United Kingdom
Optimal Energy Management System Using Biogeography Based Optimization for Grid-connected MVDC Microgrid with Photovoltaic, Hydrogen System, Electric Vehicles and Z-source Converters
Oct 2021
Publication
Currently the technology associated with charging stations for electric vehicles (EV) needs to be studied and improved to further encourage its implementation. This paper presents a new energy management system (EMS) based on a Biogeography-Based Optimization (BBO) algorithm for a hybrid EV charging station with a configuration that integrates Z-source converters (ZSC) into medium voltage direct current (MVDC) grids. The EMS uses the evolutionary BBO algorithm to optimize a fitness function defining the equivalent hydrogen consumption/generation. The charging station consists of a photovoltaic (PV) system a local grid connection two fast charging units and two energy storage systems (ESS) a battery energy storage (BES) and a complete hydrogen system with fuel cell (FC) electrolyzer (LZ) and hydrogen tank. Through the use of the BBO algorithm the EMS manages the energy flow among the components to keep the power balance in the system reducing the equivalent hydrogen consumption and optimizing the equivalent hydrogen generation. The EMS and the configuration of the charging station based on ZSCs are the main contributions of the paper. The behaviour of the EMS is demonstrated with three EV connected to the charging station under different conditions of sun irradiance. In addition the proposed EMS is compared with a simpler EMS for the optimal management of ESS in hybrid configurations. The simulation results show that the proposed EMS achieves a notable improvement in the equivalent hydrogen consumption/generation with respect to the simpler EMS. Thanks to the proposed configuration the output voltage of the components can be upgraded to MVDC while reducing the number of power converters compared with other configurations without ZSC.
Progress and Challenges on the Thermal Management of Electrochemical Energy Conversion and Storage Technologies: Fuel Cells, Electrolysers, and Supercapacitors
Oct 2021
Publication
It is now well established that electrochemical systems can optimally perform only within a narrow range of temperature. Exposure to temperatures outside this range adversely affects the performance and lifetime of these systems. As a result thermal management is an essential consideration during the design and operation of electrochemical equipment and can heavily influence the success of electrochemical energy technologies. Recently significant attempts have been placed on the maturity of cooling technologies for electrochemical devices. Nonetheless the existing reviews on the subject have been primarily focused on battery cooling. Conversely heat transfer in other electrochemical systems commonly used for energy conversion and storage has not been subjected to critical reviews. To address this issue the current study gives an overview of the progress and challenges on the thermal management of different electrochemical energy devices including fuel cells electrolysers and supercapacitors. The physicochemical mechanisms of heat generation in these electrochemical devices are discussed in-depth. Physics of the heat transfer techniques currently employed for temperature control are then exposed and some directions for future studies are provided.
Sorption-enhanced Steam Methane Reforming for Combined CO2 Capture and Hydrogen Production: A State-of-the-Art Review
Oct 2021
Publication
The European Commission have just stated that hydrogen would play a major role in the economic recovery of post-COVID-19 EU countries. Hydrogen is recognised as one of the key players in a fossil fuel-free world in decades to come. However commercially practiced pathways to hydrogen production todays are associated with a considerable amount of carbon emissions. The Paris Climate Change Agreement has set out plans for an international commitment to reduce carbon emissions within the forthcoming decades. A sustainable hydrogen future would only be achievable if hydrogen production is “designed” to capture such emissions. Today nearly 98% of global hydrogen production relies on the utilisation of fossil fuels. Among these steam methane reforming (SMR) boasts the biggest share of nearly 3 50% of the global generation. SMR processes correspond to a significant amount of carbon emissions at various points throughout the process. Despite the dark side of the SMR processes they are projected to play a major role in hydrogen production by the first half of this century. This that a sustainable yet clean short/medium-term hydrogen production is only possible by devising a plan to efficiently capture this co-produced carbon as stated in the latest International Energy Agency (IEA) reports. Here we have carried out an in-depth technical review of the processes employed in sorption-enhanced steam methane reforming (SE-SMR) an emerging technology in low-carbon SMR for combined carbon capture and hydrogen production. This paper aims to provide an in-depth review on two key challenging elements of SE-SMR i.e. the advancements in catalysts/adsorbents preparation and current approaches in process synthesis and optimisation including the employment of artificial intelligence in SE-SMR processes. To the best of the authors‟ knowledge there is a clear gap in the literature where the above areas have been scrutinised in a systematic and coherent fashion. The gap is even more pronounced in the application of AI in SE-SMR technologies. As a result this work aims to fill this gap within the scientific literature.
CFD Simulations of Large Scale LH2 Dispersion in Open Environment
Sep 2021
Publication
An inter-comparison among partners’ CFD simulations has been carried out within the EU-funded project PRESLHY to investigate the dispersion of the mixture cloud formed from large scale liquid hydrogen release. Rainout experiments performed by Health and Safety Executive (HSE) have been chosen for the work. From the HSE experimental series trial-11 was selected forsimulation due to its conditions where only liquid flow at the nozzle was achieved. During trial-11 liquid hydrogen is spilled horizontally 0.5 m above a concrete pad from a 5 barg tank pressure through a 12 mm (1/2 inch) nozzle. The dispersion takes place outdoors and thus it is imposed to variant wind conditions. Comparison of the CFD results with the measurements at several sensors is presented and useful conclusions are drawn.
Current Status of Automotive Fuel Cells for Sustainable Transport
May 2019
Publication
Automotive proton-exchange membrane fuel cells (PEMFCs) have finally reached a state of technological readiness where several major automotive companies are commercially leasing and selling fuel cell electric vehicles including Toyota Honda and Hyundai. These now claim vehicle speed and acceleration refueling time driving range and durability that rival conventional internal combustion engines and in most cases outperform battery electric vehicles. The residual challenges and areas of improvement which remain for PEMFCs are performance at high current density durability and cost. These are expected to be resolved over the coming decade while hydrogen infrastructure needs to become widely available. Here we briefly discuss the status of automotive PEMFCs misconceptions about the barriers that platinum usage creates and the remaining hurdles for the technology to become broadly accepted and implemented.
A Numerical and Graphical Review of Energy Storage Technologies
Dec 2014
Publication
More effective energy production requires a greater penetration of storage technologies. This paper takes a looks at and compares the landscape of energy storage devices. Solutions across four categories of storage namely: mechanical chemical electromagnetic and thermal storage are compared on the basis of energy/power density specific energy/power efficiency lifespan cycle life self-discharge rates capital energy/power costs scale application technical maturity as well as environmental impact. It’s noted that virtually every storage technology is seeing improvements. This paper provides an overview of some of the problems with existing storage systems and identifies some key technologies that hold promise.
Calibration of Hydrogen Coriolis Flow Meters Using Nitrogen and Air and Investigation of the Influence of Temperature on Measurement Accuracy
Feb 2021
Publication
The performance of four Coriolis flow meters designed for use in hydrogen refuelling stations was evaluated with air and nitrogen by three members of the MetroHyVe JRP consortium; NEL METAS and CESAME EXADEBIT.<br/>A wide range of conditions were tested overall with gas flow rates ranging from (0.05–2) kg/min and pressures ranging from (20–86) bar. The majority of tests were conducted at nominal pressures of either 20 bar or 40 bar in order to match the density of hydrogen at 350 bar and 20 °C or 700 bar and −40 °C. For the conditions tested pressure did not have a noticeable influence on meter performance.<br/>When the flow meters were operated at ambient temperatures and within the manufacturer's recommended flow rate ranges errors were generally within ±1%. Errors within ±0.5% were achievable for the medium to high flow rates.<br/>The influence of temperature on meter performance was also studied with testing under both stable and transient conditions and temperatures as low as −40 °C.<br/>When the tested flow meters were allowed sufficient time to reach thermal equilibrium with the incoming gas temperature effects were limited. The magnitude and spread of errors increased but errors within ±2% were achievable at moderate to high flow rates. Conversely errors as high as 15% were observed in tests where logging began before temperatures stabilised and there was a large difference in temperature between the flow meter and the incoming gas.<br/>One of the flow meters tested with nitrogen was later installed in a hydrogen refuelling station and tested against the METAS Hydrogen Field Test Standard (HFTS). Under these conditions errors ranged from 0.47% to 0.91%. Testing with nitrogen at the same flow rates yielded errors of −0.61% to −0.82%.
Narratives for Natural Gas in a Decarbonising European Energy Market
Feb 2019
Publication
The advocacy narrative of the European Union gas community which focused on coal to gas switching and backing up renewables has failed to convince governments NGOs and media commentators that it can achieve post-2030 decarbonisation targets. The gas community therefore needs to develop decarbonisation narratives showing how it will develop commercial scale projects for biogas biomethane and hydrogen from power to gas (electrolysis) and reformed methane. COP21 carbon targets require an accelerating decline in EU methane demand starting around 2030. In 2050 the maximum projected availability of renewable gas is equivalent to 25 per cent of current EU gas demand. Maintaining current demand levels will therefore require very substantial volumes of hydrogen from reformed methane with carbon capture and storage (CCS). Pipeline gas and LNG suppliers will need to progressively decarbonise their product if it is to remain saleable in Europe. However networks face an existential threat unless they can maintain existing throughput while simultaneously adapting to a decarbonised product. Significant threats and challenges to these narratives include: short term geopolitical concerns stemming from dependence on Russian gas ‘hydrocarbon rejectionism’ and an inability of companies to invest for a post-2030 decarbonised future. Governments will need to shift current policy and regulatory frameworks from competition to decarbonisation which will require a ‘regulatory revolution’. In addition to government funding and regulatory support there will need to be very substantial corporate investment in projects for which there is currently no business case. Failure of the gas community to create and deliver credible decarbonisation narratives is likely to result in the adoption of electrification rather than gas decarbonisation options.
Challenges to the Future of LNG: Decarbonisation, Affordability, and Profitability
Oct 2019
Publication
Decarbonisation should be very much on the radar of new LNG projects currently taking FID commissioning around 2024-25 and planning to operate up to 2050. The LNG community needs to replace an `advocacy’ message – based on the generality of emissions from combustion of natural gas being lower than from other fossil fuels – with certified data on carbon and methane emissions from specific elements of the value chain for individual projects. As carbon reduction targets tighten over the coming decade LNG cargoes which do not have value chain emissions certified by accredited authorities or which fail to meet defined emission levels run the risk of progressively being deemed to have a lower commercial value and eventually being excluded from jurisdictions with the strictest standards. There will be no place in this process for confidentiality; nothing less than complete transparency of data and methodologies will be acceptable.<br/>In relation to affordability prospects for new projects look much better than they did three years ago. Cost estimates for most new projects suggest that they will be able to deliver profitably to most established and anticipated import markets at or below the wholesale prices prevailing in those markets over the past decade although affordability in south Asian countries may be challenging. But new projects need to factor in costs related to future decarbonisation requirements in both exporting and importing countries. To the extent that LNG suppliers can meet standards through relatively low-cost offsets – forest projects low-cost biogas and biomethane – this may not greatly impact their commercial viability. However any requirement to transform methane into hydrogen with CCS in either the exporting or importing country would substantially impact project economics and the affordability of LNG relative to other energy choices.
A Mountain to Climb? Tracking Progress in Scaling Up Renewable Gas Production in Europe
Oct 2019
Publication
In the last couple of years there has been increasing recognition by key players in the European gas industry that to mitigate the risk of terminal decline in the context of a decarbonising energy system there will need to be rapid scale up of decarbonised gas. This has led to several projections of the scale of decarbonised gas which could potentially be supplied by 2030 2040 or 2050. This paper joint with the Sustainable Gas Institute at Imperial College London considers the very significant rate of scale up and the significant cost reductions contemplated by such projections. Based on a database of actual announced projects (both committed and in earlier stages of development) for production of decarbonised gas it then considers the extent to which project activity is consistent with meeting the ambitious projections. It identifies a significant gap in current levels of activity largely because there is not yet sufficient economic incentive for investors to develop the required projects. It is intended that this paper will form the basis of continued tracking of the level of activity over the coming years to help inform industry players of further actions which may be required.
Hy4Heat Annex To Site Specific Safety Case for Hydrogen Community Demonstration - Work Package 7
May 2021
Publication
The Hy4Heat Safety Assessment has focused on assessing the safe use of hydrogen gas in certain types of domestic properties and buildings. The summary reports (the Precis and the Safety Assessment Conclusions Report) bring together all the findings of the work and should be looked to for context by all readers. The technical reports should be read in conjunction with the summary reports. While the summary reports are made as accessible as possible for general readers the technical reports may be most accessible for readers with a degree of technical subject matter understanding. All of the safety assessment reports have now been reviewed by the HSE<br/>Annex prepared to support Site Specific Safety Cases for hydrogen gas community demonstrations based on work undertaken by the Hy4Heat programme. It covers a collection of recommended risk reduction measures for application downstream of the Emergency Control Valve (ECV)
Thermoacoustic Instability Considerations for High Hydrogen Combustion in Lean Premixed Gas Turbine Combustors: A Review
Jan 2021
Publication
Hydrogen is receiving increasing attention as a versatile energy vector to help accelerate the transition to a decarbonised energy future. Gas turbines will continue to play a critical role in providing grid stability and resilience in future low-carbon power systems; however it is recognised that this role is contingent upon achieving increased thermal efficiencies and the ability to operate on carbon-neutral fuels such as hydrogen. An important consideration in the development of gas turbine combustors capable of operating with pure hydrogen or hydrogen-enriched natural gas are the significant changes in thermoacoustic instability characteristics associated with burning these fuels. This article provides a review of the effects of burning hydrogen on combustion dynamics with focus on swirl-stabilised lean-premixed combustors. Experimental and numerical evidence suggests hydrogen can have either a stabilising or destabilising impact on the dynamic state of a combustor through its influence particularly on flame structure and flame position. Other operational considerations such as the effect of elevated pressure and piloting on combustion dynamics as well as recent developments in micromix burner technology for 100% hydrogen combustion have also been discussed. The insights provided in this review will aid the development of instability mitigation strategies for high hydrogen combustion.
Study of Activity and Super-Capacitance Exhibited by Bifunctional Raney 2.0 Catalyst for Alkaline Water-Splitting Electrolysis
Dec 2020
Publication
Low-cost high-performance coatings for hydrogen production via electrolytic water-splitting are of great importance for de-carbonising energy. In this study the Raney2.0 coating was analysed using various electrochemical techniques to assess its absolute performance and it was confirmed to have an extremely low overpotential for hydrogen evolution of just 28 mV at 10 mA/cm2. It was also confirmed to be an acceptable catalyst for oxygen evolution making it the highest performing simple bifunctional electrocatalyst known. The coating exhibits an extremely high capacitance of up to 1.7 F/cm2 as well as being able to store 0.61 J/cm2 in the form of temporary hydride deposits. A new technique is presented that performs a best-fit of a transient simulation of an equivalent circuit containing a constant phase element to cyclic voltammetry measurements. From this the roughness factor of the coating was calculated to be approximately 40000 which is the highest figure ever reported for this type of material. The coating is therefore an extremely useful improved bifunctional coating for the continued roll-out of alkaline electrolysis for large-scale renewable energy capture via hydrogen production.
