Applications & Pathways
Hydrogen Council Report- Decarbonization Pathways
Jan 2021
Publication
This report shows that low-carbon hydrogen supply at scale is economically and environmentally feasible and will have significant societal benefits if the right localised approach and best-practices for production are used. The report also demonstrates that there is not one single hydrogen production pathway to achieve low lifecycle greenhouse gas (GHG) emissions but rather the need for a fact-based approach that leverages regional resources and includes a combination of different production pathways. This will achieve both emission and cost reductions ultimately helping to decarbonize the energy system and limit global warming.
In 2020 more than 15 countries launched major hydrogen plans and policies and industry players announced new projects of more than 35GW until 2030. As this hydrogen momentum accelerates it is increasingly clear that decision makers must put the focus on decarbonization to ensure hydrogen can fulfil its potential as a key solution in the global clean energy transition making a significant contribution to net zero emissions. To support this effort the two-part Hydrogen Council report provides new data based on an assessment of the GHG emissions generated through different hydrogen supply pathways and the lifecycle GHG emissions for different hydrogen applications (see report part 1 – A Life-cycle Assessment). In addition the report explores 3 hypothetical hydrogen supply scenarios to measure the feasibility and impact of deploying renewable and low-carbon hydrogen at scale (report part 2 – Potential Supply Scenarios).
The report outlines that there are many ways of producing hydrogen and although GHG emissions vary widely very high CO2 savings can be achieved across a broad range of different hydrogen production pathways and end-uses. For example while “green” hydrogen produced through water electrolysis with renewable power achieves the lowest emissions “blue” hydrogen produced from natural gas with high CO2 capture rate and storage can also achieve low emissions if best technologies are used and best practices are followed. Across eight illustrative pathways explored in the report analysis shows that if hydrogen is used significant GHG emission reductions can be made: as much as 60-90% or more compared to conventional fossil alternatives. The study also looked into the gross water demand of hydrogen supply pathways. Water electrolysis has a very low specific water demand of 9 kg per kg of hydrogen compared to cooling of thermal power plants (hundreds of kg/kg) or biomass cultivation (hundreds to thousands of kg/kg).
Furthermore low-carbon hydrogen supply at scale is fully achievable. Having investigated two hypothetical boundary scenarios (a “green-only” and a “blue-only” scenario) to assess the feasibility and impact of decarbonized hydrogen supply the report found that both scenarios are feasible: they are not limited by the world’s renewables potential or carbon sequestration (CCS) capacities and they do not exceed the speed at which industry can scale. In the Hydrogen Council’s “Scaling up” study a demand of 21800 TWh hydrogen has been identified for the year 2050. To achieve this a compound annual growth rate of 30-35% would be needed for electrolysers and CCS. This deployment rate is in line with the growth of the offshore wind and solar PV industry over the last decade.
Hydrogen Council data released in January 2020 showed that a wide range of hydrogen applications can become competitive by 2030 driven also by falling costs of renewable and low-carbon hydrogen[1]. The new study indicates that a combination of “green” and “blue” production pathways would lead to hydrogen cost reductions relative to either boundary scenario. By making use of the near-term cost advantage of “blue” while also scaling up “green” hydrogen as the most cost-efficient option in many regions in the medium and long-term the combined approach lowers average hydrogen costs between now and 2050 relative to either boundary scenario.
Part 1 – A Life-cycle Assessment
You can download the full reports from the Hydrogen Council website
Hydrogen Council Report- Decarbonization Pathways Part 1: Life Cycle Assessment here
Hydrogen Council Report-Decarbonization Pathways Part 2: Supply Scenarios here
An executive summary of the whole project can be found here
In 2020 more than 15 countries launched major hydrogen plans and policies and industry players announced new projects of more than 35GW until 2030. As this hydrogen momentum accelerates it is increasingly clear that decision makers must put the focus on decarbonization to ensure hydrogen can fulfil its potential as a key solution in the global clean energy transition making a significant contribution to net zero emissions. To support this effort the two-part Hydrogen Council report provides new data based on an assessment of the GHG emissions generated through different hydrogen supply pathways and the lifecycle GHG emissions for different hydrogen applications (see report part 1 – A Life-cycle Assessment). In addition the report explores 3 hypothetical hydrogen supply scenarios to measure the feasibility and impact of deploying renewable and low-carbon hydrogen at scale (report part 2 – Potential Supply Scenarios).
The report outlines that there are many ways of producing hydrogen and although GHG emissions vary widely very high CO2 savings can be achieved across a broad range of different hydrogen production pathways and end-uses. For example while “green” hydrogen produced through water electrolysis with renewable power achieves the lowest emissions “blue” hydrogen produced from natural gas with high CO2 capture rate and storage can also achieve low emissions if best technologies are used and best practices are followed. Across eight illustrative pathways explored in the report analysis shows that if hydrogen is used significant GHG emission reductions can be made: as much as 60-90% or more compared to conventional fossil alternatives. The study also looked into the gross water demand of hydrogen supply pathways. Water electrolysis has a very low specific water demand of 9 kg per kg of hydrogen compared to cooling of thermal power plants (hundreds of kg/kg) or biomass cultivation (hundreds to thousands of kg/kg).
Furthermore low-carbon hydrogen supply at scale is fully achievable. Having investigated two hypothetical boundary scenarios (a “green-only” and a “blue-only” scenario) to assess the feasibility and impact of decarbonized hydrogen supply the report found that both scenarios are feasible: they are not limited by the world’s renewables potential or carbon sequestration (CCS) capacities and they do not exceed the speed at which industry can scale. In the Hydrogen Council’s “Scaling up” study a demand of 21800 TWh hydrogen has been identified for the year 2050. To achieve this a compound annual growth rate of 30-35% would be needed for electrolysers and CCS. This deployment rate is in line with the growth of the offshore wind and solar PV industry over the last decade.
Hydrogen Council data released in January 2020 showed that a wide range of hydrogen applications can become competitive by 2030 driven also by falling costs of renewable and low-carbon hydrogen[1]. The new study indicates that a combination of “green” and “blue” production pathways would lead to hydrogen cost reductions relative to either boundary scenario. By making use of the near-term cost advantage of “blue” while also scaling up “green” hydrogen as the most cost-efficient option in many regions in the medium and long-term the combined approach lowers average hydrogen costs between now and 2050 relative to either boundary scenario.
Part 1 – A Life-cycle Assessment
- The life-cycle assessment (LCA) analysis in this study addresses every aspect of the supply chain from primary energy extraction to end use. Eight primary-energy-to-hydrogen value chains have been selected for illustrative purposes.
- Across the hydrogen pathways and applications depicted very high to high GHG emission reduction can be demonstrated using green (solar wind) and blue hydrogen.
- In the LCA study renewables + electrolysis shows strongest GHG reduction of the different hydrogen supply pathways assessed in this study with a best-case blue hydrogen pathway also coming into the same order of magnitude.
- Currently the vast majority of hydrogen is produced by fossil pathways. To achieve a ten-fold build-out of hydrogen supply by 2050 as envisaged by the Hydrogen Council in its ‘Scaling Up’ report (2017) the existing use of hydrogen – and all its many potential new roles – need to be met by decarbonized sources.
- Three hypothetical supply scenarios with decarbonized hydrogen sources are considered in the study: 1) a “green-only” renewables-based world; 2) a “blue-only” world relying on carbon sequestration; and 3) a combined scenario that uses a region-specific combination of green and blue hydrogen based on the expected regional cost development of each source.
- The study finds that a decarbonized hydrogen supply is possible regardless of the production pathway: while both the green and blue boundary scenario would be highly ambitious regarding the required speed of scale-up they do not exceed the world’s resources on either renewable energy or carbon sequestration capabilities.
- A combination of production pathways would result in the least-cost global supply over the entire period of scale-up. It does so by making best use of the near-term cost advantage of “blue” in some regions while simultaneously achieving a scale-up in electrolysis.
- In reality the decarbonized supply scenario will combine a range of different renewable and low-carbon hydrogen production pathways that are optimally suited to local conditions political and societal preferences and regulations as well as industrial and cost developments for different technologies.
You can download the full reports from the Hydrogen Council website
Hydrogen Council Report- Decarbonization Pathways Part 1: Life Cycle Assessment here
Hydrogen Council Report-Decarbonization Pathways Part 2: Supply Scenarios here
An executive summary of the whole project can be found here
Life Cycle Assessment of Hydrogen and Fuel Cell Technologies: Inventory of Work Performed by Projects Funded Under FCH JU
Apr 2020
Publication
This report is the public version of the deliverable B.3.7 'Life cycle assessment of Hydrogen and Fuel Cell Technologies - Inventory of work performed by projects funded under FCH JU'; it provides an overview of the progress achieved so far and a comprehensive analysis on Life Cycle Assessment (LCA) for various hydrogen technologies and processes. The review considers 73 Fuel Cells and Hydrogen 2 Joint Undertaking (FCH 2 JU) founded projects: for some of those the LCA study was requested in the call topic while other projects decided to perform the LCA study on a voluntary basis. The LCAs have been assessed regarding the adherence to guideline recommendations (e.g. reported properties system boundary definitions goal and scope definitions) methodology and overall quality of the work. Methodology is a critical issue for the comparability of results as this is only possible if all LCAs follow the same guidelines; in addition LCAs were often only partially fulfilling the selected guideline requirements. It is recommended that future FCH 2 JU call topics asking for environmental analysis to be performed are setting out some minimum requirements such as the guidelines to be used and the impacts to be assessed. Based on the outcome of this analysis a harmonisation effort in the approach to LCA for the FCH JU founded projects is proposed; in particular a Life Cycle Inventory (LCI) database useful for the projects is required togheter with the identification of a reference cases to be used as benchmark for future LCAs.
A Personal Retrospect on Three Decades of High Temperature Fuel Cell Research; Ideas and Lessons Learned
Feb 2021
Publication
In 1986 the Dutch national fuel cell program started. Fuel cells were developed under the paradigm of replacing conventional technology. Coal-fired power plants were to be replaced by large-scale MCFC power plants fuelled by hydrogen in a full-scale future hydrogen economy. With today's knowledge we will reflect on these and other ideas with respect to high temperature fuel cell development including the choice for the type of high temperature fuel cell. It is explained that based on thermodynamics proton conducting fuel cells would have been a better choice and the direct carbon fuel cell even more so with electrochemical gasification of carbon as the ultimate step. The specific characteristics of fuel cells and multisource multiproduct systems were not considered whereas we understand now that these can provide huge driving forces for the implementation of fuel cells compared to just replacing conventional combined heat and power production technology.
Urban Buses: Alternative Powertrains for Europe: A Fact-based Analysis of the Role of Diesel Hybrid, Hydrogen Fuel Cell, Trolley and Battery Electric Powertrains
Dec 2012
Publication
A coalition of 40 industrial companies and government organizations financially supported by the FCH JU elaborated a technology neutral and fact-based comparative study on eight different powertrain technologies for urban buses in Europe from 2012 to 2030.<br/>According to the results of the study only fully electric powertrain buses (based on hydrogen batteries or trolley system) have the potential to achieve zero local emissions by drastically reducing well-to-wheel emissions.<br/>Following the positive comparative result for fuel cell hydrogen urban buses the FCH JU will launch a follow-up study that more specifically defines real uptake scenarios for market entry scheduled to starting before summer 2013.
Design and Dynamics Simulations of Small Scale Solid Oxide Fuel Cell Trigeneration System
Dec 2018
Publication
This paper presents the design of a solid oxide fuel cell (SOFC) tri-generation system that consists of an SOFC-combined heat and power subsystem an adsorption refrigeration subsystem and coupling devices between the two subsystems. Whereas typical extant designs use absorption techniques the proposed design employs adsorption refrigeration. In this paper the dynamics of adsorption refrigeration are reported in detail to evaluate the feasibility of the tri-generation system design. The design of the coupling devices and instrumentation strategies of the overall system are discussed in detail. Simulation results indicate that the proposed SOFC trigeneration system can output 4.35 kW of electrical power 2.448 kW of exhaust heat power and 1.348 kW of cooling power. The energy efficiency is 64.9% and the coefficient of performance of the refrigeration is 0.32. Varying the electrical output power results in the variation of exhaust heat power but not the cooling power; varying the cooling power affects the exhaust heat power but not the electrical power. These favorable features can be attributed to the proposed heat exchange sequence and active temperature controls of the system.
City Blood: A Visionary Infrastructure Solution for Household Energy Provision through Water Distribution Networks
May 2013
Publication
This paper aims to expand current thinking about the future of energy and water utility provision by presenting a radical idea: it proposes a combined delivery system for household energy and water utilities which is inspired by an analogy with the human body. It envisions a multi-functional infrastructure for cities of the future modelled on the human circulatory system. Red blood cells play a crucial role as energy carriers in biological energy distribution; they are suspended in the blood and distributed around the body to fuel the living cells. So why not use an analogous system e an urban circulatory system or “city blood” e to deliver energy and water simultaneously via one dedicated pipeline system? This paper focuses on analysing the scientific technological and economic feasibilities and hurdles which would need to be overcome in order to achieve this idea.<br/>We present a rationale for the requirement of an improved household utility delivery infrastructure and discuss the inspirational analogy; the technological components required to realise the vignette are also discussed. We identify the most significant advance requirement for the proposal to succeed: the utilisation of solid or liquid substrate materials delivered through water pipelines; their benefits and risks are discussed.
Study on the Use of Fuel Cells and Hydrogen in the Railway Environment
Jun 2019
Publication
This study outlines a pathway for commercialisation of stationary fuel cells in distributed generation across Europe. It has been sponsored by the Fuel Cells and Hydrogen Joint Undertaking (FCH JU) a public-private partnership between the European Commission the fuel cell and hydrogen industry and a number of research bodies and associations. The FCH JU supports research technology development and demonstration activities in the field of fuel cell and hydrogen technologies in Europe. The study explores how stationary fuel cells can benefit users how they can be brought to the market what hurdles still exist and how their diffusion may foster Europe's transition into a new energy age.
Exploring Possible Transition Pathways for Hydrogen Energy: A Hybrid Approach Using Socio-technical Scenarios and Energy System Modelling
Jul 2014
Publication
Hydrogen remains an important option for long-term decarbonisation of energy and transport systems. However studying the possible transition paths and development prospects for a hydrogen energy system is challenging. The long-term nature of technological transitions inevitably means profound uncertainties diverging perspectives and contested priorities. Both modelling approaches and narrative storyline scenarios are widely used to explore the possible future of hydrogen energy but each approach has shortcomings.<br/>This paper presents a hybrid approach to assessing hydrogen transitions in the UK by confronting qualitative socio-technical scenarios with quantitative energy systems modelling through a process of ‘dialogue’ between scenario and model. Three possible transition pathways are explored each exploring different uncertainties and possible decision points. Conclusions are drawn for both the future of hydrogen and on the value of an approach that brings quantitative formal models and narrative scenario techniques into dialogue.
Advancing Europe's Energy Systems- Stationary Fuel Cells in Distributed Generation
Mar 2015
Publication
Stationary fuel cells can play a beneficial role in Europe's changing energy landscape. The energy systems across Europe face significant challenges as they evolve against the backdrop of an ambitious climate agenda. As energy systems integrate more and more generation capacity from intermittent renewables numerous challenges arise. Amongst others Europe's energy systems of the future require new concepts for complementary supply such as efficient distributed power generation from natural gas. At the same time significant investments to modernise the electricity grid infrastructure are needed. Long-term storage solutions become a growing priority to ensure permanent power supply e.g. power-to-gas. Moreover Europe puts greater emphasis on energy efficiency in order to save primary energy reduce fuel imports and increase energy security.
Against this background distributed generation from stationary fuel cells promises significant benefits. This study outlines a pathway for commercialising stationary fuel cells in Europe The present study outlines a pathway for commercialising stationary fuel cells in Europe. It produces a comprehensive account of the current and future market potential for fuel cell distributed energy generation in Europe benchmarks stationary fuel cell technologies against competing conventional technologies in a variety of use cases and assesses potential business models for commercialisation. Considering the results of the technological and commercial analysis the study pinpoints focus areas for further R&D to sustain innovation and provides recommendations for supportive policy frameworks.
The study has been sponsored by the Fuel Cells and Hydrogen Joint Undertaking. Compiled by Roland Berger Strategy Consultants it builds on an interactive approach involving a coalition of more than 30 companies public institutions and associations from the stakeholder community of the European stationary fuel cell industry.
Against this background distributed generation from stationary fuel cells promises significant benefits. This study outlines a pathway for commercialising stationary fuel cells in Europe The present study outlines a pathway for commercialising stationary fuel cells in Europe. It produces a comprehensive account of the current and future market potential for fuel cell distributed energy generation in Europe benchmarks stationary fuel cell technologies against competing conventional technologies in a variety of use cases and assesses potential business models for commercialisation. Considering the results of the technological and commercial analysis the study pinpoints focus areas for further R&D to sustain innovation and provides recommendations for supportive policy frameworks.
