-2027 in the most affected regions.
- there are no net emissions of greenhouse gases by 2050
- economic growth is decoupled from resource use
- no person and no place is left behind
The European Green Deal is our plan to make the EU's economy sustainable. We can do this by turning climate and environmental challenges into opportunities and making the transition just and inclusive for all
The European Green Deal provides an action plan to
- boost the efficient use of resources by moving to a clean circular economy
- restore biodiversity and cut pollution
The EU aims to be climate neutral in 2050. We proposed a European Climate Law to turn this political commitment into a legal obligation.
Reaching this target will require action by all sectors of our economy including
- investing in environmentally-friendly technologies
- supporting industry to innovate
- rolling out cleaner cheaper and healthier forms of private and public transport
- decarbonising the energy sector
- ensuring buildings are more energy efficient
- working with international partners to improve global environmental standards
The EU will also provide financial support and technical assistance to help those that are most affected by the move towards the green economy. This is called the Just Transition Mechanism. It will help mobilise at least €100 billion over the period 2021-2027 in the most affected regions.
Lessons Learned from Australian Infrastructure Upgrades
Feb 2020
Publication
This report fulfils Deliverable Five for Research Project 2.1-01 of the Future Fuels CRC. The aims of this project Crystallising lessons learned from major infrastructure upgrades are to provide a report on lessons learned from earlier infrastructure upgrades and fuel transitions and identify tools that can be used to develop consistent messaging around the proposed transition to hydrogen and/or other low-carbon fuels. In both the report and the toolkit there are recommendations on how to apply lessons learned and shape messaging throughout the value chain based on prior infrastructure upgrades.
This report presents three Australian case studies that that are relevant to the development of future fuels: the transition from town gas to natural gas the use of ethanol and LPG as motor fuels and the development of coal seam gas resources. Drawing on published information each case study provides an account of the issues that arose during the upgrade or transition and of the approaches through which industry and government stakeholders managed these issues. From these accounts lessons are identified that can guide stakeholder engagement in future infrastructure upgrades and fuel transitions. The findings from the case studies and academic literature have been used to develop an accompanying draft toolkit for use by FFCRC stakeholders.
The report also distils applicable lessons and frameworks from academic literature about stakeholder analysis megaprojects and the social acceptance of industries and technologies. This report is meant to be used in conjunction with a companion toolkit that provides a framework for making coordinated decisions across the fuel value chain.
You can read the full report on the Future Fuels CRC website here
This report presents three Australian case studies that that are relevant to the development of future fuels: the transition from town gas to natural gas the use of ethanol and LPG as motor fuels and the development of coal seam gas resources. Drawing on published information each case study provides an account of the issues that arose during the upgrade or transition and of the approaches through which industry and government stakeholders managed these issues. From these accounts lessons are identified that can guide stakeholder engagement in future infrastructure upgrades and fuel transitions. The findings from the case studies and academic literature have been used to develop an accompanying draft toolkit for use by FFCRC stakeholders.
The report also distils applicable lessons and frameworks from academic literature about stakeholder analysis megaprojects and the social acceptance of industries and technologies. This report is meant to be used in conjunction with a companion toolkit that provides a framework for making coordinated decisions across the fuel value chain.
You can read the full report on the Future Fuels CRC website here
Effect of α′ Martensite Content Induced by Tensile Plastic Prestrain on Hydrogen Transport and Hydrogen Embrittlement of 304L Austenitic Stainless Steel
Aug 2018
Publication
Effects of microstructural changes induced by prestraining on hydrogen transport and hydrogen embrittlement (HE) of austenitic stainless steels were studied by hydrogen precharging and tensile testing. Prestrains higher than 20% at 20 °C significantly enhance the HE of 304L steel as they induce severe α′ martensite transformation accelerating hydrogen transport and hydrogen entry during subsequent hydrogen exposure. In contrast 304L steel prestrained at 50 and 80 °C and 316L steel prestrained at 20 °C exhibit less HE due to less α′ after prestraining. The increase of dislocations after prestraining has a negligible influence on apparent hydrogen diffusivity compared with pre-existing α′. The deformation twins in heavily prestrained 304L steel can modify HE mechanism by assisting intergranular (IG) fracture. Regardless of temperature and prestrain level HE and apparent diffusivity ( Dapp ) increase monotonously with α′ volume fraction ( fα′ ). Dapp can be described as log Dapp=log(Dα′sα′/sγ)+log[fα′/(1−fα′)] for 10%<fα′<90% with Dα′ is diffusivity in α′ sα′ and sγ are solubility in α′ and austenite respectively. The two equations can also be applied to these more typical duplex materials containing both BCC and FCC phases.
Unpacking Leadership-driven Global Scenarios Towards the Paris Agreement: Report Prepared for the UK Committee on Climate Change
Dec 2020
Publication
Outline
This independent report by Vivid Economics and University College London was commissioned to support the Climate Change Committee’s (CCC) 2020 report The Sixth Carbon Budget -The path to Net Zero. This research provided supporting information for Chapter 7 of the CCC’s report which considered the UK’s contribution to the global goals of the Paris Agreement.
Key recommendations
The report models ‘leadership-driven’ global scenarios that could reduce global emissions rapidly to Net Zero and analyses the levers available to developed countries such as the UK to help accelerate various key aspects of the required global transition.
It highlights a set of opportunities for the UK alongside other developed countries to help assist global decarbonisation efforts alongside achieving it’s domestic emissions reduction targets
This independent report by Vivid Economics and University College London was commissioned to support the Climate Change Committee’s (CCC) 2020 report The Sixth Carbon Budget -The path to Net Zero. This research provided supporting information for Chapter 7 of the CCC’s report which considered the UK’s contribution to the global goals of the Paris Agreement.
Key recommendations
The report models ‘leadership-driven’ global scenarios that could reduce global emissions rapidly to Net Zero and analyses the levers available to developed countries such as the UK to help accelerate various key aspects of the required global transition.
It highlights a set of opportunities for the UK alongside other developed countries to help assist global decarbonisation efforts alongside achieving it’s domestic emissions reduction targets
A Battery-Free Sustainable Powertrain Solution for Hydrogen Fuel Cell City Transit Bus Application
Apr 2022
Publication
The paper presents a sustainable electric powertrain for a transit city bus featuring an electrochemical battery-free power unit consisting of a hydrogen fuel cell stack and a kinetic energy storage system based on high-speed flywheels. A rare-earth free high-efficiency motor technology is adopted to pursue a more sustainable vehicle architecture by limiting the use of critical raw materials. A suitable dynamic energetic model of the full vehicle powertrain has been developed to investigate the feasibility of the traction system and the related energy management control strategy. The model includes losses characterisation as a function of the load of the main components of the powertrain by using experimental tests and literature data. The performance of the proposed solution is evaluated by simulating a vehicle mission on an urban path in real traffic conditions. Considerations about the effectiveness of the traction system are discussed.
Mechanical Properties and Hydrogen Embrittlement of Laser-Surface Melted AISI 430 Ferritic Stainless Steel
Feb 2020
Publication
Hydrogen was doped in austenitic stainless steel (ASS) 316L tensile samples produced by the laser-powder bed fusion (L-PBF) technique. For this aim an electrochemical method was conducted under a high current density of 100 mA/cm2 for three days to examine its sustainability under extreme hydrogen environments at ambient temperatures. The chemical composition of the starting powders contained a high amount of Ni approximately 12.9 wt.% as a strong austenite stabilizer. The tensile tests disclosed that hydrogen charging caused a minor reduction in the elongation to failure (approximately 3.5% on average) and ultimate tensile strength (UTS; approximately 2.1% on average) of the samples using a low strain rate of 1.2 × 10−4 s−1. It was also found that an increase in the strain rate from 1.2 × 10−4 s−1 to 4.8 × 10−4 s−1 led to a reduction of approximately 3.6% on average for the elongation to failure and 1.7% on average for UTS in the pre-charged samples. No trace of martensite was detected in the X-ray diffraction (XRD) analysis of the fractured samples thanks to the high Ni content which caused a minor reduction in UTS × uniform elongation (UE) (GPa%) after the H charging. Considerable surface tearing was observed for the pre-charged sample after the tensile deformation. Additionally some cracks were observed to be independent of the melt pool boundaries indicating that such boundaries cannot necessarily act as a suitable area for the crack propagation.
Property Optimization in As-Quenched Martensitic Steel by Molybdenum and Niobium Alloying
Apr 2018
Publication
Niobium microalloying is the backbone of modern low-carbon high strength low alloy (HSLA) steel metallurgy providing a favorable combination of strength and toughness by pronounced microstructural refinement. Molybdenum alloying is established in medium-carbon quenching and tempering of steel by delivering high hardenability and good tempering resistance. Recent developments of ultra-high strength steel grades such as fully martensitic steel can be optimized by using beneficial metallurgical effects of niobium and molybdenum. The paper details the metallurgical principles of both elements in such steel and the achievable improvement of properties. Particularly the underlying mechanisms of improving toughness and reducing the sensitivity towards hydrogen embrittlement by a suitable combination of molybdenum and niobium alloying will be discussed.
