Japan
Effects of Hydrogen Pressure, Test Frequency and Test Temperature on Fatigue Crack Growth Properties of Low-carbon Steel in Gaseous Hydrogen
Jul 2016
Publication
Fatigue crack growth (FCG) tests for compact tension (CT) specimens of an annealed low-carbon steel JIS-SM490B were performed under various combinations of hydrogen pressures ranging from 0.1 to 90 MPa test frequencies from 0.001 to 10 Hz and test temperatures of room temperature (RT) 363 K and 423 K. In the hydrogen pressures of 0.1 0.7 and 10 MPa at RT the FCG rate increased with a decrease in the test frequency; then peaked out. In the lower test frequency regime the FCG rate decreased and became nearly equivalent to the FCG rate in air. Also in hydrogen pressure of 45 MPa at RT the hydrogen-assisted FCG acceleration showed an upper limit around the test frequencies of 0.01 to 0.001 Hz. On the other hand in the hydrogen pressure of 90 MPa at RT the FCG rate monotonically increased with a decrease in the test frequency and eventually the upper limit of FCG acceleration was not confirmed down to the test frequency of 0.001 Hz. In the hydrogen pressure of 0.7 MPa at the test frequency of 1 Hz and temperatures of 363 K and 423 K the stress intensity factor range ΔK for the onset of the FCG acceleration in hydrogen gas was shifted to a higher ΔK with an increase in the test temperature. The laser-microscope observation at specimen surface revealed that the hydrogen-assisted FCG acceleration always accompanied a localization of plastic deformation near crack tip. These results infer that the influencing factor dominating the hydrogen-assisted FCG acceleration is not the presence or absence of hydrogen in material but is how hydrogen localizes near the crack tip. Namely a steep gradient of hydrogen concentration can result in the slip localization at crack tip which enhances the Hydrogen Enhanced Successive Fatigue Crack Growth (HESFCG) proposed by the authors. It is proposed that such a peculiar dependence of FCG rate on hydrogen pressure test frequency and test temperature can be unified by using a novel parameter representing the gradient of hydrogen concentration near crack tip.
Crack Size Dependency of Shear-mode Fatigue Threshold in Bearing Steel Subjected to Continuous Hydrogen Charging
Jun 2019
Publication
Premature delamination failure characterized by the white structure flaking (WSF) or the white etching crack (WEC) often occurs in rolling element bearings and it deteriorates the durability of bearing substantially. It is known that this failure is caused by shear-mode (Mode II and Mode III) crack growth in conjunction with evolution and invasion of hydrogen into material during operation. To ensure the structural integrity associated with rolling element bearing it is important to clarify the effect of hydrogen on the shear-mode fatigue crack growth behavior near the threshold level.<br/>In our previous study the effect of hydrogen on the shear-mode fatigue crack growth behavior in a bearing steel of JIS SUJ2 was examined near the threshold level. Consequently it was shown that the threshold stress intensity factor (SIF) range for shear-mode fatigue crack growth decreased significantly by action of hydrogen. However the investigation was made only for a crack with a surface length of about 900 mm. To thoroughly understand the critical condition for delamination failure it is important to investigate the crack size dependency of the threshold level for a shear-mode small fatigue crack in the presence of hydrogen. In the present study correspondingly the threshold SIF ranges for a shear-mode crack with different length were additionally measured in the same material by using a novel technique that enables continuous charging of hydrogen in a specimen during long-term fatigue test. Then a clear reduction in crack growth rate and a crack size dependency of the threshold SIF range were observed under the environmental condition of continuous hydrogen charging.
A New Design Concept for Prevention of Hydrogen-induced Mechanical Degradation: Viewpoints of Metastability and High Entropy
Dec 2018
Publication
‟How crack growth is prevented” is key to improve both fatigue and monotonic fracture resistances under an influence of hydrogen. Specifically the key points for the crack growth resistance are hydrogen diffusivity and local ductility. For instance type 304 austenitic steels show high hydrogen embrittlement susceptibility because of the high hydrogen diffusivity of bcc (α´) martensite. In contrast metastability in specific austenitic steels enables fcc (γ) to hcp (ε) martensitic transformation which decreases hydrogen diffusivity and increases strength simultaneously. As a result even if hydrogen-assisted cracking occurs during monotonic tensile deformation the ε-martensite acts to arrest micro-damage evolution when the amount of ε-martensite is limited. Thus the formation of ε-martensite can decrease hydrogen embrittlement susceptibility in austenitic steels. However a considerable amount of ε-martensite is required when we attempt to have drastic improvements of work hardening capability and strength level with respect to transformation-induced plasticity effect. Since the hcp structure contains a less number of slip systems than fcc and bcc the less stress accommodation capacity often causes brittle-like failure when the ε-martensite fraction is large. Therefore ductility of ε-martensite is another key when we maximize the positive effect of ε-martensitic transformation. In fact ε-martensite in a high entropy alloy was recently found to be extraordinary ductile. Consequently the metastable high entropy alloys showed low fatigue crack growth rates in a hydrogen atmosphere compared with conventional metastable austenitic steels with α´-martensitic transformation. We here present effects of metastability to ε-phase and configurational entropy on hydrogen-induced mechanical degradation including monotonic tension properties and fatigue crack growth resistance.
Strain Rate Sensitivity of Microstructural Damage Evolution in a Dual-Phase Steel Pre-Charged with Hydrogen
Dec 2018
Publication
We evaluated the strain rate sensitivity of the micro-damage evolution behavior in a ferrite/martensite dual-phase steel. The micro-damage evolution behavior can be divided into three regimes: damage incubation damage arrest and damage growth. All regimes are associated with local deformability. Thus the total elongation of DP steels is determined by a combination of plastic damage initiation resistance and damage growth arrestability. This fact implies that hydrogen must have a critical effect on the damage evolution because hydrogen enhances strain localization and lowers crack resistance. In this context the strain rate must be an important factor because it affects the time for microstructural hydrogen diffusion/segregation at a specific microstructural location or at the damage tip. In this study tensile tests were carried out on a DP steel with different strain rates of 10− 2 and 10− 4 s−1. We performed the damage quantification microstructure characterization and fractography. Specifically the quantitative data of the damage evolution was analyzed using the classification of the damage evolution regimes in order to separately elucidate the effects of the hydrogen on damage initiation resistance and damage arrestability. In this study we obtained the following conclusions with respect to the strain rate. Lowering the strain rate increased the damage nucleation rate at martensite and reduced the critical strain for fracture through shortening the damage arrest regime. However the failure occurred via ductile modes regardless of strain rate.
Assessment of the Contribution of Internal Pressure to the Structural Damage in a Hydrogen-charged Type 316L Austenitic Stainless Steel During Slow Strain Rate Tensile Test
Dec 2018
Publication
The aim of this study is to provide a quantification of the internal pressure contribution to the SSRT properties of H-charged Type-316L steel tested in air at room temperature. Considering pre-existing penny-shaped voids the transient pressure build-up has been simulated as well as its impact on the void growth by preforming JIc calculations. Several void distributions (size and spacing) have been considered. Simulations have concluded that there was no impact of the internal pressure on the void growth regardless the void distribution since the effective pressure was on the order of 1 MPa during the SSRT test. Even if fast hydrogen diffusion related to dislocation pipe-diffusion has been assessed as a conservative case the impact on void growth was barely imperceptible (or significantly low). The effect of internal pressure has been experimentally verified via the following conditions: (I) non-charged in vacuum; (II) H-charged in vacuum; (III) H-charged in 115-MPa nitrogen gas; (IV) non-charged in 115-MPa nitrogen gas. As a result the relative reduction in area (RRA) was 0.84 for (II) 0.88 for (III) and 1.01 for (IV) respectively. The difference in void morphology of the H-charged specimens did not depend on the presence of external pressure. These experimental results demonstrate that the internal pressure had no effect on the tensile ductility and void morphology of the H-charged specimen.
Impact of Hydrogen Fuel for CO2 Emission Reduction in Power Generation Sector in Japan
Jun 2017
Publication
Japan’s energy consumption derives mostly from fossil fuels which are un-secure and release a much greenhouse gas emissions. To meet goals of reducing GHG hydrogen gas can be utilized in power generation in hydrogen fired and firing / co-combustion power plants. This paper analyses the impact of hydrogen in the power generation sector using the MARKAL-TIMES Japan optimization model framework. Two models are used: a base scenario without hydrogen and hydrogen scenario in which hydrogen is supplied from 2020 onwards. In the hydrogen scenario other processes which are normally supplied by natural gas are reduced because the gas is instead used to generate power. Adding hydrogen to the energy supply leads to a decrease in projected use of fossil fuels. The hydrogen scenario produces fewer emissions than the base scenario; by 2050 the hydrogen scenario’s estimated 388 metric tons of CO2 emissions is over 250 tons less than the base scenario’s emissions of 588 metric tons.
Effects of Hydrogen and Carbon Dioxide on the Laminar Burning Velocities of Methane-air Mixtures
Sep 2021
Publication
The effects of different mole fractions of hydrogen and carbon dioxide on the combustion characteristics of a premixed methane–air mixture are experimentally and numerically investigated. The laminar burning velocity of hydrogen-methane-carbon dioxide-air mixture was measured using the spherically expanding flame method at the initial temperature and pressure of 283 K and 0.1 MPa respectively. Additionally numerical analysis is conducted under steady 1D laminar flow conditions to investigate the adiabatic flame temperature and dominant elementary reactions. The measured velocities correspond with those estimated numerically. The results show that increasing the carbon dioxide mole fraction decreases the laminar burning velocity attributed to the carbon dioxide dilution which decreases the thermal diffusivity and flame temperature. Conversely the velocity increases with the thermal diffusivity as the hydrogen mole fraction increases. Moreover the hydrogen addition leads to chain-branching reactions that produce active H O and OH radicals via the oxidation of hydrocarbons which is the rate-determining reaction.
A Multiobjective Optimization of a Catalyst Distribution in a Methane/Steam Reforming Reactor Using a Genetic Algorithm
May 2020
Publication
The presented research focuses on an optimization design of a catalyst distribution inside a small-scale methane/steam reforming reactor. A genetic algorithm was used for the multiobjective optimization which included the search for an optimum of methane conversion rate and a minimum of the difference between highest and lowest temperatures in the reactor. For the sake of computational time the maximal number of the segment with different catalyst densities was set to be thirty in this study. During the entire optimization process every part of the reactor could be filled either with a catalyst material or non-catalytic metallic foam. In both cases the porosity and pore size was also specified. The impact of the porosity and pore size on the active reaction surface and permeability was incorporated using graph theory and three-dimensional digital material representation. Calculations start with the generation of a random set of possible reactors each with a different catalyst distribution. The algorithm calls reforming simulation over each of the reactors and after obtaining concentration and temperature fields the algorithms calculated fitness function. The properties of the best reactors are combined to generate a new population of solutions. The procedure is repeated and after meeting the coverage criteria the optimal catalyst distribution was proposed. The paper is summarized with the optimal catalyst distribution for the given size and working conditions of the system.
Impact and Challenges of Reducing Petroleum Consumption for Decarbonization
Apr 2022
Publication
This study aimed to identify the impact of achieving the 1.5 ◦C target on the petroleum supply chain in Japan and discuss the feasibility and challenges of decarbonization. First a national material flow was established for the petroleum supply chain in Japan including processes for crude petroleum refining petroleum product manufacturing plastic resin and product manufacturing and by-product manufacturing. In particular by-product manufacturing processes such as hydrogen gaseous carbon dioxide and sulfur were selected because they are utilized in other industries. Next the outlook for the production of plastic resin hydrogen dry ice produced from carbon dioxide gas and sulfur until 2050 was estimated for reducing petroleum consumption required to achieve the 1.5 ◦C target. As a result national petroleum treatment is expected to reduce from 177048.00 thousand kl in 2019 to 126643.00 thousand kl in 2030 if the reduction in petroleum consumption is established. Along with this decrease plastic resin production is expected to decrease from 10500.00 thousand ton in 2019 to 7511.00 thousand ton by 2030. Conversely the plastic market is expected to grow steadily and the estimated plastic resin production in 2030 is expected to be 20079.00 thousand ton. This result indicates that there is a large output gap between plastic supply and demand. To mitigate this gap strongly promoting the recycling of waste plastics and making the price competitiveness of biomass plastics equal to that of petroleum-derived plastics are necessary
R&D Status on Thermochemical IS Process for Hydrogen Production at JAEA
Nov 2012
Publication
Thermochemical hydrogen production process is one of the candidates of industrial fossil fuel free hydrogen production. Japan Atomic Energy Agency (JAEA) has been conducting R&D of the thermochemical water splitting iodine-sulfur (IS) process since the end of 1980s. This paper presents the recent study on the IS process in JAEA. In 2005-2009 test-fabrication of components collection of design database improvement of process components for higher thermal efficiency and proposition of composition measurement method were carried out. On the basis of them the integrity test of process components is carried out in 2010-2014 to examine their integrities in severe process environments. At present a Bunsen reactor which produces acids and incidental equipments has been already manufactured using corrosion resistant materials such as glass lining steel and fluoroplastic lining steel. Flow tests to examine the functionality and integrity of the materials are planned in 2012.
Economic Dispatch Model of Nuclear High-Temperature Reactor with Hydrogen Cogeneration in Electricity Market
Dec 2021
Publication
Hydrogen produced without carbon emissions could be a useful fuel as nations look to decarbonize their electricity transport and industry sectors. Using the iodine–sulfur (IS) cycle coupled with a nuclear heat source is one method for producing hydrogen without the use of fossil fuels. An economic dispatch model was developed for a nuclear-driven IS system to determine hydrogen sale prices that would make such a system profitable. The system studied is the HTTR GT/H2 a design for power and hydrogen cogeneration at the Japan Atomic Energy Agency’s High Temperature Engineering Test Reactor. This study focuses on the development of the economic model and the role that input data plays in the final calculated values. Using a historical price duration curve shows that the levelized cost of hydrogen (LCOH) or breakeven sale price of hydrogen would need to be 98.1 JPY/m3 or greater. Synthetic time histories were also used and found the LCOH to be 67.5 JPY/m3 . The price duration input was found to have a significant effect on the LCOH. As such great care should be used in these economic dispatch analyses to select reasonable input assumptions.
Evaluation of Hydrogen-induced Cracking in High-strength Steel Welded Joints by Acoustic Emission Technique
Feb 2020
Publication
Hydrogen-induced cracking behavior in high-strength steel mainly composed of martensite was analyzed by acoustic emission (AE) technique and finite element method (FEM) in slow strain-rate tensile (SSRT) tests and welding tests. The crack initiation was detected by the AE signals and the time evolution of stress concentration and hydrogen diffusion were calculated by FEM. The effect of hardness and plastic strain on the hydrogen diffusion coefficientwas explicitly introduced into the governing equation in FEM. The criterion and indicator parameter for the crack initiation were derived as a function of maximum principal stress and locally accumulated hydrogen concentration. The results showed that the cracking criterion derived by AE and FEM is useful for predicting the cold cracking behavior and determining the critical preheat temperature to prevent hydrogeninduced cracking.