Delivering Net-zero Carbon Heat: Technoeconomic and Whole-system Comparisons of Domestic Electricity- and Hydrogen-driven Technologies in the UK
Apr 2022
Publication
Proposed sustainable transition pathways for moving away from natural gas in domestic heating focus on two main energy vectors: electricity and hydrogen. Electrification would be implemented by using vapourcompression heat pumps which are currently experiencing market growth in many countries. On the other hand hydrogen could substitute natural gas in boilers or be used in thermally–driven absorption heat pumps. In this paper a consistent thermodynamic and economic methodology is developed to assess the competitiveness of these options. The three technologies along with the option of district heating are for the first time compared for different weather/ambient conditions and fuel-price scenarios first from a homeowner’s and then from a wholeenergy system perspective. For the former two-dimensional decision maps are generated to identify the most cost-effective technologies for different combinations of fuel prices. It is shown that in the UK hydrogen technologies are economically favourable if hydrogen is supplied to domestic end-users at a price below half of the electricity price. Otherwise electrification and the use of conventional electric heat pumps will be preferred. From a whole-energy system perspective the total system cost per household (which accounts for upstream generation and storage as well as technology investment installation and maintenance) associated with electric heat pumps varies between 790 and 880 £/year for different scenarios making it the least-cost decarbonisation pathway. If hydrogen is produced by electrolysis the total system cost associated with hydrogen technologies is notably higher varying between 1410 and 1880 £/year. However this total system cost drops to 1150 £/year with hydrogen produced cost-effectively by methane reforming and carbon capture and storage thus reducing the gap between electricity- and hydrogen-driven technologies.
Hydrogen Tank Rupture in Fire in the Open Atmosphere: Hazard Distance Defined by Fireball
Feb 2021
Publication
The engineering correlations for assessment of hazard distance defined by a size of fireball after either liquid hydrogen spill combustion or high-pressure hydrogen tank rupture in a fire in the open atmosphere (both for stand-alone and under-vehicle tanks) are presented. The term “fireball size” is used for the maximum horizontal size of a fireball that is different from the term “fireball diameter” applied to spherical or semi-spherical shape fireballs. There are different reasons for a fireball to deviate from a spherical shape e.g. in case of tank rupture under a vehicle the non-instantaneous opening of tank walls etc. Two conservative correlations are built using theoretical analysis numerical simulations and experimental data available in the literature. The theoretical model for hydrogen fireball size assumes complete isobaric combustion of hydrogen in air and presumes its hemispherical shape as observed in the experiments and the simulations for tank rupturing at the ground level. The dependence of the fireball size on hydrogen mass and fireball’s diameter-to-height ratio is discussed. The correlation for liquid hydrogen release fireball is based on the experiments by Zabetakis (1964). The correlations can be applied as engineering tools to access hazard distances for scenarios of liquid or gaseous hydrogen storage tank rupture in a fire in the open atmosphere
The Path to Net Zero and Progress on Reducing Emissions in Wales
Dec 2020
Publication
These two joint reports required under the Environment (Wales) Act 2016 provide ministers with advice on Wales’ climate targets between now and 2050 and assess progress on reducing emissions to date. Our advice to the Welsh Government is set out in two parts:
Advice Report: The path to a Net Zero Wales provides recommendations on the actions that are needed in Wales including the legislation of a Net Zero target and package of policies to deliver it.
Progress Report: Reducing emissions in Wales looks back at the progress made in Wales since the 2016 Environment (Wales) Act was passed and assesses whether Wales is on track to meet its currently legislated emissions reductions targets.
This work is based on an extensive programme of analysis consultation and consideration by the Committee and its staff building on the evidence published last year for our Net Zero report. It is compatible with our advice on the UK’s Sixth Carbon Budget. In support of the advice in this report we have also published:
Advice Report: The path to a Net Zero Wales provides recommendations on the actions that are needed in Wales including the legislation of a Net Zero target and package of policies to deliver it.
Progress Report: Reducing emissions in Wales looks back at the progress made in Wales since the 2016 Environment (Wales) Act was passed and assesses whether Wales is on track to meet its currently legislated emissions reductions targets.
This work is based on an extensive programme of analysis consultation and consideration by the Committee and its staff building on the evidence published last year for our Net Zero report. It is compatible with our advice on the UK’s Sixth Carbon Budget. In support of the advice in this report we have also published:
- All the charts and data behind the report as well as a separate dataset for the scenarios which sets out more details and data on the pathways than can be included in this report.
- A public Call for Evidence several new research projects three expert advisory groups and deep dives into the roles of local authorities and businesses.
EU Hydrogen Strategy: A Case for Urgent Action Towards Implementation
Jul 2020
Publication
Interest in hydrogen as one route to the decarbonisation of energy systems has risen rapidly over the past few years with the publication of a number of hydrogen strategies from countries across the global energy economy. The momentum in Europe has increased sharply this month with the publication of an EU strategy to incorporate hydrogen into its plans for a net zero emission future. This Comment reviews the key elements of this strategy and provides an initial commentary on the main goals. We highlight the challenges that will be faced in meeting hydrogen production targets in particular via the “green hydrogen” route and analyse the plans for expanding the consumption of hydrogen in Europe. We also assess the infrastructure questions that will need to be answered if and when hydrogen takes on a greater role in the region and note the extensive state support that will be needed in the early years of the implementation of the strategy. Despite this though we applaud the ambition laid out by the EU and look forward to the provision of more detailed plans over the coming months and years.
Link to document on OIES website
Link to document on OIES website
A Review of Technical Advances, Barriers, and Solutions in the Power to Hydrogen Roadmap
Oct 2020
Publication
Power to hydrogen (P2H) provides a promising solution to the geographic mismatch between sources of renewable energy and the market due to its technological maturity flexibility and the availability of technical and economic data from a range of active demonstration projects. In this review we aim to provide an overview of the status of P2H analyze its technical barriers and solutions and propose potential opportunities for future research and industrial demonstrations. We specifically focus on the transport of hydrogen via natural gas pipeline networks and end-user purification. Strong evidence shows that an addition of about 10% hydrogen into natural gas pipelines has negligible effects on the pipelines and utilization appliances and may therefore extend the asset value of the pipelines after natural gas is depleted. To obtain pure hydrogen from hydrogen-enriched natural gas (HENG) mixtures end-user separation is inevitable and can be achieved through membranes adsorption and other promising separation technologies. However novel materials with high selectivity and capacity will be the key to the development of industrial processes and an integrated membrane-adsorption process may be considered in order to produce high-purity hydrogen from HENG. It is also worth investigating the feasibility of electrochemical separation (hydrogen pumping) at a large scale and its energy analysis. Cryogenics may only be feasible when liquefied natural gas (LNG) is one of the major products. A range of other technological and operational barriers and opportunities such as water availability byproduct (oxygen) utilization and environmental impacts are also discussed. This review will advance readers’ understanding of P2H and foster the development of the hydrogen economy.
The Future of Gas Networks – Key Issues for Debate
Sep 2019
Publication
The Oxford Institute for Energy Studies held a Workshop on “The Future of Gas Networks” to examine decarbonisation plans and the impact of the potential growth in the use of renewable and decarbonised gases in Europe. Participants included representatives from nine European gas network companies (both transmission and distribution) technical experts in decarbonisation regulators government officials and academics. This document summarises the seven key issues for debate arising from the Workshop discussions:
- The major gas networks recognise the need to prepare for and facilitate decarbonisation.
- The route to decarbonisation can take many forms though hydrogen is likely to feature in most networks. In larger countries solutions are likely to be regional rather than national.
- There are a number of pilot projects and targets/aspirations for 2050 – there is less clarity on how the targets will be achieved or on who will lead.
- Regulation is a key issue. In most countries existing regulatory objectives may need changing in order to align with government decarbonisation aspirations and the achievement of targets.
- There is a lack of consensus on whether and how market models might need to adapt.
- Detailed stakeholder analysis – and in particular customer attitudes – will be required.
- There are a range of important technical issues including standardisation data quality and transparency verification and certification to be considered.
Towards Net-zero Smart System: An Power Synergy Management Approach of Hydrogen and Battery Hybrid System with Hydrogen Safety Consideration
May 2022
Publication
The building system is one of key energy consumption sector in the market and low-carbon building will make a significant contribution for the worldwide carbon emission reduction. The multiple energy systems including renewable generations hydrogen energy and energy storage is the perspective answer to the net-zero building system. However the research gap lies in the synergy power management among the renewable flexible loads batteries and hydrogen energy systems and at the same time taking the unique characteristic of different energy sectors into account by power managing. This paper proposed the power management approach based on the game theory by which the different characteristics of the energy players are described via creating the competing relationship against net-zero emission objective so that to achieve the power synergy. Under the proposed power management method the hydrogen and battery hybrid system including the fuel cell electrolyzer and battery is designed and investigated as to unlock the power management regions and control constraints within the building system. Particularly for the hydrogen system within the hybrid system the safe and long-lifetime operation is considered respectively by high-efficiency and pressure constraints within the power management. Simulation results show that providing the same energy storage services for the building system the fuel cell with the proposed power management method sustains for 9.9 years much longer than that of equivalent consumption minimization (4.98) model predictive control (4.61) and rule-based method (7.69). Moreover the maximum tank temperature of the hydrogen tank is reduced by 3.4 K and 2.9 K compared with consumption minimization strategy and model predictive control. Also the real-time of the proposed power management is verified by a scaled-down experiment platform.
Extreme Energetic Materials at Ultrahigh Pressures
Jul 2020
Publication
Owing to their extremely high energy density single-bonded polymeric nitrogen and atomic metallic hydrogen are generally regarded as the ultimate energetic materials. Although their syntheses normally require ultrahigh pressures of several hundred gigapascals (GPa) which prohibit direct materials application research on their stability metastability and fundamental properties are valuable for seeking extreme energetic materials through alternative synthetic routes. Various crystalline and amorphous polymeric nitrogens have been discovered between 100 and 200 GPa. Metastability at ambient conditions has been demonstrated for some of these phases. Cubic-gauche and black-phosphorus polymorphs of single-bonded nitrogen are two particularly interesting phases. Their large hystereses warrant further application-inspired basic research of nitrogen. In contrast although metallic hydrogen contains the highest-estimated energy density its picosecond lifetime and picogram quantity make its practical material application impossible at present. “Metallic hydrogen” remains a curiosity-driven basic research pursuit focusing on the pressure-induced evolution of the molecular hydrogen crystal and its electronic band structure from a low-density insulator with a very wide electronic band gap to a semiconductor with a narrow gap to a dense molecular metal and atomic metal and eventually to a previously unknown exotic state of matter. This great experimental challenge is driving relentless advancement in ultrahigh-pressure science and technology.
Hy4Heat Safety Assessment: Precis - Work Package 7
May 2021
Publication
The Hy4Heat Safety Assessment has focused on assessing the safe use of hydrogen gas in certain types of domestic properties and buildings. The summary reports (the Precis and the Safety Assessment Conclusions Report) bring together all the findings of the work and should be looked to for context by all readers. The technical reports should be read in conjunction with the summary reports. While the summary reports are made as accessible as possible for general readers the technical reports may be most accessible for readers with a degree of technical subject matter understanding. All of the safety assessment reports have now been reviewed by the HSE.<br/><br/>This document is an overview of the Safety Assessment work undertaken as part of the Hy4Heat programme
Methane Emissions from Natural Gas and LNG Imports: An Increasingly Urgent Issue for the Future of Gas in Europe
Nov 2020
Publication
Pressure is mounting on the natural gas and LNG community to reduce methane emissions and this is most urgent in EU countries following the adoption of much tougher greenhouse gas reduction targets of 2030 and the publication of the European Commission’s Methane Strategy. With rapidly declining indigenous EU production and therefore rising import dependence there are increasing calls for emissions from imported pipeline gas and LNG to be quantified and based on actual measurements as opposed to standard emission factors. The Methane Strategy promises to be a significant milestone in that process. Companies which are supplying (or intending to supply) natural gas to the EU – the largest global import market for pipeline gas and a very significant market for LNG – would be well advised to pay close attention to how the regulation of methane emissions is unfolding and to make an immediate and positive response. Failure to do so could accelerate the demise of natural gas in European energy balances faster than would otherwise have been the case and shorten the time available for transition to decarbonised gases – specifically hydrogen – using existing natural gas infrastructure.<br/>This EU initiative will (and arguably already has) attracted attention from non-EU governments and companies involved in global gas and LNG trade. We have already seen deliveries of `carbon neutral’ LNG cargos to Asia as well as a long-term LNG contract in which the greenhouse gas content of cargos will be measured reported and verified (MRV) according to an agreed methodology. Natural gas and LNG exports if based on these standards or those set out in the EU Methane Strategy may be able to command premium prices from buyers eager to demonstrate their own GHG reduction credentials to governments customers and civil society.
Decarbonising UK Transport: Implications for Electricity Generation, Land Use and Policy
Dec 2022
Publication
To ensure the UK’s net zero targets are met the transition from conventionally fueled transport to low emission alternatives is necessary. The impact from increased decarbonised electricity generation on ecosystem services (ES) and natural capital (NC) are not currently quantified with decarbonisation required to minimise impacts from climate change. This study aims to project the future electric and hydrogen energy demand between 2020 and 2050 for car bus and train to better understand the land/sea area that would be required to support energy generation. In this work predictions of the geospatial impact of renewable energy (onshore/offshore wind and solar) nuclear and fossil fuels on ES and NC were made considering generation mix number of generation installations and energy density. Results show that electric transport will require ~136599 GWh for all vehicle types analysed in 2050 much less than hydrogen transport at ~425532 GWh. We estimate that to power electric transport at least 1515 km2 will be required for solar 1672 km2 for wind and 5 km2 for nuclear. Hydrogen approximately doubles this requirement. Results provide an approximation of the future demands from the transport sector on land and sea area use indicating that a combined electric and hydrogen network will be needed to accommodate a range of socio-economic requirements. While robust assessments of ES and NC impacts are critical in future policies and planning significant reductions in energy demands through a modal shift to (low emission) public transport will be most effective in ensuring a sustainable transport future.
Can the Current EU Regulatory Framework Deliver Decarbonisation of Gas?
Jun 2020
Publication
This Energy Insight examines the current regulatory framework and challenges facing the natural gas industry (producers transporters suppliers and consumers) during the transition to a zero-carbon economy. The EU has declared its intention to be climate neutral by 2050 which means that the current level of natural gas usage will no longer be possible. However natural gas is a crucial component of energy supply representing 24 per cent of primary energy supply for the EU27+UK and 36 per cent of residential energy consumption. In some countries the use of natural gas is much higher – around 40 per cent of primary energy supply in Netherlands UK and Italy. The current framework impacting gas addresses two different market failures – natural monopolies for gas transportation and the externalities of Greenhouse Gas Emissions. The framework will not deliver decarbonisation of gas as it does not stimulate either supply or demand for alternatives such as hydrogen nor create the conditions to enable gas networks to transition to a decarbonised future. Policy makers need to prioritise their objectives to take account of the trade-offs involved in designing a new framework. Exclusion of certain low carbon technologies risks driving away investors and reduces the chances of targets being met whilst “picking winners” involves risks because of the many uncertainties involved such as future costs and time required to build new value chains.
Link to Document on Oxford Institute for Energy Studies website
Link to Document on Oxford Institute for Energy Studies website
Carbon Capture, Usage and Storage: An Update on Business Models for Carbon Capture, Usage and Storage
Dec 2020
Publication
An update on the proposed commercial frameworks for transport and storage power and industrial carbon capture business models.
Materials for End to End Hydrogen Roadmap
Jun 2021
Publication
This report is commissioned by the Henry Royce Institute for advanced materials as part of its role around convening and supporting the UK advanced materials community to help promote and develop new research activity. The overriding objective is to bring together the advanced materials community to discuss analyse and assimilate opportunities for emerging materials research for economic and societal benefit. Such research is ultimately linked to both national and global drivers namely Transition to Zero Carbon Sustainable Manufacture Digital & Communications Circular Economy as well as Health & Wellbeing.
This paper can be download from their website
This paper can be download from their website
Fuel Cell Industry Review 2019 - The Year of the Gigawatt
Jan 2020
Publication
E4tech’s 6th annual review of the global fuel cell industry is now available here. Using primary data straight from the main players and free to download it quantifies shipments by fuel cell type by application and by region of deployment and summarises industry developments over the year.
