Publications
Combined Hydrogen Production and Electricity Storage using a Vanadium Manganese Redox Dual-flow Battery
Aug 2021
Publication
A redox dual-flow battery is distinct from a traditional redox flow battery (RFB) in that the former includes a secondary energy platform in which the pre-charged electrolytes can be discharged in external catalytic reactors through decoupled redox-mediated hydrogen evolution reaction (HER) and oxygen evolution reaction (OER). The concept offers several advantages over conventional electrolysis in terms of safety durability modularity and purity. In this work we demonstrate a vanadium-manganese redox-flow battery in which Mn3+/Mn2+ and V3+/V2+ respectively mediate the OER and the HER in Mo2C-based and RuO2-based catalysts. The flow battery demonstrates an average energy efficiency of 68% at a current density of 50 mA ⋅ cm−2 (cell voltage = 1.92 V) and a relative energy density 45% higher than the conventional all-vanadium RFB. Both electrolytes are spontaneously discharged through redox-mediated HER and OER with a faradic efficiency close to 100%.
IGEM/TD/13 Edition 3 Supplement 1 - Pressure Regulating Installations for Hydrogen at Pressures Exceeding 7 Bar
Nov 2021
Publication
IGEM/TD/13 Standard applies to the safe design construction inspection testing operation and maintenance of pressure regulating installations (PRIs) in accordance with current knowledge and operational experience.
This Supplement provides additional requirements for new PRIs to be used for the transmission of Hydrogen including Natural Gas/Hydrogen blended mixtures (subsequently referred to as NG/H blends) and for the repurposing of Natural Gas (NG) PRIs for Hydrogen service.
NG/H blends are considered to be equivalent to 100 mol % Hydrogen with respect to limits on design stresses the potential effect on the material properties and damage and defect categories and acceptance levels unless an additional technical evaluation is carried out to qualify the materials.
NG/H blends containing in excess of 10 mol % Hydrogen are considered to be equivalent to 100 mol.% Hydrogen with respect to all other requirements except for hazardous areas.
This Supplement gives additional recommendations for PRIs and installations
You can purchase the standard here
This Supplement provides additional requirements for new PRIs to be used for the transmission of Hydrogen including Natural Gas/Hydrogen blended mixtures (subsequently referred to as NG/H blends) and for the repurposing of Natural Gas (NG) PRIs for Hydrogen service.
NG/H blends are considered to be equivalent to 100 mol % Hydrogen with respect to limits on design stresses the potential effect on the material properties and damage and defect categories and acceptance levels unless an additional technical evaluation is carried out to qualify the materials.
NG/H blends containing in excess of 10 mol % Hydrogen are considered to be equivalent to 100 mol.% Hydrogen with respect to all other requirements except for hazardous areas.
This Supplement gives additional recommendations for PRIs and installations
- with an upstream maximum operating pressure (MOP) not greater than 100 bar
- with an outlet pressure greater than or equal to 7 bar
- for use with Hydrogen or NG/H blends with a Hydrogen content greater than 10 %
- operating with a temperature range between -20°C and 120°C.
You can purchase the standard here
Precooling Temperature Relaxation Technology in Hydrogen Refueling for Fuel-Cell Vehicles
Aug 2021
Publication
The dissemination of fuel-cell vehicles requires cost reduction of hydrogen refueling stations. The temperature of the supplied hydrogen has currently been cooled to approximately 40 C. This has led to larger equipment and increased electric power consumption. This study achieves a relaxation of the precooling temperature to the 20 C level while maintaining the refueling time. (1) Adoption of an MC formula that can flexibly change the refueling rate according to the precooling temperature. (2) Measurement of thermal capacity of refueling system parts and re-evaluation. Selection from multiple refueling control maps according to the dispenser design (Mathison et al. 2015). (3) Calculation of the effective thermal capacity and reselection of the map in real time when the line is cooled from refueling of the previous vehicle (Mathison and Handa 2015). (4) Addition of maps in which the minimum assumed pressures are 10 and 15 MPa. The new method is named MC Multi Map
Dynamic Mechanical Fatigue Behavior of Polymer Electrolyte Membranes for Fuel Cell Electric Vehicles Using a Gas Pressure-Loaded Blister
Nov 2021
Publication
This study reports on an innovative press-loaded blister hybrid system equipped with gas-chromatography (PBS-GC) that is designed to evaluate the mechanical fatigue of two representative types of commercial Nafion membranes under relevant PEMFC operating conditions (e.g. simultaneously controlling temperature and humidity). The influences of various applied pressures (50 kPa 100 kPa etc.) and blistering gas types (hydrogen oxygen etc.) on the mechanical resistance loss are systematically investigated. The results evidently indicate that hydrogen gas is a more effective blistering gas for inducing dynamic mechanical losses of PEM. The changes in proton conductivity are also measured before and after hydrogen gas pressure-loaded blistering. After performing the mechanical aging test a decrease in proton conductivity was confirmed which was also interpreted using small angle X-ray scattering (SAXS) analysis. Finally an accelerated dynamic mechanical aging test is performed using the homemade PBS-GC system where the hydrogen permeability rate increases significantly when the membrane is pressure-loaded blistering for 10 min suggesting notable mechanical fatigue of the PEM. In summary this PBS-GC system developed in-house clearly demonstrates its capability of screening and characterizing various membrane candidates in a relatively short period of time (<1.5 h at 50 kPa versus 200 h).
Impact of Hydrogen/Natural Gas Blends on Partially Premixed Combustion Equipment: NOx Emission and Operational Performance
Feb 2022
Publication
Several North American utilities are planning to blend hydrogen into gas grids as a short‐ term way of addressing the scalable demand for hydrogen and as a long‐term decarbonization strat‐ egy for ‘difficult‐to‐electrify’ end uses. This study documents the impact of 0–30% hydrogen blends by volume on the performance emissions and safety of unadjusted equipment in a simulated use environment focusing on prevalent partially premixed combustion designs. Following a thorough literature review the authors describe three sets of results: operating standard and “ultra‐low NOx” burners from common heating equipment in “simulators” with hydrogen/methane blends up to 30% by volume in situ testing of the same heating equipment and field sampling of a wider range of equipment with 0–10% hydrogen/natural gas blends at a utility‐owned training facility. The equipment was successfully operated with up to 30% hydrogen‐blended fuels with limited visual changes to flames and key trends emerged: (a) a decrease in the input rate from 0 to 30% H2 up to 11% often in excess of the Wobbe Index‐based predictions; (b) NOx and CO emissions are flat or decline (air‐free or energy‐adjusted basis) with increasing hydrogen blending; and (c) a minor de‐ crease (1.2%) or increase (0.9%) in efficiency from 0 to 30% hydrogen blends for standard versus ultra‐low NOx‐type water heaters respectively.
Injection of Gaseous Hydrogen into a Natural Gas Pipeline
May 2022
Publication
The injection of pure hydrogen at a T-junction into a horizontal pipe carrying natural gas is analysed computationally to understand the influence of blending and pipe geometry (diameter ratio various 90 orientations) on mixing for a target of 4.8e20% volume fraction hydrogen blend. The strongly inhomogeneous distribution of hydrogen within the pipe flow and on the pipe walls could indicate the location of potential pipe material degradation including embrittlement effects. The low molecular mass of hydrogen reduces the penetration of a side-branch flow and increases the buoyancy forces leading to stratification with high hydrogen concentrations on the upper pipe surface downstream of the branch. Top-side injection leads to the hydrogen concentration remaining >40% for up to 8 pipe diameters from the injection point for volumetric dilutions ( D) less than 30%. Under-side injection promotes mixing within the flow interior and reduces wall concentration at the lower surface compared to top-side injection. The practical implications for these results in terms of mixing requirements and the contrasting constraint of codes of practice and energy demands are discussed.
Can Green Hydrogen Production Be Economically Viable under Current Market Conditions
Dec 2020
Publication
This paper discusses the potential of green hydrogen production in a case study of a Slovenian hydro power plant. To assess the feasibility and eligibility of hydrogen production at the power plant we present an overview of current hydrogen prices and the costs of the power-to-gas system for green hydrogen production. After defining the production cost for hydrogen at the case study hydro power plant we elaborate on the profitability of hydrogen production over electricity. As hydrogen can be used as a sustainable energy vector in industry heating mobility and the electro energetic sectors we discuss the current competitiveness of hydrogen in the heating and transport sectors. Considering the current prices of different fuels it is shown that hydrogen can be competitive in the transport sector if it is unencumbered by various environmental taxes. The second part of the paper deals with hydrogen production in the context of secondary control ancillary service provided by a case study power plant. Namely hydrogen can be produced during the time period when there is no demand for extra electric power within a secondary control ancillary service and thus the economics of power plant operation can be improved.
Worst Case Scenario for Delayed Explosion of Hydrogen Jets at a High Pressure: Ignition Position
Sep 2021
Publication
Delayed explosion of free field hydrogen releases at a high pressure is subject of multiple investigation performed by various authors in the past years. These studied considered various parameters such as pressures flow rates etc. and their influence on the resulting overpressure. However the influence of the ignition position on the maximum overpressure was not fully explored. Current investigation addressed by computational fluid dynamics (CFD) simulations and experimental measurement fills this gap. This work demonstrates that the ignition positions corresponding to 55%-65% of H2/air mixture give the maximum overpressure. This observation initially observed numerically and afterword confirmed experimentally. A simple model is also suggested.
Development of a Viability Assessment Model for Hydrogen Production from Dedicated Offshore Wind Farms
Jun 2020
Publication
Dedicated offshore wind farms for hydrogen production are a promising option to unlock the full potential of offshore wind energy attain decarbonisation and energy security targets in electricity and other sectors and cope with grid expansion constraints. Current knowledge on these systems is limited particularly the economic aspects. Therefore a new integrated and analytical model for viability assessment of hydrogen production from dedicated offshore wind farms is developed in this paper. This includes the formulae for calculating wind power output electrolysis plant size and hydrogen production from time-varying wind speed. All the costs are projected to a specified time using both Discounted Payback (DPB) and Net Present Value (NPV) to consider the value of capital over time. A case study considers a hypothetical wind farm of 101.3 MW situated in a potential offshore wind development pipeline off the East Coast of Ireland. All the costs of the wind farm and the electrolysis plant are for 2030 based on reference costs in the literature. Proton exchange membrane electrolysers and underground storage of hydrogen are used. The analysis shows that the DPB and NPV flows for several scenarios of storage are in good agreement and that the viability model performs well. The offshore wind farm – hydrogen production system is found to be profitable in 2030 at a hydrogen price of €5/kg and underground storage capacities ranging from 2 days to 45 days of hydrogen production. The model is helpful for rapid assessment or optimisation of both economics and feasibility of dedicated offshore wind farm – hydrogen production systems.
Control Strategy Assessment for Improving PEM Fuel Cell System Efficiency in Fuel Cell Hybrid Vehicles
Mar 2022
Publication
Concerns about climate change air pollution and the depletion of oil resources have prompted authorities to enforce increasingly strict rules in the automotive sector. There are several benefits to implementing fuel cell hybrid vehicles (FCHV) in the transportation sector including the ability to assist in reducing greenhouse gas emissions by replacing fossil fuels with hydrogen as energy carriers. This paper examines different control strategies for optimizing the power split between the battery and PEM fuel cell in order to maximize the PEM fuel cell system efficiency and reduce fuel consumption. First the vehicle and fuel cell system models are described. A forward approach is considered to model the vehicle dynamics while a semi-empirical and quasi-static model is used for the PEM fuel cell. Then different rule-based control strategies are analyzed with the aim of maximizing fuel cell system efficiency while ensuring a constant battery state of charge (SOC). The different methods are evaluated while the FCHV is performing both low-load and high-load drive cycles. The hydrogen consumption and the overall fuel cell system efficiency are considered for all testing conditions. The results highlight that in both low-load cycles and high-load cycles the best control strategies achieve a fuel cell system efficiency equal or greater to 33% while achieving a fuel consumption 30% less with respect to the baseline control strategy in low-load drive cycles.
Nested Decomposition Approach for Dispatch Optimization of Large-Scale, Integrated Electricity, Methane and Hydrogen Infrastructures
Apr 2022
Publication
Energy system integration enables raising operational synergies by coupling the energy infrastructures for electricity methane and hydrogen. However this coupling reinforces the infrastructure interdependencies increasing the need for integrated modeling of these infrastructures. To analyze the cost-efficient sustainable and secure dispatch of applied large-scale energy infrastructures an extensive and non-linear optimization problem needs to be solved. This paper introduces a nested decomposition approach with three stages. The method enables an integrated and full-year consideration of large-scale multi-energy systems in hourly resolution taking into account physical laws of power flows in electricity and gas transmission systems as boundary conditions. For this purpose a zooming technique successively reduces the temporal scope while first increasing the spatial and last the technical resolution. A use case proves the applicability of the presented approach to large-scale energy systems. To this end the model is applied to an integrated European energy system model with a detailed focus on Germany in a challenging transport situation. The use case demonstrates the temporal regional and cross-sectoral interdependencies in the dispatch of integrated energy infrastructures and thus the benefits of the introduced approach.
Everything About Hydrogen Podcast: M&A in the Modern Hydrogen Economy
Sep 2021
Publication
This week we have Christopher Jackson in the hot seat as he catches up with BayoTech CEO Mo Vargas and BayoTech’s new President Michael Koonce to discuss the acquisition of IGX Group. Mergers & Acquisition activity has been growing in the hydrogen space with commentators suggesting the market is maturing faster than expected and customers seeking more integrated solutions. In this episode we look at the IGX acquisition by BayoTech and ask why the deal made sense what it means for the market and other participants and what listeners can learn from the deal to foreshadow future activity.