The study has been sponsored by the Fuel Cells and Hydrogen Joint Undertaking. Compiled by Roland Berger Strategy Consultants it builds on an interactive approach involving a coalition of more than 30 companies public institutions and associations from the stakeholder community of the European stationary fuel cell industry.
Biomass Derived Porous Nitrogen Doped Carbon for Electrochemical Devices
Mar 2017
Publication
Biomass derived porous nanostructured nitrogen doped carbon (PNC) has been extensively investigated as the electrode material for electrochemical catalytic reactions and rechargeable batteries. Biomass with and without containing nitrogen could be designed and optimized to prepare PNC via hydrothermal carbonization pyrolysis and other methods. The presence of nitrogen in carbon can provide more active sites for ion absorption improve the electronic conductivity increase the bonding between carbon and sulfur and enhance the electrochemical catalytic reaction. The synthetic methods of natural biomass derived PNC heteroatomic co- or tri-doping into biomass derived carbon and the application of biomass derived PNC in rechargeable Li/Na batteries high energy density Li–S batteries supercapacitors metal-air batteries and electrochemical catalytic reaction (oxygen reduction and evolution reactions hydrogen evolution reaction) are summarized and discussed in this review. Biomass derived PNCs deliver high performance electrochemical storage properties for rechargeable batteries/supercapacitors and superior electrochemical catalytic performance toward hydrogen evolution oxygen reduction and evolution as promising electrodes for electrochemical devices including battery technologies fuel cell and electrolyzer.
The Impact of Disruptive Powertrain Technologies on Energy Consumption and Carbon Dioxide Emissions from Heavy-duty Vehicles
Jan 2020
Publication
Minimising tailpipe emissions and the decarbonisation of transport in a cost effective way remains a major objective for policymakers and vehicle manufacturers. Current trends are rapidly evolving but appear to be moving towards solutions in which vehicles which are increasingly electrified. As a result we will see a greater linkage between the wider energy system and the transportation sector resulting in a more complex and mutual dependency. At the same time major investments into technological innovation across both sectors are yielding rapid advancements into on-board energy storage and more compact/lightweight on-board electricity generators. In the absence of sufficient technical data on such technology holistic evaluations of the future transportation sector and its energy sources have not considered the impact of a new generation of innovation in propulsion technologies. In this paper the potential impact of a number of novel powertrain technologies are evaluated and presented. The analysis considers heavy duty vehicles with conventional reciprocating engines powered by diesel and hydrogen hybrid and battery electric vehicles and vehicles powered by hydrogen fuel cells and freepiston engine generators (FPEGs). The benefits are compared for each technology to meet the expectations of representative medium and heavy-duty vehicle drivers. Analysis is presented in terms of vehicle type vehicle duty cycle fuel economy greenhouse gas (GHG) emissions impact on the vehicle etc.. The work shows that the underpinning energy vector and its primary energy source are the most significant factor for reducing primary energy consumption and net CO2 emissions. Indeed while an HGV with a BEV powertrain offers no direct tailpipe emissions it produces significantly worse lifecycle CO2 emissions than a conventional diesel powertrain. Even with a de-carbonised electricity system (100 g CO2/kWh) CO2 emissions are similar to a conventional Diesel fuelled HGV. For the HGV sector range is key to operator acceptability of new powertrain technologies. This analysis has shown that cumulative benefits of improved electrical powertrains on-board storage efficiency improvements and vehicle design in 2025 and 2035 mean that hydrogen and electric fuelled vehicles can be competitive on gravimetric and volumetric density. Overall the work demonstrates that presently there is no common powertrain solution appropriate for all vehicle types but how subtle improvements at a vehicle component level can have significant impact on the design choices for the wider energy system.
Mathematical Modeling and Simulation of Hydrogen-fueled Solid Oxide Fuel Cell System for Micro-grid Applications - Effect of Failure and Degradation on Transient Performance
May 2020
Publication
We use a detailed solid oxide fuel cell (SOFC) model for micro-grid applications to analyze the effect of failure and degradation on system performance. Design and operational constraints on a component and system level are presented. A degrees of freedom analysis identifies controlled and manipulated system variables which are important for control. Experimental data are included to model complex degradation phenomena of the SOFC unit. Rather than using a constant value a spatially distributed degradation rate as function of temperature and current density is used that allows to study trajectory based performance deterioration. The SOFC unit is assumed to consist of multiple stacks. The failure scenario studied is the loss of one individual SOFC stack e.g. due to breakage of sealing or a series of fuel cells. Simulations reveal that degradation leads to significant drifts from the design operating point. Moreover failure of individual stacks may bring the still operating power generation unit into a regime where further failures and accelerated degradation is more likely. It is shown that system design dimensioning operation and control are strongly linked. Apart from specific quantitative results perhaps the main practical contribution are the collected constraints and the degrees of freedom analysis.
Amorphous Iron-nickel Phosphide Nanocone Arrays as Efficient Bifunctional Electrodes for Overall Water Splitting
May 2020
Publication
The synthesis of low-cost and highly active electrodes for both oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) is very important for water splitting. In this work the novel amorphous iron-nickel phosphide (FeP-Ni) nanocone arrays as efficient bifunctional electrodes for overall water splitting have been in-situ assembled on conductive three-dimensional (3D) Ni foam via a facile and mild liquid deposition process. It is found that the FeP-Ni electrode demonstrates highly efficient electrocatalytic performance toward overall water splitting. In 1 M KOH electrolyte the optimal FeP-Ni electrode drives a current density of 10 mA/cm2 at an overpotential of 218 mV for the OER and 120 mV for the HER and can attain such current density for 25 h without performance regression. Moreover a two-electrode electrolyzer comprising the FeP-Ni electrodes can afford 10 mA/cm2 electrolysis current at a low cell voltage of 1.62 V and maintain long-term stability as well as superior to that of the coupled RuO2/NF‖Pt/C/NF cell. Detailed characterizations confirm that the excellent electrocatalytic performances for water splitting are attributed to the unique 3D morphology of nanocone arrays which could expose more surface active sites facilitate electrolyte diffusion benefit charge transfer and also favourable bubble detachment behaviour. Our work presents a facile and cost-effective pathway to design and develop active self-supported electrodes with novel 3D morphology for water electrolysis.
Hydrogen Refuelling Stations in the Netherlands: An Intercomparison of Quantitative Risk Assessments Used for Permitting
May 2018
Publication
As of 2003 15 hydrogen refuelling stations (HRSs) have been deployed in the Netherlands. To become established the HRS has to go through a permitting procedure. An important document of the permitting dossier is the quantitative risk assessment (QRA) as it assesses the risks of the HRS associated to people and buildings in the vicinity of the HRS. In the Netherlands a generic prescribed approach exists on how to perform a QRA however specific guidelines for HRSs do not exist. An intercomparison among the QRAs of permitted HRSs has revealed significant inconsistencies on various aspects of the QRA: namely the inclusion of HRS sub-systems and components the HRS sub-system and component considerations as predefined components the application of failure scenarios the determination of failure frequencies the application of input parameters the consideration of preventive and mitigation measures as well as information provided regarding the HRS surroundings and the societal risk. It is therefore recommended to develop specific QRA guidelines for HRSs.
Renewable Power and Heat for the Decarbonisation of Energy-Intensive Industries
Dec 2022
Publication
The present review provides a catalogue of relevant renewable energy (RE) technologies currently available (regarding the 2030 scope) and to be available in the transition towards 2050 for the decarbonisation of Energy Intensive Industries (EIIs). RE solutions have been classified into technologies based on the use of renewable electricity and those used to produce heat for multiple industrial processes. Electrification will be key thanks to the gradual decrease in renewable power prices and the conversion of natural-gas-dependent processes. Industrial processes that are not eligible for electrification will still need a form of renewable heat. Among them the following have been identified: concentrating solar power heat pumps and geothermal energy. These can supply a broad range of needed temperatures. Biomass will be a key element not only in the decarbonisation of conventional combustion systems but also as a biofuel feedstock. Biomethane and green hydrogen are considered essential. Biomethane can allow a straightforward transition from fossil-based natural gas to renewable gas. Green hydrogen production technologies will be required to increase their maturity and availability in Europe (EU). EIIs’ decarbonisation will occur through the progressive use of an energy mix that allows EU industrial sectors to remain competitive on a global scale. Each industrial sector will require specific renewable energy solutions especially the top greenhouse gas-emitting industries. This analysis has also been conceived as a starting point for discussions with potential decision makers to facilitate a more rapid transition of EIIs to full decarbonisation.
A Host-guest Approach to Fabricate Metallic Cobalt Nanoparticles Embedded in Silk-derived N-doped Carbon Fibers for Efficient Hydrogen Evolution
Feb 2017
Publication
Hydrogen evolution reaction (HER) plays a key role in generating clean and renewable energy. As the most effective HER electrocatalysts Pt group catalysts suffer from severe problems such as high price and scarcity. It is highly desirable to design and synthesize sustainable HER electrocatalysts to replace the Pt group catalysts. Due to their low cost high abundance and high activities cobalt-incorporated N-doped nanocarbon hybrids are promising candidate electrocatalysts for HER. In this report we demonstrated a robust and eco-friendly host-guest approach to fabricate metallic cobalt nanoparticles embedded in N-doped carbon fibers derived from natural silk fibers. Benefiting from the one-dimensional nanostructure the well-dispersed metallic cobalt nanoparticles and the N-doped thin graphitized carbon layer coating the best Co-based electrocatalyst manifests low overpotential (61 mV@10 mA/cm2) HER activity that is comparable with commercial 20% Pt/C and good stability in acid. Our findings provide a novel and unique route to explore high-performance noble-metal-free HER electrocatalysts.
Co-CoOx Supported onto TiO2 Coated with Carbon as a Catalyst for Efficient and Stable Hydrogen Generation from Ammonia Borane
Apr 2020
Publication
Ammonia borane (AB) can be catalytically hydrolyzed to provide hydrogen at room temperature due to its high potentaial for hydrogen storage. Non-precious metal heterogeneous catalysts have broad application in the field of energy catalysis. In this article catalysts precursor is obtained from Co-Ti-resorcinol-formaldehyde resin by sol–gel method. Co/TiO2@N-C (CTC) catalyst is prepared by calcining the precursor under high temperature conditions in nitrogen atmosphere. Co-CoOx/TiO2@N-C (COTC) is generated by the controllable oxidation reaction of CTC. The catalyst can effectively promote the release of hydrogen during the hydrolytic dehydrogenation of AB. High hydrogen generation at a specific rate of 5905 mL min−1 gCo−1 is achieved at room temperature. The catalyst retains its 85% initial catalytic activity even for its fifth time use in AB hydrolysis. The synergistic effect among Co Co3O4 and TiO2 promotes the rate limiting step with dissociation and activation of water molecules by reducing its activation energy. The applied method in this study promotes the development of non-precious metals in catalysis for utilization in clean energy sources.
The Role of Initial Tank Temperature on Refuelling of On-board Hydrogen Tanks
Jun 2016
Publication
The influence of the initial tank temperature on the evolution of the internal gas temperature during the refuelling of on-board hydrogen tanks is investigated in this paper. Two different types of tanks four different fuel delivery temperatures (from ambient temperature refuelling to a pre-cooled hydrogen at −40 °C) several filling rates and initial pressures are considered. It has been found that the final gas temperature increases linearly with the increase of the initial tank temperature while the temperature increase (ΔT) and the final state of charge (SOC) decrease linearly with increasing the initial temperature. This dependency has been found to be larger on type III than on type IV tank and larger the larger the initial pressure. Additionally CFD simulations are performed to better understand the role of the relevant phenomena on the gas temperature histories e.g. gas compression gas mixing and heat transfer. By comparing the results of calculations with adiabatic and diathermal tank walls the effect of the initial gas temperature has been separated from the effect of the initial wall temperature on the process.
Fuel Cells and Hydrogen Technologies in Europe: Financial and Technology Outlook on the European Sector Ambition 2014-2020
Nov 2011
Publication
Sustainable secure and competitive energy supply and transport services are at the heart of the EU2020 strategy towards a low carbon and inclusive economy geared towards a reduction of 80% of CO2 emissions by 2050. This objective has been endorsed by the European Institutions and Member States. It is widely recognised that a technological shift and the deployment of new clean technologies are critical for a successful transition to such a new sustainable economy. Furthermore in addition to bringing a healthier environment and securing energy supply innovation will provide huge opportunities for the European economy. However this paradigm shift will not be purely driven by the market. A strong and determined commitment of public institutions and the private sector together are necessary to support the European political ambition. The period 2014-2020 will be critical to ensure that the necessary investments are realized to support the EU2020 vision. In terms of hydrogen and fuel cell technologies significant investments are required for (a) transportation for scaling up the car fleet and building up of refuelling infrastructure needs (b) hydrogen production technologies to integrate renewable intermittent power sources to the electrical grid (wind and solar) (c) stationary fuel cell applications with large demonstration projects in several European cities and (d) identified early markets (material handling vehicles back-up power systems) to allow for volume developments and decrease of system-costs.<br/>This Report summarizes the sector’s financial ambition to reach Europe’s objectives in 2020.
Fuel Cells and Hydrogen for Green Energy in European Cities and Regions
Sep 2018
Publication
Fuel cells and hydrogen are a viable solution for European regions and cities to reduce their emissions and realise their green energy transition says new FCH JU study.
In 2017 the FCH JU launched an initiative to support regions and cities in this regard. Today 89 regions and cities participate representing about one quarter of Europe's population surface area and GDP. These regions are pursuing ambitious plans to deploy FCH technology in the coming years. FCH investments totalling about EUR 1.8 billion are planned for these regions in the next 5 years. These planned investments can contribute significantly to further developing the FCH market in Europe and driving the sector towards commercialisation.
The new study provides a detailed insight into the FCH investment plans of the participating regions and cities and points out next steps to be taken for realising a European FCH roadmap with a view to commercialising the technology. In particular the study shows that:
In 2017 the FCH JU launched an initiative to support regions and cities in this regard. Today 89 regions and cities participate representing about one quarter of Europe's population surface area and GDP. These regions are pursuing ambitious plans to deploy FCH technology in the coming years. FCH investments totalling about EUR 1.8 billion are planned for these regions in the next 5 years. These planned investments can contribute significantly to further developing the FCH market in Europe and driving the sector towards commercialisation.
The new study provides a detailed insight into the FCH investment plans of the participating regions and cities and points out next steps to be taken for realising a European FCH roadmap with a view to commercialising the technology. In particular the study shows that:
- European regions and cities need to take action now to realise their ambitious emission reduction targets and improve local air quality.
- Investing in fuel cell and hydrogen technology pays off for cities and regions as it provides a mature safe and competitive zero-emission solution for all their energy needs.
- Regions and cities can benefit from investing in hydrogen and fuel cells not only in environmental terms but also by stimulating local economic growth and creating attractive places to live work and visit.
- The Regions and Cities Initiative provides a unique opportunity to benefit from existing knowledge draw on project development support and financing assistance to realise own FCH deployment projects.
- To enable the realisation of the envisaged FCH deployment plans of the regions and cities continued support will be required for individual projects as well as the coalition at large.
Fuel Cell and Hydrogen Technology- Europe's Journey to a Greener World
Nov 2017
Publication
On the occasion of its 10th Stakeholder forum the FCH JU published a unique and exclusive book. This book sets out the story behind both the FCH JU and fuel cell and hydrogen technology in Europe. It reviews the events leading to its creation and examines the achievements that have allowed Europe to take a leading role in fuel cell and hydrogen excellence. It also looks at what this investment in fuel cell technology will mean for the EU in the coming years
Strategies for Joint Procurement of Fuel Cell Buses
Jun 2018
Publication
The Fuel Cells and Hydrogen Joint Undertaking (FCH JU) has supported a range of initiatives in recent years designed to develop hydrogen fuel cell buses to a point where they can fulfil their promise as a mainstream zero emission vehicle for public transport.<br/>Within this study 90 different European cities and regions have been supported in understanding the business case of fuel cell bus deployment and across these locations. The study analyses the funding and financing for fuel cell bus deployment to make them become a mainstream zero emission choice for public transport providers in cities and regions across Europe. It also outlines possible solutions for further deployment of FC buses beyond the subsidised phase.<br/>In the light of the experience of the joint tender process in the UK and in Germany the study highlights best practices for ordering fuel cell buses. Other innovative instruments explored in other countries for the orders of large quantities of fuel cells buses are presented: Special Purpose Vehicles and centralised purchase office. Finally the study deeply analyses the funding and financing for fuel cell bus deployment to make them become a mainstream zero emission choice for public transport providers in cities and regions across Europe.
