Publications
Review of Decompression Damage of the Polymer Liner of the Type IV Hydrogen Storage Tank
May 2023
Publication
The type IV hydrogen storage tank with a polymer liner is a promising storage solution for fuel cell electric vehicles (FCEVs). The polymer liner reduces the weight and improves the storage density of tanks. However hydrogen commonly permeates through the liner especially at high pressure. If there is rapid decompression damage may occur due to the internal hydrogen concentration as the concentration inside creates the pressure difference. Thus a comprehensive understanding of the decompression damage is significant for the development of a suitable liner material and the commercialization of the type IV hydrogen storage tank. This study discusses the decompression damage mechanism of the polymer liner which includes damage characterizations and evaluations influential factors and damage prediction. Finally some future research directions are proposed to further investigate and optimize tanks.
Analysing the Prospects of Grid-connected Green Hydrogen Production in Predominantly Fossil-based Countries - A Case Study of South Africa
Aug 2024
Publication
Importing substantial amount of green hydrogen from countries like South Africa which have abundant solar and wind potentials to replace fossil fuels has attracted interest in developed regions. This study analyses South African strategies for improving and decarbonizing the power sector while also producing hydrogen for export. These strategies include the Integrated Resource Plan the Transmission Development Plan Just Energy Transition and Hydrogen Society Roadmap for grid connected hydrogen production in 2030. Results based on an hourly resolution optimisation in Plexos indicate that annual grid-connected hydrogen production of 500 kt can lead to a 20–25% increase in the cost of electricity in scenarios with lower renewable energy penetration due to South African emission constraints by 2030. While the price of electricity is still in acceptable range and the price of hydrogen can be competitive on the international market (2–3 USD/kgH2 for production) the emission factor of this hydrogen is higher than the one of grey hydrogen ranging from 13 to 24 kgCO2/kgh2. When attempting to reach emission factors based on EU directives the three policy roadmaps become unfeasible and free capacity expansion results in significant sixteen-fold increase of wind and seven-fold increase in solar installations compared to 2023 levels by 2030 in South Africa.
Green Hydrogen in Focus: A Review of Production Technologies, Policy Impact, and Market Developments
Aug 2024
Publication
This paper navigates the critical role of hydrogen in catalyzing a sustainable energy transformation. This review delves into hydrogen production methodologies spotlighting green and blue hydrogen as pivotal for future energy systems because of their potential to significantly reduce greenhouse gas emissions. Through a comprehensive literature review and a bibliometric analysis this study underscores the importance of technological advancements policy support and market incentives in promoting hydrogen as a key energy vector. It also explores the necessity of expanding renewable energy sources and international cooperation to secure a sustainable low-carbon future. The analysis highlights the importance of scalable and cost-effective hydrogen production methods such as solar-thermochemical and photo-electrochemical processes and addresses the challenges posed by resource availability and geopolitical factors in establishing a hydrogen economy. This paper serves as a guide for policy and innovation toward achieving global sustainability goals illustrating the essential role of hydrogen in the energy transition.
Hydrogen Liquefaction and Storage: Recent Progress and Perspectives
Feb 2023
Publication
The global energy sector accounts for ~75% of total greenhouse gas (GHG) emissions. Low-carbon energy carriers such as hydrogen are seen as necessary to enable an energy transition away from the current fossilderived energy paradigm. Thus the hydrogen economy concept is a key part of decarbonizing the global en ergy system. Hydrogen storage and transport are two of key elements of hydrogen economy. Hydrogen can be stored in various forms including its gaseous liquid and solid states as well as derived chemical molecules. Among these liquid hydrogen due to its high energy density ambient storage pressure high hydrogen purity (no contamination risks) and mature technology (stationary liquid hydrogen storage) is suitable for the transport of large-volumes of hydrogen over long distances and has gained increased attention in recent years. However there are critical obstacles to the development of liquid hydrogen systems namely an energy intensive liquefaction process (~13.8 kWh/kgLH2) and high hydrogen boil-off losses (liquid hydrogen evaporation during storage 1–5% per day). This review focuses on the current state of technology development related to the liquid hydrogen supply chain. Hydrogen liquefaction cryogenic storage technologies liquid hydrogen transmission methods and liquid hydrogen regasification processes are discussed in terms of current industrial applications and underlying technologies to understand the drivers and barriers for liquid hydrogen to become a commer cially viable part of the emerging global hydrogen economy. A key finding of this technical review is that liquid hydrogen can play an important role in the hydrogen economy - as long as necessary technological transport and storage innovations are achieved in parallel to technology demonstrations and market development efforts by countries committed liquid hydrogen as part of their hydrogen strategies.
Fuel Cell Systems for Maritime: A Review of Research Development, Commercial Products, Applications, and Perspectives
Dec 2022
Publication
The ambitious targets set by the International Maritime Organization for reducing greenhouse gas emissions from shipping require radical actions by all relevant stakeholders. In this context the interest in high efficiency and low emissions (even zero in the case of hydrogen) fuel cell technology for maritime applications has been rising during the last decade pushing the research developed by academia and industries. This paper aims to present a comparative review of the fuel cell systems suitable for the maritime field focusing on PEMFC and SOFC technologies. This choice is due to the spread of these fuel cell types concerning the other ones in the maritime field. The following issues are analyzed in detail: (i) the main characteristics of fuel cell systems; (ii) the available technology suppliers; (iii) international policies for fuel cells onboard ships; (iv) past and ongoing projects at the international level that aim to assess fuel cell applications in the maritime industry; (v) the possibility to apply fuel cell systems on different ship types. This review aims to be a reference and a guide to state both the limitations and the developing potential of fuel cell systems for different maritime applications.
Renewable Hydrogen Production Steps Up Wastewater Treatment under Low-carbon Electricity Sources - A Call Forth Approach
Sep 2024
Publication
Switching to renewable resources for hydrogen production is essential. Present hydrogen resources such as coal oil and natural gas are depleted and rapidly moving to a dead state and they possess a high carbon footprint. Wastewater is a promising avenue in searching for a renewable hydrogen production resource. Profuse techniques are preferred for hydrogen production. Among them electrolysis is great with wastewater against biological processes by hydrogen purity. Present obstacles behind the process are conversion efficiency intensive energy and cost. This review starts with hydrogen demand wastewater availability and their H2 potential then illustrates the three main types of electrolysis. The main section highlights renewable energy-assisted electrolysis because of its low carbon footprint and zero emission potential for various water electrolysis. High-temperature steam solid oxide electrolysis is a viable option for future scaling due to the versatile adoption of photo electric and thermal energy. A glance at some effective aspirations to large-scale H2 economics such as co-generation biomass utilization Microbial electrolysis waste to low-cost green electrode Carbon dioxide hydrogenation and minerals recovery. This study gives a broader view of facing challenges via versatile future perspectives to eliminate the obstacles above. renewable green H2 along with a low carbon footprint and cost potential to forward the large-scale wastewater electrolysis H2 production in addition to preserving the environment from wastewater and fossil fuel. Geographical and seasonal availability constraints are unavoidable; therefore energy storage and coupling of power sources is essential to attain consistent supply. The lack of regulations and policies supporting the development and adoption of these technologies did not reduce the gap between research and implementation. Life cycle assessment of this electrolysis process is rarely available so we need to focus on the natural effect of this process on the environment.
Hydrogen Supply Chain for Future Hydrogen-fuelled Railway in the UK: Transport Sector Focused
Aug 2024
Publication
Though being attractive on railway decarbonisation for regional lines excessive cost caused by immature hydrogen supply chain is one of the significant hurdles for promoting hydrogen traction to rolling stocks. Therefore we conduct bespoke research on the UK’s hydrogen supply chain for railway concentrating on hydrogen transportation. Firstly a map for the planned hydrogen production plants and potential hydrogen lines is developed with the location capacity and usage. A spatially explicit model for the hydrogen supply chain is then introduced which optimises the existing grid-based methodology on accuracy and applicability. Compressed hydrogen at three pressures and liquid hydrogen are considered as the mediums incorporating by road and rail transport. Furthermore three scenarios for hydrogen rail penetration are simulated respectively to discuss the levelised cost and the most suitable national transport network. The results show that the developed model with mix-integer linear programming (MILP) can well design the UK’s hydrogen distribution for railway traction. Moreover the hydrogen transport medium and vehicle should adjust to suit for different era where the penetration of hydrogen traction varies. The levelised cost of hydrogen (LCOH) decreases from 6.13 £/kg to 5.13 £/kg on average from the conservative scenario to the radical scenario. Applying different transport combinations according to the specific situation can satisfy the demand while reducing cost for multi-supplier and multitargeting hydrogen transport.
Low-Carbon Production in China’s Iron and Steel Industry: Technology Choices, Economic Assessment, and Policy
Feb 2025
Publication
The iron and steel industry (ISI) plays a significant role in carbon emissions contributing approximately 15% of the nation’s total emissions in China. Transitioning to low-carbon practices is crucial for achieving the country’s carbon neutrality goals. This paper reviews the current state of China’s ISI and assesses the feasibility of various decarbonization technologies including hydrogen utilization biomass substitution zero-carbon electricity Carbon Capture Utilization and Storage (CCUS) as well as their combinations. The blast furnace–basic oxygen furnace (BF-BOF) process currently dominates the industry with an overwhelming share of around 90% presenting significant challenges for decarbonization. In contrast the Direct Reduced Iron–Electric Arc Furnace (DRI-EAF) process is still at the demonstration project stage but it is rapidly growing and shows great potential for achieving net-zero emissions. Electric arc furnaces (EAFs) that use scrap steel account for about 9% of production and have the lowest energy consumption. However their production capacity is limited by the availability of scrap steel. Among numerous options blue hydrogen carbon-neutral biomass and CCUS technologies have relatively low costs and high technological maturity. Nevertheless no single technology can currently achieve deep decarbonization while significantly reducing costs. The nation needs to select the most suitable decarbonization strategies based on geographical location infrastructure and economic conditions. The government should enact corresponding policies provide economic incentives and ensure mitigation of the environmental and social impacts during the decarbonization transition.
Techno-economic and Environmental Assessment of Green Hydrogen Production via Biogas Reforming with Membrane-based CO2 Capture
Jan 2025
Publication
Reduction of the carbon dioxide emissions is a vital important environmental element in achieving the global climate neutrality. The integration of renewables and the Carbon Capture Utilization and Storage (CCUS) technologies is seen as an important pillar for overall decarbonization. This work presents several innovative concepts in which the biogas reforming process in integrated with pre- and post-combustion CO2 capture using membranes for green hydrogen production. The assessment evaluates the most relevant techno-economic and environmental performances for 100 MWth green hydrogen plant capacity. Several biogas reforming designs with and without CO2 capture capability were evaluated. In respect to the CO2 capture rate several pre- and postcombustion systems provided decarbonization yields between 55% up to 99%. The results show that the decarbonized membrane-based green hydrogen production shows attractive performances such as high energy efficiency (55–60%) reduced energy and cost penalties for CO2 capture (3.6–15.5 net efficiency points depending on the carbon capture rate) low specific CO2 emissions at system level (down to 2 kg/MWh green hydrogen) and overall negative carbon emission for whole biogas value chain (up to − 468 kg/MWh green hydrogen). This analysis clearly shows how the integration of renewables with CCUS technologies can deliver applications with negative CO2 emissions for climate neutrality.
New Development Paths through Green Hydrogen? An Ex-ante Assessment of Structure and Agency in Chile and Namibia
Jan 2025
Publication
Many developing countries seek to participate in the emerging global green hydrogen industry not only as exporters of green hydrogen and its derivatives to Europe and the Far East but also to use it for their own energy security and green transition. They hope that new development paths will lead to late-comer industrialisation. This article assesses corresponding prospects in Chile and Namibia two countries that pursue particularly ambitious plans on green hydrogen. To better understand the chances for path creation ex ante the authors draft an innovative framework that refers to context factors – that is structure – and three types of transformative agency. Against the backdrop of information from secondary sources and a series of expert interviews they uncover sound institutional reforms and initiatives of place-based leadership to promote the green hydrogen industry. However Chile and Namibia lack Schumpeterian entrepreneurship. It therefore remains to be seen whether new development paths will be inclusive contributing to in-country development. Typical downsides of extractive industries in resource peripheries might occur.
Solar-driven, Highly Sustained Splitting of Seawater into Hydrogen and Oxygen Fuels
Mar 2019
Publication
Electrolysis of water to generate hydrogen fuel is an attractiverenewable energy storage technology. However grid-scale fresh-water electrolysis would put a heavy strain on vital water re-sources. Developing cheap electrocatalysts and electrodes that cansustain seawater splitting without chloride corrosion could ad-dress the water scarcity issue. Here we present a multilayer anodeconsisting of a nickel–iron hydroxide (NiFe) electrocatalyst layeruniformly coated on a nickel sulfide (NiSx) layer formed on porousNi foam (NiFe/NiSx-Ni) affording superior catalytic activity andcorrosion resistance in solar-driven alkaline seawater electrolysisoperating at industrially required current densities (0.4 to 1 A/cm2)over 1000 h. A continuous highly oxygen evolution reaction-active NiFe electrocatalyst layer drawing anodic currents towardwater oxidation and an in situ-generated polyatomic sulfate andcarbonate-rich passivating layers formed in the anode are respon-sible for chloride repelling and superior corrosion resistance of thesalty-water-splitting anode.
Design Trends and Challenges in Hydrogen Direct Injection (H2DI) Internal Combustion Engines - A Review
Sep 2024
Publication
The hydrogen internal combustion engine (H2-ICE) is proposed as a robust and viable solution to decarbonise the heavy-duty on- and off-road as well as the light-duty automotive sectors of the transportation markets and is therefore the subject of rapidly growing research interest. With the potential for engine performance improvement by controlling the internal mixture formation and avoiding combustion anomalies hydrogen direct injection (H2DI) is a promising combustion mode. Furthermore the H2-ICE poses an attractive proposition for original equipment manufacturers (OEMs) and their suppliers since the fundamental base engine design components and manufacturing processes are largely unchanged. Nevertheless to deliver the highest thermal efficiency and zero-harm levels of tailpipe emissions moderate adaptations are needed to the engine control air path fuel injection and ignition systems. Therefore in this article critical design features fuel-air mixing combustion regimes and exhaust after-treatment systems (EATS) for H2DI engines are carefully assessed.