A Comprehensive Comparison of State-of-the-art Manufacturing Methods for Fuel Cell Bipolar Plates Including Anticipated Future Industry Trends
Nov 2020
Publication
This article explains and evaluates contemporary methods for manufacturing bipolar plates (BPPs) for lowtemperature polymer electrolyte membrane fuel cells (LT-PEMFC) and highlights the potential of new improved approaches. BPPs are an essential component of fuel cells responsible for distributing reaction gases to facilitate efficient conversion of gaseous electrochemical energy to electricity. BPPs must balance technical properties such as electrical and thermal conductivities structural strength and corrosion resistance. Graphitic and metallic materials can meet the required specifications with each material offering distinct advantages and disadvantages. Each materials’ performance is complimented by a comparison of its manufacturability including: the material costs production rates and required capital investment. These results are contextualised with respect to the target applications to identify the challenges and advantages of manufacturing methods of choice for BPPs. This analysis shows that the optimal choice of BPP manufacturing method depends entirely on the needs of the target application in particular the relative importance of manufacturing rate cost and the expected operational life of the bipolar plate to the fuel cell designer.
Effect of Deformation Microstructures on Hydrogen Embrittlement Sensitivity and Failure Mechanism of 304 Austenitic Stainless Steel: The Significant Role of Rolling Temperature
Feb 2022
Publication
Metastable austenitic stainless steels (ASSs) have excellent ductility but low strength so that their usage as load-bearing components is significantly limited. Rolling is an effective method of increasing strength whereas the effect of rolling temperature on microstructural evolution the hydrogen embrittlement (HE) sensitivity and fracture mechanisms is still unclear. In present study the effect of cold/warm rolling on detailed microstructural characteristics of 304 ASS was quantitatively investigated and the corresponding HE sensitivity was evaluated via slow strain rate test. The results suggest that cold-rolling led to high strength but poor plasticity and deteriorated HE sensitivity while warm-rolled samples provided combination of high strength and ductility and also superior HE resistance. Compared with 18% α′-martensite in cold -rolled steel warm-rolled specimens consisted of complete austenite less twins and lower dislocation density,moreover the favorable {112} ND and {110} ND textures replaced the harmful {001} ND texture. Based on in-situ EBSD observation during SSRT the HE sensitivity was governed by the combined effect of pre-deformation microstructures and the dynamic microstructural evolution. Advanced method of time-of-flight secondary ion mass spectrometry was used to observe the distribution of hydrogen and the hydrogen content of specimens was determined by the gas chromatograph thermal desorption analysis method. An exceedingly small amount of hydrogen entered the warm-rolled samples while a large amount of hydrogen was trapped at grain boundaries of cold-rolled sample leading to complete intergranular fracture. Therefore warm rolling is an effective pathway for obtaining high combination of strength and ductility together with excellent HE sensitivity.
Hybrid Electric Powertrain with Fuel Cells for a Series Vehicle
May 2018
Publication
Recent environmental and climate change issues make it imperative to persistently approach research into the development of technologies designed to ensure the sustainability of global mobility. At the European Union level the transport sector is responsible for approximately 28% of greenhouse gas emissions and 84% of them are associated with road transport. One of the most effective ways to enhance the de-carbonization process of the transport sector is through the promotion of electric propulsion which involves overcoming barriers related to reduced driving autonomy and the long time required to recharge the batteries. This paper develops and implements a method meant to increase the autonomy and reduce the battery charging time of an electric car to comparable levels of an internal combustion engine vehicle. By doing so the cost of such vehicles is the only remaining significant barrier in the way of a mass spread of electric propulsion. The chosen method is to hybridize the electric powertrain by using an additional source of fuel; hydrogen gas stored in pressurized cylinders is converted in situ into electrical energy by means of a proton exchange membrane fuel cell. The power generated on board can then be used under the command of a dedicated management system for battery charging leading to an increase in the vehicle’s autonomy. Modeling and simulation results served to easily adjust the size of the fuel cell hybrid electric powertrain. After optimization an actual fuel cell was built and implemented on a vehicle that used the body of a Jeep Wrangler from which the thermal engine associated subassemblies and gearbox were removed. Once completed the vehicle was tested in traffic conditions and its functional performance was established.
Developing Community Trust in Hydrogen
Oct 2019
Publication
The report documents current knowledge of the social issues surrounding hydrogen projects. It reviews leading practice stakeholder engagement and communication strategies and findings from focus groups and research activities across Australia.
The full report can be found at this link.
The full report can be found at this link.
Voltammetric and Galvanostatic Methods for Measuring Hydrogen Crossover in Fuel Cell
Dec 2021
Publication
Hydrogen crossover rate is an important indicator for characterizing the membrane degradation and failure in proton exchange membrane fuel cell. Several electrochemical methods have been applied to quantify it. But most of established methods are too rough to support follow-up applications. In this paper a systematic and consistent theoretical foundation for electrochemical measurements of hydrogen crossover is established for the first time. Different electrochemical processes occurring throughout the courses of applying potentiostatic or galvanostatic excitations on fuel cell are clarified and the linear current–voltage behavior observed in the steady-state voltammogram is reinterpreted. On this basis we propose a modified galvanostatic charging method with high practicality to achieve accurate electrochemical measurement of hydrogen crossover and the validity of this method is fully verified. This research provides an explicit framework for implementation of galvanostatic charging method and offers deeper insights into the principles of electrochemical methods for measuring hydrogen crossover.
On the Concept of Micro-fracture Map (MFM) and its Role in Structural Integrity Evaluations in Materials Science and Engineering: A Tribute to Jorge Manrique
Dec 2020
Publication
This paper deals with the concept of micro-fracture map (MFM) and its role in structural integrity evaluations in materials science and engineering on the basis of previous research by the author on notch-induced fracture and hydrogen embrittlement of progressively cold drawn pearlitic steels and 316L austenitic stainless steel. With regard to this some examples are provided of assembly of MFMs in particular situations.
Assessing Uncertainties of Life-Cycle CO2 Emissions Using Hydrogen Energy for Power Generation
Oct 2021
Publication
Hydrogen and its energy carriers such as liquid hydrogen (LH2) methylcyclohexane (MCH) and ammonia (NH3) are essential components of low-carbon energy systems. To utilize hydrogen energy the complete environmental merits of its supply chain should be evaluated. To understand the expected environmental benefit under the uncertainty of hydrogen technology development we conducted life-cycle inventory analysis and calculated CO2 emissions and their uncertainties attributed to the entire supply chain of hydrogen and NH3 power generation (co-firing and mono-firing) in Japan. Hydrogen was assumed to be produced from overseas renewable energy sources with LH2/MCH as the carrier and NH3 from natural gas or renewable energy sources. The Japanese life-cycle inventory database was used to calculate emissions. Monte Carlo simulations were performed to evaluate emission uncertainty and mitigation factors using hydrogen energy. For LH2 CO2 emission uncertainty during hydrogen liquefaction can be reduced by using low-carbon fuel. For MCH CO2 emissions were not significantly affected by power consumption of overseas processes; however it can be reduced by implementing low-carbon fuel and waste-heat utilization during MCH dehydrogenation. Low-carbon NH3 production processes significantly affected power generation whereas carbon capture and storage during NH3 production showed the greatest reduction in CO2 emission. In conclusion reducing CO2 emissions during the production of hydrogen and NH3 is key to realize low-carbon hydrogen energy systems.
Hydrogen Generation by Photocatalytic Reforming of Potential Biofuels: Polyols, Cyclic Alcohols, and Saccharides
Jan 2018
Publication
We have studied hydrogen gas production using photocatalysis from C2-C5 carbon chain polyols cyclic alcohols and mono and di-saccharides using palladium nanoparticles supported on a TiO2 catalyst. For many of the polyols the hydrogen evolution rate is found to be dictated by the number of hydroxyl groups and available a-hydrogens in the structure. However the rule only applies to polyols and cyclic alcohols while the sugar activity is limited by the bulky structure of those molecules. There was also evidence of ring opening in photocatalytic reforming of cyclic alcohols that involved dehydrogenation and decarbonylation of a CC bond.
Transport Pathway to Hydrogen webinar
Mar 2021
Publication
Webinar to accompany the launch of the Cadent Future Role of Gas in Transport report which can be found here
The Effect of Heat Treatments on the Constituent Materials of a Nuclear Reactor Pressure Vessel in Hydrogen Environment
Jul 2016
Publication
A nuclear reactor pressure vessel (NRPV) wall is formed by two layer of different materials: an inner layer of stainless steel (cladding material) and an outer layer of low carbon steel (base material) which is highly susceptible to corrosion related phenomena. A reduction of the mechanical properties of both materials forming the wall would appear due to the action of the harsh environment causing hydrogen embrittlement (HE) related phenomena. As a result of the manufacturing process residual stresses and strains appear in the NRPV wall thereby influencing the main stage in HE: hydrogen diffusion. A common engineering practice for reducing such states is to apply a tempering heat treatment. In this paper a numerical analysis is carried out for revealing the influence of the heat treatment parameters (tempering temperature and tempering time) on the HE of a commonly used NRPV. To achieve this goal a numerical model of hydrogen diffusion assisted by stress and strain was used considering diverse residual stress-strain states after tempering. This way the obtained hydrogen accumulation during operation time of the NRPV provides insight into the better tempering conditions from the structural integrity point of view.