Strategy for Selecting an Optimal Propulsion System of a Liquefied Hydrogen Tanker
Jan 2017
Publication
This study proposed a strategy for selecting an optimal propulsion system of a liquefied hydrogen tanker. Four propulsion system options were conceivable depending on whether the hydrogen BOG (boil-off gas) from the cryogenic cargo tanks was used for fuel or not. These options were evaluated in terms of their economic technological and environmental feasibilities. The comparison scope included not only main machinery but also the BOG handling system with electric generators. Cost-benefit analysis life-cycle costing including carbon tax and an energy efficiency design index were used as measures to compare the four alternative systems. The analytic hierarchy process made scientific decision-making possible. This methodology provided the priority of each attribute through the use of pairwise comparison matrices. Consequently the propulsion system using LNG with hydrogen BOG recovery was determined to be the optimal alternative. This system was appropriate for the tanker that achieved the highest evaluation score.
Electricity-based Plastics and their Potential Demand for Electricity and Carbon Dioxide
Apr 2020
Publication
In a future fossil-free circular economy the petroleum-based plastics industry must be converted to non-fossil feedstock. A known alternative is bio-based plastics but a relatively unexplored option is deriving the key plastic building blocks hydrogen and carbon from electricity through electrolytic processes combined with carbon capture and utilization technology. In this paper the future demand for electricity and carbon dioxide is calculated under the assumption that all plastic production is electricity-based in the EU by 2050. The two most important input chemicals are ethylene and propylene and the key finding of this paper is that the electricity demand to produce these are estimated to 20 MWh/ton ethylene and 38 MWh/ton propylene and that they both could require about 3 tons of carbon dioxide/ton product. With constant production levels this implies an annual demand of about 800 TWh of electricity and 90 Mton of carbon dioxide by 2050 in the EU. If scaled to the total production of plastics including all input hydrocarbons in the EU the annual demand is estimated to 1600 TWh of electricity and 180 Mton of carbon dioxide. This suggests that a complete shift to electricity-based plastics is possible from a resource and technology point of view but production costs may be 2 to 3 times higher than today. However the long time frame of this paper creates uncertainties regarding the results and how technical economic and social development may influence them. The conclusion of this paper is that electricity-based plastics integrated with bio-based production can be an important option in 2050 since biomass resources are scarce but electricity from renewable sources is abundant.
Acorn: Developing Full-chain Industrial Carbon Capture and Storage in a Resource- and Infrastructure-rich Hydrocarbon Province
Jun 2019
Publication
Juan Alcalde,
Niklas Heinemann,
Leslie Mabon,
Richard H. Worden,
Heleen de Coninck,
Hazel Robertson,
Marko Maver,
Saeed Ghanbari,
Floris Swennenhuis,
Indira Mann,
Tiana Walker,
Sam Gomersal,
Clare E. Bond,
Michael J. Allen,
Stuart Haszeldine,
Alan James,
Eric J. Mackay,
Peter A. Brownsort,
Daniel R. Faulkner and
Steve Murphy
Research to date has identified cost and lack of support from stakeholders as two key barriers to the development of a carbon dioxide capture and storage (CCS) industry that is capable of effectively mitigating climate change. This paper responds to these challenges through systematic evaluation of the research and development process for the Acorn CCS project a project designed to develop a scalable full-chain CCS project on the north-east coast of the UK. Through assessment of Acorn's publicly-available outputs we identify strategies which may help to enhance the viability of early-stage CCS projects. Initial capital costs can be minimised by infrastructure re-use particularly pipelines and by re-use of data describing the subsurface acquired during oil and gas exploration activity. Also development of the project in separate stages of activity (e.g. different phases of infrastructure re-use and investment into new infrastructure) enables cost reduction for future build-out phases. Additionally engagement of regional-level policy makers may help to build stakeholder support by situating CCS within regional decarbonisation narratives. We argue that these insights may be translated to general objectives for any CCS project sharing similar characteristics such as legacy infrastructure industrial clusters and an involved stakeholder-base that is engaged with the fossil fuel industry.
Adopting Hydrogen Direct Reduction for the Swedish Steel Industry: A Technological Innovation System (TIS) Study
Sep 2019
Publication
The Swedish steel industry stands before a potential transition to drastically lower its CO2 emissions using direct hydrogen reduction instead of continuing with coke-based blast furnaces. Previous studies have identified hydrogen direct reduction as a promising option. We build upon earlier efforts by performing a technological innovation system study to systematically examine the barriers to a transition to hydrogen direct reduction and by providing deepened quantitative empirics to support the analysis. We also add extended paper and patent analysis methodology which is particularly useful for identifying actors and their interactions in a technological system. We conclude that while the innovation system is currently focused on such a transition notable barriers remain particularly in coordination of the surrounding technical infrastructure and the issue of maintaining legitimacy for such a transition in the likely event that policies to address cost pressures will be required to support this development.
Energy Saving Technologies and Mass-thermal Network Optimization for Decarbonized Iron and Steel Industry: A Review
Jul 2020
Publication
The iron and steel industry relies significantly on primary energy and is one of the largest energy consumers in the manufacturing sector. Simultaneously numerous waste heat is lost and discharged directly into the environment in the process of steel production. Thus considering conservation of energy energy-efficient improvement should be a holistic target for iron and steel industry. The research gap is that almost all the review studies focus on the primary energy saving measures in iron and steel industry whereas few work summarize the secondary energy saving technologies together with former methods. The objective of this paper is to develop the concept of mass-thermal network optimization in iron and steel industry which unrolls a comprehensive map to consider current energy conservation technologies and low grade heat recovery technologies from an overall situation. By presenting an overarching energy consumption in the iron and steel industry energy saving potentials are presented to identify suitable technologies by using mass-thermal network optimization. Case studies and demonstration projects around the world are also summarized. The general guideline is figured out for the energy optimization in iron and steel industry while the improved mathematical models are regarded as the future challenge.
Expectations, Attitudes, and Preferences Regarding Support and Purchase of Eco-friendly Fuel Vehicles
Apr 2019
Publication
This study analyses public expectations attitudes and preferences to support and purchase eco-friendly fuel vehicles. The study used a telephone survey of a sample of residents in Greater Stavanger Norway. Two cluster analyses were conducted to group the individuals based on expectations and attitudes toward eco-friendly fuel vehicles. In addition two multivariate analyses were performed to explore the determinants of support and willingness to purchase eco-friendly fuel vehicles. The study found three components of expectation to support eco-friendly fuel vehicles namely cost comfort and safety. The analysis further found four components to explain attitudes to support eco-friendly fuel vehicles: personal norm pro-technology awareness of priority and environmental degradation. Multivariate analyses confirmed that age gender and the number of cars in the household are likely to influence public preferences to support and purchase eco-friendly fuel vehicles. The results reveal that individuals tend to support the eco-friendly vehicles when the technologies meet their expectations towards cost and safety but the cost expectation is the significant factor that results in the decision to purchase the eco-friendly vehicles. The study also found that the pro-technology attitude has influenced the propensity to support and purchase the eco-friendly fuel vehicles.
Effects of Quantum Confinement of Hydrogen in Nanocavities – Experimental INS Results and New Insights
Jun 2020
Publication
Current developments of non-relativistic quantum mechanics appear to predict and reveal counter-intuitive dynamical effects of hydrogen in nanostructured materials that are of considerable importance for basic research as well as for technological applications. In this review the experimental focus is on H2O and H molecules in carbon nanotubes and other nanocavities that have been experimentally investigated using the well-established technique of incoherent inelastic neutron scattering (INS). For instance the momentum and energy transfers as obtained from the commonly used standard data analysis techniques from a
(I) H2 molecule in a C-nanotube resulting in a roto-translational motion along the nanotube axis seems to (1) either violate the standard conservation laws or (2) to attribute to the H molecule undergoing translation the effective mass a.m.u. (atomic mass units) instead of the expected 2 a.m.u. A similar striking anomalous effect has been found in the neutron-H scattering from the
(II) H2O molecules in nano-channels of some solid materials in which O-H stretching vibrations along the channel axis are created.
The results of this scattering process seem to once again either violate the standard conservation laws or to attribute to the effective mass of the struck H2 molecule as a.m.u. instead of the expected value of 1 a.m.u. We show that these counterintuitive observations from the INS studies have no conventional interpretation within the standard non-relativistic scattering theory. However they can be qualitatively interpreted “from first principles” within the framework of modern theories of
(III) time-symmetric quantum dynamics as provided by the weak values (WV) and two-state- vector formalism (TSVF)
and/or
(IV) quantum correlations especially quantum discord (QD) and quantum thermodynamics (QTD).
The theoretical analysis provides an intuitive understanding of the experimental results gives strong evidence that the nano-structured cavities do represent quantum systems which participate significantly in the dynamics of the neutron-H scattering and surprisingly shows that new physical information can be derived from the experimental data. This latter point may also have far-reaching consequences for technology and material sciences (e.g. fuel cells H storage materials etc.). Moreover novel insights into the short-lived quantum dynamics and/or quantum information theory can be gained.
(I) H2 molecule in a C-nanotube resulting in a roto-translational motion along the nanotube axis seems to (1) either violate the standard conservation laws or (2) to attribute to the H molecule undergoing translation the effective mass a.m.u. (atomic mass units) instead of the expected 2 a.m.u. A similar striking anomalous effect has been found in the neutron-H scattering from the
(II) H2O molecules in nano-channels of some solid materials in which O-H stretching vibrations along the channel axis are created.
The results of this scattering process seem to once again either violate the standard conservation laws or to attribute to the effective mass of the struck H2 molecule as a.m.u. instead of the expected value of 1 a.m.u. We show that these counterintuitive observations from the INS studies have no conventional interpretation within the standard non-relativistic scattering theory. However they can be qualitatively interpreted “from first principles” within the framework of modern theories of
(III) time-symmetric quantum dynamics as provided by the weak values (WV) and two-state- vector formalism (TSVF)
and/or
(IV) quantum correlations especially quantum discord (QD) and quantum thermodynamics (QTD).
The theoretical analysis provides an intuitive understanding of the experimental results gives strong evidence that the nano-structured cavities do represent quantum systems which participate significantly in the dynamics of the neutron-H scattering and surprisingly shows that new physical information can be derived from the experimental data. This latter point may also have far-reaching consequences for technology and material sciences (e.g. fuel cells H storage materials etc.). Moreover novel insights into the short-lived quantum dynamics and/or quantum information theory can be gained.
Integrated Electricity, Hydrogen and Methane System Modelling Framework: Application to the Dutch Infrastructure Outlook 2050
Mar 2021
Publication
The future energy system is widely expected to show increasing levels of integration across differing energy carriers. Electricity hydrogen methane and heat systems may become increasingly interdependent due to coupling through conversion and hybrid energy technologies. Market parties network operators policy makers and regulators require tools to capture implications of possible techno-economic and institutional developments in one system for the operation of others. In this article we provide an integrated electricity hydrogen and methane systems modelling framework focusing on interdependencies between them. The proposed integrated electricity and (renewable) gas system model is a market equilibrium model with hourly price and volume interactions considering ramp rates of conventional units variability of intermittent renewables conversion transport as well as storage of electricity hydrogen and methane. The integrated model is formulated as a linear program under the assumption of perfect competition. As proof-of-concept the model has been applied to a test case consisting of 34 electricity nodes 19 hydrogen nodes and 22 methane nodes reflecting the regional governance scenario in the Dutch Infrastructure Outlook 2050 study. The case study also includes different sensitivity analyses with regard to variable renewable capacity energy demand and biomass prices to illustrate model response to perturbations of its main drivers. This article demonstrates that the interweaving of electricity hydrogen and methane systems can provide the required flexibility in the future energy system.
The Renewable Energy Transition in Africa: Powering Access, Resilience and Prosperity
Mar 2021
Publication
A renewables-based energy transition promises to deliver vast socio-economic benefits to countries across Africa improving energy access creating jobs and boosting energy security. To realise these benefits African countries have an opportunity to leapfrog fossil fuel technologies to a more sustainable climate-friendly power strategy aligned with the Paris Agreement and low-carbon growth.<br/><br/>The Renewable Energy Transition in Africa jointly prepared by Germany's KfW Development Bank Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ) and the International Renewable Energy Agency (IRENA) on behalf of the German Federal Ministry for Economic Cooperation and Development (BMZ) explores how African countries can achieve universal energy access within the 2030 Agenda timeframe and identifies four areas of action:<br/><br/>Promote access to energy;<br/>De-risk and promoting private sector investments;<br/>Strengthen and modernise the grid;<br/>Support systemic innovation.<br/>The study also explores the transformational potential of the electricity sector in five Africa countries: Ghana Ivory Coast Morocco Rwanda and South Africa. Specifically developed by IRENA country case studies show the real-life applicability of power sector transformation and demonstrates how countries can:<br/><br/>Take advantage of the abundancy and competitiveness of renewables;<br/>Align ambitious renewable targets in energy and climate plans;<br/>Continue supporting the development of regional markets;<br/>Leverage renewables and distributed energy resources to achieve universal energy access;<br/>Develop tailored power sector transformation plans based on a systemic innovation approach;<br/>Build on policy frameworks for just and inclusive transitions.
Cost Optimization of a Stand-Alone Hybrid Energy System with Fuel Cell and PV
Mar 2020
Publication
Renewable energy has become very popular in recent years. The amount of renewable generation has increased in both grid-connected and stand-alone systems. This is because it can provide clean energy in a cost-effective and environmentally friendly fashion. Among all varieties photovoltaic (PV) is the ultimate rising star. Integration of other technologies with solar is enhancing the efficiency and reliability of the system. In this paper a fuel cell–solar photovoltaic (FC-PV)-based hybrid energy system has been proposed to meet the electrical load demand of a small community center in India. The system is developed with PV panels fuel cell an electrolyzer and hydrogen storage tank. Detailed mathematical modeling of this system as well as its operation algorithm have been presented. Furthermore cost optimization has been performed to determine ratings of PV and Hydrogen system components. The objective is to minimize the levelized cost of electricity (LCOE) of this standalone system. This optimization is performed in HOMER software as well as another tool using an artificial bee colony (ABC). The results obtained by both methods have been compared in terms of cost effectiveness. It is evident from the results that for a 68 MWh/yr of electricity demand is met by the 129 kW Solar PV 15 kW Fuel cell along with a 34 kW electrolyzer and a 20 kg hydrogen tank with a LPSP of 0.053%. The LCOE is found to be in 0.228 $/kWh. Results also show that use of more sophisticated algorithms such as ABC yields more optimized solutions than package programs such as HOMER. Finally operational details for FC-PV hybrid system using IEC 61850 inter-operable communication is presented. IEC 61850 information models for FC electrolyzer hydrogen tank were developed and relevent IEC 61850 message exchanges for energy management in FC-PV hybrid system are demonstrated.
Market Segmentation of Domestic and Commercial Natural Gas Appliances
Jan 2021
Publication
The main goal of the project is to enable the wide adoption of H2NG (hydrogen in natural gas) blends by closing knowledge gaps regarding technical impacts on residential and commercial gas appliances. The project consortium will identify and recommend appropriate codes and standards that should be adapted to answer the needs and develop a strategy for addressing the challenges for new and existing appliances.<br/>This deliverable on market segmentation is part of work package 2 and provides a quantitative segmentation of the gas appliance market in terms of appliance population numbers. It therefore prepares the project partners to perform the subsequent selection of the most representative product types to be tested in the laboratories of the THyGA partners.<br/>The classification is developed to categorise appliances installed in the field based on available statistics calculation methods and estimations. As a result appliance populations are provided for each technology segment that draw a representative picture of the installed end-use appliances within the European Union in 2020.
Hydrogen for Heating? Decarbonization Options for Households in the European Union in 2050
Mar 2021
Publication
This study compares the cost of several low-greenhouse gas (GHG) or GHG-neutral residential heating technologies in the year 2050: (1) hydrogen boilers (2) hydrogen fuel cells with an auxiliary hydrogen boiler for cold spells (3) air-source heat pumps using renewable electricity and (4) heat pumps with an auxiliary hydrogen boiler for cold spells. The assessment includes low-carbon hydrogen from steam-methane reforming (SMR) using natural gas combined with carbon capture and storage (CCS) or SMR + CCS and zero-carbon hydrogen produced from renewable electricity using electrolysis.
The analysis finds that air-source heat pumps are the most cost-effective residential heating technology in 2050 and are at least 50% lower cost than the hydrogen-only technologies. In a sensitivity analysis we find that even if natural gas costs were 50% lower or renewable electricity prices were 50% higher in 2050 compared to our central assumptions heat pumps would still be more cost-effective than hydrogen boilers or fuel cells. Renewable electrolysis hydrogen can be cost-competitive with SMR + CCS hydrogen in 2050 although electrolysis hydrogen is not produced at scale today. At the same time energy efficiency measures to reduce heat demand would be a more cost-effective strategy for achieving GHG reductions than any of the low-GHG heating pathways we assess in this study.