Industrial Decarbonization through Blended Combustion of Natural Gas and Hydrogen
Aug 2024
Publication
The transition to cleaner energy sources particularly in hard-to-abate industrial sectors often requires the gradual integration of new technologies. Hydrogen crucial for decarbonization is explored as a fuel in blended combustions. Blending or replacing fuels impacts combustion stability and heat transfer rates due to differing densities. An extensive literature review examines blended combustion focusing on hydrogen/methane mixtures. While industrial burners claim to accommodate up to 20% hydrogen theoretical support is lacking. A novel thermodynamic analysis methodology is introduced evaluating methane/hydrogen combustion using the Wobbe index. The findings highlight practical limitations beyond 25% hydrogen volume necessitating a shift to “totally hydrogen” combustion. Blended combustion can be proposed as a medium-term strategy acknowledging hydrogen’s limited penetration. Higher percentages require burner and infrastructure redesign.
On-site Solar Powered Refueling Stations for Green Hydrogen Production and Distribution: Performances and Costs
Jan 2022
Publication
Today the hydrogen is considered an essential element in speeding up the energy transition and generate important environmental benefits. Not all hydrogen is the same though. The “green hydrogen” which is produced using renewable energy and electrolysis to split water is really and completely sustainable for stationary and mobile applications. This paper is focused on the techno-economic analysis of an on-site hydrogen refueling station (HRS) in which the green hydrogen production is assured by a PV plant that supplies electricity to an alkaline electrolyzer. The hydrogen is stored in low pressure tanks (200 bar) and then is compressed at 900 bar for refueling FCHVs by using the innovative technology of the ionic compressor. From technical point of view the components of the HRS have been sized for assuring a maximum capacity of 450 kg/day. In particular the PV plant (installed in the south of Italy) has a size of 8MWp and supplies an alkaline electrolyzer of 2.1 MW. A Li-ion battery system (size 3.5 MWh) is used to store the electricity surplus and the grid-connection of the PV plant allows to export the electricity excess that cannot be stored in the battery system. The economic analysis has been performed by estimating the levelized cost of hydrogen (LCOH) that is an important economic indicator based on the evaluation of investment operational & maintenance and replacement costs. Results highlighted that the proposed on-site configuration in which the green hydrogen production is assured is characterized by a LCOH of 10.71 €/kg.
The Effect of Carbon Taxonomy on Renewable Hydrogen Production: A Techno-economic and Environmental Assessment
Dec 2024
Publication
From navigating the rainbow of colours to the lack of consensus in establishing a common taxonomy the labelling and definition of green or renewable hydrogen presents a growing challenge. In this context carbon taxonomy is understood through five critical aspects: carbon intensity temporal and geographical correlation additionality of renewable energy generation and different system boundaries in Life Cycle Assessment (LCA). This study examines the effect of carbon taxonomy on the design and operation of Power-to-Gas (PtG) systems for renewable hydrogen production including the electricity supply portfolio via Power Purchase Agreements (PPA) and grid-connected electrolysis. To this end an optimisation model combining energy system modelling and LCA is developed and then applied to a case study in the Japanese context. The importance of the PPA portfolio in securing cheap and low-carbon electricity to produce hydrogen is addressed. To support this evaluation process an eco-efficiency metric is introduced and proved to be a comprehensive tool for evaluating renewable hydrogen production. Regarding carbon taxonomies the findings emphasize additionality as the key determinant factor followed by temporal correlation and the definition of carbon intensity thresholds. The application of a cradle-togate LCA boundary influenced the cabron intensity accounting playing an unexpected role on the design and optimal PtG dispatch strategy.
Safety Assessment of Hydrogen Production Using Alkaline Water Electrolysis
Aug 2024
Publication
This paper presents a comprehensive safety assessment of hydrogen production using Alkaline Water Electrolysis (AWE). The study utilizes various risk assessment methodologies including Hazard Identification (HAZID) What-If analysis Fault Tree Analysis (FTA) Event Tree Analysis (ETA) and Bow Tie analysis to systematically identify and evaluate potential hazards associated with the AWE process. Key findings include the identification of critical hazards such as hydrogen leaks oxygen-related risks and maintenance challenges. The assessment emphasizes the importance of robust safety measures including preventive and mitigative strategies to manage these risks effectively. Consequence modeling highlights significant threat zones for thermal radiation and explosion risks underscoring the need for comprehensive safety protocols and emergency response plans. This work contributes valuable insights into hydrogen safety providing a framework for risk assessment and mitigation in hydrogen production facilities crucial for the safe and sustainable development of hydrogen infrastructure in the global energy transition.
Green Transformation of Mining towards Energy Self-Sufficiency in a Circular Economy—A Case Study
Jul 2024
Publication
This article presents the concept of green transformation of the coal mining sector. Pump stations that belong to Spółka Restrukturyzacji Kopal´n S.A. (SRK S.A. Bytom Poland) pump out approximately 100 million m3 of mine water annually. These pump stations protect neighboring mines and lower-lying areas from flooding and protect subsurface aquifers from contamination. The largest cost component of maintaining a pumping station is the expenditure for purchasing electricity. Investment towards renewable energy sources will reduce the environmental footprint of pumping station operation by reducing greenhouse gas emissions. The concept of liquidation of an exemplary mining site in the context of a circular economy by proposing the development/revitalization of a coal mine site is presented. This concept involves the construction of a complex consisting of photovoltaic farms combined with efficient energy storage in the form of green hydrogen produced by water electrolysis. For this purpose the potential of liquidated mining sites will be utilized including the use of pumped mine wastewater. This article is conceptual. In order to reach the stated objective a body of literature and legal regulations was analyzed and an empirical study was conducted. Various scenarios for the operation of mine pumping stations have been proposed. The options presented provide full or nearly full energy self-sufficiency of the proposed pumping station operation concept. The effect of applying any option for upgrading the pumping station could result in the creation of jobs that are alternatives to mining jobs and a guarantee of efficient asset management.
Life-cycle Carbon-intensity Mapping for Hydrogen-driven Energy and Economy
Aug 2024
Publication
Innovative approaches on clean alternative energy sources are important for future decarbonization. Electrification and hydrogen energy are crucial pathways for decarbonization in both transportation and buildings. However life-cycle stage-wise carbon intensity is still unclear for both hydrogen- and electricity-driven energy. Furthermore systematic evaluation on low-carbon transition pathways is insufficient specifically within the Internet of Energy that interfaces hydrogen and electricity. Here a generic approach is proposed for quantifying life-cycle stage-wise carbon intensity of both hydrogen- and electricity-driven energy internets. Life-cycle decarbonization effects on vehicle pathways are compared with traditional vehicles with internal-combustion engines. Techno-economic and environmental feasibility of the future advanced hydrogen-driven Internet of Energy is analyzed based on net present value. The region-wise carbon-intensity map and associated decarbonization strategies will help researchers and policymakers in promoting sustainable development with the hydrogen economy.
The UK Hydrogen Innovation Opportunity: Hydrogen Technology Roadmaps
Apr 2024
Publication
This report lays out roadmaps for the nine technology families identified in the UK Hydrogen Innovation Opportunity. The content in these roadmaps has been developed through a combination of extensive industrial engagement and aggregation of existing sector and technology roadmaps. This document also signposts to reports that highlight innovation challenges and opportunities for two underpinning technology families - materials and digital. The technology roadmaps in this document each include the following:
♦ UK and global market forecast for 2030 and 2050 for the respective technology family.
♦ Key technologies that make up the technology family.
♦ The associated innovation opportunities associated with each key technology together with development and industrialisation timelines and the sectors that will benefit from the innovation.
The list of innovation opportunities on each roadmap is by no means exhaustive but they are a sample that were selected because they highlighted some key innovation actions for the UK. To make this selection a range of factors were considered including global and UK economic demand the UK political imperative and UK potential to win market share. The development and industrialisation timelines are recommendations only and do not signify that this work is already planned or funded.
This report can also be downloaded for free on the Hydrogen Innovation Initiative website.
♦ UK and global market forecast for 2030 and 2050 for the respective technology family.
♦ Key technologies that make up the technology family.
♦ The associated innovation opportunities associated with each key technology together with development and industrialisation timelines and the sectors that will benefit from the innovation.
The list of innovation opportunities on each roadmap is by no means exhaustive but they are a sample that were selected because they highlighted some key innovation actions for the UK. To make this selection a range of factors were considered including global and UK economic demand the UK political imperative and UK potential to win market share. The development and industrialisation timelines are recommendations only and do not signify that this work is already planned or funded.
This report can also be downloaded for free on the Hydrogen Innovation Initiative website.
Economic and Environmental Analyses of an Integrated Power and Hydrogen Production Systems Based on Solar Thermal Energy
Aug 2024
Publication
This study introduces a novel hybrid solar–biomass cogeneration power plant that efficiently produces heat electricity carbon dioxide and hydrogen using concentrated solar power and syngas from cotton stalk biomass. Detailed exergy-based thermodynamic economic and environmental analyses demonstrate that the optimized system achieves an exergy efficiency of 48.67% and an exergoeconomic factor of 80.65% and produces 51.5 MW of electricity 23.3 MW of heat and 8334.4 kg/h of hydrogen from 87156.4 kg/h of biomass. The study explores four scenarios for green hydrogen production pathways including chemical looping reforming and supercritical water gasification highlighting significant improvements in levelized costs and the environmental impact compared with other solar-based hybrid systems. Systems 2 and 3 exhibit superior performance with levelized costs of electricity (LCOE) of 49.2 USD/MWh and 55.4 USD/MWh and levelized costs of hydrogen (LCOH) of between 10.7 and 19.5 USD/MWh. The exergoenvironmental impact factor ranges from 66.2% to 73.9% with an environmental impact rate of 5.4–7.1 Pts/MWh. Despite high irreversibility challenges the integration of solar energy significantly enhances the system’s exergoeconomic and exergoenvironmental performance making it a promising alternative as fossil fuel reserves decline. To improve competitiveness addressing process efficiency and cost reduction in solar concentrators and receivers is crucial.
Economic Performance of Combined Solid Oxide Fuel Cell System with Carbon Capture and Storage with Methanolation and Methanation by Green Hydrogen
Feb 2025
Publication
In addition to the promotion of pumped storage and electricity storage batteries the minimum use of inexpensive thermal power generation for the regulation of power in Japan and other countries is being considered as a supply-demand stabilization device with the expected widespread introduction of renewable energy by 2050. Therefore this study analyzed the economics related to the introduction of solid oxide fuel cell combined cycle using liquefied natural gas as a regulating power. The commercialization of recovered CO2 has been investigated for reducing the overall system operating costs. This study investigated a combined solid oxide fuel cell CO2 utilization system that employed green hydrogen methanolation and methanation to facilitate the use of the CO2 captured by the system. CO2 was separated from the exhaust gas of the system captured stored and used through methanation and methanolation. Consequently the synthesized methane was used for solid oxide fuel cell power generation and the synthesized methanol was sold. The discounted cash flow method was employed to evaluate the economic performance of the proposed system. At a unit price of 0.7–0.9 USD/kWh for electricity sold rated outputs of 1250 and 390 MW for solid oxide fuel cell combined cycle and photovoltaics respectively carbon capture and storage equipment cost of 800 USD/kWh and discount rate of 0.3 % the simple integrated payback period was obtained as 9 years whereas the dynamic payback period was 11–30 years. Consequently the economic feasibility of the proposed system was demonstrated.
Towards Hydrogen-powered Electric Aircraft: Physics-informed Machine Learning Based Multi-domain Modelling and Real-time Digital Twin Emulation on FPGA
Mar 2025
Publication
In response to environmental concerns related to carbon and nitrogen emissions hydrogen-powered aircraft (HPA) are poised for significant development over the coming decades driven by advances in power electronics technology. However HPA systems present complex multi-domain challenges encompassing electrical hydraulic mechanical and chemical disciplines necessitating efficient modeling and robust validation platforms. This paper introduces a physics-informed machine learning (PIML) approach for multi-domain HPA system modeling enhanced by hardware accelerated parallel hardware emulation to construct a real-time digital twin. It delves into the physical analysis of various HPA subsystems whose equations form the basis for both traditional numerical solution methods like Euler’s and Runge-Kutta methods (RKM) as well as the physics-informed neural networks (PINN) components developed herein. By comparing physics-feature neural networks (PFNN) and PINN with conventional neural network strategies this paper elucidates their advantages and limitations in practical applications. The final implementation on the Xilinx® UltraScale+™ VCU128 FPGA platform showcases the PIML method’s high efficiency accuracy data independence and adherence to established physical laws demonstrating its potential for advancing real-time multi-domain HPA emulation.
Fuel Cell Electric Vehicle Hydrogen Consumption and Battery Cycle Optimization Using Bald Eagle Search Algorithm
Sep 2024
Publication
In this study the Bald Eagle Search Algorithm performed hydrogen consumption and battery cycle optimization of a fuel cell electric vehicle. To save time and cost the digital vehicle model created in Matlab/Simulink and validated with real-world driving data is the main platform of the optimization study. The digital vehicle model was run with the minimum and maximum battery charge states determined by the Bald Eagle Search Algorithm and hydrogen consumption and battery cycle values were obtained. By using the algorithm and digital vehicle model together hydrogen consumption was minimized and range was increased. It was aimed to extend the life of the parts by considering the battery cycle. At the same time the number of battery packs was included in the optimization and its effect on consumption was investigated. According to the study results the total hydrogen consumption of the fuel cell electric vehicle decreased by 57.8% in the hybrid driving condition 23.3% with two battery packs and 36.27% with three battery packs in the constant speed driving condition.
Review of Reforming Processes for the Production of Green Hydrogen from Landfill Gas
Dec 2024
Publication
The growing challenges of climate change the depletion of fossil fuel reserves and the urgent need for carbon-neutral energy solutions have intensified the focus on renewable energy. In this perspective the generation of green hydrogen from renewable sources like biogas/landfill gas (LFG) offers an intriguing option providing the dual benefits of a sustainable hydrogen supply and enhanced waste management through energy innovation and valorization. Thus this review explores the production of green hydrogen from biogas/LFG through four conventional reforming processes specifically dry methane reforming (DMR) steam methane reforming (SMR) partial oxidation reforming (POX) and autothermal reforming (ATR) focusing on their mechanisms operating parameters and the role of catalysts in hydrogen production. This review further delves into both the environmental aspects specifically GWP (CO2 eq·kg−1 H2) emissions and the economic aspects of these processes examining their efficiency and impact. Additionally this review also explores hydrogen purification in biogas/LFG reforming and its integration into the CO2 capture utilization and storage roadmap for net-negative emissions. Lastly this review highlights future research directions focusing on improving SMR and DMR biogas/LFG reforming technologies through simulation and modeling to enhance hydrogen production efficiency thereby advancing understanding and informing future research and policy initiatives for sustainable energy solutions.