The podcast can be found on their website
The podcast can be found on their website
CO2 Emissions Reduction through Increasing H2 Participation in Gaseous Combustible—Condensing Boilers Functional Response
Apr 2022
Publication
Considering the imperative reduction in CO2 emissions both from household heating and hot water producing facilities one of the mainstream directions is to reduce hydrocarbons in combustibles by replacing them with hydrogen. The authors analyze condensing boilers operating when hydrogen is mixed with standard gaseous fuel (CH4 ). The hydrogen (H2 ) volumetric participation in the mixture is considered to vary in the range of 0 to 20%. The operation of the condensing boilers will be numerically modeled by computational programs and prior validated by experimental studies concluded in a European Certified Laboratory. The study concluded that an increase in the combustible flow with 16% will compensate the maximum H2 concentration situation with no other implications on the boiler’s thermal efficiency together with a decrease in CO2 emissions by approximately 7%. By assuming 0.9 (to/year/boiler) the value of CO2 emissions reduction for the condensing boiler determined in the paper and extrapolating it for the estimated number of boilers to be sold for the period 2019–2024 a 254700-ton CO2/year reduction resulted.
On the Possibility to Simulate the Operation of a SI Engine using Alternative Gaseous Fuels
Nov 2019
Publication
A thermodynamic combustion model developed in AVL BOOST software was used in order to evaluate the pollutant emissions performance and efficiency parameters of a spark ignition engine Renault K7M-710 fueled with compressed natural gas hydrogen and blends of compressed natural gas and hydrogen (hythane). Multiple research studies have concluded that for the near future hythane could be the most promising alternative fuel because it has the advantages of both its components. In our previous work the model was validated for the performance and efficiency parameters by comparison of simulation results with experimental data acquired when the engine was fueled with gasoline. In this work the model was improved and can predict the values of pollutant emissions when the engine is running with the studied alternative fuels. As the percentage of hydrogen in hythane is increased the power of the engine rises the brake specific fuel consumption carbon dioxide carbon monoxide and total unburned hydrocarbon emissions decrease while nitrogen oxides increase. The values of peak fire pressure maximum pressure derivative and peak fire temperature in cycle are higher leading to an increased probability of knock occurrence. To avoid this phenomenon an optimum correlation between the natural gas-hydrogen blend the air-fuel ratio the spark advance and the engine operating condition needs to be found.
Sector Coupling and Business Models Towards Sustainability: The Case of the Hydrogen Vehicle Industry
Mar 2022
Publication
The concept of sector coupling has been gaining increased momentum in political discourses during 18 the past few years but it has only recently received the attention of international academics. The 19 private sector is particularly relevant to foster sector coupling through entrepreneurial action – 20 specifically innovative business models for more sustainable technologies are needed to promote a 21 transition towards more sustainability. So far however the literature on business models from a 22 sector coupling perspective is scarce yet strongly emerging. To address the identified research gaps 23 and enhance the current knowledge on the emerging hydrogen vehicle industry and sector coupling 24 this study adopts a qualitative and exploratory research approach and builds on information gained 25 in 103 semi-structured interviews to discuss emerging business models in Germany. In particular 33 26 business cases have been analyzed. Anchoring business model theory to the concept of sector 27 coupling this study identifies 12 business model archetypes in the emerging hydrogen vehicle 28 industry and its value chain. It can be shown that while the market is still emerging and the market 29 players are not defined and are evolving companies are currently engaged in finding their position 30 along the value chain fostering vertical integration and promoting cooperation between the 31 different sectors. While this study is relevant for both the academia and the industry it is particularly 2 32 interesting for policy makers shaping the future of sustainable development specifically considering 33 integrated energy systems.
Alkaline Fuel cell Technology - A review
Apr 2021
Publication
The realm of alkaline-based fuel cells has with the arrival of anionic exchange membrane fuel cells (AEMFCs) taken a great step to replace traditional liquid electrolyte alkaline fuel cells (AFCs). The following review summarises progress bottleneck issues and highlights the most recent research trends within the field. The activity of alkaline catalyst materials has greatly advanced however achieving long-term stability remains a challenge. Great AEMFC performances are reported though these are generally obtained through the employment of platinum group metals (PGMs) thus emphasising the importance of R&D related to non-PGM materials. Thorough design strategies must be utilised for all components to avoid a mismatch of electrochemical properties between electrode components. Lastly AEMFC optimisation challenges on the system-level will also have to be assessed as few application-size AEMFCs have been built and tested.
A Statistical Assessment of Blending Hydrogen into Gas Networks
Aug 2021
Publication
The deployment of low-carbon hydrogen in gas grids comes with strategic benefits in terms of energy system integration and decarbonization. However hydrogen thermophysical properties substantially differ from natural gas and pose concerns of technical and regulatory nature. The present study investigates the blending of hydrogen into distribution gas networks focusing on the steady-state fluid dynamic response of the grids and gas quality compliance issues at increasing hydrogen admixture levels. Two blending strategies are analyzed the first of which involves the supply of NG–H2 blends at the city gate while the latter addresses the injection of pure hydrogen in internal grid locations. In contrast with traditional case-specific analyses results are derived from simulations executed over a large number (i.e. one thousand) of synthetic models of gas networks. The responses of the grids are therefore analyzed in a statistical fashion. The results highlight that lower probabilities of violating fluid dynamic and quality restrictions are obtained when hydrogen injection occurs close to or in correspondence with the system city gate. When pure hydrogen is injected in internal grid locations even very low volumes (1% vol of the total) may determine gas quality violations while fluid dynamic issues arise only in rare cases of significant hydrogen injection volumes (30% vol of the total).
A Review of the Latest Trends in the Use of Green Ammonia as an Energy Carrier in Maritime Industry
Feb 2022
Publication
This review paper examines the key barriers to using green ammonia as an alternative fuel in maritime industry. A literature survey is performed based on research articles and grey literature with the aim of discussing the technoeconomic problems with and benefits of ammonia and the relevant technologies. The limitations of ammonia as a maritime fuel and its supply chain the expected percentage demand by 2030 and 2050 its economic performance compared to other shipping fuels such as hydrogen and the current regulations that may impact ammonia as a maritime fuel are discussed. There are several key barriers to ammonia’s wide adoption: (1) High production costs due to the high capital costs associated with ammonia’s supply chain; (2) availability specifically the limited geographical locations available for ammonia bunkering; (3) the challenge of ramping up current ammonia production; and (4) the development of ammonia-specific regulations addressing issues such as toxicity safety and storage. The general challenges involved with blue ammonia are the large energy penalty and associated operational costs and a lack of technical expertise on its use. Regardless of the origin for ammonia to be truly zero-carbon its whole lifecycle must be considered—a key challenge that will aid in the debate about whether ammonia holds promise as a zero-carbon maritime fuel.
Global Potential of Green Ammonia Based on Hybrid PV-wind Power Plants
Apr 2021
Publication
Ammonia is one of the most commonly used feedstock chemicals globally. Therefore decarbonisation of ammonia production is of high relevance towards achieving a carbon neutral energy system. This study investigates the global potential of green ammonia production from semi-flexible ammonia plants utilising a cost-optimised configuration of hybrid PV-wind power plants as well as conversion and balancing technologies. The global weather data used is on an hourly time scale and 0.45◦ × 0.45◦ spatial resolution. The results show that by 2030 solar PV would be the dominating electricity generation technology in most parts of the world and the role of batteries would be limited while no significant role is found for hydrogen-fuelled gas turbines. Green ammonia could be generated at the best sites in the world for a cost range of 440–630 345–420 300–330 and 260–290 €/tNH3 in 2020 2030 2040 and 2050 respectively for a weighted average capital cost of 7%. Comparing this to the decade-average fossil-based ammonia cost of 300–350 €/t green ammonia could become cost-competitive in niche markets by 2030 and substitute fossil-based ammonia globally at current cost levels. A possible cost decline of natural gas and consequently fossil-based ammonia could be fully neutralised by greenhouse gas emissions cost of about 75 €/tCO2 by 2040. By 2040 green ammonia in China would be lower in cost than ammonia from new coal-based plants even at the lowest coal prices and no greenhouse gas emissions cost. The difference in green ammonia production at the least-cost sites in the world’s nine major regions is less than 50 €/tNH3 by 2040. Thus ammonia shipping cost could limit intercontinental trading and favour local or regional production beyond 2040.
Risk Assessment of the Low-carbon Transition of Austria’s Steel and Electricity Sectors
Dec 2018
Publication
To limit global temperature increase below +2°C societies need to reduce greenhouse gas emissions radically within the next few decades. Amongst other mitigation measures this requires transforming process-emission intensive industries towards emission neutrality. One way to this end is the renewables-based electrification of industries. We present results of a recent coproduction process which brought together stakeholders from industry policy administration and science to co-create climate-neutral transition pathways for the steel and electricity sectors in Austria. The results summarized here are the definition of reliable pathways and the identification of associated risks pertaining to pathway implementation including a macro-economic quantification. We find that risks to implementation (barriers) are at least as important as risks of implementation (negative consequences). From the quantitative analysis we find that provided that barriers can be reduced macroeconomic costs of the transition are only moderate and that stakeholders might overestimate risks when neglecting economy-wide feedbacks.
Hydrogen Production through Autothermal Reforming of Ethanol: Enhancement of Ni Catalyst Performance via Promotion
Aug 2021
Publication
Autothermal reforming of bioethanol (ATR of C2H5OH) over promoted Ni/Ce0.8La0.2O1.9 catalysts was studied to develop carbon-neutral technologies for hydrogen production. The regulation of the functional properties of the catalysts was attained by adjusting their nanostructure and reducibility by introducing various types and content of M promoters (M = Pt Pd Rh Re; molar ratio M/Ni = 0.003–0.012). The composition–characteristics–activity correlation was determined using catalyst testing in ATR of C2H5OH thermal analysis N2 adsorption X-ray diffraction transmission electron microscopy and EDX analysis. It was shown that the type and content of the promoter as well as the preparation mode (combined or sequential impregnation methods) determine the redox properties of catalysts and influence the textural and structural characteristics of the samples. The reducibility of catalysts improves in the following sequence of promoters: Re < Rh < Pd < Pt with an increase in their content and when using the co-impregnation method. It was found that in ATR of C2H5OH over bimetallic Ni-M/Ce0.8La0.2O1.9 catalysts at 600 ◦C the hydrogen yield increased in the following row of promoters: Pt < Rh < Pd < Re at 100% conversion of ethanol. The introduction of M leads to the formation of a NiM alloy under reaction conditions and affects the resistance of the catalyst to oxidation sintering and coking. It was found that for enhancing Ni catalyst performance in H2 production through ATR of C2H5OH the most effective promotion is with Re: at 600 ◦C over the optimum 10Ni-0.4Re/Ce0.8La0.2O1.9 catalyst the highest hydrogen yield 65% was observed.
Risk Assessment of the Large-Scale Hydrogen Storage in Salt Caverns
May 2021
Publication
Salt caverns are accepted as an ideal solution for high-pressure hydrogen storage. As well as considering the numerous benefits of the realization of underground hydrogen storage (UHS) such as high energy densities low leakage rates and big storage volumes risk analysis of UHS is a required step for assessing the suitability of this technology. In this work a preliminary quantitative risk assessment (QRA) was performed by starting from the worst-case scenario: rupture at the ground of the riser pipe from the salt cavern to the ground. The influence of hydrogen contamination by bacterial metabolism was studied considering the composition of the gas contained in the salt caverns as time variable. A bow-tie analysis was used to highlight all the possible causes (basic events) as well as the outcomes (jet fire unconfined vapor cloud explosion (UVCE) toxic chemical release) and then consequence and risk analyses were performed. The results showed that a UVCE is the most frequent outcome but its effect zone decreases with time due to the hydrogen contamination and the higher contents of methane and hydrogen sulfide.
Influence of Hydrogen on Grid Investments for Smart Microgrids
Mar 2022
Publication
Electrification of the heat network in buildings together with a rise in popularity of Electric Vehicles (EVs) will result in a need to make investments in the electrical energy infrastructure in order to prevent congestion. This paper discusses the influence of hydrogen in future smart microgrids on these investments. Moreover smart control strategies i.e. EV management and demand response programs are used in this paper to lower the peak of electrical energy demand resulting in the reduction of these investments. Performances of microgrid with different levels of hydrogen penetration are discussed. It is shown that an increase in the level of hydrogen in the microgrid will reduce the electric grid investments costs but is not economically more beneficial than using ‘green’ gas due to the higher total economic costs.
UK Hydrogen Strategy
Aug 2021
Publication
The UK’s first-ever Hydrogen Strategy drives forward the commitments laid out in the Prime Minister’s ambitious 10 Point Plan for a green industrial revolution by setting the foundation for how the UK government will work with industry to meet its ambition for 5GW of low carbon hydrogen production capacity by 2030 – the equivalent of replacing natural gas in powering around 3 million UK homes each year as well as powering transport and businesses particularly heavy industry.<br/>A booming UK-wide hydrogen economy could be worth £900 million and create over 9000 high-quality jobs by 2030 potentially rising to 100000 jobs and worth up to £13 billion by 2050. By 2030 hydrogen could play an important role in decarbonising polluting energy-intensive industries like chemicals oil refineries power and heavy transport like shipping HGV lorries and trains by helping these sectors move away from fossil fuels. Low-carbon hydrogen provides opportunities for UK companies and workers across our industrial heartlands.<br/>With government analysis suggesting that 20-35% of the UK’s energy consumption by 2050 could be hydrogen-based this new energy source could be critical to meet our targets of net zero emissions by 2050 and cutting emissions by 78% by 2035 – a view shared by the UK’s independent Climate Change Committee. In the UK a low-carbon hydrogen economy could deliver emissions savings equivalent to the carbon captured by 700 million trees by 2032 and is a key pillar of capitalising on cleaner energy sources as the UK moves away from fossil fuels.
THyGA - Intermediate Report on the Test of Technologies by Segment – Impact of the Different H2 Concentrations on Safety, Efficiency, Emissions and Correct Operation
Jan 2022
Publication
This report is the very first version of the document that will present the THyGA short-term test. These tests are carried out to observe how appliances react in the short term (few minutes to few hours) on different H2NG mixtures and long-term test are observing behaviour over several weeks. The analysis is based on the test of about 20 appliances only and is not yet covering extensively all the segments of the project. However most of the aspects of the testing are included in the present version that shall be considered as a draft working document to prepare the final report. We have tried to incorporate all aspects that are important to us but there may be more aspects and more analyses that could be added and will be added in the light of the comments and corrections we will gather after the dissemination of the document.