The analysis shows that all pathways using renewable electricity have a near-zero GHG intensity while SMR + CCS hydrogen could reduce GHG emissions by 69%–93% compared to natural gas if improvements are made in the future to reduce the GHG intensity of this pathway. Quantifying the GHG impact and cost effectiveness of various heating pathways is relevant for European policymakers facing decisions on how to both decarbonize buildings and alleviate energy poverty in line with commitments made in the Renovation Wave Initiative.
The document can be downloaded from the ICCT website
The analysis finds that air-source heat pumps are the most cost-effective residential heating technology in 2050 and are at least 50% lower cost than the hydrogen-only technologies. In a sensitivity analysis we find that even if natural gas costs were 50% lower or renewable electricity prices were 50% higher in 2050 compared to our central assumptions heat pumps would still be more cost-effective than hydrogen boilers or fuel cells. Renewable electrolysis hydrogen can be cost-competitive with SMR + CCS hydrogen in 2050 although electrolysis hydrogen is not produced at scale today. At the same time energy efficiency measures to reduce heat demand would be a more cost-effective strategy for achieving GHG reductions than any of the low-GHG heating pathways we assess in this study.
The analysis shows that all pathways using renewable electricity have a near-zero GHG intensity while SMR + CCS hydrogen could reduce GHG emissions by 69%–93% compared to natural gas if improvements are made in the future to reduce the GHG intensity of this pathway. Quantifying the GHG impact and cost effectiveness of various heating pathways is relevant for European policymakers facing decisions on how to both decarbonize buildings and alleviate energy poverty in line with commitments made in the Renovation Wave Initiative.
The document can be downloaded from the ICCT website
What is Needed to Deliver Carbon-neutral Heat Using Hydrogen and CCS?
Sep 2020
Publication
In comparison with the power sector large scale decarbonisation of heat has received relatively little attention at the infrastructural scale despite its importance in the global CO2 emissions landscape. In this study we focus on the regional transition of a heating sector from natural gas-based infrastructure to H2 using mathematical optimisation. A discrete spatio-temporal description of the geographical region of Great Britain was used in addition to a detailed description of all network elements for illustrating the key factors in the design of nation-wide H2 and CO2 infrastructure. We have found that the synergistic deployment of H2 production technologies such as autothermal reforming of methane and biomass gasification with CO2 abatement technologies such as carbon capture and storage (CCS) are critical in achieving cost-effective decarbonisation. We show that both large scale underground H2 storage and water electrolysis provide resilience and flexibility to the heating system competing on cost and deployment rates. The optimal regions for siting H2 production infrastructure are characterised by proximity to: (1) underground H2 storage (2) high demands for H2 (3) geological storage for CO2. Furthermore cost-effective transitions based on a methane reforming pathway may necessitate regional expansions in the supply of natural gas with profound implications for security of supply in nations that are already highly reliant potentially creating an infrastructure lock-in during the near term. We found that the total system cost comprising both investment and operational elements is mostly influenced by the natural gas price followed by biomass price and CapEx of underground caverns. Under a hybrid Regulated Asset Base (RAB) commercial framework with private enterprises delivering production infrastructure the total cost of heat supply over the infrastructure lifetime is estimated as 5.2–8.6 pence per kW h. Due to the higher cost relative to natural gas a Contract for Difference payment between d20 per MW h and d53 per MW h will be necessary for H2-derived heat to be competitive in the market.
The Decarbonisation of Heat
Mar 2020
Publication
This paper proposes that whilst the exact pathway to decarbonising heat in the UK is not yet clear there are a range of actions that could be taken in the next ten years to shift heat onto the right route to meet our 2050 net zero obligation. We already possess many of the skills and technologies required but there are a number of significant barriers preventing a spontaneous movement towards low carbon heat on the scale required – a starting impulse is needed.<br/><br/>Energy efficiency and low carbon heating have the potential to radically improve the quality of life of not just the poorest in our society but all residents of the United Kingdom. With the right approach the decarbonisation of heat can improve health outcomes for millions create new jobs in manufacturing and construction reduce air pollution in our cities and reduce the burden on our health service. This in addition to leading the world in mitigating the climate emergency.
Mapping of Hydrogen Fuel Quality in Europe
Nov 2020
Publication
As part of FCH-JU funded HyCoRA project running from 2014 to 2017 28 gaseous and 13 particulate samples were collected from hydrogen refuelling stations in Europe. Samples were collected with commercial sampling instruments and analysis performed in compliance with prevailing fuel quality standards. Sampling was conducted with focus on diversity in feedstock as well as commissioning date of the HRS. Results indicate that the strategy for sampling was good. No evidence of impurity cross-over was observed. Parallel samples collected indicate some variation in analytical results. It was however found that fuel quality was generally good. Fourteen analytical results were in violation with the fuel tolerance limits. Therefore eight or 29% of the samples were in violation with the fuel quality requirements. Nitrogen oxygen and organics were the predominant impurities quantified. Particulate impurities were found to be within fuel quality specifications. No correlation between fuel quality and hydrogen feedstock or HRS commissioning date was found. Nitrogen to oxygen ratios gave no indication of samples being contaminated by air. A comparison of analytical results between two different laboratories were conducted. Some difference in analytical results were observed.
Hydrogen for Cooking: A Review of Cooking Technologies, Renewable Hydrogen Systems and Techno-Economics
Dec 2022
Publication
About 3 billion people use conventional carbon-based fuels such as wood charcoal and animal dung for their daily cooking needs. Cooking with biomass causes deforestation and habitat loss emissions of greenhouse gases and smoke pollution that affects people’s health and well-being. Hydrogen can play a role in enabling clean and safe cooking by reducing household air pollution and reducing greenhouse gas emissions. This first-of-a-kind review study on cooking with hydrogen assessed existing cooking technologies and hydrogen systems in developing country contexts. Our critical assessment also included the modelling and experimental studies on hydrogen. Renewable hydrogen systems and their adoptability in developing countries were analysed. Finally we presented a scenario for hydrogen production pathways in developing countries. Our findings indicated that hydrogen is attractive and can be safely used as a cooking fuel. However radical and disruptive models are necessary to transform the traditional cooking landscape. There is a need to develop global south-based hydrogen models that emphasize adoptability and capture the challenges in developing countries. In addition the techno-economic assumptions of the models vary significantly leading to a wide-ranging levelized cost of electricity. This finding underscored the necessity to use comprehensive techno-economic assumptions that can accurately predict hydrogen costs.
Hydrogen Energy Systems: A Critical Review of Technologies, Applications, Trends and Challenges
May 2021
Publication
The global energy transition towards a carbon neutral society requires a profound transformation of electricity generation and consumption as well as of electric power systems. Hydrogen has an important potential to accelerate the process of scaling up clean and renewable energy however its integration in power systems remains little studied. This paper reviews the current progress and outlook of hydrogen technologies and their application in power systems for hydrogen production re-electrification and storage. The characteristics of electrolysers and fuel cells are demonstrated with experimental data and the deployments of hydrogen for energy storage power-to-gas co- and tri-generation and transportation are investigated using examples from worldwide projects. The current techno-economic status of these technologies and applications is presented in which cost efficiency and durability are identified as the main critical aspects. This is also confirmed by the results of a statistical analysis of the literature. Finally conclusions show that continuous efforts on performance improvements scale ramp-up technical prospects and political support are required to enable a cost-competitive hydrogen economy.
Gaseous Fueling of an Adapted Commercial Automotive Spark-ignition Engine: Simplified Thermodynamic Modeling and Experimental Study Running on Hydrogen, Methane, Carbon Monoxide and their Mixtures
Dec 2022
Publication
In the present work methane carbon monoxide hydrogen and the binary mixtures 20 % CH4–80 % H2 80 % CH4–20 % H2 25 % CO–75 % H2 (by volume) were considered as fuels of a naturally aspirated port-fuel injection four-cylinder Volkswagen 1.4 L spark-ignition (SI) engine. The interest in these fuels lies in the fact that they can be obtained from renewable resources such as the fermentation or gasification of residual biomasses as well as the electrolysis of water with electricity of renewable origin in the case of hydrogen. In addition they can be used upon relatively easy modifications of the engines including the retrofitting of existing internal combustion engines. It has been found that the engine gives similar performance regardless the gaseous fuel nature if the air–fuel equivalence ratio (λ) is the same. Maximum brake torque and mean effective pressure values within 45–89 N⋅m and 4.0–8.0 bar respectively have been obtained at values of λ between 1 and 2 at full load engine speed of 2000 rpm and optimum spark-advance. In contrast the nature of the gaseous fuel had great influence upon the range of λ values at which a fuel (either pure or blend) could be used. Methane and methane-rich mixtures with hydrogen or carbon monoxide allowed operating the engine at close to stoichiometric conditions (i.e. 1 < λ < 1.5) yielding the highest brake torque and mean effective pressure values. On the contrary hydrogen and hydrogen-rich mixtures with methane or carbon monoxide could be employed only in the very fuel-lean region (i.e. 1.5 < λ < 2). The behavior of carbon monoxide was intermediate between that of methane and hydrogen. The present study extends and complements previous works in which the aforementioned fuels were compared only under stoichiometric conditions in air (λ = 1). In addition a simple zero-dimensional thermodynamic combustion model has been developed that allows describing qualitatively the trends set by the several fuels. Although the model is useful to understand the influence of the fuels properties on the engine performance its predictive capability is limited by the simplifications made.
Optimal Synergy between Photovoltaic Panels and Hydrogen Fuel Cells for Green Power Supply of a Green Building—A Case Study
Jun 2021
Publication
Alternative energy resources have a significant function in the performance and decarbonization of power engendering schemes in the building application domain. Additionally “green buildings” play a special role in reducing energy consumption and minimizing CO2 emissions in the building sector. This research article analyzes the performance of alternative primary energy sources (sun and hydrogen) integrated into a hybrid photovoltaic panel/fuel cell system and their optimal synergy to provide green energy for a green building. The study addresses the future hydrogen-based economy which involves the supply of hydrogen as the fuel needed to provide fuel cell energy through a power distribution infrastructure. The objective of this research is to use fuel cells in this field and to investigate their use as a green building energy supply through a hybrid electricity generation system which also uses photovoltaic panels to convert solar energy. The fuel cell hydrogen is supplied through a distribution network in which hydrogen production is outsourced and independent of the power generation system. The case study creates virtual operating conditions for this type of hybrid energy system and simulates its operation over a one-year period. The goal is to demonstrate the role and utility of fuel cells in virtual conditions by analyzing energy and economic performance indicators as well as carbon dioxide emissions. The case study analyzes the optimal synergy between photovoltaic panels and fuel cells for the power supply of a green building. In the simulation an optimally configured hybrid system supplies 100% of the energy to the green building while generating carbon dioxide emissions equal to 11.72% of the average value calculated for a conventional energy system providing similar energy to a standard residential building. Photovoltaic panels account for 32% of the required annual electricity production and the fuel cells generate 68% of the total annual energy output of the system.
Green Hydrogen Powering Sustainable Festivals: Public Perceptions of Generators, Production and Ownership
Nov 2022
Publication
This paper is the first to explore public perceptions about a particular market niche for hydrogen; mobile generators. By utilising a combined research approach including in-situ surveys and online focus groups this paper explores what festival audience members and residents who live near festival sites think about the displacement of incumbent diesel generator technology with hydrogen alternatives. We investigate if hydrogen production methods are important in informing perceptions and subsequent support including the extent to which participants are influenced by the organisation or entity that produces the fuel and stands to profit from its sale. In addition to a primary focus on hydrogen energy we reflect upon how sustainability might be better conceptualised in a festival context. Our findings reveal broad support for hydrogen generators the use of green hydrogen as a fuel to generate electricity and community-led hydrogen production.
Towards Ecological Alternatives in Bearing Lubrication
Jun 2021
Publication
Hydrogen is the cleanest fuel available because its combustion product is water. The internal combustion engine can in principle and without significant modifications run on hydrogen to produce mechanical energy. Regarding the technological solution leading to compact engines a question to ask is the following: Can combustion engine systems be lubricated with hydrogen? In general since many applications such as in turbomachines is it possible to use the surrounding gas as a lubricant? In this paper journal bearings global parameters are calculated and compared for steady state and dynamic conditions for different gas constituents such as air pentafluoropropane helium and hydrogen. Such a bearing may be promising as an ecological alternative to liquid lubrication.
Acoustic and Psychoacoustic Levels from an Internal Combustion Engine Fueled by Hydrogen vs. Gasoline
Feb 2022
Publication
Whereas noise generated by road traffic is an important factor in urban pollution little attention has been paid to this issue in the field of hydrogen-fueled vehicles. The objective of this study is to analyze the influence of the type of fuel (gasoline or hydrogen) on the sound levels produced by a vehicle with an internal combustion engine. A Volkswagen Polo 1.4 vehicle adapted for its bi-fuel hydrogen-gasoline operation has been used. Tests were carried out with the vehicle when stationary to eliminate rolling and aerodynamic noise. Acoustics and psychoacoustics levels were measured both inside and outside the vehicle. A slight increase in the noise level has only been found outside when using hydrogen as fuel compared to gasoline. The increase is statistically significant can be quantified between 1.1 and 1.7 dBA and is mainly due to an intensification of the 500 Hz band. Loudness is also higher outside the vehicle (between 2 and 4 sones) when the fuel is hydrogen. Differences in sharpness and roughness values are lower than the just-noticeable difference (JND) values of the parameters. Higher noise levels produced by hydrogen can be attributed to its higher reactivity compared to gasoline.
Hydrogen Mobility Europe (H2ME): Vehicle and Hydrogen Refuelling Station Deployment Results
May 2018
Publication
Hydrogen Mobility Europe (H2ME 2015–2022) is the largest European Fuel Cells and Hydrogen Joint Undertaking (EU FCH JU)-funded hydrogen light vehicle and infrastructure demonstration. Up until April 2017 the 40 Daimler passenger car fuel cell electric vehicles (FCEVs) and 62 Symbio Fuel Cell-Range Extended Electric Vans (FC-REEV)-vans deployed by the project drove 625300 km and consumed a total of 7900 kg of hydrogen with no safety incidents. During its first year of operation (to April 2017) the NEL Hydrogen Fueling HRS (hydrogen refuelling station) in Kolding Denmark dispensed 900 kg of hydrogen and demonstrated excellent reliability (98.2% availability) with no safety incidents. The average hydrogen refuelling time for passenger cars is comparable to that for conventional vehicles (2–3 min).
Prediction of Hydrogen-Heavy Fuel Combustion Process with Water Addition in an Adapted Low Speed Two Stroke Diesel Engine: Performance Improvement
Jun 2021
Publication
Despite their high thermal efficiency (>50%) large two-stroke (2 T) diesel engines burning very cheap heavy fuel oil (HFO) produce a high level of carbon dioxide (CO2). To achieve the low emission levels of greenhouse gases (GHG) that will be imposed by future legislation the use of hydrogen (H2) as fuel in 2 T diesel engines is a viable option for reducing or almost eliminate CO2 emissions. In this work from experimental data and system modelling an analysis of dual combustion is carried out considering different strategies to supply H2 to the engine and for different H2 fractions in energy basis. Previously a complete thermodynamic model of a 2 T diesel engine with an innovative scavenging model is developed and validated. The most important drawbacks of this type of engines are controlled in this work using dual combustion and water injection reducing nitrogen oxides emissions (NOx) self-ignition and combustion knocking. The results show that the developed model matches engine performance data in diesel mode achieving a higher efficiency and mean effective pressure (MEP) in hydrogen mode of 53% and 14.62 bar respectively.
Achieving Carbon-neutral Iron and Steelmaking in Europe Through the Deployment of Bioenergy with Carbon Capture and Storage
Jan 2019
Publication
The 30 integrated steel plants operating in the European Union (EU) are among the largest single-point CO2 emitters in the region. The deployment of bioenergy with carbon capture and storage (bio-CCS) could significantly reduce their emission intensities. In detail the results demonstrate that CO2 emission reduction targets of up to 20% can be met entirely by biomass deployment. A slow CCS technology introduction on top of biomass deployment is expected as the requirement for emission reduction increases further. Bio-CCS could then be a key technology particularly in terms of meeting targets above 50% with CO2 avoidance costs ranging between €60 and €100 tCO2−1 at full-scale deployment. The future of bio-CCS and its utilisation on a larger scale would therefore only be viable if such CO2 avoidance cost were to become economically appealing. Small and medium plants in particular would economically benefit from sharing CO2 pipeline networks. CO2 transport however makes a relatively small contribution to the total CO2 avoidance cost. In the future the role of bio-CCS in the European iron and steelmaking industry will also be influenced by non-economic conditions such as regulations public acceptance realistic CO2 storage capacity and the progress of other mitigation technologies.