Exhaust Gas Aftertreatment to Minimize Nox Emissions from Hydrogen-fueled Internal Combustion Engines
Oct 2023
Publication
Hydrogen-fueled internal combustion engines are a promising CO2-free and zero-impact emission alternative to battery or fuel cell electric powertrains. Advantages include long service life robustness against fuel impurities and a strong infrastructural base with existing production lines and workshop stations. In order to make hydrogen engines harmless in terms of pollutant emissions as well NOX emissions at the tailpipe must be reduced as low as the zero-impact emission level. Here the application of selective catalytic reduction (SCR) catalysts is a promising solution that can be rapidly adopted from conventional diesel engines. This paper therefore investigates the influences of the hydrogen concentration in the raw exhaust gas of the NO2/NOX ratio and of the space velocity on the performance of two different SCR technologies. The results show that both types of SCR copper-zeolite and vanadium-based have their advantages and drawbacks. Copper-based SCR catalysts have an early light-off temperature and reach maximum efficiencies of up to >99%. On the other hand vanadium systems promise almost no secondary N2O emissions. As a result we combined both approaches to create a superior solution with high efficiency and lowest secondary emissions.
Eye-readable Sensors for Intuitive Hydrogen Monitoring
Apr 2024
Publication
Hydrogen energy is a cornerstone of the future climate-neutral economy. Yet as undetected leaks easily generate dangerous atmospheres sensing systems must timely detect accumulated hydrogen to prevent ignitions and explosions. Eye-readable sensors (ERSs) displaying intuitive readouts promise to guarantee safe use and universal access to hydrogen-based technology. This review highlights the impact of reversible ERSs in hydrogen moni toring to contextualize their current and potential applicability. First sensing mechanisms for gasochromic tungsten oxide films and switchable metal hydrides are critically overviewed. Then pivotal strategies targeting real-time monitorization indoors and permanent leak recording outdoors are presented along with standard hydrogen leakage scenarios elucidating opportunities for ERSs. Finally important challenges and desirable userfriendly concepts are discussed with the purpose of narrowing the gap between this class of sensors and the forthcoming hydrogen society.
Diffusive Mixing Between Hydrogen and Carbon Dioxide: Implications for Underground Hydrogen Storage
Feb 2025
Publication
The diffusive process between hydrogen (H2) and cushion gas affects the purity of H2 stored in the subsurface porous media. It is essential to understand the diffusive mass transfer and its impact on the migration of H2. Carbon dioxide (CO2) serves as a promising option for cushion gas. However due to experimental challenges there has been limited research conducted to quantify the diffusion between H2 and CO2 under reservoir conditions. For the first time we quantitatively measured the horizontal diffusive process between H2 and CO2 without convection interference in a high-pressure optical cell. The Raman spectroscopy is used to monitor the diffusive process in real-time and the diffusion coefficient is determined based on the measured concentration profiles. We showed that the Fick’s second law with a constant diffusion coefficient describes adequately the observed diffusive process. The resulting diffusion coefficient scales linearly with the reciprocal viscosity of CO2. Based on the measured diffusion coefficient we conducted a numerical study at field-scale. Results suggest that the dispersive mixing plays a role in the purity of produced H2.
Optimal Integration of Hybrid Renewable Energy Systems for Decarbonized Urban Electrification and Hydrogen Mobility
Aug 2024
Publication
This study addresses cost-optimal sizing and energy management of a grid-integrated solar photovoltaic wind turbine hybrid renewable energy system integrated with electrolyzer and hydrogen storage tank to simultaneously meet electricity and hydrogen demands considering the case study of Dijon France. Mixed Integer Linear Programming optimization problem is formulated to evaluate two objective case scenarios: single objective and multi-objective minimizing total annual costs and grid carbon emission footprint. The study incorporates various technical economic and environmental indicators focusing on the impact of sensitivity lying on various grid electricity purchase rates within the French electricity market prices. The results highlight that rising grid prices drive increased integration of renewable sources while lower prices favor ultimate grid dependency. Constant hydrogen demand necessitates the installation of two electrolyzers. Notably grid electricity prices above 60 e/MWh result increase in the size of the hydrogen tank and electrolyzer operation to prevent renewable energy losses. Grid prices above 140 e/MWh depict 70% of electrical and 80% of electrolyzer demand provided by the renewable generation resulting in a carbon emission below 0.0416 Mt of CO2 and 0.643 kgCO2 /kgH2 . Conversely grid prices below 20 e/MWh lead ultimately to 100% grid dependency with a higher carbon emission of approximately 0.14 Mt of CO2 and 4.13 kgCO2 /kgH2 reducing the total annual cost to 41.63 Million e. Increase in grid prices from 20e/MWh to 180 e/MWh resulted in increase of hydrogen specific costs from 1.23 to 3.58 e/kgH2 . Finally the Pareto front diagram is employed to illustrate the trade-off between total annual cost and carbon emission due to grid imports aiding in informed decision-making.
Efficient Solar-powered PEM Electrolysis for Sustainable Hydrogen Production: An Integrated Approach
Apr 2024
Publication
The coupling of photovoltaics (PVs) and PEM water electrolyzers (PEMWE) is a promising method for generating hydrogen from a renewable energy source. While direct coupling is feasible the variability of solar radiation presents challenges in efcient sizing. This study proposes an innovative energy management strategy that ensures a stable hydrogen production rate even with fuctuating solar irradiation. By integrating battery-assisted hydrogen production this approach allows for decentralized grid-independent renewable energy systems mitigating instability from PV intermittency. The system utilizes electrochemical storage to absorb excess energy during periods of low or very high irradiation which falls outside the electrolyzer’s optimal power input range. This stored energy then supports the PV system ensuring the electrolyzer operates near its nominal capacity and optimizing its lifetime. The system achieves an efciency of 7.78 to 8.81% at low current density region and 6.6% at high current density in converting solar energy into hydrogen.
Research on Energy Management in Hydrogen–Electric Coupled Microgrids Based on Deep Reinforcement Learning
Aug 2024
Publication
Hydrogen energy represents an ideal medium for energy storage. By integrating hydrogen power conversion utilization and storage technologies with distributed wind and photovoltaic power generation techniques it is possible to achieve complementary utilization and synergistic operation of multiple energy sources in the form of microgrids. However the diverse operational mechanisms varying capacities and distinct forms of distributed energy sources within hydrogen-coupled microgrids complicate their operational conditions making fine-tuned scheduling management and economic operation challenging. In response this paper proposes an energy management method for hydrogen-coupled microgrids based on the deep deterministic policy gradient (DDPG). This method leverages predictive information on photovoltaic power generation load power and other factors to simulate energy management strategies for hydrogen-coupled microgrids using deep neural networks and obtains the optimal strategy through reinforcement learning ultimately achieving optimized operation of hydrogen-coupled microgrids under complex conditions and uncertainties. The paper includes analysis using typical case studies and compares the optimization effects of the deep deterministic policy gradient and deep Q networks validating the effectiveness and robustness of the proposed method.
Integrated Home Energy Management with Hybrid Backup Storage and Vehicle-to-Home Systems for Enhanced Resilience, Efficiency, and Energy Independence in Green Buildings
Sep 2024
Publication
This study presents an innovative home energy management system (HEMS) that incorporates PV WTs and hybrid backup storage systems including a hydrogen storage system (HSS) a battery energy storage system (BESS) and electric vehicles (EVs) with vehicle-to-home (V2H) technology. The research conducted in Liaoning Province China evaluates the performance of the HEMS under various demand response (DR) scenarios aiming to enhance resilience efficiency and energy independence in green buildings. Four DR scenarios were analyzed: No DR 20% DR 30% DR and 40% DR. The findings indicate that implementing DR programs significantly reduces peak load and operating costs. The 40% DR scenario achieved the lowest cumulative operating cost of $749.09 reflecting a 2.34% reduction compared with the $767.07 cost in the No DR scenario. The integration of backup systems particularly batteries and fuel cells (FCs) effectively managed energy supply ensuring continuous power availability. The system maintained a low loss of power supply probability (LPSP) indicating high reliability. Advanced optimization techniques particularly the reptile search algorithm (RSA) are crucial in enhancing system performance and efficiency. These results underscore the potential of hybrid backup storage systems with V2H technology to enhance energy independence and sustainability in residential energy management.
Sustainable Integration of Green Hydrogen in Renewable Energy Systems for Residential and EV Applications
Jan 2024
Publication
The surge in interest surrounding renewable energy stems from concerns regarding pollution and the finite supply ofnonrenewable resources. Solar PV and wind hybrid renewable energy systems (HRES) are increasingly recognized as practicaland cost-effective solutions particularly in remote areas. However the intermittent nature of solar and wind power presents achallenge. To address this incorporating a hydrogen source into the system has been proposed. This study focuses onmodelling and sizing a hybrid energy system tailored for remote areas accommodating both home and electric vehicle loads.The simulation is conducted for Siliguri West Bengal India with the goal of optimizing productivity minimizing expensesand considering economic factors using HOMER Pro software. The integration of green hydrogen-based power generationwith photovoltaic and wind HRES emerges as an effective solution. Solar power in particular showcases promisingopportunities for the electrolysis process and HRES systems. The presented work facilitates the modelling of a green hydrogen-based green energy system taking into account capacity cost and emission constraints. Various case studies are conducted toenhance system efficiency and reduce the costs of energy (COE). In this paper three cases of grid-connected and three cases ofoff-grid or grid-disconnected systems are considered for highlighting the benefits of hydrogen energy incorporation in bothtypes of systems. This research contributes to sustainable energy solutions advancing a greener and more efficient energylandscape especially in addressing the recent development in load combinations of home and electric vehicle loads in bothgrid-connected as well as grid-disconnected system.
Fuelling a Clean Future: A Systematic Review of Techno-Economic and Life Cycle Assessments in E-Fuel Development
Aug 2024
Publication
The transition to sustainable energy has ushered in the era of electrofuels (e-fuels) which are synthesised using electricity from renewable sources water and CO2 as a sustainable alternative to fossil fuels. This paper presents a systematic review of the techno-economic (TEA) and life cycle assessments (LCAs) of e-fuel production. We critically evaluate advancements in production technologies economic feasibility environmental implications and potential societal impacts. Our findings indicate that while e-fuels offer a promising solution to reduce carbon emissions their economic viability depends on optimising production processes and reducing input material costs. The LCA highlights the necessity of using renewable energy for hydrogen production to ensure the genuine sustainability of e-fuels. This review also identifies knowledge gaps suggesting areas for future research and policy intervention. As the world moves toward a greener future understanding the holistic implications of e-fuels becomes paramount. This review aims to provide a comprehensive overview to guide stakeholders in their decision-making processes.
A Review of the Use of Hydrogen in Compression Ignition Engines with Dual-Fuel Technology and Techniques for Reducing NOx Emissions
Apr 2024
Publication
The use of compression ignition engines (CIEs) is associated with increased greenhouse gas emissions. It is therefore necessary to research sustainable solutions and reduce the negative environmental impact of these engines. A widely studied alternative is the use of H2 in dual-fuel mode. This review has been developed to include the most recent studies on the subject to collect and compare their main conclusions on performance and emissions. Moreover this study includes most relevant emission control strategies that have not been extensively analyzed in other reviews on the subject. The main conclusion drawn from the literature is the negative effect of the addition of H2 on NOx. This is due to the increase in temperature during combustion which increases NOx formation as the thermal mechanism predominates. Therefore to reduce these emissions three strategies have been studied namely exhaust gas recirculation (EGR) water injection (WI) and compression ratio (CR) reduction. The effect of these techniques on NOx reduction together with their effect on other analyzed performance parameters have been deeply analyzed. The studies reviewed in this work indicate that hydrogen is an alternative fuel for CIEs when used in conjunction with techniques that have proven to be effective in reducing NOx.
Multi-Objective Parameter Configuration Optimization of Hydrogen Fuel Cell Hybrid Power System for Locomotives
Sep 2024
Publication
Conventional methods of parameterizing fuel cell hybrid power systems (FCHPS) often rely on engineering experience which leads to problems such as increased economic costs and excessive weight of the system. These shortcomings limit the performance of FCHPS in real-world applications. To address these issues this paper proposes a novel method for optimizing the parameter configuration of FCHPS. First the power and energy requirements of the vehicle are determined through traction calculations and a real-time energy management strategy is used to ensure efficient power distribution. On this basis a multi-objective parameter configuration optimization model is developed which comprehensively considers economic cost and system weight and uses a particle swarm optimization (PSO) algorithm to determine the optimal configuration of each power source. The optimization results show that the system economic cost is reduced by 8.76% and 18.05% and the weight is reduced by 11.47% and 9.13% respectively compared with the initial configuration. These results verify the effectiveness of the proposed optimization strategy and demonstrate its potential to improve the overall performance of the FCHPS.
Strategic Public Relations Policy for Accelerating Hydrogen Acceptance: Insights from an Expert Survey in South Korea
Aug 2024
Publication
Hydrogen has great growth potential due to its green carbon-neutral nature but public acceptance is low due to negative perceptions of the dangers associated with hydrogen energy. Safety concerns particularly related to its flammability and explosiveness are an obstacle to hydrogen energy policy. In South Korea recent hydrogen-related explosions have exacerbated these concerns undermining public confidence. This study developed public relations (PR) strategies to manage risk perception and promote hydrogen energy acceptance by analyzing the opinions of government officials and experts using SWOT factors the TOWS matrix and the analytic hierarchy process. The findings highlight the importance of addressing weaknesses and threats in PR efforts. Key weaknesses include Korea’s technological lag and the low localization of core hydrogen technologies both of which hinder competitiveness and negatively impact public perception of hydrogen energy. Notable threats include deteriorating energy dependency and expanding global carbon regulations. This information can be used to influence attitudes and foster public acceptance of hydrogen energy policies. Emphasizing weaknesses and threats may result in more effective PR strategies even if they do not directly address the primary concerns of scientific experts. The persuasive insights identified in this study can support future policy communication and PR strategies.
The Use of Alternative Fuels for Maritime Decarbonization: Special Marine Environmental Risks and Solutons from an International Law Perspective
Jan 2023
Publication
The introduction of several alternative marine fuels is considered an important strategy for maritime decarbonization. These alternative marine fuels include liquefied natural gas (LNG) liquefied biogas (LBG) hydrogen ammonia methanol ethanol hydrotreated vegetable oil (HVO) etc. In some studies nuclear power and electricity are also included in the scope of alternative fuels for merchant ships. However the operation of alternative-fuel-powered ships has some special risks such as fuel spills vapor dispersion and fuel pool fires. The existing international legal framework does not address these risks sufficiently. This research adopts the method of legal analysis to examine the existing international legal regime for regulating the development of alternative-fuel-powered ships. From a critical perspective it evaluates and predicts the consequences of these policies together with their shortcomings. Also this research explores the potential solutions and countermeasures that might be feasible to deal with the special marine environmental risks posed by alternative-fuel-powered ships in the future.