Co-production of Hydrogen and Power from Black Liquor Via Supercritical Water Gasification, Chemical Looping and Power Generation
Mar 2019
Publication
An integrated system to harvest efficiently the energy from the waste of pulp mill industry which is black liquor (BL) is proposed and evaluated. The proposed system consists of the supercritical water gasification (SCWG) of BL syngas chemical looping and power generation. To minimize the exergy loss throughout the system and to optimize the energy efficiency process design and integration is conducted by employing the principles of exergy recovery and process integration methods. Hydrogen is set as the main output while power is produced by utilizing the heat generated throughout the process. Process simulation is conducted using a steady state process simulator Aspen Plus. Energy efficiency is defined into three categories: hydrogen production efficiency power generation efficiency and total energy efficiency. From process simulation both of the integrated systems show very high total energy efficiency of about 73%.
Effect of Supercharging on Improving Thermal Efficiency and Modifying Combustion Characteristics in Lean-burn Direct-injection Near-zero-emission Hydrogen Engines
Oct 2021
Publication
The authors have proposed a new combustion process called the Plume Ignition Combustion Concept (PCC) in which with an optimal combination of hydrogen injection timing and controlled jet geometry the plume of the hydrogen jet is spark-ignited to accomplish combustion of a rich mixture. This combustion process markedly improves thermal efficiency by reducing cooling loss which is essential for increasing thermal efficiency in a hydrogen engine while maintaining high power. In order to improve thermal efficiency and reduce NOx formation further PCC was applied to a lean-burn regime to burn a leaner mixture globally. In this study the effect of supercharging which was applied to recover the reduced output power due to the leaner mixture on improving thermal efficiency was confirmed along with clarifying the cause.
Significance of Hydrogen as Economic and Environmentally Friendly Fuel
Nov 2021
Publication
The major demand of energy in today’s world is fulfilled by the fossil fuels which are not renewable in nature and can no longer be used once exhausted. In the beginning of the 21st century the limitation of the fossil fuels continually growing energy demand and growing impact of greenhouse gas emissions on the environment were identified as the major challenges with current energy infrastructure all over the world. The energy obtained from fossil fuel is cheap due to its established infrastructure; however these possess serious issues as mentioned above and cause bad environmental impact. Therefore renewable energy resources are looked to as contenders which may fulfil most energy requirements. Among them hydrogen is considered as the most environmentally friendly fuel. Hydrogen is clean sustainable fuel and it has promise as a future energy carrier. It also has the ability to substitute the present energy infrastructure which is based on fossil fuel. This is seen and projected as a solution for the above-mentioned problems including rise in global temperature and environmental degradation. Environmental and economic aspects are the important factors to be considered to establish hydrogen infrastructure. This article describes the various aspects of hydrogen including production storage and applications with a focus on fuel cell based electric vehicles. Their environmental as well as economic aspects are also discussed herein.
The Role of Hydrogen in Achieving Long Term Japanese Energy System Goals
Sep 2020
Publication
This research qualitatively reviews literature regarding energy system modeling in Japan specific to the future hydrogen economy leveraging quantitative model outcomes to establish the potential future deployment of hydrogen in Japan. The analysis focuses on the four key sectors of storage supplementing the gas grid power generation and transportation detailing the potential range of hydrogen technologies which are expected to penetrate Japanese energy markets up to 2050 and beyond. Alongside key model outcomes the appropriate policy settings governance and market mechanisms are described which underpin the potential hydrogen economy future for Japan. We find that transportation gas grid supplementation and storage end-uses may emerge in significant quantities due to policies which encourage ambitious implementation targets investment in technologies and research and development and the emergence of a future carbon pricing regime. On the other hand for Japan which will initially be dependent on imported hydrogen the cost of imports appears critical to the emergence of broad hydrogen usage particularly in the power generation sector. Further the consideration of demographics in Japan recognizing the aging shrinking population and peoples’ energy use preferences will likely be instrumental in realizing a smooth transition toward a hydrogen economy.
Current Research and Development Activities on Fission Products and Hydrogen Risk after the Accident at Fukushima Daiiichi Nuclear Power Station
Jan 2015
Publication
After the Fukushima Daiichi nuclear power plant (NPP) accident new regulatory requirements were enforced in July 2013 and a backfit was required for all existing nuclear power plants. It is required to take measures to prevent severe accidents and mitigate their radiological consequences. The Regulatory Standard and Research Department Secretariat of Nuclear Regulation Authority (S/NRA/R) has been conducting numerical studies and experimental studies on relevant severe accident phenomena and countermeasures. This article highlights fission product (FP) release and hydrogen risk as two major areas. Relevant activities in the S/NRA/R are briefly introduced as follows: 1. For FP release: Identifying the source terms and leak mechanisms is a key issue from the viewpoint of understanding the progression of accident phenomena and planning effective countermeasures that take into account vulnerabilities of containment under severe accident conditions. To resolve these issues the activities focus on wet well venting pool scrubbing iodine chemistry (in-vessel and ex-vessel) containment failure mode and treatment of radioactive liquid effluent. 2. For hydrogen risk: because of three incidents of hydrogen explosion in reactor buildings a comprehensive reinforcement of the hydrogen risk management has been a high priority topic. Therefore the activities in evaluation methods focus on hydrogen generation hydrogen distribution and hydrogen combustion.
Operation of Metal Hydride Hydrogen Storage Systems for Hydrogen Compression Using Solar Thermal Energy
Mar 2016
Publication
By using a newly constructed bench-scale hydrogen energy system with renewable energy ‘Pure Hydrogen Energy System’ the present study demonstrates the operations of a metal hydride (MH) tank for hydrogen compression as implemented through the use solar thermal energy. Solar thermal energy is used to generate hot water as a heat source of the MH tank. Thus 70 kg of LaNi5 one of the most typical alloys used for hydrogen storage was placed in the MH tank. We present low and high hydrogen flow rate operations. Then the operations under winter conditions are discussed along with numerical simulations conducted from the thermal point of view. Results show that a large amount of heat (>100 MJ) is generated and the MH hydrogen compression is available.
Interfacial Fracture Strength Property of Micro-scale SiN/Cu Components
Jul 2016
Publication
The strength against fracture nucleation from an interface free-edge of silicon-nitride (SiN)/copper (Cu) micro-components is evaluated. A special technique that combines a nano-indenter specimen holder and an environmental transmission electron microscope (E-TEM) is employed. The critical load at the onset of fracture nucleation from a wedge-shaped free-edge (opening angle: 90°) is measured both in a vacuum and in a hydrogen (H2) environment and the critical stress distribution is evaluated by the finite element method (FEM). It is found that the fracture nucleation is dominated by the near-edge elastic singular stress field that extends about a few tens of nanometers from the edge. The fracture nucleation strength expressed in terms of the stress intensity factor (K) is found to be eminently reduced in a H2 environment.
Effect of High-pressure H2 Gas on Tensile and Fatigue Properties of Stainless Steel SUS316L by Means of the Internal High-pressure H2 Gas Method
Dec 2019
Publication
For prohibiting a global warming fuel-cell systems without carbon dioxide emissions are a one of the promising technique. In case of a fuel-cell vehicle (FCV) high-pressure H2 gas is indispensable for a long running range. Although there are lot of paper for studying a hydrogen embrittlement (HE) there are few paper referred to the effect of high-pressure H2on the HE phenomenon.
In this study an effect of high-pressure H2 gas on tensile & fatigue properties of stainless steel SUS316L were investigated by means of the internal high-pressure H2 gas technique. Main findings of this study are as follows;
In this study an effect of high-pressure H2 gas on tensile & fatigue properties of stainless steel SUS316L were investigated by means of the internal high-pressure H2 gas technique. Main findings of this study are as follows;
- Although there are almost no hydrogen embrittlement effect on the 0.2 % proof stress and tensile strength elongation and reduction of area decrease in H2 gas environment
- For case of low Nieq material fatigue life and fatigue limit decrease in H2 gas environment
- For case of low Nieq material not a few α’ martensitic phase generated on the fatigue fractured specimen.
Catalytic Hydrogen Production, Storage and Application
Jul 2021
Publication
Hydrogen is a clean fuel for transportation and energy storage. It has several attractive features including a higher energy content by weight use in fuel cells that produces only water as a by-product storage in small and large quantities by various methods and established transportation and infrastructures. A hydrogen economy consists of three steps i.e. hydrogen production storage and applications. All three steps involved in a hydrogen economy can be divided into catalytic and non-catalytic approaches. For catalytic processes the efficiency highly depends on the type and physico-chemical characteristics of the catalysts. Therefore for the improvement of these catalytic processes the development of highly efficient and stable catalysts is highly required.
Proposal and Verification of Novel Fatigue Crack Propagation Simulation Method by Finite Element Method.
Dec 2018
Publication
In this paper we propose and verify a novel method to simulate crack propagation without propagating a crack by finite element method. We propose this method for elastoplastic analysis coupled with convection-diffusion. In the previous study we succeeded in performing elastoplastic analysis coupled with convection-diffusion of hydrogen for a material with a crack under tensile loading. This research extends the successful method to fatigue crack propagation. In convection-diffusion analysis in order to simulate the invasion and release of elements through the free surface the crack tip is expressed by using a notch with a sufficiently small radius. Therefore the node release method conventionally used to simulate crack propagation cannot be applied. Hence instead of crack propagation based on an analytical model we propose a novel method that can reproduce the influence of the vicinity of the crack tip on a crack. We moved the stress field near the crack tip in the direction opposite to that of crack propagation by an amount corresponding to the crack propagation length. When we extend the previous method to fatigue crack propagation simulation we must consider the difference in strain due to loading and unloading. This problem was solved by considering the strain due to loading as a displacement. Instead of moving the strain due to loading we moved the displacement. First we performed a simple tensile load analysis on the model and output the displacement of all the nodes of the model at maximum load. Then the displacement was moved in the direction opposite to that of crack propagation. Finally the stress field was reproduced by forcibly moving all the nodes by the displacement amount. The strain due to unloading was reproduced by removing the displacement. Furthermore we verified the equivalence of the crack propagation simulation and the proposed method.
Ammonia as Effective Hydrogen Storage: A Review on Production, Storage and Utilization
Jun 2020
Publication
Ammonia is considered to be a potential medium for hydrogen storage facilitating CO2-free energy systems in the future. Its high volumetric hydrogen density low storage pressure and stability for long-term storage are among the beneficial characteristics of ammonia for hydrogen storage. Furthermore ammonia is also considered safe due to its high auto ignition temperature low condensation pressure and lower gas density than air. Ammonia can be produced from many different types of primary energy sources including renewables fossil fuels and surplus energy (especially surplus electricity from the grid). In the utilization site the energy from ammonia can be harvested directly as fuel or initially decomposed to hydrogen for many options of hydrogen utilization. This review describes several potential technologies in current conditions and in the future for ammonia production storage and utilization. Ammonia production includes the currently adopted Haber–Bosch electrochemical and thermochemical cycle processes. Furthermore in this study the utilization of ammonia is focused mainly on the possible direct utilization of ammonia due to its higher total energy efficiency covering the internal combustion engine combustion for gas turbines and the direct ammonia fuel cell. Ammonia decomposition is also described in order to give a glance at its progress and problems. Finally challenges and recommendations are also given toward the further development of the utilization of ammonia for hydrogen storage.
Liquid Hydrogen as Prospective Energy Carrier: A Brief Review and Discussion of Underlying Assumptions Applied in Value Chain Analysis
Nov 2021
Publication
In the literature different energy carriers are proposed in future long-distance hydrogen value chains. Hydrogen can be stored and transported in different forms e.g. as compressed dense-phase hydrogen liquefied hydrogen and in chemically bound forms as different chemical hydrides. Recently different high-level value chain studies have made extrapolative investigations and compared such options with respect to energy efficiency and cost. Three recent journal papers overlap as the liquid hydrogen option has been considered in all three studies. The studies are not fully aligned in terms of underlying assumptions and battery limits. A comparison reveals partly vast differences in results for chain energy efficiency for long-distance liquid hydrogen transport which are attributable to distinct differences in the set of assumptions. Our comparison pinpoints the boiloff ratio i.e. evaporation losses due to heat ingress in liquid hydrogen storage tanks as the main cause of the differences and this assumption is further discussed. A review of spherical tank size and attributed boiloff ratios is presented for existing tanks of different vintage as well as for recently proposed designs. Furthermore the prospect for further extension of tanks size and reduction of boiloff ratio is discussed with a complementary discussion about the use of economic assumptions in extrapolative and predictive studies. Finally we discuss the impact of battery limits in hydrogen value chain studies and pinpoint knowledge needs and the need for a detailed bottom-up approach as a prerequisite for improving the understanding for pros and cons of the different hydrogen energy carriers.
Advances in Hydrogen Storage Materials: Harnessing Innovative Technology, from Machine Learning to Computational Chemistry, for Energy Storage Solutions
Mar 2024
Publication
The demand for clean and sustainable energy solutions is escalating as the global population grows and economies develop. Fossil fuels which currently dominate the energy sector contribute to greenhouse gas emissions and environmental degradation. In response to these challenges hydrogen storage technologies have emerged as a promising avenue for achieving energy sustainability. This review provides an overview of recent advancements in hydrogen storage materials and technologies emphasizing the importance of efficient storage for maximizing hydrogen’s potential. The review highlights physical storage methods such as compressed hydrogen (reaching pressures of up to 70 MPa) and material-based approaches utilizing metal hydrides and carboncontaining substances. It also explores design considerations computational chemistry high-throughput screening and machine-learning techniques employed in developing efficient hydrogen storage materials. This comprehensive analysis showcases the potential of hydrogen storage in addressing energy demands reducing greenhouse gas emissions and driving clean energy innovation.
Design of a Hydrogen Production System Considering Energy Consumption, Water Consumption, CO2 Emissions and Cost
Oct 2022
Publication
CO2 emissions associated with hydrogen production can be reduced replacing steam methane reforming with electrolysis using renewable electricity with a trade-off of increasing energy consumption water consumption and cost. In this research a linear programming optimization model of a hydrogen production system that considers simultaneously energy consumption water consumption CO2 emissions and cost on a cradle-to-gate basis was developed. The model was used to evaluate the impact of CO2 intensity on the optimum design of a hydrogen production system for Japan considering different stakeholders’ priorities. Hydrogen is produced using steam methane reforming and electrolysis. Electricity sources include grid wind solar photovoltaic geothermal and hydro. Independent of the stakeholders’ priorities steam methane reforming dominates hydrogen production for cradle-to-gate CO2 intensities larger than 9 kg CO2/kg H2 while electrolysis using renewable electricity dominates for lower cradle-to-gate CO2 intensities. Reducing the cradle-to-gate CO2 intensity increases energy consumption water consumption and specific cost of hydrogen production. For a cradle-to-gate CO2 intensity of 0 kg CO2/kg H2 the specific cost of hydrogen production varies between 8.81 and 13.6 USD/kg H2; higher than the specific cost of hydrogen production targeted by the Japanese government in 2030 of 30 JPY/Nm3 3.19 USD/kg H2.