Recent Progress Using Solid-State Materials for Hydrogen Storage: A Short Review
Feb 2022
Publication
With the rapid growth in demand for effective and renewable energy the hydrogen era has begun. To meet commercial requirements efficient hydrogen storage techniques are required. So far four techniques have been suggested for hydrogen storage: compressed storage hydrogen liquefaction chemical absorption and physical adsorption. Currently high-pressure compressed tanks are used in the industry; however certain limitations such as high costs safety concerns undesirable amounts of occupied space and low storage capacities are still challenges. Physical hydrogen adsorption is one of the most promising techniques; it uses porous adsorbents which have material benefits such as low costs high storage densities and fast charging–discharging kinetics. During adsorption on material surfaces hydrogen molecules weakly adsorb at the surface of adsorbents via long-range dispersion forces. The largest challenge in the hydrogen era is the development of progressive materials for efficient hydrogen storage. In designing efficient adsorbents understanding interfacial interactions between hydrogen molecules and porous material surfaces is important. In this review we briefly summarize a hydrogen storage technique based on US DOE classifications and examine hydrogen storage targets for feasible commercialization. We also address recent trends in the development of hydrogen storage materials. Lastly we propose spillover mechanisms for efficient hydrogen storage using solid-state adsorbents.
H21- Phase 1 Technical Summary Report
May 2021
Publication
The UK Government signed legislation on 27th June 2019 committing the UK to a legally binding target of Net Zero emissions by 2050. Climate change is one of the most significant technical economic social and business challenges facing the world today.
The H21 NIC Phase 1 project delivered an optimally designed experimentation and testing programme supported by the HSE Science Division and DNV GL with the aim to collect quantifiable evidence to support that the UK distribution network of 2032 will be comparably as safe operating on 100% hydrogen as it currently is on
natural gas. This innovative project begins to fill critical safety evidence gaps surrounding the conversion of the UK gas network to 100% hydrogen. This will facilitate progression towards H21 Phase 2 Operational Safety Demonstrations and the H21 Phase 3 Live Trials to promote customer acceptability and ultimately aid progress towards a government policy decision on heat.
DNV GL and HSE Science Division were engaged to undertake the experimentation testing and QRA update programme of work. DNV GL and HSE Science Division also peer reviewed each other’s programme of work at various stages throughout the project undertaking a challenge and review of the experimental data and results to provide confidence in the conclusions.
A strategic set of tests was designed to cover the range of assets represented across the Great Britain gas distribution networks. The assets used in the testing were mostly recovered from the distribution network as part of the ongoing Iron Mains Risk Reduction Replacement Programme. Controlled testing against a well-defined master testing plan with both natural gas and 100% hydrogen was then undertaken to provide the quantitative evidence to forecast any change to background leakage levels in a 100% hydrogen network.
Key Findings from Phase 1a:
The H21 NIC Phase 1 project delivered an optimally designed experimentation and testing programme supported by the HSE Science Division and DNV GL with the aim to collect quantifiable evidence to support that the UK distribution network of 2032 will be comparably as safe operating on 100% hydrogen as it currently is on
natural gas. This innovative project begins to fill critical safety evidence gaps surrounding the conversion of the UK gas network to 100% hydrogen. This will facilitate progression towards H21 Phase 2 Operational Safety Demonstrations and the H21 Phase 3 Live Trials to promote customer acceptability and ultimately aid progress towards a government policy decision on heat.
DNV GL and HSE Science Division were engaged to undertake the experimentation testing and QRA update programme of work. DNV GL and HSE Science Division also peer reviewed each other’s programme of work at various stages throughout the project undertaking a challenge and review of the experimental data and results to provide confidence in the conclusions.
A strategic set of tests was designed to cover the range of assets represented across the Great Britain gas distribution networks. The assets used in the testing were mostly recovered from the distribution network as part of the ongoing Iron Mains Risk Reduction Replacement Programme. Controlled testing against a well-defined master testing plan with both natural gas and 100% hydrogen was then undertaken to provide the quantitative evidence to forecast any change to background leakage levels in a 100% hydrogen network.
Key Findings from Phase 1a:
- Of the 215 assets tested 41 of them were found to leak 19 of them provided sufficient data to be able to compare hydrogen and methane leak rates.
- The tests showed that assets that were gas tight on methane were also gas tight on hydrogen. Assets that leaked on hydrogen also leaked
- on methane including repaired assets.
- The ratio of the hydrogen to methane volumetric leak rates varied between 1.1 and 2.2 which is largely consistent with the bounding values expected for laminar and turbulent (or inertial) flow which gave ratios of 1.2 and 2.8 respectively.
- None of the PE assets leaked; cast ductile and spun iron leaked to a similar degree (around 26-29% of all iron assets leaked) and the proportion of leaking steel assets was slightly less (14%).
- Four types of joint were responsible for most of the leaks on joints: screwed lead yarn bolted gland and hook bolts.
- All of the repairs that sealed methane leaks also were effective when tested with hydrogen.
Pyrolysis-gasification of Wastes Plastics for Syngas Production Using Metal Modified Zeolite Catalysts Under Different Ratio of Nitrogen/Oxygen
Jun 2020
Publication
The aim of this study was the syngas production by the gasification of plastic waste (polyethylene polypropylene and terephthalate polyethylene). Ca Ce La Mg and Mn were used to promote the Ni/ZSM-5 catalyst in order to enhance the production of higher syngas yield. The modified catalysts can enhanced the reaction rate of the pyrolysis process and resulting in high syngas in the product yields. Especially cerium lanthanum promoted catalysts can enhance the yield of syngas. The effect of the reaction temperature and nitrogen/oxygen ratio of the carrier gas was also investigated. The maximum syngas production was obtained with lanthanum catalyst (112.2 mmol/g (95%N2 and 5%O2) and 130.7 mmol/g (90%N2 and 10%O2) at 850 °C. Less carbon depositions was found at 850 °C or even by the using of catalyst and more oxygen in the carrier gas. The oxygen content of the pyrolysis-gasification atmosphere had a key role to the syngas yield and affects significantly the carbon-monoxide/carbon-dioxide ratio. Catalysts can also accelerate the methanization reactions and isomerize the main carbon frame. Increasing in both temperature and oxygen in the atmosphere led to higher n-paraffin/n-olefin ratio and more multi-ring aromatic hydrocarbons in pyrolysis oils. The concentration of hydrocarbons containing oxygen and branched compounds was also significantly affected by catalysts.
The Technical and Economic Potential of the H2@Scale Concept within the United States
Oct 2020
Publication
The U.S. energy system is evolving as society and technologies change. Renewable electricity generation—especially from wind and solar—is growing rapidly and alternative energy sources are being developed and implemented across the residential commercial transportation and industrial sectors to take advantage of their cost security and health benefits. Systemic changes present numerous challenges to grid resiliency and energy affordability creating a need for synergistic solutions that satisfy multiple applications while yielding system-wide cost and emissions benefits. One such solution is an integrated hydrogen energy system (Figure ES-1). This is the focus of H2@Scale—a U.S. Department of Energy (DOE) initiative led by the Office of Energy Efficiency and Renewable Energy’s Hydrogen and Fuel Technologies Office. H2@Scale brings together stakeholders to advance affordable hydrogen production transport storage and utilization in multiple energy sectors. The H2@Scale concept involves hydrogen as an energy intermediate. Hydrogen can be produced from various conventional and renewable energy sources including as a responsive load on the electric grid. Hydrogen has many current applications and many more potential applications such as energy for transportation—used directly in fuel cell electric vehicles (FCEVs) as a feedstock for synthetic fuels and to upgrade oil and biomass—feedstock for industry (e.g. for ammonia production metals refining and other end uses) heat for industry and buildings and electricity storage. Owing to its flexibility and fungibility a hydrogen intermediate could link energy sources that have surplus availability to markets that require energy or chemical feedstocks benefiting both. This document builds upon a growing body of analyses of hydrogen as an energy intermediate by reporting the results from our initial analysis of the potential impacts of the H2@Scale vision by the mid-21st century for the 48 contiguous U.S. states. Previous estimates have been based on expert elicitation and focused on hydrogen demands. We build upon them first by estimating hydrogen’s serviceable consumption potential for possible hydrogen applications and the technical potential for producing hydrogen from various resources. We define the serviceable consumption potential as the quantity of hydrogen that would be consumed to serve the portion of the market that could be captured without considering economics (i.e. if the price of hydrogen were $0/kg over an extended period); thus it can be considered an upper bound for the size of the market. We define the technical potential as the resource potential constrained by real-world geography and system performance but not by economics. We then compare the cumulative serviceable consumption potential with the technical potential of a number of possible sources. Second we estimate economic potential: the quantity of hydrogen at an equilibrium price at which suppliers are willing to sell and consumers are willing to buy the same quantity of hydrogen. We believe this method provides a deeper understanding than was available in the previous analyses. We develop economic potentials for multiple scenarios across various market and technology-advancement assumptions.