Hydrogen Storage in Pure and Boron-Substituted Nanoporous Carbons—Numerical and Experimental Perspective
Aug 2021
Publication
Nanoporous carbons remain the most promising candidates for effective hydrogen storage by physisorption in currently foreseen hydrogen-based scenarios of the world’s energy future. An optimal sorbent meeting the current technological requirement has not been developed yet. Here we first review the storage limitations of currently available nanoporous carbons then we discuss possible ways to improve their storage performance. We focus on two fundamental parameters determining the storage (the surface accessible for adsorption and hydrogen adsorption energy). We define numerically the values nanoporous carbons have to show to satisfy mobile application requirements at pressures lower than 120 bar. Possible necessary modifications of the topology and chemical compositions of carbon nanostructures are proposed and discussed. We indicate that pore wall fragmentation (nano-size graphene scaffolds) is a partial solution only and chemical modifications of the carbon pore walls are required. The positive effects (and their limits) of the carbon substitutions by B and Be atoms are described. The experimental ‘proof of concept’ of the proposed strategies is also presented. We show that boron substituted nanoporous carbons prepared by a simple arc-discharge technique show a hydrogen adsorption energy twice as high as their pure carbon analogs. These preliminary results justify the continuation of the joint experimental and numerical research effort in this field.
Optimal Operation of the Hydrogen-based Energy Management System with P2X Demand Response and Ammonia Plant
Jul 2021
Publication
Hydrogen production is the key in utilizing an excess renewable energy. Many studies and projects looked at the energy management systems (EMSs) that allow to couple hydrogen production with renewable generation. In the majority of these studies however hydrogen demand is either produced for powering fuel cells or sold to the external hydrogen market. Hydrogen demand from actual industrial plants is rarely considered. In this paper we propose an EMS based on the industrial cluster of GreenLab Skive (GLS) that can minimize the system’s operational cost or maximize its green hydrogen production. EMS utilizes a conventional and P2X demand response (DR) flexibility from electrolysis plant hydrogen storage tank electric battery and hydrogen-consuming plants to design the optimal schedule with maximized benefits. A potential addition to the existing components at GLS - an ammonia plant is modelled to identify its P2X potential and assess the economic viability of its construction. The results show a potential reduction of 51.5–61.6% for the total operational cost of the system and an increase of the share of green hydrogen by 10.4–37.6% due to EMS operation.
Non-alloy Mg Anode for Ni-MH Batteries: Multiple Approaches Towards a Stable Cycling Performance
Apr 2021
Publication
Mg attracts much research interest as anode material for Ni-MH batteries thanks to its lightweight cost-effectiveness and high theoretical capacity (2200 mA h g−1). However its practical application is tremendously challenged by the poor hydrogen sorption kinetics passivation from aggressive aqueous electrolytes and insulating nature of MgH2. Mg-based alloys exhibit enhanced hydrogen sorption kinetics and electrical conductivity but significant amount of costly transition metal elements are required. In this work we have for the first time utilized non-alloyed but catalyzed Mg as anode for Ni-MH batteries. 5 mol.% TiF3 was added to nanosized Mg for accelerating the hydrogen sorption kinetics. Several strategies for preventing the problematic passivation of Mg have been studied including protective encapsulation of the electrode and utilizing room-temperature/high-temperature ionic liquids and an alkaline polymer membrane as working electrolyte. Promising electrochemical performance has been achieved in this Mg–TiF3 composite anode based Ni-MH batteries with room for further improvements.
Electrification Versus Hydrogen for UK Road Freight: Conclusions from a Systems Analysis of Transport Energy Transitions
Mar 2022
Publication
Collectively the UK investment in transport decarbonisation is greater than £27B from government for incentivising zero-emission vehicles as part of an urgent response to decarbonise the transport sector. The investments made must facilitate a transition to a long-term solution. The success relies on coordinating and testing the evolution of both the energy and transport systems this avoids the risk of unforeseen consequences in both systems and therefore de-risks investment Here we present a semiquantitative energy and transport system analysis for UK road freight focusing on two primary investment areas for nation-wide decarbonisation namely electrification and hydrogen propulsion. Our study assembles and assesses the potential roadblocks of these energy systems into a concise record and considers the infrastructure in relation to all other components within the energy system. It highlights that for system-wide success and resilience a hydrogen system must overcome hydrogen production and distribution barriers whereas an electric system needs to optimise storage solutions and charging facilities. Without cohesive co-evolving energy networks the planning and operational modelling of transport decarbonisation may fall short of meaningful real-world results. A developed understanding of the dependencies between the energy and transport systems is a necessary step in the development of meaningful operational transport models that could de-risk investment in both the energy and transport systems.
Simulation-Assisted Determination of the Start-Up Time of a Polymer Electrolyte Fuel Cell
Nov 2021
Publication
Fuel starvation is a major cause of anode corrosion in low temperature polymer electrolyte fuel cells. The fuel cell start-up is a critical step as hydrogen may not yet be evenly distributed in the active area leading to local starvation. The present work investigates the hydrogen distribution and risk for starvation during start-up and after nitrogen purge by extending an existing computational fluid dynamic model to capture transient behavior. The results of the numerical model are compared with detailed experimental analysis on a 25 cm2 triple serpentine flow field with good agreement in all aspects and a required time step size of 1 s. This is two to three orders of magnitude larger than the time steps used by other works resulting in reasonably quick calculation times (e.g. 3 min calculation time for 1 s of experimental testing time using a 2 million element mesh).
Small-Scaled Production of Blue Hydrogen with Reduced Carbon Footprint
Aug 2021
Publication
This article reviews a method of hydrogen production based on partial non-catalytic oxidation of natural gas in an original synthesis gas generator. The working principles of the unit are similar to those of liquid-propellant rocket engines. This paper presents a description of the operation and technical characteristics of the synthesis gas generator. Its application in the creation of small-scaled plants with a capacity of up to 5–7 thousand m3/h of hydrogen is justified. Hydrogen production in the developed installation requires a two-stage method and includes a technological unit for producing a hydrogen-containing gas. Typical balance compositions of hydrogen-containing gas at the synthesis gas generator’s outlet are given. To increase the hydrogen concentration it is proposed to carry out a two-stage steam catalytic conversion of carbon monoxide contained in the hydrogen-containing gas at the synthesis gas generator’s outlet using a single Cu–Zn–cementcontaining composition. Based on thermodynamic calculations quasi-optimal modes of natural gas partial oxidation with oxygen are formulated and the results of material balance calculation for the installation are presented. In order to produce “blue” hydrogen the scheme of carbon dioxide separation and liquefaction is developed. The conclusion section of the paper contains the test results of a pilot demonstration unit and the recommendations for improving the technology and preventing soot formation.
Analyzing the Competitiveness of Low-carbon Drive-technologies in Road-freight: A Total Cost of Ownership Analysis in Europe
Nov 2021
Publication
In light of the Paris Agreement road-freight represents a critically difficult-to-abate sector. In order to meet the ambitious European transport sector emissions reduction targets a rapid transition to zero-carbon road-freight is necessary. However limited policy assessments indicate where and how to appropriately intervene in this sector. To support policy-makers in accelerating the zero-carbon road-freight transition this paper examines the relative cost competitiveness between commercial vehicles of varying alternative drive-technologies through a total cost of ownership (TCO) assessment. We identify key parameters that when targeted enable the uptake of these more sustainable niche technologies. The assessment is based on a newly compiled database of cost parameters which were triangulated through expert interviews. The results show that cost competitiveness for low- or zero-emission niche technologies in certain application segments and European countries is exhibited already today. In particular we find battery electric vehicles to show great promise in the light- and medium-duty segments but also in the heavy-duty long-haul segments in countries that have enacted targeted policy measures. Three TCO parameters drive this competitiveness: tolls fuel costs and CAPEX subsidies. Based on our analysis we propose that policy-makers target OPEX before CAPEX parameters as well utilize a mix of policy interventions to ensure greater reach increased efficiency and increased policy flexibility.
Non-precious Electrocatalysts for Oxygen Evolution Reaction in Anion Exchange Membrane Water Electrolysis: A Mini Review
Sep 2021
Publication
Anion exchange membrane water electrolysis (AEMWE) is considered the next generation of green hydrogen production method because it uses low-cost non-noble metal oxide electrocatalyst electrodes and can store highpurity hydrogen under high pressure. However the commercialization of AEMWE with non-precious metal oxide electrocatalysts is challenging due to low electrocatalytic activity and durability. Overcoming the low kinetics caused by four-electron transfer is vital in addressing the low activity of non-noble metal oxide electrocatalysts for oxygen evolution reaction. This article overviews the synthesis methods and related techniques for various anode electrodes applied to AEMWE systems. We highlight effective strategies that have been developed to improve the performance and durability of the non-precious electrocatalysts and ensure the stable operation of AEMWE followed by a critical perspective to encourage the development of this technology.
HydroGenerally - Episode 3: Lift Off for Hydrogen in Aviation
Apr 2022
Publication
In this third episode Steffan Eldred and Hannah Abson from Innovate UK KTN are exploring the scale of the opportunity that hydrogen and aviation present alongside their special guest Katy Milne Head of Industrial Strategy at FlyZero.
The podcast can be found on their website
The podcast can be found on their website
Green Hydrogen Production from Raw Biogas: A Techno-Economic Investigation of Conventional Processes Using Pressure Swing Adsorption Unit
Feb 2018
Publication
This paper discusses the techno-economic assessment of hydrogen production from biogas with conventional systems. The work is part of the European project BIONICO whose purpose is to develop and test a membrane reactor (MR) for hydrogen production from biogas. Within the BIONICO project steam reforming (SR) and autothermal reforming (ATR) have been identified as well-known technologies for hydrogen production from biogas. Two biogases were examined: one produced by landfill and the other one by anaerobic digester. The purification unit required in the conventional plants has been studied and modeled in detail using Aspen Adsorption. A pressure swing adsorption system (PSA) with two and four beds and a vacuum PSA (VPSA) made of four beds are compared. VPSA operates at sub-atmospheric pressure thus increasing the recovery: results of the simulations show that the performances strongly depend on the design choices and on the gas feeding the purification unit. The best purity and recovery values were obtained with the VPSA system which achieves a recovery between 50% and 60% at a vacuum pressure of 0.1 bar and a hydrogen purity of 99.999%. The SR and ATR plants were designed in Aspen Plus integrating the studied VPSA model and analyzing the behavior of the systems at the variation of the pressure and the type of input biogas. The SR system achieves a maximum efficiency calculated on the LHV of 52% at 12 bar while the ATR of 28% at 18 bar. The economic analysis determined a hydrogen production cost of around 5 €/kg of hydrogen for the SR case.
A New Model for Constant Fuel Utilization and Constant Fuel Flow in Fuel Cells
Mar 2019
Publication
This paper presents a new model of fuel cells for two different modes of operation: constant fuel utilization control (constant stoichiometry condition) and constant fuel flow control (constant flow rate condition). The model solves the long-standing problem of mixing reversible and irreversible potentials (equilibrium and non-equilibrium states) in the Nernst voltage expression. Specifically a Nernstian gain term is introduced for the constant fuel utilization condition and it is shown that the Nernstian gain is an irreversibility in the computation of the output voltage of the fuel cell. A Nernstian loss term accounts for an irreversibility for the constant fuel flow operation. Simulation results are presented. The model has been validated against experimental data from the literature.
Cost-effective Technology Choice in a Decarbonized and Diversified Long-haul Truck Transportation Sector: A U.S. Case Study
Dec 2021
Publication
Achieving net-zero emissions by 2050 will require accelerated efforts that include decarbonizing long-haul truck transportation. In this difficult-to-decarbonize low-margin industry economic transparency on technology options is vital for decision makers seeking to eliminate emissions. Battery electric (BET) and hydrogen fuel cell electric trucks (FCET) can represent emission-free alternatives to diesel-powered trucks (DT). Previous studies focus on cost competitiveness in weight-constrained transportation even though logistics research shows that significant shares of transportation are constrained by volume and analyze cost only for selected technologies hence impeding a differentiated market segmentation of future emission-free trucks. In this study the perspective of a rational investor is taken and it is shown that under current conditions in the U.S. BETs outperform FCETs in various long-haul use cases despite charging times and cargo deficits and will further increase their technological competitiveness to DTs. While future energy and fueling prices are decisive for BET competitiveness the analysis reveals that autonomous driving may change the picture in favor of FCETs.
Flexible Power & Biomass-to-Methanol Plants: Design Optimization and Economic Viability of the Electrolysis Integration
Nov 2021
Publication
This paper assesses the optimal design criteria of a flexible power and biomass to methanol (PBtM) plant conceived to operate both without green hydrogen addition (baseline mode) and with hydrogen addition (enhanced mode) following an intermittent use of the electrolysis system which is turned on when the electricity price allows an economically viable hydrogen production. The assessed plant includes a gasification section syngas cleaning and compression methanol synthesis and purification and heat recovery steam cycle to be flexibly operated. A sorption-enhanced gasification technology allows to produce a tailored syngas for the downstream synthesis in both the baseline and enhanced operating conditions by controlling the in-situ CO2 separation rate. Two designs are assessed for the methanol synthesis unit with two different reactor sizes: (i) a larger reactor designed on the enhanced operation mode (enhanced reactor design – ERD) and (ii) a smaller reactor designed on the baseline operation mode (baseline reactor design – BRD). The ERD design resulted to be preferable from the techno economic perspectives resulting in 20% lower cost of the e-MeOH (30.80 vs. 37.76 €/ GJLHV) with the baseline assumptions (i.e. 80% of electrolyzer capacity factor and 2019 Denmark day-ahead market electricity price). Other important outcomes are: (i) high electrolysis capacity factor is needed to obtain competitive cost of e-MeOH and (ii) advantages of flexibly operated PBtM plants with respect to inflexible PBtM plants are significant in scenarios with high penetration of intermittent renewables leading to low average prices of electricity but also longer periods of high peak prices.