Reduction in Greenhouse Gas and Other Emissions from Ship Engines: Current Trends and Future Options
Nov 2022
Publication
The impact of ship emission reductions can be maximised by considering climate health and environmental effects simultaneously and using solutions fitting into existing marine engines and infrastructure. Several options available enable selecting optimum solutions for different ships routes and regions. Carbon-neutral fuels including low-carbon and carbon-negative fuels from biogenic or non-biogenic origin (biomass waste renewable hydrogen) could resemble current marine fuels (diesel-type methane and methanol). The carbon-neutrality of fuels depends on their Well-to-Wake (WtW) emissions of greenhouse gases (GHG) including carbon dioxide (CO2) methane (CH4) and nitrous oxide emissions (N2O). Additionally non-gaseous black carbon (BC) emissions have high global warming potential (GWP). Exhaust emissions which are harmful to health or the environment need to be equally removed using emission control achieved by fuel engine or exhaust aftertreatment technologies. Harmful emission species include nitrogen oxides (NOx) sulphur oxides (SOx) ammonia (NH3) formaldehyde particle mass (PM) and number emissions (PN). Particles may carry polyaromatic hydrocarbons (PAHs) and heavy metals which cause serious adverse health issues. Carbon-neutral fuels are typically sulphur-free enabling negligible SOx emissions and efficient exhaust aftertreatment technologies such as particle filtration. The combinations of carbon-neutral drop-in fuels and efficient emission control technologies would enable (near-)zero-emission shipping and these could be adaptable in the short- to mid-term. Substantial savings in external costs on society caused by ship emissions give arguments for regulations policies and investments needed to support this development.
Selected Materials and Technologies for Electrical Energy Sector
Jun 2023
Publication
Ensuring the energy transition in order to decrease CO2 and volatile organic compounds emissions and improve the efficiency of energy processes requires the development of advanced materials and technologies for the electrical energy sector. The article reviews superconducting materials functional nanomaterials used in the power industry mainly due to their magnetic electrical optical and dielectric properties and the thin layers of amorphous carbon nitride which properties make them an important material from the point of view of environmental protection optoelectronic photovoltaic and energy storage. The superconductivity-based technologies material processing and thermal and nonthermal plasma generation have been reviewed as technologies that can be a solution to chosen problems in the electrical energy sector and environment. The study explains directly both—the basics and application potential of low and high-temperature superconductors as well as peculiarities of the related manufacturing technologies for Roebel cables 1G and 2G HTS tapes and superconductor coil systems. Among the superconducting materials particular attention was paid to the magnesium di-boride MgB2 and its potential applications in the power industry. The benefits of the use of carbon films with amorphous structures in electronics sensing technologies solar cells FETs and memory devices were discussed. The article provides the information about most interesting from the R&D point of view groups of materials for PV applications. It summarises the advantages and disadvantages of their use regarding commercial requirements such as efficiency lifetime light absorption impact on the environment costs of production and weather dependency. Silicon processing inkjet printing vacuum deposition and evaporation technologies that allow obtaining improved and strengthened materials for solar cell manufacturing are also described. In the case of the widely developed plasma generation field waste-to-hydrogen technology including both thermal and non-thermal plasma techniques has been discussed. The review aims to draw attention to the problems faced by the modern power industry and to encourage research in this area because many of these problems can only be solved within the framework of interdisciplinary and international cooperation.
Accelerating the Green Hydrogen Revolution: A Comprehensive Analysis of Technological Advancements and Policy Interventions
Apr 2024
Publication
Promoting green hydrogen has emerged as a pivotal discourse in the contemporary energy landscape driven by pressing environmental concerns and the quest for sustainable energy solutions. This paper delves into the multifaceted domain of C-Suite issues about green hydrogen encompassing both technological advancements and policy considerations. The question of whether green hydrogen is poised to become the focal point of the upcoming energy race is explored through an extensive analysis of its potential as a clean and versatile energy carrier. The transition from conventional fossil fuels to green hydrogen is considered a fundamental shift in energy paradigms with far-reaching implications for global energy markets. The paper provides a comprehensive overview of state-of-the-art green hydrogen technologies including fuel cells photocatalysts photo electrocatalysts and hydrogen panels. In tandem with technological advancements the role of policy and strategy in fostering the development of green hydrogen energy assumes paramount significance. The paper elucidates the critical interplay between government policies market dynamics and corporate strategies in shaping the green hydrogen landscape. It delves into policy mechanisms such as subsidies carbon pricing and renewable energy mandates shedding light on their potential to incentivize the production and adoption of green hydrogen. This paper offers a nuanced exploration of C-Suite issues surrounding green hydrogen painting a comprehensive picture of the technological and policy considerations that underpin its emergence as a transformative energy source. As the global community grapples with the imperatives of climate change mitigation and the pursuit of sustainable energy solutions understanding these issues becomes imperative for executives policymakers and stakeholders alike.
A Recent Review of Primary Hydrogen Carriers, Hydrogen Production Methods, and Applications
Mar 2023
Publication
Hydrogen is a promising energy carrier especially for transportation owing to its unique physical and chemical properties. Moreover the combustion of hydrogen gas generates only pure water; thus its wide utilization can positively affect human society to achieve global net zero CO2 emissions by 2050. This review summarizes the characteristics of the primary hydrogen carriers such as water methane methanol ammonia and formic acid and their corresponding hydrogen production methods. Additionally state-of-the-art studies and hydrogen energy applications in recent years are also included in this review. In addition in the conclusion section we summarize the advantages and disadvantages of hydrogen carriers and hydrogen production techniques and suggest the challenging tasks for future research.
Influence of Renewable Energy Power Fluctuations on Water Electrolysis for Green Hydrogen Production
Nov 2022
Publication
The development of renewable energy technologies is essential to achieve carbon neutrality. Hydrogen can be stably stored and transported in large quantities to maximize power utilization. Detailed understanding of the characteristics and operating methods of water electrolysis technologies in which naturally intermittent fluctuating power is used directly is required for green hydrogen production because fluctuating power-driven water electrolysis processes significantly differ from industrial water electrolysis processes driven by steady grid power. Thus it is necessary to overcome several issues related to the direct use of fluctuating power. This article reviews the characteristics of fluctuating power and its generation as well as the current status and issues related to the operation conditions water electrolyzer configuration system requirements stack/catalyst durability and degradation mechanisms under the direct use of fluctuating power sources. It also provides an accelerated degradation test protocol method for fair catalyst performance comparison and share of effective design directions. Finally it discusses potential challenges and recommendations for further improvements in water electrolyzer components and systems suitable for practical use suggesting that a breakthrough could be realized toward the achievement of a sustainable hydrogen-based society.
Near-term Location of Hydrogen Refueling Stations in Yokohama City from the Perspective of Safety
Sep 2019
Publication
The roll-out of hydrogen refuelling stations is a key step in the transition to a hydrogen economy. Since Japan has been shifting from the demonstration stage to the implementation stage of a hydrogen economy a near-term city-level roll-out plan is required. The aim of this study is to plan near-term locations for building hydrogen refuelling stations in Yokohama City from a safety perspective. Our planning provides location information for hydrogen refuelling stations in Yokohama City for the period 2020–2030. Mobile type and parallel siting type refuelling stations have been considered in our planning and locations were determined by matching supply and demand to safety concerns. Supply and demand were estimated from hybrid vehicle ownership data and from space availability in existing gas stations. The results reaffirmed the importance of hydrogen station location planning and showed that use of mobile type stations is a suitable solution in response to the uncertain fuel cell vehicle fuel demand level during the implementation stage of a hydrogen economy.
Effect of Gasoline Pool Fire on Liquid Hydrogen Storage Tank in Hybrid Hydrogen-gasoline Fueling Station
Nov 2015
Publication
Multiple-energy-fuelling stations which can supply several types of energy such as gasoline CNG and hydrogen could guarantee the efficient use of space. To guide the safety management of hybrid hydrogen–gasoline fuelling stations which utilize liquid hydrogen as an energy carrier the scale of gasoline pool fires was estimated using the hazard assessment tool Toxic Release Analysis of Chemical Emissions (TRACE). Subsequently the temperature and the stress due to temperature distribution were estimated using ANSYS. Based on the results the safety of liquid hydrogen storage tanks was discussed. It was inferred that the emissivity of the outer material of the tank and the safety distance between liquid hydrogen storage tanks and gasoline dispensers should be less than 0.2 and more than 8.5 m respectively to protect the liquid hydrogen storage tank from the gasoline pool fire. To reduce the safety distance several measures are required e.g. additional thermal shields such as protective intumescent paint and water sprinkler systems and an increased slope to lead gasoline off to a safe domain away from the liquid hydrogen storage tank
Influence of hydraulic sequential tests on the burst strength of Type-4 compressed hydrogen containers
Sep 2019
Publication
One of the topics for the revision deliberation of GTR13 on hydrogen and fuel cell vehicles is the study of an appropriate initial burst pressure of the containers. The purpose of this study is to investigate the influence of the hydraulic sequential tests on the residual burst pressure in order to examine the appropriate initial burst pressure correlated with the provisions for the residual burst pressure at the Endof-Life (EOL). Specifically we evaluated any deterioration and variations of burst pressure due to hydraulic sequential tests on 70MPa compressed-hydrogen containers. When the burst pressure after the hydraulic sequential testing (EOL) was compared with the initial burst pressure at the beginning of life (BOL) the pressure proved to have decreased by a few percent while the variation increased. In the burst test it was observed that the rupture originated in the cylindrical part in all the BOL containers while in some of the EOL containers the rupture originated in the dome part. Since the dome part is a section that suffers an impact of vertical drop test it is conceivable that some sort of damage occurred in the CFRP. Therefore it was assumed that this damage was the main causal factor for the decrease in the burst pressure and the increase of the burst pressure variation at the dome part.
A Study of Decrease Burst Strength on Compressed-hydrogen Containers by Drop Test
Sep 2019
Publication
We investigate an appropriate initial burst pressure of compressed hydrogen containers that correlates with a residual burst pressure requirement at the end of life (EOL) and report an influence of hydraulic sequential tests on residual burst pressure. Results indicate that a container damage caused by a drop test during hydraulic sequential tests has a large influence on burst pressure. The container damage induced through hydraulic sequential tests is investigated using non-destructive evaluations to clarify a strength decreasing mechanism. An ultrasonic flaw detection analysis is conducted before and after the drop test and indicated that the damage occurred at the cylindrical and dome parts of the container after the drop test. An X-ray computed tomography imaging identifies a delamination inside laminated structure made of carbon fiber reinforced plastics (CFRP) layer with some degree of delamination reaching the end boss of the container. Results suggest that a load profile fluctuates in the CFRP layer at the dome part and that a burst strength of the dome part decreases. Therefore an observed decreasing in drop damage at the dome part can be used to prevent a degradation of EOL container burst strength.
Magnesium Based Materials for Hydrogen Based Energy Storage: Past, Present and Future
Jan 2019
Publication
Volodymyr A. Yartys,
Mykhaylo V. Lototskyy,
Etsuo Akiba,
Rene Albert,
V. E. Antonov,
Jose-Ramón Ares,
Marcello Baricco,
Natacha Bourgeois,
Craig Buckley,
José Bellosta von Colbe,
Jean-Claude Crivello,
Fermin Cuevas,
Roman V. Denys,
Martin Dornheim,
Michael Felderhoff,
David M. Grant,
Bjørn Christian Hauback,
Terry D. Humphries,
Isaac Jacob,
Petra E. de Jongh,
Jean-Marc Joubert,
Mikhail A. Kuzovnikov,
Michel Latroche,
Mark Paskevicius,
Luca Pasquini,
L. Popilevsky,
Vladimir M. Skripnyuk,
Eugene I. Rabkin,
M. Veronica Sofianos,
Alastair D. Stuart,
Gavin Walker,
Hui Wang,
Colin Webb,
Min Zhu and
Torben R. Jensen
Magnesium hydride owns the largest share of publications on solid materials for hydrogen storage. The “Magnesium group” of international experts contributing to IEA Task 32 “Hydrogen Based Energy Storage” recently published two review papers presenting the activities of the group focused on magnesium hydride based materials and on Mg based compounds for hydrogen and energy storage. This review article not only overviews the latest activities on both fundamental aspects of Mg-based hydrides and their applications but also presents a historic overview on the topic and outlines projected future developments. Particular attention is paid to the theoretical and experimental studies of Mg-H system at extreme pressures kinetics and thermodynamics of the systems based on MgH2 nanostructuring new Mg-based compounds and novel composites and catalysis in the Mg based H storage systems. Finally thermal energy storage and upscaled H storage systems accommodating MgH2 are presented.
Performance Tests of Catalysts for the Safe Conversion of Hydrogen Inside the Nuclear Waste Containers in Fukushima Daiichi
Sep 2019
Publication
The safe decommissioning as well as decontamination of the radioactive waste resulting from the nuclear accident in Fukushima Daiichi represents a huge task for the next decade. At present research and development on long-term safe storage containers has become an urgent task with international cooperation in Japan. One challenge is the generation of hydrogen and oxygen in significant amounts by means of radiolysis inside the containers as the nuclear waste contains a large portion of sea water. The generation of radiolysis gases may lead to a significant pressure build-up inside the containers and to the formation of flammable gases with the risk of ignition and the loss of integrity.
In the framework of the project “R&D on technology for reducing concentration of flammable gases generated in long-term waste storage containers” funded by the Japanese Ministry of Education Culture Sports Science and Technology of Japan (MEXT) the potential application of catalytic recombiner devices inside the storage containers is investigated. In this context a suitable catalyst based on the so-called intelligent automotive catalyst for use in a recombiner is under consideration. The catalyst is originally developed and mass-produced for automotive exhaust gas purification and is characterized by having a self-healing function of precious metals (Pd Pt and Rh) dissolved as a solid solution in the perovskite type oxides. The basic features of this catalyst have been tested in an experimental program. The test series in the REKO-4 facility has revealed the basic characteristics of the catalyst required for designing the recombiner system.