Hydrogen Fuel Cell Road Vehicles and Their Infrastructure: An Option Towards an Environmentally Friendly Energy Transition
Nov 2020
Publication
The latest pre-production vehicles on the market show that the major technical challenges posed by integrating a fuel cell system (FCS) within a vehicle—compactness safety autonomy reliability cold starting—have been met. Regarding the ongoing maturity of fuel cell systems dedicated to road transport the present article examines the advances still needed to move from a functional but niche product to a mainstream consumer product. It seeks to address difficulties not covered by more traditional innovation approaches. At least in long-distance heavy-duty vehicles fuel cell vehicles (FCVs) are going to play a key role in the path to zero-emissions in one or two decades. Hence the present study also addresses the structuring elements of the complete chain: the latter includes the production storage and distribution of hydrogen. Green hydrogen appears to be one of the potential uses of renewable energies. The greener the electricity is the greater the advantage for hydrogen since it permits to economically store large energy quantities on seasonal rhythms. Moreover natural hydrogen might also become an economic reality pushing the fuel cell vehicle to be a competitive and environmentally friendly alternative to the battery electric vehicle. Based on its own functional benefits for on board systems hydrogen in combination with the fuel cell will achieve a large-scale use of hydrogen in road transport as soon as renewable energies become more widespread. Its market will expand from large driving range and heavy load vehicles
Analysis of Strategic Directions in Sustainable Hydrogen Investment Decisions
Jun 2020
Publication
This study seeks to find the appropriate strategies necessary to make sustainable and effective hydrogen energy investments. Within this scope nine different criteria are defined regarding social managerial and financial factors. A hesitant interval-valued intuitionistic fuzzy (IVIF) decision-making trial and evaluation laboratory (DEMATEL) methodology is considered to calculate the degree of importance of the criteria. Additionally impact relation maps are also generated to visualize the causality relationship between the factors. The findings indicate that the technical dimension has the greatest importance in comparison to managerial and financial factors. Furthermore it is also concluded that storage and logistics research and development and technological infrastructure are the most significant factors to be considered when defining hydrogen energy investment strategies. Hence before investing in hydrogen energy necessary actions should be taken to minimize the storage and logistic costs. Among them building the production site close to the usage area will contribute significantly to this purpose. In this way possible losses during the transportation of hydrogen can be minimized. Moreover it is essential to identify the lowest-cost hydrogen storage method by carrying out the necessary research and development activities thereby increasing the sustainability and effectiveness of hydrogen energy investment projects.
Test Campaign on Existing HRS & Dissemination of Results
Apr 2019
Publication
This document is the final deliverable of Tasks 2 & 3 of the tender N° FCH / OP / CONTRACT 196: “Development of a Metering Protocol for Hydrogen Refuelling Stations”. In Task 2 a test campaign was organized on several HRS in Europe to apply the testing protocol defined in Task 1. This protocol requires mainly to perform different accuracy tests in order to determine the error of the complete measuring system (i.e. from the mass flow meter to the nozzle) in real fueling conditions. Seven HRS have been selected to fulfill the requirements specified in the tender. Tests results obtained are presented in this deliverable and conclusions are proposed to explain the errors observed. In the frame of Task 3 results and conclusions have been widely presented to additional Metrology Institutes than those involved in Task 1 in order to get their adhesion on the testing proposed protocol. All the work performed in Tasks 2 & 3 and associated outcomes / conclusions are reported here.
Corrosion Mechanisms of High-Mn Twinning-Induced Plasticity (TWIP) Steels: A Critical Review
Feb 2021
Publication
Twinning-induced plasticity (TWIP) steels have higher strength and ductility than conventional steels. Deformation mechanisms producing twins that prevent gliding and stacking of dislocations cause a higher ductility than that of steel grades with the same strength. TWIP steels are considered to be within the new generation of advanced high-strength steels (AHSS). However some aspects such as the corrosion resistance and performance in service of TWIP steel materials need more research. Application of TWIP steels in the automotive industry requires a proper investigation of corrosion behavior and corrosion mechanisms which would indicate the optimum degree of protection and the possible decrease in costs. In general Fe−Mn-based TWIP steel alloys can passivate in oxidizing acid neutral and basic solutions however they cannot passivate in reducing acid or active chloride solutions. TWIP steels have become as a potential material of interest for automotive applications due to their effectiveness impact resistance and negligible harm to the environment. The mechanical and corrosion performance of TWIP steels is subjected to the manufacturing and processing steps like forging and casting elemental composition and thermo-mechanical treatment. Corrosion of TWIP steels caused by both intrinsic and extrinsic factors has posed a serious problem for their use. Passivity breakdown caused by pitting and galvanic corrosion due to phase segregation are widely described and their critical mechanisms examined. Numerous studies have been performed to study corrosion behaviour and passivation of TWIP steel. Despite the large number of articles on corrosion few comprehensive reports have been published on this topic. The current trend for development of corrosion resistance TWIP steel is thoroughly studied and represented showing the key mechanisms and factors influencing corrosion processes and its consequences on TWIP steel. In addition suggestions for future works and gaps in the literature are considered.
Evaluation of Blistered and Cold Deformed ULC Steel with Melt Extraction and Thermal Desorption Spectroscopy
Dec 2019
Publication
Hydrogen characterization techniques like melt extraction and thermal desorption spectroscopy (TDS) are useful tools in order to evaluate and understand the interaction between hydrogen and metals. These two techniques are used here on cold deformed ultra-low carbon (ULC) steel with and without hydrogen induced damage. The material is charged electrochemically in order to induce varying amounts of hydrogen and variable degrees of hydrogen induced damage. The aim of this work is to evaluate to which extent the hydrogen induced damage would manifest itself in melt extraction and TDS measurements.
Energy System Requirements of Fossil-free Steelmaking using Hydrogen Direct Reduction
May 2021
Publication
The iron and steel industry is one of the world’s largest industrial emitters of greenhouse gases. One promising option for decarbonising the industry is hydrogen direct reduction of iron (H-DR) with electric arc furnace (EAF) steelmaking powered by zero carbon electricity. However to date little attention has been given to the energy system requirements of adopting such a highly energy-intensive process. This study integrates a newly developed long-term energy system planning tool with a thermodynamic process model of H-DR/EAF steelmaking developed by Vogl et al. (2018) to assess the optimal combination of generation and storage technologies needed to provide a reliable supply of electricity and hydrogen. The modelling tools can be applied to any country or region and their use is demonstrated here by application to the UK iron and steel industry as a case study. It is found that the optimal energy system comprises 1.3 GW of electrolysers 3 GW of wind power 2.5 GW of solar 60 MW of combined cycle gas with carbon capture 600 GWh/600 MW of hydrogen storage and 30 GWh/130 MW of compressed air energy storage. The hydrogen storage requirements of the industry can be significantly reduced by maintaining some dispatchable generation for example from 600 GWh with no restriction on dispatchable generation to 140 GWh if 20% of electricity demand is met using dispatchable generation. The marginal abatement costs of a switch to hydrogen-based steelmaking are projected to be less than carbon price forecasts within 5–10 years.
Influence of Synthesis Gas Components on Hydrogen Storage Properties of Sodium Aluminium Hexahydride
Feb 2021
Publication
A systematic study of different ratios of CO CO2 N2 gas components on the hydrogen storage properties of the Na3AlH6 complex hydride with 4 mol% TiCl3 8 mol% aluminum and 8 mol% activated carbon is presented in this paper. The different concentrations of CO and CO2in H2 and CO CO2 N2 in H2 mixture were investigated. Both CO and CO2gas react with the complex hydride forming Al oxy-compounds NaOH and Na2CO3 that consequently cause serious decline in hydrogen storage capacity. These reactions lead to irreversible damage of complex hydride under the current experimental condition. Thus after 10 cycles with 0.1 vol % CO + 99.9 vol %H2 and 1 vol % CO + 99 vol %H2 the dehydrogenation storage capacity of the composite material decreased by 17.2% and 57.3% respectively. In the case of investigation of 10 cycles with 1 vol % CO2 + 99 vol % H2 gas mixture the capacity degradation was 53.5%. After 2 cycles with 10 vol % CO +90 vol % H2 full degradation was observed whereas after 6 cycles with 10 vol % CO2+ 90 vol % H2 degradation of 86.8% was measured. While testing with the gas mixture of 1.5 vol % CO + 10 vol % CO2+ 27 vol % H2 + 61.5 vol % N2 the degradation of 94% after 6 cycles was shown. According to these results it must be concluded that complex aluminum hydrides cannot be used for the absorption of hydrogen from syngas mixtures without thorough purification.
Wax: A Benign Hydrogen-storage Material that Rapidly Releases H2-rich Gases Through Microwave-assisted Catalytic Decomposition
Oct 2016
Publication
Hydrogen is often described as the fuel of the future especially for application in hydrogen powered fuel-cell vehicles (HFCV’s). However its widespread implementation in this role has been thwarted by the lack of a lightweight safe on-board hydrogen storage material. Here we show that benign readily available hydrocarbon wax is capable of rapidly releasing large amounts of hydrogen through microwave-assisted catalytic decomposition. This discovery offers a new material and system for safe and efficient hydrogen storage and could facilitate its application in a HFCV. Importantly hydrogen storage materials made of wax can be manufactured through completely sustainable processes utilizing biomass or other renewable feedstocks.