A Combined Heat and Green Hydrogen (CHH) Generator Integrated with a Heat Network
Sep 2021
Publication
Combined heat and power (CHP) systems offer high energy efficiencies as they utilise both the electricity generated and any excess heat by co-suppling to local consumers. This work presents the potential of a combined heat and hydrogen (CHH) system a solution where Proton exchange membrane (PEM) electrolysis systems producing hydrogen at 60–70% efficiency also co-supply the excess heat to local heat networks. This work investigates the method of capture and utilisation of the excess heat from electrolysis. The analysed system was able to capture 312 kW of thermal energy per MW of electricity and can deliver it as heated water at either 75 ◦C or 45 ◦C this appropriate for existing district heat networks and lower temperature heat networks respectively. This yields an overall CHH system efficiency of 94.6%. An economic analysis was conducted based on income generated through revenue sales of both hydrogen and heat which resulted in a significant reduction in the Levelized Cost of Hydrogen.
Hydrogen Production, Distribution, Storage and Power Conversion in a Hydrogen Economy - A Technology Review
Aug 2021
Publication
To meet ambitious targets for greenhouse gas emissions reduction in the 2035-2050 timeframe hydrogen has been identified as a clean “green” fuel of interest. In comparison to fossil fuel use the burning of hydrogen results in zero CO2 emissions and it can be obtained from renewable energy sources. In addition to zero CO2 emissions hydrogen has several other attractive properties such as higher gravimetric energy content and wider flammability limits than most fossil fuels. However there are practical limitations to its widespread use at present which include low volumetric energy density in the gaseous state and high well-to-wheel costs when compared to fossil fuel production and distribution. In this paper a review is undertaken to identify the current state of development of key areas of the hydrogen network such as production distribution storage and power conversion technology. At present high technology costs still are a barrier to widespread hydrogen adoption but it is envisioned that as scale of production increases then costs are likely to fall. Technical barriers to a hydrogen economy adoption are not as significant as one might think as key technologies in the hydrogen network are already mature with working prototypes already developed for technologies such as liquid hydrogen composite cryotanks and proton exchange membrane fuel cells. It is envisioned that with continuous investment to achieve requisite scale that a hydrogen economy could be realised sooner rather than later with novel concepts such as turboelectric distributed propulsion enabled by a shift to hydrogen-powered network.
Improved VSG Control Strategy Based on the Combined Power Generation System with Hydrogen Fuel Cells and Super Capacitors
Oct 2021
Publication
Due to their environmental protection and high power generation efficiency the control technology of hydrogen fuel cells (HFCs) connected to the microgrid has become a research hotspot. However when they encounter peak demand or transient events the lack of power cannot be compensated immediately by HFCs which results in sudden changes of the voltage and frequency. The improved virtual synchronous generator (VSG) control strategy based on HFCs and supercapacitors (SCs) combined power generation system is proposed to overcome this shortcoming in this paper. The small-signal model for designing the combined system parameters is provided which are in accordance with the system loop gain phase angle margin and adjustment time requirements. Besides the voltage and current double closed-loop based on sequence control is introduced in the VSG controller. The second-order generalized integrator (SOGI) is utilized to separate the positive and negative sequence components of the output voltage. At the same time a positive and negative sequence voltage outer loop is designed to suppress the negative sequence voltage under unbalanced conditions thereby reducing the unbalance of the output voltage. Finally simulation results in MATLAB/Simulink environment verify that the proposed method has better dynamic characteristics and higher steady-state accuracy compared with the traditional VSG control
The Maritime Sector and Its Problematic Decarbonization: A Systematic Review of the Contribution of Alternative Fuels
May 2022
Publication
The present study seeks to select the most important articles and reviews from the Web of Science database that approached alternative fuels towards the decarbonization of the maritime sector. Through a systematic review methodology a combination of keywords and manual refining found a contribution of 103 works worldwide the European continent accounting for 57% of all publications. Twenty-two types of fuels were cited by the authors liquefied natural gas (LNG) hydrogen and biodiesel contributing to 49% of the mentions. Greenhouse gases sulfur oxide nitrogen oxide and particulate matter reductions are some of the main advantages of cleaner sources if used by the vessels. Nevertheless there is a lack of practical research on new standards engine performance cost and regulations from the academy to direct more stakeholders towards low carbon intensity in the shipping sector.
Thermodynamics and Kinetics of Hydriding and Dehydriding Reactions in Mg-based Hydrogen Storage Materials
Oct 2021
Publication
Mg-based materials are one of the most promising hydrogen storage candidates due to their high hydrogen storage capacity environmental benignity and high Clarke number characteristics. However the limited thermodynamics and kinetic properties pose major challenges for their engineering applications. Herein we review the recent progress in improving their thermodynamics and kinetics with an emphasis on the models and the influence of various parameters in the calculated models. Subsequently the impact of alloying composite and nano-crystallization on both thermodynamics and dynamics are discussed in detail. In particular the correlation between various modification strategies and the hydrogen capacity dehydrogenation enthalpy and temperature hydriding/dehydriding rates are summarized. In addition the mechanism of hydrogen storage processes of Mg-based materials is discussed from the aspect of classical kinetic theories and microscope hydrogen transferring behavior. This review concludes with an outlook on the remaining challenge issues and prospects.
Modeling the Effects of Implementation of Alternative Ways of Vehicle Powering
Nov 2021
Publication
The trend to replace traditional fossil fuel vehicles is becoming increasingly apparent. The replacement concerns the use of pure biofuels or in blends with traditional fuels the use of hydrogen as an alternative fuel and above all the introduction of electric propulsion. The introduction of new types of vehicle propulsion affects the demand for specific fuels the needs for new infrastructure or the nature of the emissions to the environment generated by fuel production and vehicle operation. The article presents a mathematical model using the difference of two logistic functions the first of which describes the development of the production of a specific type of vehicle and the second the withdrawal of this type of vehicle from traffic after its use. The model makes it possible to forecast both the number of vehicles of each generation as a function of time as well as changes in energy demand from various sources and changes in exhaust emissions. The results of the numerical simulation show replacing classic vehicles with alternative vehicles increases the total energy demand if the generation of the next generation occurs earlier than the decay of the previous generation of vehicles and may decrease in the case of overlapping or delays in the creation of new vehicles compared to the course of the decay function of the previous generation. For electric vehicles carbon dioxide emissions are largely dependent on the emissions from electricity generation. The proposed model can be used to forecast technology development variants as well as analyze the current situation based on the approximation of real data from Vehicle Registration Offices.
Numerical Study of the Action of Convection on the Volume and Length of the Flammable Zone Formed by Hydrogen Emissions from the Vent Masts Installed on an International Ship
Nov 2021
Publication
International ships carrying liquefied fuel are strongly recommended to install vent masts to control the pressure of cargo tanks in the event of an emergency. However the gas emitted from a vent mast may be hazardous for the crew of the ship. In the present study the volume and length of the flammable zone (FZ) created by the emitted gas above the ship was examined. Various scenarios comprising four parameters namely relative wind speed arrangement of vent masts combination of emissions among four vent masts and direction of emission from the vent-mast outlet were considered. The results showed that the convection acts on the volume and length of an FZ. The volume of an FZ increases when there is a reduction in convection reaching the FZ and when strong convection brings hydrogen from a nearby FZ. The length of the FZ is also related to convection. An FZ is elongated if the center of a vortex is located inside the FZ because this vortex traps hydrogen inside the FZ. The length of an FZ decreases if the center of the vortex is located outside the FZ as such a vortex brings more fresh air into the FZ.
1921–2021: A Century of Renewable Ammonia Synthesis
Apr 2022
Publication
Synthetic ammonia manufactured by the Haber–Bosch process and its variants is the key to securing global food security. Hydrogen is the most important feedstock for all synthetic ammonia processes. Renewable ammonia production relies on hydrogen generated by water electrolysis using electricity generated from hydropower. This was used commercially as early as 1921. In the present work we discuss how renewable ammonia production subsequently emerged in those countries endowed with abundant hydropower and in particular in regions with limited or no oil gas and coal deposits. Thus renewable ammonia played an important role in national food security for countries without fossil fuel resources until after the mid-20th century. For economic reasons renewable ammonia production declined from the 1960s onward in favor of fossil-based ammonia production. However renewable ammonia has recently gained traction again as an energy vector. It is an important component of the rapidly emerging hydrogen economy. Renewable ammonia will probably play a significant role in maintaining national and global energy and food security during the 21st century.
Experimental Study of Hydrogen Production Using Electrolyte Nanofluids with a Simulated Light Source
Dec 2021
Publication
In this research we conducted water electrolysis experiments of a carbon black (CB) based sodium sulfate electrolyte using a Hoffman voltameter. The main objective was to investigate hydrogen production in such systems as well as analyse the electrical properties and thermal properties of nanofluids. A halogen lamp mimicking solar energy was used as a radiation source and a group of comparative tests were also conducted with different irradiation areas. The results showed that by using CB and light it was possible to increase the hydrogen production rate. The optimal CB concentration was 0.1 wt %. At this concentration the hydrogen production rate increased by 30.37% after 20 min of electrolysis. Hence we show that using CB in electrolytes irradiated by solar energy could save the electrical energy necessary for electrolysis processes.
Finding Synergy Between Renewables and Coal: Flexible Power and Hydrogen Production from Advanced IGCC Plants with Integrated CO2 Capture
Feb 2021
Publication
Variable renewable energy (VRE) has seen rapid growth in recent years. However VRE deployment requires a fleet of dispatchable power plants to supply electricity during periods with limited wind and sunlight. These plants will operate at reduced utilization rates that pose serious economic challenges. To address this challenge this paper presents the techno-economic assessment of flexible power and hydrogen production from integrated gasification combined cycles (IGCC) employing the gas switching combustion (GSC) technology for CO2 capture and membrane assisted water gas shift (MAWGS) reactors for hydrogen production. Three GSC-MAWGS-IGCC plants are evaluated based on different gasification technologies: Shell High Temperature Winkler and GE. These advanced plants are compared to two benchmark IGCC plants one without and one with CO2 capture. All plants utilize state-of-the-art H-class gas turbines and hot gas clean-up for maximum efficiency. Under baseload operation the GSC plants returned CO2 avoidance costs in the range of 24.9–36.9 €/ton compared to 44.3 €/ton for the benchmark. However the major advantage of these plants is evident in the more realistic mid-load scenario. Due to the ability to keep operating and sell hydrogen to the market during times of abundant wind and sun the best GSC plants offer a 6–11%-point higher annual rate of return than the benchmark plant with CO2 capture. This large economic advantage shows that the flexible GSC plants are a promising option for balancing VRE provided a market for the generated clean hydrogen exists.
A Comprehensive Evaluation of a Novel Integrated System Consisting of Hydrogen Boil-off Gas Reliquifying Process and Polymer Exchange Membrane Fuel Cell Using Exergoeconomic and Markov Analyses
Dec 2021
Publication
The price of constructing hydrogen generation units is very high and sometimes it is not possible to build them in the desired location so the transfer of hydrogen from the hydrogen generation system to the units that need it is justified. Since the storage of hydrogen gas needs a large volume and its transportation is very complex so if hydrogen is stored in liquid form this problem can be resolved. In transporting liquid hydrogen (LH2) over long distances owing to heat transfer to the environment the LH2 vaporizes forming boil-off gas (BOG). Herein in lieu of only reliquifying the BOG this study proposes and assesses a system employing the BOG partially as feed for a novel liquefaction process and also the remaining utilized in a proton exchange membrane fuel cell (PEMFC) to generate power. Using the cold energy of the onsite liquid oxygen utility of the LH2 cargo vessel the mixed refrigerant liquefaction cycle is further cooled down. In this regard by using 130 kg/h BOG as input 60.37 kg/h of liquid hydrogen is produced and the rest enters PEMFC with 552.7 kg/h oxygen to produce 1592 kW of power. The total thermal efficiency of the integrated system and electrical efficiency of the PEMFC is 83.18% and 68.76% respectively. Regarding the liquefaction cycle its specific power consumption (SPC) and coefficient of performance (COP) were achieved at 3.203 kWh/kgLH2 and 0.1876 respectively. The results of exergy analysis show that the exergy destruction of the whole system is 937.4 kW and also its exergy efficiency is calculated to be 58.38%. Exergoeconomic and Markov analyses have also been applied to the integrated system. Also by changing the important parameters of PEMFC its optimal performance has been extracted.
The Effect of Symmetrically Tilt Grain Boundary of Aluminum on Hydrogen Diffusion
Feb 2022
Publication
High-strength aluminum alloys are widely used in industry. Hydrogen embrittlement greatly reduces the performance and service safety of aluminum alloys. The hydrogen traps in aluminum profoundly affect the hydrogen embrittlement of aluminum. Here we took a coincidence-site lattice (CSL) symmetrically tilted grain boundary (STGB) Σ5(120)[001] as an example to carry out molecular dynamics (MD) simulations of hydrogen diffusion in aluminum at different temperatures and to obtain results and rules consistent with the experiment. At 700 K three groups of MD simulations with concentrations of 0.5 2.5 and 5 atomic % hydrogen (at. % H) were carried out for STGB models at different angles. By analyzing the simulation results and the MSD curves of hydrogen atoms we found that in the low hydrogen concentration of STGB models the grain boundaries captured hydrogen atoms and hindered their movement. In high-hydrogen-concentration models the diffusion rate of hydrogen atoms was not affected by the grain boundaries. The analysis of the simulation results showed that the diffusion of hydro-gen atoms at the grain boundary is anisotropic.
Crack Management of Hydrogen Pipelines
Sep 2021
Publication
The climate emergency is one of the biggest challenges humanity must face in the 21st century. The global energy transition faces many challenges when it comes to ensuring a sustainable reliable and affordable energy supply. A likely outcome is decarbonizing the existing gas infrastructure. This will inevitably lead to greater penetration of hydrogen. While the introduction of hydrogen into natural gas transmission and distribution networks creates challenges there is nothing new or inherently impossible about the concept. Indeed more than 4000 kilometers of hydrogen pipelines are currently in operation. These pipelines however were (almost) all built and operated exclusively in accordance with specific hydrogen codes which tend to be much more restrictive than their natural gas equivalents. This means that the conversion of natural gas pipelines which have often been in service for decades and have accumulated damage and been subject to cracking threats (e.g. fatigue or stress corrosion cracking (SCC)) throughout their lifetime can be challenging. This paper will investigate the impact of transporting hydrogen on the crack management of existing natural gas pipelines from an overall integrity perspective. Different cracking threats will be described including recent industry experience of those which are generic to all steel pipelines but exacerbated by hydrogen and those which are hydrogen specific. The application of a Hydrogen Framework to identify characterise and manage credible cracking threats to pipelines in order to help enable the safe economic and successful introduction of hydrogen into the natural gas network will be discussed.