In the framework of the project “R&D on technology for reducing concentration of flammable gases generated in long-term waste storage containers” funded by the Japanese Ministry of Education Culture Sports Science and Technology of Japan (MEXT) the potential application of catalytic recombiner devices inside the storage containers is investigated. In this context a suitable catalyst based on the so-called intelligent automotive catalyst for use in a recombiner is under consideration. The catalyst is originally developed and mass-produced for automotive exhaust gas purification and is characterized by having a self-healing function of precious metals (Pd Pt and Rh) dissolved as a solid solution in the perovskite type oxides. The basic features of this catalyst have been tested in an experimental program. The test series in the REKO-4 facility has revealed the basic characteristics of the catalyst required for designing the recombiner system.
Hydrogen-enhanced Fatigue Crack Growth in Steels and its Frequency Dependence
Jun 2017
Publication
In the context of the fatigue life design of components particularly those destined for use in hydrogen refuelling stations and fuel cell vehicles it is important to understand the hydrogen-induced fatigue crack growth (FCG) acceleration in steels. As such the mechanisms for acceleration and its influencing factors are reviewed and discussed in this paper with a special focus on the peculiar frequency dependence of the hydrogen-induced FCG acceleration. Further this frequency dependence is debated by introducing some potentially responsible elements along with new experimental data obtained by the authors.
This article is part of the themed issue ‘The challenges of hydrogen and metals’.
Link to document download on Royal Society Website
This article is part of the themed issue ‘The challenges of hydrogen and metals’.
Link to document download on Royal Society Website
3D Real Time Monitoring of H2 in FCV Applications
Sep 2019
Publication
In order to monitor a trace amount of Hydrogen in millisecond portable H2 sensor (Sx) was made by using mass spectrometer. The method of monitoring the hydrogen pulse of millisecond in exhaust gas is the increasing needed. Determining H2 concentration both inside and outside of the Fuel Cell Vehicle (FCV) for the optimized operations is becoming a critical issue. The exhaust gas of Fuel Cell Vehicle H2 consumption flushing and disposal around Fuel cell the real time monitoring of H2 in highly humid conditions is the problematic. To solve this issue the system volume of the sampling route was minimized with the heater and the dehumidifier to avoid condensation of water droplets. And also for an automatic calibration of H2 concentration the small cylinder of specific H2 concentration was mounted into the system.<br/>Our basic experiment started from a flow pattern analysis by monitoring H2 concentration in narrow tube. The flow patter analysis was carried out. When H2 gas was introduced in the N2 flow or air in the tube the highly concentrated H2 front phases were observed. This H2 sensor can provide the real time information of the hydrogen molecules and the clouds. The basic characterization of this sensor showed 0-100% H2 concentrations within milliseconds. Our observations showed the size of the high concentration phase of H2 and the low concentration phase after mixing process. The mixed and unmixed H2 unintended concentration of H2 cloud the high speed small cluster of H2 molecules in purged gas were explored by this system.
Hydrogen Generation from Wood Chip and Biochar by Combined Continuous Pyrolysis and Hydrothermal Gasification
Jun 2021
Publication
Hydrothermal gasification (HTG) experiments were carried out to extract hydrogen from biomass. Although extensive research has been conducted on hydrogen production with HTG limited research exists on the use of biochar as a raw material. In this study woodland residues (wood chip) and biochar from wood-chip pyrolysis were used in HTG treatment to generate hydrogen. This research investigated the effect of temperature (300–425 °C) and biomass/water (0.5–10) ratio on gas composition. A higher temperature promoted hydrogen production because the water–gas shift reaction and steam-reforming reaction were promoted with an increase in temperature. The methane concentration was related positively to temperature because of the methanation and hydrogenation reactions. A lower biomass/water ratio promoted hydrogen production but suppressed carbon-monoxide production. Most reactions that produce hydrogen consume water but water also affects the water–gas shift reaction balance which decreases the carbon-monoxide concentration. By focusing on the practical application of HTG we attempted biochar treatment by pyrolysis (temperature of heating part: 700 °C) and syngas was obtained from hydrothermal treatment above 425 °C.
Tensile and Fatigue Properties of 17-4PH Martensitic Stainless Steels in Presence of Hydrogen
Dec 2019
Publication
Effects of hydrogen on slow-strain-rate tensile (SSRT) and fatigue-life properties of 17-4PH H1150 martensitic stainless steel having an ultimate tensile strength of ~1GPa were investigated. Smooth and circumferentially-notched axisymmetric specimens were used for the SSRT and fatigue-life tests respectively. The fatigue-life tests were done to investigate the hydrogen effect on fatigue crack growth (FCG) properties. The specimens tested in air at ambient temperature were precharged by exposure to hydrogen gas at pressures of 35 and 100 MPa at 270°C for 200 h. The SSRT properties of the H-charged specimens were degraded by hydrogen showing a relative reduction in area (RRA) of 0.31 accompanied by mixed fracture surfaces composed of quasi-cleavage (QC) and intergranular cracking (IG). The fatigue-life tests conducted under wide test frequencies ranging from 10-3 Hz to 10 Hz revealed three distinct characteristics in low- and high-cycle regimes and at the fatigue limit. The fatigue limit was not degraded by hydrogen. In the high-cycle regime the hydrogen caused FCG acceleration with an upper bound ratio of 30 accompanied by QC surfaces. In the low-cycle regime the hydrogen caused FCG acceleration with a ratio of ~100 accompanied by QC and IG. The ordinary models such as process competition and superposition models hardly predicted the H-assisted FCG acceleration; therefore an interaction model successfully reproducing the experimental FCG acceleration was newly introduced.
A Study on the Effectivity of Hydrogen Leakage Detection for Hydrogen Fuel Cell
Sep 2017
Publication
Unlike four-wheel fuel-cell vehicles fuel-cell motorcycles have little semi-closure space corresponding to the engine compartment of four-wheel fuel-cell vehicles. Furthermore motorcycles may fall while parked or running. We conducted hydrogen concentration measurement and ignition tests to evaluate the feasibility of detecting leaks when hydrogen gas leaked from a fuel-cell motorcycle as well as the risk of ignition. We found that the installation of hydrogen leak detectors is effective because it is possible to detect minute hydrogen leaks by installing leak detectors at appropriate points on the fuel cell motorcycle and risks can be reduced by interrupting the hydrogen leak immediately after detection.
Understanding Composition–property Relationships in Ti–Cr–V–Mo Alloys for Optimisation of Hydrogen Storage in Pressurised Tanks
Jun 2014
Publication
The location of hydrogen within Ti–Cr–V–Mo alloys has been investigated during hydrogen absorption and desorption using in situ neutron powder diffraction and inelastic neutron scattering. Neutron powder diffraction identifies a low hydrogen equilibration pressure body-centred tetragonal phase that undergoes a martensitic phase transition to a face-centred cubic phase at high hydrogen equilibration pressures. The average location of the hydrogen in each phase has been identified from the neutron powder diffraction data although inelastic neutron scattering combined with density functional theory calculations show that the local structure is more complex than it appears from the average structure. Furthermore the origin of the change in dissociation pressure and hydrogen trapping on cycling in Ti–Cr–V–Mo alloys is discussed.
Assessing Uncertainties of Well-To-Tank Greenhouse Gas Emissions from Hydrogen Supply Chains
Jun 2017
Publication
Hydrogen is a promising energy carrier in the clean energy systems currently being developed. However its effectiveness in mitigating greenhouse gas (GHG) emissions requires conducting a lifecycle analysis of the process by which hydrogen is produced and supplied. This study focuses on the hydrogen for the transport sector in particular renewable hydrogen that is produced from wind- or solar PV-powered electrolysis. A life cycle inventory analysis is conducted to evaluate the Well-to-Tank (WtT) GHG emissions from various renewable hydrogen supply chains. The stages of the supply chains include hydrogen being produced overseas converted into a transportable hydrogen carrier (liquid hydrogen or methylcyclohexane) imported to Japan by sea distributed to hydrogen filling stations restored from the hydrogen carrier to hydrogen and filled into fuel cell vehicles. For comparison an analysis is also carried out with hydrogen produced by steam reforming of natural gas. Foreground data related to the hydrogen supply chains are collected by literature surveys and the Japanese life cycle inventory database is used as the background data. The analysis results indicate that some of renewable hydrogen supply chains using liquid hydrogen exhibited significantly lower WtT GHG emissions than those of a supply chain of hydrogen produced by reforming of natural gas. A significant piece of the work is to consider the impacts of variations in the energy and material inputs by performing a probabilistic uncertainty analysis. This suggests that the production of renewable hydrogen its liquefaction the dehydrogenation of methylcyclohexane and the compression of hydrogen at the filling station are the GHG-intensive stages in the target supply chains.
An Experimental Study of Propagating Spherical Flames in Unconfined Hydrogen-oxygen Explosions
Sep 2021
Publication
The study to understand the flame propagation behaviors of hydrogen-oxygen explosions is required to make a precise risk assessment. Moreover although research has investigated the propagating spherical flames in unconfined hydrogen-air explosions no study to date has examined the hydrogen-oxygen explosions. The spherical flame propagation in unconfined hydrogen-oxygen explosions have been investigated using a soap bubble method. In the present experiments hydrogen-oxygen mixtures were filled in a 10 cm diameter soap bubble and ignited by an electric spark at the center. The flame propagation behaviors were measured by a high-speed Schlieren photography. The laminar burning velocities and critical flame radii for the onset of flame acceleration in unconfined hydrogen-oxygen explosions were estimated. Results demonstrated that the laminar burning velocities of hydrogenoxygen mixtures were much faster than those of hydrogen-air mixtures. In addition the shift value of maximum laminar burning velocity for hydrogen-oxygen mixtures towards a leaner equivalence ratio is observed. The experimental flame speeds for all experiments were increased owing to diffusionalthermal and Darrieus-Landau instabilities although the measured flame radii were small. The critical flame radius corresponding to the onset of flame acceleration decreased with the decrease in equivalence ratio.
Thermodynamic Assessment of a Solar-Driven Integrated Membrane Reactor for Ethanol Steam Reforming
Nov 2020
Publication
To efficiently convert and utilize intermittent solar energy a novel solar-driven ethanol steam reforming (ESR) system integrated with a membrane reactor is proposed. It has the potential to convert low-grade solar thermal energy into high energy level chemical energy. Driven by chemical potential hydrogen permeation membranes (HPM) can separate the generated hydrogen and shift the ESR equilibrium forward to increase conversion and thermodynamic efficiency. The thermodynamic and environmental performances are analyzed via numerical simulation under a reaction temperature range of 100–400 ◦C with permeate pressures of 0.01–0.75 bar. The highest theoretical conversion rate is 98.3% at 100 ◦C and 0.01 bar while the highest first-law efficiency solar-to-fuel efficiency and exergy efficiency are 82.3% 45.3% and 70.4% at 215 ◦C and 0.20 bar. The standard coal saving rate (SCSR) and carbon dioxide reduction rate (CDRR) are maximums of 101 g·m−2 ·h −1 and 247 g·m−2 ·h −1 at 200 ◦C and 0.20 bar with a hydrogen generation rate of 22.4 mol·m−2 ·h −1 . This study illustrates the feasibility of solar-driven ESR integrated with a membrane reactor and distinguishes a novel approach for distributed hydrogen generation and solar energy utilization and upgradation.
Precooling Temperature Relaxation Technology in Hydrogen Refueling for Fuel-Cell Vehicles
Aug 2021
Publication
The dissemination of fuel-cell vehicles requires cost reduction of hydrogen refueling stations. The temperature of the supplied hydrogen has currently been cooled to approximately 40 C. This has led to larger equipment and increased electric power consumption. This study achieves a relaxation of the precooling temperature to the 20 C level while maintaining the refueling time. (1) Adoption of an MC formula that can flexibly change the refueling rate according to the precooling temperature. (2) Measurement of thermal capacity of refueling system parts and re-evaluation. Selection from multiple refueling control maps according to the dispenser design (Mathison et al. 2015). (3) Calculation of the effective thermal capacity and reselection of the map in real time when the line is cooled from refueling of the previous vehicle (Mathison and Handa 2015). (4) Addition of maps in which the minimum assumed pressures are 10 and 15 MPa. The new method is named MC Multi Map
A Review of Water Electrolysis-based Systems for Hydrogen Production using Hybrid/Solar/Wind Energy Systems
Oct 2022
Publication
Hydrogen energy as clean and efcient energy is considered signifcant support for the construction of a sustainable society in the face of global climate change and the looming energy revolution. Hydrogen is one of the most important chemical substances on earth and can be obtained through various techniques using renewable and nonrenewable energy sources. However the necessity for a gradual transition to renewable energy sources signifcantly hampers eforts to identify and implement green hydrogen production paths. Therefore this paper’s objective is to provide a technological review of the systems of hydrogen production from solar and wind energy utilizing several types of water electrolyzers. The current paper starts with a short brief about the diferent production techniques. A detailed comparison between water electrolyzer types and a complete illustration of hydrogen production techniques using solar and wind are presented with examples after which an economic assessment of green hydrogen production by comparing the costs of the discussed renewable sources with other production methods. Finally the challenges that face the mentioned production methods are illuminated in the current review.
A Review on Ports' Readiness to Facilitate International Hydrogen Trade
Jan 2023
Publication
The existing literature on the hydrogen supply chains has knowledge gaps. Most studies focus on hydrogen production storage transport and utilisation but neglect ports which are nexuses in the supply chains. To fill the gap this paper focuses on ports' readiness for the upcoming hydrogen international trade. Potential hydrogen exporting and importing ports are screened. Ports' readiness for hydrogen export and import are reviewed from perspectives of infrastructure risk management public acceptance regulations and standards and education and training. The main findings are: (1) liquid hydrogen ammonia methanol and LOHCs are suitable forms for hydrogen international trade; (2) twenty ports are identified that could be first movers; among them twelve are exporting ports and eight are importing ports; (3) ports’ readiness for hydrogen international trade is still in its infancy and the infrastructure construction or renovation risk management measures establishment of regulations and standards education and training all require further efforts.
The Roles of Nuclear Energy in Hydrogen Production
Dec 2021
Publication
Fossil resources are unevenly distributed on the earth and are finite primary energy which is widely used in the fields of industry transportation and power generation etc.<br/>Primary energies that can replace fossil resources include renewable energy and nuclear energy. Hydrogen has the potential to be secondary energy that can be widely used in industry for various purposes. Nuclear energy can be used for producing hydrogen; it is becoming more important to convert this primary energies into hydrogen. This paper describes the roles of nuclear energy as a primary energy in hydrogen production from the viewpoint of the basics of energy form conversion.