2019 saw shipments globally grow significantly to 1.1 GW. Numbers grew slightly to around 70000 units. The growth in capacity came mainly from cars Hyundai with its NEXO and Toyota with its Mirai together accounting for around two-thirds of shipments by capacity. Unit numbers are still dominated by Japan’s ene-Farm cogeneration appliances at around 45000 shipments. Large numbers of trucks and buses are now manufactured and shipped in China though numbers deployed are limited by the availability of refuelling infrastructure. But growth in China is uncertain as policy changes are under discussion.
2020 looks like it will be an even bigger year again dominated by Hyundai and Toyota. The Japanese fuel cell market is expected also to grow partly on the back of the Tokyo ‘Hydrogen Olympics’. Korea is another growth story buoyed by its latest roadmap which aims to shift large swathes of its economy to hydrogen energy by 2040. Elsewhere much of the supply chain development is in heavy duty vehicles and big supply chain players like Cummins Weichai and Michelin are making significant investments.
2019 saw shipments globally grow significantly to 1.1 GW. Numbers grew slightly to around 70000 units. The growth in capacity came mainly from cars Hyundai with its NEXO and Toyota with its Mirai together accounting for around two-thirds of shipments by capacity. Unit numbers are still dominated by Japan’s ene-Farm cogeneration appliances at around 45000 shipments. Large numbers of trucks and buses are now manufactured and shipped in China though numbers deployed are limited by the availability of refuelling infrastructure. But growth in China is uncertain as policy changes are under discussion.
2020 looks like it will be an even bigger year again dominated by Hyundai and Toyota. The Japanese fuel cell market is expected also to grow partly on the back of the Tokyo ‘Hydrogen Olympics’. Korea is another growth story buoyed by its latest roadmap which aims to shift large swathes of its economy to hydrogen energy by 2040. Elsewhere much of the supply chain development is in heavy duty vehicles and big supply chain players like Cummins Weichai and Michelin are making significant investments.
Reference Standard for Low Pressure Hydrogen Utilisation
May 2021
Publication
This standard has been created for the specific purposes of the Hy4Heat programme. The standard was commissioned in 2018 and this version was considered and approved by the relevant IGEM committees in May of 2020. This version of the standard was developed using the latest publicly available information at that time and may include some conservative requirements which further research may deem not necessary. The supplement will be updated regularly following the publication of new research into the application of hydrogen.
This Reference Standard aims to identify and discuss the principles required for the safety and integrity of Hydrogen installation and utilisation in premises.
This document intends to:
The standard is available to download through the IGEM website here.
This Reference Standard aims to identify and discuss the principles required for the safety and integrity of Hydrogen installation and utilisation in premises.
This document intends to:
- provide a point of reference for those requiring an understanding of the implications of using hydrogen as a distributed gas in properties
- detail the characteristics of Hydrogen
- detail the comparisons between hydrogen and Natural Gas (NG)
- discuss the safety implications of using hydrogen
- discuss the implications for materials when using hydrogen
- discuss the implications for the installation and use of using hydrogen in domestic & smaller commercial buildings.
The standard is available to download through the IGEM website here.
The Future Role of Gas in Transport
Mar 2021
Publication
This is a Network Innovation Allowance funded project overseen by a steering group comprising the UK and Ireland gas network operators (Cadent Gas Networks Ireland National Grid Northern Gas Networks SGN Wales and West). The project follows on from previous studies that modelled the role of green gases in decarbonising the GB economy. The role of this study is to understand the transition from the GB economy today to a decarbonised economy in 2050 focusing on how the transition is achieved and the competing and complementary nature of different low and zero emission fuels and technologies over time.
While the project covers the whole economy it focuses on transport especially trucks as an early adopter of green gases and as a key enabler of the transition. The study and resulting report are aimed at the gas industry and government and tries to build a green gas decarbonisation narrative supported by a wide range of stakeholders in order clarify the path ahead and thereby focus future efforts on delivering decarbonisation through green gases as quickly as possible.
The objectives of the study are:
Green gases
This report discusses the future role of ‘green gases’ which are biomethane and hydrogen produced from low- and zero-carbon sources each produced via two main methods:
Biomethane from Anaerobic Digestion (AD): A mature technology for turning biological material into a non-fossil form of natural gas (methane). AD plants produce biogas which must then be upgraded to biomethane.
Biomethane from Bio-Substitute Natural Gas (Bio-SNG): This technology is at an earlier stage of development than AD but has the potential to unlock other feedstocks for biomethane production such as waste wood and residual household waste.
Blue Hydrogen: Hydrogen from reformation of natural gas which produces hydrogen and carbon monoxide. 90-95% of the carbon is captured and stored making this a low-carbon form of hydrogen.
Green Hydrogen: Water is split into hydrogen and oxygen via electrolysis using electricity generated by renewables. No carbon emissions are produced so this is zero-carbon hydrogen."
While the project covers the whole economy it focuses on transport especially trucks as an early adopter of green gases and as a key enabler of the transition. The study and resulting report are aimed at the gas industry and government and tries to build a green gas decarbonisation narrative supported by a wide range of stakeholders in order clarify the path ahead and thereby focus future efforts on delivering decarbonisation through green gases as quickly as possible.
The objectives of the study are:
- Analyse the complete supply chain production distribution and use of electricity biomethane bio-SNG and hydrogen to understand the role of each fuel and the timeline for scaling up of their use.
- Develop a narrative based on these findings to show how the use of these fuels scales up over time and how they compete and complement one another.
Green gases
This report discusses the future role of ‘green gases’ which are biomethane and hydrogen produced from low- and zero-carbon sources each produced via two main methods:
Biomethane from Anaerobic Digestion (AD): A mature technology for turning biological material into a non-fossil form of natural gas (methane). AD plants produce biogas which must then be upgraded to biomethane.
Biomethane from Bio-Substitute Natural Gas (Bio-SNG): This technology is at an earlier stage of development than AD but has the potential to unlock other feedstocks for biomethane production such as waste wood and residual household waste.
Blue Hydrogen: Hydrogen from reformation of natural gas which produces hydrogen and carbon monoxide. 90-95% of the carbon is captured and stored making this a low-carbon form of hydrogen.
Green Hydrogen: Water is split into hydrogen and oxygen via electrolysis using electricity generated by renewables. No carbon emissions are produced so this is zero-carbon hydrogen."
Contrasting European Hydrogen Pathways: An Analysis of Differing Approaches in Key Markets
Mar 2021
Publication
European countries approach the market ramp-up of hydrogen very differently. In some cases the economic and political starting points differ significantly. While the probability is high that some countries such as Germany or Italy will import hydrogen in the long term other countries such as United Kingdom France or Spain could become hydrogen exporters. The reasons for this are the higher potential for renewable energies but also a technology-neutral approach on the supply side.
Unpacking Leadership-driven Global Scenarios Towards the Paris Agreement: Report Prepared for the UK Committee on Climate Change
Dec 2020
Publication
Outline
This independent report by Vivid Economics and University College London was commissioned to support the Climate Change Committee’s (CCC) 2020 report The Sixth Carbon Budget -The path to Net Zero. This research provided supporting information for Chapter 7 of the CCC’s report which considered the UK’s contribution to the global goals of the Paris Agreement.
Key recommendations
The report models ‘leadership-driven’ global scenarios that could reduce global emissions rapidly to Net Zero and analyses the levers available to developed countries such as the UK to help accelerate various key aspects of the required global transition.
It highlights a set of opportunities for the UK alongside other developed countries to help assist global decarbonisation efforts alongside achieving it’s domestic emissions reduction targets
This independent report by Vivid Economics and University College London was commissioned to support the Climate Change Committee’s (CCC) 2020 report The Sixth Carbon Budget -The path to Net Zero. This research provided supporting information for Chapter 7 of the CCC’s report which considered the UK’s contribution to the global goals of the Paris Agreement.
Key recommendations
The report models ‘leadership-driven’ global scenarios that could reduce global emissions rapidly to Net Zero and analyses the levers available to developed countries such as the UK to help accelerate various key aspects of the required global transition.
It highlights a set of opportunities for the UK alongside other developed countries to help assist global decarbonisation efforts alongside achieving it’s domestic emissions reduction targets
Hydrogen Generation by Photocatalytic Reforming of Potential Biofuels: Polyols, Cyclic Alcohols, and Saccharides
Jan 2018
Publication
We have studied hydrogen gas production using photocatalysis from C2-C5 carbon chain polyols cyclic alcohols and mono and di-saccharides using palladium nanoparticles supported on a TiO2 catalyst. For many of the polyols the hydrogen evolution rate is found to be dictated by the number of hydroxyl groups and available a-hydrogens in the structure. However the rule only applies to polyols and cyclic alcohols while the sugar activity is limited by the bulky structure of those molecules. There was also evidence of ring opening in photocatalytic reforming of cyclic alcohols that involved dehydrogenation and decarbonylation of a CC bond.
Transport Pathway to Hydrogen webinar
Mar 2021
Publication
Webinar to accompany the launch of the Cadent Future Role of Gas in Transport report which can be found here
H21- Phase 1 Technical Summary Report
May 2021
Publication
The UK Government signed legislation on 27th June 2019 committing the UK to a legally binding target of Net Zero emissions by 2050. Climate change is one of the most significant technical economic social and business challenges facing the world today.
The H21 NIC Phase 1 project delivered an optimally designed experimentation and testing programme supported by the HSE Science Division and DNV GL with the aim to collect quantifiable evidence to support that the UK distribution network of 2032 will be comparably as safe operating on 100% hydrogen as it currently is on
natural gas. This innovative project begins to fill critical safety evidence gaps surrounding the conversion of the UK gas network to 100% hydrogen. This will facilitate progression towards H21 Phase 2 Operational Safety Demonstrations and the H21 Phase 3 Live Trials to promote customer acceptability and ultimately aid progress towards a government policy decision on heat.
DNV GL and HSE Science Division were engaged to undertake the experimentation testing and QRA update programme of work. DNV GL and HSE Science Division also peer reviewed each other’s programme of work at various stages throughout the project undertaking a challenge and review of the experimental data and results to provide confidence in the conclusions.
A strategic set of tests was designed to cover the range of assets represented across the Great Britain gas distribution networks. The assets used in the testing were mostly recovered from the distribution network as part of the ongoing Iron Mains Risk Reduction Replacement Programme. Controlled testing against a well-defined master testing plan with both natural gas and 100% hydrogen was then undertaken to provide the quantitative evidence to forecast any change to background leakage levels in a 100% hydrogen network.
Key Findings from Phase 1a:
The H21 NIC Phase 1 project delivered an optimally designed experimentation and testing programme supported by the HSE Science Division and DNV GL with the aim to collect quantifiable evidence to support that the UK distribution network of 2032 will be comparably as safe operating on 100% hydrogen as it currently is on
natural gas. This innovative project begins to fill critical safety evidence gaps surrounding the conversion of the UK gas network to 100% hydrogen. This will facilitate progression towards H21 Phase 2 Operational Safety Demonstrations and the H21 Phase 3 Live Trials to promote customer acceptability and ultimately aid progress towards a government policy decision on heat.
DNV GL and HSE Science Division were engaged to undertake the experimentation testing and QRA update programme of work. DNV GL and HSE Science Division also peer reviewed each other’s programme of work at various stages throughout the project undertaking a challenge and review of the experimental data and results to provide confidence in the conclusions.
A strategic set of tests was designed to cover the range of assets represented across the Great Britain gas distribution networks. The assets used in the testing were mostly recovered from the distribution network as part of the ongoing Iron Mains Risk Reduction Replacement Programme. Controlled testing against a well-defined master testing plan with both natural gas and 100% hydrogen was then undertaken to provide the quantitative evidence to forecast any change to background leakage levels in a 100% hydrogen network.
Key Findings from Phase 1a:
- Of the 215 assets tested 41 of them were found to leak 19 of them provided sufficient data to be able to compare hydrogen and methane leak rates.
- The tests showed that assets that were gas tight on methane were also gas tight on hydrogen. Assets that leaked on hydrogen also leaked
- on methane including repaired assets.
- The ratio of the hydrogen to methane volumetric leak rates varied between 1.1 and 2.2 which is largely consistent with the bounding values expected for laminar and turbulent (or inertial) flow which gave ratios of 1.2 and 2.8 respectively.
- None of the PE assets leaked; cast ductile and spun iron leaked to a similar degree (around 26-29% of all iron assets leaked) and the proportion of leaking steel assets was slightly less (14%).
- Four types of joint were responsible for most of the leaks on joints: screwed lead yarn bolted gland and hook bolts.
- All of the repairs that sealed methane leaks also were effective when tested with hydrogen.
Energy System Requirements of Fossil-free Steelmaking using Hydrogen Direct Reduction
May 2021
Publication
The iron and steel industry is one of the world’s largest industrial emitters of greenhouse gases. One promising option for decarbonising the industry is hydrogen direct reduction of iron (H-DR) with electric arc furnace (EAF) steelmaking powered by zero carbon electricity. However to date little attention has been given to the energy system requirements of adopting such a highly energy-intensive process. This study integrates a newly developed long-term energy system planning tool with a thermodynamic process model of H-DR/EAF steelmaking developed by Vogl et al. (2018) to assess the optimal combination of generation and storage technologies needed to provide a reliable supply of electricity and hydrogen. The modelling tools can be applied to any country or region and their use is demonstrated here by application to the UK iron and steel industry as a case study. It is found that the optimal energy system comprises 1.3 GW of electrolysers 3 GW of wind power 2.5 GW of solar 60 MW of combined cycle gas with carbon capture 600 GWh/600 MW of hydrogen storage and 30 GWh/130 MW of compressed air energy storage. The hydrogen storage requirements of the industry can be significantly reduced by maintaining some dispatchable generation for example from 600 GWh with no restriction on dispatchable generation to 140 GWh if 20% of electricity demand is met using dispatchable generation. The marginal abatement costs of a switch to hydrogen-based steelmaking are projected to be less than carbon price forecasts within 5–10 years.
Wax: A Benign Hydrogen-storage Material that Rapidly Releases H2-rich Gases Through Microwave-assisted Catalytic Decomposition
Oct 2016
Publication
Hydrogen is often described as the fuel of the future especially for application in hydrogen powered fuel-cell vehicles (HFCV’s). However its widespread implementation in this role has been thwarted by the lack of a lightweight safe on-board hydrogen storage material. Here we show that benign readily available hydrocarbon wax is capable of rapidly releasing large amounts of hydrogen through microwave-assisted catalytic decomposition. This discovery offers a new material and system for safe and efficient hydrogen storage and could facilitate its application in a HFCV. Importantly hydrogen storage materials made of wax can be manufactured through completely sustainable processes utilizing biomass or other renewable feedstocks.
Approaches and Methods to Demonstrate Repurposing of the UK's Local Transmission System (LTS) Pipelines for Transportation of Hydrogen
Sep 2021
Publication
Hydrogen has the potential as an energy solution to contribute to decarbonisation targets as it has the capability to deliver low-carbon energy at the scale required. For this to be realised the suitability of the existing natural gas pipeline networks for transporting hydrogen must be established. The current paper describes a feasibility study that was undertaken to assess the potential for repurposing the UK’s Local Transmission System (LTS) natural gas pipelines for hydrogen service. The analysis focused on SGN’s network which includes 3000 km of LTS pipelines in Scotland and the south of England. The characteristics of the LTS pipelines in terms of materials of construction and operation were first evaluated. This analysis showed that a significant percentage of SGN’s LTS network consists of lower strength grades of steel pipeline that operate at low stresses which are factors conducive to a pipeline’s suitability for hydrogen service. An assessment was also made of where existing approaches in pipeline operation may require modifications for hydrogen. The effects of changes in mechanical properties of steel pipelines on integrity and lifetime as a result of potential hydrogen degradation were demonstrated using fitness-for-purpose analysis. A review of pipeline risk assessment and Land-Use Planning (LUP) zone calculations for hydrogen was undertaken to identify any required changes. Case studies on selected sections of the LTS pipeline were then carried out to illustrate the potential changes to LUP zones. The work concluded with a summary of identified gaps that require addressing to ensure safe pipeline repurposing for hydrogen which cover materials performance inspection risk assessment land use planning and procedures.