Catalyst Distribution Optimization Scheme for Effective Green Hydrogen Production from Biogas Reforming
Sep 2021
Publication
Green hydrogen technology has recently gained in popularity due to the current economic and ecological trends that aim to remove the fossil fuels share in the energy mix. Among various alternatives biogas reforming is an attractive choice for hydrogen production. To meet the authorities’ requirements reforming biogas-enriched natural gas and sole biogas is tempting. Highly effective process conditions of biogas reforming are yet to be designed. The current state of the art lacks proper optimization of the process conditions. The optimization should aim to allow for maximization of the process effectiveness and limitation of the phenomena having an adverse influence on the process itself. One of the issues that should be addressed in optimization is the uniformity of temperature inside a reactor. Here we show an optimization design study that aims to unify temperature distribution by novel arrangements of catalysts segments in the model biogas reforming reactor. The acquired numerical results confirm the possibility of the enhancement of reaction effectiveness coming from improving the thermal conditions. The used amount of catalytic material is remarkably reduced as a side effect of the presented optimization. To ensure an unhindered perception of the reaction improvement the authors proposed a ratio of the hydrogen output and the amount of used catalyst as a measure.
Review of the Hydrogen Permeability of the Liner Material of Type IV On-Board Hydrogen Storage Tank
Aug 2021
Publication
The hydrogen storage tank is a key parameter of the hydrogen storage system in hydrogen fuel cell vehicles (HFCVs) as its safety determines the commercialization of HFCVs. Compared with other types the type IV hydrogen storage tank which consists of a polymer liner has the advantages of low cost lightweight and low storage energy consumption but meanwhile higher hydrogen permeability. A detailed review of the existing research on hydrogen permeability of the liner material of type IV hydrogen storage tanks can improve the understanding of the hydrogen permeation mechanism and provide references for following-up researchers and research on the safety of HFCVs. The process of hydrogen permeation and test methods are firstly discussed in detail. This paper then analyzes the factors that affect the process of hydrogen permeation and the barrier mechanism of the liner material and summarizes the prediction models of gas permeation. In addition to the above analysis and comments future research on the permeability of the liner material of the type IV hydrogen storage tank is prospected.
Hydrogen-powered Aviation and its Reliance on Green Hydrogen Infrastructure - Review and Research Gaps
Oct 2021
Publication
Aircraft powered by green hydrogen (H2) are a lever for the aviation sector to reduce the climate impact. Previous research already focused on evaluations of H2 aircraft technology but analyses on infrastructure related cost factors are rarely undertaken. Therefore this paper aims to provide a holistic overview of previous efforts and introduces an approach to assess the importance of a H2 infrastructure for aviation. A short and a medium-range aircraft are modelled and modified for H2 propulsion. Based on these a detailed cost analysis is used to compare both aircraft and infrastructure related direct operating costs (DOC). Overall it is shown that the economy of H2 aviation highly depends on the availability of low-cost green liquid hydrogen (LH2) supply infrastructure. While total DOC might even slightly decrease in a best LH2 cost case total DOC could also increase between 10 and 70% (short-range) and 15e102% (medium-range) due to LH2 costs alone.
Techno-Economic Assessment of Natural Gas Pyrolysis in Molten Salts
Jan 2022
Publication
Steam methane reforming with CO2 capture (blue hydrogen) and water electrolysis based on renewable electricity (green hydrogen) are commonly assumed to be the main supply options in a future hydrogen economy. However another promising method is emerging in the form of natural gas pyrolysis (turquoise hydrogen) with pure carbon as a valuable by-product. To better understand the potential of turquoise hydrogen this study presents a techno-economic assessment of a molten salt pyrolysis process. Results show that moderate reactor pressures around 12 bar are optimal and that reactor size must be limited by accepting reactor performance well below the thermodynamic equilibrium. Despite this challenge stemming from slow reaction rates the simplicity of the molten salt pyrolysis process delivers high efficiencies and promising economics. In the long-term carbon could be produced for 200–300 €/ton granting access to high-volume markets in the metallurgical and chemical process industries. Such a scenario makes turquoise hydrogen a promising alternative to blue hydrogen in regions with public resistance to CO2 transport and storage. In the medium-term expensive first-of-a-kind plants could produce carbon around 400 €/ton if hydrogen prices are set by conventional blue hydrogen production. Pure carbon at this cost level can access smaller high-value markets such as carbon anodes and graphite ensuring profitable operation even for first movers. In conclusion the economic potential of molten salt pyrolysis is high and further demonstration and scale-up efforts are strongly recommended.
A Review of Water Electrolysis-based Systems for Hydrogen Production using Hybrid/Solar/Wind Energy Systems
Oct 2022
Publication
Hydrogen energy as clean and efcient energy is considered signifcant support for the construction of a sustainable society in the face of global climate change and the looming energy revolution. Hydrogen is one of the most important chemical substances on earth and can be obtained through various techniques using renewable and nonrenewable energy sources. However the necessity for a gradual transition to renewable energy sources signifcantly hampers eforts to identify and implement green hydrogen production paths. Therefore this paper’s objective is to provide a technological review of the systems of hydrogen production from solar and wind energy utilizing several types of water electrolyzers. The current paper starts with a short brief about the diferent production techniques. A detailed comparison between water electrolyzer types and a complete illustration of hydrogen production techniques using solar and wind are presented with examples after which an economic assessment of green hydrogen production by comparing the costs of the discussed renewable sources with other production methods. Finally the challenges that face the mentioned production methods are illuminated in the current review.
Our Green Print: Future Heat for Everyone
Jul 2021
Publication
Green Print - Future Heat for Everyone draws together technical consumer and economic considerations to create a pioneering plan to transition 22 million UK homes to low carbon heat by 2050.<br/>Our Green Print underlines the scale of the challenge ahead acknowledging that a mosaic of low carbon heating solutions will be required to meet the needs of individual communities and setting out 12 key steps that can be taken now in order to get us there<br/>The Climate Change Committee (CCC) estimates an investment spend of £250bn to upgrade insulation and heating in homes as well as provide the infrastructure to deliver the energy.<br/>This is a task of unprecedented scale the equivalent of retro-fitting 67000 homes every month from now until 2050. In this Report Cadent takes the industry lead in addressing the challenge.
Hydrogen Production Possibility using Mongolian Renewable Energy
Jan 2019
Publication
There is widespread popular support for using renewable energy particularly solar and wind energy which provide electricity without giving rise to any carbon dioxide emissions. Harnessing these for electricity depends on the cost and efficiency of the technology which is constantly improving thus reducing costs per peak kilowatt and per kWh. Utilizing solar and wind-generated electricity in a stand-alone system requires corresponding battery or other storage capacity. The possibility of large-scale use of hydrogen in the future as a transport fuel increases the potential for both renewables and base-load electricity supply.
Development and Operation Modes of Hydrogen Fuel Cell Generation System for Remote Consumers’ Power Supply
Aug 2021
Publication
At the present stage of electric power industry development special attention is being paid to the development and research of new efficient energy sources. The use of hydrogen fuel cells is promising for remote autonomous power supply systems. The authors of the paper have developed the structure and determined the optimal composition of a hybrid generation system based on hydrogen fuel cells and battery storage and have conducted studies of its operating modes and for remote consumers’ power supply efficiency. A simulation of the electromagnetic processes was carried out to check the operability of the proposed hybrid generation system structure. The simulation results confirmed the operability of the structure under consideration the calculation of its parameters reliability and the high quality of the output voltage. The electricity cost of a hybrid generation system was estimated according to the LCOE (levelized cost of energy) indicator its value being 1.17 USD/kWh. The factors influencing the electricity cost of a hydrogen generation system have been determined and ways for reducing its cost identified.
An Evaluation of Turbocharging and Supercharging Options for High-Efficiency Fuel Cell Electric Vehicles
Dec 2018
Publication
Mass-produced off-the-shelf automotive air compressors cannot be directly used for boosting a fuel cell vehicle (FCV) application in the same way that they are used in internal combustion engines since the requirements are different. These include a high pressure ratio a low mass flow rate a high efficiency requirement and a compact size. From the established fuel cell types the most promising for application in passenger cars or light commercial vehicle applications is the proton exchange membrane fuel cell (PEMFC) operating at around 80 ◦C. In this case an electric-assisted turbocharger (E-turbocharger) and electric supercharger (single or two-stage) are more suitable than screw and scroll compressors. In order to determine which type of these boosting options is the most suitable for FCV application and assess their individual merits a co-simulation of FCV powertrains between GT-SUITE and MATLAB/SIMULINK is realised to compare vehicle performance on the Worldwide Harmonised Light Vehicle Test Procedure (WLTP) driving cycle. The results showed that the vehicle equipped with an E-turbocharger had higher performance than the vehicle equipped with a two-stage compressor in the aspects of electric system efficiency (+1.6%) and driving range (+3.7%); however for the same maximal output power the vehicle’s stack was 12.5% heavier and larger. Then due to the existence of the turbine the E-turbocharger led to higher performance than the single-stage compressor for the same stack size. The solid oxide fuel cell is also promising for transportation application especially for a use as range extender. The results show that a 24-kWh electric vehicle can increase its driving range by 252% due to a 5 kW solid oxide fuel cell (SOFC) stack and a gas turbine recovery system. The WLTP driving range depends on the charge cycle but with a pure hydrogen tank of 6.2 kg the vehicle can reach more than 600 km.
Future of Hydrogen as an Alternative Fuel for Next-Generation Industrial Applications; Challenges and Expected Opportunities
Jun 2022
Publication
A general rise in environmental and anthropogenically induced greenhouse gas emissions has resulted from worldwide population growth and a growing appetite for clean energy industrial outputs and consumer utilization. Furthermore well-established advanced and emerging countries are seeking fossil fuel and petroleum resources to support their aviation electric utilities industrial sectors and consumer processing essentials. There is an increasing tendency to overcome these challenging concerns and achieve the Paris Agreement’s priorities as emerging technological advances in clean energy technologies progress. Hydrogen is expected to be implemented in various production applications as a fundamental fuel in future energy carrier materials development and manufacturing processes. This paper summarizes recent developments and hydrogen technologies in fuel refining hydrocarbon processing materials manufacturing pharmaceuticals aircraft construction electronics and other hydrogen applications. It also highlights the existing industrialization scenario and describes prospective innovations including theoretical scientific advancements green raw materials production potential exploration and renewable resource integration. Moreover this article further discusses some socioeconomic implications of hydrogen as a green resource.
An Overview of Promising Alternative Fuels for Road, Rail, Air, and Inland Waterway Transport in Germany
Feb 2022
Publication
To solve the challenge of decarbonizing the transport sector a broad variety of alternative fuels based on different concepts including Power-to-Gas and Power-to-Liquid and propulsion systems have been developed. The current research landscape is investigating either a selection of fuel options or a selection of criteria a comprehensive overview is missing so far. This study aims to close this gap by providing a holistic analysis of existing fuel and drivetrain options spanning production to utilization. For this purpose a case study for Germany is performed considering different vehicle classes in road rail inland waterway and air transport. The evaluated criteria on the production side include technical maturity costs as well as environmental impacts whereas on the utilization side possible blending with existing fossil fuels and the satisfaction of the required mission ranges are evaluated. Overall the fuels and propulsion systems Methanol-to-Gasoline Fischer–Tropsch diesel and kerosene hydrogen battery-electric propulsion HVO DME and natural gas are identified as promising future options. All of these promising fuels could reach near-zero greenhouse gas emissions bounded to some mandatory preconditions. However the current research landscape is characterized by high insecurity with regard to fuel costs depending on the predicted range and length of value chains.
Fugitive Hydrogen Emissions in a Future Hydrogen Economy
Apr 2022
Publication
There is an increasing body of evidence that leakage of hydrogen to the atmosphere will have an indirect warming effect on the climate and so should be minimised.<br/>This study investigates and quantifies the current understanding of potential hydrogen emissions in the different sectors across a future hydrogen value-chain. It shows that there are some key areas in production distribution and end-use where there could potentially be significant leaks of hydrogen to the atmosphere. In some of these areas there are clear mitigation options while with others the options are less clear due to uncertainty in either data or future technology development.<br/>The report recommends further research and development to reduce the main leak pathways and additional evidence gathering in key areas where there is currently inadequate data to make accurate predictions.<br/>The study was commissioned by BEIS and conducted by the Frazer-Nash consultancy.
Cost and Capacity Requirements of Electrification or Renewable Gas Transition Options that Decarbonize Building Heating in Metro Vancouver, British Columbia
Jun 2022
Publication
Northern countries face a unique challenge in decarbonizing heating demands. This study compares two pathways to reduce carbon emissions from building heating by (1) replacing natural gas heaters with electric heat pumps or (2) replacing natural gas with renewable gas. Optimal annual system cost and capacity requirements for Metro Vancouver Canada are assessed for each pathway under nine scenarios. Results show that either pathway can be lower cost but the range of costs is more narrow for the renewable gas pathway. System cost is sensitive to heat demand with colder temperatures favouring the renewable gas pathway and milder temperatures favouring the electrification pathway. These results highlight the need for a better understanding of heating profiles and associated energy system requirements.
Hydrogen Technology on the Polish Electromobility Market. Legal, Economic, and Social Aspects
Apr 2021
Publication
The aim of this study was to evaluate the motorization market of electric vehicles powered by hydrogen cells in Poland. European conditions of such technology were indicated as well as original proposals on amendments to the law to increase the development pace of electromobility based on hydrogen cells. There were also presented economic aspects of this economic phenomenon. Moreover survey research was conducted to examine the preferences of hydrogen and electric vehicle users in 5 primary Polish cities. In this way the level of social acceptance for the technological revolution based on hydrogen cells and taking place in the motorization sector was determined.