Hydrogen Power Focus Shifts from Cars to Heavy Vehicles
Oct 2020
Publication
Hydrogen has been hailed as a promising energy carrier for decades. But compared to the thriving success of hybrid and plug-in electric cars the prospects for cars powered by hydrogen fuel cells have recently diminished mostly due to challenges in bringing down the costs of fuel cells and developing a broad network of fuelling stations.<br/>Beginning in March 2020 three major auto manufacturers—Daimler AG] Volkswagen and General Motors (GM)]—followed the April 2019 move by Honda to back out of the hydrogen-powered passenger car market. Instead these companies and others are looking to develop the technology as an emission-free solution to power heavy commercial and military vehicles with refuelling taking place at centralized locations.
Renewable Hydrogen for the Chemical Industry
Aug 2020
Publication
Hydrogen is often touted as the fuel of the future but hydrogen is already an important feedstock for the chemical industry. This review highlights current means for hydrogen production and use and the importance of progressing R&D along key technologies and policies to drive a cost reduction in renewable hydrogen production and enable the transition of chemical manufacturing toward green hydrogen as a feedstock and fuel. The chemical industry is at the core of what is considered a modern economy. It provides commodities and important materials e.g. fertilizers synthetic textiles and drug precursors supporting economies and more broadly our needs. The chemical sector is to become the major driver for oil production by 2030 as it entirely relies on sufficient oil supply. In this respect renewable hydrogen has an important role to play beyond its use in the transport sector. Hydrogen not only has three times the energy density of natural gas and using hydrogen as a fuel could help decarbonize the entire chemical manufacturing but also the use of green hydrogen as an essential reactant at the basis of many chemical products could facilitate the convergence toward virtuous circles. Enabling the production of green hydrogen at cost could not only enable new opportunities but also strengthen economies through a localized production and use of hydrogen. Herein existing technologies for the production of renewable hydrogen including biomass and water electrolysis and methods for the effective storage of hydrogen are reviewed with an emphasis on the need for mitigation strategies to enable such a transition.
Advanced Sizing Methodology for a Multi-Mode eVTOL UAV Powered by a Hydrogen Fuel Cell and Battery
Jan 2022
Publication
A critical drawback of battery-powered eVTOL UAVs is their limited range and endurance and this drawback could be solved by using a combination of hydrogen fuel cells and batteries. The objective of this paper is to develop a sizing methodology for the lift+cruise-type eVTOL UAV powered by a hydrogen fuel cell and battery. This paper presents the constraints analysis method for forward flight/VTOL multi-mode UAV the regression model for electric propulsion system sizing a sizing method for an electric propulsion system and hydrogen fuel cell system and a transition analysis method. The total mass of the UAV is iteratively calculated until convergence and the optimization method is used to ensure that the sizing results satisfy the design requirements. The sizing results are the UAV’s geometry mass and power data. To verify the accuracy of the proposed sizing methodology the sizing and the conceptual design phase results of a 25 kg hydrogen fuel-cell-powered UAV are compared. All parameters had an error within 10% and satisfied the design requirements.
Green Hydrogen: A Guide to Policy Making
Nov 2020
Publication
Hydrogen produced with renewable energy sources – or “green” hydrogen – has emerged as a key element to achieve net-zero emissions from heavy industry and transport. Along with net-zero commitments by growing numbers of governments green hydrogen has started gaining momentum based on low-cost renewable electricity ongoing technological improvements and the benefits of greater power-system flexibility.
Hydrogen-based fuels previously attracted interest mainly as an alternative to shore up oil supply. However green hydrogen as opposed to the “grey” (fossil-based) or “blue” (hybrid) varieties also help to boost renewables in the energy mix and decarbonise energy-intensive industries.
This report from the International Renewable Energy Agency (IRENA) outlines the main barriers that inhibiting green hydrogen uptake and the policies needed to address these. It also offers insights on how to kickstart the green hydrogen sector as a key enabler of the energy transition at the national or regional level.
Key pillars of green hydrogen policy making include:
Hydrogen-based fuels previously attracted interest mainly as an alternative to shore up oil supply. However green hydrogen as opposed to the “grey” (fossil-based) or “blue” (hybrid) varieties also help to boost renewables in the energy mix and decarbonise energy-intensive industries.
This report from the International Renewable Energy Agency (IRENA) outlines the main barriers that inhibiting green hydrogen uptake and the policies needed to address these. It also offers insights on how to kickstart the green hydrogen sector as a key enabler of the energy transition at the national or regional level.
Key pillars of green hydrogen policy making include:
- National hydrogen strategy. Each country needs to define its level of ambition for hydrogen outline the amount of support required and provide a reference on hydrogen development for private investment and finance.
- Setting policy priorities. Green hydrogen can support a wide range of end-uses. Policy makers should identify and focus on applications that provide the highest value.
- Guarantees of origin. Carbon emissions should be reflected over the whole lifecycle of hydrogen. Origin schemes need to include clear labels for hydrogen and hydrogen products to increase consumer awareness and facilitate claims of incentives.
- Governance system and enabling policies. As green hydrogen becomes mainstream policies should cover its integration into the broader energy system. Civil society and industry must be involved to maximise the benefits.
- Subsequent briefs will explore the entire hydrogen value chain providing sector-by-sector guidance on the design and implementation of green hydrogen policies.
Electrification Opportunities in the Medium- and Heavy-Duty Vehicle Segment in Canada
Jun 2021
Publication
The medium- and heavy-duty (MD/HD) vehicle sector is a large emitter of greenhouse gases. It will require drastic emissions reductions to realize a net-zero carbon future. This study conducts fourteen short feasibility investigations in the Canadian context to evaluate the merits of battery electric or hydrogen fuel cell alternatives to conventional city buses inter-city buses school buses courier vehicles (step vans) refuse trucks long-haul trucks and construction vehicles. These “clean transportation alternatives” were evaluated for practicality economics and emission reductions in comparison to their conventional counterparts. Conclusions were drawn on which use cases would be best suited for accelerating the transformation of the MD/HD sector.
The Fuel Cell Industry Review 2020
Jan 2020
Publication
The Fuel Cell Industry Review 2020 offers data analysis and commentary on key events in the industry in 2020. Now in its seventh year the Review has been compiled by a team led by E4tech - a specialist energy strategy consultancy with deep expertise in the hydrogen and fuel cell sector (see www.e4tech.com).
Despite the title of this publication we’ve said before that the fuel cell ‘industry’ is not a single industry at all. As those inside it know it is divided by different materials stages of maturity applications and regions – all contributors to the fact it has taken time to get going. But it does seem to be getting traction. Part of that is down to decades of hard work and investment in R&D technology improvement and demonstrations. Thankfully part of it is also down to changes in external conditions. Improving air quality is increasingly non-negotiable. Reducing greenhouse gas emissions likewise. And all while maintaining economic development and opportunity.
The growth spurt of the battery industry allied with some of the drivers above has catalysed thinking in where and how fuel cells can fit. Countries and regions which did not support batteries early on are scrambling to catch up and wish not to risk a repeat of their errors with fuel cells. So support is being targeted at industrial development and competitiveness as well as solving societal problems. Which in turn is helping industry to decide on and take investment steps: Weichai’s 20000 unit per annum PEM factory in China; Daimler and Volvo setting up their fuel cell truck JV; CHEM Energy building a factory for remote systems in S Africa."
Despite the title of this publication we’ve said before that the fuel cell ‘industry’ is not a single industry at all. As those inside it know it is divided by different materials stages of maturity applications and regions – all contributors to the fact it has taken time to get going. But it does seem to be getting traction. Part of that is down to decades of hard work and investment in R&D technology improvement and demonstrations. Thankfully part of it is also down to changes in external conditions. Improving air quality is increasingly non-negotiable. Reducing greenhouse gas emissions likewise. And all while maintaining economic development and opportunity.
The growth spurt of the battery industry allied with some of the drivers above has catalysed thinking in where and how fuel cells can fit. Countries and regions which did not support batteries early on are scrambling to catch up and wish not to risk a repeat of their errors with fuel cells. So support is being targeted at industrial development and competitiveness as well as solving societal problems. Which in turn is helping industry to decide on and take investment steps: Weichai’s 20000 unit per annum PEM factory in China; Daimler and Volvo setting up their fuel cell truck JV; CHEM Energy building a factory for remote systems in S Africa."
Macroeconomic Implications of Switching to process-emission-free Iron and Steel Production in Europe
Nov 2018
Publication
Climate change is one of the most serious threats to the human habitat. The required structural change to limit anthropogenic forcing is expected to fundamentally change daily social and economic life. The production of iron and steel is a special case of economic activities since it is not only associated with combustion but particularly with process emissions of greenhouse gases which have to be dealt with likewise. Traditional mitigation options of the sector like efficiency measures substitution with less emission-intensive materials or scrap-based production are bounded and thus insufficient for rapid decarbonization necessary for complying with long-term climate policy targets. Iron and steel products are basic materials at the core of modern socio-economic systems additionally being essential also for other mitigation options like hydro and wind power. Therefore a system-wide assessment of recent technological developments enabling almost complete decarbonization of the sector is substantially relevant. Deploying a recursive-dynamic multi-region multi-sector computable general equilibrium approach we investigate switches from coke-to hydrogen-based iron and steel technologies in a scenario framework where industry decisions (technological choice and timing) and climate policies are mis-aligned. Overall we find that the costs of industry transition are moderate but still ones that may represent a barrier for implementation because the generation deciding on low-carbon technologies and bearing (macro)economic costs might not be the generation benefitting from it. Our macroeconomic assessment further indicates that anticipated bottom-up estimates of required additional domestic renewable electricity tend to be overestimated. Relative price changes in the economy induce electricity substitution effects and trigger increased electricity imports. Sectoral carbon leakage is an imminent risk and calls for aligned course of action of private and public actors.
Green Hydrogen in Europe – A Regional Assessment: Substituting Existing Production with Electrolysis Powered by Renewables
Nov 2020
Publication
The increasing ambition of climate targets creates a major role for hydrogen especially in achieving carbon-neutrality in sectors presently difficult to decarbonise. This work examines to what extent the currently carbon-intensive hydrogen production in Europe could be replaced by water electrolysis using electricity from renewable energy resources (RES) such as solar photovoltaic onshore/offshore wind and hydropower (green hydrogen). The study assesses the technical potential of RES at regional and national levels considering environmental constraints land use limitations and various techno-economic parameters. It estimates localised clean hydrogen production and examines the capacity to replace carbon-intensive hydrogen hubs with ones that use RES-based water electrolysis. Findings reveal that -at national level- the available RES electricity potential exceeds the total electricity demand and the part for hydrogen production from electrolysis in all analysed countries. At regional level from the 109 regions associated with hydrogen production (EU27 and UK) 88 regions (81%) show an excess of potential RES generation after covering the annual electricity demand across all sectors and hydrogen production. Notably 84 regions have over 50% excess RES electricity potential after covering the total electricity demand and that for water electrolysis. The study provides evidence on the option to decarbonize hydrogen production at regional level. It shows that such transformation is possible and compatible with the ongoing transition towards carbon–neutral power systems in the EU. Overall this work aims to serve as a tool for designing hydrogen strategies in harmony with renewable energy policies.
Combined Cooling and Power Management Strategy for a Standalone House Using Hydrogen and Solar Energy
May 2021
Publication
Tropical climate is characterized by hot temperatures throughout the year. In areas subject to this climate air conditioning represents an important share of total energy consumption. In some tropical islands there is no electric grid; in these cases electricity is often provided by diesel generators. In this study in order to decarbonize electricity and cooling production and to improve autonomy in a standalone application a microgrid producing combined cooling and electrical power was proposed. The presented system was composed of photovoltaic panels a battery an electrolyzer a hydrogen tank a fuel cell power converters a heat pump electrical loads and an adsorption cooling system. Electricity production and storage were provided by photovoltaic panels and a hydrogen storage system respectively while cooling production and storage were achieved using a heat pump and an adsorption cooling system respectively. The standalone application presented was a single house located in Tahiti French Polynesia. In this paper the system as a whole is presented. Then the interaction between each element is described and a model of the system is presented. Thirdly the energy and power management required in order to meet electrical and thermal needs are presented. Then the results of the control strategy are presented. The results showed that the adsorption cooling system provided 53% of the cooling demand. The use of the adsorption cooling system reduced the needed photovoltaic panel area the use of the electrolyzer and the use of the fuel cell by more than 60% and reduced energy losses by 7% (compared to a classic heat pump) for air conditioning.
Synergistic Hybrid Marine Renewable Energy Harvest System
Mar 2024
Publication
This paper proposes a novel hybrid marine renewable energy-harvesting system to increase energy production reduce levelized costs of energy and promote renewable marine energy. Firstly various marine renewable energy resources and state-of-art technologies for energy exploitation and storage were reviewed. The site selection criteria for each energy-harvesting approach were identified and a scoring matrix for site selection was proposed to screen suitable locations for the hybrid system. The Triton Knoll wind farm was used to demonstrate the effectiveness of the scoring matrix. An integrated energy system was designed and FE modeling was performed to assess the effects of additional energy devices on the structural stability of the main wind turbine structure. It has been proven that the additional energy structures have a negligible influence on foundation/structure deflection.
A Review of Decarbonization Options for the Glass Industry
May 2021
Publication
The glass industry is part of the energy-intensive industry posing a major challenge to fulfill the CO2 reduction targets of the Paris Climate Agreement. The segments of the glass industry e.g. container or flat glass are quite diverse and attribute to different glass products with different requirements to product quality and various process options. To address the challenge of decarbonizing the glass industry firstly an inventory of current glass products processes and applied technologies in terms of energy efficiency and CO2 emissions is conducted. Secondly decarbonization options are identified and structured according to fuel substitution waste heat recovery and process intensification. Due to the high share of energy-related CO2 emissions electrical melting and hydrogen combustion or a combination of both are the most promising options to decarbonize the glass industry but further research design adjustments and process improvements are necessary. Furthermore electricity and hydrogen prices have to decrease or fossil fuels must become more expensive to be cost-competitive relative to fossil fuels and respective infrastructures have to be constructed or adjusted. Various heat recovery options have great potential for CO2 savings but can be technically challenging or have not yet been considered for techno-economic reasons.
The Role of Electrofuels under Uncertainties for the Belgian Energy Transition
Jul 2021
Publication
Wind and solar energies present a time and space disparity that generally leads to a mismatch between the demand and the supply. To harvest their maximum potentials one of the main challenges is the storage and transport of these energies. This challenge can be tackled by electrofuels such as hydrogen methane and methanol. They offer three main advantages: compatibility with existing distribution networks or technologies of conversion economical storage solution for high capacity and ability to couple sectors (i.e. electricity to transport to heat or to industry). However the level of contribution of electric-energy carriers is unknown. To assess their role in the future we used whole-energy system modelling (EnergyScope Typical Days) to study the case of Belgium in 2050. This model is multi-energy and multi-sector. It optimises the design of the overall system to minimise its costs and emissions. Such a model relies on many parameters (e.g. price of natural gas efficiency of heat pump) to represent as closely as possible the future energy system. However these parameters can be highly uncertain especially for long-term planning. Consequently this work uses the polynomial chaos expansion method to integrate a global sensitivity analysis in order to highlight the influence of the parameters on the total cost of the system. The outcome of this analysis points out that compared to the deterministic cost-optimum situation the system cost accounting for uncertainties becomes higher (+17%) and twice more uncertain at carbon neutrality and that electrofuels are a major contribution to the uncertainty (up to 53% in the variation of the costs) due to their importance in the energy system and their high uncertainties their higher price and uncertainty.
EUA- Bringing Hydrogen Alive
Apr 2021
Publication
The UK is on course to become a global leader in hydrogen technology. Over £3bn is ready to be invested into hydrogen today. The pace of activity is rapid and the opportunities are vast.
Join us at our free to attend event where you will gain unique insights into how the Hydrogen industry is progressing together with exclusive access to future plans.
The dynamic and lively session will demonstrate the viability of hydrogen as a key component to achieve Net Zero.
Confirmed contributors include:
Join us at our free to attend event where you will gain unique insights into how the Hydrogen industry is progressing together with exclusive access to future plans.
The dynamic and lively session will demonstrate the viability of hydrogen as a key component to achieve Net Zero.