Profitability of Hydrogen Production: Assessment of Investments in Electrolyser Under Various Market Circumstances
Aug 2024
Publication
Although hydrogen is increasingly seen as a crucial energy carrier in future zero-carbon energy system a profitable exploitation of electrolysers requires still high amounts of subsidies. To analyze the profitability of electrolysers attention has to be paid not only to the costs but also to the interaction between electricity and hydrogen markets. Using a model of internationally integrated electricity and hydrogen markets this paper analyses the profitability of electrolysers plants in various future market circumstances. We find that in particular the future supply of renewable electricity the demand for electricity as well as the prices of natural gas and carbon strongly affect the profitability of electrolysis. In order to make massive investments in electrolysers profitable with significantly lower subsidy requirements the amount of renewable electricity generation needs to grow strongly and the carbon prices should be higher while the demand for electricity should not increase accordingly. This research underscores the critical role of market conditions in shaping the viability of hydrogen electrolysis providing valuable insights for policymakers and stakeholders in the transition to a zero-carbon energy system.
Green Hydrogen and Wind Synergy: Assessing Economic Benefits and Optimal Operational Strategies
Aug 2024
Publication
Volatile electricity prices have raised concerns about the economic feasibility of wind projects in Finland. This study assesses the economic viability and optimal operational strategies for integrating wind-powered green hydrogen production systems. Utilizing modeling and optimization this research evaluates various wind farms in Western Finland over electricity market scenarios from 2019 to 2022 with forecasts extending to 2030. Key economic metrics considered include internal rate of return future value net present value (NPV) and the levelized cost of hydrogen (LCOH). Results indicate that integration of hydrogen production with wind farms shows economic benefits over standalone wind projects potentially reducing LCOH to €2.0/kgH2 by 2030 in regular and low electricity price scenarios and to as low as €0.6/kgH2 in high-price scenarios. The wind farm with the highest capacity factor achieves 47% reductions in LCOH and 22% increases in NPV underscoring the importance of strategic site selection and operational flexibility.
Recent Advancements of Polymeric Membranes in Anion Exchange Membrane Water Electrolyzer (AEMWE): A Critical Review
Apr 2023
Publication
The formation of green hydrogen from water electrolysis is one of the supreme methodologies for understanding the well-organized consumption of sporadic renewable energies and the carbon-free future. Among the different electrolysis techniques the evolving anion exchange membrane water electrolysis (AEMWE) shows the utmost promise for manufacturing green hydrogen in an inexpensive way. In the present review we establish the most current and noteworthy achievements of AEMWE which include the advancements in increasing the ionic conductivity and understanding the mechanism of degradation of AEM and the most important topics regarding the designing of the electrocatalyst. The crucial issues that affect the AEMWE behavior are highlighted and future constraints and openings are also discussed. Furthermore this review article provides the appreciated strategies for producing extremely dynamic and robust electrocatalysts and evolving the construction of AEMWE equipment.
Hydrogen Application as a Fuel in Internal Combustion Engines
Mar 2023
Publication
Hydrogen is the energy vector that will lead us toward a more sustainable future. It could be the fuel of both fuel cells and internal combustion engines. Internal combustion engines are today the only motors characterized by high reliability duration and specific power and low cost per power unit. The most immediate solution for the near future could be the application of hydrogen as a fuel in modern internal combustion engines. This solution has advantages and disadvantages: specific physical chemical and operational properties of hydrogen require attention. Hydrogen is the only fuel that could potentially produce no carbon carbon monoxide and carbon dioxide emissions. It also allows high engine efficiency and low nitrogen oxide emissions. Hydrogen has wide flammability limits and a high flame propagation rate which provide a stable combustion process for lean and very lean mixtures. Near the stoichiometric air–fuel ratio hydrogen-fueled engines exhibit abnormal combustions (backfire pre-ignition detonation) the suppression of which has proven to be quite challenging. Pre-ignition due to hot spots in or around the spark plug can be avoided by adopting a cooled or unconventional ignition system (such as corona discharge): the latter also ensures the ignition of highly diluted hydrogen–air mixtures. It is worth noting that to correctly reproduce the hydrogen ignition and combustion processes in an ICE with the risks related to abnormal combustion 3D CFD simulations can be of great help. It is necessary to model the injection process correctly and then the formation of the mixture and therefore the combustion process. It is very complex to model hydrogen gas injection due to the high velocity of the gas in such jets. Experimental tests on hydrogen gas injection are many but never conclusive. It is necessary to have a deep knowledge of the gas injection phenomenon to correctly design the right injector for a specific engine. Furthermore correlations are needed in the CFD code to predict the laminar flame velocity of hydrogen–air mixtures and the autoignition time. In the literature experimental data are scarce on air–hydrogen mixtures particularly for engine-type conditions because they are complicated by flame instability at pressures similar to those of an engine. The flame velocity exhibits a non-monotonous behavior with respect to the equivalence ratio increases with a higher unburnt gas temperature and decreases at high pressures. This makes it difficult to develop the correlation required for robust and predictive CFD models. In this work the authors briefly describe the research path and the main challenges listed above.
Low-Carbon Transition Pathway Planning of Regional Power Systems with Electricity-Hydrogen Synergy
Nov 2022
Publication
Hydrogen energy leads us in an important direction in the development of clean energy and the comprehensive utilization of hydrogen energy is crucial for the low-carbon transformation of the power sector. In this paper the demand for hydrogen energy in various fields is predicted based on the support vector regression algorithm which can be converted into an equivalent electrical load when it is all produced from water electrolysis. Then the investment costs of power generators and hydrogen energy equipment are forecast considering uncertainty. Furthermore a planning model is established with the forecast data initial installed capacity and targets for carbon emission reduction as inputs and the installed capacity as well as share of various power supply and annual carbon emissions as outputs. Taking Gansu Province of China as an example the changes of power supply structure and carbon emissions under different scenarios are analysed. It can be found that hydrogen production through water electrolysis powered by renewable energy can reduce carbon emissions but will increase the demand for renewable energy generators. Appropriate planning of hydrogen storage can reduce the overall investment cost and promote a low carbon transition of the power system
Process Integration of Hydrogen Production Using Steam Gasification and Water-Gas Shift Reactions: A Case of Response Surface Method and Machine Learning Techniques
May 2024
Publication
An equilibrium-based steady-state simulator model that predicts and optimizes hydrogen production from steam gasification ofbiomass is developed using ASPEN Plus software and artificial intelligence techniques. Corn cob’s chemical composition wascharacterized to ensure the biomass used as a gasifier and with potential for production of hydrogen. Artificial intelligence is usedto examine the effects of the significant input variables on response variables such as hydrogen mole fraction and hydrogen energycontent. Optimizing the steam-gasification process using response surface methodology (RSM) considering a variety of biomass-steam ratios was carried out to achieve the best results. Hydrogen yield and the impact of main operating parameters wereconsidered. A maximum hydrogen concentration is found in the gasifier and water-gas shift (WGS) reactor at the highest steam-to-biomass (S/B) ratio and the lowest WGS reaction temperature while the gasification temperature has an optimum value. ANFISwas used to predict hydrogen of mole fraction 0.5045 with the input parameters of S/B ratio of 2.449 and reactor pressure andtemperature of 1 bar and 848°C respectively. With the steam-gasification model operating at temperature (850°C) pressure (1 bar)and S/B ratio of 2.0 an ASPEN simulator achieved a maximum of 0.5862 mole fraction of hydrogen while RSM gave an increaseof 19.0% optimum hydrogen produced over the ANFIS prediction with the input parameters of S/B ratio of 1.053 and reactorpressure and temperature of 1 bar and 850°C respectively. Varying the gasifier temperature and S/B ratio have on the other handa crucial effect on the gasification process with artificial intelligence as a unique tool for process evaluation prediction andoptimization to increase a significant impact on the products especially hydrogen.
Computational Fluid Dynamics Simulations of Hydrogen Releases and Vented Deflagrations in Large Enclosures
Nov 2019
Publication
This paper presents model predictions obtained with the CFD tool FLACS for hydrogen releases and vented deflagrations in containers and larger enclosures. The paper consists of two parts. The first part compares experimental results and model predictions for two test cases: experiments performed by Gexcon in 20-foot ISO containers (volume 33 m3 ) as part of the HySEA project and experiments conducted by SRI International and Sandia National Laboratories in a scaled warehouse geometry (volume 45.4 m3 ). The second part explores the use of the model system validated in the first part to accidental releases of hydrogen from forklift trucks inside a full-scale warehouse geometry (32 400 m3 ). The results demonstrate the importance of using realistic and reasonably accurate geometry models of the systems under consideration when performing CFD-based risk assessment studies. The discussion highlights the significant inherent uncertainty associated with quantitative risk assessments for vented hydrogen deflagrations in complex geometries. The suggestions for further work include a pragmatic approach for developing empirical correlations for pressure loads from vented hydrogen deflagrations in industrial warehouses with hydrogen-powered forklift trucks.
Is the Polish Solar-to-Hydrogen Pathway Green? A Carbon Footprint of AEM Electrolysis Hydrogen Based on an LCA
Apr 2023
Publication
Efforts to direct the economies of many countries towards low-carbon economies are being made in order to reduce their impact on global climate change. Within this process replacing fossil fuels with hydrogen will play an important role in the sectors where electrification is difficult or technically and economically ineffective. Hydrogen may also play a critical role in renewable energy storage processes. Thus the global hydrogen demand is expected to rise more than five times by 2050 while in the European Union a seven-fold rise in this field is expected. Apart from many technical and legislative barriers the environmental impact of hydrogen production is a key issue especially in the case of new and developing technologies. Focusing on the various pathways of hydrogen production the essential problem is to evaluate the related emissions through GHG accounting considering the life cycle of a plant in order to compare the technologies effectively. Anion exchange membrane (AEM) electrolysis is one of the newest technologies in this field with no LCA studies covering its full operation. Thus this study is focused on a calculation of the carbon footprint and economic indicators of a green hydrogen plant on the basis of a life cycle assessment including the concept of a solar-to-hydrogen plant with AEM electrolyzers operating under Polish climate conditions. The authors set the range of the GWP indicators as 2.73–4.34 kgCO2eq for a plant using AEM electrolysis which confirmed the relatively low emissivity of hydrogen from solar energy also in relation to this innovative technology. The economic profitability of the investment depends on external subsidies because as developing technology the AEM electrolysis of green hydrogen from photovoltaics is still uncompetitive in terms of its cost without this type of support.
2021 Education & Training Report
Jul 2021
Publication
Purpose: The Training section of the Education and Training module of the FCHO offers a repository of training available in Europe. In addition to the training programmes Educational materials which are publicly accessible online are also available to access on the FCHO. https://www.fchobservatory.eu/observatory/education-and-training Scope: The training courses are displayed by location within a map and users can explore the data by selecting the type of training of interest. Two additional filters on the language and the focus of the training are available to refine the search according to user needs. Users of the online tool can be students professionals and individuals wishing to learn and be trained on FCH. To complement this mapping a repository of online resources is accessible on the FCHO. Users may retrieve reliable materials available for self-learning. Key Findings: Master programmes and professional training courses were the most mapped categories. There is a prevalence of training courses offered by Western European countries in the mapping. The majority of the training courses mapped are targeted at technicians engineers and doctorate. For Bachelor and Master programmes FCH is more often an element integrated in a programme than its main focus. “Hydrogen Production” and “Hydrogen end-uses: transports” were the most selected focus of courses among the 11 categories proposed. “Regulations Codes and Standards” was the least selected focus with only one training out of five tackling these aspects. Professional training is more often focusing on end-uses and safety than Master programmes. Master programmes put a strong emphasis on “Basic electrochemistry” “Hydrogen production”. European projects are the main source for publicly accessible materials to learn on FCH. Most of the materials listed are available in English. “Hydrogen End-Uses” is the focus category the most common in the materials listed.
Assessment of Hydrogen Energy Industry Chain Based on Hydrogen Production Methods, Storage, and Utilization
Apr 2024
Publication
To reach climate neutrality by 2050 a goal that the European Union set itself it is necessary to change and modify the whole EU’s energy system through deep decarbonization and reduction of greenhouse-gas emissions. The study presents a current insight into the global energy-transition pathway based on the hydrogen energy industry chain. The paper provides a critical analysis of the role of clean hydrogen based on renewable energy sources (green hydrogen) and fossil-fuels-based hydrogen (blue hydrogen) in the development of a new hydrogen-based economy and the reduction of greenhouse-gas emissions. The actual status costs future directions and recommendations for low-carbon hydrogen development and commercial deployment are addressed. Additionally the integration of hydrogen production with CCUS technologies is presented.
Green Hydrogen Generation in Alkaline Solution Using Electrodeposited Ni-Co-nano-graphene Thin Film Cathode
Apr 2024
Publication
Green hydrogen generation technologies are currently the most pressing worldwide issues ofering promising alternatives to existing fossil fuels that endanger the globe with growing global warming. The current research focuses on the creation of green hydrogen in alkaline electrolytes utilizing a Ni-Co-nano-graphene thin flm cathode with a low overvoltage. The recommended conditions for creating the target cathode were studied by electrodepositing a thin Ni-Co-nano-graphene flm in a glycinate bath over an iron surface coated with a thin copper interlayer. Using a scanning electron microscope (SEM) and energy-dispersive X-ray (EDX) mapping analysis the obtained electrode is physically and chemically characterized. These tests confrm that Ni Co and nano-graphene are homogeneously dispersed resulting in a lower electrolysis voltage in green hydrogen generation. Tafel plots obtained to analyze electrode stability revealed that the Ni-Co-nano-graphene cathode was directed to the noble direction with the lowest corrosion rate. The Ni-Co-nano-graphene generated was used to generate green hydrogen in a 25% KOH solution. For the production of 1 kg of green hydrogen utilizing Ni-Co-nano-graphene electrode the electrolysis efciency was 95.6% with a power consumption of 52 kwt h−1 whereas it was 56.212. kwt h−1 for pure nickel thin flm cathode and 54. kwt h−1 for nickel cobalt thin flm cathode respectively.