Preliminary Analysis of Compression System Integrated Heat Management Concepts Using LH2-Based Parametric Gas Turbine Model
Apr 2021
Publication
The investigation of the various heat management concepts using LH2 requires the development of a modeling environment coupling the cryogenic hydrogen fuel system with turbofan performance. This paper presents a numerical framework to model hydrogen-fueled gas turbine engines with a dedicated heat-management system complemented by an introductory analysis of the impact of using LH2 to precool and intercool in the compression system. The propulsion installations comprise Brayton cycle-based turbofans and first assessments are made on how to use the hydrogen as a heat sink integrated into the compression system. Conceptual tubular compact heat exchanger designs are explored to either precool or intercool the compression system and preheat the fuel to improve the installed performance of the propulsion cycles. The precooler and the intercooler show up to 0.3% improved specific fuel consumption for heat exchanger effectiveness in the range 0.5–0.6 but higher effectiveness designs incur disproportionately higher pressure losses that cancel-out the benefits.
HydroGenerally - Episode 2: Where Should Hydrogen Be Used?
Apr 2022
Publication
The Innovate UK KTN Hydrogen Innovation Network is bringing you this second episode with Steffan Eldred and Simon Buckley from Innovate UK KTN who continue their ‘back to basics' approach and delve deeper to understand where hydrogen should be used with their special guest Joanna Richart Head of Hydrogen Business at Ricardo. As with any technology or fuel discussions can get carried away implying they are the solution to all things but at Innovate UK KTN we strongly believe that we should ensure hydrogen is used where it can be most effective for decarbonising energy industrial and chemical industries.
The podcast can be found on their website
The podcast can be found on their website
Hydrogen Generation on Orkney: Integrating Established Risk Management Best Practice to Emerging Clean Energy Sector
Sep 2021
Publication
The European Marine Energy Centre’s (EMEC) ITEG project (Integrating Tidal Energy into the European Grid) funded by Interreg NWE combines a tidal energy and hydrogen production solution to address grid constraints on the island of Eday in Orkney. The project will install a 0.5MW electrolyser at EMEC’s existing hydrogen production plant. EMEC and Risktec collaboratively applied best practice risk assessment and management techniques to assess and manage hydrogen safety. Hazard identification (HAZID) workshops were conducted collaboratively with design engineers through which a comprehensive hazard register was developed. Risktec applied bowtie analysis to each major accident hazard identified from the hazard register via virtual workshop with design engineers. The bowties promoted a structured review of each hazard’s threat and consequence identifying and reviewing the controls in place against good practice standards. The process revealed some recommendations for further improvement and risk reduction exemplifying a systematic management of risks associated with hydrogen hazards to as low as reasonably practicable (ALARP). Hardware based barriers preventing or mitigating loss of control of these hazards were logged as safety critical elements (SCE) and procedural barriers as safety critical activities (SCA). To ensure that all SCEs and SCAs identified through the risk assessment process are managed throughout the facility’s operational lifetime a safety management system is created giving assurance of overall safety management system continued effectiveness. The process enables the demonstration that design risks are managed to ALARP during design and throughout operational lifetime. More importantly enabling ITEG to progress to construction and operation in 2021.
Chemical Inhibition of Premixed Hydrogen-air Flames: Experimental Investigation using a 20-litre Vessel
Sep 2021
Publication
Throughout the history of the mining petroleum process and nuclear industries continuous efforts have been made to develop and improve measures to prevent and mitigate accidental explosions. Over the coming decades energy systems are expected to undergo a transition towards sustainable use of conventional hydrocarbons and an increasing share of renewable energy sources in the global energy mix. The variable and intermittent supply of energy from solar and wind points to energy systems based on hydrogen or hydrogen-based fuels as the primary energy carriers. However the safety-related properties of hydrogen imply that it is not straightforward to achieve and document the same level of safety for hydrogen systems compared to similar systems based on established fuels such as petrol diesel and natural gas. Compared to the conventional fuels hydrogen-air mixtures have lower ignition energy higher combustion reactivity and a propensity to undergo deflagration-to-detonation-transition (DDT) under certain conditions. To achieve an acceptable level of safety it is essential to develop effective measures for mitigating the consequences of hydrogen explosions in systems with certain degree of congestion and confinement. Extensive research over the last decade have demonstrated that chemical inhibition or partial suppression can be used for mitigating the consequences of vapour cloud explosions (VCEs) in congested process plants. Total and cooperation partners have demonstrated that solid flame inhibitors injected into flammable hydrocarbon-air clouds represent an effective means of mitigating the consequences of VCEs involving hydrocarbons. For hydrogen-air explosions these same chemicals inhibitors have not proved effective. It is however well-known that hydrocarbons can affect the burning velocity of hydrogen-air mixtures greatly. This paper gives an overview over previous work on chemical inhibitors. In addition experiments in a 20-litre vessel have been performed to investigate the effect of combinations of hydrocarbons and alkali salts on hydrogen/air mixtures.
Nanoporous Polymer-based Composites for Enhanced Hydrogen Storage
May 2019
Publication
The exploration and evaluation of new composites possessing both processability and enhanced hydrogen storage capacity are of signifcant interest for onboard hydrogen storage systems and fuel cell based electric vehicle development. Here we demonstrate the fabrication of composite membranes with sufcient mechanical properties for enhanced hydrogen storage that are based on a polymer of intrinsic microporosity (PIM-1) matrix containing nano-sized fllers: activated carbon (AX21) or metal–organic framework (MIL-101). This is one of the frst comparative studies of diferent composite systems for hydrogen storage and in addition the frst detailed evaluation of the difusion kinetics of hydrogen in polymer-based nanoporous composites. The composite flms were characterised by surface area and porosity analysis hydrogen adsorption measurements mechanical testing and gas adsorption modelling. The PIM-1/AX21 composite with 60 wt% AX21 provides enhanced hydrogen adsorption kinetics and a total hydrogen storage capacity of up to 9.35 wt% at 77 K; this is superior to the US Department of Energy hydrogen storage target. Tensile testing indicates that the ultimate stress and strain of PIM-1/ AX21 are higher than those of the MIL-101 or PAF-1 containing composites and are sufcient for use in hydrogen storage tanks. The data presented provides new insights into both the design and characterisation methods of polymer-based composite membranes. Our nanoporous polymer-based composites ofer advantages over powders in terms of safety handling and practical manufacturing with potential for hydrogen storage applications either as means of increasing storage or decreasing operating pressures in high-pressure hydrogen storage tanks.
Producing Low Carbon Gas- Future Gas Series part 2
Jul 2018
Publication
Of all the sectors in the UK decarbonising heat remains one of the most challenging. Heat used for industrial domestic and commercial purposes generates around a third of all UK carbon emissions 70% of which is due to burning natural gas. In order to meet our legally binding national climate change targets unabated natural gas use for heat must be phased out. Low carbon gas - including hydrogen and biogases - is one option to replace it. The Future Gas Series examines the opportunities and challenges associated with using low carbon gas to help decarbonise the UK economy.<br/><br/>This is the second report in the three-part Future Gas Series. Part 1: Next Steps for the Gas Grid explored the potential to decarbonise the existing gas grid. The report Part 2: the Production of Low Carbon Gas focuses on the issues related to the production of low carbon gas. It considers the different production technologies the potential scale of deployment of each method and the potential feedstocks. It also discusses issues related to bulk transport and storage of gas. Put together from expert evidence from across industry and academia it provides a balanced guide for policy makers in this area. It was a co-chaired by James Heappey MP (Conservative) Alan Whitehead MP (Labour) and Alistair Carmichael MP (SNP).<br/><br/>Carbon Connect suggests that biogases- such as biomethane and bioSNG- provide low regrets opportunities in the near term to provide low carbon heat and could also potentially make use of waste that would otherwise go to landfill. However they require further support to allow them to continue contributing to decarbonising the UK economy. Hydrogen could provide huge decarbonisation opportunities and has applications across the energy system from putting hydrogen in the gas grid to be burnt for heat in homes to hydrogen buses and trains. However to realise this potential a market for hydrogen must be built up. This should incentivise business to invest in hydrogen technologies reward those who use hydrogen and build up hydrogen infrastructure.<br/><br/>
Overview of First Outcomes of PNR Project HYTUNNEL-CS
Sep 2021
Publication
Dmitry Makarov,
Donatella Cirrone,
Volodymyr V. Shentsov,
Sergii Kashkarov,
Vladimir V. Molkov,
Z. Xu,
Mike Kuznetsov,
Alexandros G. Venetsanos,
Stella G. Giannissi,
Ilias C. Tolias,
Knut Vaagsaether,
André Vagner Gaathaug,
Mark R. Pursell,
Wayne M. Rattigan,
Frank Markert,
Luisa Giuliani,
L.S. Sørensen,
A. Bernad,
Mercedes Sanz Millán,
U. Kummer,
Christian Brauner,
Paola Russo,
J. van den Berg,
F. de Jong,
Tom Van Esbroeck,
M. Van De Veire,
Didier Bouix,
Gilles Bernard-Michel,
Sergey Kudriakov,
Etienne Studer,
Domenico Ferrero,
Joachim Grüne and
G. Stern
The paper presents the first outcomes of the experimental numerical and theoretical studies performed in the funded by Fuel Cell and Hydrogen Joint Undertaking (FCH2 JU) project HyTunnel-CS. The project aims to conduct pre-normative research (PNR) to close relevant knowledge gaps and technological bottlenecks in the provision of safety of hydrogen vehicles in underground transportation systems. Pre normative research performed in the project will ultimately result in three main outputs: harmonised recommendations on response to hydrogen accidents recommendations for inherently safer use of hydrogen vehicles in underground traffic systems and recommendations for RCS. The overall concept behind this project is to use inter-disciplinary and inter-sectoral prenormative research by bringing together theoretical modelling and experimental studies to maximise the impact. The originality of the overall project concept is the consideration of hydrogen vehicle and underground traffic structure as a single system with integrated safety approach. The project strives to develop and offer safety strategies reducing or completely excluding hydrogen-specific risks to drivers passengers public and first responders in case of hydrogen vehicle accidents within the currently available infrastructure.
Policy and Pricing Barriers to Steel Industry Decarbonisation: A UK Case Study
Aug 2022
Publication
Global climate targets have highlighted the need for a whole-systems approach to decarbonisation one that includes targeted national policy and industry specific change. Situated within this context this research examines policy and pricing barriers to decarbonisation of the UK steel industry. Here the techno-economic modelling of UK green steelmaking provides a technical contribution to analysis of pricing barriers and policy solutions to these barriers in the UK specifically but also to the broader industrial decarbonisation literature. Estimated costs and associated emissions projections reveal relevant opportunities for UK steel in contributing to national climate and emissions targets. Modelling demonstrates that green steelmaking options have been put at price disadvantages compared to emissions-intensive incumbents and that fossil-free hydrogen-based steel-making has lower emissions and lower levelised costs than carbon capture and storage options including top gas recycling blast furnace (TGR-BF) with CCS and HIsarna smelter with CCS. Two primary policy recommendations are made: the removal of carbon pricing discrepancies and reductions in industrial electricity prices that would level the playing field for green steel producers in the UK. The research also provides relevant policy considerations for the international community in other industrial decarbonisation efforts and the policies that must accompany these decarbonisation choices.
Milford Haven: Energy Kingdom - System Architecture Report: A Prospering from the Energy Revolution Project
Nov 2021
Publication
Milford Haven: Energy Kingdom is a two-year project exploring what a decarbonised smart local energy system could look like for Milford Haven Pembroke and Pembroke Dock.
The project explores the potential of hydrogen as part of a multi-vector approach to decarbonisation. Central to the project and to achieving Net Zero is a commitment to engage with the community and local industry providing insight and opportunities for growth.
The ambition is to gather detailed insight into the whole energy system around Milford Haven to identify and design a future smart local energy system based on a truly multi-vector approach and comprehensive energy systems architecture.
The transition to Net Zero requires action across the economy. As the UK’s largest energy port Milford Haven is an industrial cluster that can handle 30% of total UK gas demand is home to Europe’s largest gas power station powering 3.5 million homes and businesses has ambitions to build 90MW of floating offshore wind supports 5000 jobs and injects £324m to the Pembrokeshire economy.
This work describes the outcomes of the effort to define designs of future energy system architectures combining; technology the interconnectivity between them and data; with markets trading platforms and policies; with business models and defined organisational governance. The aim of these designs is to provide:
The project explores the potential of hydrogen as part of a multi-vector approach to decarbonisation. Central to the project and to achieving Net Zero is a commitment to engage with the community and local industry providing insight and opportunities for growth.
The ambition is to gather detailed insight into the whole energy system around Milford Haven to identify and design a future smart local energy system based on a truly multi-vector approach and comprehensive energy systems architecture.
The transition to Net Zero requires action across the economy. As the UK’s largest energy port Milford Haven is an industrial cluster that can handle 30% of total UK gas demand is home to Europe’s largest gas power station powering 3.5 million homes and businesses has ambitions to build 90MW of floating offshore wind supports 5000 jobs and injects £324m to the Pembrokeshire economy.
This work describes the outcomes of the effort to define designs of future energy system architectures combining; technology the interconnectivity between them and data; with markets trading platforms and policies; with business models and defined organisational governance. The aim of these designs is to provide:
- The basis for a roadmap for the next phases of development and implementation
- Confidence to innovators and investors in the future longevity of investments in hydrogen and
- A common basis of understanding for all stakeholders wishing to contribute to the Milford Haven: Energy Kingdom.
HydroGenerally - Episode 4: Hydrogen in a Global Maritime Industry: Plain Sailing or a Rough Ride?
May 2022
Publication
In this fourth episode Simon Buckley and Matthew Moss from Innovate UK KTN are exploring the use of hydrogen in the global maritime industry alongside their special guest Chester Lewis Business Development Manager at Ryze Hydrogen.
This podcast can be found on their website
This podcast can be found on their website
The Upfront Cost of Decarbonising Your Home
Nov 2021
Publication
The objective of this report is to analyse the upfront capital costs facing consumers when considering the installation of new low carbon heating technology solutions for their homes today including the cost of any associated home upgrades that will likely be required. The UK Government have recently published its Heat and Buildings Strategy which sets out plans to significantly cut carbon emissions from the existing housing stock and new homes. Whilst the Strategy points to a future role for a variety of technologies such as heat pumps hydrogen and heat networks the success of this Strategy will largely be determined by the ability to achieve installed cost reductions for heat pumps of at least 25-50% by 2025 with the view to achieving cost parity with a gas boiler by 2030. The purpose of this report is to launch a series which tracks the upfront costs of these respective technologies over time to establish whether the cost reduction targets mooted by government and heat pump stakeholders are being delivered and the implications this has on our ability to decarbonise the UK housing stock.