Blast Wave Generated by Delayed Ignition of Under-Expanded Hydrogen Free Jet at Ambient and Cryogenic Temperatures
Nov 2022
Publication
An under-expanded hydrogen jet from high-pressure equipment or storage tank is a potential incident scenario. Experiments demonstrated that the delayed ignition of a highly turbulent under-expanded hydrogen jet generates a blast wave able to harm people and damage property. There is a need for engineering tools to predict the pressure effects during such incidents to define hazard distances. The similitude analysis is applied to build a correlation using available experimental data. The dimensionless blast wave overpressure generated by delayed ignition and the follow-up deflagration or detonation of hydrogen jets at an any location from the jet ∆Pexp/P0 is correlated to the original dimensionless parameter composed of the product of the dimensionless ratio of storage pressure to atmospheric pressure Ps/P0 and the ratio of the jet release nozzle diameter to the distance from the centre of location of the fast-burning near-stoichiometric mixture on the jet axis (30% of hydrogen in the air by volume) to the location of a target (personnel or property) d/Rw. The correlation is built using the analysis of 78 experiments regarding this phenomenon in the wide range of hydrogen storage pressure of 0.5–65.0 MPa and release diameter of 0.5–52.5 mm. The correlation is applicable to hydrogen free jets at ambient and cryogenic temperatures. It is found that the generated blast wave decays inversely proportional to the square of the distance from the fast-burning portion of the jet. The correlation is used to calculate the hazard distances by harm thresholds for five typical hydrogen applications. It is observed that in the case of a vehicle with onboard storage tank at pressure 70 MPa the “no-harm” distance for humans reduces from 10.5 m to 2.6 m when a thermally activated pressure relief device (TPRD) diameter decreases from 2 mm to a diameter of 0.5 mm.
A Theoretical Study Using the Multiphase Numerical Simulation Technique for Effective Use of H2 as Blast Furnaces Fuel
Jun 2017
Publication
We present a numerical simulation procedure for analyzing hydrogen oxygen and carbon dioxide gases injections mixed with pulverized coals within the tuyeres of blast furnaces. Effective use of H2 rich gas is highly attractive into the steelmaking blastfurnace considering the possibility of increasing the productivity and decreasing the specific emissions of carbon dioxide becoming the process less intensive in carbon utilization. However the mixed gas and coal injection is a complex technology since significant changes on the inner temperature and gas flow patterns are expected beyond to their effects on the chemical reactions and heat exchanges. Focusing on the evaluation of inner furnace status under such complex operation a comprehensive mathematical model has been developed using the multi interaction multiple phase theory. The BF considered as a multiphase reactor treats the lump solids (sinter small coke pellets granular coke and iron ores) gas liquids metal and slag and pulverized coal phases. The governing conservation equations are formulated for momentum mass chemical species and energy and simultaneously discretized using the numerical method of finite volumes. We verified the model with a reference operational condition using pulverized coal of 215 kg per ton of hot metal (kg thm−1). Thus combined injections of varying concentrations of gaseous fuels with H2 O2 and CO2 are simulated with 220 kg thm−1 and 250 kg thm−1 coals injection. Theoretical analysis showed that stable operations conditions could be achieved with productivity increase of 60%. Finally we demonstrated that the net carbon utilization per ton of hot metal decreased 12%.
Solar Hydrogen Fuel Generation from Wastewater—Beyond Photoelectrochemical Water Splitting: A Perspective
Oct 2022
Publication
Green hydrogen—a carbon-free renewable fuel—has the capability to decarbonise a variety of sectors. The generation of green hydrogen is currently restricted to water electrolysers. The use of freshwater resources and critical raw materials however limits their use. Alternative water splitting methods for green hydrogen generation via photocatalysis and photoelectrocatalysis (PEC) have been explored in the past few decades; however their commercial potential still remains unexploited due to the high hydrogen generation costs. Novel PEC-based simultaneous generation of green hydrogen and wastewater treatment/high-value product production is therefore seen as an alternative to conventional water splitting. Interestingly the organic/inorganic pollutants in wastewater and biomass favourably act as electron donors and facilitate the dual-functional process of recovering green hydrogen while oxidising the organic matter. The generation of green hydrogen through the dual-functional PEC process opens up opportunities for a “circular economy”. It further enables the end-of-life commodities to be reused recycled and resourced for a better life-cycle design while being economically viable for commercialisation. This review brings together and critically analyses the recent trends towards simultaneous wastewater treatment/biomass reforming while generating hydrogen gas by employing the PEC technology. We have briefly discussed the technical challenges associated with the tandem PEC process new avenues techno-economic feasibility and future directions towards achieving net neutrality.
Potential Renewable Hydrogen from Curtailed Electricity to Decarbonize ASEAN’s Emissions: Policy Implications
Dec 2020
Publication
The power generation mix of the Association of Southeast Asian Nations (ASEAN) is dominated by fossil fuels which accounted for almost 80% in 2017 and are expected to account for 82% in 2050 if the region does not transition to cleaner energy systems. Solar and wind power are the most abundant energy resources but contribute negligibly to the power mix. Investors in solar or wind farms face high risks from electricity curtailment if surplus electricity is not used. Employing the policy scenario analysis of the energy outlook modelling results this paper examines the potential scalability of renewable hydrogen production from curtailed electricity in scenarios of high share of variable renewable energy in the power generation mix. The study found that ASEAN has high potential in developing renewable hydrogen production from curtailed electricity. The study further found that the falling cost of renewable hydrogen production could be a game changer to upscaling the large-scale hydrogen production in ASEAN through policy support. The results implied a future role of renewable hydrogen in energy transition to decarbonize ASEAN’s emissions.
Challenges Toward Achieving a Successful Hydrogen Economy in the US: Potential End-use and Infrastructure Analysis to the Year 2100
Jul 2022
Publication
Fossil fuels continue to exacerbate climate change due to large carbon emissions resulting from their use across a number of sectors. An energy transition away from fossil fuels seems inevitable and energy sources such as renewables and hydrogen may provide a low carbon alternative for the future energy system particularly in large emitting nations such as the United States. This research quantifies and maps potential hydrogen fuel distribution pathways for the continental US reflecting technological changes barriers to deployment and end-use-cases from 2020 to 2100 clarifying the potential role of hydrogen in the US energy transition. The methodology consists of two parts a linear optimization of the global energy system constrained by carbon reduction targets and system cost followed by a projection of hydrogen infrastructure development. Key findings include the emergence of trade pattern diversification with a greater variety of end-uses associated with imported fuels and greater annual hydrogen consumption over time. Further sensitivity analysis identified the influence of complementary technologies including nuclear power and carbon capture and storage technologies. We conclude that hydrogen penetration into the US energy system is economically viable and can contribute toward achieving Paris Agreement and more aggressive carbon reduction targets in the future.
Cold Start Cycling Durability of Fuel Cell Stacks for Commercial Automotive Applications
Sep 2022
Publication
System durability is crucial for the successful commercialization of polymer electrolyte fuel cells (PEFCs) in fuel cell electric vehicles (FCEVs). Besides conventional electrochemical cycling durability during long-term operation the effect of operation in cold climates must also be considered. Ice formation during start up in sub-zero conditions may result in damage to the electrocatalyst layer and the polymer electrolyte membrane (PEM). Here we conduct accelerated cold start cycling tests on prototype fuel cell stacks intended for incorporation into commercial FCEVs. The effect of this on the stack performance is evaluated the resulting mechanical damage is investigated and degradation mechanisms are proposed. Overall only a small voltage drop is observed after the durability tests only minor damage occurs in the electrocatalyst layer and no increase in gas crossover is observed. This indicates that these prototype fuel cell stacks successfully meet the cold start durability targets for automotive applications in FCEVs.
Techno-Economic Analysis of Grid-Connected Hydrogen Production via Water Electrolysis
Mar 2024
Publication
As the global energy landscape transitions towards a more sustainable future hydrogen has emerged as a promising energy carrier due to its potential to decarbonize various sectors. However the economic competitiveness of hydrogen production by water electrolysis strongly depends on renewable energy source (RES) availability. Thus it is necessary to overcome the challenges related to the intermittent nature of RESs. This paper presents a comprehensive techno-economic analysis of complementing green hydrogen production with grid electricity. An evaluation model for the levelized cost of hydrogen (LCOH) is proposed considering both CO2 emissions and the influence of RES fluctuations on electrolyzers. A minimum load restriction is required to avoid crossover gas. Moreover a new operation strategy is developed for hydrogen production plants to determine optimal bidding in the grid electricity market to minimize the LCOH. We evaluate the feasibility of the proposed approach with a case study based on data from the Kyushu area in Japan. The results show that the proposed method can reduce the LCOH by 11% to 33% and increase hydrogen productivity by 86% to 140% without significantly increasing CO2 emission levels.
An Improved State Machine-based Energy Management Strategy for Renewable Energy Microgrid with Hydrogen Storage System
Oct 2022
Publication
Renewable energy (solar and wind) sources have evolved dramatically in recent years around the globe primarily because they have the potential to generate environmentally friendly energy. However operating systems with high renewable energy penetration remain challenging due to the stochastic nature of these energy sources. To tackle these problems the authors propose a state machine-based energy management strategy combined with a hysteresis band control strategy for renewable energy hybrid microgrids that integrates hydrogen storage systems. By considering the power difference between the renewable energy source and the demand the battery’s state of charge and the hydrogen storage level the proposed energy management strategy can control the power of fuel cells electrolyzers and batteries in a microgrid and the power imported into/exported from the main grid. The results showed that the energy management strategy provides the following advantages: (1) the power supply and demand balance in the microgrid was balanced (2) the lifespans of the electrolyzer and fuel cell were extended and (3) the state of charge of the battery and the stored level of the hydrogen were appropriately ensured.
An Analysis of the Potential of Hydrogen Energy Technology on Demand Side Based on a Carbon Tax: A Case Study in Japan
Dec 2022
Publication
Hydrogen energy is considered one of the main measures of zero carbonization in energy systems but high equipment and hydrogen costs hinder the development of hydrogen energy technology. The objectives of this study are to quantify the environmental advantages of hydrogen energy through a carbon tax and study the application potential of hydrogen energy technology in a regional distributed energy system (RDES). In this study various building types in the smart community covered by Japan’s first hydrogen energy pipeline are used as an example. First ten buildings of five types are selected as the research objectives. Subsequently two comparative system models of a regional distributed hydrogen energy system (RDHES) and an RDES were established. Then by studying the optimal RDHES and RDES configuration and combining the prediction of future downward trends of fuel cell (FC) costs and energy carbon emissions the application effect of FC and hydrogen storage (HS) technologies on the demand side was analyzed. Finally the adaptability of the demand-side hydrogen energy system was studied by analyzing the load characteristics of different types of buildings. The results show that when the FC price is reduced to 1.5 times that of the internal combustion engine (ICE) the existing carbon tax system can sufficiently support the RDHES in gaining economic advantages in some regions. Notably when the carbon emissions of the urban energy system are reduced the RDHES demonstrates stronger anti-risk ability and has greater suitability for promotion in museums and shopping malls. The conclusions obtained in this study provide quantitative support for hydrogen energy promotion policies on the regional demand side and serve as a theoretical reference for the design and adaptability research of RDHESs.
The Potential Role of Flying Vehicles in Progressing the Energy Transition
Oct 2022
Publication
An energy transition is in progress around the globe notably led by an increase in the deployment of renewable energy and a shift toward less emissions-intense options notably in the transportation sector. This research investigates the potential role that new transportation options namely flying vehicles may play toward progressing the energy transition. As flying vehicles are a relatively new technology yet to penetrate the market it is also prudent to consider the ethical legal and social issues (ELSI) associated with their implementation alongside the potential energy and environmental impacts. Through a review of ELSI and energy and environmental literature we identify research gaps and identify how flying vehicles may impact upon the energy transition over time. Our research identifies several critical aspects of both ELSI and energy and environmental academia relevant to the future deployment of flying vehicles and describes a deployment timeline and the resultant societal outcomes. We find that flying vehicles could drive the energy transition and the hydrogen economy and that their widespread adoption could engender shared socio-environmental benefits. Our findings are relevant to transportation and environmental policymakers and identify critical considerations for the planned introduction of new shared transportation options to the market conducive to a sustainable energy transition.
Simulation of Hydrogen Mixing and Par Operation During Accidental Release in an LH2 Carrier Engine Room
Sep 2021
Publication
Next-generation LH2 carriers may use the boil-off gas from the cargo tanks as additional fuel for the engine. As a consequence hydrogen pipes will enter the room of the ship’s propulsion system and transport hydrogen to the main engine. The hydrogen distribution resulting from a postulated hydrogen leak inside the room of the propulsion system has been analyzed by means of Computational Fluid Dynamics (CFD). In a subsequent step simulations with passive auto-catalytic recombiners (PARs) were carried out in order to investigate if the recombiners can increase the safety margins during such accident scenarios. CFD enables a 3D prediction of the transient distribution with a high resolution allowing to identify local accumulation of hydrogen and consequently to identify optimal PAR positions as well as to demonstrate the efficiency of the PARs. The simulation of the unmitigated reference case reveals a strong natural circulation driven by the density difference of hydrogen and the incoming cold air from the ventilation system. Globally this natural circulation dilutes the hydrogen and removes a considerable amount from the room of the ship’s propulsion system via the ventilation ducts. However a hydrogen accumulation beyond the flammability limit is identified below the first ceiling above the leak position and the back-side wall of the engine room. Based on these findings suitable positions for recombiners were identified. The design objectives of the PAR system were on the one hand to provide both high instantaneous and integral removal rate and on the other hand to limit build-up of flammable clouds by means of depletion and PAR induced mixing processes. The simulations performed with three different PAR arrangements (variation of large and<br/>small PAR units at different positions) confirm that the PARs reduce efficiently the hydrogen<br/>accumulations.
Numerical Analysis on the Mechanism of Blast Mitigation by Water Droplets
Sep 2021
Publication
Hydrogen has a high risk of ignition owing to its extremely low ignition energy and wide range of flammability. Therefore acquiring parameters relating to safe usage is of particular interest. The ignition of hydrogen generates combustion processes such as detonation and deflagration which may produce a blast wave. The severity of injuries sustained from a blast wave is determined by its strength. To reduce the physical hazards caused by explosion there is a need for some concepts for attenuating explosions and blast waves. In the present study we used water droplets as a material to reduce the blast wave strength. Numerical analysis of the interaction between blast waves and water droplets in a shock tube was conducted to understand the mitigation mechanism of blast wave. In this report we numerically modelled the experiment conducted by Mataradze et al. [1] to understand the main factor of blast mitigation by water droplets. In order to quantitatively clarify the mitigation effect of water droplets on the blast wave especially by quasi-steady drag here we conducted parameter studies on water droplet sprayed region. From this calculation it was suggested that the location of water droplet sprayed layer did not affect the blast mitigation effect at far side of the high explosives.