Graphene Oxide/metal Nanocrystal Multilaminates as the Atomic Limit for Safe and Selective Hydrogen Storage
Mar 2016
Publication
Interest in hydrogen fuel is growing for automotive applications; however safe dense solid-state hydrogen storage remains a formidable scientific challenge. Metal hydrides offer ample storage capacity and do not require cryogens or exceedingly high pressures for operation. However hydrides have largely been abandoned because of oxidative instability and sluggish kinetics. We report a new environmentally stable hydrogen storage material constructed of Mg nanocrystals encapsulated by atomically thin and gas-selective reduced graphene oxide (rGO) sheets. This material protected from oxygen and moisture by the rGO layers exhibits exceptionally dense hydrogen storage (6.5 wt% and 0.105 kg H2 per litre in the total composite). As rGO is atomically thin this approach minimizes inactive mass in the composite while also providing a kinetic enhancement to hydrogen sorption performance. These multilaminates of rGO-Mg are able to deliver exceptionally dense hydrogen storage and provide a material platform for harnessing the attributes of sensitive nanomaterials in demanding environments.
Water Removal from LOHC Systems
Oct 2020
Publication
Liquid organic hydrogen carriers (LOHC) store hydrogen by reversible hydrogenation of a carrier material. Water can enter the system via wet hydrogen coming from electrolysis as well as via moisture on the catalyst. Removing this water is important for reliable operation of the LOHC system. Different approaches for doing this have been evaluated on three stages of the process. Drying of the hydrogen before entering the LOHC system itself is preferable. A membrane drying process turns out to be the most efficient way. If the water content in the LOHC system is still so high that liquid–liquid demixing occurs it is crucial for water removal to enhance the slow settling. Introduction of an appropriate packing can help to separate the two phases as long as the volume flow is not too high. Further drying below the rather low solubility limit is challenging. Introduction of zeolites into the system is a possible option. Water adsorbs on the surface of the zeolite and moisture content is therefore decreased.
How To Transport and Store Hydrogen – Facts and Figures
Apr 2021
Publication
The EU has set a goal of achieving climate neutrality by 2050 and decided to raise its 2030 climate target to 55%. For this the EU needs to transform its energy system. It is of paramount importance that it will become more efficient affordable and interconnected. Hydrogen can play a pivotal role in the EU’s decarbonisation efforts and be at the centre of the energy system integration supporting transport of renewable energy over very long distances and facilitating renewables storage from one season to another.<br/><br/>ENTSOG GIE and Hydrogen Europe have joined forces on a factsheet that answers a number of fundamental questions about gaseous and liquid hydrogen transport and storage titled “How to transport and store hydrogen? Facts and figures”. This factsheet provides an objective and informative analysis on key concepts terminology and facts and figures from different public sources.<br/><br/>The factsheet illustrates the EU’s potential to enable a global hydrogen economy and to become a global technology leader due to its extensive gas infrastructure that can be used to transport blends of hydrogen or be converted to transport pure hydrogen.
The Role of the Argon and Helium Bath Gases on the Detonation Structure of H2/)2 Mixture
Sep 2021
Publication
Recent modeling efforts of non-equilibrium effects in detonations have suggested that hydrogen-based detonations may be affected by vibrational non-equilibrium of the hydrogen and oxygen molecules effects which could explain discrepancies of cell sizes measured experimentally and calculated without relaxation effects. The present study addresses the role of vibrational relaxation in 2H2/O2 detonations by considering two-bath gases argon and helium. These two gases have the same thermodynamic and kinetic effects when relaxation is neglected. However due to the bath gases differences in molecular weight and reduced mass differences which affect the molecular collisions relaxation rates can be changed by approximately 50-70%. Experiments were performed in a narrow channel in mixtures of 2H2/O2/7Ar and 2H2/O2/7He to evaluate the role of the bath gas on detonation cellular structures. The experiments showed differences in velocity deficits and cell sizes for experimental conditions keeping the induction zone length constant in each of the mixtures. These differences were negligible in sensitive mixtures but increased with the increase in velocity deficits while the cell sizes approaching the channel dimensions. Near the limits differences of cell size in two mixtures approached a factor of 2. These differences were however reconciled by accounting for the viscous losses to the tube walls evaluated using a modified version of Mirels' laminar boundary layer theory and generalized Chapman-Jouguet theory for eigenvalue detonations. The experiments suggest that there is an influence of relaxation effects on the cellular structure of detonations which is more sensitive to wall boundary conditions. However the previous works showed that the impact of vibrational non-equilibrium in a mixture of H2/Air is more visible due to the effects of N2 in the air slowest to relax. Previous discrepancies suggested to be indicative of relaxation effects should be reevaluated by the inclusion of wall loss effects.
Tantalum (Oxy)Nitride: Narrow Bandgap Photocatalysts for Solar Hydrogen Generation
Jul 2017
Publication
Photocatalytic water splitting which directly converts solar energy into hydrogen is one of the most desirable solar-energy-conversion approaches. The ultimate target of photocatalysis is to explore efficient and stable photocatalysts for solar water splitting. Tantalum (oxy)nitride-based materials are a class of the most promising photocatalysts for solar water splitting because of their narrow bandgaps and sufficient band energy potentials for water splitting. Tantalum (oxy)nitride-based photocatalysts have experienced intensive exploration and encouraging progress has been achieved over the past years. However the solar-to-hydrogen (STH) conversion efficiency is still very far from its theoretical value. The question of how to better design these materials in order to further improve their water-splitting capability is of interest and importance. This review summarizes the development of tantalum (oxy)nitride-based photocatalysts for solar water spitting. Special interest is paid to important strategies for improving photocatalytic water-splitting efficiency. This paper also proposes future trends to explore in the research area of tantalum-based narrow bandgap photocatalysts for solar water splitting.
Experimental Study of Hydrogen Embrittlement in Maraging Steels
Feb 2018
Publication
This research activity aims at investigating the hydrogen embrittlement of Maraging steels in connection to real sudden failures of some of the suspension blades of the Virgo Project experimental apparatus. Some of them failed after 15 years of service in working conditions. Typically in the Virgo detector blades are loaded up to 50-60% of the material yield strength. For a deeper understanding of the failure the relationship between hydrogen concentration and mechanical properties of the material have been investigated with specimens prepared in order to simulate blade working conditions. A mechanical characterization of the material has been carried out by standard tensile testing in order to establish the effect of hydrogen content on the material strength. Further experimental activity was executed in order to characterize the fracture surface and to measure the hydrogen content. Finally some of the failed blades have been analyzed in DICI-UNIPI laboratory. The experimental results show that the blades failure can be related with the hydrogen embrittlement phenomenon.
Investigation of Structure of AlN Thin Films Using Fourier-transform Infrared Spectroscopy
Feb 2020
Publication
This study focuses on structural imperfections caused by hydrogen impurities in AlN thin films obtained using atomic layer deposition method (ALD). Currently there is a severe lack of studies regarding the presence of hydrogen in the bulk of AlN films. Fourier-transform infrared spectroscopy (FTIR) is one of the few methods that allow detection bonds of light elements in particular - hydrogen. Hydrogen is known to be a frequent contaminant in AlN films grown by ALD method it may form different bonds with nitrogen e.g. amino (–NH2) or imide (–NH) groups which impair the quality of the resulting film. Which is why it is important to investigate the phenomenon of hydrogen as well as to search for the suitable methods to eliminate or at least reduce its quantity. In this work several samples have been prepared using different precursors substrates and deposition parameters and characterized using FTIR and additional techniques such as AFM XPS and EDS to provide a comparative and comprehensive analysis of topography morphology and chemical composition of AlN thin films.
Concepts for Hydrogen Internal Combustion Engines and Their Implications on the Exhaust Gas Aftertreatment System
Dec 2021
Publication
Hydrogen as carbon-free fuel is a very promising candidate for climate-neutral internal combustion engine operation. In comparison to other renewable fuels hydrogen does obviously not produce CO2 emissions. In this work two concepts of hydrogen internal combustion engines (H2 -ICEs) are investigated experimentally. One approach is the modification of a state-of-the-art gasoline passenger car engine using hydrogen direct injection. It targets gasoline-like specific power output by mixture enrichment down to stoichiometric operation. Another approach is to use a heavy-duty diesel engine equipped with spark ignition and hydrogen port fuel injection. Here a diesel-like indicated efficiency is targeted through constant lean-burn operation. The measurement results show that both approaches are applicable. For the gasoline engine-based concept stoichio-metric operation requires a three-way catalyst or a three-way NOX storage catalyst as the primary exhaust gas aftertreatment system. For the diesel engine-based concept state-of-the-art selective catalytic reduction (SCR) catalysts can be used to reduce the NOx emissions provided the engine calibration ensures sufficient exhaust gas temperature levels. In conclusion while H2 -ICEs present new challenges for the development of the exhaust gas aftertreatment systems they are capable to realize zero-impact tailpipe emission operation.