The Value of Flexible Fuel Mixing in Hydrogen-fueled Gas Turbines - A Techno-economic Study
Jul 2022
Publication
In electricity systems mainly supplied with variable renewable electricity (VRE) the variable generation must be balanced. Hydrogen as an energy carrier combined with storage has the ability to shift electricity generation in time and thereby support the electricity system. The aim of this work is to analyze the competitiveness of hydrogen-fueled gas turbines including both open and combined cycles with flexible fuel mixing of hydrogen and biomethane in zero-carbon emissions electricity systems. The work applies a techno-economic optimization model to future European electricity systems with high shares of VRE.<br/>The results show that the most competitive gas turbine option is a combined cycle configuration that is capable of handling up to 100% hydrogen fed with various mixtures of hydrogen and biomethane. The results also indicate that the endogenously calculated hydrogen cost rarely exceeds 5 €/kgH2 when used in gas turbines and that a hydrogen cost of 3–4 €/kgH2 is for most of the scenarios investigated competitive. Furthermore the results show that hydrogen gas turbines are more competitive in wind-based energy systems as compared to solar-based systems in that the fluctuations of the electricity generation in the former are fewer more irregular and of longer duration. Thus it is the characteristics of an energy system and not necessarily the cost of hydrogen that determine the competitiveness of hydrogen gas turbines.
The Evolution and Structure of Ignited High-pressure Cryogenic Hydrogen Jets
Jun 2022
Publication
The anticipated upscaling of hydrogen energy applications will involve the storage and transport of hydrogen at cryogenic conditions. Understanding the potential hazard arising from leaks in high-pressure cryogenic storage is needed to improve hydrogen safety. The manuscript reports a series of numerical simulations with detailed chemistry for the transient evolution of ignited high-pressure cryogenic hydrogen jets. The study aims to gain insight of the ignition processes flame structures and dynamics associated with the transient flame evolution. Numerical simulations were firstly conducted for an unignited jet released under the same cryogenic temperature of 80 K and pressure of 200 bar as the considered ignited jets. The predicted hydrogen concentrations were found to be in good agreement with the experimental measurements. The results informed the subsequent simulations of the ignited jets involving four different ignition locations. The predicted time series snapshots of temperature hydrogen mass fraction and the flame index are analyzed to study the transient evolution and structure of the flame. The results show that a diffusion combustion layer is developed along the outer boundary of the jet and a side diffusion flame is formed for the near-field ignition. For the far-field ignition an envelope flame is observed. The flame structure contains a diffusion flame on the outer edge and a premixed flame inside the jet. Due to the complex interactions between turbulence fuel-air mixing at cryogenic temperature and chemical reactions localized spontaneous ignition and transient flame extinguishment are observed. The predictions also captured the experimentally observed deflagration waves in the far-field ignited jets.
A Review of the Integrated Renewable Energy Systems for Sustainable Urban Mobility
Aug 2022
Publication
Several challenges have emerged due to the increasing deterioration of urban mobility and its severe impacts on the environment and human health. Primary dependence on internal combustion engines that use petrol or diesel has led to poor air quality time losses noise traffic jams and further environmental pollution. Hence the transitions to using rail and or seaway-based public transportation cleaner fuels and electric vehicles are some of the ultimate goals of urban and national decision-makers. However battery natural gas hybrid and fuel cell vehicles require charging stations to be readily available with a sustainable energy supply within urban regions in different residential and business neighborhoods. This study aims to provide an updated and critical review of the concept and recent examples of urban mobility and transportation modes. It also highlights the adverse impacts of several air pollutants emitted from internal combustion engine vehicles. It also aims to shed light on several possible systems that integrate the electric vehicle stations with renewable energy sources. It was found that using certain components within the integrated system and connecting the charging stations with a grid can possibly provide an uninterrupted power supply to electric vehicles leading to less pollution which would encourage users to use more clean vehicles. In addition the environmental impact assessments as well as several implementation challenges are discussed. To this end the main implementation issues related to consumer incentives infrastructure and recommendations are also reported.
A Global Review of the Hydrogen Energy Eco-System
Feb 2023
Publication
Climate change primarily caused by the greenhouse gases emitted as a result of the consumption of carbon-based fossil fuels is considered one of the biggest challenges that humanity has ever faced. Moreover the Ukrainian crisis in 2022 has complicated the global energy and food status quo more than ever. The permanency of this multifaceted fragility implies the need for increased efforts to have energy independence and requires long-term solutions without fossil fuels through the use of clean zero-carbon renewables energies. Hydrogen technologies have a strong potential to emerge as an energy eco-system in its production-storage-distribution-utilization stages with its synergistic integration with solar-wind-hydraulic-nuclear and other zero-carbon clean renewable energy resources and with the existing energy infrastructure. In this paper we provide a global review of hydrogen energy need related policies practices and state of the art for hydrogen production transportation storage and utilization.
A Review of Factors Affecting SCC Initiation and Propagation in Pipeline Carbon Steels
Aug 2022
Publication
Pipelines have been installed and operated around the globe to transport oil and gas for decades. They are considered to be an effective economic and safe means of transportation. The major concern in their operation is corrosion. Among the different forms of corrosion stress corrosion cracking (SCC) which is caused by stresses induced by internal fluid flow or other external forces during the pipeline’s operation in combined action with the presence of a corrosive medium can lead to pipeline failure. In this paper an extensive review of different factors affecting SCC of pipeline steels in various environmental conditions is carried out to understand their impact. Several factors such as temperature presence of oxidizers (O2 CO2 H2S etc.) composition and concentration of medium pH applied stress and microstructure of the metal/alloy have been established to affect the SCC of pipeline steels. SCC susceptibility of a steel at a particular temperature strongly depends on the type and composition of the corrosive medium and microstructure. It was observed that pipeline steels with water quenched and quenched and tempered heat treatments such as those that consist of acicular ferrite or bainitic ferrite grains are more susceptible to SCC irrespective of solution type and composition. Applied stress stress concentration and fluctuating stress facilitates SCC initiation and propagation. In general the mechanisms for crack initiation and propagation in near-neutral solutions are anodic dissolution and hydrogen embrittlement.
The Hydrogen Color Spectrum: Techno-Economic Analysis of the Available Technologies for Hydrogen Production
Feb 2023
Publication
Hydrogen has become the most promising energy carrier for the future. The spotlight is now on green hydrogen produced with water electrolysis powered exclusively by renewable energy sources. However several other technologies and sources are available or under development to satisfy the current and future hydrogen demand. In fact hydrogen production involves different resources and energy loads depending on the production method used. Therefore the industry has tried to set a classification code for this energy carrier. This is done by using colors that reflect the hydrogen production method the resources consumed to produce the required energy and the number of emissions generated during the process. Depending on the reviewed literature some colors have slightly different definitions thus making the classifications imprecise. Therefore this techno-economic analysis clarifies the meaning of each hydrogen color by systematically reviewing their production methods consumed energy sources and generated emissions. Then an economic assessment compares the costs of the various hydrogen colors and examines the most feasible ones and their potential evolution. The scientific community and industry’s clear understanding of the advantages and drawbacks of each element of the hydrogen color spectrum is an essential step toward reaching a sustainable hydrogen economy
On the Potential of Blue Hydrogen Production in Colombia: A Fossil Resource-Based Assessment for Low-Emission Hydrogen
Sep 2022
Publication
Latin America is starting its energy transition. In Colombia with its abundant natural resources and fossil fuel reserves hydrogen (H2 ) could play a key role. This contribution analyzes the potential of blue H2 production in Colombia as a possible driver of the H2 economy. The study assesses the natural resources available to produce blue H2 in the context of the recently launched National Hydrogen Roadmap. Results indicate that there is great potential for low-emission blue H2 production in Colombia using coal as feedstock. Such potential besides allowing a more sustainable use of non-renewable resources would pave the way for green H2 deployment in Colombia. Blue H2 production from coal could range from 700 to 8000 ktH2 /year by 2050 under conservative and ambitious scenarios respectively which could supply up to 1.5% of the global H2 demand by 2050. However while feedstock availability is promising for blue H2 production carbon dioxide (CO2 ) capture capacities and investment costs could limit this potential in Colombia. Indeed results of this work indicate that capture capacities of 15 to 180 MtCO2 /year (conservative and ambitious scenarios) need to be developed by 2050 and that the required investment for H2 deployment would be above that initially envisioned by the government. Further studies on carbon capture utilization and storage capacity implementation of a clear public policy and a more detailed hydrogen strategy for the inclusion of blue H2 in the energy mix are required for establishing a low-emission H2 economy in the country.
Dynamic Emulation of a PEM Electrolyzer by Time Constant Based Exponential Model
Feb 2019
Publication
The main objective of this paper is to develop a dynamic emulator of a proton exchange membrane (PEM) electrolyzer (EL) through an equivalent electrical model. Experimental investigations have highlighted the capacitive effect of EL when subjecting to dynamic current profiles which so far has not been reported in the literature. Thanks to a thorough experimental study the electrical domain of a PEM EL composed of 3 cells has been modeled under dynamic operating conditions. The dynamic emulator is based on an equivalent electrical scheme that takes into consideration the dynamic behavior of the EL in cases of sudden variation in the supply current. The model parameters were identified for a suitable current interval to consider them as constant and then tested with experimental data. The obtained results through the developed dynamic emulator have demonstrated its ability to accurately replicate the dynamic behavior of a PEM EL.
Studies Concerning Electrical Repowering of a Training Airplane Using Hydrogen Fuel Cells
Mar 2024
Publication
The increase in greenhouse gas emissions as well as the risk of fossil fuel depletion has prompted a transition to electric transportation. The European Union aims to substantially reduce pollutant emissions by 2035 through the use of renewable energies. In aviation this transition is particularly challenging mainly due to the weight of onboard equipment. Traditional electric motors with radial magnetic flux have been replaced by axial magnetic flux motors with reduced weight and volume high efficiency power and torque. These motors were initially developed for electric vehicles with in-wheel motors but have been adapted for aviation without modifications. Worldwide there are already companies developing propulsion systems for various aircraft categories using such electric motors. One category of aircraft that could benefit from this electric motor development is traditionally constructed training aircraft with significant remaining flight resource. Electric repowering would allow their continued use for pilot training preparing them for future electrically powered aircraft. This article presents a study on the feasibility of repowering a classic training aircraft with an electric propulsion system. The possibilities of using either a battery or a hybrid source composed of a battery and a fuel cell as an energy source are explored. The goal is to utilize components already in production to eliminate the research phase for specific aircraft components.
A Geospatial Method for Estimating the Levelised Cost of Hydrogen Production from Offshore Wind
Jan 2023
Publication
This paper describes the development of a general-purpose geospatial model for assessing the economic viability of hydrogen production from offshore wind power. A key feature of the model is that it uses the offshore project's location characteristics (distance to port water depth distance to gas grid injection point). Learning rates are used to predict the cost of the wind farm's components and electrolyser stack replacement. The notional wind farm used in the paper has a capacity of 510 MW. The model is implemented in a geographic information system which is used to create maps of levelised cost of hydrogen from offshore wind in Irish waters. LCOH values in 2030 spatially vary by over 50% depending on location. The geographically distributed LCOH results are summarised in a multivariate production function which is a simple and rapid tool for generating preliminary LCOH estimates based on simple site input variables.
Ammonia as Hydrogen Carrier for Transportation; Investigation of the Ammonia Exhaust Gas Fuel Reforming
Jun 2013
Publication
In this paper we show for the first time the feasibility of ammonia exhaust gas reforming as a strategy for hydrogen production used in transportation. The application of the reforming process and the impact of the product on diesel combustion and emissions were evaluated. The research was started with an initial study of ammonia autothermal reforming (NH3 e ATR) that combined selective oxidation of ammonia (into nitrogen and water) and ammonia thermal decomposition over a ruthenium catalyst using air as the oxygen source. The air was later replaced by real diesel engine exhaust gas to provide the oxygen needed for the exothermic reactions to raise the temperature and promote the NH3 decomposition. The main parameters varied in the reforming experiments are O2/NH3 ratios NH3 concentration in feed gas and gas e hourly e space e velocity (GHSV). The O2/NH3 ratio and NH3 concentration were the key factors that dominated both the hydrogen production and the reforming process efficiencies: by applying an O2/NH3 ratio ranged from 0.04 to 0.175 2.5e3.2 l/min of gaseous H2 production was achieved using a fixed NH3 feed flow of 3 l/min. The reforming reactor products at different concentrations (H2 and unconverted NH3) were then added into a diesel engine intake. The addition of considerably small amount of carbon e free reformate i.e. represented by 5% of primary diesel replacement reduced quite effectively the engine carbon emissions including CO2 CO and total hydrocarbons.
Strategies for the Adoption of Hydrogen-Based Energy Storage Systems: An Exploratory Study in Australia
Aug 2022
Publication
A significant contribution to the reduction of carbon emissions will be enabled through the transition from a centralised fossil fuel system to a decentralised renewable electricity system. However due to the intermittent nature of renewable energy storage is required to provide a suitable response to dynamic loads and manage the excess generated electricity with utilisation during periods of low generation. This paper investigates the use of stationary hydrogen-based energy storage systems for microgrids and distributed energy resource systems. An exploratory study was conducted in Australia based on a mixed methodology. Ten Australian industry experts were interviewed to determine use cases for hydrogen-based energy storage systems’ requirements barriers methods and recommendations. This study suggests that the current cost of the electrolyser fuel cell and storage medium and the current low round-trip efficiency are the main elements inhibiting hydrogen-based energy storage systems. Limited industry and practical experience are barriers to the implementation of hydrogen storage systems. Government support could help scale hydrogen-based energy storage systems among early adopters and enablers. Furthermore collaboration and knowledge sharing could reduce risks allowing the involvement of more stakeholders. Competition and innovation could ultimately reduce the costs increasing the uptake of hydrogen storage systems.