Greedy Energy Management Strategy and Sizing Method for a Stand-alone Microgrid with Hydrogen Storage
Nov 2021
Publication
This paper presents a greedy energy management strategy based on model predictive control (MPC) for a stand-alone microgrid powered by photovoltaic (PV) arrays and equipped with batteries and a power-to-hydrogen-to-power (P2H2P) system. The proposed strategy consists of a day-ahead plan and an intra-day dispatch method. In the planning stage the sequence of plan is to determine the power of each storage device for a certain period which is initially generated under the principle that PV arrays have the highest priority followed by the batteries and finally the P2H2P system using short-term forecast data of both load and solar irradiance. The initial plan can be optimized with objectives of harvesting more PV generation in storage and minimizing unmet load through rescheduling P2H2P system and batteries. Three parameters including reserved capacity of batteries predischarge coefficient of fuel cell (FC) and greedy coefficient of electrolyzer (EL) are introduced during plan optimization process to enhance the robustness against forecast errors. In the dispatching stage the energy dispatch is subject to the scheduled plan and the operational constraints. To demonstrate the capabilities of the proposed strategy a case study is performed for a hotel with a mean power consumption of 1567 kWh/day based on the system configuration optimized by HOMER software in comparison with the load following (LF) strategy and the global optimum solution solved by mixed integer linear programing (MILP). The simulation results show that the annual unmet load using the proposed strategy is reduced from 13434 kWh to 2370 kWh which is 528 kWh lower than the optimum solution. Meanwhile the cost of energy (COE) of the proposed strategy decreases by US$ 0.08/kWh compared to the LF strategy and is equal to the optimum solution. Finally the performance of configuration optimization employing genetic algorithm (GA) under different energy management strategies is investigated with the objective function of minimizing the net present cost (NPC). Furthermore the robustness of the proposed strategy is studied. The results show that the proposed strategy gives an NPC and COE of US$ 2.4 million (Mn) and US$ 0.43/kWh which are 23.4% and 9.7% lower than those of systems utilizing the SoC-based strategy and the LF strategy respectively. The results also demonstrate that the strategy is robust against forecast errors especially for overestimated forecast models.
Hydrogen Permeation Under High Pressure Conditions and the Destruction of Exposed Polyethylene-property of Polymeric Materials for High-pressure Hydrogen Devices (2)-
Feb 2021
Publication
Aiming to elucidate physical property affecting to hydrogen gas permeability of polymer materials used for liner materials of storage tanks or hoses and sealants under high-pressure environment as model materials with different free volume fraction five types of polyethylene were evaluated using two methods. A convenient non-steady state measurement of thermal desorption analysis (TDA) and steady-state high-pressure hydrogen gas permeation test (HPHP) were used both under up to 90 MPa of practical pressure. The limit of TDA method of evaluation for the specimens suffering fracture during decompression process after hydrogen exposure was found. Permeability coefficient decreased with the decrease of diffusion coefficient under higher pressure condition. Specific volume and degree of crystallinity under hydrostatic environment were measured. The results showed that the shrinkage in free volume caused by hydrostatic effects of the applied hydrogen gas pressure decreases diffusion coefficient resulting in the decrease of permeability coefficient with the pressure rise.
Performance Evaluation of the Miniaturized Catalytic Combustion Type Hydrogen Sensor
Oct 2015
Publication
Fast response and high durability hydrogen sensor is required in the safety management of hydrogen station and fuel cell vehicle. We had developed the catalytic combustion type hydrogen sensor in the shape of the miniature beads. It is using the optimized Pd-Pt/Al2O3 catalyst and the Pt micro-heater coil. Both warm-up time and response time of this sensor achieved less than 1 second by downsizing the element to 200μm diameter. Furthermore we improved the resistance of sensor poisoning to silicone vapor and confirmed long term stability within +/-10% of output error up to 8 years. Therefore we assume that our sensor technology contribute to hydrogen safety.
Hydrogen: A Reviewable Energy Perspective
Sep 2019
Publication
Hydrogen has emerged as an important part of the clean energy mix needed to ensure a sustainable future. Falling costs for hydrogen produced with renewable energy combined with the urgency of cutting greenhouse-gas emissions has given clean hydrogen unprecedented political and business momentum.
This paper from the International Renewable Energy Agency (IRENA) examines the potential of hydrogen fuel for hard-to-decarbonise energy uses including energy-intensive industries trucks aviation shipping and heating applications. But the decarbonisation impact depends on how hydrogen is produced. Current and future sourcing options can be divided into grey (fossil fuel-based) blue (fossil fuel-based production with carbon capture utilisation and storage) and green (renewables-based) hydrogen. Green hydrogen produced through renewable-powered electrolysis is projected to grow rapidly in the coming years.
Among other findings:
Important synergies exist between hydrogen and renewable energy. Hydrogen can boost renewable electricity market growth and broaden the reach of renewable solutions.
Trade of energy-intensive commodities produced with hydrogen including “e-fuels” could spur faster uptake or renewables and bring wider economic benefits.
This paper from the International Renewable Energy Agency (IRENA) examines the potential of hydrogen fuel for hard-to-decarbonise energy uses including energy-intensive industries trucks aviation shipping and heating applications. But the decarbonisation impact depends on how hydrogen is produced. Current and future sourcing options can be divided into grey (fossil fuel-based) blue (fossil fuel-based production with carbon capture utilisation and storage) and green (renewables-based) hydrogen. Green hydrogen produced through renewable-powered electrolysis is projected to grow rapidly in the coming years.
Among other findings:
Important synergies exist between hydrogen and renewable energy. Hydrogen can boost renewable electricity market growth and broaden the reach of renewable solutions.
- Electrolysers can add demand-side flexibility. In advanced European energy markets electrolysers are growing from megawatt to gigawatt scale.
- Blue hydrogen is not inherently carbon free. This type of production requires carbon-dioxide (CO2) monitoring verification and certification.
- Synergies may exist between green and blue hydrogen deployment given the chance for economies of scale in hydrogen use or logistics.
- A hydrogen-based energy transition will not happen overnight. Hydrogen use is likely to catch on for specific target applications. The need for new supply infrastructure could limit hydrogen use to countries adopting this strategy.
- Dedicated hydrogen pipelines have existed for decades and could be refurbished along with existing gas pipelines. The implications of replacing gas abruptly or changing mixtures gradually should be further explored.
Trade of energy-intensive commodities produced with hydrogen including “e-fuels” could spur faster uptake or renewables and bring wider economic benefits.
Fast Synthesis of TiNi by Mechanical Alloying and its Hydrogenation Properties
Mar 2019
Publication
Mechanical alloying is widely used for the synthesis of hydrogen storage materials. However amorphization and contamination triggered by long-time milling are serious drawbacks for obtaining efficient hydrogen storage. In this work short-time ball milling synthesis is explored for a representative hydride forming compound: TiNi. Through structural morphological and chemical characterizations we evidence that formation of TiNi is complete in only 20 min with minor Fe contamination (0.2 wt%). Cross-sectional analysis of powder stuck on milling balls reveals that alloy formation occurs through the interdiffusion between thin layers of co-laminated pure elements. Hydrogenation thermodynamics and kinetics of short-time mechanically alloyed TiNi are similar to those of coarse-grained compounds obtained by classical high-temperature melting. Mechanical alloying is a suitable method for fast and energy-efficient synthesis of intermetallic compounds such as TiNi.
Measurement of Hydrogen Mixing Process by High Response Hydrogen Sensor
Sep 2017
Publication
According to the Global technical regulation on hydrogen and fuel cell vehicles (FCV) fuel cell discharge system at the vehicle exhaust system`s point of discharge the hydrogen concentration level shall not exceed 4 % average by volume during any moving three-second time interval during normal operation including start-up and shut down [1]. FC stack need to washout by the concentrated hydrogen as the purge gas and how to exhaust gas without exceeding 4 % is the most concerns. Also how to measure hydrogen pulse of millisecond in exhaust is also the rising up issue. In this paper model of FCV hydrogen discharge system was composed and variety of simple experiments were carried out to control the H2 concentration and release. In the case which the semiconductor sensor with porous material (average size less than quench distance) were applied to check H2 concentration the short pulse of high concentration of H2 in millisecond was hard to find. In this experiment the simple exhaust gas model H2/N2 flow was used instead of Air/H2. In the exhaust gas test experiment was conducted under the atmospheric condition in room temperature with small pressure difference and the fast solenoid valve to create quick hydrogen control. Most of the experiments except the turbulent flow experiments laminar flow is expected to be dominated when steady state condition is satisfied but the most result discussed here is the measurement of H2 concentration during the start point at the time of discharge within seconds. The results showed when H2 was added to N2 flow the boundary layer between N2 and H2 contained the high concentration of H2 at the initial wave front and decrease to reach steady state. This H2 pulse is typical in the FCV exhaust gas and topics of this paper.
Alloy Optimization for Reducing Delayed Fracture Sensitivity of 2000 MPa Press Hardening Steel
Jun 2020
Publication
Press hardening steel (PHS) is widely applied in current automotive body design. The trend of using PHS grades with strengths above 1500 MPa raises concerns about sensitivity to hydrogen embrittlement. This study investigates the hydrogen delayed fracture sensitivity of steel alloy 32MnB5 with a 2000 MPa tensile strength and that of several alloy variants involving molybdenum and niobium. It is shown that the delayed cracking resistance can be largely enhanced by using a combination of these alloying elements. The observed improvement appears to mainly originate from the obstruction of hydrogen-induced damage incubation mechanisms by the solutes as well as the precipitates of these alloying elements.
Evaluation of Zero-Energy Building and Use of Renewable Energy in Renovated Buildings: A Case Study in Japan
Apr 2022
Publication
Following the Paris Agreement in 2015 the worldwide focus on global warming countermeasures has intensified. The Japanese government has declared its aim at achieving carbon neutrality by 2050. The concept of zero-energy buildings (ZEBs) is based on measures to reduce energy consumption in buildings the prospects of which are gradually increasing. This study investigated the annual primary energy consumption; as well as evaluated renewed and renovated buildings that had a solar power generation system and utilized solar and geothermal heat. It further examines the prospects of hydrogen production from on-site surplus electricity and the use of hydrogen fuel cells. A considerable difference was observed between the actual energy consumption (213 MJ/m2 ) and the energy consumption estimated using an energy simulation program (386 MJ/m2 ). Considerable savings of energy were achieved when evaluated based on the actual annual primary energy consumption of a building. The building attained a near net zero-energy consumption considering the power generated from the photovoltaic system. The study showed potential energy savings in the building by producing hydrogen using surplus electricity from on-site power generation and introducing hydrogen fuel cells. It is projected that a building’s energy consumption will be lowered by employing the electricity generated by the hydrogen fuel cell for standby power water heating and regenerating heat from the desiccant system.
Removing the Bottleneck on Wind Power Potential to Create Liquid Fuels from Locally Available Biomass
Jun 2021
Publication
In order to reduce global greenhouse gas emissions renewable energy technologies such as wind power and solar photovoltaic power systems have recently become more widespread. However Japan as a nation faces high reliance on imported fossil fuels for electricity generation despite having great potential for further renewable energy development. The focus of this study examines untapped geographical locations in Japan’s northern most prefecture Hokkaido that possess large wind power potential. The possibility of exploiting this potential for the purpose of producing green hydrogen is explored. In particular its integration with a year-round conversion of Kraft lignin into bio-oil from nearby paper pulp mills through a near critical water depolymerization process is examined. The proposed bio-oil and aromatic chemical production as well as the process’ economics are calculated based upon the total available Kraft lignin in Hokkaido including the magnitude of wind power capacity that would be required for producing the necessary hydrogen for such a large-scale process. Green hydrogen integration with other processes in Japan and in other regions is also discussed. Finally the potential benefits and challenges are outlined from an energy policy point-of-view.
Rechargeable Proton Exchange Membrane Fuel Cell Containing an Intrinsic Hydrogen Storage Polymer
Oct 2020
Publication
Proton exchange membrane fuel cells (PEMFCs) are promising clean energy conversion devices in residential transportation and portable applications. Currently a high-pressure tank is the state-of-the-art mode of hydrogen storage; however the energy cost safety and portability (or volumetric hydrogen storage capacity) presents a major barrier to the widespread dissemination of PEMFCs. Here we show an ‘all-polymer type’ rechargeable PEMFC (RCFC) that contains a hydrogen-storable polymer (HSP) which is a solid-state organic hydride as the hydrogen storage media. Use of a gas impermeable SPP-QP (a polyphenylenebased PEM) enhances the operable time reaching up to ca. 10.2 s mgHSP −1 which is more than a factor of two longer than that (3.90 s mgHSP −1) for a Nafion NRE-212 membrane cell. The RCFCs are cycleable at least up to 50 cycles. The features of this RCFC system including safety ease of handling and light weight suggest applications in mobile light-weight hydrogen-based energy devices.
Risk Identification for the Introduction of Advanced Science and Technology: A Case Study of a Hydrogen Energy System for Smooth Social Implementation
May 2020
Publication
A method of risk identification is developed by comparing existing and advanced technologies from the viewpoint of comprehensive social risk. First to analyze these values from a multifaceted perspective we constructed a questionnaire based on 24 individual values and 26 infrastructural values determined in a previous study. Seven engineering experts and six social science experts were then asked to complete the questionnaire to compare and analyze a hydrogen energy system (HES) and a gasoline energy system (GES). Finally the responses were weighted using the analytic hierarchy process. Three important points were identified and focused upon: the distinct disadvantages of the HES compared to the GES judgments that were divided between experts in the engineering and social sciences fields and judgments that were divided among experts in the same field. These are important risks that should be evaluated when making decisions related to the implementation of advanced science and technology.
Exploring the Capability of Mayenite (12CaO·7Al2O3) as Hydrogen Storage Material
Mar 2021
Publication
We utilized nanoporous mayenite (12CaO·7Al2O3) a cost-effective material in the hydride state (H−) to explore the possibility of its use for hydrogen storage and transportation. Hydrogen desorption occurs by a simple reaction of mayenite with water and the nanocage structure transforms into a calcium aluminate hydrate. This reaction enables easy desorption of H− ions trapped in the structure which could allow the use of this material in future portable applications. Additionally this material is 100% recyclable because the cage structure can be recovered by heat treatment after hydrogen desorption. The presence of hydrogen molecules as H− ions was confirmed by 1H-NMR gas chromatography and neutron diffraction analyses. We confirmed the hydrogen state stability inside the mayenite cage by the first-principles calculations to understand the adsorption mechanism and storage capacity and to provide a key for the use of mayenite as a portable hydrogen storage material. Further we succeeded in introducing H− directly from OH− by a simple process compared with previous studies that used long treatment durations and required careful control of humidity and oxygen gas to form O2 species before the introduction of H−.