Mitigation of CO Poisoning Hazard in Malfunctioning Gas Appliances Through Use of Hydrogen Blended Gas
Sep 2021
Publication
The HyDeploy project [1] has undertaken an extensive research programme to assess safety and performance of the existing UK gas appliances population fueled with natural gas / hydrogen admixtures (hydrogen blended gas). The first stage of this work [2] focused on well maintained and normally functioning appliances. This work demonstrated that unmodified gas appliances can operate safely with hydrogen blended gas (up to 20 vol% hydrogen) and the key hazard areas of carbon monoxide (CO) production light back and flame out and the operation of flame failure devices are unaffected. It is widely recognized that due to aging and variable degrees of maintenance that the combustion performance of a gas appliance will depreciate over time. In extreme cases this can lead to situations where high levels of CO may be released back into the dwelling resulting in CO poisoning to the occupants. To obtain a universal appreciation of the effect of hydrogen addition on the safety and performance of all gas appliances operation under sub optimal conditions is required and therefore it is important that the operation of malfunctioning appliances fuelled with hydrogen blended gas is assessed. A review of failure modes identified six key scenarios where the composition of the fuel gas may lead to changes in safety performance - these primarily related to the resulting composition of the flue gas but also included delayed ignition. Gas appliance faults that will increase the CO production were tested through a series of experiments to simulate fault conditions and assess the effect of hydrogen blended gas. The fault modes examined included linting flame chilling incorrect appliance set up and modification of gas valve operation. The programme utilized six different appliances tested with three methane-hydrogen fuel blends (containing 0 20 and 28.4 vol% hydrogen). In all cases the switch to hydrogen blended gas reduced CO production. The change in CO production when using hydrogen blended gas is a consequence of a decrease in the theoretical air requirement to achieve complete combustion. In some cases the amount of CO produced was identical to the nonfault baseline performance on methane thereby fully mitigating the consequence of the malfunction. In the case of very high CO production a 90% reduction was recorded when using 20 vol% hydrogen blended gas. In situations such as non-optimal boiler set up the addition of hydrogen to the gas supply would prevent the production of high levels of CO. The findings here together with the results from HyDeploy 1 [2] indicate that the safety and performance of unmodified existing UK gas appliances are not detrimentally affected when using hydrogen blended gas. Furthermore the addition of hydrogen to the fuel gas has been shown to reduce CO production under fault conditions therefore the introduction of hydrogen into the gas network may serve to mitigate the hazard posed by existing faulty appliances that are producing elevated levels of CO.
Baselining the Body of Knowledge for Hydrogen Shock Interactions and Debris Escalation
Sep 2021
Publication
The differences in behaviour of hydrogen when compared to natural gas under deflagration and detonation scenarios are well known. The authors currently work in the area of fire and explosion analysis and have identified what they feel are potential gaps in the current Body of Knowledge (BOK) available to the sector. This is especially related to the behaviour around secondary shock formation and interactions with surrounding structures especially with ‘open’ structures such as steel frameworks typically seen in an offshore environment and practicable methods for determining debris formation and propagation. Whilst the defence sector has extensive knowledge in these areas this is primarily in the area of high explosives where the level of shocks observed is stronger than those resulting from a hydrogen detonation. This information would need to be reviewed and assessed to ensure it is appropriate for application in the hydrogen sector. Therefore with a focus on practicality the authors have undertaken a two-phase approach. The first phase involves carrying out a through literature search and discussions within our professional networks in order to ascertain whether there is a gap in the BOK. If good research guidance and tools to support this area of assessment already exist the authors have attempted to collate and consolidate this into a form that can be made more easily available to the community. Secondly if there is indeed a gap in the BOK the authors have attempted to ensure that all relevant information is collated to act as a reference and provide a consistent baseline for future research and development activities.
A System-Approach to Data can Help Install Trust and Enable a Net Zero Future
Mar 2021
Publication
Carbon capture and storage (CCS) and hydrogen will be a catalyst to deeply decarbonize the world’s energy system but not for another 15 years according to DNV’s Energy Transition Outlook. Many aspects from policy to technology developments can help to scale these technologies and accelerate the timeline.<br/>In the report A System-Approach to Data can Help Install Trust and Enable a Net Zero Future DNV considers what role data could play to support the initiation execution and operation of CCS and hydrogen projects.<br/>The research is based on interviews with representatives from across the UK energy supply chain. It focuses in particular on the emerging carbon and hydrogen industries and the cross sectoral challenges they face. It explores how data can facilitate the flow of the product both with respect to fiscal and technical risk matters.<br/>The report is intended for anyone involved in or has an interest in CCUS or hydrogen projects and in how data eco-systems will support the efficient operation and the transition to net-zero.<br/>DNV produced the report for and in partnership with the ODI an organization that advocates for the innovative use of open data to affect positive change across the globe.
H21 Phase 2: Personal Protective Equipment
Dec 2020
Publication
This report is a detailed discussion related to safety shoes heat and flame personal protective equipment (PPE) and breathing apparatus (respiratory protective equipment RPE) required for working with natural gas (NG) and hydrogen (H2). This work was undertaken by HSE Science Division (SD) as part of Phase 2a of the H21 project. This report should be read alongside all the other relevant reports generated as part of this project. Recommendations made in this report are focused solely on the provision and use of PPE and should not be considered independently of recommendations made in the other relevant reports.<br/>Understanding the similarities and difference of PPE required for NG and H2 enables a deeper understanding of how the transition from NG to 100% H2 might change the way the gas distribution network is operated and managed.
Regional Insights into Low-carbon Hydrogen Scale Up: World Energy Insights Working Paper
May 2022
Publication
Following the release of the “Hydrogen on the Horizon” series in July and September 2021 the World Energy Council in collaboration with EPRI and PwC led a series of regional deep dives to understand regional differences within low-carbon hydrogen development. These regional deep dives aimed to uncover regional perspectives and differing dynamics for low-carbon hydrogen uptake.<br/>Although each region presents its own distinctive challenges and opportunities the deep dives revealed that the “regional paths” provide new insights into the global scaling up of low-carbon hydrogen in the coming years. In addition each region holds its own unique potential in achieving the Sustainable Development Goals.<br/>Key Takeaways:<br/>1. Our new regional insights indicate that low-carbon hydrogen can play a significant role by 2040 across the world by supporting countries’ efforts towards achieving Paris Agreement goals whilst contributing to the diversity and security of their energy portfolios. This would require significant global trade flows of hydrogen and hydrogen-based fuels.<br/>2. The momentum for hydrogen-based fuels is continuing to grow worldwide but differences are seen between regions – based on differing market activities and opportunities.<br/>3. Today moving from “whether” to “how” to develop low-carbon hydrogen highlights significant uncertainties which need to be addressed if hydrogen is to reach its full potential.<br/>Can the challenges in various supply chain options be overcome?<br/>Can hydrogen play a role in tackling climate change in the short term?<br/>Can bankable projects emerge and the gap between engineers and financers be bridged? Can the stability of supply of the main low-carbon hydrogen production sources be guaranteed?<br/>4. Enabling low-carbon hydrogen at scale would notably require greater coordination and cooperation amongst stakeholders worldwide to better mobilise public and private finance and to shift the focus to end-users and people through the following actions:<br/>Moving from production cost to end-use price<br/>Developing Guarantees of Origin schemes with sustainability requirements<br/>Developing a global monitoring and reporting tool on low-carbon hydrogen projects<br/>Better consideration of social impacts alongside economic opportunities
A Brief History of Process Safety Management
Sep 2021
Publication
Common root causes are often to be found in many if not most process safety incidents. Whilst largescale events are relatively rare such events can have devastating consequences. The subsequent investigations often uncover that the risks are rarely visible the direct causes are often hidden and that a ‘normalization of deviation’ is a common human characteristic. Process Safety Management (PSM) builds on the valuable lessons learned from past incidents to help prevent future recurrences. An understanding of how PSM originated and has evolved as a discipline over the past 200 years can be instructive when considering the safety implications of emerging technologies. An example is hydrogen production where risks must be effectively identified mitigated and addressed to provide safe production transportation storage and use .
Siting and Co-location with Hydrogen: What are the Risks?
Sep 2021
Publication
The demand for hydrogen has grown more than threefold since 1975 [1] and price is expected to significantly decrease by 2030 [2] concluding in an expected continual increase in demand. HyLaw defined by Hydrogen Europe lays out recommendations for hydrogen applications using identified Legal and Administrative Processes (LAPs) across 18 European countries. Regarding site location HyLaw refers to the land use plan. This defines the production and storage of hydrogen as an industrial activity and therefore regardless of the specific site methods of production or use the hydrogen site must be within a permitted industrial zone or under specific condition commercial areas [3]. Local authorities fire departments and other concerned parties may need to be consulted on site suitability for the project. Risktec explores a range of considerations for siting and layout of hydrogen developments including co-location with other assets for example with renewable energy sources hazardous facilities or public structures. Good practice tools and assessment techniques are presented to mitigate the risks associated with the production storage and use of hydrogen not just the surrounding site and environment but the operatives of the facility.
Gas Turbine Enclosures: Determining Ventilation Safety Criteria using Hydrogen Explosion Modelling
Sep 2021
Publication
Dilution ventilation is the current basis of safety following a flammable gas leak within a gas turbine enclosure and compliance requirements are defined for methane fuels in ISO 21789. These requirements currently define a safety criteria of a maximum flammable gas cloud size within an enclosure. The requirements are based on methane explosion tests conducted during a HSE Joint Industry Project which identified typical pressures associated with a range of gas cloud sizes. The industry standard approach is to assess the ventilation performance of specific enclosure designs against these requirements using CFD modelling. Gas turbine manufacturers are increasingly considering introducing hydrogen/methane fuel mixtures and looking towards operating with hydrogen alone. It is therefore important to review the applicability of current safety standards for these new fuels as the pressure resulting from a hydrogen explosion is expected to be significantly higher than that from a methane explosion. In this paper we replicate the previous methane explosion tests for hydrogen and hydrogen/methane fuel mixtures using the explosion modelling tool FLACS CFD. The results are used to propose updated limiting safety criteria for hydrogen fuels to support ventilation CFD analysis for specific enclosure designs. It is found that significantly smaller gas cloud sizes are likely to be acceptable for gas turbines fueled by hydrogen however significantly more hydrogen than methane is required per unit volume to generate a stoichiometric cloud (as hydrogen has a lower stoichiometric air fuel ratio than methane). This effect results in the total quantity of gas in the enclosure (and as such detectability of the gas) being broadly similar when operating gas turbines on hydrogen when compared to methane.
Hydrogen-electricity Hybrid Energy Pipelines for Railway Transportation: Design and Economic Evaluation
Mar 2024
Publication
With the decarbonization and electrification of modern railway transportation the demand for both the highcapacity electrical energy and hydrogen fuel energy is increasingly high. A novel scheme was proposed from liquid hydrogen production by surplus wind and solar energy to liquid hydrogen-electricity hybrid energy transmission for railway transportation. The 100 MW hybrid energy transmission pipeline was designed with the 10 kA/1.5 kV superconducting DC cable for electricity and cryogenic layers for liquid hydrogen and liquid nitrogen showing strong capability in transmitting “electricity + cold energy + chemical energy” simultaneously. Economic evaluation was performed with respect to the energy equipment capacity and costs with sensitivity and profitability analysis. With the discount rate 8% the dynamic payback period of the hybrid energy pipeline was 7.1 years. Results indicated that the shortest dynamic payback period of the hybrid energy pipeline was 4.8 years with the maximum transmission distance 93 km. Overall this article shows the novel concept and design of liquid hydrogen-electricity hybrid energy pipelines and proves the technical and economic feasibilities for future bulk hybrid energy transmission for railway transportation.
UK Low Carbon Hydrogen Standard: Guidance on the Greenhouse Gas Emissions and Sustainability Criteria
Apr 2022
Publication
The Low Carbon Hydrogen Standard sets a maximum threshold for the amount of greenhouse gas emissions allowed in the production process for hydrogen to be considered ‘low carbon hydrogen’. Compliance with the standard will help ensure new low carbon hydrogen production makes a direct contribution to our carbon reduction targets.
This guidance sets out the methodology for calculating the emissions associated with hydrogen production and the steps producers should take to prove that the hydrogen they produce is compliant with the standard.
It is for use by hydrogen producers seeking support from government schemes and policies that have adopted the standard.
The standard requires hydrogen producers to:
This guidance sets out the methodology for calculating the emissions associated with hydrogen production and the steps producers should take to prove that the hydrogen they produce is compliant with the standard.
It is for use by hydrogen producers seeking support from government schemes and policies that have adopted the standard.
The standard requires hydrogen producers to:
- meet a GHG emissions intensity of 20g CO2e/MJLHV of produced hydrogen or less for the hydrogen to be considered low carbon
- calculate their greenhouse gas (GHG) emissions up to the ‘point of production’
- set out a risk mitigation plan for fugitive hydrogen emissions
- meet additional requirements for the use of biogenic inputs where relevant and as appropriate for the feedstock source and classification
Evaluating the Opportunity to Repurpose Gas Transmission Assets for Hydrogen Transportation
Sep 2021
Publication
The UK National Transmission System (NTS) is a key enabler to decarbonise the gas network in Great Britain (GB) in order to meet the UK government’s target of net-zero emissions by 2050. FutureGrid is National Grid’s research programme assessing the capability of the transmission system to transport hydrogen. Our goal is to accelerate the decarbonisation of power industry and heat by delivering a safe supply of energy to all customers both during and after the energy transition. FutureGrid will lead to a better understanding of what the technical parameters are around the ultimate role of the NTS in the energy system and how the transition can be managed. Under FutureGrid National Grid will construct a NTS hydrogen test facility at DNV’s Spadeadam testing and research site. NTS assets due to be decommissioned in early RIIO2 will be reconstructed to create a test network that can be used to answer some of the fundamental questions around safety and operation of a converted network. Flows of hydrogen/natural gas blends including 100% hydrogen will be tested for the first time in GB at transmission pressures. This system will connect to the existing H21 distribution network test facility at Spadeadam to prove a complete beach-to-meter network can be decarbonised to develop a comprehensive programme for the hydrogen transition. The project will provide a transmission facility which is a key enabler for more advanced hydrogen testing on industrial equipment such as hydrogen separation technology hydrogen compressors and/or purification of hydrogen for transport. Our paper will detail the current position and aims of the project.
IGEM/TD/1 Edition 6 Supplement 2 - High Pressure Hydrogen Pipelines
Nov 2021
Publication
This Supplement gives additional requirements and qualifications for the transmission of Hydrogen including Natural Gas/Hydrogen blended mixtures (subsequently referred to as NG/H blends) and for the repurposing of Natural Gas (NG) pipelines to Hydrogen service. For the purposes of this document any NG/H blend above 10% MOL is considered to be an equivalence to 100% hydrogen. For blends below 10% MOL there is no evidence to confirm that blends containing up to 10 mol.% hydrogen do not cause material degradation but it is considered that the risk is low.
This Supplement covers the design construction inspection testing operation and maintenance of steel pipelines and certain associated installations in Hydrogen service and the repurposing of NG pipelines to Hydrogen service at maximum operating pressure (MOP) exceeding 7 bar and not exceeding 137.9 bar.
This standard can be purchased here
This Supplement covers the design construction inspection testing operation and maintenance of steel pipelines and certain associated installations in Hydrogen service and the repurposing of NG pipelines to Hydrogen service at maximum operating pressure (MOP) exceeding 7 bar and not exceeding 137.9 bar.
This standard can be purchased here
Consumer Perceptions of Blended Hydrogen in the Home: Learning from HyDeploy
Apr 2022
Publication
This report presents the results of research into consumer perceptions and the subsequent degree of acceptance of blended hydrogen in domestic properties. Evidence from two trial sites of the HyDeploy programme: i) a private site trial at Keele University North Staffordshire; ii) and a public site trial at Winlaton Gateshead are discussed.