Confirmed contributors include:
- National Grid Gas Transmission
- Cadent
- Chris Train Previous CEO Cadent
- DNV
- Worcester Bosch
- ITM Power
- Northern Gas Networks
- Decarbonising Heat in Buildings - New Research Findings from the Gas Distribution Networks
Transportation in a 100% Renewable Energy System
Jan 2018
Publication
A 100% renewable economy would give a lasting solution to the challenges raised by climate change energy security sustainability and pollution. The conversion of the present transport system appears to be one of the most difficult aspects of such renewable transition. This study reviews the technologies and systems that are being proposed or proven as alternative to fossil-fuel based transportation and their prospects for their entry into the post-carbon era from both technological and energetic viewpoints. The energetic cost of the transition from the current transportation system into global 100% renewable transportation is estimated as well as the electrical energy required for the operation of the new renewable transportation sector. A 100% renewable transport providing the same service as global transport in 2014 would demand about 18% less energy. The main reduction is expected in road transport (69%) but the shipping and air sectors would notably increase their consumptions: 163% and 149% respectively. The analysis concludes that a 100% renewable transportation is feasible but not necessarily compatible with indefinite increase of resources consumption. The major material and energy limitations and obstacles of each transport sector for this transition are shown.
Performance Analysis of Hydrogen Fuel Cell with Two-stage Turbo Compressor for Automotive Applications
May 2021
Publication
This paper discusses the numerical modeling of an automobile fuel cell system using a two-stage turbo-compressor for air supply. The numerical model incorporates essential input parameters for air and hydrogen flow. The model also performed mass and energy balances across different components such as pump fan heat-exchanger air compressor and keeps in consideration the pressure losses across flow pipes and various mechanical parts. The compressor design process initiates with numerical analysis of the preliminary design of a highly efficient two-stage turbo compressor with an expander as a single-stage compressor has several limitations in terms of efficiency and pressure ratio. The compressor’s design parameters were carefully studied and analyzed with respect to the highly efficient fuel cell stack (FCS) used in modern hydrogen vehicles. The model is solved to evaluate the overall performance of PEM FCS. The final compressor has a total pressure and temperature of 4.2 bar and 149.3°C whereas the required power is 20.08kW with 3.18kW power losses and having a combined efficiency of 70.8%. According to the FC model with and without expander the net-power outputs are 98.15kW and 88.27kW respectively and the maximum efficiencies are 65.1% and 59.1% respectively. Therefore it can be concluded that a two-stage turbo compressor with a turbo-expander can have significant effects on overall system power and efficiency. The model can be used to predict and optimize system performance for PEM FCS at different operating conditions.
Effect of Hydrogen Addition on the Energetic and Ecologic Parameters of an SI Engine Fueled by Biogas
Jan 2021
Publication
The global policy solution seeks to reduce the usage of fossil fuels and greenhouse gas (GHG) emissions and biogas (BG) represents a solutions to these problems. The use of biogas could help cope with increased amounts of waste and reduce usage of fossil fuels. Biogas could be used in compressed natural gas (CNG) engines but the engine electronic control unit (ECU) needs to be modified. In this research a spark ignition (SI) engine was tested for mixtures of biogas and hydrogen (volumetric hydrogen concentration of 0 14 24 33 and 43%). In all experiments two cases of spark timing (ST) were used: the first for an optimal mixture and the second for CNG. The results show that hydrogen increases combustion quality and reduces incomplete combustion products. Because of BG’s lower burning speed the advanced ST increased brake thermal efficiency (BTE) by 4.3% when the engine was running on biogas. Adding 14 vol% of hydrogen (H2 ) increases the burning speed of the mixture and enhances BTE by 2.6% at spark timing optimal for CNG (CNG ST) and 0.6% at the optimal mixture ST (mixture ST). Analyses of the rate of heat release (ROHR) temperature and pressure increase in the cylinder were carried out using utility BURN in AVL BOOST software.
Comprehensive Performance Evaluation of Densified Liquid Hydrogen/Liquid Oxygen as Propulsion Fuel
Jan 2022
Publication
Densified liquid hydrogen/liquid oxygen is a promising propulsion fuel in the future. In order to systematically demonstrate the benefits and challenges of densified liquid hydrogen/liquid oxygen a transient thermodynamical model considering the heat leakage temperature rise engine thrust pressurization pressure of the tank and wall thickness of tank is developed in the present paper and the performance of densified liquid hydrogen/liquid oxygen as propulsion fuel is further evaluated in actual application. For liquid hydrogen/liquid oxygen tanks at different structural dimensions the effects of many factors such as temperature rise during propellant ground parking lift of engine thrust mass reduction of the tank structure and extension of spacecraft in‐orbit time are analyzed to demonstrate the comprehensive performance of liquid hydrogen/liquid oxygen after densification. Meanwhile the problem of subcooling combination matching of liquid hydro‐ gen/liquid oxygen is proposed for the first time. Combining the fuel consumption and engine thrust lifting the subcooling combination matching of liquid hydrogen/liquid oxygen at different mixing ratios and constant mixing ratios are discussed respectively. The results show that the relative engine thrust enhances by 6.96% compared with the normal boiling point state in the condition of slush hydrogen with 50% solid content and enough liquid oxygen. The in‐orbit time of spacecraft can extend about 2–6.5 days and 24–95 days for slush hydrogen with 50% solid content and liquid oxygen in the triple point state in different cryogenic tanks respectively. Due to temperature rise during parking the existing adiabatic storage scheme and filling scheme for densification LH2 need to be redesigned and for densification LO2 are suitable. It is found that there is an optimal subcooling matching relation after densification of liquid hydrogen/liquid oxygen as propulsion fuel. In other words the subcooling temperature of liquid hydrogen/liquid oxygen is not the lower the bet‐ ter but the matching relationship between LH2 subcooling degree and LO2 subcooling degree needs to be considered at the same time. It is necessary that the LO2 was cooled to 69.2 K and 54.5 K when the LH2 of 13.9 K and SH2 with 45% was adopted respectively. This research provides theoretical support for the promotion and application of densification cryogenic propellants.
A Preliminary Energy Analysis of a Commercial CHP Fueled with H2NG Blends Chemically Supercharged by Renewable Hydrogen and Oxygen
Dec 2016
Publication
Currently Power-to-Gas technologies are considered viable solutions to face the onset problems associated with renewable capacity firming. Indeed carbon-free hydrogen production converting renewable electricity excess and its injection into natural gas pipelines is considered a short- to medium-term solution. In this way the so-called H2NG blends can be fired within internal combustion engines and micro gas turbines operating in CHP mode offering better environmental-energy performances in machines. As regards the distributed energy generation scenario the local H2 production by means of electrolysis for methane enrichment will be more cost-effective if the oxygen is fruitfully used instead of venting it out like a by-product as usually occurs. This study focuses on the usefulness of using that oxygen to enrich the air-fuel mixture of an internal combustion engine for micro-CHP applications once it has been fuelled with H2NG blends. Thus the main aim of this paper is to provide a set of values for benchmarking in which H2NG blends ranging in 0%-15% vol. burn within an ICE in partial oxy-fuel conditions. In particular a preliminary energy analysis was carried out based on experimental data reporting the engine operating parameters gains and losses in both electrical and heat recovery efficiency. The oxygen content in the air varies up to 22% vol. A Volkswagen Blue Tender CHP commercial version (19.8 kWel. of rated electrical power output) was considered as the reference machine and its energy characterization was reported when it operated under those unconventional conditions.
Recent Advances in Carbon Dioxide Conversion: A Circular Bioeconomy Perspective
Jun 2021
Publication
Managing the concentration of atmospheric CO2 requires a multifaceted engineering strategy which remains a highly challenging task. Reducing atmospheric CO2 (CO2R) by converting it to value-added chemicals in a carbon neutral footprint manner must be the ultimate goal. The latest progress in CO2R through either abiotic (artificial catalysts) or biotic (natural enzymes) processes is reviewed herein. Abiotic CO2R can be conducted in the aqueous phase that usually leads to the formation of a mixture of CO formic acid and hydrogen. By contrast a wide spectrum of hydrocarbon species is often observed by abiotic CO2R in the gaseous phase. On the other hand biotic CO2R is often conducted in the aqueous phase and a wide spectrum of value-added chemicals are obtained. Key to the success of the abiotic process is understanding the surface chemistry of catalysts which significantly governs the reactivity and selectivity of CO2R. However in biotic CO2R operation conditions and reactor design are crucial to reaching a neutral carbon footprint. Future research needs to look toward neutral or even negative carbon footprint CO2R processes. Having a deep insight into the scientific and technological aspect of both abiotic and biotic CO2R would advance in designing efficient catalysts and microalgae farming systems. Integrating the abiotic and biotic CO2R such as microbial fuel cells further diversifies the spectrum of CO2R.
Critical Materials for Water Electrolysers at the Example of the Energy Transition in Germany
Feb 2021
Publication
The present work aims to identify critical materials in water electrolysers with potential future supply constraints. The expected rise in demand for green hydrogen as well as the respective implications on material availability are assessed by conducting a case study for Germany. Furthermore the recycling of end‐of‐life (EoL) electrolysers is evaluated concerning its potential in ensuring the sustainable supply of the considered materials. As critical materials bear the risk of raising production costs of electrolysers substantially this article examines the readiness of this technology for industrialisation from a material perspective. Except for titanium the indicators for each assessed material are scored with a moderate to high (platinum) or mostly high (iridium scandium and yttrium) supply risk. Hence the availability of these materials bears the risk of hampering the scale‐up of electrolysis capacity. Although conventional recycling pathways for platinum iridium and titanium already exist secondary material from EoL electrolysers will not reduce the dependence on primary resources significantly within the period under consideration—from 2020 until 2050. Notably the materials identified as critical are used in PEM and high temperature electrolysis whereas materials in alkaline electrolysis are not exposed to significant supply risks.
Hydrogen and Renewable Energy Sources Integrated System for Greenhouse Heating
Sep 2013
Publication
A research is under development at the Department of Agro-Environmental Sciences of the University of Bari “Aldo Moro” in order to investigate the suitable solutions of a power system based on solar energy (photovoltaic) and hydrogen integrated with a geothermal heat pump for powering a self sustained heated greenhouse. The electrical energy for heat pump operation is provided by a purpose-built array of solar photovoltaic modules which supplies also a water electrolyser system controlled by embedded pc; the generated dry hydrogen gas is conserved in suitable pressured storage tank. The hydrogen is used to produce electricity in a fuel cell in order to meet the above mentioned heat pump power demand when the photovoltaic system is inactive during winter night-time or the solar radiation level is insufficient to meet the electrical demand. The present work reports some theoretical and observed data about the electrolyzer operation. Indeed the electrolyzer has required particular attention because during the experimental tests it did not show a stable operation and it was registered a performance not properly consistent with the predicted performance by means of the theoretical study.
The Social Dimensions of Moving Away From Gas Cookers and Hobs- Challenges and Opportunities in Transition to Low Carbon Cooking
May 2020
Publication
Heat is one of the UK’s largest energy-consuming and carbon-emitting sectors and potentially the most difficult to decarbonise. The UK’s Clean Growth Strategy identifies that heat decarbonisation in buildings and industry will likely involve shifting away from natural gas to alternative energy vectors like electricity and hydrogen. This will mean transition of existing cooking appliances away from natural gas resulting in social implications that require detailed analysis for optimal transition.
This report investigates the social dimensions of heat decarbonisation in cooking appliances specifically moving away from gas cookers and hobs. It presents a first step in tackling the following questions.
This report investigates the social dimensions of heat decarbonisation in cooking appliances specifically moving away from gas cookers and hobs. It presents a first step in tackling the following questions.
- How are current carbon-intensive cooking technologies part of existing cooking practices and broader social and material structures?
- What are the challenges and opportunities for cooking heat decarbonisation in terms of consumer acceptance carbon and energy reductions and business/market opportunities?
- What interventions are needed to realise policy objectives of heat de-carbonisation?
- The report builds on interviews with BEIS’s long-term heat strategy experts and key external stakeholders together with a review of secondary data on trends in cooking and appliance use in the UK. Further it presents an annotated bibliography of literature on the social implications of heat decarbonisation and sustainable food transitions more broadly. The multidisciplinary review of the literature is structured around Southerton et al.’s (2011) ISM (Individual- Social- and Material-context) framework for a systemic review of the various change-agents required for transition. Finally a comparative review of the social challenges and opportunities identified in the ISM contexts is presented along with the potential policy interventions in each. The report concludes with a list of recommendations in terms of evidence and data gathering; research; policy; and a set of general recommendations for heat decarbonisation policy.
Hydrogen for a Net Zero GB An Integrated Energy Market Perspective
Jul 2020
Publication
Our new independent report finds that hydrogen can play an important role in UK’s ambitious decarbonisation plan and boost its global industrial competitiveness.
Key insights from this new analysis include:
Key insights from this new analysis include:
- New independent report from Aurora Energy Research shows that hydrogen can meet up to half of Great Britain’s (GB) final energy demand by 2050 providing an important pathway to reaching UK’s ambitious Net Zero targets.
- The report concludes that both blue hydrogen (produced from natural gas after reforming to remove carbon content) and green hydrogen (produced by using power to electrolyse water) are expected to play an important role providing up to 480TWh of hydrogen or c.45% of GB’s final energy demand by 2050.
- All Net Zero scenarios require substantial growth in low-carbon generation such as renewables and nuclear. Large-scale hydrogen adoption could help to integrate renewables into the power system by reducing the power sector requirement for flexibility during peak winter months and boosting revenues for clean power generators by c. £3bn per year by 2050.
- The rollout of hydrogen could accelerate green growth and enable the development of globally competitive low-carbon industrial clusters while utilising UK’s competitive advantage on carbon capture.
- In facilitating the identification of a cost-effective hydrogen pathway there are some low-regret options for Government to explore including the stimulation of hydrogen demand in key sectors the deployment of CCS in strategic locations and the standardisation of networks. These initiatives could form an important part of the UK Government’s post-COVID stimulus plan.
Investigation on System for Renewable Electricity Storage in Small Scale Integrating Photovoltaics, Batteries, and Hydrogen Generator
Nov 2020
Publication
In this article the solution based on hydrogen generation to increase the flexibility of energy storage systems is proposed. Operating characteristics of a hydrogen generator with integrated electrical energy storage and a photovoltaic installation were determined. The key role of the electricity storage in the proposed system was to maintain the highest operating efficiency related to the nominal parameters of the hydrogen generator. The hydrogen generators achieved the highest energy efficiency for the nominal operating point at the highest power output. Lead-acid batteries were used to ensure the optimal operating conditions for the hydrogen generator supplied with renewable energy throughout the day. The proposed system reduces significantly the hydrogen generator nominal power and devices in system operate in such a way to improve their efficiency and durability. The relations between individual components and their constraints were determined. The proposed solution is fully in-line with previously investigated technologies for improving grid stability and can help incorporate renewable energy sources to increase the sustainability of the energy sector and green hydrogen production.
Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation Project
Dec 2011
Publication
This report summarizes the work conducted under U.S. Department of Energy (DOE) under contract DE-FC36-04GO14285 by Mercedes-Benz & Research Development North America (MBRDNA) Chrysler Daimler Mercedes Benz USA (MBUSA) BP DTE Energy and NextEnergy to validate fuel cell technologies for infrastructure transportation as well as assess technology and commercial readiness for the market. The Mercedes Team together with its partners tested the technology by operating and fuelling hydrogen fuel cell vehicles under real world conditions in varying climate terrain and driving conditions. Vehicle and infrastructure data was collected to monitor the progress toward the hydrogen vehicle and infrastructure performance targets of $2.00 to 3.00/gge hydrogen production cost and 2000-hour fuel cell durability. Finally to prepare the public for a hydrogen economy outreach activities were designed to promote awareness and acceptance of hydrogen technology. DTE BP and NextEnergy established hydrogen filling stations using multiple technologies for on-site hydrogen generation storage and dispensing. DTE established a hydrogen station in Southfield Michigan while NextEnergy and BP worked together to construct one hydrogen station in Detroit. BP constructed another fueling station in Burbank California and provided a full-time hydrogen trailer at San Francisco California and a hydrogen station located at Los Angeles International Airportmore.
Hydrogen to Support Electricity Systems
Jan 2020
Publication
The Department of Environment Land Water and Planning (DELWP) engaged GHD Advisory and ACIL Allen to assess the roles opportunities and challenges that hydrogen might play in the future to support Australia’s power systems and to determine whether the relevant electricity system regulatory frameworks are compatible with both enabling an industrial-scale1 hydrogen production capability and the use of hydrogen for power generation.