Unusual Hydrogen Implanted Gold with Lattice Contraction at Increased Hydrogen Content
Mar 2021
Publication
The experimental evidence for the contraction of volume of gold implanted with hydrogen at low doses is presented. The contraction of lattice upon the addition of other elements is very rare and extraordinary in the solid-state not only for gold but also for many other solids. To explain the underlying physics the pure kinetic theory of absorption is not adequate and the detailed interaction of hydrogen in the lattice needs to be clarified. Our analysis points to the importance of the formation of hydride bonds in a dynamic manner and explains why these bonds become weak at higher doses leading to the inverse process of volume expansion frequently seen in metallic hydrogen containers.
Roadmap to Hybrid Offshore System with Hydrogen and Power Co-generation
Sep 2021
Publication
Constrained by the expansion of the power grid the development of offshore wind farms may be hindered and begin to experience severe curtailment or restriction. The combination of hydrogen production through electrolysis and hydrogen-to-power is considered to be a potential option to achieve the goal of low-carbon and energy security. This work investigates the competitiveness of different system configurations to export hydrogen and/or electricity from offshore plants with particular emphasis on unloading the mixture of hydrogen and electricity to end-users on land. Including the levelized energy cost and net present value a comprehensive techno-economic assessment method is proposed to analyze the offshore system for five scenarios. Assuming that the baseline distance is 10 km the results show that exporting hydrogen to land through pipelines shows the best economic performance with the levelized energy cost of 3.40 $/kg. For every 10 km increase in offshore distance the net present value of the project will be reduced by 5.69 MU$ and the project benefit will be positive only when the offshore distance is less than 53.5 km. An important finding is that the hybrid system under ship transportation mode is not greatly affected by the offshore distance. Every 10% increase in the proportion of hydrogen in the range of 70%–100% can increase the net present value by 1.43–1.70 MU$ which will increase by 7.36–7.37 MU$ under pipeline transportation mode. Finally a sensitivity analysis was carried out to analyze the wind speed electricity and hydrogen prices on the economic performance of these systems.
Study on Introduction of CO2 Free Energy to Japan with Liquid Hydrogen
Jul 2015
Publication
In Japan both CO2 (Carbon dioxide) emission reduction and energy security are the very important social issues after Fukushima Daiichi accident. On the other hand FCV (Fuel Cell Vehicle) using hydrogen will be on the market in 2015. Introducing large mass hydrogen energy is being expected as expanding hydrogen applications or solution to energy issues of Japan. And then the Japanese government announced the road map for introducing hydrogen energy supply chain in this June2014. Under these circumstances imported CO2 free hydrogen will be one of the solutions for energy security and CO2 reduction if the hydrogen price is affordable. To achieve this Kawasaki Heavy Industries Ltd. (KHI) performed a feasibility study on CO2-free hydrogen energy supply chain from Australian brown coal linked with CCS (Carbon dioxide Capture and Storage) to Japan. In the study hydrogen production systems utilizing brown coal gasification and LH2 (liquid hydrogen) systems as storing and transporting hydrogen are examined. This paper shows the possibility of realizing the CO2 free hydrogen supply chain the cost breakdown of imported hydrogen cost its cost competitiveness with conventional fossil and LH2 systems as key technologies of the hydrogen energy chain.
Techno-Economic Analysis of a Novel Hydrogen-Based Hybrid Renewable Energy System for Both Grid-Tied and Off-Grid Power Supply in Japan: The Case of Fukushima Prefecture
Jun 2020
Publication
After the Great East Japan Earthquake energy security and vulnerability have become critical issues facing the Japanese energy system. The integration of renewable energy sources to meet specific regional energy demand is a promising scenario to overcome these challenges. To this aim this paper proposes a novel hydrogen-based hybrid renewable energy system (HRES) in which hydrogen fuel can be produced using both the methods of solar electrolysis and supercritical water gasification (SCWG) of biomass feedstock. The produced hydrogen is considered to function as an energy storage medium by storing renewable energy until the fuel cell converts it to electricity. The proposed HRES is used to meet the electricity demand load requirements for a typical household in a selected residential area located in Shinchi-machi in Fukuoka prefecture Japan. The techno-economic assessment of deploying the proposed systems was conducted using an integrated simulation-optimization modeling framework considering two scenarios: (1) minimization of the total cost of the system in an off-grid mode and (2) maximization of the total profit obtained from using renewable electricity and selling surplus solar electricity to the grid considering the feed-in-tariff (FiT) scheme in a grid-tied mode. As indicated by the model results the proposed HRES can generate about 47.3 MWh of electricity in all scenarios which is needed to meet the external load requirement in the selected study area. The levelized cost of energy (LCOE) of the system in scenarios 1 and 2 was estimated at 55.92 JPY/kWh and 56.47 JPY/kWh respectively
Hydrogen Production Technologies Overview
Jan 2019
Publication
Hydrogen energy became the most significant energy as the current demand gradually starts to increase. Hydrogen energy is an important key solution to tackle the global temperature rise. The key important factor of hydrogen production is the hydrogen economy. Hydrogen production technologies are commercially available while some of these technologies are still under development. This paper reviews the hydrogen production technologies from both fossil and non-fossil fuels such as (steam reforming partial oxidation auto thermal pyrolysis and plasma technology). Additionally water electrolysis technology was reviewed. Water electrolysis can be combined with the renewable energy to get eco-friendly technology. Currently the maximum hydrogen fuel productions were registered from the steam reforming gasification and partial oxidation technologies using fossil fuels. These technologies have different challenges such as the total energy consumption and carbon emissions to the environment are still too high. A novel non-fossil fuel method [ammonia NH3] for hydrogen production using plasma technology was reviewed. Ammonia decomposition using plasma technology without and with a catalyst to produce pure hydrogen was considered as compared case studies. It was showed that the efficiency of ammonia decomposition using the catalyst was higher than ammonia decomposition without the catalyst. The maximum hydrogen energy efficiency obtained from the developed ammonia decomposition system was 28.3% with a hydrogen purity of 99.99%. The development of ammonia decomposition processes is continues for hydrogen production and it will likely become commercial and be used as a pure hydrogen energy source.
Hydrogen Production Cost Forecasts since the 1970s and Implications for Technological Development
Jun 2022
Publication
This study reviews the extant literature on hydrogen production cost forecasts to identify and analyze the historical trend of such forecasts in order to explore the feasibility of wider adoption. Hydrogen is an important energy source that can be used to achieve a carbon-neutral society but the widespread adoption of hydrogen production technologies is hampered by the high costs. The production costs vary depending on the technology employed: gray renewable electrolysis or biomass. The study identifies 174 production cost forecast data points from articles published between 1979 and 2020 and makes a comparative assessment using non-parametric statistical tests. The results show three different cost forecast trends across technologies. First the production cost of gray hydrogen showed an increasing trend until 2015 but started declining after 2015. Second the renewable electrolysis hydrogen cost was the highest of all but has shown a gradual declining trend since 2015. Finally the biomass hydrogen cost has been relatively cheaper up until 2015 after which it became the highest. Renewable electrolysis and biomass hydrogen will be potential candidates (as principal drivers) to reduce CO2 emissions in the future but renewable electrolysis hydrogen is more promising in this regard due to its declining production cost trend. Gray hydrogen can also be an alternative candidate to renewable electrolysis hydrogen because it can be equipped with carbon capture storage (CCS) to produce blue hydrogen although we need to consider additional production costs incurred by the introduction of CCS. The study discusses the technological development and policy implications of the results on hydrogen production costs.
How Knowledge about or Experience with Hydrogen Fueling Stations Improves Their Public Acceptance
Nov 2019
Publication
Hydrogen which is expected to be a popular type of next-generation energy is drawing attention as a fuel option for the formation of a low-carbon society. Because hydrogen energy is different in nature from existing energy technologies it is necessary to promote sufficient social recognition and acceptability of the technology for its widespread use. In this study we focused on the effect of initiatives to improve awareness of hydrogen energy technology thereby investigating the acceptability of hydrogen energy to those participating in either several hydrogen energy technology introduction events or professional seminars. According to the survey results participants in the technology introduction events tended to have lower levels of hydrogen and hydrogen energy technology knowledge than did participants in the hydrogen-energy-related seminars but confidence in the technology and acceptability of the installation of hydrogen stations near their own residences tended to be higher. It was suggested that knowledge about hydrogen and technology could lead to improved acceptability through improved levels of trust in the technology. On the other hand social benefits such as those for the environment socioeconomics and energy security have little impact on individual levels of acceptance of new technology.
Energy-Efficient Distributed Carbon Capture in Hydrogen Production from Natural Gas
Apr 2011
Publication
Lowering the energy penalty associated with CO2 capture is one of the key issues of Carbon Capture and Storage (CCS) technologies. The efficiency of carbon capture must be improved to reduce the energy penalty because capture stage is the most energy-consuming stage in the entire process of CCS. Energy-efficient distributed carbon capture in hydrogen production has been demonstrated with an advanced membrane reformer system. We have already developed and operated an advanced 40 Nm3 /h-class membrane reformer system and demonstrated its high hydrogen production efficiency of 81.4% (HHV) which is the world highest efficiency in terms of hydrogen production from natural gas. The system has another significant feature that the CO2 concentration in the reactor off-gas is as high as 70~90% and CO2 can be liquefied and separated easily with little energy loss. An apparatus for CO2 capture was combined to the membrane reformer system and over 90% of CO2 in the reactor off-gas was captured by cryogenic separation. The total energy efficiency of hydrogen production even with CO2 capture was still as high as 78.6% (HHV) which is 510% higher than the conventional reforming technologies. The total CO2 emission from hydrogen production was decreased by 50% with only a 3% energy loss. A sensitivity analysis was also carried out to evaluate the effects of the operating conditions of the system on hydrogen production efficiency and CO2 reduction rate.
Analysis of Trends and Emerging Technologies in Water Electrolysis Research Based on a Computational Method: A Comparison with Fuel Cell Research
Feb 2018
Publication
Water electrolysis for hydrogen production has received increasing attention especially for accumulating renewable energy. Here we comprehensively reviewed all water electrolysis research areas through computational analysis using a citation network to objectively detect emerging technologies and provide interdisciplinary data for forecasting trends. The results show that all research areas increase their publication counts per year and the following two areas are particularly increasing in terms of number of publications: “microbial electrolysis” and “catalysts in an alkaline water electrolyzer (AWE) and in a polymer electrolyte membrane water electrolyzer (PEME).”. Other research areas such as AWE and PEME systems solid oxide electrolysis and the whole renewable energy system have recently received several review papers although papers that focus on specific technologies and are cited frequently have not been published within the citation network. This indicates that these areas receive attention but there are no novel technologies that are the center of the citation network. Emerging technologies detected within these research areas are presented in this review. Furthermore a comparison with fuel cell research is conducted because water electrolysis is the reverse reaction to fuel cells and similar technologies are employed in both areas. Technologies that are not transferred between fuel cells and water electrolysis are introduced and future water electrolysis trends are discussed.
Scenario-Based Comparative Analysis for Coupling Electricity and Hydrogen Storage in Clean Oilfield Energy Supply System
Mar 2022
Publication
In response to the objective of fully attaining carbon neutrality by 2060 people from all walks of life are pursuing low-carbon transformation. Due to the high water cut in the middle and late phases of development the oilfield’s energy consumption will be quite high and the rise in energy consumption will lead to an increase in carbon emission at the same time. As a result the traditional energy model is incapable of meeting the energy consumption requirement of high water cut oilfields in their middle and later phases of development. The present wind hydrogen coupling energy system was researched and coupled with the classic dispersed oilfield energy system to produce energy for the oilfields in this study. This study compares four future energy system models to existing ones computes the energy cost and net present value of an oilfield in Northwest China and proposes a set of economic evaluation tools for oilfield energy systems. The study’s findings indicate that scenario four provides the most economic and environmental benefits. This scenario effectively addresses the issue of high energy consumption associated with aging oilfields at this point significantly reduces carbon emissions absorbs renewable energy locally and reduces the burden on the power grid system. Finally sensitivity analysis is utilized to determine the effect of wind speed electricity cost and oilfield gas output on the system’s economic performance. The results indicate that the system developed in this study can be applied to other oilfields.
Design of an Architectural Element Generating Hydrogen Energy by Photosynthesis—Model Case of the Roof and Window
Jun 2022
Publication
As is well known the realization of a zero-waste society is strongly desired in a sustainable society. In particular architectural elements that provide an energy-neutral living environment are attractive. This article presents the novel environmentally friendly architectural elements that generate hydrogen energy by the photosystem II (PSII) solution extracted from waste vegetables. In the present work as an architectural element the window (PSII window panel) and roof (PSII roof panel) were fabricated by injecting a PSII solution into a transparent double-layer panel and the aging properties of the power generation and the appearance of these PSII panels are investigated. It was found that the PSII roof can generate energy for 18 days under the sun shining and can actually drive the electronic device. In addition the PSII window for which light intensity is weaker than that for the PSII roof can maintain power generation for 40 days. These results indicate that the PSII roof and PSII window become the architectural elements generating energy although the lifespan depends on the total light intensity. Furthermore as an additional advantage the roof and window panels composed of the semitransparent PSII panel yield an interior space with the natural color of the leaf which gradually changes over time from green to yellow. Further it was also found that the thermal fluctuation of the PSII window is smaller than that of the typical glass window. These results indicate that the roof and window panels composed of the PSII solution extracted from waste vegetables can be used as the actual architectural elements to produce not only the electrical energy but also the beautiful transparent natural green/yellow spaces.
Role of Hydrogen-based Energy Carriers as an Alternative Option to Reduce Residual Emissions Associated with Mid-century Decarbonization Goals
Mar 2022
Publication
Hydrogen-based energy carriers including hydrogen ammonia and synthetic hydrocarbons are expected to help reduce residual carbon dioxide emissions in the context of the Paris Agreement goals although their potential has not yet been fully clarified in light of their competitiveness and complementarity with other mitigation options such as electricity biofuels and carbon capture and storage (CCS). This study aimed to explore the role of hydrogen in the global energy system under various mitigation scenarios and technology portfolios using a detailed energy system model that considers various energy technologies including the conversion and use of hydrogen-based energy carriers. The results indicate that the share of hydrogen-based energy carriers generally remains less than 5% of global final energy demand by 2050 in the 2 ◦C scenarios. Nevertheless such carriers contribute to removal of residual emissions from the industry and transport sectors under specific conditions. Their share increases to 10–15% under stringent mitigation scenarios corresponding to 1.5 ◦C warming and scenarios without CCS. The transport sector is the largest consumer accounting for half or more of hydrogen production followed by the industry and power sectors. In addition to direct usage of hydrogen and ammonia synthetic hydrocarbons converted from hydrogen and carbon captured from biomass or direct air capture are attractive transport fuels growing to half of all hydrogen-based energy carriers. Upscaling of electrification and biofuels is another common cost-effective strategy revealing the importance of holistic policy design rather than heavy reliance on hydrogen.