Net Zero after Covid: Behavioural Principles for Building Back Better
Dec 2020
Publication
Alongside our Sixth Carbon Budget Advice the Climate Change Committee (CCC) are publishing a paper from Professor Nick Chater the Committee’s behavioural science specialist. This paper considers three behavioural principles that explain how people have adapted so rapidly and how we might “build back better” as we emerge from the pandemic with a particular focus on meeting the challenge of dramatically reducing greenhouse gas (GHG) emissions over the coming decades. The principles are:
- The power law of practice: People organizations and whole industries learn to adapt to new ways of working following a surprisingly predictable pattern. This can help predict where adaptation to new ways of living and working is likely to succeed or fail.
- The status quo effect: People and organizations tend to prefer the current status quo but can often adjust rapidly to prefer a new status quo. However we tend to systematically underestimate such effects and therefore can sometimes resist changes that in retrospect we may ultimately prefer.
- Unwritten rules: Our social behaviour is guided by implicit guidelines about what is “appropriate” which can be somewhat independent of our personal values. Changing these implicit rules alongside changes in regulation and the law is crucial to adapting to new circumstances—and the pandemic has shown that rapid change is possible though sometimes resisted (e.g. new norms about mask wearing and social distancing).
Incorporating Homeowners' Preferences of Heating Technologies in the UK TIMES Model
Feb 2018
Publication
Hot water and space heating account for about 80% of total energy consumption in the residential sector in the UK. It is thus crucial to decarbonise residential heating to achieve UK's 2050 greenhouse gas reduction targets. However the decarbonisation transitions determined by most techno-economic energy system models might be too optimistic or misleading for relying on cost minimisation alone and not considering households' preferences for different heating technologies. This study thus proposes a novel framework to incorporate heterogeneous households' (HHs) preferences into the modelling process of the UK TIMES model. The incorporated preferences for HHs are based on a nationwide survey on homeowners' choices of heating technologies. Preference constraints are then applied to regulate the HHs' choices of heating technologies to reflect the survey results. Consequently compared to the least cost transition pathway the preference-driven pathway adopts heating technologies gradually without abrupt increases of market shares. Heat pumps and electric heaters are deployed much less than in the cost optimal result. Extensive district heating using low-carbon fuels and conservation measures should thus be deployed to provide flexibility for decarbonisation. The proposed framework can also incorporate preferences for other energy consumption technologies and be applied to other linear programming based energy system models.
Are Scenarios of Hydrogen Vehicle Adoption Optimistic? A Comparison with Historical Analogies
Nov 2015
Publication
There is a large literature exploring possible hydrogen futures using various modelling and scenario approaches. This paper compares the rates of transition depicted in that literature with a set of historical analogies. These analogies are cases in which alternative-fuelled vehicles have penetrated vehicle markets. The paper suggests that the literature has tended to be optimistic about the possible rate at which hydrogen vehicles might replace oil-based transportation. The paper compares 11 historical adoptions of alternative fuel vehicles with 24 scenarios from 20 studies that depict possible hydrogen futures. All but one of the hydrogen scenarios show vehicle adoption faster than has occurred for hybrid electric vehicles in Japan the most successful market for hybrids. Several scenarios depict hydrogen transitions occurring at a rate faster than has occurred in any of the historic examples. The paper concludes that scenarios of alternative vehicle adoption should include more pessimistic scenarios alongside optimistic ones.
What is the Energy Balance of Electrofuels Produced Through Power-to-fuel Integration with Biogas Facilities?
Nov 2021
Publication
The need to reduce the climate impact of the transport sector has led to an increasing interest in the utilisation of alternative fuels. Producing advanced fuels through the integration of anaerobic digestion and power-to-fuel technologies may offer a solution to reduce greenhouse gas emissions from difficult to decarbonise modes of transport such as heavy goods vehicles shipping and commercial aviation while also offering wider system benefits. This paper investigates the energy balance of power-to-fuel (power-to-methane power-to-methanol power-to-Fischer-Tropsch fuels) production integrated with a biogas facility co-digesting grass silage and dairy slurry. Through the integration of power-to-methane with anaerobic digestion an increase in system gross energy of 62.6% was found. Power-to-methanol integration with the biogas system increased the gross energy by 50% while power-to-Fischer-Tropsch fuels increased the gross energy yield by 32%. The parasitic energy demand for hydrogen production was highlighted as the most significant factor for integrated biogas and power-to-fuel facilities. Consuming electricity that would otherwise have been curtailed and optimising the anaerobic digestion process were identified as key to improving the energetic efficiency of all system configurations. However the broad cross-sectoral benefits of the overarching cascading circular economy system such as providing electrical grid stability and utilising waste resources must also be considered for a comprehensive perspective on the integration of anaerobic digestion and power-to-fuel.
Transitioning to Hydrogen
Jan 2020
Publication
The UK is investigating supplying hydrogen to homes and businesses instead of natural gas by “repurposing” the gas network. It presents a major engineering challenge which has never been done anywhere else in the world.
In a new report titled ‘Transitioning to hydrogen’ experts from a cross-professional engineering institution (PEI) working group including the IET have assessed the engineering risks and uncertainties and concluded there is no reason why repurposing the gas network to hydrogen cannot be achieved. But there are several engineering risks and uncertainties which need to be addressed.
In a new report titled ‘Transitioning to hydrogen’ experts from a cross-professional engineering institution (PEI) working group including the IET have assessed the engineering risks and uncertainties and concluded there is no reason why repurposing the gas network to hydrogen cannot be achieved. But there are several engineering risks and uncertainties which need to be addressed.
Hydrogen Transport - Fuelling The Future
Dec 2020
Publication
Through the combustion of fossil fuels the transport sector is responsible for 20-30% of global CO2 emissions. We can support the net-zero one ambition by decarbonising transport modes using green hydrogen fuelled options – hydrogen generated from renewable energy sources such as offshore wind.<br/><br/>We have been working with clients across the hydrogen industry for several years specifically around the generation dispatch and use of hydrogen within energy systems. However interest is swiftly moving to wider hydrogen based solutions including within the fleet rail aviation and maritime sectors.<br/><br/>Our latest ‘Future of Energy’ series explores the opportunity for green fuelled hydrogen transport. We look at each industry in detail the barriers to uptake market conditions and look at how the transport industry could adapt and develop to embrace a net-zero future.
Hydrogen - Decarbonising Heat
Feb 2020
Publication
<br/>Our industry is beginning its journey on the transition to providing the world with sufficient sustainable affordable and low emission energy.<br/><br/>Decarbonisation is now a key priority. Steps range from reducing emissions from traditional oil and gas operations to investing in renewable energy and supplementing natural gas supplies with greener gasses such as hydrogen.<br/><br/>This paper looks at the role hydrogen could play in decarbonisation.
Performing While Transforming: The Role of Transmission Companies in the Energy Transition
Jun 2020
Publication
As the world prepares to exit from the COVID-19 crisis the pace of the global power revolution is expected to accelerate. A new publication from the World Energy Council in collaboration with PwC underscores the imperative for electricity grid owners and operators to fundamentally transform themselves to secure a role in a more integrated flexible and smarter electricity system in the energy transition to a low carbon future.
“Performing While Transforming: The Role of Transmission Companies in the Energy Transition” is based on in-depth interviews with CEOs and senior leaders from 37 transmission companies representing 35 countries and over 4 million kilometres – near global coverage - of the transmission network. While their roles will evolve transmission companies will remain at the heart of the electricity grid and need to balance the challenges of keeping the lights on while transforming themselves for the future.
The publication explores the various challenges affecting how transmission companies prepare and re-think their operations and business models and leverages the insights from interviewees to highlight four recommendations for transmission companies to consider in their journey:
“Performing While Transforming: The Role of Transmission Companies in the Energy Transition” is based on in-depth interviews with CEOs and senior leaders from 37 transmission companies representing 35 countries and over 4 million kilometres – near global coverage - of the transmission network. While their roles will evolve transmission companies will remain at the heart of the electricity grid and need to balance the challenges of keeping the lights on while transforming themselves for the future.
The publication explores the various challenges affecting how transmission companies prepare and re-think their operations and business models and leverages the insights from interviewees to highlight four recommendations for transmission companies to consider in their journey:
- Focus on the future through enhanced forecasting and scenario planning
- Shape the ecosystem by collaborating with new actors and enhancing interconnectivity
- Embrace automation and technology to optimise processes and ensure digital delivery
- Transform organisation to attract new talent and maintain social licence with consumers
Decarbonising the UK’s Gas Network - Realising the Green Power-to-hydrogen Opportunity in the East Network
Aug 2020
Publication
Although the UK has done a great job of decarbonising electricity generation to get to net zero we need to tackle harder-to-decarbonise sectors like heat transport and industry. Decarbonised gas – biogases hydrogen and the deployment of carbon capture usage and storage (CCUS) – can make our manufacturing more sustainable minimise disruption to families and deliver negative emissions.
Developing the capability to produce hydrogen at scale is one of the key challenges in the race to meet the UK’s ambitious net zero targets. Using the East Neuk of Fife - with its abundant on- and offshore renewables resource and well-developed electricity and gas networks – as a test bed we investigated the use of surplus electricity generated by renewables to produce green hydrogen which could then be used to heat homes and businesses carbon-free.
Aims
The study focused on answering a number of important questions around bringing power-to-hydrogen to Fife including:
How much low-cost low-carbon electricity would be available to a power-to-hydrogen operator in Fife and how much hydrogen could be produced today and in 2040? How much hydrogen storage would be required to meet demand under three end-use cases: injection into the natural gas grid; use in a dedicated hydrogen grid for heating; and use as transport fuel for a small fleet of vehicles? What if any network upgrades could be avoided by implementing power-to-hydrogen? Which hydrogen end-use markets would be most attractive for a power-to-hydrogen operator? What are the regulatory legislative or market barriers to be overcome to realise large-scale deployment of power-to-hydrogen?
The study
Our expert researchers used a high-level model of the European electricity system and established wholesale prices generation volumes by generation type and constrained generation in Fife. Considering both the present day and a 2040 picture based on National Grid’s Two Degrees Future Energy Scenarios our team explored a number of configurations of power generation and hydrogen end-use to assess the value associated with producing hydrogen.
Alongside this modelling our team conducted a comprehensive review of power-to-hydrogen legislation and regulation and reports and academic papers to identify the current characteristics and direction of the sector observe where most progress had been made and identify lessons learned.
This report and any attachment is freely available on the ENA Smarter Networks Portal here. IGEM Members can download the report and any attachment directly by clicking on the pdf icon above.
Developing the capability to produce hydrogen at scale is one of the key challenges in the race to meet the UK’s ambitious net zero targets. Using the East Neuk of Fife - with its abundant on- and offshore renewables resource and well-developed electricity and gas networks – as a test bed we investigated the use of surplus electricity generated by renewables to produce green hydrogen which could then be used to heat homes and businesses carbon-free.
Aims
The study focused on answering a number of important questions around bringing power-to-hydrogen to Fife including:
How much low-cost low-carbon electricity would be available to a power-to-hydrogen operator in Fife and how much hydrogen could be produced today and in 2040? How much hydrogen storage would be required to meet demand under three end-use cases: injection into the natural gas grid; use in a dedicated hydrogen grid for heating; and use as transport fuel for a small fleet of vehicles? What if any network upgrades could be avoided by implementing power-to-hydrogen? Which hydrogen end-use markets would be most attractive for a power-to-hydrogen operator? What are the regulatory legislative or market barriers to be overcome to realise large-scale deployment of power-to-hydrogen?
The study
Our expert researchers used a high-level model of the European electricity system and established wholesale prices generation volumes by generation type and constrained generation in Fife. Considering both the present day and a 2040 picture based on National Grid’s Two Degrees Future Energy Scenarios our team explored a number of configurations of power generation and hydrogen end-use to assess the value associated with producing hydrogen.
Alongside this modelling our team conducted a comprehensive review of power-to-hydrogen legislation and regulation and reports and academic papers to identify the current characteristics and direction of the sector observe where most progress had been made and identify lessons learned.
This report and any attachment is freely available on the ENA Smarter Networks Portal here. IGEM Members can download the report and any attachment directly by clicking on the pdf icon above.
Flow of Hydrogen from Buried Leaks
Sep 2019
Publication
The substitution of hydrogen for natural gas within a gas network has implications for the potential rate of leakage from pipes and the distribution of gas flow driven by such leaks. This paper presents theoretical analyses of low-pressure flow through porous ground in a range of circumstances and practical experimental work at a realistic scale using natural gas hydrogen or nitrogen for selected cases. This study considers flow and distribution of 100% hydrogen. A series of eight generic flow regimes have been analysed theoretically e.g. (i) a crack in uncovered ground (ii) a crack under a semi-permeable cover in a high porosity channel (along a service line or road). In all cases the analyses yield both the change in flow rate when hydrogen leaks and the change in distance to which hydrogen gas can travel at a dangerous rate compared to natural gas. In some scenarios a change to hydrogen gas from natural gas makes minimal difference to the range (i.e. distance from the leak) at which significant gas flows will occur. However in cases where the leak is covered by an impermeable membrane a change to hydrogen from natural gas may extend the range of significant gas flow by tens or even hundreds of metres above that of natural gas. Experimental work has been undertaken in specific cases to investigate the following: (i) Flow rate vs pressure curves for leaks into media with different permeability (ii) Effects of the water content of the ground on gas flow (iii) Distribution of surface gas flux near a buried leak
Tracking the Evolution of a Single Composite Particle During Redox Cycling for Application in H2 Production
Mar 2020
Publication
Composite materials consisting of metal and metal oxide phases are being researched intensively for application in various energy conversion and storage technologies. In these applications composites are often expected to operate under redox conditions at elevated temperature. The understanding of the dynamics of composite phase and morphology evolution during redox cycling is still very limited yet critical to maximising performance and increasing durability. Here we track the microstructural evolution of a single composite particle over 200 redox cycles for hydrogen production by chemical looping using multi-length scale X-ray computed tomography. We show that redox cycling triggers a centrifugal redispersion of the metal phase and a centripetal clustering of porosity both seemingly driven by the asymmetric nature of oxygen exchange in composites. We show that initially the particle develops a large amount of internal porosity which boosts activity but on the long term this facilitates structural and compositional reorganisation and eventually degradation. We also correlate the microstructural data with phase and activity analysis to identify structure-property correlations which not only provide valuable insight into the evolution of composite materials under redox conditions but also for the design of new composite materials with enhanced durability.
Thermal Radiation from Cryogenic Hydrogen Jet Fires
Sep 2017
Publication
The thermal hazards from ignited under-expanded cryogenic releases are not yet fully understood and reliable predictive tools are missing. This study aims at validation of a CFD model to simulate flame length and radiative heat flux for cryogenic hydrogen jet fires. The simulation results are compared against the experimental data by Sandia National Laboratories on cryogenic hydrogen fires from storage with pressure up to 5 bar abs and temperature in the range 48–82 K. The release source is modelled using the Ulster's notional nozzle theory. The problem is considered as steady-state. Three turbulence models were applied and their performance was compared. The realizable k-ε model showed the best agreement with experimental flame length and radiative heat flux. Therefore it has been employed in the CFD model along with Eddy Dissipation Concept for combustion and Discrete Ordinates (DO) model for radiation. A parametric study has been conducted to assess the effect of selected numerical and physical parameters on the simulations capability to reproduce experimental data. DO model discretisation is shown to strongly affect simulations indicating 10 × 10 as minimum number of angular divisions to provide a convergence. The simulations have shown sensitivity to experimental parameters such as humidity and exhaust system volumetric flow rate highlighting the importance of accurate and extended publication of experimental data to conduct precise numerical studies. The simulations correctly reproduced the radiative heat flux from cryogenic hydrogen jet fire at different locations.