Approaches and Methods to Demonstrate Repurposing of the UK's Local Transmission System (LTS) Pipelines for Transportation of Hydrogen
Sep 2021
Publication
Hydrogen has the potential as an energy solution to contribute to decarbonisation targets as it has the capability to deliver low-carbon energy at the scale required. For this to be realised the suitability of the existing natural gas pipeline networks for transporting hydrogen must be established. The current paper describes a feasibility study that was undertaken to assess the potential for repurposing the UK’s Local Transmission System (LTS) natural gas pipelines for hydrogen service. The analysis focused on SGN’s network which includes 3000 km of LTS pipelines in Scotland and the south of England. The characteristics of the LTS pipelines in terms of materials of construction and operation were first evaluated. This analysis showed that a significant percentage of SGN’s LTS network consists of lower strength grades of steel pipeline that operate at low stresses which are factors conducive to a pipeline’s suitability for hydrogen service. An assessment was also made of where existing approaches in pipeline operation may require modifications for hydrogen. The effects of changes in mechanical properties of steel pipelines on integrity and lifetime as a result of potential hydrogen degradation were demonstrated using fitness-for-purpose analysis. A review of pipeline risk assessment and Land-Use Planning (LUP) zone calculations for hydrogen was undertaken to identify any required changes. Case studies on selected sections of the LTS pipeline were then carried out to illustrate the potential changes to LUP zones. The work concluded with a summary of identified gaps that require addressing to ensure safe pipeline repurposing for hydrogen which cover materials performance inspection risk assessment land use planning and procedures.
Retrofitting Towards a Greener Marine Shipping Future: Reassembling Ship Fuels and Liquefied Natural Gas in Norway
Dec 2021
Publication
The reduction of greenhouse gas emissions has entered regulatory agendas in shipping. In Norway a debate has been ongoing for over a decade about whether liquefied natural gas (LNG) ship fuel enables or impedes the transition to a greener future for shipping. This paper explores the assembling of ship fuel before and after the introduction of a controversial carbon tax on LNG. It reconstructs how changes in the regulatory apparatus prompted the reworking of natural gas into a ship fuel yet later slowed down the development of LNG in a strategy to promote alternative zero-emission fuels such as hydrogen. Following ship fuel as socio-materiality in motion we find that fossil fuels are reworked into new modes of application as part of transition policies. Natural gas continues to be enacted as an “enabler of transition” in the context of shipping given that current government policies work to support the production of hydrogen from natural gas and carbon capture and storage (CCS). New modes of accounting for emissions reassemble existing fossil fuel materiality by means of CCS and fossil-based zero-emission fuels. We examine retrofit as a particular kind of reassembling and as a prism for studying the politics of fuel and the relation between transitions and existing infrastructures.
Preliminary Analysis of Compression System Integrated Heat Management Concepts Using LH2-Based Parametric Gas Turbine Model
Apr 2021
Publication
The investigation of the various heat management concepts using LH2 requires the development of a modeling environment coupling the cryogenic hydrogen fuel system with turbofan performance. This paper presents a numerical framework to model hydrogen-fueled gas turbine engines with a dedicated heat-management system complemented by an introductory analysis of the impact of using LH2 to precool and intercool in the compression system. The propulsion installations comprise Brayton cycle-based turbofans and first assessments are made on how to use the hydrogen as a heat sink integrated into the compression system. Conceptual tubular compact heat exchanger designs are explored to either precool or intercool the compression system and preheat the fuel to improve the installed performance of the propulsion cycles. The precooler and the intercooler show up to 0.3% improved specific fuel consumption for heat exchanger effectiveness in the range 0.5–0.6 but higher effectiveness designs incur disproportionately higher pressure losses that cancel-out the benefits.
HydroGenerally - Episode 2: Where Should Hydrogen Be Used?
Apr 2022
Publication
The Innovate UK KTN Hydrogen Innovation Network is bringing you this second episode with Steffan Eldred and Simon Buckley from Innovate UK KTN who continue their ‘back to basics' approach and delve deeper to understand where hydrogen should be used with their special guest Joanna Richart Head of Hydrogen Business at Ricardo. As with any technology or fuel discussions can get carried away implying they are the solution to all things but at Innovate UK KTN we strongly believe that we should ensure hydrogen is used where it can be most effective for decarbonising energy industrial and chemical industries.
The podcast can be found on their website
The podcast can be found on their website
Evaluation of Selectivity and Resistance to Poisons of Commercial Hydrogen Sensors
Sep 2013
Publication
The development of reliable hydrogen sensors is crucial for the safe use of hydrogen. One of the main concerns of end-users is sensor reliability in the presence of species other than the target gas which can lead to false alarms or undetected harmful situations. In order to assess the selectivity of commercial of the shelf (COTS) hydrogen sensors a number of sensors of different technology types were exposed to various interferent gas species. Cross-sensitivity tests were performed in accordance to the recommendations of ISO 26142:2010 using the hydrogen sensor testing facilities of NREL and JRC-IET. The results and conclusions arising from this study are presented.
Novel Biofuel Cell Using Hydrogen Generation of Photosynthesis
Nov 2020
Publication
Energies based on biomaterials attract a lot of interest as next-generation energy because biomaterials are environmentally friendly materials and abundant in nature. Fuel cells are also known as the clean and important next-generation source of energy. In the present study to develop the fuel cell based on biomaterials a novel biofuel cell which consists of collagen electrolyte and the hydrogen fuel generated from photochemical system II (PSII) in photosynthesis has been fabricated and its property has been investigated. It was found that the PSII solution in which PSII was extracted from the thylakoid membrane using a surfactant generates hydrogen by the irradiation of light. The typical hydrogen-generating rate is approximately 7.41 × 1014 molecules/s for the light intensity of 0.5 mW/cm2 for the PSII solution of 5 mL. The biofuel cell using the PSII solution as the fuel exhibited approximately 0.12 mW/cm2 . This result indicates that the fuel cell using the collagen electrolyte and the hydrogen fuel generated from PSII solution becomes the new type of biofuel cell and will lead to the development of the next-generation energy
Current Research Progress in Magnesium Borohydride for Hydrogen Storage (A review)
Nov 2021
Publication
Hydrogen storage in solid-state materials is believed to be a most promising hydrogen-storage technology for high efficiency low risk and low cost. Mg(BH4)2 is regarded as one of most potential materials in hydrogen storage areas in view of its high hydrogen capacities (14.9 wt% and 145–147 kg cm3 ). However the drawbacks of Mg(BH4)2 including high desorption temperatures (about 250 C–580 C) sluggish kinetics and poor reversibility make it difficult to be used for onboard hydrogen storage of fuel cell vehicles. A lot of researches on improving the dehydrogenation reaction thermodynamics and kinetics have been done mainly including: additives or catalysts doping nanoconfining Mg(BH4)2 in nanoporous hosts forming reactive hydrides systems multi-cation/anion composites or other derivatives of Mg(BH4)2. Some favorable results have been obtained. This review provides an overview of current research progress in magnesium borohydride including: synthesis methods crystal structures decomposition behaviors as well as emphasized performance improvements for hydrogen storage.
Effects of Renewable Energy Unstable Source to Hydrogen Production: Safety Considerations
Sep 2021
Publication
Hydrogen is considered a promising energy carrier for a sustainable future when it is produced by utilizing renewable energy. Nowadays less than 4% of hydrogen production is based on electrolysis processes. Each component of a hydrogen energy system needs to be optimized to increase the operation time and system efficiency. Only in this way hydrogen produced by electrolysis processes can be competitive with the conventional fossil energy sources. As conventional electrolysers are designed for operation at fixed process conditions the implementation of fluctuating and highly intermittent renewable energy is challenging. Alkaline water electrolysis is a key technology for large-scale hydrogen production powered by renewable energy. At low power availability conventional alkaline water electrolysers show a limited part-load range due to an increased gas impurity. Explosive mixtures of hydrogen and oxygen must be prevented; thus a safety shutdown is performed when reaching specific gas contamination. The University of Pisa is setting up a dedicated laboratory including a 40-kW commercial alkaline electrolyser: the focus of the study is to analyze the safety of the electrolyser together with its performance and the real energy efficiency analyzing its operational data collected under different operating conditions affected by the unstable energy supply.
Analysis to Support Revised Distances between Bulk Liquid Hydrogen Systems and Exposures
Sep 2021
Publication
The minimum distances between exposures and bulk liquid hydrogen listed in the National Fire Protection Agency’s Hydrogen Technology Code NFPA 2 are based on historical consensus without a documented scientific analysis. This work follows a similar analysis as the scientific justification provided in NFPA 2 for exposure distances from bulk gaseous hydrogen storage systems but for liquid hydrogen. Validated physical models from Sandia’s HyRAM software are used to calculate distances to a flammable concentration for an unignited release the distance to critical heat flux values and the visible flame length for an ignited release and the overpressure that would occur for a delayed ignition of a liquid hydrogen leak. Revised exposure distances for bulk liquid hydrogen systems are calculated. These distances are related to the maximum allowable working pressure of the tank and the line size as compared to the current exposure distances which are based on system volume. For most systems the exposure distances calculated are smaller than the current distances for Group 1 they are similar for Group 2 while they increase for some Group 3 exposures. These distances could enable smaller footprints for infrastructure that includes bulk liquid hydrogen storage tanks especially when using firewalls to mitigate Group 3 hazards and exposure distances. This analysis is being refined as additional information on leak frequencies is incorporated and changes have been proposed to the 2023 edition of NFPA 2.