Liquid Hydrogen: A Review on Liquefaction, Storage, Transportation, and Safety
Sep 2021
Publication
Decarbonization plays an important role in future energy systems for reducing greenhouse gas emissions and establishing a zero-carbon society. Hydrogen is believed to be a promising secondary energy source (energy carrier) that can be converted stored and utilized efficiently leading to a broad range of possibilities for future applications. Moreover hydrogen and electricity are mutually converted creating high energy security and broad economic opportunities toward high energy resilience. Hydrogen can be stored in various forms including compressed gas liquid hydrogen hydrides adsorbed hydrogen and reformed fuels. Among these liquid hydrogen has advantages including high gravimetric and volumetric hydrogen densities and hydrogen purity. However liquid hydrogen is garnering increasing attention owing to the demand for long storage periods long transportation distances and economic performance. This paper reviews the characteristics of liquid hydrogen liquefaction technology storage and transportation methods and safety standards to handle liquid hydrogen. The main challenges in utilizing liquid hydrogen are its extremely low temperature and ortho- to para-hydrogen conversion. These two characteristics have led to the urgent development of hydrogen liquefaction storage and transportation. In addition safety standards for handling liquid hydrogen must be updated regularly especially to facilitate massive and large-scale hydrogen liquefaction storage and transportation.
Effect of Carbon Monoxide on Polymer Electrolyte Fuel Cell Performance with a Hydrogen Circulation System
Feb 2022
Publication
The effect of carbon monoxide (CO) on the performance of polymer electrolyte fuel cells (PEFCs) with either a hydrogen circulation system or a hydrogen one-way pass system is investigated and compared. The voltage drop induced by adding 0.2 ppm of CO to the PEFC with the hydrogen circulation system was less than one-tenth of that observed in the PEFC with the hydrogen one-way pass system at 1000 mA cm–2 and a cell temperature of 60 °C. Gas analysis results showed that CO concentration in the hydrogen circulation system was lower than the initially supplied CO concentration. In the hydrogen circulation system permeated oxygen from the cathode should enhance CO oxidation. This should lead to decrease the CO concentration and mitigate the voltage drop in the hydrogen circulation system.
Hydrogen Storage Behavior of TiFe Alloy Activated by Different Methods
Feb 2021
Publication
TiFe activation for hydrogen uptake was conducted through different methods and ball milling with ethanol proved to be the most effective one. TiFe alloy after activation could absorb 1.2 wt% hydrogen at room temperature with absorption and desorption plateaus of 0.5 MPa and 0.2 MPa respectively. Investigation on microstructure and chemical state of TiFe sample after milled with ethanol suggested that the well spread metallic Ti and Fe elements helped hydrogen uptake and release. The activation of TiFe alloy by milling with ethanol was achieved at ambient conditions with ease successfully and possibly can be used for large scale production
Observation of the Hydrogen Dispersion by Using Raman Scattering Measurement and Increase of Measurable Distance
Sep 2017
Publication
Preparing for the arrival of the hydrogen society it is necessary to develop suitable sensors to use hydrogen safely. There are many methods to know the hydrogen concentration by using conventional sensors but it is difficult to know the behavior of hydrogen gas from long distance. This study measured hydrogen dispersion by using Raman scattering light. Generally some delays occur when using conventional sensors but there are almost no delays by using the new Raman sensor. In the experiments 6mm & 1mm diameter holes are used as a spout nozzle to change initial velocities. To ensure the result a special sheets are used which turns transparent when it detected hydrogen and visualized the hydrogen behaviour. As a result the behaviour of the hydrogen gas in the small container was observed. In addition measurable distance is increased by the improvement of the device.
Non-steady Characteristics of Dispersion and Ignitability for High-pressurized Hydrogen Jet Discharged From a Pinhole
Sep 2017
Publication
Hydrogen gas concentrations and jet velocities were measured downstream by a high response speed flame ionization detector and PIV (Particle Image Velocimetry) in order to investigate the characteristics of dispersion and ignitability for 40–82 MPa high-pressurized hydrogen jet discharged from a nozzle with 0.2 mm diameter. The light emitted from both OH radical and water vapor species yielded from hydrogen combustion ignited by an electric spark were recorded by two high speed cameras. From the results the empirical formula concerning the relationships for time-averaged concentrations concentration fluctuations and ignition probability were obtained to suggest that they would be independent of hydrogen discharge pressure.
Public Perception on Hydrogen Infrastructure in Japan
Oct 2015
Publication
A public survey was conducted in March 2015 in Japan asking public awareness knowledge perception and acceptance regarding hydrogen hydrogen infrastructure and fuel cell vehicle adopting the same key questions contained in the public surveys conducted six and seven years ago. Changes in answers between two different times of survey implementation were analyzed by comparing results of current survey to those of the previous surveys. Regression analyses were conducted and revealed influence of respondents’ awareness knowledge and perception about hydrogen hydrogen infrastructure and fuel cell vehicle on their acceptance on hydrogen station. We found a large increase in the awareness and relatively a small improvement on knowledge on hydrogen energy hydrogen infrastructure and fuel cell vehicle from the previous surveys. In contrast we did not find much changes in perception of risk and benefit perception on hydrogen society and hydrogen station and public acceptance of hydrogen infrastructure. Through the regression analyses we found large influences of negative risk perception of hydrogen itself and technology of hydrogen station and perception of necessity of hydrogen station on public acceptance of hydrogen station and the small influence of time background on the acceptance. Through the results of analyses implications to public communication in building public infrastructure are presented.
Effects of Thermomechanical Processing on Hydrogen Embrittlement Properties of Ultrahigh-Strength TRIP-Aided Bainitic Ferrite Steels
Jan 2022
Publication
The effects of thermomechanical processing on the microstructure and hydrogen embrittlement properties of ultrahigh-strength low-alloy transformation-induced plasticity (TRIP)-aided bainitic ferrite (TBF) steels were investigated to apply to automobile forging parts such as engine and drivetrain parts. The hydrogen embrittlement properties were evaluated by conducting conventional tensile tests after hydrogen charging and constant load four-point bending tests with hydrogen charging. The 0.4 mass%C-TBF steel achieved refinement of the microstructure improved retained austenite characteristics and strengthening owing to thermomechanical processing. This might be attributed to dynamic and static recrystallizations during thermomechanical processing in TBF steels. Moreover the hydrogen embrittlement resistances were improved by the thermomechanical processing in TBF steels. This might be caused by the refinement of the microstructure an increase in the stability of the retained austenite and low hydrogen absorption of the thermomechanically processed TBF steels.
Hydrogen Fast Filling to a Type IV Tank Developed for Motorcycles
Oct 2015
Publication
If Hydrogen is expected to be highly valuable some improvements should be conducted mainly regarding the storage safety. To prevent from high pressure hydrogen composite tanks bursting the comprehension of the thermo-mechanics phenomena in the case of fire should be improved. To understand the kinetic of strength loss the heat flux produced by fire of various intensities should be assessed. This is the objective of this real scale experimental campaign which will allow studying in future works the strength loss of composite high-pressure vessels in similar fire conditions to the ones determined in this study. Fire calibration tests were performed on metallic cylinder vessels. These tests with metallic cylinders are critical in the characterization of the thermal load of various fire sources (pool fire propane gas fire hydrogen gas fire) so as to evaluate differences related to different thermal load. Radiant panels were also used as thermal source for reference of pure radiation heat transfer. The retained thermal load might be representative of accidental situations in worst case scenarios and relevant for a standardized testing protocol. The tests performed show that hydrogen gas fires and heptane pool fire allow reaching the target in terms of absorbed energy regarding the results of risk analysis performed previously. Other considerations can be taken into account that will led to retain an hydrogen gas fire for further works. Firstly hydrogen gas fire is the more realistic scenario: Hydrogen is the combustible that we every time find near an hydrogen storage. Secondly as one of the objectives of the project is to make recommendations for standardization issues it's important to note that gas fires are not too complex to calibrate control and reproduce. Finally due to previous considerations Hydrogen gas fire will be retained for thermal load of composite cylinders in future works.
A Panoramic Analysis of Hydrogen Utilization Systems Using an Input-output Table for Next Generation Energy Systems
Apr 2017
Publication
The objective of this study is to analyze a government proposal from a panoramic perspective concerning the economic and environmental effects associated with the construction and operation of hydrogen utilization systems by the year 2030. We focused on a marine transport system for hydrogen produced offshore hydrogen gas turbine power generation fuel cell vehicles (FCVs) and hydrogen stations as well as residential fuel cell systems (RFCs). In this study using an Input-Output Table for Next Generation Energy Systems (IONGES) we evaluated the induced output labor and CO2 emissions from the construction and operation of these hydrogen technologies using a uniform approach. This may be helpful when considering future designs for the Japanese energy system. In terms of per 1 t-H2 of hydrogen use CO2 reductions from the use of FCVs are considerably higher than the additional CO2 emissions from foreign production and transportation of hydrogen. Because new construction of a hydrogen pipeline network is not considered to be realistic RFCs is assumed to consume hydrogen generated by refining town gas. In this case the CO2 reductions from using RFCs will decline under the electricity composition estimated for 2030 on the condition of a substantial expansion of electricity generation from renewable energy sources. However under the present composition of electricity production we can expect a certain amount of CO2 reductions from using RFCs. If hydrogen is directly supplied to RFCs CO2 reductions increase substantially. Thus we can reduce a significant amount of CO2 emissions if various unused energy sources dispersed around local areas or unharnessed renewable energies such as solar and wind power can be converted into hydrogen to be supplied to FCVs and RFCs.
Leakage-type-based Analysis of Accidents Involving Hydrogen Fueling Stations in Japan and USA
Aug 2016
Publication
To identify the safety issues associated with hydrogen fuelling stations incidents at such stations in Japan and the USA were analyzed considering the regulations in these countries. Leakage due to the damage and fracture of main bodies of apparatuses and pipes in Japan and the USA is mainly caused by design error that is poorly planned fatigue. Considering the present incidents in these countries adequate consideration of the usage environment in the design is very important. Leakage from flanges valves and seals in Japan is mainly caused by screw joints. If welded joints are to be used in hydrogen fuelling stations in Japan strength data for welded parts should be obtained and pipe thicknesses should be reduced. Leakage due to other factors e.g. external impact in Japan and the USA is mainly caused by human error. To realize self-serviced hydrogen fuelling stations safety measures should be developed to prevent human error by fuel cell vehicle users.
Influence of Hydrogen for Crack Formation during Mechanical Clinching
Jan 2018
Publication
Hydrogen intrudes into the steel during pickling process which is a pre-processing before a joining process promoting crack formation. In a mechanical clinching which is one of joining method in the automotive industry cracks due to large strain sometimes forms. In order to guarantee reliability it is important to clarify the influence of hydrogen on crack formation of the joint. In this study we clarified the influence of hydrogen for the crack formation on the mechanical clinching. Hydrogen charge was carried out using an electrolytic cathode charge. After the charging mechanical clinching was performed. Mechanical clinching was carried out with steel plate and aluminium alloy plate. To clarify the influence of hydrogen mechanical clinching was conducted without hydrogen charring. To investigate the crack formation the test piece was cut and the cut surface was observed. When the joint was broken during the clinching the fracture surface was observed using an optical microscope and an electron microscope. The load-displacement diagram showed that without hydrogen charging the compressive load increased as the displacement increased. On the other hand the compressive load temporarily decreased with high hydrogen charging suggesting that cracks formed at the time. The cut surface observation showed that interlock was formed in both cases with low hydrogen charging and without hydrogen charging. With low hydrogen charging no cracks were formed in the joint. When high hydrogen charging was performed cracks were formed at the joining point. Fracture analysis showed brittle-like fracture surface. These results indicate that hydrogen induces crack formation in the mechanical clinching.
New Insights into Hydrogen Uptake on Porous Carbon Materials via Explainable Machine Learning
Apr 2021
Publication
To understand hydrogen uptake in porous carbon materials we developed machine learning models to predict excess uptake at 77 K based on the textural and chemical properties of carbon using a dataset containing 68 different samples and 1745 data points. Random forest is selected due to its high performance (R2 > 0.9) and analysis is performed using Shapley Additive Explanations (SHAP). It is found that pressure and Brunauer-Emmett-Teller (BET) surface area are the two strongest predictors of excess hydrogen uptake. Surprisingly this is followed by a positive correlation with oxygen content contributing up to ∼0.6 wt% additional hydrogen uptake contradicting the conclusions of previous studies. Finally pore volume has the smallest effect. The pore size distribution is also found to be important since ultramicropores (dp < 0.7 nm) are found to be more positively correlated with excess uptake than micropores (dp < 2 nm). However this effect is quite small compared to the role of BET surface area and total pore volume. The novel approach taken here can provide important insights in the rational design of carbon materials for hydrogen storage applications.
Graphene Oxide @ Nickel Phosphate Nanocomposites for Photocatalytic Hydrogen Production
Mar 2021
Publication
The graphene oxide @nickel phosphate (GO:NPO) nanocomposites (NCs) are prepared by using a one-pot in-situ solar energy assisted method by varying GO:NPO ratio i.e. 0.00 0.25 0.50 0.75 1.00 1.25 1.50 and 2.00 without adding any surfactant or a structure-directing reagent. As produced GO:NPO nanosheets exhibited an improved photocatalytic activity due to the spatial seperation of charge carriers through interface where photoinduced electrons transferred from NiPO4 to the GO sheets without charge-recombination. Out of the series the system 1.00 GO:NPO NC show the optimum hydrogen production activity (15.37 μmol H2 h−1) towards water splitting under the visible light irradiation. The electronic environment of the nanocomposite GO-NiO6/NiO4-PO4 elucidated in the light of advance experimental analyses and theoretical DFT spin density calculations. Structural advanmcement of composites are well correlated with their hydrogen production activity.
Quantitative Monitoring of the Environmental Hydrogen Embrittlement of Al-Zn-Mg-based Aluminum Alloys via Dnyamic Hydrogen Detection and Digital Image Correlation
Mar 2021
Publication
In this study a novel analytical system was developed to monitor the environmental hydrogen embrittlement of Al-Zn-Mg-based aluminum alloys dynamically and quantitatively under atmospheric air pressure. The system involves gas chromatography using a SnO2-based semiconductor hydrogen sensor a digital image correlation step and the use of a slow strain rate testing machine. Use of this system revealed that hydrogen atoms are generated during the plastic deformation of Al-Zn-Mg alloys caused by the chemical reaction between the water vapor in air and the alloy surface without oxide films. Digital image correlation also clarified that the generated hydrogen atoms caused numerous localized grain boundary cracks on the specimen surface resulting in a localized grain boundary fracture. The amount of hydrogen atoms evolved from the embrittled fracture surface was 2.7 times as high as that from the surface without embrittlement.
No more items...