Moving Toward the Low-carbon Hydrogen Economy: Experiences and Key Learnings from National Case Studies
Sep 2022
Publication
The urgency to achieve net-zero carbon dioxide (CO2) emissions by 2050 as first presented by the IPCC special report on 1.5°C Global Warming has spurred renewed interest in hydrogen to complement electrification for widespread decarbonization of the economy. We present reflections on estimates of future hydrogen demand optimization of infrastructure for hydrogen production transport and storage development of viable business cases and environmental impact evaluations using life cycle assessments. We highlight challenges and opportunities that are common across studies of the business cases for hydrogen in Germany the UK the Netherlands Switzerland and Norway. The use of hydrogen in the industrial sector is an important driver and could incentivise large-scale hydrogen value chains. In the long-term hydrogen becomes important also for the transport sector. Hydrogen production from natural gas with capture and permanent storage of the produced CO2 (CCS) enables large-scale hydrogen production in the intermediate future and is complementary to hydrogen from renewable power. Furthermore timely establishment of hydrogen and CO2 infrastructures serves as an anchor to support the deployment of carbon dioxide removal technologies such as direct air carbon capture and storage (DACCS) and biohydrogen production with CCS. Significant public support is needed to ensure coordinated planning governance and the establishment of supportive regulatory frameworks which foster the growth of hydrogen markets.
Transition to Low-Carbon Hydrogen Energy System in the UAE: Sector Efficiency and Hydrogen Energy Production Efficiency Analysis
Sep 2022
Publication
To provide an effective energy transition hydrogen is required to decarbonize the hard-toabate industries. As a case study this paper provides a holistic view of the hydrogen energy transition in the United Arab Emirates (UAE). By utilizing the directional distance function undesirable data envelopment analysis model the energy economic and environmental efficiency of UAE sectors are estimated from 2001 to 2020 to prioritize hydrogen sector coupling. Green hydrogen production efficiency is analyzed from 2020 to 2050. The UAE should prioritize the industry and transportation sectors with average efficiency scores of 0.7 and 0.74. The decomposition of efficiency into pure technical efficiency and scale efficiency suggests policies and strategies should target upscaling the UAE’s low-carbon hydrogen production capacity to expedite short-term and overall production efficiency. The findings of this study can guide strategies and policies for the UAE’s low-carbon hydrogen transition. A framework is developed based on the findings of the study.
Main Trends and Research Directions in Hydrogen Generation Using Low Temperature Electrolysis: A Systematic Literature Review
Aug 2022
Publication
Hydrogen (H2 ) is the most abundant element in the universe and it is also a neutral energy carrier meaning the environmental effects of using it are strictly related to the effects of creating the means of producing of that amount of Hydrogen. So far the H2 generation by water electrolysis research field did not manage to break the efficiency barrier in order to consider H2 production as a technology that sustains financially its self-development. However given the complexity of this technology and the overall environmental impacts an up-to-date research and development status review is critical. Thus this study aims to identify the main trends achievements and research directions of the H2 generation using pure and alkaline water electrolysis providing a review of the state of the art in the specific literature. Methods: In order to deliver this a Systematic Literature Review was carried out using PRISMA methodology highlighting the research trends and results in peer review publish articles over more than two years (2020–2022). Findings: This review identifies niches and actual status of the H2 generation by water and alkaline water electrolysis and points out in numbers the boundaries of the 2020–2022 timeline research.
The Hydrogen Economy - Where is the Water?
Jul 2022
Publication
"Green hydrogen” i.e. hydrogen produced by splitting water with a carbon “free” source of electricity via electrolysis is set to become the energy vector enabling a deep decarbonisation of society and a virtuous water based energy cycle. If to date water electrolysis is considered to be a scalable technology the source of water to enable a “green hydrogen” economy at scale is questionable. Countries with the highest renewable energy potential like Australia are also among the driest places on earth. Globally 380000 GL/year of wastewater is available and this is much more than the 34500 GL/year of water required to produce the projected 2.3 Gt of hydrogen of a mature hydrogen economy. Hence the need to assess both technically and economically whether some wastewater treatment effluent are a better source for green hydrogen. Analysis of Sydney Water’s wastewater treatment plants alone shows that these plants have 37.6 ML/day of unused tertiary effluents which if electrolysed would generate 420000 t H2/day or 0.88 Mt H2/year and cover ∼100% of Australia’s estimated production by 2030. Furthermore the production of oxygen as a by-product of the electrolysis process could lead to significant benefits to the water industry not only in reducing the cost of the hydrogen produced for $3/kg (assuming a price of oxygen of $3–4 per kg) but also in improving the environmental footprint of wastewater treatment plants by enabling the onsite re-use of oxygen for the treatment of the wastewater. Compared to desalinated water that requires large investments or stormwater that is unpredictable it is apparent that the water utilities have a critical role to play in managing water assets that are “climate independent” as the next “golden oil” opportunity and in enabling a “responsible” hydrogen industry that sensibly manages its water demands and does not compete with existing water potable water demand.
Regional Uptake of Direct Reduction Iron Production Using Hydrogen Under Climate Policy
Nov 2022
Publication
The need to reduce CO2 emissions to zero by 2050 has meant an increasing focus on high emitting industrial sectors such as steel. However significant uncertainties remain as to the rate of technology diffusion across steel production pathways in different regions and how this might impact on climate ambition. Informed by empirical analysis of historical transitions this paper presents modelling on the regional deployment of Direction Reduction Iron using hydrogen (DRI-H2). We find that DRI-H2 can play a leading role in the decarbonisation of the sector leading to near-zero emissions by 2070. Regional spillovers from early to late adopting regions can speed up the rate of deployment of DRI-H2 leading to lower cumulative emissions and system costs. Without such effects cumulative emissions are 13% higher than if spillovers are assumed and approximately 15% and 20% higher in China and India respectively. Given the estimates of DRI-H2 cost-effectiveness relative to other primary production technologies we also find that costs increase in the absence of regional spillovers. However other factors can also have impacts on deployment emission reductions and costs including the composition of the early adopter group material efficiency improvements and scrap recycling rates. For the sector to achieve decarbonisation key regions will need to continue to invest in low carbon steel projects recognising their broader global benefit and look to develop and strengthen policy coordination on technologies such as DRI-H2.
The New Model of Energy Cluster Management and Functioning
Sep 2022
Publication
This article was aimed to answer the question of whether local energy communities have a sufficient energy surplus for storage purposes including hydrogen production. The article presents an innovative approach to current research and a discussion of the concepts of the collective prosumer and virtual prosumer that have been implemented in the legal order and further amended in the law. From this perspective it was of utmost importance to analyze the model of functioning of an energy cluster consisting of energy consumers energy producers and hydrogen storage whose goal is to maximize the obtained benefits assuming the co-operative nature of the relationship. The announced and clear perspective of the planned benefits will provide the cluster members a measurable basis for participation in such an energy community. However the catalogue of benefits will be conditioned by the fulfillment of several requirements related to both the scale of covering energy demand from own sources and the need to store surplus energy. As part of the article the results of analyses together with a functional model based on real data of the local energy community are presented.
Analysis of Hydrogen Production Costs in Steam-Methane Reforming Considering Integration with Electrolysis and CO2 Capture
Aug 2022
Publication
Global hydrogen production is dominated by the Steam-Methane Reforming (SMR) route which is associated with significant CO2 emissions and excess process heat. Two paths to lower specific CO2 emissions in SMR hydrogen production are investigated: (1) the integration of CO2 capture and compression for subsequent sequestration or utilization and (2) the integration of electrolysis for increased hydrogen production. In both cases the excess process heat is utilized to drive the emissions reduction options. Four different design regimes for integration of carbon capture and compression with the SMR process are identified. Techno-economic analyses are performed to study the effect of CO2 mitigation on hydrogen production costs compared to grey hydrogen production without emissions mitigation options. Integration with electrolysis is shown to be less attractive compared to the proposed heat and power integration schemes for the SMR process with CO2 capture and compression for subsequent sequestration or utilization which can reduce emissions by 90% with hydrogen production costs increasing only moderately by 13%. This blue hydrogen production is compared in terms of costs and emissions against the emerging alternative production by electrolysis in the context of renewable and fossil electricity generation and electricity mixes while considering life-cycle emissions.
Progress in Reducing Emissions in Scotland: 2021 Report to Parliament
Dec 2021
Publication
This is the tenth annual Progress Report to the Scottish Parliament as required by the Climate Change (Scotland) Act 2009. This year’s report shows that in 2019 Scotland’s greenhouse emissions fell by 2% compared to 2018 and are now 44% below 1990 levels. The reductions were largely driven by the manufacturing and construction and fuel supply sectors with electricity generation remaining the biggest driver of emissions cuts over the past decade (2009-2019). The potential for further emissions savings from electricity generation has however largely run out.
The focus must now shift to ensuring that rapid emissions reductions are delivered with no further delay to allow Scotland to meet its legislated 2030 target.
This report and other reports by the Climate Change Committee can be downloaded on their website.
The focus must now shift to ensuring that rapid emissions reductions are delivered with no further delay to allow Scotland to meet its legislated 2030 target.
This report and other reports by the Climate Change Committee can be downloaded on their website.
Large-scale Long-distance Land-based Hydrogen Transportation Systems: A Comparative Techno-economic and Greenhouse Gas Emission Assessment
Aug 2022
Publication
Interest in hydrogen as an energy carrier is growing as countries look to reduce greenhouse gas (GHG) emissions in hard-to-abate sectors. Previous works have focused on hydrogen production well-to-wheel analysis of fuel cell vehicles and vehicle refuelling costs and emissions. These studies use high-level estimates for the hydrogen transportation systems that lack sufficient granularity for techno-economic and GHG emissions analysis. In this work we assess and compare the unit costs and emission footprints (direct and indirect) of 32 systems for hydrogen transportation. Process-based models were used to examine the transportation of pure hydrogen (hydrogen pipeline and truck transport of gaseous and liquified hydrogen) hydrogen-natural gas blends (pipeline) ammonia (pipeline) and liquid organic hydrogen carriers (pipeline and rail). We used sensitivity and uncertainty analyses to determine the parameters impacting the cost and emission estimates. At 1000 km the pure hydrogen pipelines have a levelized cost of $0.66/kg H2 and a GHG footprint of 595 gCO2eq/kg H2. At 1000 km ammonia liquid organic hydrogen carrier and truck transport scenarios are more than twice as expensive as pure hydrogen pipeline and hythane and more than 1.5 times as expensive at 3000 km. The GHG emission footprints of pure hydrogen pipeline transport and ammonia transport are comparable whereas all other transport systems are more than twice as high. These results may be informative for government agencies developing policies around clean hydrogen internationally.
Building the Green Hydrogen Market - Current State and Outlook on Green Hydrogen Demand and Electrolyzer Manufacturing
Jul 2022
Publication
Over the past two years requirements to meet climate targets have been intensified. In addition to the tightening of the climate targets and the demand for net-zero achievement by as early as 2045 there have been discussions on implementing and realizing these goals. Hydrogen has emerged as a promising climate-neutral energy carrier. Thus over the last 1.5 years more than 25 countries have published hydrogen roadmaps. Furthermore various studies by different authorities have been released to support the development of a hydrogen economy. This paper examines published studies and hydrogen country roadmaps as part of a meta-analysis. Furthermore a market analysis of electrolyzer manufacturers is conducted. The prospected demand for green hydrogen from various studies is compared to electrolyzer manufacturing capacities and selected green hydrogen projects to identify potential market ramp-up scenarios and to evaluate if green hydrogen demand forecasts can be filled.
High Technical and Temporal Resolution Integrated Energy System Modelling of Industrial Decarbonisation
Aug 2022
Publication
Owing to the complexity of the sector industrial activities are often represented with limited technological resolution in integrated energy system models. In this study we enriched the technological description of industrial activities in the integrated energy system analysis optimisation (IESA-Opt) model a peer-reviewed energy system optimisation model that can simultaneously provide optimal capacity planning for the hourly operation of all integrated sectors. We used this enriched model to analyse the industrial decarbonisation of the Netherlands for four key activities: high-value chemicals hydrocarbons ammonia and steel production. The analyses performed comprised 1) exploring optimality in a reference scenario; 2) exploring the feasibility and implications of four extreme industrial cases with different technological archetypes namely a bio-based industry a hydrogen-based industry a fully electrified industry and retrofitting of current assets into carbon capture utilisation and storage; and 3) performing sensitivity analyses on key topics such as imported biomass hydrogen and natural gas prices carbon storage potentials technological learning and the demand for olefins. The results of this study show that it is feasible for the energy system to have a fully bio-based hydrogen-based fully electrified and retrofitted industry to achieve full decarbonisation while allowing for an optimal technological mix to yield at least a 10% cheaper transition. We also show that owing to the high predominance of the fuel component in the levelled cost of industrial products substantial reductions in overnight investment costs of green technologies have a limited effect on their adoption. Finally we reveal that based on the current (2022) energy prices the energy transition is cost-effective and fossil fuels can be fully displaced from industry and the national mix by 2050
Hydrogen-Enriched Compressed Natural Gas Network Simulation for Consuming Green Hydrogen Considering the Hydrogen Diffusion Process
Sep 2022
Publication
Transporting green hydrogen by existing natural gas networks has become a practical means to accommodate curtailed wind and solar power. Restricted by pipe materials and pressure levels there is an upper limit on the hydrogen blending ratio of hydrogen-enriched compressed natural gas (HCNG) that can be transported by natural gas pipelines which affects whether the natural gas network can supply energy safely and reliably. To this end this paper investigates the effects of the intermittent and fluctuating green hydrogen produced by different types of renewable energy on the dynamic distribution of hydrogen concentration after it is blended into natural gas pipelines. Based on the isothermal steady-state simulation results of the natural gas network two convection–diffusion models for the dynamic simulation of hydrogen injections are proposed. Finally the dynamic changes of hydrogen concentration in the pipelines under scenarios of multiple green hydrogen types and multiple injection nodes are simulated on a seven-node natural gas network. The simulation results indicate that compared with the solar-power-dominated hydrogen productionblending scenario the hydrogen concentrations in the natural gas pipelines are more uniformly distributed in the wind-power-dominated scenario and the solar–wind power balance scenario. To be specific in the solar-power-dominated scenario the hydrogen concentration exceeds the limit for more time whilst the overall hydrogen production is low and the local hydrogen concentration in the natural gas network exceeds the limit for nearly 50% of the time in a day. By comparison in the wind-power-dominated scenario all pipelines can work under safe conditions. The hydrogen concentration overrun time in the solar–wind power balance scenario is also improved compared with the solar-power-dominated scenario and the limit-exceeding time of the hydrogen concentration in Pipe 5 and Pipe 6 is reduced to 91.24% and 91.99% of the solar-power-dominated scenario. This work can help verify the day-ahead scheduling strategy of the electricity-HCNG integrated energy system (IES) and provide a reference for the design of local hydrogen production-blending systems.