You can read the full report on the website of the Australian Government at this link
You can read the full report on the website of the Australian Government at this link
Thermodynamic Analysis of a Regenerative Brayton Cycle Using H2, CH4 and H2/CH4 Blends as Fuel
Feb 2022
Publication
Considering a simple regenerative Brayton cycle the impact of using different fuel blends containing a variable volumetric percentage of hydrogen in methane was analysed. Due to the potential of hydrogen combustion in gas turbines to reduce the overall CO2 emissions and the dependency on natural gas further research is needed to understand the impact on the overall thermodynamic cycle. For that purpose a qualitative thermodynamic analysis was carried out to assess the exergetic and energetic efficiencies of the cycle as well as the irreversibilities associated to a subsystem. A single step reaction was considered in the hypothesis of complete combustion of a generic H2/CH4 mixture where the volumetric H2 percentage was represented by fH2 which was varied from 0 to 1 defining the amount of hydrogen in the fuel mixture. Energy and entropy balances were solved through the Engineering Equation Solver (EES) code. Results showed that global exergetic and energetic efficiencies increased by 5% and 2% respectively varying fH2 from 0 to 1. Higher hydrogen percentages resulted in lower exergy destruction in the chamber despite the higher air-excess levels. It was also observed that higher values of fH2 led to lower fuel mass flow rates in the chamber showing that hydrogen can still be competitive even though its cost per unit mass is twice that of natural gas.
Australian and Global Hydrogen Demand Growth Scenario Analysis
Nov 2019
Publication
Deloitte was commissioned by the National Hydrogen Taskforce established by the COAG Energy Council to undertake an Australian and Global Growth Scenario Analysis. Deloitte analysed the current global hydrogen industry its development and growth potential and how Australia can position itself to best capitalise on the newly forming industry.
To conceptualise the possibilities for Australia Deloitte created scenarios to model the realm of possibilities for Australia out to 2050 focusing on identifying the scope and distribution of economic and environmental costs and benefits from Australian hydrogen industry development. This work will aid in analysing the opportunities and challenges to hydrogen industry development in Australia and the actions needed to overcome barriers to industry growth manage risks and best drive industry development.
The full report is available on the Deloitte website at this link
To conceptualise the possibilities for Australia Deloitte created scenarios to model the realm of possibilities for Australia out to 2050 focusing on identifying the scope and distribution of economic and environmental costs and benefits from Australian hydrogen industry development. This work will aid in analysing the opportunities and challenges to hydrogen industry development in Australia and the actions needed to overcome barriers to industry growth manage risks and best drive industry development.
The full report is available on the Deloitte website at this link
The Deltah Lab, a New Multidisciplinary European Facility to Support the H2 Distribution & Storage Economy
Apr 2021
Publication
The target for European decarburization encourages the use of renewable energy sources and H2 is considered the link in the global energy system transformation. So research studies are numerous but only few facilities can test materials and components for H2 storage. This work offers a brief review of H2 storage methods and presents the preliminary results obtained in a new facility. Slow strain rate and fatigue life tests were performed in H2 at 80 MPa on specimens and a tank of AISI 4145 respectively. Besides the storage capacity at 30 MPa of a solid-state system they were evaluated on kg scale by adsorption test. The results have shown the H2 influence on mechanical properties of the steel. The adsorption test showed a gain of 26% at 12 MPa in H2 storage with respect to the empty condition. All samples have been characterized by complementary techniques in order to connect the H2 effect with material properties.
Comparison of Conventional vs. Modular Hydrogen Refuelling Stations and On-Site Production vs. Delivery
Mar 2017
Publication
To meet the needs of public and private stakeholders involved in the development construction and operation of hydrogen fuelling stations needed to support the widespread roll-out of hydrogen fuel cell electric vehicles this work presents publicly available station templates and analyses. These ‘Reference Stations’ help reduce the cost and speed the deployment of hydrogen stations by providing a common baseline with which to start a design enable quick assessment of potential sites for a hydrogen station identify contributors to poor economics and suggest areas of research. This work presents layouts bills of materials piping and instrumentation diagrams and detailed analyses of five new station designs. In the near term delivered hydrogen results in a lower cost of hydrogen compared to on-site production via steam methane reforming or electrolysis although the on-site production methods have other advantages. Modular station concepts including on-site production can reduce lot sizes from conventional assemble-on-site stations.
Thoughts on the Prospects of Renewable Hydrogen
Oct 2020
Publication
In the last two years or so there has been increasing interest in hydrogen as an energy source in Australia and around the world. Notably this is not the first time that hydrogen has caught our collective interest. Most recently the 2000s saw a substantial investment in hydrogen research development and demonstration around the world. Prior to that the oil crises of the 1970s also stimulated significant investment in hydrogen and earlier still the literature on hydrogen was not lacking. And yet the hydrogen economy is still an idea only.<br/>So what if anything might be different this time?<br/>This is an important question that we all need to ask and for which the author can only give two potential answers. First our need to make dramatic reductions in greenhouse gas (GHG) emissions has become more pressing since these previous waves of interest. Second renewable energy is considerably more affordable now than it was before and it has consistently outperformed expectations in terms of cost reductions by even its strongest supporters.<br/>While this dramatic and ongoing reduction in the cost of renewables is very promising our need to achieve substantial GHG emission reductions is the crucial challenge. Moreover meeting this challenge needs to be achieved with as little adverse social and economic impact as possible.<br/>When considering what role hydrogen might play we should first think carefully about the massive scale and complexity of our global energy system and the typical prices of the major energy commodities. This provides insights into what opportunities hydrogen may have. Considering a temperate country with a small population like Australia we see that domestic natural gas and transport fuel markets are comparable to and even larger than the electricity market on an energy basis.
The Role of Critical Minerals in Clean Energy Transitions
May 2021
Publication
Minerals are essential components in many of today’s rapidly growing clean energy technologies – from wind turbines and electricity networks to electric vehicles. Demand for these minerals will grow quickly as clean energy transitions gather pace. This new World Energy Outlook Special Report provides the most comprehensive analysis to date of the complex links between these minerals and the prospects for a secure rapid transformation of the energy sector.
Alongside a wealth of detail on mineral demand prospects under different technology and policy assumptions it examines whether today’s mineral investments can meet the needs of a swiftly changing energy sector. It considers the task ahead to promote responsible and sustainable development of mineral resources and offers vital insights for policy makers including six key IEA recommendations for a new comprehensive approach to mineral security."
Link to International Energy Agency website
Alongside a wealth of detail on mineral demand prospects under different technology and policy assumptions it examines whether today’s mineral investments can meet the needs of a swiftly changing energy sector. It considers the task ahead to promote responsible and sustainable development of mineral resources and offers vital insights for policy makers including six key IEA recommendations for a new comprehensive approach to mineral security."
Link to International Energy Agency website
Optimal Scheduling of Multi-energy Type Virtual Energy Storage System in Reconfigurable Distribution Networks for Congestion Management
Jan 2023
Publication
The virtual energy storage system (VESS) is one of the emerging novel concepts among current energy storage systems (ESSs) due to the high effectiveness and reliability. In fact VESS could store surplus energy and inject the energy during the shortages at high power with larger capacities compared to the conventional ESSs in smart grids. This study investigates the optimal operation of a multi-carrier VESS including batteries thermal energy storage (TES) systems power to hydrogen (P2H) and hydrogen to power (H2P) technologies in hydrogen storage systems (HSS) and electric vehicles (EVs) in dynamic ESS. Further demand response program (DRP) for electrical and thermal loads has been considered as a tool of VESS due to the similar behavior of physical ESS. In the market three participants have considered such as electrical thermal and hydrogen markets. In addition the price uncertainties were calculated by means of scenarios as in stochastic programming while the optimization process and the operational constraints were considered to calculate the operational costs in different ESSs. However congestion in the power systems is often occurred due to the extreme load increments. Hence this study proposes a bi-level formulation system where independent system operators (ISO) manage the congestion in the upper level while VESS operators deal with the financial goals in the lower level. Moreover four case studies have considered to observe the effectiveness of each storage system and the simulation was modeled in the IEEE 33-bus system with CPLEX in GAMS.
Between Hope And Hype: A Hydrogen Vision For The UK
Mar 2021
Publication
There is a growing conversation around the role that hydrogen can play in the future of the UK and how to best harness its potential to secure jobs show climate leadership promote industrial competitiveness and drive innovation. The Government’s ‘Ten Point Plan for a Green Industrial Revolution’ included hydrogen as one of its ten actions targeting 5GW of ‘low carbon’ hydrogen production by 2030. Britain is thus joining the EU US Japan Germany and a host of other countries seeking to be part of the hydrogen economy of the future.<br/><br/>A focus on clean green hydrogen within targeted sectors and hubs can support multiple Government goals – including demonstrating climate leadership reducing regional inequalities through the ‘levelling up’ agenda and ensuring a green and cost-effective recovery from the coronavirus pandemic which prioritises jobs and skills. A strategic hydrogen vision must be honest and recognise where green hydrogen does not present the optimal pathway for decarbonisation – for instance where alternative solutions are already readily available for roll-out are more efficient and cost-effective. A clear example is hydrogen use for heating where it is estimated to require around 30 times more offshore wind farm capacity than currently available to produce enough green hydrogen to replace all gas boilers as well as adding costs for consumers.<br/><br/>This paper considers the offer of hydrogen for key Government priorities – including an inclusive and resilient economic recovery from the pandemic demonstrating climate leadership and delivering for all of society across the UK. It assesses existing evidence and considers the risks and opportunities and how they might inform a strategic vision for the UK. Ahead of the forthcoming Hydrogen Strategy it sets expectations for Government and outlines key recommendations.
Replacing Fossil Fuels with Bioenergy in District Heating – Comparison of Technology Options
May 2021
Publication
We combine previously separate models of Northern European power markets local district heating and cooling (DHC2) systems and biomass supply in a single modelling framework to study local and system level impacts of bioenergy technologies in phasing out fossil fuels from a DHC system of the Finnish capital. We model multiple future scenarios and assess the impacts on energy security flexibility provision economic performance and emissions. In the case of Helsinki heat only boiler is a robust solution from economic and climate perspective but reduces local electricity self-sufficiency. Combined heat and power solution is more valuable investment for the system than for the city indicating a conflict of interest and biased results in system level models. Bringing a biorefinery near the city to utilize excess heat would reduce emissions and increase investment's profitability but biomass availability might be a bigger limiting factor. Our results show that the availability of domestic biomass resources constrains bio-based technologies in Southern Finland and further highlights the importance of considering both local and system level impacts. Novel option to boost biorefinery's production with hydrogen from excess electricity is beneficial with increasing shares of wind power.
The NederDrone: A Hybrid Lift, Hybrid Energy Hydrogen UAV
Mar 2021
Publication
Many Unmanned Air Vehicle (UAV) applications require vertical take-off and landing and very long-range capabilities. Fixed-wing aircraft need long runways to land and electric energy is still a bottleneck for helicopters which are not range efficient. In this paper we introduce the NederDrone a hybrid lift hybrid energy hydrogen-powered UAV that can perform vertical take-off and landings using its 12 propellers while flying efficiently in forward flight thanks to its fixed wings. The energy is supplied from a combination of hydrogen-driven Polymer Electrolyte Membrane fuel-cells for endurance and lithium batteries for high-power situations. The hydrogen is stored in a pressurized cylinder around which the UAV is optimized. This work analyses the selection of the concept the implemented safety elements the electronics and flight control and shows flight data including a 3h38 flight at sea while starting and landing from a small moving ship.
Different Scenarios of Electric Mobility: Current Situation and Possible Future Developments of Fuel Cell Vehicles in Italy
Jan 2020
Publication
The diffusion of electric vehicles in Italy has started but some complications weight its spread. At present hybrid technology is the most followed by users due particularly to socioeconomic factors such as cost of investment and range anxiety. After a deep discussion of the Italian scenario the aim of the paper is to recognize whether fuel cell technology may be an enabling solution to overcome pollution problems and respect for the environment. The opportunity to use fuel cells to store electric energy is quite fascinating—the charging times will be shortened and heavy passenger transport should be effortless challenged. On the basis of the present history and by investigating the available information this work reports the current e-mobility state in Italy and forecasts the cities in which a fuel cell charging infrastructure should be more profitable with the intention of granting a measured outlook on the plausible development of this actual niche market.
Hydrogen Fuel Cell Technology for the Sustainable Future of Stationary Applications
Dec 2019
Publication
The climate changes that are becoming visible today are a challenge for the global research community. The stationary applications sector is one of the most important energy consumers. Harnessing the potential of renewable energy worldwide is currently being considered to find alternatives for obtaining energy by using technologies that offer maximum efficiency and minimum pollution. In this context new energy generation technologies are needed to both generate low carbon emissions as well as identifying planning and implementing the directions for harnessing the potential of renewable energy sources. Hydrogen fuel cell technology represents one of the alternative solutions for future clean energy systems. This article reviews the specific characteristics of hydrogen energy which recommends it as a clean energy to power stationary applications. The aim of review was to provide an overview of the sustainability elements and the potential of using hydrogen as an alternative energy source for stationary applications and for identifying the possibilities of increasing the share of hydrogen energy in stationary applications respectively. As a study method was applied a SWOT analysis following which a series of strategies that could be adopted in order to increase the degree of use of hydrogen energy as an alternative to the classical energy for stationary applications were recommended. The SWOT analysis conducted in the present study highlights that the implementation of the hydrogen economy depends decisively on the following main factors: legislative framework energy decision makers information and interest from the end beneficiaries potential investors and existence of specialists in this field.
Novel Fuzzy Control Energy Management Strategy for Fuel Cell Hybrid Electric Vehicles Considering State of Health
Oct 2021
Publication
Due to the low efficiency and high pollution of conventional internal combustion engine vehicles the fuel cell hybrid electric vehicles are expected to play a key role in the future of clean energy transportation attributed to the long driving range short hydrogen refueling time and environmental advantages. The development of energy management strategies has an important impact on the economy and durability but most strategies ignore the aging of fuel cells and the corresponding impact on hydrogen consumption. In this paper a rule-based fuzzy control strategy is proposed based on the constructed data-driven online estimation model of fuel cell health. Then a genetic algorithm is used to optimize this fuzzy controller where the objective function is designed to consider both the economy and durability by combining the hydrogen consumption cost and the degradation cost characterized by the fuel cell health status. Considering that the rule-based strategy is more sensitive to operating conditions this paper uses an artificial neural network for predictive control. The results are compared with those obtained from the genetic algorithm optimized fuzzy controller and are found to be very similar where the prediction accuracy is assessed using MAPE RMSE and 10-fold cross-validation. Experiments show that the developed strategy has a good generalization capability for variable driving cycles.
Hydrogen Addition Influence for the Efficient and Ecological Parameters of Heavy-Duty Natural Gas Si Engine
May 2017
Publication
The paper presents the experimental research results of heavy-duty vehicle (public transport bus) fuelled with natural gas and hydrogen fuel mixtures. Spark ignition six cylinder engine tested with different hydrogen additions (from 5% up to 20% according to volume) in the natural gas fuel. The tests were performed on heavy-duty vehicle’s dyno test stand in company “SG dujos Auto” research laboratory. The tests were carried out at three load points and one engine speed. Engine had originally a port fuel injection and exhaust gas recirculation system. Experiments showed that engine fuelled with hydrogen addition was able to achieve lower fuel consumption and brake specific fuel consumption. It was also possible to achieve small increase of engine efficiency. The exhaust gas measurements showed that hydrogen addition in natural gas reduced the CO CO2 and HC emissions because of the H/C atom ratio change in fuel mixture and improved combustion process. The NOx emission level was decreasing although bigger amounts of hydrogen were used in natural gas fuel.
Process Integration of Green Hydrogen: Decarbonization of Chemical Industries
Sep 2020
Publication
Integrated water electrolysis is a core principle of new process configurations for decarbonized heavy industries. Water electrolysis generates H2 and O2 and involves an exchange of thermal energy. In this manuscript we investigate specific traditional heavy industrial processes that have previously been performed in nitrogen-rich air environments. We show that the individual process streams may be holistically integrated to establish new decarbonized industrial processes. In new process configurations CO2 capture is facilitated by avoiding inert gases in reactant streams. The primary energy required to drive electrolysis may be obtained from emerging renewable power sources (wind solar etc.) which have enjoyed substantial industrial development and cost reductions over the last decade. The new industrial designs uniquely harmonize the intermittency of renewable energy allowing chemical energy storage. We show that fully integrated electrolysis promotes the viability of decarbonized industrial processes. Specifically new process designs uniquely exploit intermittent renewable energy for CO2 conversion enabling thermal integration H2 and O2 utilization and sub-process harmonization for economic feasibility. The new designs are increasingly viable for decarbonizing ferric iron reduction municipal waste incineration biomass gasification fermentation pulp production biogas upgrading and calcination and are an essential step forward in reducing anthropogenic CO2 emissions.