Assessment of Wind Energy Potential for the Production of Renewable Hydrogen in Sindh Province of Pakistan
Apr 2019
Publication
In this study we developed a new hybrid mathematical model that combines wind-speed range with the log law to derive the wind energy potential for wind-generated hydrogen production in Pakistan. In addition we electrolyzed wind-generated power in order to assess the generation capacity of wind-generated renewable hydrogen. The advantage of the Weibull model is that it more accurately reflects power generation potential (i.e. the capacity factor). When applied to selected sites we have found commercially viable hydrogen production capacity in all locations. All sites considered had the potential to produce an excess amount of wind-generated renewable hydrogen. If the total national capacity of wind-generated was used Pakistan could conceivably produce 51917000.39 kg per day of renewable hydrogen. Based on our results we suggest that cars and other forms of transport could be fueled with hydrogen to conserve oil and gas resources which can reduce the energy shortfall and contribute to the fight against climate change and global warming. Also hydrogen could be used to supplement urban energy needs (e.g. for Sindh province Pakistan) again reducing energy shortage effects and supporting green city programs.
Everything About Hydrogen Podcast: 'Having Hydrogen for Breakfast, Lunch and Dinner'
Apr 2023
Publication
On today’s show Chris Patrick and Alicia speak with Petra Schwager from UNIDO about her work promoting global green hydrogen development with particular emphasis on the Global South.
The podcast can be found on their website.
The podcast can be found on their website.
2021 Technology & Markets Report
Jul 2021
Publication
Purpose: The technology and market module of the FCHO presents a range of statistical data as an indicator of the health of the sector and the progress in market development over time. https://www.fchobservatory.eu/observatory/technology-and-market Scope: Fuel cell shipment data is presented on a global basis. Other sections of the technology and market chapter (HRS data and FCEV data) are presented on a European basis. The report spans January 2020 – December 2020. Key Findings: COVID-19 has without doubt impacted the deployment of fuel cells and hydrogen in 2020 compared to industry expectations: Global Fuel Cell shipments > 1.3 GW Europe Fuel Cell shipments up to 148.6 MW Europe HRS in operation or under construction 162 FCEVs up 41% to 2774
Actual Quality Changes in Natural Resource and Gas Grid Use in Prospective Hydrogen Technology Roll-Out in the World and Russia
Oct 2023
Publication
About 95% of current hydrogen production uses technologies involving primary fossil resources. A minor part is synthesized by low-carbon and close-to-zero-carbon-footprint methods using RESs. The significant expansion of low-carbon hydrogen energy is considered to be a part of the “green transition” policies taking over in technologically leading countries. Projects of hydrogen synthesis from natural gas with carbon capture for subsequent export to European and Asian regions poor in natural resources are considered promising by fossil-rich countries. Quality changes in natural resource use and gas grids will include (1) previously developed scientific groundwork and production facilities for hydrogen energy to stimulate the use of existing natural gas grids for hydrogen energy transport projects; (2) existing infrastructure for gas filling stations in China and Russia to allow the expansion of hydrogen-fuel-cell vehicles (HFCVs) using typical “mini-plant” projects of hydrogen synthesis using methane conversion technology; (3) feasibility testing for different hydrogen synthesis plants at medium and large scales using fossil resources (primarily natural gas) water and atomic energy. The results of this study will help focus on the primary tasks for quality changes in natural resource and gas grid use. Investments made and planned in hydrogen energy are assessed.
The Impact of Sustainable Energy Technologies and Demand Response Programs on the Hub's Planning by the Practical Consideration of Tidal Turbines as a Novel Option
Apr 2023
Publication
This paper investigates a multi-objective optimal energy planning strategy for a hub incorporating renewable and non-renewable resources like PV tidal turbine fuel-cell CHP boiler micro-turbine reactor reformer electrolyzer and energy storage by utilizing the time of use program (TOU). In this strategy tidal turbine fuel-cell and reformer technologies are considered novel technologies that simultaneously reduce the proposed hub’s cost and pollution. The hub’s total cost and pollution are considered objective functions. To make the results more realistic characteristics of the tidal turbine are investigated by utilizing the manufactory’s company information. The problem is then modeled as real mixed integer programming (RMIP) and is solved in GAMS software using a CPLEX solver. Epsilon constraints method and fuzzy satisfying approach are used to select the optimal solution based on the proposed model. Finally a sensitivity analysis is performed to assess the effective parameters that affect the planning’s results. The results show that the overall pollution is reduced by about 9% by assuming the proposed planning and the total profit is increased by about 30%.
Odorisation of Natural Gas/Hydrogen Mixure and Pure Hydrogen
Dec 2023
Publication
MARCOGAZ has prepared this document to provide comprehensive information on the odorisation of hydrogen and natural gas (H2-NG) mixtures as well as pure hydrogen. The primary goal is to assist in determining the crucial data to be taken into account when odorising gases containing hydrogen.
The document is structured into two main sections with the initial part focusing on the theoretical interactions between hydrogen and odorants. Subsequent sections delve into the existing data related to this subject. The conclusions section offers additional considerations on the topic.
The report can be found on their website.
The document is structured into two main sections with the initial part focusing on the theoretical interactions between hydrogen and odorants. Subsequent sections delve into the existing data related to this subject. The conclusions section offers additional considerations on the topic.
The report can be found on their website.
The Market Introduction of Hydrogen Focussing on Bus Refueling
Dec 2023
Publication
Public transport plays a prominent role with respect to mitigating transport-related environmental effects by improving passenger transport efficiency and the quality of life in cities. Batteries and fuel cells are at the forefront of the technological shift to zero-emission powertrains. Within the scope of the German-funded project BIC H2 corresponding systems analysis research focuses on the market introduction of fuel cell–electric buses in the Rhine–Ruhr Metropolitan Region through 2035. This study presents the related methods and major outcomes of this techno-economic research which spans spatially-resolved hydrogen demand modeling of all relevant sectors to hydrogen refueling stations and upstream infrastructure modeling to scenario-based analyses. The latter builds upon an empirical study supporting the development of the Hydrogen Roadmap of the State of North Rhine–Westphalia (NRW). Our results show that the demand in NRW alone is expected to account for one third of total German hydrogen use. Hydrogen bus refueling could substantially support market introduction during its early phases. In the long term however hydrogen demand in industry is significantly higher compared to that in the transport sector. Furthermore spatial analysis identifies regions with pronounced hydrogen demands that could therefore be candidates for initial infrastructure investments. With the Cologne area showing the highest hydrogen demand levels such regions can offer particularly high infrastructure utilization e.g. for bus refueling. On the infrastructure side trailers for transporting gaseous hydrogen to refueling stations are the most favorable option through 2035. Pipelines would be the preferred solution soon after 2035 due to increased hydrogen demand. If effectively deployed converted natural gas pipelines would be the most cost-effective option even earlier.
Steam Reforming of Biomass Gasification Gas for Hydrogen Production: From Thermodynamic Analysis to Experimental Validation
Jun 2023
Publication
Biomass gasification produces syngas composed mainly of hydrogen carbon monoxide carbon dioxide methane water and higher hydrocarbons till C4 mainly ethane. The hydrocarbon content can be upgraded into richer hydrogen streams through the steam reforming reaction. This study assessed the steam reforming process at the thermodynamic equilibrium of five streams with different compositions from the gasification of three different biomass sources (Lignin Miscanthus and Eucalyptus). The simulations were performed on Aspen Plus V12 software using the Gibbs energy minimization method. The influence of the operating conditions on the hydrogen yield was assessed: temperature in the range of 200 to 1100 ◦C pressures of 1 to 20 bar and steamto‑carbon (S/C) molar ratios from 0 (only dry reforming) to 10. It was observed that operating conditions of 725 to 850 ◦C 1 bar and an S/C ratio of 3 enhanced the streams’ hydrogen content and led to nearly complete hydrocarbon conversion (>99%). Regarding hydrogen purity the stream obtained from the gasification of Lignin and followed by a conditioning phase (stream 5) has the highest hydrogen purity 52.7% and an hydrogen yield of 48.7%. In contrast the stream obtained from the gasification of Lignin without any conditioning (stream 1) led to the greatest increase in hydrogen purity from 19% to 51.2% and a hydrogen yield of 61.8%. Concerning coke formation it can be mitigated for S/C molar ratios and temperatures >2 and 700 ◦C respectively. Experimental tests with stream 1 were carried out which show a similar trend to the simulation results particularly at high temperatures (700–800 ◦C).
How to Connect Energy Islands: Trade-offs Between Hydrogen and Electricity Infrastructure
Apr 2023
Publication
In light of offshore wind expansions in the North and Baltic Seas in Europe further ideas on using offshore space for renewable-based energy generation have evolved. One of the concepts is that of energy islands which entails the placement of energy conversion and storage equipment near offshore wind farms. Offshore placement of electrolysers will cause interdependence between the availability of electricity for hydrogen production and for power transmission to shore. This paper investigates the trade-offs between integrating energy islands via electricity versus hydrogen infrastructure. We set up a combined capacity expansion and electricity dispatch model to assess the role of electrolysers and electricity cables given the availability of renewable energy from the islands. We find that the electricity system benefits more from connecting close-to-shore wind farms via power cables. In turn electrolysis is more valuable for far-away energy islands as it avoids expensive long-distance cable infrastructure. We also find that capacity investment in electrolysers is sensitive to hydrogen prices but less to carbon prices. The onshore network and congestion caused by increased activity close to shore influence the sizing and siting of electrolysers.
Self-Sustaining Control Strategy for Proton-Exchange Membrane Electrolysis Devices Based on Gradient-Disturbance Observation Method
Mar 2023
Publication
This paper proposes a self-sustaining control model for proton-exchange membrane (PEM) electrolysis devices aiming to maintain the temperature of their internal operating environment and thus improve the electrolysis efficiency and hydrogen production rate. Based on the analysis of energy–substance balance and electrochemical reaction characteristics an electrothermal-coupling dynamic model for PEM electrolysis devices was constructed. Considering the influence of the input energy–substance and the output hydrogen and oxygen of PEM electrolysis devices on the whole dynamic equilibrium process the required electrical energy and water molar flow rate are dynamically adjusted so that the temperature of the cathode and the anode is maintained near 338.15 K. The analytical results show that the hydrogen production rate and electrolysis efficiency are increased by 0.275 mol/min and 3.9% respectively by linearly stacking 100 PEM electrolysis devices to form a hydrogen production system with constant cathode and anode operating temperatures around 338.15 K in the self-sustaining controlled mode
Everything About Hydrogen Podcast: Easter Eggs
Feb 2023
Publication
On today’s episode of Everything About Hydrogen we speak with Raffi Garabedian CEO and Co-Founder of Electric Hydrogen (EH2) a deep decarbonization company pioneering new technology for low cost high efficiency fossil free hydrogen systems. By using electrolyzers many times larger than the industry standard EH2 aims to help eliminate more than 30% of global GHG emissions from difficult to electrify sectors like steel ammonia and freight.
We are excited to learn more from Raffi about the EH2 technology lessons learned by scaling First Solar and what we might expect to see next.
The podcast can be found on their website.
We are excited to learn more from Raffi about the EH2 technology lessons learned by scaling First Solar and what we might expect to see next.
The podcast can be found on their website.
Hydrogen Refueling Method for Heavy-duty FCV with Pressure Loss Compensation
Apr 2024
Publication
Current hydrogen stations are using a constant dispenser pressure ramp rate method. When a flow rate increases for heavy duty vehicle a large pressure loss occurs and it slows down refueling. This study developed a new method (cTPR method) that has the constant pressure ramp rate in the tank by compensating for the tube pressure loss without any feedback from the vehicle. A refueling simulation confirmed that a refueling was shortened − 49s with a lower ending gas temperature. Testing confirmed that the cTPR method can be realized simply by changing the control without any hardware modification.
Anion Exchange Membrane Water Electrolysis from Catalyst Design to the Membrane Electrode Assembly
Jul 2022
Publication
Anion exchange membrane (AEM) electrolysis aims to combine the benefits of alkaline electrolysis such as stability of the cheap catalyst and advantages of proton-exchange membrane systems like the ability to operate at differential pressure fast dynamic response low energy losses and higher current density. However as of today AEM electrolysis is limited by AEMs exhibiting insufficient ionic conductivity as well as lower catalyst activity and stability. Herein recent developments and outlook of AEM electrolysis such as cost-efficient transition metal catalysts for hydrogen evolution reaction and oxygen evolution reaction AEMs ionomer electrolytes ionomer catalyst–electrolyte interaction and membrane-electrode assembly performance and stability are described.
Everything About Hydrogen Podcast: Reaching for the Stars
Mar 2023
Publication
Today Everything About Hydrogen had a chance to speak with Paul Barrett the CEO of Hysata and dig into what makes this electrolysis company different.
The podcast can be found on their website.
The podcast can be found on their website.
Green Hydrogen for Heating and its Impact on the Power System
Jun 2021
Publication
With a relatively high energy density hydrogen is attracting increasing attention in research commercial and political spheres specifically as a fuel for residential heating which is proving to be a difficult sector to decarbonise in some circumstances. Hydrogen production is dependent on the power system so any scale use of hydrogen for residential heating will impact various aspects of the power system including electricity prices and renewable generation curtailment (i.e. wind solar). Using a linearised optimal power flow model and the power infrastructure on the island of Ireland this paper examines least cost optimal investment in electrolysers in the presence of Ireland's 70% renewable electricity target by 2030. The introduction of electrolysers in the power system leads to an increase in emissions from power generation which is inconsistent with some definitions of green hydrogen. Electricity prices are marginally higher with electrolysers whereas the optimal location of electrolysers is driven by a combination of residential heating demand and potential surplus power supplies at electricity nodes.
Methane Pyrolysis in a Liquid Metal Bubble Column Reactor for CO2-Free Production of Hydrogen
Oct 2023
Publication
In light of the growing interest in hydrogen as an energy carrier and reducing agent various industries including the iron and steel sector are considering the increased adoption of hydrogen. To meet the rising demand in energy-intensive industries the production of hydrogen must be significantly expanded and further developed. However current hydrogen production heavily relies on fossil-fuel-based methods resulting in a considerable environmental burden with approximately 10 tons of CO2 emissions per ton of hydrogen. To address this challenge methane pyrolysis offers a promising approach for producing clean hydrogen with reduced CO2 emissions. This process involves converting methane (CH4 ) into hydrogen and solid carbon significantly lowering the carbon footprint. This work aims to enhance and broaden the understanding of methane pyrolysis in a liquid metal bubble column reactor (LMBCR) by utilizing an expanded and improved experimental setup based on the reactor concept previously proposed by authors from Montanuniversitaet in 2022 and 2023. The focus is on investigating the process parameters’ temperature and methane input rate with regard to their impact on methane conversion. The liquid metal temperature exhibits a strong influence increasing methane conversion from 35% at 1150 ◦C to 74% at 1250 ◦C. In contrast the effect of the methane flow rate remains relatively small in the investigated range. Moreover an investigation is conducted to assess the impact of carbon layers covering the surface of the liquid metal column. Additionally a comparative analysis between the LMBCR and a blank tube reactor (BTR) is presented.