Analysis of Hydrogen-powered Propulsion System Alternatives for Diesel-electric Regional Trains
Aug 2022
Publication
Non-electrified regional railway lines with typically employed diesel-electric multiple units require alternative propulsion systems to meet increasingly strict emissions regulations. With the aim to identify an optimal alternative to conventional diesel traction this paper presents a model-based assessment of hydrogen-powered propulsion systems with an internal combustion engine or fuel cells as the prime mover combined with different energy storage system configurations based on lithium-ion batteries and/or double-layer capacitors. The analysis encompasses technology identification design modelling and assessment of alternative powertrains explicitly considering case-related constraints imposed by the infrastructure technical and operational requirements. Using a regional railway network in the Netherlands as a case we investigate the possibilities in converting a conventional benchmark vehicle and provide the railway undertaking and decision-makers with valuable input for planning of future rolling stock investments. The results indicate the highest fuel-saving potential for fuel cell-based hybrid propulsion systems with lithium-ion battery or a hybrid energy storage system that combines both energy storage system technologies. The two configurations also demonstrate the highest reduction of greenhouse gas emissions compared to the benchmark diesel-driven vehicle by about 25% for hydrogen produced by steam methane reforming and about 19% for hydrogen obtained from electrolysis of water with grey electricity.
Hydrogen Generation on Orkney: Integrating Established Risk Management Best Practice to Emerging Clean Energy Sector
Sep 2021
Publication
The European Marine Energy Centre’s (EMEC) ITEG project (Integrating Tidal Energy into the European Grid) funded by Interreg NWE combines a tidal energy and hydrogen production solution to address grid constraints on the island of Eday in Orkney. The project will install a 0.5MW electrolyser at EMEC’s existing hydrogen production plant. EMEC and Risktec collaboratively applied best practice risk assessment and management techniques to assess and manage hydrogen safety. Hazard identification (HAZID) workshops were conducted collaboratively with design engineers through which a comprehensive hazard register was developed. Risktec applied bowtie analysis to each major accident hazard identified from the hazard register via virtual workshop with design engineers. The bowties promoted a structured review of each hazard’s threat and consequence identifying and reviewing the controls in place against good practice standards. The process revealed some recommendations for further improvement and risk reduction exemplifying a systematic management of risks associated with hydrogen hazards to as low as reasonably practicable (ALARP). Hardware based barriers preventing or mitigating loss of control of these hazards were logged as safety critical elements (SCE) and procedural barriers as safety critical activities (SCA). To ensure that all SCEs and SCAs identified through the risk assessment process are managed throughout the facility’s operational lifetime a safety management system is created giving assurance of overall safety management system continued effectiveness. The process enables the demonstration that design risks are managed to ALARP during design and throughout operational lifetime. More importantly enabling ITEG to progress to construction and operation in 2021.
Chemical Inhibition of Premixed Hydrogen-air Flames: Experimental Investigation using a 20-litre Vessel
Sep 2021
Publication
Throughout the history of the mining petroleum process and nuclear industries continuous efforts have been made to develop and improve measures to prevent and mitigate accidental explosions. Over the coming decades energy systems are expected to undergo a transition towards sustainable use of conventional hydrocarbons and an increasing share of renewable energy sources in the global energy mix. The variable and intermittent supply of energy from solar and wind points to energy systems based on hydrogen or hydrogen-based fuels as the primary energy carriers. However the safety-related properties of hydrogen imply that it is not straightforward to achieve and document the same level of safety for hydrogen systems compared to similar systems based on established fuels such as petrol diesel and natural gas. Compared to the conventional fuels hydrogen-air mixtures have lower ignition energy higher combustion reactivity and a propensity to undergo deflagration-to-detonation-transition (DDT) under certain conditions. To achieve an acceptable level of safety it is essential to develop effective measures for mitigating the consequences of hydrogen explosions in systems with certain degree of congestion and confinement. Extensive research over the last decade have demonstrated that chemical inhibition or partial suppression can be used for mitigating the consequences of vapour cloud explosions (VCEs) in congested process plants. Total and cooperation partners have demonstrated that solid flame inhibitors injected into flammable hydrocarbon-air clouds represent an effective means of mitigating the consequences of VCEs involving hydrocarbons. For hydrogen-air explosions these same chemicals inhibitors have not proved effective. It is however well-known that hydrocarbons can affect the burning velocity of hydrogen-air mixtures greatly. This paper gives an overview over previous work on chemical inhibitors. In addition experiments in a 20-litre vessel have been performed to investigate the effect of combinations of hydrocarbons and alkali salts on hydrogen/air mixtures.
Influence of Hydrogen Environment on Fatigue Fracture Morphology of X80 Pipeline Steel
Dec 2022
Publication
The rapid development of hydrogen energy requires the use of natural gas infrastructure for hydrogen transportation. It is very important to study hydrogen-added natural gas transportation technology which is a key way to rapidly develop coal-based gas and renewable energy. This study aims to study the influence of X80 pipeline steel's fatigue performance in hydrogen environment and perform fatigue tests on notched round rod specimens under different hydrogen concentration. The experimental results show that hydrogen seriously affects the fatigue life of pipeline steel. After reaching a certain hydrogen concentration as the hydrogen concentration continues to increase the fatigue life decreases gradually. Combined with SEM analysis of fracture morphology the decrease in the size and density of the dimples reduces the displacement amplitude while the increase in the planar area increases the displacement during fatigue fracture due to accelerated crack propagation. From this study we can know the influence of hydrogen concentration on the fracture morphology of pipeline steel which provides an understanding of the effect of hydrogen on fatigue fracture morphology and a broader safety analysis.
Minimum Fire Size for Hydrogen Storage Tank Fire Test Protocol for Hydrogen-powered Electric City Bus Determine Via Risk-based Approach
Sep 2021
Publication
As part of the United Nations Global Technical Regulation No. 13 (UN GTR #13 [1]) vehicle fire safety is validated using a localized and engulfing fire test methodology and currently updates are being considered in the on-going Phase 2 development stage. The GTR#13 fire test is designed to verify the performance of a hydrogen storage system of preventing rupture when exposed to service-terminating condition of fire situation. The test is conducted in two stages – localized flame exposure at a location most challenging for thermally-activated pressure relief device(s) (TPRDs) to respond for 10 min. followed by engulfing fire exposure until the system vents and the pressure falls to less than 1 MPa or until “time out” (30min. for light-duty vehicle containers and 60 min. for heavy-duty vehicle containers). The rationale behind this two-stage fire test is to ensure that even when fire sizes are small and TPRDs are not responding the containers have fire resistance to withstand or fire sensitivity to respond to a localized fire to avoid system rupture. In this study appropriate fire sizes for localized and engulfing fire tests in GTR#13 are evaluated by considering actual fire conditions in a hydrogen-powered electric city bus. Quantitative risk analysis is conducted to develop various fire accident scenarios including regular bus fire battery fire and hydrogen leak fire. Frequency and severity analyses are performed to determine the minimum fire size required in GTR#13 fire test to ensure hydrogen storage tank safety in hydrogen-powered electric city buses.
Sizing of a Fuel Cell–battery Backup System for a University Building Based on the Probability of the Power Outages Length
Jul 2022
Publication
Hydrogen is a bright energy vector that could be crucial to decarbonise and combat climate change. This energy evolution involves several sectors including power backup systems to supply priority facility loads during power outages. As buildings now integrate complex automation domotics and security systems energy backup systems cause interest. A hydrogen-based backup system could supply loads in a multi-day blackout; however the backup system should be sized appropriately to ensure the survival of essential loads and low cost. In this sense this work proposes a sizing of fuel cell (FC) backup systems for low voltage (LV) buildings using the history of power outages. Historical data allows fitting a probability function to determine the appropriate survival of loads. The proposed sizing is applied to a university building with a photovoltaic generation system as a case study. Results show that the sizing of an FC–battery backup system for the installation is 7.6% cheaper than a battery-only system under a usual 330-minutes outage scenario. And 59.3% cheaper in the case of an unusual 48-hours outage scenario. It ensures a 99% probability of supplying essential load during power outages. It evidences the pertinence of an FC backup system to attend to outages of long-duration and the integration of batteries to support the abrupt load variations. This research is highlighted by using historical data from actual outages to define the survival of essential loads with total service probability. It also makes it possible to determine adequate survival for non-priority loads. The proposed sizing is generalisable and scalable for other buildings and allows quantifying the reliability of the backup system tending to the resilience of electrical systems.