The Role of Renewable Energies, Storage and Sector-Coupling Technologies in the German Energy Sector under Different CO2 Emission Restrictions
Aug 2022
Publication
This study aimed to simulate the sector-coupled energy system of Germany in 2030 with the restriction on CO2 emission levels and to observe how the system evolves with decreasing emissions. Moreover the study presented an analysis of the interconnection between electricity heat and hydrogen and how technologies providing flexibility will react when restricting CO2 emissions levels. This investigation has not yet been carried out with the technologies under consideration in this study. It shows how the energy system behaves under different set boundaries of CO2 emissions and how the costs and technologies change with different emission levels. The study results show that the installed capacities of renewable technologies constantly increase with higher limitations on emissions. However their usage rates decreases with low CO2 emission levels in response to higher curtailed energy. The sector-coupled technologies behave differently in this regard. Heat pumps show similar behaviour while the electrolysers usage rate increases with more renewable energy penetration. The system flexibility is not primarily driven by the hydrogen sector but in low CO2 emission level scenarios the flexibility shifts towards the heating sector and electrical batteries.
Hydrogen Safety Challenges: A Comprehensive Review on Production, Storage, Transport, Utilization, and CFD-Based Consequence and Risk Assessment
Mar 2024
Publication
This review examines the central role of hydrogen particularly green hydrogen from renewable sources in the global search for energy solutions that are sustainable and safe by design. Using the hydrogen square safety measures across the hydrogen value chain—production storage transport and utilisation—are discussed thereby highlighting the need for a balanced approach to ensure a sustainable and efficient hydrogen economy. The review also underlines the challenges in safety assessments points to past incidents and argues for a comprehensive risk assessment that uses empirical modelling simulation-based computational fluid dynamics (CFDs) for hydrogen dispersion and quantitative risk assessments. It also highlights the activities carried out by our research group SaRAH (Safety Risk Analysis and Hydrogen) relative to a more rigorous risk assessment of hydrogenrelated systems through the use of a combined approach of CFD simulations and the appropriate risk assessment tools. Our research activities are currently focused on underground hydrogen storage and hydrogen transport as hythane.
Numerical Simulation on the Thermal Dynamic Behavior of Liquid Hydrogen in a Storage Tank for Trailers
Oct 2022
Publication
In the present study a numerical model was established to investigate the thermal dynamic behavior of liquid hydrogen in a 40-foot ISO tank. The volume of fluids (VOF) method was applied to capture the liquid surface and a phase change model was used to describe the evaporation phenomenon of hydrogen. The mesh independence analysis and the experimental validation have been made. Under different filling levels motion statuses and heat leakage conditions the variations in pressure and temperature of the tank were investigated. The pressure of 90% filling level case was reduced by 12.09% compared to the 50% case. Besides the pressure of the sloshing condition has increased twofold contrasted with the stationary one and thermal stratification disappeared. Additionally 16.67 minutes were taken for the ullage pressure to reach around 1MPa in emergencies of being extremely heated. Some valuable conclusions and suggestions for the transportation of liquid hydrogen arrived. Those could be the references to predict the release time of boil-off hydrogen and primarily support for gas-releasing control strategies.
Critical Parameters Controlling Wettability in Hydrogen Underground Storage - An Analytical Study
Sep 2022
Publication
Hypothesis.<br/>The large-scale implementation of hydrogen economy requires immense storage spaces to facilitate the periodic storage/production cycles. Extensive modelling of hydrogen transport in porous media is required to comprehend the hydrogen-induced complexities prior to storage to avoid energy loss. Wettability of hydrogen-brine-rock systems influence flow properties (e.g. capillary pressure and relative permeability curves) and the residual saturations which are all essential for subsurface hydrogen systems.<br/>Model.<br/>This study aims to understand which parameters critically control the contact angle for hydrogen-brine-rock systems using the surface force analysis following the DLVO theory and sensitivity analysis. Furthermore the effect of roughness is studied using the Cassie-Baxter model.<br/>Findings.<br/>Our results reveal no considerable difference between H2 and other gases such as N2. Besides the inclusion of roughness highly affects the observed apparent contact angles and even lead to water-repelling features. It was observed that contact angle does not vary significantly with variations of surface charge and density at high salinity which is representative for reservoir conditions. Based on the analysis it is speculated that the influence of roughness on contact angle becomes significant at low water saturation (i.e. high capillary pressure).
Overview of the Hydrogen Production by Plasma-Driven Solution Electrolysis
Oct 2022
Publication
This paper reviews the progress in applying the plasma-driven solution electrolysis (PDSE) which is also referred to as the contact glow-discharge electrolysis (CGDE) or plasma electrolysis for hydrogen production. The physicochemical processes responsible for the formation of PDSE and effects occurring at the discharge electrode in the cathodic and anodic regimes of the PDSE operation are described. The influence of the PDSE process parameters especially the discharge polarity magnitude of the applied voltage type and concentration of the typical electrolytic solutions (K2CO3 Na2CO3 KOH NaOH H2SO4 ) presence of organic additives (CH3OH C2H5OH CH3COOH) temperature of the electrolytic solution the active length and immersion depth of the discharge electrode into the electrolytic solution on the energy efficiency (%) energy yield (g(H2 )/kWh) and hydrogen production rate (g(H2 )/h) is presented and discussed. This analysis showed that in the cathodic regime of PDSE the hydrogen production rate is 33.3 times higher than that in the anodic regime of PDSE whereas the Faradaic and energy efficiencies are 11 and 12.5 times greater respectively than that in the anodic one. It also revealed the energy yield of hydrogen production in the cathodic regime of PDSE in the methanol–water mixture as the electrolytic solution is 3.9 times greater compared to that of the alkaline electrolysis 4.1 times greater compared to the polymer electrolyte membrane electrolysis 2.8 times greater compared to the solid oxide electrolysis 1.75 times greater than that obtained in the microwave (2.45 GHz) plasma and 5.8% greater compared to natural gas steam reforming.
Cross-regional Electricity and Hydrogen Deployment Research Based on Coordinated Optimization: Towards Carbon Neutrality in China
Sep 2022
Publication
In order to achieve carbon neutrality in a few decades the clean energy proportion in power mix of China will significantly rise to over 90%. A consensus has been reached recently that it will be of great significance to promote hydrogen energy that is produced by variable renewable energy power generation as a mainstay energy form in view of its potential value on achieving carbon neutrality. This is because hydrogen energy is capable of complementing the power system and realizing further electrification especially in the section that cannot be easily replaced by electric energy. Power system related planning model is commonly used for mid-term and long-term planning implemented through power installation and interconnection capacity expansion optimization. In consideration of the high importance of hydrogen and its close relationship with electricity an inclusive perspective which contains both kinds of the foresaid energy is required to deal with planning problems. In this study a joint model is established by coupling hydrogen energy model in the chronological operation power planning model to realize coordinated optimization on energy production transportation and storage. By taking the carbon neutrality scenario of China as an example the author applies this joint model to deploy a scheme research on power generation and hydrogen production inter-regional energy transportation capacity and hydrogen storage among various regions. Next by taking the technology progress and cost decrease prediction uncertainty into account the main technical– economic parameters are employed as variables to carry out sensitivity analysis research with a hope that the quantitative calculation and results discussion could provide suggestion and reference to energy-related companies policy-makers and institute researchers in formulating strategies on related energy development.
Hydrogen Fuel Cell Vehicle Development in China: An Industry Chain Perspective
Jun 2020
Publication
Hydrogen fuel cell vehicle (FCV) technology has significant implications on energy security and environmental protection. In the past decade China has made great progress in the hydrogen and FCV industry considering both the government’s policy issuances and enterprises’ production. However there are still some technological and cost challenges obstructing the commercialization of FCVs. Herein the status of China’s hydrogen FCV industry is analyzed comprehensively from three perspectives: policy support market application and technology readiness level. The unique characteristics and key issues in each part of the industry chain are emphasized. Furthermore the energy environmental and economic performances of FCV in the life-cycle perspective are reviewed and summarized based on pre-existing literature and reports. The life-cycle analysis of hydrogen and FCV indicates that the energy and environmental impacts of FCVs are highly related to the sources of hydrogen. With the combination of industry status and technology performances it is highlighted that technology advancements in hydrogen production and fuel cells and the optimization of the manufacturing processes for fuel cell systems are equally essential in the development of hydrogen FCVs.
Underground Bio-methanation: Concept and Potential
Feb 2020
Publication
As a major part of the energy turn around the European Union and other countries are supporting the development of renewable energy technologies to decrease nuclear and fossil energy production. Therefore efficient use of renewable energy resources is one challenge as they are influenced by environmental conditions and hence the intensity of resources such as wind or solar power fluctuates. To secure constant energy supply suitable energy storage and conversion techniques are required. An upcoming solution is the utilization and storage of hydrogen or hydrogen-rich natural gas in porous formations in the underground. In the past microbial methanation was observed as a side effect during these gas storage operations. The concept of underground bio-methanation arised which uses the microbial metabolism to convert hydrogen and carbon dioxide into methane. The concept consists of injecting gaseous hydrogen and carbon dioxide into an underground structure during energy production peaks which are subsequently partly converted into methane. The resulting methane-rich gas mixture is withdrawn during high energy demand. The concept is comparable to engineered bio-reactors which are already locally integrated into the gas infrastructure. In both technologies the conversion process of hydrogen into methane is driven by hydrogenotrophic methanogenic archaea present in the aqueous phase of the natural underground or above-ground engineered reactor. Nevertheless the porous medium in the underground provides compared to the engineered bio-reactors a larger interface between the gas and aqueous phase caused by the enormous volume in the underground porous media. The following article summarizes the potential and concept of underground methanation and the current state of the art in terms of laboratory investigations and pilot tests. A short system potential analysis shows that an underground bio-reactor with a storage capacity of 850 Mio. Sm3 could deliver methane to more than 600000 households based on a hydrogen production from renewable energies.
Life Cycle Cost Analysis for Scotland Short-Sea Ferries
Feb 2023
Publication
The pathway to zero carbon emissions passing through carbon emissions reduction is mandatory in the shipping industry. Regarding the various methodologies and technologies reviewed for this purpose Life Cycle Cost Analysis (LCCA) has been used as an excellent tool to determine economic feasibility and sustainability and to present directions. However insufficient commercial applications cause a conflict of opinion on which fuel is the key to decarbonisation. Many LCCA comparison studies about eco-friendly ship propulsion claim different results. In order to overcome this and discover the key factors that affect the overall comparative analysis and results in the maritime field it is necessary to conduct the comparative analysis considering more diverse case ships case routes and various types that combine each system. This study aims to analyse which greener fuels are most economically beneficial for the shipping sector and prove the factors influencing different results in LCCA. This study was conducted on hydrogen ammonia and electric energy which are carbon-free fuels among various alternative fuels that are currently in the limelight. As the power source a PEMFC and battery were used as the main power source and a solar PV system was installed as an auxiliary power source to compare economic feasibility. Several cost data for LCCA were selected from various feasible case studies. As the difficulty caused by the storage and transportation of hydrogen and ammonia should not be underestimated in this study the LCCA considers not only the CapEx and OpEx but also fuel transport costs. As a result fuel cell propulsion systems with hydrogen as fuel proved financial effectiveness for short-distance ferries as they are more inexpensive than ammonia-fuelled PEMFCs and batteries. The fuel cost takes around half of the total life-cycle cost during the life span.
Enabling Hydrogen Blending From Industrial Clusters
Nov 2022
Publication
This study has been commissioned by the gas transporters as part of the Gas Goes Green (GGG)2 work programme to develop and report a ‘gas transporter view’ on how to facilitate hydrogen blending from industrial clusters which are likely to form the initial source for hydrogen blending in the gas network. This view has been developed through engagement carried out with industrial clusters and other stakeholders as well as drawing on learnings from a previous hydrogen blending study.3 The key takeaways of this study are that: l Enabling hydrogen blending from industrial clusters can be done in a pragmatic way with limited need for change to existing gas frameworks. l Where frameworks do need to change the changes are incremental rather than involving overhaul of existing frameworks and are highly workable. l While there remain uncertainties as to the nature of blending at each cluster (e.g. the volume and profile of hydrogen injections) in general the changes required to commercial and regulatory frameworks are the same implying that they are low regret. Below we summarise gas transporters’ preferred approach to facilitating hydrogen blending from industrial clusters including both the policy decisions needed and the changes required to commercial and regulatory frameworks. We note that this work has not involved a legal review and that one will be required as part of the process of implementing the framework changes described below.
Green Hydrogen Production Technologies from Ammonia Cracking
Nov 2022
Publication
The rising technology of green hydrogen supply systems is expected to be on the horizon. Hydrogen is a clean and renewable energy source with the highest energy content by weight among the fuels and contains about six times more energy than ammonia. Meanwhile ammonia is the most popular substance as a green hydrogen carrier because it does not carry carbon and the total hydrogen content of ammonia is higher than other fuels and is thus suitable to convert to hydrogen. There are several pathways for hydrogen production. The considered aspects herein include hydrogen production technologies pathways based on the raw material and energy sources and different scales. Hydrogen can be produced from ammonia through several technologies such as electro-chemical photocatalytic and thermochemical processes that can be used at production plants and fueling stations taking into consideration the conversion efficiency reactors catalysts and their related economics. The commercial process is conducted by using expensive Ru catalysts in the ammonia converting process but is considered to be replaced by other materials such as Ni Co La and other perovskite catalysts which have high commercial potential with equivalent activity for extracting hydrogen from ammonia. For successful engraftment of ammonia to hydrogen technology into industry integration with green technologies and economic methods as well as safety aspects should be carried out.
No more items...