Can Hydrogen Production Be Economically Viable on the Existing Gas-Fired Power Plant Location? New Empirical Evidence
Apr 2023
Publication
The paper provides an economic model for the assessment of hydrogen production at the site of an existing thermal power plant which is then integrated into the existing gas grid. The model uses projections of electricity prices natural gas prices and CO2 prices as well as estimates of the cost of building a power-to-gas system for a 25-year period. The objective of this research is to calculate the yellow hydrogen production price for each lifetime year of the Power-to-gas system to evaluate yellow hydrogen competitiveness compared to the fossil alternatives. We test if an incentive scheme is needed to make this technology economically viable. The research also provides several sensitivity scenarios of electricity natural gas and CO2 price changes. Our research results clearly prove that yellow hydrogen is not yet competitive with fossil alternatives and needs incentive mechanisms for the time being. At given natural gas and CO2 prices the incentive for hydrogen production needs to be 52.90 EUR/MWh in 2025 and 36.18 EUR/MWh in 2050. However the role of hydrogen in the green transition could be very important as it provides ancillary services and balances energy sources in the power system.
A Physics Constrained Methodology for the Life Cycle Assessment of Sustainable Aviation Fuel Production
May 2024
Publication
Feedstock-to-fuel conversion or “Fuel Production” is a major contributor to greenhouse gas (GHG) emissions in life cycle assessment (LCA) of sustainable aviation fuels (SAF) from wastes. Here we construct and demonstrate an original mass and energy conserved chemically rigorous LCA methodology for the production of Hydroprocessed Esters and Fatty Acids-Synthetic Paraffinic Kerosene (HEFA-SPK) from Used Cooking Oil (UCO). This study proposes and demonstrates the use of; (i) the chemical composition of the UCO (ii) the ASTM properties of HEFA-SPK and (iii) the elemental mass and energy conserved reaction mechanism which converts one to the other as physical constraints for the specific LCA of any UCO derived HEFA-SPK. With application of these constraints the emissions embodied in UCO HEFA-SPK Fuel Production is found to range from 4.2 to 15.7 gCO2e/MJSAF depending on the renewability of the energy and hydrogen utilized. Imposition of (i)-(iii) as modelling constraints derives a HEFA-SPK yield of 49 mass% a priori. This finding aligns with experimental literature but brings attention to the higher yield estimations of 70–81% observed in current LCA tools. We show that this impacts the end LCA significantly as it adjusts allocation of emissions. A replication study of CORSIA’s (10.5 gCO2e/MJSAF) default core LCA value for Fuel Production quantifies the increase at +5.3 gCO2e/MJSAF or 15.8 gCO2e/MJSAF as total for Fuel Production. As the embodied emissions are significantly dependent on the specifics of the scenario assessed we highlight reporting a definitive GHG intensity for any UCO derived HEFA-SPK as generic will be inaccurate to an extent.
Optimal Capacity Configuration of Wind–Solar Hydrogen Storage Microgrid Based on IDW-PSO
Aug 2023
Publication
Because the new energy is intermittent and uncertain it has an influence on the system’s output power stability. A hydrogen energy storage system is added to the system to create a wind light and hydrogen integrated energy system which increases the utilization rate of renewable energy while encouraging the consumption of renewable energy and lowering the rate of abandoning wind and light. Considering the system’s comprehensive operation cost economy power fluctuation and power shortage as the goal considering the relationship between power generation and load assigning charging and discharging commands to storage batteries and hydrogen energy storage and constructing a model for optimal capacity allocation of wind–hydrogen microgrid system. The optimal configuration model of the wind solar and hydrogen microgrid system capacity is constructed. A particle swarm optimization with dynamic adjustment of inertial weight (IDW-PSO) is proposed to solve the optimal allocation scheme of the model in order to achieve the optimal allocation of energy storage capacity in a wind–hydrogen storage microgrid. Finally a microgrid system in Beijing is taken as an example for simulation and solution and the results demonstrate that the proposed approach has the characteristics to optimize the economy and improve the capacity of renewable energy consumption realize the inhibition of the fluctuations of power reduce system power shortage and accelerate the convergence speed.
Assessing the Sustainability of Liquid Hydrogen for Future Hypersonic Aerospace Flight
Dec 2022
Publication
This study explored the applications of liquid hydrogen (LH2 ) in aerospace projects followed by an investigation into the efficiency of ramjets scramjets and turbojets for hypersonic flight and the impact of grey blue and green hydrogen as an alternative to JP-7 and JP-8 (kerosene fuel). The advantage of LH2 as a propellant in the space sector has emerged from the relatively high energy density of hydrogen per unit volume enabling it to store more energy compared to conventional fuels. Hydrogen also has the potential to decarbonise space flight as combustion of LH2 fuel produces zero carbon emissions. However hydrogen is commonly found in hydrocarbons and water and thus it needs to be extracted from these molecular compounds before use. Only by considering the entire lifecycle of LH2 including the production phase can its sustainability be understood. The results of this study compared the predicted Life Cycle Assessment (LCA) emissions of the production of LH2 using grey blue and green hydrogen for 2030 with conventional fuel (JP-7 and JP-8) and revealed that the total carbon emissions over the lifecycle of LH2 were greater than kerosene-derived fuels.
Environmental Assessment of Hydrogen Utilization in Various Applications and Alternative Renewable Sources for Hydrogen Production: A Review
May 2023
Publication
Rapid industrialization is consuming too much energy and non-renewable energy resources are currently supplying the world’s majority of energy requirements. As a result the global energy mix is being pushed towards renewable and sustainable energy sources by the world’s future energy plan and climate change. Thus hydrogen has been suggested as a potential energy source for sustainable development. Currently the production of hydrogen from fossil fuels is dominant in the world and its utilization is increasing daily. As discussed in the paper a large amount of hydrogen is used in rocket engines oil refining ammonia production and many other processes. This paper also analyzes the environmental impacts of hydrogen utilization in various applications such as iron and steel production rocket engines ammonia production and hydrogenation. It is predicted that all of our fossil fuels will run out soon if we continue to consume them at our current pace of consumption. Hydrogen is only ecologically friendly when it is produced from renewable energy. Therefore a transition towards hydrogen production from renewable energy resources such as solar geothermal and wind is necessary. However many things need to be achieved before we can transition from a fossil-fuel-driven economy to one based on renewable energy
CO2 Effect on the Fatigue Crack Growth of X80 Pipeline Steel in Hydrogen-Enriched Natural Gas: Experiment vs Density Functional Theory Calculation
Sep 2023
Publication
The influence of hydrogen-enriched natural gas (HENG) and CO2 on the mechanical property of X80 pipeline steel were investigated via fatigue crack growth rate (FCGR) tests and density functional theory (DFT) calculations. The results show that the FCGR in H2 was slightly faster than that in HENG while it was slower than that in the N2/CO2/H2 mixtures. The enhanced FCGR by CO2 further increased with the increasing CO2 content. DFT calculation results show that the adsorbed CO2 on the iron surface significantly increased the migration rate of H atoms from surface to subsurface. This promotes the entry of hydrogen into the steel.
Risk Assessment of Explosion Accidents in Hydrogen Fuel-Cell Rooms Using Experimental Investigations and Computational Fluid Dynamics Simulations
Oct 2023
Publication
For the safe utilization and management of hydrogen energy within a fuel-cell room in a hydrogen-fueled house an explosion test was conducted to evaluate the potential hazards associated with hydrogen accident scenarios. The overpressure and heat radiation were measured for an explosion accident at distances of 1 2 3 5 and 10 m for hydrogen–air mixing ratios of 10% 25% 40% and 60%. When the hydrogen–air mixture ratio was 40% the greatest overpressure was 24.35 kPa at a distance of 1 m from the fuel-cell room. Additionally the thermal radiation was more than 1.5 kW/m2 which could cause burns at a distance of 5 m from the hydrogen fuel-cell room. Moreover a thermal radiation in excess of 1.5 kW/m2 was computed at a distance of 3 m from the hydrogen fuel-cell room when the hydrogen–air mixing ratio was 25% and 60%. Consequently an explosion in the hydrogen fuel-cell room did not considerably affect fatality levels but could affect the injury levels and temporary threshold shifts. Furthermore the degree of physical damage did not reach major structural damage levels causing only minor structural damage.
The Role of Negative Emissions Technologies in the UK's Net-zero Strategy
Jun 2024
Publication
The role of negative emissions technologies (NETs) in climate change mitigation remains contentious. Although numerous studies indicate significant carbon dioxide removal (CDR) requirements for Paris Agreement mitigation goals to be achieved others point out challenges and risks associated with high CDR strategies. Using a multiscale modeling approach we explore NETs’ potential for a single country the United Kingdom (UK). Here we report that the UK has cost-effective potential to remove 79 MtCO2 per year by 2050 rising to 126–134 MtCO2 per year with well-integrated NETs in industrial clusters. Results highlight that biomass gasification for hydrogen generation with CCS is emerging as a key NET despite biomass availability being a limiting factor. Moreover solid DACCS systems utilizing industrial waste heat integration offer a solution to offsetting increases in demand from transportation and industrial sectors. These results emphasize the importance of a multiscale whole-systems assessment for integrating NETs into industrial strategies.
Profitability of Hydrogen-Based Microgrids: A Novel Economic Analysis in Terms of Electricity Price and Equipment Costs
Oct 2023
Publication
The current need to reduce carbon emissions makes hydrogen use essential for selfconsumption in microgrids. To make a profitability analysis of a microgrid the influence of equipment costs and the electricity price must be known. This paper studies the cost-effective electricity price (EUR/kWh) for a microgrid located at ‘’La Rábida Campus” (University of Huelva south of Spain) for two different energy-management systems (EMSs): hydrogen-priority strategy and batterypriority strategy. The profitability analysis is based on one hand on the hydrogen-systems’ cost reduction (%) and on the other hand considering renewable energy sources (RESs) and energy storage systems (ESSs) on cost reduction (%). Due to technological advances microgrid-element costs are expected to decrease over time; therefore future profitable electricity prices will be even lower. Results show a cost-effective electricity price ranging from 0.61 EUR/kWh to 0.16 EUR/kWh for hydrogen-priority EMSs and from 0.4 EUR/kWh to 0.17 EUR/kWh for battery-priority EMSs (0 and 100% hydrogen-system cost reduction respectively). These figures still decrease sharply if RES and ESS cost reductions are considered. In the current scenario of uncertainty in electricity prices the microgrid studied may become economically competitive in the near future
Carbon-negative Hydrogen: Exploring the Techno-economic Potential of Biomass Co-gasification with CO2 Capture
Sep 2021
Publication
The hydrogen economy is receiving increasing attention as a complement to electrification in the global energy transition. Clean hydrogen production is often viewed as a competition between natural gas reforming with CO2 capture and electrolysis using renewable electricity. However solid fuel gasification with CO2 capture presents another viable alternative especially when considering the potential of biomass to achieve negative CO2 emissions. This study investigates the techno-economic potential of hydrogen production from large-scale coal/ biomass co-gasification plants with CO2 capture. With a CO2 price of 50 €/ton the benchmark plant using commercially available technologies achieved an attractive hydrogen production cost of 1.78 €/kg with higher CO2 prices leading to considerable cost reductions. Advanced configurations employing hot gas clean-up membrane-assisted water-gas shift and more efficient gasification with slurry vaporization and a chemical quench reduced the hydrogen production cost to 1.50–1.62 €/kg with up to 100% CO2 capture. Without contingencies added to the pre-commercial technologies the lowest cost reduces to 1.43 €/kg. It was also possible to recover waste heat in the form of hot water at 120 ◦C for district heating potentially unlocking further cost reductions to 1.24 €/kg. In conclusion gasification of locally available solid fuels should be seriously considered next to natural gas and electrolysis for supplying the emerging hydrogen economy.
Distributional Trends in the Generation and End-Use Sector of Low-Carbon Hydrogen Plants
Mar 2023
Publication
This paper uses established and recently introduced methods from the applied mathematics and statistics literature to study trends in the end-use sector and the capacity of low-carbon hydrogen projects in recent and upcoming decades. First we examine distributions in plants over time for various end-use sectors and classify them according to metric discrepancy observing clear similarity across all industry sectors. Next we compare the distribution of usage sectors between different continents and examine the changes in sector distribution over time. Finally we judiciously apply several regression models to analyse the association between various predictors and the capacity of global hydrogen projects. Across our experiments we see a welcome exponential growth in the capacity of zero-carbon hydrogen plants and significant growth of new and planned hydrogen plants in the 2020’s across every sector.
Technological Pathways for Decarbonizing Petroleum Refining
Sep 2021
Publication
This paper discusses the technical specifications of how U.S. petroleum refineries can reduce facility emissions and shift to produce low-carbon fuels for hard to abate sectors by utilizing existing innovative technologies.
Techno-Economic Analysis of a Hydrogen-Based Power Supply Backup System for Tertiary Sector Buildings: A Case Study in Greece
May 2023
Publication
In view of the European Union’s strategy on hydrogen for decarbonization and buildings’ decarbonization targets the use of hydrogen in buildings is expected in the future. Backup power in buildings is usually provided with diesel generators (DGs). In this study the use of a hydrogen fuel cell (HFC) power supply backup system is studied. Its operation is compared to a DG and a techno-economic analysis of the latter’s replacement with an HFC is conducted by calculating relevant key performance indicators (KPIs). The developed approach is presented in a case study on a school building in Greece. Based on the school’s electricity loads which are calculated with a dynamic energy simulation and power shortages scenarios the backup system’s characteristics are defined and the relevant KPIs are calculated. It was found that the HFC system can reduce the annual CO2 emissions by up to 400 kg and has a lower annual operation cost than a DG. However due to its high investment cost its levelized cost of electricity is higher and the replacement of an existing DG is unviable in the current market situation. The techno-economic study reveals that subsidies of around 58–89% are required to foster the deployment of HFC backup systems in buildings.
Just Trade-offs in a Net-zero Transition and Social Impact Assessment
Apr 2024
Publication
Countries around the world are prioritising net zero emissions to meet their Paris Agreement goals. The demand for social impact assessment (SIA) is likely to grow as this transition will require investments in decarbonisation projects with speed and at scale. There will be winners and losers of these projects because not everyone benefits the same; and hence trade-offs are inevitable. SIAs therefore should focus on understanding how the risks and benefits will be distributed among and within stakeholders and sectors and enable the identification of trade-offs that are just and fair. In this study we used a hypothetical case of large-scale hydrogen production in regional Australia and engaged with multi-disciplinary experts to identify justice issues in transitioning to such an industry. Using Rawlsian theory of justice as fairness we identified several tensions between different groups (national regional local inter and intra-communities) and sectors (environmental and economic) concerning the establishment of a hydrogen industry. These stakeholders and sectors will be disproportionately affected by this establishment. We argue that Rawlsian principles of justice would enable the practice of SIA to identify justice trade-offs. Further we conceptualise that a systems approach will be critical to facilitate a wider participation and an agile process for achieving just trade-offs in SIA.