Drivers and Barriers to the Adoption of Fuel Cell Passenger Vehicles and Buses in Germany
Feb 2021
Publication
As policymakers and automotive stakeholders around the world seek to accelerate the electrification of road transport with hydrogen this study focuses on the experiences of Germany a world leader in fuel cell technology. Specifically it identifies and compares the drivers and barriers influencing the production and market penetration of privately-owned fuel cell electric passenger vehicles (FCEVs) and fuel cell electric buses (FCEBs) in public transit fleets. Using original data collected via a survey and 17 interviews we elicited the opinions of experts to examine opportunities and obstacles in Germany from four perspectives: (i) the supply of vehicles (ii) refuelling infrastructure (iii) demand for vehicles and (iv) cross-cutting institutional issues. Findings indicate that despite multiple drivers there are significant challenges hampering the growth of the hydrogen mobility market. Several are more pronounced in the passenger FCEV market. These include the supply and cost of production the lack of German automakers producing FCEVs the profitability and availability of refuelling stations and low demand for vehicles. In light of these findings we extract implications for international policymakers and future studies. This study provides a timely update on efforts to spur the deployment of hydrogen mobility in Germany and addresses the underrepresentation of studies examining both buses and passenger vehicles in tandem.
Hydrogen Fuel Cell Road Vehicles: State of the Art and Perspectives
Nov 2020
Publication
Driven by a small number of niche markets and several decades of application research fuel cell systems (FCS) are gradually reaching maturity to the point where many players are questioning the interest and intensity of its deployment in the transport sector in general. This article aims to shed light on this debate from the road transport perspective. It focuses on the description of the fuel cell vehicle (FCV) in order to understand its assets limitations and current paths of progress. These vehicles are basically hybrid systems combining a fuel cell and a lithium-ion battery and different architectures are emerging among manufacturers who adopt very different levels of hybridization. The main opportunity of Fuel Cell Vehicles is clearly their design versatility based on the decoupling of the choice of the number of Fuel Cell modules and hydrogen tanks. This enables manufacturers to meet various specifications using standard products. Upcoming developments will be in line with the crucial advantage of Fuel Cell Vehicles: intensive use in terms of driving range and load capacity. Over the next few decades long-distance heavy-duty vehicles and fleets of taxis or delivery vehicles will develop based on range extender or mild hybrid architectures and enable the hydrogen sector to mature the technology from niche markets to a large-scale market.
Hydrogen-based Integrated Energy and Mobility System for a Real-life Office Environment
Mar 2020
Publication
The current focus on the massive CO2 reduction highlights the need for the rapid development of technology for the production storage transportation and distribution of renewable energy. In addition to electricity we need other forms of energy carriers that are more suitable for energy storage and transportation. Hydrogen is one of the main candidates for this purpose since it can be produced from solar or wind energy and then stored; once needed it can be converted back to electricity using fuel cells. Another important aspect of future energy systems is sector coupling where different sectors e.g. mobility and energy work together to provide better services. In such an integrated system electric vehicles – both battery and hydrogen-based fuel cell – can provide when parked electricity services such as backup power and balancing; when driving they produce no emissions. In this paper we present the concept design and energy management of such an integrated energy and mobility system in a real-life environment at the Shell Technology Centre in Amsterdam. Our results show that storage using hydrogen and salt caverns is much cheaper than using large battery storage systems. We also show that the integration of electric vehicles into the electricity network is technically and economically feasible and that they can provide a flexible energy buffer. Ultimately the results of this study show that using both electricity and hydrogen as energy carriers can create a more flexible reliable and cheaper energy system at an office building.
High Energy Density Storage of Gaseous Marine Fuels: An Innovative Concept and its Application to a Hydrogen Powered Ferry
Apr 2020
Publication
The upcoming stricter limitations on both pollutant and greenhouse gases emissions represent a challenge for the shipping sector. The entire ship design process requires an approach to innovation with a particular focus on both the fuel choice and the power generation system. Among the possible alternatives natural gas and hydrogen based propulsion systems seem to be promising in the medium and long term. Nonetheless natural gas and hydrogen storage still represents a problem in terms of cargo volume reduction. This paper focuses on the storage issue considering compressed gases and presents an innovative solution which has been developed in the European project GASVESSEL® that allows to store gaseous fuels with an energy density higher than conventional intermediate pressure containment systems. After a general overview of natural gas and hydrogen as fuels for shipping a case study of a small Roll-on/Rolloff passenger ferry retrofit is proposed. The study analyses the technical feasibility of the installation of a hybrid power system with batteries and polymer electrolyte membrane fuel cells fuelled by hydrogen. In particular a process simulation model has been implemented to assess the quantity of hydrogen that can be stored on board taking into account boundary conditions such as filling time on shore storage capacity and cylinder wall temperature. The simulation results show that if the fuel cells system is run continuously at steady state to cover the energy need for one day of operation 140 kg of hydrogen are required. Using the innovative pressure cylinder at a storage pressure of 300 bar the volume required by the storage system assessed on the basis of the containment system outer dimensions is resulted to be 15.2 m3 with a weight of 2.5 ton. Even if the innovative type of pressure cylinder allows to reach an energy density higher than conventional intermediate pressure cylinders the volume necessary to store a quantity of energy typical for the shipping sector is many times higher than that required by conventional fuels today used. The analysis points out as expected that the filling process is critical to maximize the stored hydrogen mass and that it is critical to measure the temperature of the cylinder walls in order not to exceed the material limits. Nevertheless for specific application such as the one considered in the paper the introduction of gaseous hydrogen as fuel can be considered for implementing zero local emission propulsion system in the medium term.
Potential for Hydrogen and Power-to-Liquid in a Low-carbon EU Energy System Using Cost Optimization
Oct 2018
Publication
Hydrogen represents a versatile energy carrier with net zero end use emissions. Power-to-Liquid (PtL) includes the combination of hydrogen with CO2 to produce liquid fuels and satisfy mostly transport demand. This study assesses the role of these pathways across scenarios that achieve 80–95% CO2 reduction by 2050 (vs. 1990) using the JRC-EU-TIMES model. The gaps in the literature covered in this study include a broader spatial coverage (EU28+) and hydrogen use in all sectors (beyond transport). The large uncertainty in the possible evolution of the energy system has been tackled with an extensive sensitivity analysis. 15 parameters were varied to produce more than 50 scenarios. Results indicate that parameters with the largest influence are the CO2 target the availability of CO2 underground storage and the biomass potential.
Hydrogen demand increases from 7 mtpa today to 20–120 mtpa (2.4–14.4 EJ/yr) mainly used for PtL (up to 70 mtpa) transport (up to 40 mtpa) and industry (25 mtpa). Only when CO2 storage was not possible due to a political ban or social acceptance issues was electrolysis the main hydrogen production route (90% share) and CO2 use for PtL became attractive. Otherwise hydrogen was produced through gas reforming with CO2 capture and the preferred CO2 sink was underground. Hydrogen and PtL contribute to energy security and independence allowing to reduce energy related import cost from 420 bln€/yr today to 350 or 50 bln€/yr for 95% CO2 reduction with and without CO2 storage. Development of electrolyzers fuel cells and fuel synthesis should continue to ensure these technologies are ready when needed. Results from this study should be complemented with studies with higher spatial and temporal resolution. Scenarios with global trading of hydrogen and potential import to the EU were not included.
Hydrogen demand increases from 7 mtpa today to 20–120 mtpa (2.4–14.4 EJ/yr) mainly used for PtL (up to 70 mtpa) transport (up to 40 mtpa) and industry (25 mtpa). Only when CO2 storage was not possible due to a political ban or social acceptance issues was electrolysis the main hydrogen production route (90% share) and CO2 use for PtL became attractive. Otherwise hydrogen was produced through gas reforming with CO2 capture and the preferred CO2 sink was underground. Hydrogen and PtL contribute to energy security and independence allowing to reduce energy related import cost from 420 bln€/yr today to 350 or 50 bln€/yr for 95% CO2 reduction with and without CO2 storage. Development of electrolyzers fuel cells and fuel synthesis should continue to ensure these technologies are ready when needed. Results from this study should be complemented with studies with higher spatial and temporal resolution. Scenarios with global trading of hydrogen and potential import to the EU were not included.
Strategies to Accelerate the Production and Diffusion of Fuel Cell Electric Vehicles: Experiences from California
Sep 2020
Publication
Fuel cell electric vehicles (FCEVs) can play a key role in accelerating the electrification of road transport. Specifically they offer longer driving ranges and shorter refuelling times relative to Battery Electric Vehicles (BEVs) while reducing needs for space-intensive public charging infrastructure. Although the maturity and market penetration of hydrogen is currently trailing batteries transport planners in several countries are looking to both technologies to reduce carbon emissions and air pollution. Home to the world’s largest on-road fleet of FCEVs California is one such jurisdiction. Experiences in California provide an ideal opportunity to address a gap in literature whereby barriers to FCEV diffusion are well understood but knowledge on actual strategies to overcome these has lacked. This study thus examines governance strategies in California to accelerate the production and diffusion of FCEVs key outcomes lessons learned and unresolved challenges. Evidence is sourced from 19 expert interviews and an examination of diverse documents. Strategies are examined from four perspectives: (i) supply-side (i.e. stimulation of vehicle production) (ii) infrastructure (i.e. construction of refuelling stations and hydrogen production) (iii) demand-side (i.e. stimulation of vehicle adoption) and (iv) institutional (i.e. cross-cutting measures to facilitate collaboration innovation and cost-reduction). Findings reveal a comprehensive mix of stringent regulation market and consumer incentives and public–private collaboration. However significant challenges remain for spurring the development of fuel cell transport in line with initial ambitions. Highlighting these provides important cues for public policy to accelerate the deployment of FCEVs and hydrogen in California and elsewhere.
Experimental Investigation of the Effects of Simultaneous Hydrogen and Nitrogen Addition on the Emissions and Combustion of a Diesel Engine
Jan 2014
Publication
Overcoming diesel engine emissions trade-off effects especially NOx and Bosch smoke number (BSN) requires investigation of novel systems which can potentially serve the automobile industry towards further emissions reduction. Enrichment of the intake charge with H2 þ N2 containing gas mixture obtained from diesel fuel reforming system can lead to new generation low polluting diesel engines. This paper investigates the effect of simultaneous H2 þ N2 intake charge enrichment on the emissions and combustion of a compression ignition engine. Bottled H2 þ N2 was simultaneously admitted into the intake pipe of the engine in 4% steps starting from 4% (2% H2 þ 2% N2) up to 16% (v/v). The results showed that under specific operating conditions H2 þ N2 enrichment can offer simultaneous NOx BSN and CO emissions reduction. Apart from regulated emissions nitrogen exhaust components were measured. Marginal N2O and zero NH3 emissions were obtained. NO/NO2 ratio increases when speed or load increases. Under low speed low load operation the oxidation of NO is enhanced by the addition of H2 þ N2 mixture. Finally admission of H2 þ N2 has a detrimental effect on fuel consumption
Integrating Housing Stock and Energy System Models as a Strategy to Improve Heat Decarbonisation Assessments
Aug 2014
Publication
The UK government heat strategy is partially based on decarbonisation pathways from the UK MARKAL energy system model. We review how heat provision is represented in UK MARKAL identifying a number of shortcomings and areas for improvement. We present a completely revised model with improved estimations of future heat demands and a consistent representation of all heat generation technologies. This model represents all heat delivery infrastructure for the first time and uses dynamic growth constraints to improve the modelling of transitions according to innovation theory. Our revised model incorporates a simplified housing stock model which is used produce highly-refined decarbonisation pathways for residential heat provision. We compare this disaggregated model against an aggregated equivalent which is similar to the existing approach in UK MARKAL. Disaggregating does not greatly change the total residential fuel consumption in two scenarios so the benefits of disaggregation will likely be limited if the focus of a study is elsewhere. Yet for studies of residential heat disaggregation enables us to vary consumer behaviour and government policies on different house types as well as highlighting different technology trends across the stock in comparison with previous aggregated versions of the model.
Renewable/Fuel Cell Hybrid Power System Operation Using Two Search Controllers of the Optimal Power Needed on the DC Bus
Nov 2020
Publication
In this paper the optimal and safe operation of a hybrid power system based on a fuel cell system and renewable energy sources is analyzed. The needed DC power resulting from the power flow balance on the DC bus is ensured by the FC system via the air regulator or the fuel regulator controlled by the power-tracking control reference or both regulators using a switched mode of the above-mentioned reference. The optimal operation of a fuel cell system is ensured by a search for the maximum of multicriteria-based optimization functions focused on fuel economy under perturbation such as variable renewable energy and dynamic load on the DC bus. Two search controllers based on the global extremum seeking scheme are involved in this search via the remaining fueling regulator and the boost DC–DC converter. Thus the fuel economy strategies based on the control of the air regulator and the fuel regulator respectively on the control of both fueling regulators are analyzed in this study. The fuel savings compared to fuel consumed using the static feed-forward control are 6.63% 4.36% and 13.72% respectively under dynamic load but without renewable power. With renewable power the needed fuel cell power on the DC bus is lower so the fuel cell system operates more efficiently. These percentages are increased to 7.28% 4.94% and 14.97%.
Electrolyzer Performance Analysis of an Integrated Hydrogen Power System for Greenhouse Heating. A Case Study
Jul 2016
Publication
A greenhouse containing an integrated system of photovoltaic panels a water electrolyzer fuel cells and a geothermal heat pump was set up to investigate suitable solutions for a power system based on solar energy and hydrogen feeding a self-sufficient geothermal-heated greenhouse. The electricity produced by the photovoltaic source supplies the electrolyzer; the manufactured hydrogen gas is held in a pressure tank. In these systems the electrolyzer is a crucial component; the technical challenge is to make it work regularly despite the irregularity of the solar source. The focus of this paper is to study the performance and the real energy efficiency of the electrolyzer analyzing its operational data collected under different operating conditions affected by the changeable solar radiant energy characterizing the site where the experimental plant was located. The analysis of the measured values allowed evaluation of its suitability for the agricultural requirements such as greenhouse heating. On the strength of the obtained result a new layout of the battery bank has been designed and exemplified to improve the performance of the electrolyzer. The evaluations resulting from this case study may have a genuine value therefore assisting in further studies to better understand these devices and their associated technologies.
A Smart Strategy for Sizing of Hybrid Renewable Energy System to Supply Remote Loads in Saudi Arabia
Oct 2021
Publication
The use of hybrid renewable energy systems (HRES) has become the best option for supplying electricity to sites remote from the central power system because of its sustainability environmental friendliness and its low cost of energy compared to many conventional sources such as diesel generators. Due to the intermittent nature of renewable energy resources there is a need however for an energy storage system (ESS) to store the surplus energy and feed the energy deficit. Most renewable sources used battery storage systems (BSS) a green hydrogen storage system (GHSS) and a diesel generator as a backup for these sources. Batteries are very expensive and have a very short lifetime and GHSS have a very expensive initial cost and many security issues. In this paper a system consisting of wind turbines and a photovoltaic (PV) array with a pumped hydro energy storage (PHES) system as the main energy storage to replace the expensive and short lifetime batteries is proposed. The proposed system is built to feed a remote area called Dumah Aljandal in the north of Saudi Arabia. A smart grid is used via a novel demand response strategy (DRS) with a dynamic tariff to reduce the size of the components and it reduces the cost of energy compared to a flat tariff. The use of the PHES with smart DRS reduced the cost of energy by 34.2% and 41.1% compared to the use of BSS and GHSS as an ESS respectively. Moreover the use of 100% green energy sources will avoid the emission of an estimated 2.5 million tons of greenhouse gases every year. The proposed system will use a novel optimization algorithm called the gradually reduced particles of particle swarm optimization (GRP-PSO) algorithm to enhance the exploration and exploitation during the searching iterations. The GRP-PSO reduces the convergence time to 58% compared to the average convergence time of 10 optimization algorithms used for comparison. A sensitivity analysis study is introduced in this paper in which the effect of ±20% change in wind speed and solar irradiance are selected and the system showed a low effect of these resources on the Levelized cost of energy of the HRES. These outstanding results proved the superiority of using a pumped-storage system with a dynamic tariff demand response strategy compared to the other energy storage systems with flat-rate tariffs.
Building an Optimal Hydrogen Transportation System for Mobility, Focus on Minimizing the Cost of Transportation via Truck
Jan 2018
Publication
The approach developed aims to identify the methodology that will be used to deliver the minimum cost for hydrogen infrastructure deployment using a mono-objective linear optimisation. It focuses on minimizing both capital and operation costs of the hydrogen transportation based on transportation via truck which represents the main focus of this paper and a cost-minimal pipeline system in the case of France and Germany. The paper explains the mathematical model describing the link between the hydrogen production via electrolysers and the distribution for mobility needs. The main parameters and the assumed scenario framework are explained. Subsequently the transportation of hydrogen via truck using different states of aggregation is analysed as well as the transformation and storage of hydrogen. This is used finally to build a linear programming aiming to minimize the sum of costs of hydrogen transportation between the different nodes and transformation/storage within the nodes.
No more items...