New Paradigms in Hydrogen Explosion Modelling Using an Industrial CFD Code
Sep 2019
Publication
It is well-known that deflagration to detonation transition (DDT) may be a significant threat for hydrogen explosions. This paper presents a summary of the work carried out for the development of models in order to enable the industrial computational fluid dynamic (CFD) tool FLACS to provide indications about the possibility of a deflagration-to-detonation transition (DDT). The likelihood of DDT has been expressed in terms of spatial pressure gradients across the flame front. This parameter is able to visualize when the flame front captures the pressure front which is the case in situations when fast deflagrations transition to detonation. Reasonable agreement was obtained with experimental observations in terms of explosion pressures transition times and flame speeds for several practical geometries. The DDT model has also been extended to develop a more meaningful criterion for estimating the likelihood of DDT by comparison of the geometric dimensions with the detonation cell size. The conclusion from simulating these experiments is that the FLACS DPDX criterion seems robust and will generally predict the onset DDTs with reasonable precision including the exact location where DDT may happen. The standard version of FLACS can however not predict the consequences if there is DDT as only deflagration flames are modelled. Based on the methodology described above an approach for predicting detonation flames and explosion loads has been developed. The second part of the paper covers new paradigms associated with risk assessment of a hydrogen infrastructure such as a refueling station. In particular approaches involving one-to-one coupling between CFD and FEA modelling are summarized. The advantages of using such approaches are illustrated. This can have wide-ranging implications on the design of things like protection walls against hydrogen explosions.
Towards Fire Test Protocol for Hydrogen Storage Tanks
Sep 2019
Publication
The reproducibility of fire test protocol in the UN Global Technical Regulation on Hydrogen and Fuel Cell Vehicles (GTR#13) is not satisfactory. Results differ from laboratory to laboratory and even at the same laboratory when fires of different heat release (HRR) rate are applied. This is of special importance for fire test of tank without thermally activated pressure relief devise (TPRD) the test requested by firemen. Previously the authors demonstrated a strong dependence of tank fire resistance rating (FRR) i.e. time from fire test initiation to moment of tank rupture on the HRR in a fire. The HRR for complete combustion at the open is a product of heat of combustion and flow rate of a fuel i.e. easy to control in test parameter. It correlates with heat flux to the tank from a fire – the higher HRR the higher heat flux. The control of only temperature underneath a tank in fire test as per the current fire test protocol of UN GTR#13 without controlling HRR of fire source is a reason of poor fire test reproducibility. Indeed a candle flame can easily provide a required by the protocol temperature in points of control but such test arrangements could never lead to tank rupture due to fast heat dissipation from such tiny fire source i.e. insufficient and very localised heat flux to the tank. Fire science requires knowledge of heat flux along with the temperature to characterise fire dynamics. In our study published in 2018 the HRR is suggested as an easy to control parameter to ensure the fire test reproducibility. This study demonstrates that the use of specific heat release rate HRR/A i.e. HRR in a fire source divided by the area of the burner projection A enables testing laboratories to change freely a burner size depending on a tank size without affecting fire test reproducibility. The invariance of FRR at its minimum level with increase of HRR/A above 1 MW/m2 has been discovered first numerically and then confirmed by experiments with different burners and fuels. The validation of computational fluid dynamics (CFD) model against the fire test data is presented. The numerical experiments with localised fires under a vehicle with different HRR/A are performed to understand the necessity of the localised fire test protocol. The understanding of fire test underlying physics will underpin the development of protocol providing test reproducibility.
Unattended Hydrogen Vehicle Fueling Challenges and Historical Context
Sep 2019
Publication
Hydrogen fuelling in the US is unattended activity although this precedent is not without several challenges that have been addressed in the past decade. This paper provides the recent history and the generic safety case which has established this precedent for hydrogen. The paper also explores the longer history of unattended gasoline fuelling and attempts to help place hydrogen fuelling into the longer history of fuelling personal vehicles.
CFD Modelling of Underexpanded Hydrogen Jets Exiting Rectangular Shaped Openings
May 2020
Publication
Underexpanded jet releases from circular nozzles have been studied extensively both experimentally and numerically. However jet releases from rectangular openings have received much less attention and information on their dispersion behaviour is not as widely available. In this paper Computational Fluid Dynamics (CFD) is used to assess the suitability of using a pseudo-source approach to model jet releases from rectangular openings. A comparative study is performed to evaluate the effect of nozzle shape on jet structure and dispersion characteristics for underexpanded hydrogen jet releases. Jet releases issuing from a circular nozzle and rectangular nozzles with aspect ratios ranging from two to eight are modelled including resolution of the near-field behaviour. The experimental work of Ruggles and Ekoto (2012 2014) is used as a basis for validating the modelling approach used and an additional case study in which jets with a stagnation-to-ambient pressure ratio of 300:1 are modelled is also performed. The CFD results show that for the 10:1 pressure ratio release the hazard volume and hazard distance remain largely unaffected by nozzle shape. For the higher pressure release the hazard volume is larger for the rectangular nozzle releases than the equivalent release through a circular orifice though the distance to lower flammability limit is comparable across the range of nozzle shapes considered. For both of the release pressures simulated the CFD results illustrate that a pseudo-source approach produces conservative results for all nozzle shapes considered. This finding has useful practical implications for consequence analysis in industrial applications such as the assessment of leaks from flanges and connections in pipework.
Cross-regional Drivers for CCUS Deployment
Jul 2020
Publication
CO2 capture utilization and storage (CCUS) is recognized as a uniquely important option in global efforts to control anthropogenic greenhouse-gas (GHG) emissions. Despite significant progress globally in advancing the maturity of the various component technologies and their assembly into full-chain demonstrations a gap remains on the path to widespread deployment in many countries. In this paper we focus on the importance of business models adapted to the unique technical features and sociopolitical drivers in different regions as a necessary component of commercial scale-up and how lessons might be shared across borders. We identify three archetypes for CCUS development—resource recovery green growth and low-carbon grids—each with different near-term issues that if addressed will enhance the prospect of successful commercial deployment. These archetypes provide a framing mechanism that can help to translate experience in one region or context to other locations by clarifying the most important technical issues and policy requirements. Going forward the archetype framework also provides guidance on how different regions can converge on the most effective use of CCUS as part of global deep-decarbonization efforts over the long term.
Meeting Net Zero with Decarbonised Gas
Aug 2019
Publication
Although the UK has done a great job of decarbonising electricity generation to get to net zero we need to tackle harder-to-decarbonise sectors like heat transport and industry. Decarbonised gas – biogases hydrogen and the deployment of carbon capture usage and storage (CCUS) – can make our manufacturing more sustainable minimise disruption to families and deliver negative emissions.
Effect of Syngas Fuel Compositions on the Occurrence of Instability of Laminar Diffusion Flame
Dec 2020
Publication
The paper presents a numerical investigation of the critical roles played by the chemical compositions of syngas on laminar diffusion flame instabilities. Three different flame phenomena – stable flickering and tip-cutting – are formulated by varying the syngas fuel rate from 0.2 to 1.4 SLPM. Following the satisfactory validation of numerical results with Darabkhani et al. [1] the study explored the consequence of each species (H2 CO CH4 CO2 N2) in the syngas composition. It is found that low H2:CO has a higher level of instability which however does not rise any further when the ratio is less than 1. Interestingly CO encourages the heat generation with less fluctuation while H2 plays another significant role in the increase of flame temperature and its fluctuation. Diluting CH4 into syngas further increases the instability level as well as the fluctuation of heat generation significantly. However an opposite effect is found from the same action with either CO2 or N2. Finally considering the heat generation and flame stability the highest performance is obtained from 25%H2+75%CO (81 W) followed by EQ+20%CO2 and EQ+20%N2 (78 W).
Energy Innovation Needs Assessment: Road Transport
Nov 2019
Publication
The Energy Innovation Needs Assessment (EINA) aims to identify the key innovation needs across the UK’s energy system to inform the prioritisation of public sector investment in low-carbon innovation. Using an analytical methodology developed by the Department for Business Energy & Industrial Strategy (BEIS) the EINA takes a system level approach and values innovations in a technology in terms of the system-level benefits a technology innovation provides. This whole system modelling in line with BEIS’s EINA methodology was delivered by the Energy Systems Catapult (ESC) using the Energy System Modelling Environment (ESMETM) as the primary modelling tool.
To support the overall prioritisation of innovation activity the EINA process analyses key technologies in more detail. These technologies are grouped together into sub-themes according to the primary role they fulfil in the energy system. For key technologies within a sub-theme innovations and business opportunities are identified. The main findings at the technology level are summarised in sub-theme reports. An overview report will combine the findings from each sub-theme to provide a broad system-level perspective and prioritisation.
This EINA analysis is based on a combination of desk research by a consortium of economic and engineering consultants and stakeholder engagement. The prioritisation of innovation and business opportunities presented is informed by a workshop organised for each sub-theme assembling key stakeholders from the academic community industry and government.
This report was commissioned prior to advice being received from the CCC on meeting a net zero target and reflects priorities to meet the previous 80% target in 2050. The newly legislated net zero target is not expected to change the set of innovation priorities rather it will make them all more valuable overall. Further work is required to assess detailed implications.
To support the overall prioritisation of innovation activity the EINA process analyses key technologies in more detail. These technologies are grouped together into sub-themes according to the primary role they fulfil in the energy system. For key technologies within a sub-theme innovations and business opportunities are identified. The main findings at the technology level are summarised in sub-theme reports. An overview report will combine the findings from each sub-theme to provide a broad system-level perspective and prioritisation.
This EINA analysis is based on a combination of desk research by a consortium of economic and engineering consultants and stakeholder engagement. The prioritisation of innovation and business opportunities presented is informed by a workshop organised for each sub-theme assembling key stakeholders from the academic community industry and government.
This report was commissioned prior to advice being received from the CCC on meeting a net zero target and reflects priorities to meet the previous 80% target in 2050. The newly legislated net zero target is not expected to change the set of innovation priorities rather it will make them all more valuable overall. Further work is required to assess detailed implications.
Deep-Decarbonisation Pathways for UK Industry
Dec 2020
Publication
The Climate Change Committee (CCC) commissioned Element Energy to improve our evidence base on the potential of industrial deep-decarbonisation measures (fuel switching CCS/BECCS measures to reduce methane emissions) and develop pathways for their application. This report summarises the evidence and results of the work including:
- Evidence on the key constraints and costs for technology and infrastructure deployment
- The methodology and new Net Zero Industry Pathway (N-ZIP) model used to determine deep-decarbonisation pathways for UK industry (drawing on the evidence above)
- A set of pathways and wider sensitivities produced using the N-ZIP model which fed into the CCC’s Sixth Carbon Budget pathways
- Recommended actions and policy measures as informed by the study.
A Probabilistic Framework for the Techno-economic Assessment of Smart Energy Hubs for Electric Vehicle Charging
Apr 2022
Publication
Smart energy hubs (Smart Hubs) equipped with Vehicle-to-Grid (V2G) charging photovoltaic (PV) energy generation and hydrogen storage capabilities are an emerging technology with potential to alleviate the impact of electric vehicles (EV) on the electricity grid. Their operation however is characterised by intermittent PV energy generation as well as uncertainties in EV traffic and driver preference. These uncertainties when combined with the need to maximise their financial return while guaranteeing driver satisfaction yields a challenging decision-making problem. This paper presents a novel Monte-Carlo-based modelling and computational framework for simulating the operation of Smart Hubs — providing a means for a holistic assessment of their technical and financial viability. The framework utilises a compact and representative mathematical model accounting for power losses PV module degradation variability in EV uptake price inflation driver preference and diversity in charge points and EVs. It provides a comprehensive approach for dealing with uncertainties and dependencies in EV data while being built on an energy management algorithm that maximises revenue generation ensures driver satisfaction and preserves battery life. The energy management problem is formulated as a mixed-integer linear programming problem constituting a business case that includes an adequate V2G reward model for drivers. To demonstrate its applicability the framework was used to assess the financial viability of a fleet management site for various caps on vehicle stay at the site. From the assessment controlled charging was found to be more financially rewarding in all cases yielding between 1.7% and 3.1% more revenue than uncontrolled charging. The self-consumption of the site was found to be nearly 100% due mainly to local load shifting and dispatchable hydrogen generation. V2G injection was however negligible — suggesting its unattractiveness for sites that do not participate in the demand side response market. Overall the numerical results obtained validate the applicability of the proposed framework as a decision-support tool in the sustainable design and operation of Smart Hubs for EV charging.
Electric and Hydrogen Rail: Potential Contribution to Net Zero in the UK
Sep 2020
Publication
Electric trains (ET) and hydrogen trains (HT) are considered zero emission at the point of use. True emissions are dependent upon non-tailpipe sources primarily in energy production. We present UK carbon dioxide (CO2) operating emission model outputs for conventionally fuelled trains (CFT) ETs and HTs between 2017 and 2050 under four National Grid electricity generation scenarios.
Comparing four service categories (urban regional intercity and high speed) to private conventionally fuelled vehicles (CFV) and electric vehicles considering average distance travelled per trip under different passenger capacity levels (125% 100% 75% 50% and 25%).
Results indicate by 2050 at 100% capacity CFTs produce a fifth of the emissions of CFVs per kilometre per person. Under two degree generation scenario by 2050 ETs produced 14 times and HTs produced five times less emissions than CFTs. Policymakers should encourage shifts away from private vehicles to public transport powered by low carbon electricity.
Comparing four service categories (urban regional intercity and high speed) to private conventionally fuelled vehicles (CFV) and electric vehicles considering average distance travelled per trip under different passenger capacity levels (125% 100% 75% 50% and 25%).
Results indicate by 2050 at 100% capacity CFTs produce a fifth of the emissions of CFVs per kilometre per person. Under two degree generation scenario by 2050 ETs produced 14 times and HTs produced five times less emissions than CFTs. Policymakers should encourage shifts away from private vehicles to public transport powered by low carbon electricity.
Accelerating Innovation Towards Net Zero Emissions
Apr 2019
Publication
This report Accelerating innovation towards net zero commissioned by the Aldersgate Group and co-authored with Vivid Economics identifies out how the government can achieve a net zero target cost-effectively in a way that enables the UK to capture competitive advantages.
The unique contribution of this report is to identify the lessons from successful and more rapid historical innovations and apply them to the challenge of meeting net zero emissions in the UK.
Achieving net zero emissions is likely to require accelerated innovation across research demonstration and early deployment of low carbon technologies. Researchers analysed five international case studies of relatively rapid innovations to draw key lessons for government on the conditions needed to move from a typical multi-decadal cycle to one that will deliver net zero emissions by mid-Century.
The case studies include:
Six key actions for government policy to accelerate low carbon innovation in the UK:
The unique contribution of this report is to identify the lessons from successful and more rapid historical innovations and apply them to the challenge of meeting net zero emissions in the UK.
Achieving net zero emissions is likely to require accelerated innovation across research demonstration and early deployment of low carbon technologies. Researchers analysed five international case studies of relatively rapid innovations to draw key lessons for government on the conditions needed to move from a typical multi-decadal cycle to one that will deliver net zero emissions by mid-Century.
The case studies include:
- The deployment of the ATM network and cash cards across the UK
- Roll out of a gas network and central heating in the UK
- The development of wind turbines in Denmark and then the UK
- Moving from late-stage adoption of steel technology in South Korea to being the world leading exporter; and
- The slower than expected development of commercial-scale CCUS to date across the world.
Six key actions for government policy to accelerate low carbon innovation in the UK:
- Increase ambition in demonstrating complex and high capital cost technologies and systems.
- Create new markets to catalyse early deployment and move towards widespread commercialisation.
- Use concurrent innovations such as digital technologies to improve system efficiency and make new products more accessible and attractive to customers.
- Use existing or new organisations (cross-industry associations or public-private collaborations) to accelerate innovation in critical areas and coordinate early stage deployment.
- Harness trusted voices to build consumer acceptance through information sharing and rapid responses to concerns.
- Align innovation policy in such a way that it strengthens the UK’s industrial advantages and increases knowledge spillovers between businesses and sectors.