Study Progress on the Pipeline Transportation Safety of Hydrogen-blended Natural Gas
Oct 2023
Publication
The core of carbon neutrality is the energy structure adjustment and economic structure transformation. Hydrogen energy as a kind of clean energy with great potential has provided important support for the implementation of the carbon peaking and carbon neutrality goals of China. How to achieve the large-range safe and reliable transportation of hydrogen energy with good economic benefits remains the key to limiting the development of hydrogen energy. Using the existing natural gas pipeline network can save many infrastructure construction costs to transport hydrogen-blended natural gas. However due to great differences in the physical and chemical properties of hydrogen and natural gas the transportation of hydrogen-blended natural gas will bring safety risks to the pipeline network operation to a certain extent. In this paper the influences of pipeline transportation of hydrogen-blended natural gas on existing pipelines and parts along the pipelines are analyzed from two aspects of pipe compatibility and hydrogen blending ratio and the safety of pipeline transportation of hydrogen-blended natural gas is summarized from two aspects of leakage and accumulation as well as combustion and explosion. In addition the integrity management of hydrogen-blended natural gas pipelines and the existing relevant standards and specifications are reviewed. This paper points out the shortcomings of current hydrogen-blended natural gas pipeline transportation and gives some relevant suggestions. Hopefully this work can provide a useful reference for developing a hydrogen-blended natural gas pipeline transportation system.
A Priority-based Failure Mode and Effects Analysis (FMEA) Method for Risk Assessment of Hydrogen Applications Onboard Maritime Vessels
Sep 2023
Publication
The maritime industry is gaining momentum towards a more decarbonized and sustainable path. However most of the worldwide fleet still relies on fossil fuels for power producing harmful environmental emissions. Hydrogen as a clean fuel is a promising alternative but its unique properties pose significant safety challenges. For instance hydrogen has a wide flammability range inherently increasing the risk of ignition. Moreover its comparatively low volumetric energy density necessitates faster filling rates and larger volumes for bunkering and onboard storage leading to higher risk rates. Therefore the use of hydrogen for maritime applications requires the development of specialized riskbased approaches according to safety engineering principles and techniques. The key safety implications are discussed and reviewed with focus on onboard hydrogen storage handling and refueling while a priority-based Failure Mode and Effects Analysis (FMEA) method for risk assessment is proposed based on the revised guidelines of Automotive Industry Action Group (AIAG) and German Association of the Automotive Industry (VDA). The revised AIAG-VDA FMEA method replaces the conventional Risk Priority Number (RPN) with a new Action Priority (AP) rating enabling the prioritization of recommended actions for risk reduction. The paper aims to a more profound understanding of the safety risks associated with hydrogen as a maritime fuel and to provide an effective risk assessment method for hydrogen applications onboard maritime vessels.
Optimal Sizing of a Stand-Alone Hybrid Power System Based on Battery/Hydrogen with an Improved Ant Colony Optimization
Sep 2016
Publication
A distributed power system with renewable energy sources is very popular in recent years due to the rapid depletion of conventional sources of energy. Reasonable sizing for such power systems could improve the power supply reliability and reduce the annual system cost. The goal of this work is to optimize the size of a stand-alone hybrid photovoltaic (PV)/wind turbine (WT)/battery (B)/hydrogen system (a hybrid system based on battery and hydrogen (HS-BH)) for reliable and economic supply. Two objectives that take the minimum annual system cost and maximum system reliability described as the loss of power supply probability (LPSP) have been addressed for sizing HS-BH from a more comprehensive perspective considering the basic demand of load the profit from hydrogen which is produced by HS-BH and an effective energy storage strategy. An improved ant colony optimization (ACO) algorithm has been presented to solve the sizing problem of HS-BH. Finally a simulation experiment has been done to demonstrate the developed results in which some comparisons have been done to emphasize the advantage of HS-BH with the aid of data from an island of Zhejiang China.
Hydrogen Behavior and Mitigation Measures: State of Knowledge and Database from Nuclear Community
Sep 2023
Publication
Hydrogen has become a key enabler for decarbonization as countries pledge to reach net zero carbon emissions by 2050. With hydrogen infrastructure expanding rapidly beyond its established applications there is a requirement for robust safety practices solutions and regulations. Since the 1980s considerable efforts have been undertaken by the nuclear community to address hydrogen safety issues because in severe accidents of water-cooled nuclear reactors a large amount of hydrogen can be produced from the oxidation of metallic components with steam. As evidenced in the Fukushima accident hydrogen combustion can cause severe damage to reactor building structures promoting the release of radioactive fission products to the environment. A number of large-scale experiments were conducted in the framework of national and international projects to understand the hydrogen dispersion and combustion behaviour under postulated accidental conditions. Empirical engineering models and numerical codes were developed and validated for safety analysis. Hydrogen recombiners known as Passive Autocatalytic Recombiner (PAR) were developed and have been widely installed in nuclear containments to mitigate hydrogen risk. Complementary actions and strategies were established as part of severe accident management guidelines to prevent or limit the consequences of hydrogen explosions. In addition hydrogen monitoring systems were developed and implemented in nuclear power plants. The experience and knowledge gained from the nuclear community on hydrogen safety is valuable and applicable for other industries involving hydrogen production transport storage and use.
Optimal Energy Management of an Integrated Energy System with Multiple Hydrogen Sources
Sep 2023
Publication
Hydrogen is considered a promising alternative to fossil fuels in an integrated energy system (IES). In order to reduce the cost of hydrogen energy utilization and the carbon emissions of the IES this paper proposes a low-carbon dispatching strategy for a coordinated integrated energy system using green hydrogen and blue hydrogen. The strategy takes into account the economic and low-carbon complementarity between hydrogen production by water electrolysis and hydrogen production from natural gas. It introduces the green hydrogen production–storage–use module (GH-PSUM) and the blue hydrogen production–storage–use module (BH-PSUM) to facilitate the refined utilization of different types of hydrogen energy. Additionally the flexibility in hydrogen load supply is analyzed and the dynamic response mechanism of the hydrogen load supply structure (DRM-HLSS) is proposed to further reduce operating costs and carbon emissions. Furthermore a carbon trading mechanism (CTM) is introduced to constrain the carbon emissions of the integrated energy system. By comprehensively considering the constraints of each equipment the proposed model aims to minimize the total economic cost which includes wind power operation and curtailment penalty costs energy purchase costs blue hydrogen purification costs and carbon transaction costs. The rationality of the established scheduling model is verified through a comparative analysis of the scheduling results across multiple operating scenarios.
Energy and Economic Advantages of Using Solar Stills for Renewable Energy-Based Multi-Generation of Power and Hydrogen for Residential Buildings
Apr 2024
Publication
The multi-generation systems with simultaneous production of power by renewable energy in addition to polymer electrolyte membrane electrolyzer and fuel cell (PEMFC-PEMEC) energy storage have become more and more popular over the past few years. The fresh water provision for PEMECs in such systems is taken into account as one of the main challenges for them where conventional desalination technologies such as reverse osmosis (RO) and mechanical vapor compression (MVC) impose high electricity consumption and costs. Taking this point into consideration as a novelty solar still (ST) desalination is applied as an alternative to RO and MVC for better techno-economic justifiability. The comparison made for a residential building complex in Hawaii in the US as the case study demonstrated much higher technical and economic benefits when using ST compared with both MVC and RO. The photovoltaic (PV) installed capacity decreased by 11.6 and 7.3 kW compared with MVC and RO while the size of the electrolyzer declined by 9.44 and 6.13% and the hydrogen storage tank became 522.1 and 319.3 m3 smaller respectively. Thanks to the considerable drop in the purchase price of components the payback period (PBP) dropped by 3.109 years compared with MVC and 2.801 years compared with RO which is significant. Moreover the conducted parametric study implied the high technical and economic viability of the system with ST for a wide range of building loads including high values.
CFD Dispersion Simulations of Compressed Hydrogen Releases through TPRD Inside Scaled Tunnel
Sep 2023
Publication
To achieve the net zero carbon emissions goals by 2050 the transition to cleaner forms and carriers of energy should be accelerated without though jeopardizing the public safety. Although hydrogen has been deemed to play significant role in the energy transition for years now there are still concerns for its risks that hamper its widespread implementation in several applications like for instance automobile applications. Hydrogen-powered vehicles raise concerns about their safety especially inside confined spaces like tunnels and thus research on that topic has been intensified during the last years. In this context experiments have been conducted by UK HSE within the EU-funded project HyTunnel-CS to examine hydrogen dispersion and deflagration inside a scaled tunnel resulting from fuel cell car bus and train release.<br/>In this work that was also carried out within the HyTunnel-CS we present the Computational Fluid Dynamics (CFD) simulations of the HSE unignited experiments. Blowdown tests related to high-pressure hydrogen releases through Thermal Pressure Relief Device (TPRD) installed in car and in train were modeled using the ADREA-HF code. The scope of these simulations was two-fold: a) contribute to the design of the experiments (e.g. indicate sensor positioning ignition point etc.) and the interpretation of hydrogen behavior and b) validate the CFD code. For the former pre-test simulations preceded the experiments to provide design recommendations. When the experiments were conducted the measurements were used for the code validation. Overall the CFD results are in satisfactory agreement with the experiments. Finally simulations with different ventilation rates and with model vehicles inside the tunnel were conducted to examine their effect on mixture dispersion and tunnel safety.
Recent Advances in Power-to-X Technology for the Production of Fuels and Chemicals
Jun 2019
Publication
Environmental issues related to greenhouse gas emissions are progressively pushing the transition toward fossil-free energy scenario in which renewable energies such as solar and wind power will unavoidably play a key role. However for this transition to succeed significant issues related to renewable energy storage have to be addressed. Power-to-X (PtX) technologies have gained increased attention since they actually convert renewable electricity to chemicals and fuels that can be more easily stored and transported. H2 production through water electrolysis is a promising approach since it leads to the production of a sustainable fuel that can be used directly in hydrogen fuel cells or to reduce carbon dioxide (CO2) in chemicals and fuels compatible with the existing infrastructure for production and transportation. CO2 electrochemical reduction is also an interesting approach allowing the direct conversion of CO2 into value-added products using renewable electricity. In this review attention will be given to technologies for sustainable H2 production focusing on water electrolysis using renewable energy as well as on its remaining challenges for large scale production and integration with other technologies. Furthermore recent advances on PtX technologies for the production of key chemicals (formic acid formaldehyde methanol and methane) and fuels (gasoline diesel and jet fuel) will also be discussed with focus on two main pathways: CO2 hydrogenation and CO2 electrochemical reduction.
A Techno-economic Analysis of Ammonia-fuelled Powertrain Systems for Rail Freight
Apr 2023
Publication
All diesel-only trains in the UK will be removed from services by 2040. High volumetric density rapid refuelling ability and sophisticated experience in infrastructure and logistics make ammonia a perfect hydrogen carrying fuel for rail freight which urgently requires an economically viable solution. This study conducted a novel techno-economic study of ammonia-fuelled fuel cell powertrains to be compared with current diesel engine-based system and emerging direct hydrogen-fuelled fuel cell system. The results demonstrate that hydrogen-fuelled Proton Exchange Membrane Fuel Cells (PEMFCs) and ammonia-fuelled PEMFCs (using an ammonia cracker) are more cost-effective in terms of Levelized Cost of Electricity. The ammonia fuel storage requires 61.5-75 % less space compared to the hydrogen storage. Although the ammonia-fuelled Solid Oxide Fuel Cells (SOFCs) powertrain has the highest electricity generation efficiency (56%) the overall cost requires a major reduction by 70% before it could be considered as an economically viable solution.
An Economic Performance Improving and Analysis for Offshore Wind Farm-Based Islanded Green Hydrogen System
Jul 2024
Publication
When offshore wind farms are connected to a hydrogen plant with dedicated transmission lines for example high-voltage direct current the fluctuation of wind speed will influence the efficiency of the alkaline electrolyzer and deteriorate the techno-economic performance. To overcome this issue firstly an additional heating process is adopted to achieve insulation for the alkaline solution when power generated by wind farms is below the alkaline electrolyzer minimum power threshold while the alkaline electrolyzer overload feature is used to generate hydrogen when wind power is at its peak. Then a simplified piecewise model-based alkaline electrolyzer techno-economic analysis model is proposed. The improved economic performance of the islanded green hydrogen system with the proposed operation strategy is verified based on the wind speed data set simulation generated by the Weibull distribution. Lastly the sensitivity of the total return on investment to wind speed parameters was investigated and an islanded green hydrogen system capacity allocation based on the proposed analysis model was conducted. The simulation result shows the total energy utilization increased from 62.0768% to 72.5419% and the return on investment increased from 5.1303%/month to 5.9581%/month when the proposed control strategy is adopted.
Modelling Hydrogen Storage and Filling Systems: A Dynamic and Customizable Toolkit
Aug 2023
Publication
Hydrogen plays a vital role in decarbonizing the mobility sector. With the number of hydrogen vehicles expected to drastically increase a network of refuelling stations needs to be built to keep up with the hydrogen demand. However further research and development on hydrogen refuelling infrastructure storage and standardization is required to overcome technical and economic barriers. Simulation tools can reduce time and costs during the design phase but existing models do not fully support calculations of complete and arbitrary system layouts. Therefore a flexible simulation toolbox for rapid investigations of hydrogen refuelling and extraction processes as well as development of refuelling infrastructure vehicle tank systems and refuelling protocols for non-standardized applications was developed. Our model library H2VPATT comprises of typical components found in refuelling infrastructure. The key component is the hydrogen tank model. The simulation model was successfully validated with measurement data from refuelling tests of a 320 l type III tank.