Protocol for Heavy-duty Hydrogen Refueling: A Modelling Benchmark
Sep 2021
Publication
For the successful deployment of the Heavy Duty (HD) hydrogen vehicles an associated infrastructure in particular hydrogen refueling stations (HRS) should be reliable compliant with regulations and optimized to reduce the related costs. FCH JU project PRHYDE aims to develop a sophisticated protocol dedicated to HD applications. The target of the project is to develop protocol and recommendations for an efficient refueling of 350 500 and 700 bar HD tanks of types III and IV. This protocol is based on modeling results as well as experimental data. Different partners of the PRHYDE European project are closely working together on this target. However modeling approaches and corresponding tools must first be compared and validated to ensure the high level of reliability for the modeling results. The current paper presents the benchmark performed in the frame of the project by Air Liquide Engie Wenger Engineering and NREL. The different models used were compared and calibrated to the configurations proposed by the PRHYDE project. In addition several scenarios were investigated to explore different cases with high ambient temperatures.
Nanoporous Polymer-based Composites for Enhanced Hydrogen Storage
May 2019
Publication
The exploration and evaluation of new composites possessing both processability and enhanced hydrogen storage capacity are of signifcant interest for onboard hydrogen storage systems and fuel cell based electric vehicle development. Here we demonstrate the fabrication of composite membranes with sufcient mechanical properties for enhanced hydrogen storage that are based on a polymer of intrinsic microporosity (PIM-1) matrix containing nano-sized fllers: activated carbon (AX21) or metal–organic framework (MIL-101). This is one of the frst comparative studies of diferent composite systems for hydrogen storage and in addition the frst detailed evaluation of the difusion kinetics of hydrogen in polymer-based nanoporous composites. The composite flms were characterised by surface area and porosity analysis hydrogen adsorption measurements mechanical testing and gas adsorption modelling. The PIM-1/AX21 composite with 60 wt% AX21 provides enhanced hydrogen adsorption kinetics and a total hydrogen storage capacity of up to 9.35 wt% at 77 K; this is superior to the US Department of Energy hydrogen storage target. Tensile testing indicates that the ultimate stress and strain of PIM-1/ AX21 are higher than those of the MIL-101 or PAF-1 containing composites and are sufcient for use in hydrogen storage tanks. The data presented provides new insights into both the design and characterisation methods of polymer-based composite membranes. Our nanoporous polymer-based composites ofer advantages over powders in terms of safety handling and practical manufacturing with potential for hydrogen storage applications either as means of increasing storage or decreasing operating pressures in high-pressure hydrogen storage tanks.
Power-to-Gas Hydrogen: Techno-economic Assessment of Processes Towards a Multi-purpose Energy Carrier
Dec 2016
Publication
The present work investigates Power-to-Gas (PtG) options for variable Renewable Electricity storage into hydrogen through low temperature (alkaline and PEM) and high-temperature (SOEC) water electrolysis technologies. The study provides the assessment of the cost of the final product when hydrogen is employed for mobility (on-site refueling stations) electricity generation (by fuel cells in Power-to-Power systems) and grid injection in the natural gas network. Costs estimations are performed for 2013-2030 scenarios. A case study on the impact of variable Renewable Electricity storage by hydrogen generation on the Italian electricity and mobility sectors is presented.
Hydrogen Sensing Properties of UV Enhanced Pd-SnO2 Nano-Spherical Composites at Low Temperature
Sep 2021
Publication
Metal oxide semiconductor (MOS) is promising in developing hydrogen detectors. However typical MOS materials usually work between 200-500°C which not only restricts their application in flammable and explosive gases detection but also weakens sensor stability and causes high power consumption. This paper studies the sensing properties of UV enhanced Pd-SnO2 nano-spherical composites at 80-360 ℃. In the experiment Pd of different molar ratios (0.5 2.5 5.0 10.0) was doped into uniform spherical SnO2 nanoparticles by a hydrothermal synthesis method. A xenon lamp with a filter was used as the ultraviolet excitation light source to examine the response of the spherical Pd- SnO2 nanocomposite to 50-1000 ppm H2 gas. The influence of different intensities of ultraviolet light on the gas-sensing properties of composite materials compared with dark condition was analyzed. The experiments show that the conductivity of the composites can be greatly stabilized and the thermal excitation temperature can be reduced to 180 ℃ under the effect of UV enhancement. A rapid response (4.4/ 17.4 s) to 200 ppm of H2 at 330 °C can be achieved by the Pd-SnO2 nanocomposites with UV assistance. The mechanism may be attributed to light motivated electron-hole pairs due to built-in electric fields under UV light illumination which can be captured by target gases and lead to UV controlled gas sensing performance. Catalytic active sites of hydrogen are provided on the surface of the mixed material by Pd. The results in this study can be helpful in reducing the response temperature of MOS materials and improving the performance of hydrogen detectors."
Cost of Long-Distance Energy Transmission by Different Carriers
Nov 2021
Publication
This paper compares the relative cost of long-distance large-scale energy transmission by electricity and by gaseous and liquid carriers (e-fuels). The results indicate that the cost of electrical transmission per delivered MWh can be up to eight times higher than for hydrogen pipelines about eleven times higher than for natural gas pipelines and twenty to fifty times higher than for liquid fuels pipelines. These differences generally hold for shorter distances as well. The higher cost of electrical transmission is primarily due to lower carrying capacity (MW per line) of electrical transmission lines compared to the energy carrying capacity of the pipelines for gaseous and liquid fuels. The differences in the cost of transmission are important but often unrecognized and should be considered as a significant cost component in the analysis of various renewable energy production distribution and utilization scenarios.
The Influence of Grain Boundary and Hydrogen on the Indetation of Bi-crystal Nickel
Sep 2021
Publication
Three different types of symmetrical tilt grain boundaries Ȉ3 Ȉ11 and Ȉ27 were constructed to study the dislocation behavior under the indentation on bi-crystal nickel. After hydrogen charging the number of hydrogen atoms in the Ȉ3 sample is the smallest and gradually increases in Ȉ11 and Ȉ27 samples. The force-displacement curve of indentation shows that the deformation resistance of the Ȉ3 sample is significantly higher than that of Ȉ11 and Ȉ27 samples. With the presence of grain boundaries the deformation resistance of Ȉ11 and Ȉ27 samples is significantly improved while the deformation resistance of the Ȉ3 VDPSOH is weakened. The indentation depth during the formation of dislocations in single crystals is significantly greater than that of bi-crystals. Grain boundaries slow down the dislocation propagation speed. Compared with the bi-crystals without hydrogen the presence of hydrogen reduces the deformation resistance and accelerates the dislocation propagation.
Recent Developments of Membranes and Electrocatalysts for the Hydrogen Production by Anion Exchange Membrane Water Electrolysers: A Review
Nov 2022
Publication
Hydrogen production using anion exchange membrane water electrolysis (AEMWE) offers hope to the energy crisis faced by humanity. AEM electrolysis can be coupled with intermittent and renewable energy sources as well as with the use of low-cost electrocatalysts and other low-cost stack components. In AEM water electrolysis one of the biggest advantages is the use of low-cost transition metal catalysts instead of traditional noble metal electrocatalysts. AEMWE is still in its infancy despite irregular research on catalysts and membranes. In order to generate commercially viable hydrogen AEM water electrolysis technology must be further developed including energy efficiency membrane stability stack feasibility robustness ion conductivity and cost reduction. An overview of studies that have been conducted on electrocatalysts membranes and ionomers used in the AEMWEs is here reported with the aim that AEMWE research may be made more practical by this review report by bridging technological gaps and providing practical research recommendations leading to the production of scalable hydrogen.
Hydrogen and Fuel Cell Demonstrations in Turkey
Nov 2012
Publication
As a non-profit UNIDO project funded 100% by the Turkish Ministry of Energy and Natural Resources International Center for Hydrogen Energy Technologies (ICHET) has been implementing pilot demonstration projects providing applied R&D funding; organizing workshops education and training activities in Turkey and other developing countries to show potential benefits of “hydrogen and fuel cell systems”. It is important to leap-frog developing countries to hydrogen for eliminating detrimental effect of fossil fuels. To achieve its mission ICHET implements pilot demonstration projects in combination with renewable energy systems to encourage local industry to manufacture similar systems and explore market potential for such use. Support is provided to selected industrial partners in Turkey for developing products or for early demonstrations including a fuel cell forklift a fuel cell boat a fuel cell passenger cart with PV integrated roof-top renewable integrated mobile house fuel cell based UPS installations. As more and more systems demonstrated public awareness on applications of hydrogen and fuel cell technologies will increase and viability of such systems will be realized to change public perception.
Photocatalytic Hydrogen Production by Photo-Reforming of Methanol with One-pot Synthesized Pt-containing TiO2 Photocatalysts
Jul 2019
Publication
Functionalization of semiconductors by metallic nanoparticle is considered to be one of the most effective procedure to improve photocatalytic hydrogen production. Photodeposition is frequently used for functionalization but particle sizes and dispersions are still difficult to control. Here Pt functionalization is achieved in a one-pot synthesis. The as-prepared samples are compared to reference materials prepared by conventional photodeposition and our results confirm that small and well-dispersed nanoparticles with superior stability are obtained by one-pot synthesis. The enhanced stability is attributed to a limited leaching of Pt nanoparticles during illumination likely caused by the preferable interaction of small well dispersed Pt nanoparticles with the TiO2 support material. In addition our results demonstrate that Na-residues are detrimental for the photocatalytic performance and washing in acidic solution is mandatory to effectively reduce the sodium contamination.
No more items...