HyDeploy Overview
May 2020
Publication
An overview of the HyDeploy project at Keele University where hydrogen is being blended with natural gas to demonstrate the feasibility of using hydrogen to heat our homes.
Ammonia-hydrogen Combustion in a Swirl Burner with Reduction of NOx Emissions
Sep 2019
Publication
Recently ammonia is being considered for fuelling gas turbines as a new sustainable source. It can undergo thermal cracking producing nitrogen hydrogen and unburned ammonia thus enabling the use of these chemicals most efficiently for combustion purposes. Ammonia being carbon-free may allow the transition towards a hydrogen economy. However one of the main constraints of this fuelling technique is that although the combustion of ammonia produces no CO2 there is a large NOx proportion of emissions using this fuel. In this work cracked ammonia obtained from a modified combustion rig designed at Cardiff University was used to simulate a swirl burner under preheating conditions via heat exchangers. The primary objective of this system is to find new ways for the reduction of NOx emissions by injecting various amounts of ammonia/hydrogen at different mixtures downstream of the primary flame zone. The amount of injected ammonia/hydrogen mixture (X) taken from the thermal cracking system was ranged from 0%-4% (vol %) of the total available fuel in the system while the remaining gas (1.00-X) was then employed as primary fuel into the burner. CHEMKIN- PRO calculations were conducted by employing a novel chemical reaction code developed at Cardiff University to achieve the goal of this paper. The predictions were performed under low pressure and rich conditions with an equivalence ratio ϕ =1.2 in a swirl burner previously characterised at output powers of ~10 kW. Ammonia and hydrogen blends were evaluated from 50% NH3 (vol %) with the remaining gas as hydrogen continuing in steps of 10% (vol %) NH3 increments. Results showed that the minimum unburned ammonia and higher flame temperature were achieved at 60%-40% NH3-H2 when compared to other blends but with high NO emissions. These NO levels were reduced by injecting a small amount of NH3/H2 mixture (X=4 %) downstream the primary zone in a generated circulations promoted by the new design of the burner which affecting the residence time hence reducing the NO emission in the exhaust gas.
Future Cost and Performance of Water Electrolysis: An Expert Elicitation Study
Nov 2017
Publication
The need for energy storage to balance intermittent and inflexible electricity supply with demand is driving interest in conversion of renewable electricity via electrolysis into a storable gas. But high capital cost and uncertainty regarding future cost and performance improvements are barriers to investment in water electrolysis. Expert elicitations can support decision-making when data are sparse and their future development uncertain. Therefore this study presents expert views on future capital cost lifetime and efficiency for three electrolysis technologies: alkaline (AEC) proton exchange membrane (PEMEC) and solid oxide electrolysis cell (SOEC). Experts estimate that increased R&D funding can reduce capital costs by 0–24% while production scale-up alone has an impact of 17–30%. System lifetimes may converge at around 60000–90000 h and efficiency improvements will be negligible. In addition to innovations on the cell-level experts highlight improved production methods to automate manufacturing and produce higher quality components. Research into SOECs with lower electrode polarisation resistance or zero-gap AECs could undermine the projected dominance of PEMEC systems. This study thereby reduces barriers to investment in water electrolysis and shows how expert elicitations can help guide near-term investment policy and research efforts to support the development of electrolysis for low-carbon energy systems.
Development of Water Electrolysis in the European Union
Feb 2014
Publication
In view of the recent interest in the transformation of renewable energy into a new energy vector that did not produce by combustion greenhouse gases emissions the Fuel Cells and Hydrogen Joint Undertaking (FCH JU) commissioned this report to a consultancy to get a better understanding of the industrial perspectives of water electrolysis in Europe. and the role that public support has in that evolution.
“Bigger than Government”: Exploring the Social Construction and Contestation of Net-zero Industrial Megaprojects in England
Jan 2023
Publication
Industry is frequently framed as hard-to-decarbonize given its diversity of requirements technologies and supply chains many of which are unique to particular sectors. Net zero commitments since 2019 have begun to challenge the carbon intensity of these various industries but progress has been slow globally. Against this backdrop the United Kingdom has emerged as a leader in industrial decarbonization efforts. Their approach is based on industrial clusters which cut across engineering spatial and socio-political dimensions. Two of the largest of these clusters in England in terms of industrial emissions are the Humber and Merseyside. In this paper drawn from a rich mixed methods original dataset involving expert interviews (N = 46 respondents) site visits (N = 20) a review of project documents and the academic literature we explore ongoing efforts to decarbonize both the Humber and Merseyside through the lens of spatially expansive and technically complex megaprojects. Both have aggressive implementation plans in place for the deployment of net-zero infrastructure with Zero Carbon Humber seeking billions in investment to build the country’s first large-scale bioenergy with carbon capture and storage (BECCS) plant alongside a carbon transport network and hydrogen production infrastructure and HyNet seeking billions in investment to build green and blue hydrogen facilities along with a carbon storage network near Manchester and Liverpool. We draw from the social construction of technology (SCOT) literature to examine the relevant social groups interpretive flexibility and patterns of closure associated with Zero Carbon Humber and HyNet. We connect our findings to eight interpretive frames surrounding the collective projects and make connections to problems contestation and closure.
Quantitative Risk Assessment Methodology for Hydrogen Tank Rupture in a Tunnel Fire
Dec 2022
Publication
This study presents a methodology of a quantitative risk assessment for the scenario of an onboard hydrogen storage tank rupture and tunnel fire incident. The application of the methodology is demonstrated on a road tunnel. The consequence analysis is carried out for the rupture of a 70 MPa 62.4-litre hydrogen storage tank in a fire that has a thermally activated pressure relief device (TPRD) failed or blocked during an incident. Scenarios with two states of charge (SoC) of the tank i.e. SoC = 99% and SoC = 59% are investigated. The risks in terms of fatalities per vehicle per year and the cost per incident are assessed. It is found that for the reduction in the risk with the hydrogen-powered vehicle in a road tunnel fire incident to the acceptable level of 10−5 fatality/vehicle/year the fireresistance rating (FRR) of the hydrogen storage tank should exceed 84 min. The FRR increase to this level reduces the societal risk to an acceptable level. The increase in the FRR to 91 min reduces the risk in terms of the cost of the incident to GBP 300 following the threshold cost of minor injury published by the UK Health and Safety Executive. The Frequency–Number (F–N) of the fatalities curve is developed to demonstrate the effect of mitigation measures on the risk reduction to socially acceptable levels. The performed sensitivity study confirms that with the broad range of input parameters including the fire brigade response time the risk of rupture of standard hydrogen tank-TPRD systems inside the road tunnel is unacceptable. One of the solutions enabling an inherently safer use of hydrogen-powered vehicles in tunnels is the implementation of breakthrough safety technology—the explosion free in a fire self-venting (TPRD-less) tanks.
US-UK Scientific Forum on Sustainable Energy: Electrical Storage in Support of the Grid, Forum Report
Sep 2022
Publication
The effort to meet the ambitious targets of the Paris agreement is challenging many governments. The US and UK governments might have different approaches to achieving the targets but both will rely heavily on renewable energy sources such as wind and solar to power their economies. However these sources of power are unpredictable and ways will have to be developed to store renewable energy for hours days weeks seasons and maybe even years before it is used. As the disruptive and increasingly deadly impacts of climate change are being felt across the world the need to move to more sustainable sources of energy and to identify viable ways to store that energy has never been more important.<br/>This was the subject of the US–UK Science Forum on electrical storage in support of the grid which was held online from 17 – 18 March 2021. Co-organised by the Royal Society and the National Academy of Sciences it brought together a diverse group of 60 scientists policy makers industry leaders regulators and other key stakeholders for a wide-ranging discussion on all aspects of energy storage from the latest research in the field to the current status of deployment. It also considered the current national and international economic and policy contexts in which these developments are taking place. A number of key points emerged from the discussion. First it is clear that renewable energy will play an increasingly important role in the US and UK energy systems of the future and energy storage at a multi-terawatt hour scale has a vital role to play. Of course this will evolve differently to some extent in both countries and elsewhere according to the various geographical technological economic political social and regulatory environments. Second international collaboration is critical – no single nation will solve this problem alone. As two of the world’s leading scientific nations largest economies and per capita CO2 emitters with a long track record of collaboration the US and UK are well placed to play a vital role in addressing this critical challenge. As the discussion highlighted a wide range of energy storage technologies are now emerging and becoming increasingly available many of which have the potential to be critical components of a future net-zero energy system. A crucial next phase is in ensuring that these are technically developed as well as economically and political viable. This will require the support of a wide range of these potential solutions to ensure that their benefits remain widely available and to avoid costly ‘lock-in’. Scientists and science academies have a critical role to play in analysing technology options their combinations and their potential roles in future sustainable energy systems and in working with policymakers to incentivise investment and deployment.
Numerical Investigation on NOx Emission of a Hydrogen-Fuelled Dual-Cylinder Free-Piston Engine
Jan 2023
Publication
The free-piston engine is a type of none-crank engine that could be operated under variable compression ratio and this provides it flexible fuel applicability and low engine emission potential. In this work several 1-D engine models including conventional gasoline engines free-piston gasoline engines and free-piston hydrogen engines have been established. Both engine performance and emission performance under engine speeds between 5–11 Hz and with different equivalent ratios have been simulated and compared. Results indicated that the free-piston engine has remarkable potential for NOx reduction and the largest reduction is 57.37% at 6 Hz compared with a conventional gasoline engine. However the figure of NOx from the hydrogen free-piston engine is slightly higher than that of the gasoline free-piston engine and the difference increases with the increase of engine speed. In addition several factors and their relationships related to hydrogen combustion in the free-piston engine have been investigated and results show that the equivalent ratio ϕ = 0.88 is a vital point that affects NOx production and the ignition advance timing could also affect combustion duration the highest in-cylinder temperature and NOx production to a large extent.
Performance of Three Typical Domestic Gas Stoves Operated with Methane-hydrogen Mixture
Dec 2022
Publication
Hydrogen blending into natural gas has attracted significant attention in domestic applications. The paper studied the effects of natural gas mixed with hydrogen at 0% (vol) 5% 10% 15% 20% and 25% on the performance of typical round-port gas stove (TRPGS) swirling strip-port gas stove (SSPGS) and radiant porous media gas stove (RPMGS). The experimental results show that flame length shortens with the increase of hydrogen proportion and the combustion remains stable when the hydrogen proportion is equal to or less than 25%. With increasing hydrogen proportion the measured heat inputs of the three types of domestic gas stoves decrease gradually and the average thermal efficiency of TRPGS and SSPGS increase by 0.82% and 1.18% respectively. In addition the average efficiency of the RPMGS first increases by 1.35% under a hydrogen proportion of 15% and then decreases by 1.36% under a hydrogen proportion of 25%. In terms of flue gas emission CO emission reduces significantly with increasing hydrogen proportion while NOX emissions remain almost unchanged.
First Hydrogen Fuel Sampling from a Fuel Cell Hydrogen Electrical Vehicle–Validation of Hydrogen Fuel Sampling System to Investigate FCEV Performance
Aug 2022
Publication
Fuel cell electric vehicles (FCEV) are developing quickly from passenger vehicles to trucks or fork-lifts. Policymakers are supporting an ambitious strategy to deploy fuel cell electrical vehicles with infrastructure as hydrogen refueling stations (HRS) as the European Green deal for Europe. The hydrogen fuel quality according to international standard as ISO 14687 is critical to ensure the FCEV performance and that poor hydrogen quality may not cause FCEV loss of performance. However the sampling system is only available for nozzle sampling at HRS. If a FCEV may show a lack of performance there is currently no methodology to sample hydrogen fuel from a FCEV itself. It would support the investigation to determine if hydrogen fuel may have caused any performance loss. This article presents the first FCEV sampling system and its comparison with the hydrogen fuel sampling from the HRS nozzle (as requested by international standard ISO 14687). The results showed good agreement with the hydrogen fuel sample. The results demonstrate that the prototype developed provides representative samples from the FCEV and can be an alternative to determine hydrogen fuel quality. The prototype will require improvements and a larger sampling campaign.
Jet Zero Strategy: One Year On
Jul 2023
Publication
This report sets out progress against our strategic framework for decarbonising aviation as well as the latest aviation emissions data and updated Jet Zero analysis.<br/>Among the significant milestones achieved since the Jet Zero strategy launch are the:<br/>- agreement at the International Civil Aviation Organization for a long-term aspirational goal for aviation of net zero 2050 carbon dioxide (CO2) emissions for international aviation<br/>- publication of the 2040 zero emissions airport target call for evidence<br/>significant progress on sustainable aviation fuels (SAF) including:<br/>- publishing the second SAF mandate consultation<br/>- launching a second round of the Advanced Fuels Fund<br/>- publishing the Philip New report and the government response on how to develop a UK SAF industry<br/>- publication of the government response to the UK ETS consultation setting out a range of commitments that will enhance the effectiveness of the UK Emissions Trading Scheme (ETS) for aviation<br/>- launch of the expressions of interest for 2 DfT- funded research projects into aviation’s non-CO2 impacts<br/>The report also acknowledges that big challenges remain and we need to continue to work across the aviation sector and with experts across the economy to ensure we continue to make progress on our path to decarbonise aviation.
Review and Survey of Methods for Analysis of Impurities in Hydrogen for Fuel Cell Vehicles According to ISO 14687:2019
Feb 2021
Publication
Gaseous hydrogen for fuel cell electric vehicles must meet quality standards such as ISO 14687:2019 which contains maximal control thresholds for several impurities which could damage the fuel cells or the infrastructure. A review of analytical techniques for impurities analysis has already been carried out by Murugan et al. in 2014. Similarly this document intends to review the sampling of hydrogen and the available analytical methods together with a survey of laboratories performing the analysis of hydrogen about the techniques being used. Most impurities are addressed however some of them are challenging especially the halogenated compounds since only some halogenated compounds are covered not all of them. The analysis of impurities following ISO 14687:2019 remains expensive and complex enhancing the need for further research in this area. Novel and promising analyzers have been developed which need to be validated according to ISO 21087:2019 requirements.
Gas Goes Green: Hydrogen Blending Capacity Maps
Jan 2022
Publication
Britain's gas networks are ready for hydrogen blending. Learn more about Britain's hydrogen blending capacity in the National Transmission System and Distribution Networks.
Feasibility Study of Vacuum Pressure Swing Adsorption for CO2 Capture From an SMR Hydrogen Plant: Comparison Between Synthesis Gas Capture and Tail Gas Capture
Dec 2021
Publication
In this paper a feasibility study was carried out to evaluate cyclic adsorption processes for capturing CO2 from either shifted synthesis gas or H2 PSA tail gas of an industrial-scale SMR-based hydrogen plant. It is expected that hydrogen is to be widely used in place of natural gas in various industrial sectors where electrification would be rather challenging. A SMR-based hydrogen plant is currently dominant in the market as it can produce hydrogen at scale in the most economical way. Its CO2 emission must be curtailed significantly by its integration with CCUS. Two Vacuum Pressure Swing Adsorption (VPSA) systems including a rinse step were designed to capture CO2 from an industrial-scale SMR-based hydrogen plant: one for the shifted synthesis gas and the other for the H2 PSA tail gas. Given the shapes of adsorption isotherms zeolite 13X and activated carbon were selected for tail gas and syngas capture options respectively. A simple Equilibrium Theory model developed for the limiting case of complete regeneration was taken to analyse the VPSA systems in this feasibility study. The process performances were compared to each other with respect to product recovery bed productivity and power consumption. It was found that CO2 could be captured more cost-effectively from the syngas than the tail gas unless the desorption pressure was too low. The energy consumption of the VPSA was comparable to those of the conventional MDEA processes.
No more items...