The Future Role of Offshore Renewable Energy Technologies in the North Sea Energy System
Jul 2024
Publication
Offshore renewables are expected to play a significant role in achieving the ambitious emission targets set by the North Sea countries. Among other factors energy technology costs and their cost reduction potential determine their future role in the energy system. While fixed-bottom offshore wind is well-established and competitive in this region generation costs of other emerging offshore renewable technologies remain high. Hence it is vital to better understand the future role of offshore renewables in the North Sea energy system and the impact of technological learning on their optimal deployments which is not well-studied in the current literature. This study implements an improved framework of integrated energy system analysis to overcome the stated knowledge gap. The approach applies detailed spatial constraints and opportunities of energy infrastructure deployment in the North Sea and also technology cost reduction forecasts of offshore renewables. Both of these parameters are often excluded or overlooked in similar analyses leading to overestimation of benefits and technology deployments in the energy system. Three significant conclusions are derived from this study. First offshore wind plays a crucial role in the North Sea power sector where deployment grows to a maximum of 498 GW by 2050 (222 GW of fixed-bottom and 276 GW of floating wind) from 100 GW in 2030 contributing up to 51% of total power generation and declining cumulative system cost of power and hydrogen system by 4.2% (approx. 40 billion EUR in cost savings) when compared with the slow learning and constrained space use case. Second floating wind deployment is highly influenced by its cost reduction trend and ability to produce hydrogen offshore; emphasizing the importance of investing in floating wind in this decade as the region lacks commercial deployments that would stimulate its cost reduction. Also the maximum floating wind deployment in the North Sea energy system declined by 70% (162 GW from 276 GW) when offshore hydrogen production was avoided while fixed-bottom offshore wind deployment remains unchanged. Lastly the role of other emerging offshore renewables remains limited in all scenarios considered as they are expensive compared to other technology choices in the system. However around 8 GW of emerging technologies was observed in Germany and the Netherlands when the deployment potential of fixed-bottom offshore wind became exhausted.
Technology Transfer from Fuel Processing for Fuel Cells to Fuel Synthesis from Hydrogen and Carbon Dioxide
Aug 2023
Publication
Improving the energy efficiency of existing technologies such as the on-board power supply of trucks ships and aircraft is an important endeavor for reducing primary energy consumption. The approach consists of using fuel cell technology in conjunction with hydrogen production from liquid fuels. However the energy transition with the goal of complete climate-neutrality requires technological changes in the use of hydrogen produced from renewable energy via electrolysis. Synthetic fuels are an important building block for drive systems that will continue to require liquid energy carriers in the future due to their range. This study addresses the question of whether technical devices that were developed for the generation of hydrogen from liquid fuels for fuel cells to generate electricity are now suitable for the reverse process chain or can play an important role in it. The new process chain produces hydrogen from sustainable electricity combining it with carbon dioxide to create a synthetic liquid fuel.
Energy Consumption and Saved Emissions of a Hydrogen Power System for Ultralight Aviation: A Case Study
Jul 2024
Publication
The growing concern about climate change and the contemporary increase in mobility requirements call for faster cheaper safer and cleaner means of transportation. The retrofitting of fossil-fueled piston engine ultralight aerial vehicles to hydrogen power systems is an option recently proposed in this direction. The goal of this investigation is a comparative analysis of the environmental impact of conventional and hydrogen-based propulsive systems. As a case study a hybrid electric configuration consisting of a fuel cell with a nominal power of about 30 kW a 6 kWh LFP battery and a pressurized hydrogen vessel is proposed to replace a piston prop configuration for an ultralight aerial vehicle. Both power systems are modeled with a backward approach that allows the efficiency of the main components to be evaluated based on the load and altitude at every moment of the flight with a time step of 1 s. A typical 90 min flight mission is considered for the comparative analysis which is performed in terms of direct and indirect emissions of carbon dioxide water and pollutant substances. For the hydrogen-based configuration two possible strategies are adopted for the use of the battery: charge sustaining and charge depleting. Moreover the effect of the altitude on the parasitic power of the fuel cell compressor and consequently on the net efficiency of the fuel cell system is taken into account. The results showed that even if the use of hydrogen confines the direct environmental impact to the emission of water (in a similar quantity to the fossil fuel case) the indirect emissions associated with the production transportation and delivery of hydrogen and electricity compromise the desired achievement of pollutant-free propulsion in terms of equivalent emissions of CO2 and VOCs if hydrogen is obtained from natural gas reforming. However in the case of green hydrogen from electrolysis with wind energy the total (direct and indirect) emissions of CO2 can be reduced up to 1/5 of the fossil fuel case. The proposed configuration has the additional advantage of eliminating the problem of lead which is used as an additive in the AVGAS 100LL.
Steam Electrolysis for Green Hydrogen Generation. State of the Art and Research Perspective
Jul 2024
Publication
With renewable energy sources projected to become the dominant source of electricity hydrogen has emerged as a crucial energy carrier to mitigate their intermittency issues. Water electrolysis is the most developed alternative to generate green hydrogen so far. However in the past two decades steam electrolysis has attracted increasing interest and aims to become a key player in the portfolio of electrolytic hydrogen. In practice steam electrolysis follows two distinct operational approaches: Solid Oxide Electrolysis Cell (SOEC) and Proton Exchange Membrane (PEM) at high temperature. For both technologies this work analyses critical cell components outlining material characteristics and degradation issues. The influence of operational conditions on the performance and cell durability of both technologies is thoroughly reviewed. The analytical comparison of the two electrolysis alternatives underscores their distinct advantages and drawbacks highlighting their niche of applications: SOECs thrive in high temperature industries like steel production and nuclear power plants whereas PEM steam electrolysis suits lower temperature applications such as textile and paper. Being PEM steam electrolysis less explored this work ends up by suggesting research lines in the domain of i) cell components (membranes catalysts and gas diffusion layers) to optimize and scale the technology ii) integration strategies with renewable energies and iii) use of seawater as feedstock for green hydrogen production.
Recent Advances in Membrane-based Electrochemical Hydrogen Separation: A Review
Feb 2021
Publication
In this paper an overview of commercial hydrogen separation technologies is given. These technologies are discussed and compared—with a detailed discussion on membrane-based technologies. An emerging and promising novel hydrogen separation technology namely electrochemical hydrogen separation (EHS) is reviewed in detail. EHS has many advantages over conventional separation systems (e.g. it is not energy intensive it is environmentally-friendly with near-zero pollutants it is known for its silent operation and the greatest advantage simultaneous compression and purification can be achieved in a one-step operation). Therefore the focus of this review is to survey open literature and research conducted to date on EHS. Current technological advances in the field of EHS that have been made are highlighted. In the conclusion literature gaps and aspects of electrochemical hydrogen separation that require further research are also highlighted. Currently the cost factor lack of adequate understanding of the degradation mechanisms related to this technology and the fact that certain aspects of this technology are as yet unexplored (e.g. simultaneous hydrogen separation and compression) all hinder its widespread application. In future research some attention could be given to the aforementioned factors and emerging technologies such as ceramic proton conductors and solid acids.
Review on the Thermal Neutrality of Application-orientated Liquid Organic Hydrogen Carrier for Hydrogen Energy Storage and Delivery
Aug 2023
Publication
The depletion and overuse of fossil fuels present formidable challenge to energy supply system and environment. The human society is in great need of clean renewable and sustainable energy which can guarantee the long-term utilization without leading to escalation of greenhouse effect. Hydrogen as an extraordinary secondary energy is capable of realizing the target of environmental protection and transferring the intermittent primary energy to the application terminal while its nature of low volumetric energy density and volatility need suitable storage method and proper carrier. In this context liquid organic hydrogen carrier (LOHC) among a series of storage methods such as compressed and liquefied hydrogen provokes a considerable amount of research interest since it is proven to be a suitable carrier for hydrogen with safety and stability. However the dehydrogenation of hydrogen-rich LOHC materials is an endothermic process and needs large energy consumption which hampers the scale up of the LOHC system. The heat issue is thus essential to be addressed for fulfilling the potential of LOHC. In this work several strategies of heat intensification and management for LOHC system including the microwave irradiation circulation of exhaust heat and direct LOHC fuel cell are summarized and analyzed to provide suggestions and directions for future research.
Potential Cost Savings of Large-scale Blue Hydrogen Production via Sorption-enhanced Steam Reforming Process
Jan 2024
Publication
As countries work towards achieving net-zero emissions the need for cleaner fuels has become increasingly urgent. Hydrogen produced from fossil fuels with carbon capture and storage (blue hydrogen) has the potential to play a significant role in the transition to a low-carbon economy. This study examined the technical and economic potential of blue hydrogen produced at 600 MWth(LHV) and scaled up to 1000 MWth(LHV) by benchmarking sorption-enhanced steam reforming process against steam methane reforming (SMR) autothermal gasheated reforming (ATR-GHR) integrated with carbon capture and storage (CCS) and SMR with CCS. Aspen Plus® was used to develop the process model which was validated using literature data. Cost sensitivity analyses were also performed on two key indicators: levelised cost of hydrogen and CO2 avoidance cost by varying natural gas price electricity price CO2 transport and storage cost and carbon price. Results indicate that at a carbon price of 83 £/tCO2e the LCOH for SE-SR of methane is the lowest at 2.85 £/kgH2 which is 12.58% and 22.55% lower than that of ATR-GHR with CCS and SMR plant with CCS respectively. The LCOH of ATR-GHR with CCS and SMR plant with CCS was estimated to be 3.26 and 3.68 £/kgH2 respectively. The CO2 avoidance cost was also observed to be lowest for SE-SR followed by ATR-GHR with CCS then SMR plant with CCS and was observed to reduce as the plant scaled to 1000 MWth(LHV) for these technologies.
Investigation on the Compressibility Factor of Hydrogen-Doped Natural Gas Using GERG-2008 Equation of State
Dec 2024
Publication
The primary methods for hydrogen transportation include gaseous storage and transport liquid hydrogen storage and transport via organic liquid carriers. Among these pipeline transportation offers the lowest cost and the greatest potential for large-scale long-distance transport. Although the construction and operation costs of dedicated hydrogen pipelines are relatively high blending hydrogen into existing natural gas networks presents a viable alternative. This approach allows hydrogen to be transported to the end-users where it can be either separated for use or directly combusted thereby reducing hydrogen transport costs. This study based on the GERG-2008 equation of state conducts experimental tests on the compressibility factor of hydrogen-doped natural gas mixtures across a temperature range of −10 ◦C to 110 ◦C and a pressure range of 2 to 12 MPa with hydrogen blending ratios of 5% 10% 20% 30% and 40%. The results indicate that the hydrogen blending ratio temperature and pressure significantly affect the compressibility factor particularly under low-temperature and high-pressure conditions where an increase in the hydrogen blending ratio leads to a notable rise in the compressibility factor. These findings have substantial implications for the practical design of hydrogen-enriched natural gas pipelines as changes in the compressibility factor directly impact pipeline operational parameters compressor characteristics and other system performance aspects. Specifically the introduction of hydrogen alters the compressibility factor of the transported medium thereby affecting the pipeline’s flowability and compressibility which are crucial for optimizing and applying the performance of hydrogen-enriched natural gas in transportation channels. The research outcomes provide valuable insights for understanding combustion reactions adjusting pipeline operational parameters and compressor performance characteristics facilitating more precise decision-making in the design and operation of hydrogen-enriched natural gas pipelines.
Design Investigation of Potential Long-Range Hydrogen Combustion Blended Wing Body Aircraft with Future Technologies
Jun 2023
Publication
Present work investigates the potential of a long-range commercial blended wing body configuration powered by hydrogen combustion engines with future airframe and propulsion technologies. Future technologies include advanced materials load alleviation techniques boundary layer ingestion and ultra-high bypass ratio engines. The hydrogen combustion configuration was compared to the configuration powered by kerosene with respect to geometric properties performance characteristics energy demand equivalent CO2 emissions and Direct Operating Costs. In addition technology sensitivity studies were performed to assess the potential influence of each technology on the configuration. A multi-fidelity sizing methodology using low- and mid-fidelity methods for rapid configuration sizing was created to assess the configuration and perform robust analyses and multi-disciplinary optimizations. To assess potential uncertainties of the fidelity of aerodynamic analysis tools high-fidelity aerodynamic analysis and optimization framework MACHAero was used for additional verification. Comparison of hydrogen and kerosene blended wing body aircraft showed a potential reduction of equivalent CO2 emission by 15% and 81% for blue and green hydrogen compared to the kerosene blended wing body and by 44% and 88% with respect to a conventional B777-300ER aircraft. Advancements in future technologies also significantly affect the geometric layout of aircraft. Boundary layer ingestion and ultra-high bypass ratio engines demonstrated the highest potential for fuel reduction although both technologies conflict with each other. However operating costs of hydrogen aircraft could establish a significant problem if pessimistic and base hydrogen price scenarios are achieved for blue and green hydrogen respectively. Finally configurational problems featured by classical blended wing body aircraft are magnified for the hydrogen case due to the significant volume requirements to store hydrogen fuel.
On the Future Relevance of Green Hydrogen in Europe
Jan 2024
Publication
Hydrogen is among the energy carriers which are most often considered for bringing about a sustainable energy system. Yet so far hydrogen has not delivered as an energy carrier. The core objective of this paper is to provide a comprehensive analysis of the state-of-the-art and the future prospects of green hydrogen in the European energy system from economic energetic and CO2 emissions point-of-view. The analysis shows that there are some increasing opportunities for hydrogen use in industry and in the transport sector when electrification is not possible or is too expensive as well as a storage in the European electricity system. However a hydrogen-based energy system will remain a vision at least over the next decades. The major reason for this is the unfavorable economics mostly due to high investment costs in the whole supply chain. In addition the overall efficiencies in the hydrogen chains are moderate in general. The full environmental benignity of hydrogen as an energy carrier is only provided when renewable energy sources are used for hydrogen production. However in Europe the potentials for green hydrogen are very limited due to the insufficient expansion of renewable electricity generation. For this reason many European countries are considering options for green hydrogen import. The future of hydrogen is highly dependent on the supporting policy framework. To reduce the risk in the investment in hydrogen infrastructure as well as to justify the promotion of green hydrogen it is very important that Europe works out a very clear and realistic long-term implementation strategy.
Recent Developments in Materials for Physical Hydrogen Storage: A Review
Jan 2024
Publication
The depletion of reliable energy sources and the environmental and climatic repercussions of polluting energy sources have become global challenges. Hence many countries have adopted various renewable energy sources including hydrogen. Hydrogen is a future energy carrier in the global energy system and has the potential to produce zero carbon emissions. For the non-fossil energy sources hydrogen and electricity are considered the dominant energy carriers for providing end-user services because they can satisfy most of the consumer requirements. Hence the development of both hydrogen production and storage is necessary to meet the standards of a “hydrogen economy”. The physical and chemical absorption of hydrogen in solid storage materials is a promising hydrogen storage method because of the high storage and transportation performance. In this paper physical hydrogen storage materials such as hollow spheres carbon-based materials zeolites and metal– organic frameworks are reviewed. We summarize and discuss the properties hydrogen storage densities at different temperatures and pressures and the fabrication and modification methods of these materials. The challenges associated with these physical hydrogen storage materials are also discussed.
No more items...